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Abstract. A monoaxial chiral magnet forms a kind of spin superlattice structure, termed chiral 

soliton lattice (CSL), by the application of a magnetic field H perpendicular to a helical chiral 

axis. It has been reported that the CSL accompanies the magnetoresistance effect as well as a 

discrete change in magnetization and magnetoresistance. In order to verify the effect of the 

structural modification on the CSL state, we measured the magnetoresistance under the 

dynamic stress (DS) with a frequency of the order of MHz, which was applied by a 

piezoelectric ceramic oscillator. The steady application of DS while decreasing H resulted in a 

suppression of the insertion of chiral soliton. On the other hand, the application of a pulse-like 

DS while H decreased assisted the insertion of chiral soliton. These results demonstrate that DS 

modifies the spin structure of the monoaxial chiral magnet, and we can therefore change the 

activation energy for the insertion of chiral soliton while H is decreased. 

1.  Introduction 

Chirality refers to the fact that mirror images do not overlap like, as in the case of the relationship 

between right and left hands. In magnetic materials with spin chirality, the spin structure at zero 

magnetic field exhibits a helical structure with only a right- or left-handed helix owing to competition 

between symmetric interaction and antisymmetric Dzyaloshinskii–Moriya (DM) exchange interaction 

[1, 2]. A type B20 compound MnSi with a magnetic skyrmion state [3] and a monoaxial chiral 

magnetic material Cr1/3NbS2 with a chiral soliton lattice structure (CSL) under a magnetic field H [4, 

http://creativecommons.org/licenses/by/3.0
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5] are well known as chiral magnets that present topological solitons. In millimeter-sized single 

crystals of Cr1/3NbS2, the characteristic shapes of the magnetic curves [6-8], magnetoresistance [9], 

and the discrete change in magnetization [10,11] due to the CSL formation have been reported. In 

micro-sized single crystals, successive discontinuity in magnetoresistance was observed, and in 

particular, for the condition of a decreasing H at below critical magnetic field, there appeared to be a 

large discontinuity in terms of magnetoresistance [12]. While this phenomenon is recognized as a kind 

of supercooling with activation energy, details about its underlying mechanisms are not fully 

understood. 

The magnetic properties of Cr1/3NbS2 are changed by structural modulations using hydrostatic 

pressure [13]. It is convincing that the spin texture is connected with the lattice system. We consider 

the resulting condition when the CSL stabilized under H influences time-dependent stresses such as 

periodical and temporal stresses. We expect that they function as a perturbation to disturb the change 

in the topological soliton or as a stimulus to overcome the activation energy. It was reported that a 

dynamic stress (DS) with a frequency of the order of MHz affects physical properties in a 

semiconductor and a cupurate superconductor [14,15]. 

In this study, we focus on applying DS to the monoaxial chiral magnet Cr1/3NbS2 as a perturbation 

and/or stimulus to change the physical properties via the artificial manipulation of its magnetic 

structure. For instance, we perform two types of measurements for the electric resistance: (1) when DS 

is steadily applied and (2) when DS is applied in a pulse-like manner. 

2.  Experimental method 

A single crystal of the monoaxial chiral magnet Cr1/3NbS2 was prepared for the experiments. This 

material belongs to space group P6322, and the helical chiral axis is c-axis. Single crystals were 

prepared using the chemical transport method [16]. The single crystal was cut into sizes 10 m ×5 

m ×0.5 m using the focused-ion beam technique, and it was electrically connected to the gold 

pattern on the silicon substrate with tungsten paste. Figure 1(a) shows the SEM image of the micro-

sized sample of the Cr1/3NbS2. The helical chiral axis, c-axis, was parallel to the current. 

 

 
Figure 1. (color online) (a) SEM image of the micro-sized single crystal Cr1/3NbS2. (b)(c) Picture of 

the sample setting for experiments (1) and (2), respectively. (d) Relationship between timing of the 

applied DS and that of the changing magnetic field. Red squares and blue circles indicate the timing of 

measuring resistance. 

