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Recently the regenerative evaporative cooler (REC) has drawn great 

attention from researchers because it can cool the intake air below the wet-

bulb temperature and approaching its dew point temperature. For further 

understanding of the heat and mass transfer occurred in a counter-flow REC, 

a novel mathematical model is developed based on the law of energy 

conservation and the principle of the thermodynamic theory. The proposed 

mathematical model is validated against experimental data from literature. 

The parametric study is performed to investigate the performance of the 

REC under different operating and geometrical conditions. It is found that 

the exergy destruction and exergy efficiency ratio of the REC are strongly 

influenced by the intake air velocity, the working to intake air ratio and 

channel gap, followed by the channel length. The working to intake air ratio 

choosing from 0.3 to 0.4 is appropriate in order to achieve better thermal 

performance with permissible level of thermodynamic cost. Moreover, the 

results obtained in this paper reveal that the best thermal performance does 

not correspond to the best thermodynamic performance. Thus, both the first 

and second law of thermodynamics should be considered for a 

comprehensive analysis. 

Key words: regenerative evaporative cooler, heat and mass transfer, energy, 

exergy 

1. Introduction  

With the advent of the vapor compression cycle, the air conditioning market has been 

dominated by vapour compression refrigeration systems. This cooling mode, owing to the usage of the 

power intensive compressor and associated chemical refrigerants, e.g. HCFC, is neither sustainable 

nor environmentally friendly. Without the participations of compressor and refrigerant, evaporative 

cooling is considered to be a potential substitute for mechanical compression system. However, the 

conventional evaporative cooling has very limited temperature reduction potential because it cannot 

lower the product air temperature to the wet bulb temperature of intake air. 
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Recently, the regenerative evaporative cooler (REC), as an advanced evaporative cooling 

configuration, has attracted great attention for providing the air below the wet bulb temperature of 

intake air without moisture content increase. Zhao et al. [1] presented numerical simulation of a 

counter-flow heat and mass exchanger that features the triangular cross section of air channels. The 

numerical simulation indicated that the cooling effectiveness and energy efficiency are dramatically 

affected by the dimensions of the air flow passages, air velocity and the working-to-intake-air ratio, 

and less dependent on the temperature of the feed water. Riangvilaikul and Kumar [2] carried out 

numerical studies of dew point evaporative cooling system with counter-flow configuration under a 

variety of intake air conditions. They purposed the optimum parameters of the counter-flow REC and 

investigated the effectiveness. Hasan [3] developed an analytical model for the counter-flow REC 

based on modified ε-NTU method. The outlet product air temperature had around 7.4% discrepancy 

compared to experimental data. Pandelidis et al. [4] numerically investigated the performance of 

typical REC and REC with perforations based on a modified ε-NTU model. It was found that the 

working to intake air ratio had a significant impact on the cooling performance of both coolers. Duan 

et al. [5] presented an experimental study of a counter-flow REC with triangular air guider under 

various operational conditions. The results revealed that the wet-bulb effectiveness of the REC rated 

from 0.55 to 1.06 with Energy Efficiency Ratio varied from 2.8 to 15.5. Kabeel and Abdelgaied [6] 

carried out experimental and numerical studies of a novel counter-flow REC with internal baffles in 

the dry channel. They demonstrated that the wet-bulb effectiveness of the novel REC increased with 

increased number of baffles. Moshari and Heidarinejad [7] presented a numerical investigation into the 

cooling performance comparison of cross flow and counter flow REC. It was found that the counter-

flow REC could offer greater cooling capacity. Cui et al. [8] developed a simple performance 

correlation for counter-flow REC and the correlation was further validated with experimental data. 

The results showed the dimensionless product air outlet temperature was within a discrepancy of 12%. 

Duan et al. [9] carried out experimental and numerical studies of a prosed large scale counter-flow 

REC under a variety of intake air conditions, and the wet-bulb effectiveness in the range of 96%-107% 

could be achieved. Boukhanouf et al. [10] proposed a validated numerical model and conducted 

experimental study of the REC using porous ceramic materials. It was found that the cooling capacity 

of the wet surface area approched 225 W/m
2
 and the wet-bulb effectiveness of 102% could be 

achieved. 

