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1. Abstract 

Ebola virus disease (EVD) is a severe disease that affects humans and non-human 

primates. The recent EVD epidemic in West Africa shows that EVD poses a severe 

threat to human health. EVD is caused by Ebola virus (EBOV) and other ebolaviruses, 

which belong to the family Filoviridae. The EBOV glycoprotein (GP) is the only viral 

surface protein and mediates host cell entry. Processing of GP by host cell proteases 

(priming) is required for viral entry into target cells and cathepsin (Cat) B and L have 

been implicated in GP priming in cell culture. However, these enzymes may be 

dispensable for viral spread in the infected host and the determinants governing CatB/L 

dependence of viral entry are incompletely understood. Therefore, the first goal of this 

thesis was to identify such determinants. Apart from mediating viral entry, EBOV-GP 

also promotes viral release by antagonizing the interferon-induced antiviral host cell 

protein tetherin. However, the domains in GP that govern counteraction of tetherin and 

the contribution of this process to viral spread are incompletely understood. The 

second aim of the present thesis was thus to identify GP domains and amino acid 

motifs that control tetherin antagonism. 

 

The results of the present thesis show that EBOV-GP-driven entry depends on CatB/L 

activity irrespective of the shape of the viral particle and the target cell type. Moreover, 

Calu-3, a human cell line with low endogenous CatL expression, was found to be 

largely resistant to entry driven by EBOV-GP and other filovirus GPs. Finally, entry was 

restored by directed expression of CatL or the attachment promoting factor DC-SIGN. 

Regarding tetherin counteraction by GP, the results obtained show that a GXXXA motif 

in the transmembrane domain of GP is largely dispensable for GP expression, particle 

incorporation and host cell entry but is required for tetherin antagonism. Lack of tetherin 

antagonism was observed in transfected cells and was confirmed in the context of an 

infectious vesicular stomatitis virus chimera encoding EBOV-GP. In summary, the 

present thesis identifies Calu-3 cells as one of the few cell lines largely resistant to 

filovirus GP-driven entry and shows that entry is limited at the stage of attachment and 

GP priming. Moreover, the results identify a GXXXA motif in GP as essential for 

tetherin antagonism and provide the first evidence that antagonism can promote viral 

spread, at least in the context of a surrogate system.  
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2. Introduction 
 

Ebola virus disease (EVD) is a severe, frequently fatal disease that affects human and 

non-human primates (NHP). It is caused by ebolaviruses, is highly contagious and 

associated with a high case-fatality rate. The EVD epidemic in West Africa from 2013 

to 2016 was the largest outbreak ever witnessed and caused more cases and deaths 

than all previous outbreaks combined. Furthermore, secondary cases outside Africa 

occurred [1]. This highlights that EVD poses a severe global threat to human health  

 

2.1. Ebola virus disease 

Ebola virus disease is a zoonotic disease which was first described in 1976 [2]. The 

main causative agent of EVD is Ebola virus (EBOV), which belongs to the family 

Filoviridae. It has been suggested that fruit bats are the natural reservoir of EBOV. 

Thus, serological analyses have shown that these animals harbor EBOV-specific 

antibodies or viral RNA [3,4]. However, infectious EBOV has so far not been isolated 

from bats. This is in contrast to other filoviruses like Marburg virus (MARV), for which 

infectious virus has been isolated from fruit bats [5–8]. Thus, fruit bats are most likely 

the reservoir of EBOV but contribution of other animals to maintenance in nature 

cannot be excluded [9,10].  

 

Transmission of EBOV to humans occurs via contact with body fluids or organs of 

infected wild animals such as chimpanzees, gorillas, fruit bats, monkeys, or forest 

antelopes [11,12]. Once the virus has been introduced into the human population, 

human-to-human transmission may occur via direct contact with body fluids from 

infected patients or deceased people. In addition, recent studies suggest that EBOV 

can be sexually transmitted and that transmission can occur for up to 12 months after 

recovery of male survivors [1,13–17]. 

 

The incubation period of EVD ranges from 2 to 21 days in humans [2,18]. Symptoms 

start abruptly with fever, muscle pain, cough, headache and abdominal pain. During 

the next phase of the disease symptoms like vomiting, diarrhea, dyspnea, hypovolemic 

shock, and organ failure occur [19–21]. Studies conducted during the outbreak in West 

Africa revealed that hemorrhages occur in approximately 5 % of the patients but are 
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not associated with fatal outcome [20–23]. These studies confirm results obtained 

during the EBOV outbreaks in Kikwit 1995 [24] and Uganda 2000 [25]. Instead, 

hypovolemic shock and organ failure lead to death usually within 7 to 14 days after the 

onset of the symptoms [20,21,26]. The adequate supportive care, like administration 

of intravenous fluids, control of electrolytes, and prevention of shock associated 

complications, increases the chances of survival [21,26]. During the West African 

outbreak persistence of EBOV in immune-privileged sites (i.e. testicles [14,27], eye 

[28], central nervous system [29], and breast milk [30]) of EVD survivors was recorded. 