 

A piezoelectric ceramic oscillator manufactured by Murata Manufacturing Co., Ltd. was used as the 

source of the DS. The resonance frequency of the oscillator was about 1 MHz. Because the resonance 

frequency changes with temperature, the frequency of the applied voltage to the oscillator was tuned at 

each measurement temperature. For the first experiment (1), the oscillator was placed beside the 

sample, as shown in Fig. 1(b), and for the second experiment (2), the oscillator was placed under the 

substrate, as shown in Fig. 1(c). In both experiments, the DS was propagated to the sample via the 

substrate. In (1), the H dependence of the electric resistance R was measured for both the increasing 
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and decreasing H under a constant application of DS. In (2), R was measured at each H for the 

decreasing H immediately after applying the pulse DS for 1 min., as shown in Fig. 1(d). In both 

experiments, a current of 1 mA was applied to measure R. 

3.  Experimental results and discussion 

3.1.  Steady application of dynamic stress 

The magnetic transition temperature Tc of the sample was approximately 124 K, and the critical field 

Hc for the forced ferromagnetic state was about 2.5 kOe at a temperature (T) of 100 K. Figure 2(a) 

shows the H dependence of R for some magnitudes of the DS at 100 K. Here, “off” indicates the 

measurement without DS, and the voltage value (V) is the amplitude of the voltage applied to the 

oscillator. V is treated as an equivalent to the magnitude of the DS. For zero DS, R decreases as H 

increases, while a finite hysteresis and large jump were observed as H decreased. These behaviors of R 

as a function of H are consistent with results reported by Togawa et al. [12]. H which large jump 

appeared tends to decrease with increasing V. Focusing on the area of hysteresis (S), it exhibits 

prominent increase for V to more than 4 Vpp. 

 

 
Figure 2. (color online) Magnetic-field H dependence of electric resistance R of Cr1/3NbS2 under a DS 

condition at T = 100 K (a) and 110 K (b). (c) DS dependences of the hysteresis area S normalized with 

the hysteresis area without DS (S0). The magnitude of DS is evaluated with the applied voltage V to 

the oscillator. Broken lines are visual guides for the thermal effects caused by oscillations. 

 

Figure 2(b) shows the H dependence of R for each magnitude of the DS at 110 K. By increasing T 

from 100 K to 110 K, the shape changed and the overall hysteresis increased. When the magnitude of 

the DS was increased, S decreased at a voltage less than 2 Vpp whereas S tended to increase at more 

than 2 Vpp. This behavior is qualitatively consistent with what was observed at 100 K. 

Figure 2(c) shows the V dependence of S/S0. Indeed, when the V was applied to the oscillator, the 

sample was slightly heated by oscillating. It was reported that the S became smaller with increasing 

temperature to less than Tc in the T range, where the qualitative behavior of the R-H curve did not 

change [12]. In the region where the V applied to the oscillator was small, the hysteresis area became 

smaller with increasing V. This phenomenon is surely due to the heat generation caused by the 

oscillations, and its thermal effect is shown by visual guides in Fig. 2(c). However, when V increases 

further, S turns to increases, and this phenomenon cannot be explained by increasing the T of the 

sample. This is considered to be the effect of stationary DS. Indeed, the ratio of the increase in S/S0 as 

a function of V is consistent with the data at 100 K and 110 K. According to the theoretical study, the 

elastic torsion can modify the DM vector [17]. In particular, when decreasing H from the forced 

ferromagnetic state, the insertion of topological solitons may be restricted because the DM vector is 

spatially disturbed. If the above scenario is true, it is reasonable that the increase of S results from the 

application of stationary DS. 
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3.2.  Pulse-like application of dynamic stress 

We investigated the effect of a pulse-like DS at T = 100 K in the process of decreasing H, from 3500 

Oe, as shown in Fig. 3.  As seen in the red plots of Fig. 3(a), the DS was not applied until H = 1645 Oe. 