In summary, the heat and mass transfer characteristics and performance of the counter-flow 

REC have been evaluated by the first law of thermodynamics through numerical simulations and 

experiments methods. However, the first law method alone is not adequately able to show some 

important viewpoints. It neglects the existence of the energy quality and irreversibility of the 

thermodynamic process. On the contrary, the exergy analysis, known as the second law method, can 

characterize the irreversibility of the heat and mass transfer processes within the REC and fulfill of the 

incompleteness. The exergy analysis method has been widely applied in the performance evaluation of 

various energy systems, including evaporative systems [11-13]. 

As mentioned above, the previous research mainly focused on energy analysis and few 

researchers consider the applicability of exergy analysis for the counter-flow REC investigation. 

Therefore, to overcome the shortfall in the theoretical study of the REC , the paper has presented an 

energy and exergy analysis using both the first and second laws of thermodynamics for the counter-

flow REC. By using the experimentally validated model, a parametric study is conducted based on the 



3 

 

performance parameters of the REC including cooling capacity, dew point effectiveness, exergy 

destruction and exergy efficiency ratio under different operational and geometrical conditions. The 

work of the study is expected to help researchers better understand the thermal and thermodynamic 

characteristics of the REC and provides some original information for the improving design.  

2. Mathematical model for counter-flow REC 

2.1. Description of counter-flow REC 

A counter-flow REC as illustrated in Fig. 1(a), normally comprises of numerous fibrous plates 

that are stacked together. One side of each plate is applied with a water-proof coating, thus each 

forming a dry surface (coating side) and wet surface (uncoated side) for the channels of the REC. Dry 

surfaces of two adjacent plates are against each other to form numerous dry channels; whilst the wet 

surfaces of the two adjacent plates are also against each other to form numerous wet channels.  

 

 

 

 

 

 

 

                                              (a)                                                                                     (b)           

Figure 1. Principle of regenerative evaporative cooling: (a) Schematic of counter flow REC (b) 

psychrometric process of counter flow REC 

 

During operation, the intake air flows in the dry channel and part of its outlet flow is employed 

as the working air, which flows in the adjacent wet channel in reverse direction. The plate’s surface of 

wet channel is wetted by water, resulting in the sensible heat transfer caused by temperature difference 

and mass transfer caused by water vapor pressure difference between the wet surface and working air. 

The intake air is cooled without contacting water directly, thus humidity ratio remains unchanged. The 

psychrometric process of counter flow REC is showen in Fig. 1(b). 

2.2. Heat and mass transfer model 

Normally, a counter-flow REC consists of numerous dry channels and wet channels separated 

from each other by partition plate. Therefore, a representative cell element of the REC, which 

comprises half the gap of a dry channel, a plate and half the gap of a wet channel, is selected as shown 

in Fig. 2. The model is employed to each individual element, and then the temperature and moisture 

distribution within the cell element can be obtained. The following reasonable assumptions have been 

adopted to simplify the developed model: The air is deemed to be incompressible; The process is 

steady state; The outer surface is thermally isolated from the surroundings; The physical properties of 

the air, water and vapor are assumed to be constant; The heat and mass transfer coefficient of moist air 

conforms to the Lewis relation; The water film is distributed uniformly across the wet channel, and the 

thermal resistance of water film and the thermal conductivity of the plate are neglected [14].  
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Fig. 2 shows the cell control element of the counter-flow REC. Based on the above 

assumptions, the energy balance in the intake air stream can be written as： 

 
, ( )

2

dry

p a p dry p w

m
dq c dt h t t dA                                                 (1) 

 

Figure 2. cell control element applied for calculation 

 

The energy balance equation for the working air and water film of wet channel is expressed as 

 ,[ ( ) ( )]
2

wet
s wet w s v m w sat s

m
di h t t i h W W dA                                           (2) 

The mass balance equation for the working air and water film of wet channel can be described 

by the following equations, 

 ,( )
2

wet
s m w sat s

m
dW h W W dA                                                    (3) 

 
2

wet
s w

m
dW dm                                                              (4) 

The convective mass transfer coefficient is expressed as a function of the convective heat 

transfer coefficient and the Lewis number [15], and the Lewis number is assumed to be equal to one: 

