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Abstract 

Global Software Development (GSD) projects could be best understood as  intrinsically complex adaptive living 
systems: they cannot purely be considered as ‘designed systems’, as deliberate design/control episodes and 
processes (using ‘software engineering’ models) are intermixed with emergent change episodes and processes 
(that may perhaps be explained by models).  Therefore to understand GSD projects as complex systems we need 
to combine the state-of-the-art of GSD research, as addressed in the software engineering discipline, with results 
of other disciplines that study complexity (e.g., Enterprise Architecture, Complexity and Information Theory, 
Axiomatic Design theory).  In this paper we study the complexity of GSD projects and propose an upper bound 
estimation of Kolmogorov complexity (KC) to estimate the information content (as a complexity measure) of 
project plans.   We demonstrate using two hypothetical examples how good and bad project plans compare with 
respect to complexity, and propose the application of extended Axiomatic Design (AD) theory to reduce the 
complexity of GSD projects in the project planning stage, as well as to keep this complexity as low as possible 
during the project execution stage. 
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1. Introduction 
A Global Software Development (GSD) project has to go through complex processes to finish 
projects within an allocated budget, time schedule, and with customer satisfaction and 
completely fulfilled functional and non-functional requirements. The concept of GSD implies 
distributed teams from different organisations and geographical locations who collaborate to 
design, manage and execute life cycle activities of a joint software development project 
functioning as a supply chain (Oshri et al., 2007).  This structure in itself increases the 
complexity of distributed GSD projects (Sahay et al., 2003; Šmite and Borzovs, 2008; D’Mello 
and Eriksen, 2010), where part of this complexity is due to dynamic dependencies among 
components of the software development products (Cataldo et al., 2006) as well as dependencies 
among life cycle activities of project planning and software development groups (Abbott et al., 
2013). This complexity creates uncertainty and ambiguity due to the high number of elements 
and also the high amount of dependencies among GSD products, projects or project activities 
(Marczak and Damian, 2011).   

Given the highly distributed nature of GSD projects a completely centralised control is 
very hard to achieve, and subsequently these projects could be looked at as intrinsically complex 
adaptive systems: they cannot purely be considered as ‘designed systems’, as deliberate 
design/control episodes and processes (‘software engineering’, using models) are intermixed 
with emergent change episodes and processes (that may perhaps be explained by models).  

There exist various kinds of engineered systems, including software products, which are 
developed by a global engineering effort.   Common to all is a highly complex (or complicated) 
project design, as many of these projects have been usually designed “without having a 
theoretical framework for complexity” (Suh, 2005).  GSD therefore is becoming more 
complicated unless fundamental theories and principles, and corresponding methods for 
reducing complexity are developed (or adopted from the complexity field). An ultimate goal of 
the complexity field is to replace the “empirical approach” in designing, operating and managing 
complex systems with a more “scientific approach” (Suh, 2005). Complexity is therefore an 
important problem facing GSD projects, because uncontrolled complexity can cause undesired 
design qualities and therefore unsatisfied requirements of GSD projects. The first question that 
may arise, before going any further, is: “What is Complexity?” 

Gershenson (2007) defines the complexity of a system (Csys) as a function of the number 
of its elements (#E), the number of interactions between them (#I), the complexities of the 
elements (Cej), and the complexities of the interactions (Cik) among elements. Axiomatic Design 
(AD) theory (Suh, 2001) defines a ‘complex’ system as one that cannot be predicted to always 
satisfy its functional requirements. Suh (2001) and other authors, such as (Melvin, 2003), define 
the concept of system complexity through considering ‘the probability of satisfying all 
functional requirements all the time’.  Functional requirements are defined in AD as “a 
minimum set of independent requirements that completely characterise the functional needs of 
a product (software, organisation, systems, etc.) in the function domain” (Suh, 1990; Suh, 2001).   

For software engineers the notion of a software not always satisfying its functional 
requirements may seem odd, a normal reaction to such state of affairs would be that this is due 
to the lack of a complete verification.   However, in large scale systems verification cannot be 
complete, especially because one must take into account that the ability to produce the correct 
output by transforming an input that satisfies the preconditions, depends on other ‘assumed 
inputs’, for example that at the time the transformation must take place, the necessary processing 
power and storage are available. Even if every component of a system was designed to perform 
perfectly in isolation, they would not necessarily always perform accordingly as part of a system 
in every possible operational scenario (with a potentially intractable number of possible 
operational states), implying the need for a design theory that explains, and for methods that can 



be used to reduce, the complexity of a system.   
Axiomatic Design is a theory that aims to distil into two ‘design axioms’ the essence of 

what is a good design, especially from the point of view of eliminating unnecessary complexity.  
Many readers may already be familiar with AD, but for those who are not, Section 3 gives a 
brief introduction to the details of the design axioms that are the core of this theory.   

Many applications of AD in product design, system design, organisational decision 
making, and software development have appeared in the literature.  AD was first applied in 
software engineering by Kim et al. (1991) and was first applied in system design concepts by 
Suh (1997). Do and Park (1996) also introduced new concepts by applying AD specifically to 
software design. Designing software based on AD creates “uncoupled or decoupled 
interrelationships and arrangements among ‘modules’, and is easy to change, modify, and 
extend” (Suh and Do, 2000).  