For reference, the green plots and broken line are the results obtained varying H roughly in the 

situation without DS. Figure 3(b) shows an enlarged view for H = 1640 ± 10 Oe. The pulse-like 

application of DS was carried out below 1645 Oe. The red plots show R before applying the pulse-like 

DS, and the blue plots show the value after applying the pulse-like DS for each field. The latter 

measurement was conducted successively after the former measurement, and both measurements were 

carried out at the same H. The time interval of the pulse-like DS was less than 1 min., and so the 

heating can be neglected. From 1645 to 1636 Oe, as shown by black arrows in Fig. 3(b), R did not 

change before or after applying the pulse-like DS. However, at H = 1635 Oe, as shown by the red 

arrow, the pulse-like application of DS changed the R remarkably. This behavior is due to the 

magnetic transition from the forced ferromagnetic state to the CSL state. There, many topological 

solitons should be inserted collectively. In fact, after waiting for several tens of minutes and an 

increased temperature just before applying the pulse-like DS, there was no change in the electrical 

resistance. Thus, we confirmed that the above phenomenon does not originate in both the relaxation 

effect and heating one. A series of results implies that by applying pulse-like DS, we have succeeded 

in manipulating the activation energy for the transformation from the forced ferromagnetic state to the 

CSL state. 

 

 

Figure 3. (color online) (a) Magnetoresistance 

R(H) of Cr1/3NbS2 at T = 100 K in experiments 

involving the pulse-like application of DS. The 

pulse-like application was carried out below 1645 

Oe. Based on preliminary experiments, the 

reference data shown by green plots and the 

broken line indicate a R-H curve without DS. (b) 

R-H curve in the process of decreasing H for H = 

1640 ± 10 Oe, corresponding to the enlarged 

figure of the blue square in (a). Plots of red 

squares and blue circles indicate before and after 

the application of DS for each magnetic field, 

respectively. Some arrows show the field values 

for which the pulse-like application of DS was 

performed. 
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Dynamic stress, DS, modulates the crystal lattice. In Cr1/3NbS2, DM vectors could be modulated by 

DS. In the present experimental setting, the structural modulation has no specular directivity. Thus, we 

assume that there are two effects: One is heating effect that is equivalent to making a state instable 

thermodynamically, and it is inevitable effect in the case of stationary DS. Another is the effect of 

structural modulation, in which the phase transformation is restricted or motivated positively. In the 

present study, the stationary DS corresponds to the former, and it restricts the insertion of the 

topological solitons in the process of decreasing H. On the other hand, the pulse-like DS does to the 

latter, and it reduces any activation energy of the transition from the forced ferromagnetic state to the 

CSL state, resulting in finishing a kind of magnetic supercooling. We suppose that this activation 

energy of the transition from the forced ferromagnetic state to the CSL state is enhanced in thin film 

with clean surface. Indeed, the big jump in magnetoresistance has not been observed in the millimeter 

sized crystal. For any specimen for the DS experiment of Cr1/3NbS2, the thin film with clean surface is 

promising. 

4.  Conclusion 

Magnetoresistance measurements were performed on a micro-sized single crystal of the monoaxial 

chiral magnet Cr1/3NbS2 in order to verify the dynamic stress (DS) effect. Based on the results, in the 

case of experiment (1), where the DS was steadily applied, the transition from the forced 

ferromagnetic state to the CSL state was suppressed during the process of decreasing magnetic field. 

We consider that the lattice would be modulated by the application of DS, resulting in the distortion of 

the DM vectors. We also succeeded in changing the state from the forced ferromagnetic state to the 

CSL state in experiment (2) when the DS was applied in pulses. There, we succeeded in the artificial 

transition from the forced ferromagnetic state to the CSL state by using dynamic stimulus. Thus, the 

spin-phase orders in Cr1/3NbS2 generated by the DM vectors are modulated by dynamic structural 

modulation.  
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