 
2/3

m

h
cLe

h
                                                               (5) 

Due to the relatively small channel size and low velocity in dry and wet channels, the air 

streams can be treated as laminar flow. The thermal entry length for the laminar airflow in the channel 

can be calculated from [16], 

 0.05 RePrth hl D                                                           (6) 

The Nusselt number [17] in the entry region can be calculated using the following empirical 

correlation 
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For a fully developed laminar flow, the Nusselt number [17] is constant as following 

 Nu 8.235  (9) 

The sensible heat transfer in the wet channel is expressed as follows 
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The energy balance equation for the cell control element is given as 

 
, 0

2 2

dry wet
p a p s w w w w w w

m m
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Eqs. (1)-(3) and (10)-(11) are a set of equations describing the heat and mass transfer process in 

the counter-flow REC. The Newton iteration method was adopted to solve these coupled discrete 

equations in Engineering Equation Solver environment. The grid independence test was performed 

under the specified conditions with different numbers of cell elements. The trial computation results 

showed that the change of product air outlet temperature is within 0.04 ℃ with the cell number 

increasing from 30 to 50. Therefore, by taking both accuracy of the solution and computing time into 

consideration, thirty cell control elements were distributed along the air flow direction. 

The dew point effectiveness is an important index to evaluate the cooling performance of the 

REC, and the mathematical expression can be written as  

 
, , , ,

, , , ,

p db in p db out

dp

p db in p dp in

t t
η

t t





 (12) 

Besides, the product air is cooled at the constant moisture content, the cooling capacity can be 

calculated as following 

 
, , , , , , , , , ,( ) (1 ) ( )p p a p db in p db out dry p a p db in p db outQ m c t t m θ c t t      (13) 

The local resistances of air flow and power consumption of the pump in the system are 

neglected. The theoretical  required fan power of the system is obtained as following 

 Δ Δdry dry wet wetp P V P V   (14) 

2.3. Numerical validation 

By solving the coupled equations stated above, the air temperature and humidity ratio of each 

cell control element were calculated to obtain the performance of the counter-flow REC. The model 

was further validated with published experimental data from [18]. 
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Figure 3. The numerical results compared with experimental data 

 



6 

 

The present model was set to the same operational/ geometrical conditions as the experiment 

data obtained from [18]. The physical sizes( channel length, channel width, channel gap ) of the  

counter-flow REC were 1200 mm, 80 mm,and 5 mm, respectively. The experiment study was 

performed for intake air velocity of 2.4 m/s and working to intake air ratio of 0.33. Fig. 3 shows the 

comparison between the experiment data and numerical results. When the humidity ratio of intake air 

is 11.2 g/kg, 20.0 g/kg, 26.4 g/kg, the errors of product air outlet temperature is small. As intake air 

temperature increases when humidity ratio is 6.9 g/kg, the error becomes bigger and the biggest error 

is 9.7%. Taking into account the accuracy of test equipment and relevant assumptions, the established 

model can be used to simulate the heat transfer and mass transfer process in counter-flow REC. 

3. Calculation method of exergy 

Exergy is defined as the maximum work that can be obtained from a given form of energy using 

the environmental parameters as the reference state. The results of exergy analysis for a climatisation 

system strongly depend on the selection of the reference state [19]. Usually, a steady-atmospheric state 

is selected as the reference environment. However, when the atmospheric air is unsaturated, it still has 

available energy [20]. Therefore, the saturated condition of intake air is defined as the dead state for 

humid air and water.  

The exergy in the air-conditioning process reaching thermal, mechanical and chemical 

equilibriums with the atmospheric environment can be written as 

 
0 0 0 ,0 ,00

1

( ) ( ) ( )
n

t k k k

k

e i i T s s x  


       (15)  

Where the first two terms on the right side of Eq. (15) are the thermomechanical exergy, and the last 

term is the chemical exergy. 

The moist air and water are the only two kinds of fluids involving in the REC. The moist air can 

be considered to be a mixture of ideal gases composed of dry air and water vapor. The exergy of moist 

air and water can be written as [12] 
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 (16) 

      ,0 0 ,0 ,0 0 0lnw w w w w w w w ve i i T s s P P R T         (17) 

The first two terms on the right side of Eq. (16) are the thermomechanical exergy of moist air, 

and the last term is the chemical exergy. In Eq. (17) the first three terms represent the 

thermomechanical exergy, and the last term represents the chemical exergy of the water. 