Harutunian et al. (1996) used the first (‘independence’) axiom of AD to evaluate design 
decisions that provide an optimal software development project sequence.  Suh and Do (2000) 
combined the independence axiom of the AD theory and object-oriented programming to design 
large-scale software development systems. They were able to shorten the lead-time of software, 
improve reliability, reduce costs, and increase productivity.  

Chen et al. (2001) used the independence axiom to build a hierarchical knowledge base 
system. They constructed a simulation model and combined it with a decision support system 
to illustrate the effectiveness of the proposed knowledge base system. Huang (2002) extended 
the AD principles and defined two master domains: design workspace and review workspace. 
They investigated the relations between the two domains based on the independence axiom. 
Huang and Jiang (2002) used fuzzy set theory and expressed past experiences and insights as 
the membership functions of design parameters and evaluation criteria.  

Lindkvist and Söderberk (2003) used the independence axiom of AD and robust design 
to compare and evaluate assembly concept solutions. Chen et al. (2003) used the independence 
axiom to facilitate both the integration of existing software and the modification of software 
since changes in one module did not affect other modules. Chen and Feng (2004) used the 
independence axiom to test a computer-aided design model whether the proposed model 
satisfied the independence axiom or not. Yi and Park (2005) developed software to analyse and 
construct the design process according to the independence axiom of the AD theory.  

Togay et al. (2008) proposed a component-oriented approach based on the AD theory. 
In the study, the V-Model proposed by Suh and Do (2000) was extended since the AD process 
model did not address component-level architecture issues. Kulaka (2010) provides a 
comprehensive overview of the literature on AD theory and principles. 

Suh (2005) divides “the treatment of complexity” into two distinct domains: treating the 
complexity in the “physical domain” and treating it in the “functional domain.” In the first 
domain most engineers, physicists and mathematicians consider complexity as an “inherent 
characteristic of physical things, including algorithms, products, processes, and manufacturing 
systems”.  The “functional” approach is to treat complexity as a relative concept that evaluates 
how well we can satisfy “what we want to achieve” with “what is achievable” (Suh, 2005).  By 
considering a GSD project as an  artifact it may be possible to apply AD theory to the project, 
and increase the probability of satisfying all project requirements (i.e. the project always  
performs what it needs to do). 

The remainder of this paper is organised as follows. In Section 2 we introduce a 
reference model for GSD projects and Extended AD theory and use this theory to address the 
complexity of GSD planning and development projects in Section 3. After these reviews, in 
Section 4 we use an upper bound estimation of the complexity of the design matrix (by applying 



a complexity measure well known from information theory, Kolmogorov complexity (KC), and 
use this as a proxy measure of AD theory’s Information Content metric). Using this proxy it is 
possible to measure the complexity of the design of an object, whereupon in this article the 
objects of interest are the software project planning project and the software product 
development project itself (i.e. we are not talking about the complexity of the software product).  
In Section 5 we present two hypothetical examples to compare both good and bad GSD planning 
projects and development projects from the complexity point of view.  In Section 6 we discuss 
the separation of management functions from operations, and in Section 7 we present 
conclusions and future research directions.  
2. A Reference Model for Global Software Development 
Prikladnicki et al. (2006) proposed a reference model for GSD based on the results of real GSD 
case studies. Their proposed reference model includes the organisational and the project 
dimensions:  

Organisational dimension (Planning): Prikladnicki et al.  (2006) state that planning is 
important to properly organise and manage distributed projects. They identified the initial 
planning as a formal and basic stage to decide if a project can be distributed, how to plan for its 
development, and how to coordinate and manage different GSD projects that produce globally 
developed software products. Based on their case studies, they proposed a GSD planning stage 
as a precursor to the development project’s activities that are determined by the planning 
process. In order to avoid ambiguity we use here the term stage, rather than ‘phase’: an 
explanation of the important difference between life cycle (phases) and life history (stages) is 
presented in the appendix (based on the Generalised Enterprise Reference Architecture and 
Methodology (GERAM)).Project dimension (Development): This includes Prikladnicki et 
al.’s (2006) interpretation as, “general coordination of work between collaborators, interfaces 
among teams, communication, and contacts with clients and conflict solving.” This dimension 
is defined as a set of life cycle activities that deal with the requirements analysis, design, 
building, integration, testing, and release into operation of the end product.  

We interpret these dimensions as two sets of processes in the life history of GSD (a) the 
set of GSD project planning life cycle activities and (b) the set of GSD product development 
life cycle activities.   In other areas of engineering, it is customary to separate these two sets into 
two separate projects: a bidding project (for planning) and an EPC (Engineering, Procurement 
and Construction) project (this latter usually consisting of a set of interrelated sub-projects).  

However, there is also an important difference: set ‘(a)’ here has two subsets: the up-
front project planning activities, i.e., planning during the bidding stage, and the ongoing project 
planning activities performed by the project manager of the EPC project during the project 
execution stage (as part of ‘shifting planning’, such planning is normally performed due to the 
need for detail that was not available at the time of initial planning, or due to change of 
circumstances that require the modification of the original project plan). 
3. Complexity addressed by Axiomatic Design (AD) theory 
According to Lloyd (2001) there are three questions that are posed when attempting to quantify 
the complexity of an entity: 
(a) How difficult is it to describe the entity? 
(b) How difficult is it to create the entity? 
(c) What is the degree of organisation of the entity? 