Moreover, persistently infected convalescent patients transmitted the virus to others 

raising the possibility that EVD might become endemic in the African population [31]. 

 

Vaccination against EBOV. To date, there are no approved vaccines or antiviral agents 

to combat EVD. However, several pre- and post-exposure treatments for EVD are 

under development, including vaccines based on inactivated EBOV, recombinant 

viruses, virus-like particles, DNA and plant-based antibodies. The first attempt to 

develop a vaccine against EVD was focused on heat- or formalin-inactivated EBOV 

preparations. Both showed protection in a guinea pig model. However, incomplete 

inactivation is always a concern [32,33]. In another trial, virus-like particles (VLPs), 

based on the EBOV glycoprotein (GP), viral protein (VP) 40 and nucleoprotein (NP), 

were protective in rodent models [34]. The most promising results in vaccine 

development have been obtained with recombinant viral vectors. Among these, the 

replication-competent vesicular stomatitis virus-EBOV chimera (VSV-EBOV), which 

harbors the gene for EBOV-GP, has been used in clinical trials which revealed that it 

is well tolerated when used in low doses [35,36]. However, when higher vaccine doses 

were applied, vaccinated volunteers developed arthralgia and arthritis [35–38]. 

Notably, VSV-EBOV conferred up to 100 % protection in NHP models [39] and was 

found to be highly efficient  in preventing EVD in humans [38] as demonstrated during  

the epidemic in West Africa. Moreover, it is being used in the recent outbreak in the 

Democratic Republic of Congo (DRC) [40,41]. However, it has not been approved by 

regulatory agencies so far and is still in phase III clinical trials [42,43]. The vaccine 

GamEvac-Combi has been tested in clinical trials in Russia. This vaccine contains two 

EBOV-GP expression systems: live attenuated recombinant VSV and a recombinant 

replication defective adenovirus serotype-5 (Ad5) [44]. During the clinical trial 
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vaccinated patients did not show serious adverse effects and strong humoral and 

cellular immune response against EBOV-GP were detected [44]. Furthermore, 

vaccination with VSV-EBOV-prime Ad5-boost vaccine induced a significantly stronger 

antibody response than immunization with VSV-EBOV alone [44–46]. 

 

EVD treatment. Passive immunization using whole blood, plasma or serum from EVD 

survivors, is a treatment option recommended by the World Health Organization 

(WHO) in emergency conditions. Unfortunately, studies in NHP and in EVD patients 

showed no association of treatment with survival [47–53]. Therefore, application of 

purified antibodies is a preferable therapeutic option. Antibody cocktails such as 

ZMapp, ZMab or MIL77 confer full protection against EBOV infection in NHP. For 

instance, studies carried out during the 2013-2016 epidemic suggest that ZMapp 

improves survival of EVD patients [54]. Accordingly, the humanized version of ZMapp 

antibodies has been recommended as EVD treatment by WHO [55,56]. Another 

monoclonal antibody that has been under study is KZ52, a neutralizing antibody 

obtained from an EVD survivor [57]. This antibody prevents EBOV-GP interaction with 

host cell proteases and protected guinea pigs against EBOV challenge, but failed to 

protect rhesus macaques [57–59]. Despite the largely encouraging results discussed 

above, efficiency and cross-reactivity of the monoclonal antibodies with other 

ebolavirus species need to be improved. 

 

For post-exposure treatment antiviral agents that can inhibit viral replication are 

available. Favipiravir (T-705), a drug first developed for influenza treatment, was found 

to inhibit the RNA polymerase of EBOV in cell culture and was administrated to humans 

during the EVD epidemic in West Africa. However, treatment had only a weak effect 

on viral replication and was not associated with a survival benefit [60]. Several other 

small molecules are currently under study for their possible use in EVD treatment. 

Interferons (IFN) are natural antivirals and IFN-γ has been approved by the Food and 

Drug Administration as a treatment for chronic diseases, such as Chronic 

Granulomatous Disease and osteopetrosis [61]. Furthermore, IFN-γ treatment can 

reduce the mortality rate in mice when administrated before or after EBOV challenge 

[62]. These results indicate that IFNs could be repurposed and adapted as a 

prophylactic treatment of EVD [41,62]. Toremifene and clomiphene can block EBOV 
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entry into target cells and exert antiviral activity in cell culture and in mice models 

[63,64]. Nafamostat mesylate is a protease inhibitor that reduces cathepsin (Cat) B 

levels in rat pancreas [65] and for EBOV entry the viral GP needs to be processed by 

CatB. Therefore, Nafamostat might be suitable for EVD treatment but its antiviral 

activity has not been assessed in animal models [66]. Another strategy to treat EVD 

are small interfering RNAs (siRNAs) that target viral mRNAs encoding for proteins 

essential for EBOV replication and assembly, such as the RNA polymerase (L), and 

the viral proteins VP35 and VP24. A study showed that a combination of siRNAs 

targeting these three proteins can provide post exposure protection against EBOV 

challenge in a NHP model [41]. In sum, treatment options against EVD are available. 