The process is adiabatic with no work delivered, so the exergy balance for the REC represented 

by Fig. 1(a) is calculated as follows, 

    1 1, , , 2, 3 3,a w in w in p a am e m e m e m e I     (18) 

Where the terms in brackets on the left side of Eq. (18) are the total exergy entering into the REC; 

whereas, the first term on the right side represents the exergy leaving the REC, and the last term 

represents the destroyed exergy. 
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In the process of heat and mass transfer, added moisture to air is considered as an input quantity 

of water. Equations (16) and (17) are substituted into Eq. (18) to acquire the exergy destruction. For 

free energy involving in the service system, the exergy efficiency ratio is defined as an important 

index to evaluate the effective use of the purchased available energy. As the exergy efficiency ratio is 

higher , the REC is more profitable. The exergy efficiency ratio is defined as: 

 
   

1, , 1, ,

1 1, , 3 3, , 1 1, , 3 3, ,

(1 )p a th p a th

ex

a me a me a me a me

m e m e
EER

m e m e m e m e


 

 
 (19) 

Where the numerator of Eq. (19) is the thermal exergy of product air, and the denominator represent 

the mechanical exergy of the intake air and working air. 

4. Simulation results and analyses 

According to the above model, the numerical simulations have been undertaken to investigate 

the impact of the selected operational and geometrical parameters on the thermal performance (cooling 

capacity and dew point effectiveness) and thermodynamic performance (exergy destruction and 

exergy efficiency ratio) obtained by the counter-flow REC. The dimensions of the counter-flow REC 

are set initially to 1.0 × 1.0 × 0.1 m
3
. The start-up conditions for simulation applied to the study are 

listed in Tab. 1. 

 

Table 1. Pre-set structural and operational conditions for simulation 

Channel 
length 
(mm) 

Channel 
width 
(mm) 

Channel 
gap 

(mm) 

Wall 
thickness 

(mm) 

Intake air 
temperature 

(°C) 

Intake air 
humidity 

ratio(g/kg) 

Intake air 
velociy   
(m/s) 

Working 
to intake 
air ratio 

1000 100 5 0.4 33.5 8.244 1.5 0.33 

4.1. Effect of working to intake air ratio 

Influence of working to intake air ratio on cooling capacity, exergy destruction, dew point 

effectiveness and exergy efficiency ratio is analyzed under different working to intake air ratio 

spanning 0.1 to 0.9 and the results are shown in Fig. 4 (a) and Fig. 4 (b). As shown in Fig. 4, when the 

working to intake air ratio is varied from 0.1 to 0.9, the variation trend of cooling capacity is similar 

with that of exergy efficiency ratio. The cooling capacity and exergy efficiency ratio are almost direct 

proportional to the working to intake air ratio firstly till 0.3. After this, the cooling capacity and exergy 

efficiency ratio are inversely proportional to the working to intake air ratio. That is because both the 

mass flow rate of product air and the temperature drop have a coupled impact on the cooling capacity 

and exergy efficiency ratio. Increasing in working to intake air ratio can lead to the reduction of 

product air to the cooling space. The exergy destruction and dew point effectiveness increase at the 

same time with working to intake air ratio rising. It is due to the fact that an increase in working to 

intake air ratio results in the enhancement of heat and mass transfer in the wet channel. Therefore, the 

temperature drop between product air inlet and outlet and exergy destruction both increase, as the 

amount of pressure drop is almost same. As the working to intake air ratio rises, the exergy destruction 

is increased by 1.7 times from 47.9 W to 130 W, and the exergy efficiency ratio is decreased by 85% 

from 21.3 to 3.2. Moreover, the working to intake air ratio choosing from 0.3 to 0.4 is reasonable 

enable the cooler to reach a compromise between thermal performance and thermodynamic 

performance. 
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Figure 4. Influence of working to intake air ratio: (a) cooling capacity and exergy destruction 