Applied to GSD development projects, these measures, as interpreted by Kandjani and 
Bernus (2011a), can be classified as those that characterise the difficulty of describing (a) the 
function, behavior, and states of the GSD development project as a system, (c) the architecture 



(relationship between physical and functional structure of the GSD development project as a 
system), and (b) the GSD planning process (which creates or changes GSD development 
projects). In this case, categories (a) and (c) measure the complexity of the GSD development 
projects. As opposed to this, (b) measures the complexity of a GSD planning entity(ies), 
implemented partly as an initial planning project, and partly as the ongoing project management 
of GSD development projects – with the view to design, create and maintain GSD development 
projects.   

Kandjani and Bernus (2011b) point out that groups (a) and (c) of complexity measures 
above have one thing in common: they measure the difficulty that a ‘design authority’ deals 
with when describing the GSD development project as a system (for analyzing, designing or 
controlling it).  

Groups (a) and (c) of complexity target the complexity of the project dimension at the 
GSD development level as defined by Prikladnicki et al.’s (2006) reference model for GSD 
projects.  At the same time, the complexity of category (b) characterises the complexity of the 
organisational dimension of this reference model, namely the initial planning and ongoing 
management of GSD projects.  

As we try to solve the difficulty of having to use complex design descriptions of GSD 
projects, we first turn to AD Theory’s complexity measures. AD (Suh, 1999) claims to codify 
in a discipline-independent way what a ‘best design’ is, and in particular aims at avoiding 
unnecessary complexity. However, to be able to avoid the complexity of a system that designs 
another system, AD was extended by introducing the Recursion Axiom stipulating that the 
system that designs a system must also obey the axioms of AD (Kandjani and Bernus, 2011a). 

Note that AD proposes techniques for reducing complexity in any engineering domain, 
including software development (Suh and Do, 2000). AD is a theory of complex systems, 
systems that cannot be predicted to consistently satisfy their functional requirements all the time 
(Suh, 1990)). AD explains the reasons for emerging complexity, and offers a formal design 
theory as well as two design axioms that system designs must satisfy to minimise complexity.  
AD measures this complexity by the negative logarithm of the probability that the system always 
performs its desired function, also called by AD the system’s ‘information content’.  The 
inverted commas ‘’ are to remind the reader that in this paper we shall use a similar but not 
identical measure, namely information content as defined and measured by KC of an object (see 
Section 4). 

The idea to use Axiomatic Design in software engineering is not new.  Arsenyan and 
Büyüközkan (2009) presented an AD-based collaboration model in the context of the software 
industry. They proposed a model structure for collaborative software development, as well as 
strategies and methodologies that influence the successful execution of collaborative efforts in 
software development.  Their collaborative software development model based on AD, could 
also be used as a reference model to effectively plan as well as to develop GSD projects. 

Carnevalli et al. (2010) proposed the application of AD for minimizing the difficulties 
of Quality Function Deployment (QFD), which result could also be used in developing software 
systems. 

In this paper we intend to apply Axiomatic Design to minimizing in a measurable way 
the complexity of GSD development projects as well as the complexity of GSD planning 
processes.  

In order to be able to demonstrate our intended use of Axiomatic Design, we first give a 
short introduction to AD. 

Suh (1990) defined ‘design’ as a sequence of mapping functions, from user requirements 
to functional requirements, from functional requirements to design solutions and from design 



solution to implementation.   He found, after analysing a large number of good and bad designs, 
that the principles that underly good designs (designs that have a number of desirable 
characteristics) can be abstracted into two design axioms, i.e. statements that must be true of all 
good designs.   We explain these two axioms below. 

Axiom I: Independence axiom (Suh 2007, 1990). ‘The independence of 
Functional Requirements (FRs) must always be maintained.’  

A functional requirement FRi is independent of other functional requirements if there exist 
‘design parameters’ [DP] such that when changing one FRi only one DPi must change.  A design 
parameter DPi is a part of the design solution that implements one of more functional 
requirements, e.g., a subsystem may be a DP.  The mapping from FRs to DPs is represented as 
[FR] = [[A]]*[DP], where  [FR] is the vector of FRs, [DP] is the vector of DPs, and [[A]] is the 
matrix mapping DPs to FRs, effectively describing which DP is necessary for which FR.   

If [[A]] is a diagonal matrix then the design is uncoupled (full independence is achieved). 
If [[A]] is triangular then the design is decoupled (the implementation process is ‘serialisable’). 
Otherwise the design is coupled (the implementation process of DPs is not ‘serialisable’).  

Axiom II: Information axiom (Suh, 1990, 2001). ‘Out of the designs that satisfy 
Axiom I that design is best which has the minimal information content.’  

Suh defined information content (IC) as the negative logarithm of the ‘probability of success’ 
(success here means that the system always satisfies its FRs).   

In this paper we use an upper bound estimation of the KC of the design matrix as a proxy 
of Suh’s Information Content.    

Informally, KC is the measure of the amount of information contained in an object.  For 
example if the design description of  project P1 is a lot longer than the design description of 
another project P2, then we would suspect that the design description of P1 has more 
information in it than the design description of project P2.    

One might first think that we could just consider for such comparison a simple measure, 
such as the number of characters in the file that contains the design description, or some similar 
measure, but this would be very unsatisfactory, because one description may have been written 
in a very concise manner, while the other not.  Thus what we are really interested in, how long 
would be the shortest possible descriptions of P1 and P2 respectively, because that would give 
us an objective measure for comparison. 

In Section 4 we shall present a basic mathematical introduction to KC, but we note that 
in the application context the calculation of this measure may be a built-in function of a project 
management software, and end users would not need to know the details of how this is 
calculated. 