(b)dew point effectiveness and exergy efficiency ratio 

4.2. Effect of intake air velocity 

The impact of intake air velocity on the performance of the REC is studied, shown in Fig. 5(a) 

and Fig. 5(b). Fig. 5(a) shows the cooling capacity and exergy destruction depending on the intake air 

velocity varying from 0.4 to 4.0 m/s. It can be observed that the cooling capacity and exergy 

destruction quickly increases with increasing the intake air velocity. Fig. 5(b) presents the dew point 

effectiveness and exergy efficiency ratio depending on the intake air velocity. The figure shows the 

dew point effectiveness and exergy efficiency ratio decrease at the same time with intake air velocity 

rising. That is because the increase of intake air velocity can lead to the increase of intake air mass 

flow rates in both channels. The increase of intake air velocity is relatively big comparing to the 

decrease of the product air outlet temperature. In addition, the higher intake air velocity can lead to the 

higher pressure loss. Thus, the mechanical exergy is bigger in both channels while the thermal exergy 

of the product air outlet is samller. It is concluded that both energy and exergy analyses should be 

considered for the optimization of the process to get the best performance. As the intake air velocity 

rises from 0.4 to 4.0 m/s, the exergy destruction is increased by about 8.5 times from 25.8W to 

245.1W, and the exergy efficiency ratio  is reduced by about 96.5%, from 123.5 to 4.3. These indicate 

that the effect of intake air velocity is greater than the working to intake air ratio on the exergy 

destruction and exergy efficiency ratio. 
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Figure 5. Effect of intake air velocity: (a) cooling capacity and exergy destruction (b) dew 

point effectiveness and exergy efficiency ratio 
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4.3. Effect of channel length 

Simulations are performed to investigate the effect of channel length on cooling capacity, 

exergy destruction, dew point effectiveness and exergy efficiency ratio, and the results are illustrated 

in Fig. 6(a) and Fig. 6(b). It can be seen from Fig. 6(a) that the cooling capacity and exergy destruction 

increase with varying the channel length from 0.25 to 3.5 m. The rates of cooling capacity and exergy 

destruction increase slow down when channel length exceeds 1.5 m. The Fig. 6(b) presents the dew 

point effectiveness and exergy efficiency ratio depending on the channel length. By comparison, the 

changing trend of dew point effectiveness is similar with that of cooling capacity but is opposite with 

that of exergy efficiency ratio. That is because the increase of the length can increase the residence 

time and contact area, which is conducive to heat and mass transfer process. However, the increased 

channel length means increased pressure loss and mechanical exergy. Consequently, the exergy 

destruction increases from 85 W to 100.4 W, increased by about 0.18 times, as the value of channel 

length rises. Meanwhile, the exergy efficiency ratio decreases from 33.2 to 9.3, decreased by about 

0.72 times. Therefore, the effect of channel length is smaller than the working to intake air ratio on the 

performance of exergy destruction and exergy efficiency ratio. It is also concluded that that the best 

thermal performance does not correspond to the best thermodynamic performance.  

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
500

600

700

800

900

1000

1100

1200

1300a

 

C
o
o
li

n
g
 c

ap
ac

it
y
 (

W
)

Channel length (m)

 Cooling capacity

81

84

87

90

93

96

99

102

 Exergy destruction

E
x
er

g
y
 d

es
tr

u
ct

io
n
 (

W
)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.4

0.5

0.6

0.7

0.8

0.9

b

D
ew

 p
o
in

t 
ef

fe
c
ti

v
en

es
s

Channel length (m)

 Dew point effectiveness

5

10

15

20

25

30

35

 

 Exergy efficiency ratio

E
x
er

g
y
 e

ff
ic

ie
n
cy

 r
at

io

 
Figure 6. Effect of channel length: (a) cooling capacity and exergy destruction (b) dew point 

effectiveness and exergy efficiency ratio 

4.4. Effect of channel gap 

To investigate the impact of channel gap on the thermal performance and thermodynamic 

performance of the REC through changing the channel gap from 2mm to 12mm while other 

parameters keep unchanged under the pre-set conditions and the results are presented in Fig. 7(a) and 