In order to satisfy Axiom I the designer uses the design matrix and manipulates 
functional requirements and the structure of the matrix to achieve an uncoupled or decoupled 
design.   When it comes to satisfying Axiom II by minimising the information content of the 
design, and the proposed information content calculation is also based on this matrix. 

Axioms I and II together intend to minimise the complexity of the system’s architecture 
and can be used to design less complex GSD projects.  However, consider the complexity of 
GSD planning processes: the processes that create a GSD project is not automatically addressed 
by introducing AD. Therefore, Axioms I and II must also be applied to the change system (the 
processes, programs or projects that create GSD projects).  This is called the ‘recursion’ axiom 
(below), meaning that change projects (as a system of systems) not only must follow Axioms I 
and II, but they themselves need to be ‘axiomatically designed’ (Kandjani and Bernus, 2011a). 



Systems (here GSD development projects) at one stage of life may satisfy Axioms I and 
II but may lose this design quality as they evolve / change, and  because of the reduction of the 
likelihood of success of the change process this quality may even be lost permanently.  To 
prevent such a state of affairs we have to apply Axiom III to the system (GSD planning project) 
that designs GSD development projects.  Accordingly, Axiom III is independent of Axioms I 
and II. Pragmatically: a GSD development project as a large and complex system is created by 
GSD planning projects (also as complex systems) for the design of which AD needs to be 
applied. Consequently, among those design processes (GSD planning projects) that apply the 
first and second axioms to design a GSD development project, that design process is best which 
itself satisfies axioms I and II. 
Axiom III: Recursion Axiom (Kandjani and Bernus, 2011a). ‘The system that designs a system 
must satisfy the two Axioms of design.’  Note: a system that satisfies Axioms I and II does not 
necessarily satisfy Axiom III and while at a given moment in time in its life history a system 
may be considered moderately complex, the same system may be very hard to create or change.  
Consequently, “among those design processes that apply axioms I and II to design a system, 
that process is best which itself satisfies axioms I and II”. 

If a GSD project wishes to reduce its own complexity as well as to subsequently maintain 
reduced complexity through its life, it may wish to adopt AD as a strategy.  Therefore it is 
legitimate to ask whether the GSD project and the GSD companies and collaborators are ready 
to use such practices to increase the probability of success.  
4. Kolmogorov complexity as a proxy for the information content of a design 
Generally, the information content is measured by the probability of success. Shin et al. (2004) 
introduced various methods for the calculation of information content in Mechanical 
Engineering. Pimentel and Stadzisz (2006) also proposed a method to calculate the information 
content of software that was designed based on a use case based object-oriented software design 
approach. These methods of calculation of information content are domain-dependent however 
what we propose in this paper is a domain-independent method. We use an upper bound 
estimation of the KC of the design matrix as a proxy of Num Suh’s Information Content.  

The reason for us to use this particular complexity measure to estimate the information 
content of a design (in this case the information content of the design description of a software 
project) is the following.   We want to use a complexity measure that is independent of the form, 
in which the design is expressed, and KC is known to be agnostic of the form of description, 
i.e., whether the design description is in some kind of textual-, graphical-, or other format. 
Although there is no algorithm to calculate the exact value of KC of a design description, it is 
very easy to estimate an upper bound of its value.   

With KC, we have a complexity measure that can be used in practice: we can take the 
design description of a software project (the description is some binary string, such as a 
computer file), and using a simple formula estimate its true information content.  For a complete 
mathematical treatment of the background and arguments regarding why KC is a preferable way 
of measuring and comparing the information contents of objects we refer the interested reader 
to (Li and Vitányi, 2008). 

Below we present a basic mathematical introduction to KC, but we note that in the 
application context the calculation of this measure may be a built-in function of a project 
management software, and end users do not need to know the details of how this is calculated. 
A. Definitions: The concept of KC was developed by the Russian mathematician Andrey 
Kolmogorov (Kolmogorov, 1969). While Kolmogorov is credited with the concept, several 
other mathematicians appear to have arrived at the same conclusion simultaneously but 
independently of each other (Nannen, 2010) in the 1960s. KC is one of the key elements in 



information theory; it provides a mathematical definition of the information quantity in 
individual objects, which can be abstracted as binary strings or integers. For about half a 
century, KC has been applied in various disciplines (Li and Vitányi, 2008).  

The KC ( ) of a string x with respect to a universal computer U is defined as the 
length l of the shortest program p running on U that prints x and halts. It is denoted as: 

 (1) 

If the computer already has some knowledge about x, for example the length of x as 
 it may require a shorter program that prints x and halts. In this case, we define the 

conditional KC as: 

 
(2) 

Theorem 1. If U is a universal computer,  which are universal computers  is a constant, 
such that for (i.e. for each binary number x), 

 (3) 

The proof can be found in (Cover and Thomas 2006) and will not be repeated here.  
Theorem 1 indicates the universality of the Kolmogorov complexity; it shows that the 

difference of Kolmogorov complexity with respect to different computers is smaller than a 
constant. If the string x is long, the difference of Kolmogorov complexity caused by different 
computers becomes trivial. Therefore, we can discuss Kolmogorov complexity  without 
referring to a particular computer. 

We use   to mean  . We also define: 

 (4) 

until the last positive term.  
Theorem 2. For an integer n, the Kolmogorov complexity K(n) satisfies: 

 (5) 

The proof of Theorem 2 can also be found in (Cover and Thomas, 2006). We will explain 
it in an informal manner here. Generally, we can use a program like “print the integer n” to print 
n. The program needs the number n, which can be encoded in  bits. However, the length of 
n is unknown, so it requires  bits to code the length of n and then requires  bits 
to code the length of the length of n etc.  
Theorem 3. For an integer n, if the length of n is known, the conditional KC K(n|l(n)) satisfies: 

 (6) 

The proof of Theorem 3 is similar to the previous theorem. 
B. Estimating the Kolmogorov complexity of a transition matrix: For a given transition 
matrix M, we propose a simple scheme to calculate an upper boundary of its KC. 

Let M be a   matrix, where the value of each element in the matrix can only be 1 or 
0. The number of ones in M is m. In order to describe (encode) the matrix, we need to record the 
following information: the number n, the number of ones m, and the position of those ones. 
Accordingly, we can calculate the KC of M as: 
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(7) 

If M is a diagonal matrix, because all non-zero elements are ones, it is an identity matrix. It is 
obvious that in order to record an identity matrix, the only information we require is its size n. 
Therefore, the KC of an identity matrix can be estimated as: 

 (8) 

In practice the constant c can be ignored because the complexity of two objects would 
be evaluated on the same universal computer. 
5. Hypothetical examples 
We introduce two hypothetical examples to demonstrate the application of the three design 
axioms and how this can be used to reduce the complexity of projects.  We shall use KC to 
compare the complexity of project descriptions. (Note that KC means description complexity, 
so when we say a project design D is more complex than a project design D’, we mean that to 
fully describe D requires more information than to fully describe D’.) 

The first hypothetical example demonstrates an example of a coupled design (a bad 
design which is more complex than necessary) for a virtual enterprise (GSD Development 
project X). We subsequently apply the first design axiom which results in an uncoupled design.  

The second hypothetical example demonstrates the example of a decoupled design for a 
GSD planning project PrX, which creates GSD Development project X and the application of 
the 3rd axiom of design, which is the axiom of recursion, to reduce the complexity of the 
planning project that designs, creates and implements the GSD Development project X.  

We use an upper bound estimation of the KC of the design matrix as a proxy of Num 
Suh’s Information Content to demonstrate the difference between the bad and the good designs 
(by calculating the complexity of the design matrix in both hypothetical examples before and 
after applying design axioms). We therefore demonstrate in both hypothetical examples how the 
application of extended AD theory can reduce the complexity of the design description of a 
GSD Development project X as a system of interest, as well as the complexity of the design 
description of a GSD planning project (PrX) as a system, which designs the above system of 
interest.  

Note that in the examples below, we satisfy the FRs by means of Design Parameters 
(DPs). FR is "what it is we want to achieve" and DP is "how we are going to satisfy the FR". 
The potential DPs that can satisfy one FR may be many and we have to choose the DP that may 
be the best. 
A. Hypothetical example one (to demonstrate the application of axioms I and II):   
‘GSD development project X’ is a virtual enterprise that produces one software system 
including three sub-systems: Sub1, Sub2 and Sub3. There are five functional requirements 
listed below: 

• FR1: Each sub-system  needs to have an architectural design. 

• FR2: Sub1 needs component development and a database module. 

• FR3: Sub2 needs component development and a GUI module. 

• FR4: Sub3 needs component development, a database module and a GUI module. 

• FR5: Each sub-system needs to have a complete unit testing and integration testing. 

2
2

2
!( ) ( ) ( ) ( ) log* log* log

!( )!
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m
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-
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Let the original DPs to implement these functions be as follows: 

• DP1: company A provides architectural design services. 

• DP2: company I provides component development services. 

• DP3: company J provides database modules. 

• DP4: company K provides GUI modules. 

• DP5:company L provides the service of unit- and system integration testing. 
As one can see, the FRs constitute the tasks of the project, whereupon in the example, the ‘design 
parameters’ (DPs) are the companies that can be allocated to these tasks.   In this example we 
need only one company (A) to satisfy FR1, but we need three companies (I, J and K) to satisfy 
FR4.   (In general, when designing a project, we determine who will perform which project 
task.) 

Based on the above, the FR to DP mapping matrix for the GSD Development project X 
is:  

 (9) 

It is clear that this design transition matrix is coupled. 
According to the first axiom of design, we must try to maintain the independence of the 

functional requirements all the time. Therefore to apply AD principles, we introduce a GSD 
broker company B which provides the generic service of ‘software implementation’. Then we 
refine the structure of GSD Development project X to GSD Development project X with the 
functional requirements and DPs as follows: 

• FR1: Each sub-system needs to have a architectural design. 

• FR2: Each sub-system needs to be implemented (‘implementation’ as a function stands 
for the generalisation of the component development, database development and GUI 
development functions). 

• FR3: All sub-systems need to be unit- and integration tested. 

• DP1: company A provides service of architecture design. 

• DP2:company B provides service of software implementation. 

• DP3: company C provides component- and integration testing. 
The FR-DP transition matrix for the GSD Development project X is now a diagonal matrix:  

 (10) 

At the same time, the FRs and DPs for the GSD broker company B are: 

• FR1: Some sub-systems need component development. 

• FR2: Some sub-systems need a database module. 

• FR3: Some sub-systems need a GUI module. 
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• DP1: company I provides component development. 

• DP2: company J provides database modules. 