Fig. 7(b). As shown in Fig. 7(a),  the cooling capacity and exergy destruction quickly decreases with 

increasing the channel gap. Fig. 7(b) indicates that the exergy efficiency ratio increases but the dew 

point effectiveness  decreases almost linearly with channel gap rising. This can be attributed to a high 

channel gap resulting in decreased flow resistance. The mechanical exergy is smaller in both channels 

while the thermal exergy of the product air outlet is bigger. The decrease of mechanical exergy is 

relatively small comparing to the increase of the product air outlet temperature. It should be noted that 

the small channel gap can provide good thermal performance but bad thermodynamic performance. As 

the channel gap decreases, the exergy destruction is increased by about 27% from 80.8 W to 102.9 W, 

while the exergy efficiency ratio is decreased by about 81% from 31.6 to 5.9. Results come out that 

the effect of channel gap is smaller than the working to intake air ratio on the exergy destruction and 

exergy efficiency ratio, yet it is greater than the effect of the value of channel length.  
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Figure 7. Effect of channel gap: (a) cooling capacity and exergy destruction (b) dew point 

effectiveness and exergy efficiency ratio 

5. Conclusions 

This study prensents a mathematical model for the counter-flow REC based on the heat and 

mass transfer theory. The model was validated by the experimental results from the literature. An 

exergy balance is derived in order to determine the exergy destruction associated with heat and mass 

transfer. The performance of the considered REC is parametrically evaluated under various operating 

and geometrical conditions in terms of cooling capacity, exergy destruction, dew point effectiveness 

and exergy efficiency ratio. The main conclusions can be drawn from the present study as follows:    

(1)  The working to intake air ratio choosing from 0.3 to 0.4 is appropriate in  order to achieve a 

compromise between thermal performance and thermodynamic performance. To achieve good 

thermodynamic performance, the intake air velocity should be small enough, however, this would 

reduce the cooling capacity. 

(2) The exergy destruction is increasing with increasing the working to intake air ratio, intake 

air velocity and channel length, or reducing channel gap respectively, while the exergy efficiency ratio 

is opposite to that. Furthermore, it is found that the influence of operational and structural parameters 

on the exergy destruction and exergy efficiency ratio from large to small are listed as follows: intake 

air velocity, working to intake air ratio, channel gap, channel length. 

(3) The big channel length or small channel gap can provide large cooling capacity and great 

dew point effectiveness, however, the exergy destruction is reduced with increasing channel length but 

decreasing channel gap. The operational and geometrical parameters have complex effects on thermal 

performance and thermodynamic performance of the counter-flow REC. The results show that the 

optimum situation for obtaining thermal performance can not match with the best thermodynamic 

performance. Thus, the energy and exergy analysis should be implemented simultaneously for the 

optimization of the process to get the better thermal performance at permissible level of 

thermodynamic cost. 

For a future work, exergetic analysis and comparison of this kind of counter-flow REC with 

conventional air cooling systems will be developed. 
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Nomenclature    
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A heat and mass transfer area cell 

control element [m
2
] 

Subscripts  

c specific heat capacity [Jkg
-1

K
-1

] a air 

Dh hydraulic diameter [m] da dry air 

e specific exergy [Jkg
-1

] db dry bulb 

EERex exergy efficiency ratio dp dew point 

GzD Graetz numbe dry dry channel 

h heat transfer coefficient, [Wm
-2

K
-1

] in inlet 

hm mass transfer coefficient [m/s] lat latent 

i enthalpy [J/kg] me mechanical 

l length [m] out outlet 

Le Lewis number p proruct air 

m mass flow rate [kg/s] s working air 

I exergy destruction [W] sat saturation state 

Nu Nusselt number sen sensible 

p theoretical fan power [W] t total 

P pressure [Pa] th thermal 

△P pressure loss [Pa] υ specific volume [m
3
/kg] 

Pr Prandtl number v water vapor 

q heat transfer rate [W] w water 

Q cooling capacity [W] wet wet channel 

R gas constant, [Jmol
-1

K
-1

] 0 restricted dead state 

Re Reynolds number 00 dead state 

T thermodynamic temperature [K]   

t Celsius temperature [°C] Greek symbols  

V air volume flow rate [m
3
/s] η effectiveness 

W humidity ratio, kg moisture/kg dry 

air 

ρ density [kg/m
3
] 

x mole fraction φ relative humidity 

μ chemical potential [J/kg] θ working to intake air ratio 
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