• DP3: company K provides GUI modules. 
The design transition matrix for broker B is a diagonal 3 3 matrix as well.  

The technique we used here to modify the coupled design to an uncoupled design, while 
preserving the functional requirements, was to decompose the original functional requirements 
into independent functional requirements and to create an intermediary DP (broker B).    

It is noteworthy that normally a function can be decomposed in many different ways: 
essentially to plan an implementation of a function, we design a process that consists of a series 
of coordinated invocations of some more elementary functions (if the process is procedural then 
this process is called an algorithm).  Clearly, there are many alternative processes that can 
implement the same function, which gives the project manager the ability to consider which 
alternative is best from the point of view of complexity reduction. 

Let us now calculate the KC of each transition matrix of the GSD Development case 
study.  In the original design, the transition matrix M is: 

 (11) 

For this transition matrix, we have n=5, m=9, so based on inequality (7), we have: 

 (12) 

In the interest of generality, we slightly extended inequality (7), introducing d, the 
number of bits needed to encode an element of the matrix. In this way the formula is also valid 
for arbitrary transition matrices as found in mechanical engineering, for example.  However, 
since in our cases d=1 bit (a project participant either does [1] or does not [0] contribute to 
performing a required function) these additional two terms evaluate to zero.  

For the new design, based on AD principles, we have two diagonal transition matrices 
and both matrices happen to be 3  3 identity matrices: 

 
(13) 

Based on inequality (8), we have: 

 (14) 

It is clear that the design produced using AD principles is much simpler. GSD 
Development projects, at one stage of life, may well satisfy Axioms I and II but may lose this 
design quality (through uncontrolled change), because uncontrolled change reduces the 
likelihood of success of the change process and the above quality may even be lost permanently.  

The second hypothetical example (below) demonstrates the application of the third 
axiom as a solution to this problem i.e. to axiomatically design the GSD planning project to 
reduce the danger of causing uncontrolled change to the GSD development project(s). 
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B. Hypothetical example two (application of axiom III in designing the ‘GSD planning 
project’ that creates GSD development projects X, Y and Z):  

Let N be the network which is the aggregation of n globally distributed software 
development companies as collaborative partners . The network N is managed 
by a Network Office M.  M utilises N to form a number of ‘GSD planning projects’, PrX, PrY, 
PrZ… to create ‘GSD development projects’ such as  X, Y and Z etc. Each of these GSD 
development projects is expected to operate as a well managed (virtual) enterprise (VE), 
complete with its own software development and management processes.  The ‘GSD 
development projects’ activities are performed by a set of GSD companies collaborating to 
create the value chain of the respective GSD development projects. We use PX, PY and PZ to 
denote the sets of associated GSD collaborating partner companies for GSD development 
projects X, Y and Z respectively. Given a GSD company in the network N, at any one time it 
may (or may not) participate in one or more GSD development projects. Therefore, we have:  

 (15) 

We assume that the network N that designs, creates and changes GSD development projects 
already exists (e.g. may have been created by the network office M).  

Now consider the GSD development project’s planning/creation project PrX. PrX has the 
functional requirements listed below:   

• FR1: Provide the Identification and Concept development of GSD development project 
X and specify all of its requirements (functional and non-functional), 

• FR2: Provide the Preliminary or Architectural Design of GSD development project X 
(Estimate cost, resources needed, select project members PX, etc.), 

• FR3: Provide the Detailed Design descriptions of X, including all the tasks that must be 
carried out, personnel role and skill descriptions and the technology to be used by 
project personnel, all that is necessary to build or re-build and release GSD 
development project X into operation.  

Let the DPs to implement this planning project PrX be the following: 

• DP1: PX1 is the set of participants who together identify and develop the concept (such 
as principles, business model, etc) of GSD development project X, (this would typically 
require the knowledge of at least some feasible architectural solutions, and knowledge 
of design and build effort needed).  Normally, these participants would include the high 
level stakeholders of project X, such as lead companies on the network, and the 
customer / acquirer of the system to be developed by project X;  

• DP2: PX2 is the set of participants who together  develop the Architectural Design 
(‘master plan’) of GSD development project X identifying the list of the selected 
members, cost and time necessary to build GSD development project X, etc. (This 
would typically be done by reusing existing designs [‘reference models’ or ‘partial 
models’] where the feasibility of design and building under the constraints of the non-
functional requirements is known).  Typically this would include some lead engineering 
and consulting companies of the network, as well as an already appointed project 
manager (i.e. project X effectively participates in its own design). These participants 
together define how project X will be structured, both from the point of view of the 
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project’s operations and the project’s management; 

• DP3: PX3 is the set of participants who together develop the detailed design of the 
common parts of the GSD development project X with a list of the qualified GSD 
companies which creates and releases the new GSD development project into operation.  
Typically this would be performed by project X’s management as a lead participant, 
plus such network participants who are nedeed to set up the operations of project X 
(such as contractors who deploy tools for project X participants, train project personnel, 
etc).  
Based on the FRs and the DPs above and the typical feedback loops in the life cycle 

dependencies between project tasks of Requirements Analysis, Architectural Design, detailed 
Design and Build, the transition matrix between DPs to FRs is as below: 

 (16) 

For the transition matrix 

 (17) 

We have n=3, d=1, m=6. Based on inequality (7), we estimate the information content: 

 (18) 

According to Axiom III of design: “The system that designs another system not only must apply 
but also must satisfy the axioms of design”. 

The GSD planning project (PrX) that creates GSD development project X could be a 
system that designs/changes another system (GSD development project X). Thus the GSD 
planning project PrX is itself (based on its life cycle dependencies shown in the triangular matrix 
above) a complex system that not only should design another system that has reduced 
complexity (namely GSD development project X) by applying AD theory, but  should also 
reduce the complexity of itself by being designed to satisfy axioms I and II.  

To achieve the above, we shall reduce the direct communication among life cycle 
activities of GSD planning project PrX.  Neglecting this communication creates additional 
complexity in the execution of life cycle activities (FR1, FR2 and FR3) of PrX.  Notice, that 
practically, the problem is caused by mixing the information dependencies among the life cycle 
activities with the control of their (repeated, iterative) invocation. These dependencies may 
result in unpredictable chaotic states of the GSD planning project PrX, and decrease the 
probability of success of the resulting design (the GSD development project X). This effect is 
well-known in managing complex projects and arises if the information flow among life cycle 
activities is not managed and controlled. 
6. Separation of management functions from operations 
Some researchers showed that a considerable amount of the complex communication in GSD is 
due to the design and architecture life cycle activities of GSD projects (Cataldo et al., 2007). 
This is in fact the communication that needs to be encapsulated at the management level of GSD 
planning projects. Sangwan et al. (2006) list a number of critical success factors for GSD 
projects including reducing ambiguity, facilitating coordination. 
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What is required to solve the problem of complex communications in the execution of 
the life cycle activities of the GSD planning project PrX,  is  the reduction of the complexity of 
the design of the GSD planning project PrX itself to guarantee the achievement (or preservation) 
of the design qualities of GSD development project X.  A solution is to allocate a sub-project 
manager to each life cycle activity (FR1, FR2 and FR3) and to have them take part in the project 
management board meetings and to communicate ‘just’ at the management level.  

Using this method the project manager of the GSD planning project PrX should make 
the project’s life cycle activities as independent as possible by delegating each life cycle activity 
to independent sub-projects that communicate just through management of each project and 
hide the unnecessary operational details of each life cycle activity of creating the GSD planning 
project PrX from the rest of the project’s operations.  

We therefore decompose GSD planning project PrX into two parts: PrM is the 
management of the GSD planning project and PrO is the operation of the GSD planning 
subproject. Let FRM be the functional requirement (to ‘Manage’ Pr), and FRO the functional 
requirement(s) describing what Pr has to actually achieve (i.e., the function of the planning 
project’s ‘Operations’). In this case PrM (the GSD planning project’s management) takes care 
of the control of the communication among operational boundaries.  Thus on the upper level we 
have: 

 (19) 

The operational function of the GSD planning project can be further decomposed into three 
functions (i.e., life cycle activities, or ‘phases’): 
(1) the identification phase,  
(2) the architectural design phase and  
(3) the detailed design and building phase of the GSD development project  X. 
During the three phases, there are three corresponding functional requirements: 

• FRO1: Provide the Identification and Concept of the GSD development project X and 
specify all its requirements – based on input/control (received from the GSD planning 
project’s management PrM ); 

• FRO2: Provide the Preliminary or Architectural Design of GSD development project X 
(Estimates of cost, resources needed, selected GSD companies of the GSD development 
project X etc.) – based on input/control (received from the GSD planning project’s 
management PrM ); 

• FRO3: Provide the detailed design descriptions, and all the tasks that must be carried out to 
build or re-build and implement the GSD development project X – based on input/control 
(received from the GSD planning project’s management PrM ). 

Based on the three functional requirements, we construct three DPs: 

• DPO1: PrO1 identifies different GSD development project (VE) types, develops their master 
plan based on existing preliminary design of partial models of the new GSD development 
project X, and provides a detailed design of common parts of project X with a list of the 
qualified GSD companies. 

• DPO2: PrO2 provides the Architectural Design of the GSD development project X with a list 
of the selected GSD companies for Architectural Design of the GSD development project; 

1 0
0 1

M M

O O

FR DP
FR DP
é ù é ùé ù=ê ú ê úê úë ûë û ë û



• DPO3: PrO3 creates and operates the new GSD development project, and monitors the results 
of GSD development project  X. 

The relationship between the functional requirements and the DPs can be expressed as:  

 (20) 

Under the new design approach, we have two transition matrices which are actually two 
identity matrices I2 and I3, and based on inequality (8), we have: 

 (21) 

Compared with the original design, which has the complexity of the design matrix of 
about 18.6 bits, the design based on the AD principles is significantly simpler. Note that the 
reader may suspect a ‘trick’ in this design, because the internal management process of the GSD 
planning project’s management PrM needs to channel the communication among invocations of 
life cycle activities.  This is true of course, however, the separation of ‘content’ from ‘control’ 
has a significant effect: the GSD planning project’s management PrM only needs to know about 
the state of the information maintained by the subprojects, not the content.  For example, 
managers of large projects normally use controlled information/version release processes so as 
to avoid project instability and ensure convergence.  Note also that the method is not to be taken 
as a counter-argument against collaborative design, where frequent communication across 
contributing teams is advantageous – after all PrO1, PrO2, and PrO3 possibly share contributors 
and teams, but their contribution plays different roles. 

The point is that instead inter phase document releases being uncontrolled, these releases 
are managed (each release flowing from a life cycle activity instance to another life cycle activity 
instance), while intra-phase communication (for cooperation and collaboration) is not 
management regulated. 

Further work will be needed to study the complexity of GSD planning and development 
project life histories (as opposed to the structure that was studied here), i.e., how to apply the 
above design axioms (and associated design methods) to reduce the complexity of dependencies 
among life cycle activity instances of GSD planning and development projects.  This is an 
interesting new problem, because due to iterations and feedback most life cycle activities will 
be performed several times during the project, thus there is scope for the development of a new 
type of complexity reduction method. 
7. Conclusions and future research directions 
As discussed in the Introduction, literature agrees that global software development is 
particularly sensitive to the complexity arising from the linkages between participants that 
perform the processes of project planning as well as software development.  In case of co-located 
developers, projects of the same complexity may experience fewer problems due to ease and 
speed of communication.  Therefore the contributions of this article (discussing complexity 
measurement and complexity reduction measures) are of particular relevance to global software 
development. 

In this paper we reviewed how the complexity of GSD projects can be reduced using 
Extended AD theory in order to increase their probability of success. In the first hypothetical 
example we demonstrated a coupled design for a GSD development project X (a bad design 
which is more complex than needed) and how we can apply the first two design axioms to arrive 
at an uncoupled, less complex design.  

The second hypothetical example shows a decoupled design for a GSD planning project 
PrX (a project which designs and creates a GSD development project X) and shows the 

1 1

2 2

3 3

1 0 0
0 1 0
0 0 1

O O

O O

O O

FR DP
FR DP
FR DP

é ù é ùé ù
=ê ú ê úê ú

ê ú ê úê úë ûë û ë û

2 3( ) ( ) log*2 log*3 3.3 BitsK I K I+ £ + »



application of Axiom III to reduce the complexity of the project (which designs, creates, 
implements, or changes, X).  

We applied a known approximation of the upper bound of KC to calculate a proxy of 
Num Suh’s ‘Information Content’ measure and compared the bad and the good designs by 
calculating the (approximate) complexity/information content of the design matrix.  We 
therefore demonstrated in two hypothetical examples how one can reduce the complexity of 
designing GSD planning and development projects as ‘designing’ and ‘designed’ systems 
respectively. By satisfying all three axioms the GSD management office M should attempt to 
make the life cycle activities of GSD planning and development projects as independent, 
controlled and uncoupled as possible so that the designer can predict the future states of these 
projects and avoid a potentially chaotic behavior.  

For further research, we plan to take an empirical research strategy to demonstrate the 
application of the Extended AD theory using data from real GSD case studies, which would 
validate and verify the outcomes in practical situations.   

To our knowledge, supporting the axiomatic design process by estimating the 
information content of a design as measured by KC, is an original contribution of this article.   
Note that the algorithm we used to estimate KC takes only m and n as inputs. A more 
sophisticated algorithm could consider the distribution of 1s in the design matrix, and therefore 
reach a lower upper bound, which would therefore be a more accurate estimation of the KC.  In 
reality, we need to balance the difficulty of the algorithms and the accuracy of the results. This 
means that what the paper proposes is an approach, and further research could be done to refine 
the estimation of the KC upper bound of various systems of interest, such as software 
development projects. 
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Appendix 
Generalised Enterprise Reference Architecture and Methodology (GERAM) 

The GERAM framework (Bernus and Nemes, 1996; IITF, 1999; ISO15704, 2000, Amd. 2005) 
defines a comprehensive set of concepts to represent and explore enterprise systems. GERAM 
is a “toolkit of concepts for designing and maintaining enterprises for their entire life history” 
(ibid) and the objective of this framework is “to systematise various contributions of the field 
that address the creation and sustenance through life of the enterprise, here GSD project, as a 
complex system”.  

An explanation of life cycle and life history concepts used in this article 
A. Life cycle (LC): Life cycle ‘phases’ are types of activities, and associated abstraction levels, 
pertinent to change in the entity’s life, and encompass all activities from identification to 
decommissioning (or end of life). Figure 1 shows the GERA (Generalised Enterprise Reference 
Architecture) life cycle for any enterprise or its entities.  

 
Figure 1. GERA life cycle phases for any enterprise or enterprise entity  

 
The seven life cycle activity types may be further subdivided, e.g. design can be 

subdivided into preliminary- and detailed design. (Note: LC activities have no temporal 
connotation, or assumed sequence.) 
B. Life history: The life history of a business entity is the representation in time of tasks carried 
out on the particular entity during its entire life span. Relating to the life cycle concept described 
above, the concept of life history allows us to identify the tasks pertaining to these different 
phases as activity types. This demonstrates the iterative nature of the life cycle concept 
compared with the time sequence of life history. These iterations identify different change 
processes. 

Typically, multiple change processes are in effect at any one time, and all of these may 
run parallel with the operation of the entity. Moreover, change processes may interact with one 
another. Within one process, such as a continuous improvement project, multiple life cycle 
activities would be active at any one time. For example, concurrent engineering design and 



implementation processes may be executed within one enterprise engineering process with 
considerable time overlap, and typically in parallel with the enterprise operation. Life histories 
of entities are all unique, but all histories are made up of processes that in turn rely on the same 
type of life cycle activities as defined in the GERA life cycles. For this reason life cycle activities 
are a useful abstraction in understanding the life history of any entity. 

Figure 2 illustrates the relations between life cycle and life history representing a simple 
case with a total of seven processes: three engineering processes, three operational processes, 
and one decommissioning process. 

 
Figure 2. Parallel Processes in the Entity’s Life-history  

 
 