However, efficiency and activity against diverse ebolavirus species need to be 

improved.  

 

2.1.1. Ebola virus disease outbreaks 

The first recorded EVD outbreaks occurred in 1976 in the DRC (formerly Zaire), and in 

Sudan and were caused by members of two different ebolavirus species, EBOV 

(species Zaire ebolavirus) and Sudan virus (SUDV, species Sudan ebolavirus), 

respectively. Since then, several EVD outbreaks caused by EBOV (most frequently), 

SUDV, Tai Forest virus (TAFV, species Taï Forest ebolavirus), and Bundibugyo virus 

(BDBV, species Bundibugyo ebolavirus) have been recorded in remote areas within 

Central Africa and although case-fatality ratios were high, the case numbers were 

limited to a maximum several hundred per outbreak [1,18]. 

  

In March 2014, the WHO reported an EVD outbreak in Guinea that was caused by 

EBOV. The outbreak started in December 2013 and then turned into an epidemic that 

spread to Sierra Leone and Liberia. It was declared a Public Health Emergency of 

International Concern (PHEIC) in August 2014. During the 2013-2016 EVD epidemic 

in West Africa, the virus reached densely populated areas, partially due to a delayed 

response of local authorities and WHO. Furthermore, secondary cases outside Africa 

(Spain and the United States of America) were recorded. By the time the WHO lifted 

the PHEIC in March 2016, there were more than 28,000 cases and 11,000 deaths 

reported, which are more cases than in all previous outbreaks combined. In June 2016, 

the WHO declared the end of EVD transmission in Guinea and Liberia [18,67]. 
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After the West African epidemic, a small EVD outbreak in the DRC was registered in 

May 2017 and declared over in July 2017. During this outbreak five confirmed EVD 

and three probable cases have been reported, four of which died [68]. An ongoing EVD 

outbreak in the DRC, again caused by EBOV, started in August 2018 and until January 

22th, 2019 there were 713 cases (664 laboratory confirmed cases by RT-PCR, positive 

IgM or virus isolation) and 439 deaths reported. So far, only north-eastern provinces of 

DRC including North Kivu and Ituri have been affected, but current outbreak hotspots 

(Butembo, Katwa) encompass an urban area with a population of roughly one million 

people. Containing the current outbreak has been challenging due to security conflicts, 

a long-term humanitarian crisis and other ongoing epidemics in the area. Currently, 

WHO’s risk assessment is high at regional and national levels [18,69].  

 

2.2. Ebola virus biology and classification 

Ebola virus belongs to the family Filoviridae, which comprises three genera: 

Ebolavirus, Marburgvirus and Cuevavirus. According to the International Committee 

on Taxonomy of Viruses there are five species in the genus Ebolavirus: Zaire 

ebolavirus (single member: Ebola virus, EBOV), Sudan ebolavirus (single member: 

Sudan virus, SUDV), Taï Forest ebolavirus (single member: Tai Forest virus, TAFV), 

Bundibugyo ebolavirus (single member: Bundibugyo virus, BDBV) and Reston 

ebolavirus (single member: Reston virus, RESTV) [70]. All members of the genus 

Ebolavirus are highly pathogenic for humans, except for RESTV. A recent study 

discovered a sixth species, Bombali ebolavirus (single member: Bombali virus, BOMV) 

[6]. BOMV has only been detected in bats but the viral glycoprotein can mediate entry 

into human cells. However, no human infections were documented so far. The genus 

Marburgvirus contains only one species Marburg marburgvirus (two members: 

Marburg virus, MARV; and Ravn virus, RAVV) [71], both are known to be pathogenic 

in humans, and MARV outbreaks have been reported in the past [72]. Lloviu cuevavirus 

(single member: Lloviu virus, LLOV) is the only species within the Cuevavirus genus, 

but no human infections have been reported so far [5].  

 

Filovirus particles are filamentous (Figure 1A), with a fixed diameter of 80 nm and a 

variable length (up to 14,000 nm). They are enveloped and contain a negative sense 
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single-stranded RNA (ssRNA) genome of approximately 19 kb. EBOV is the most 

studied member within the genus Ebolavirus, consequently the subsequent discussion 

will focus on EBOV. The EBOV genome consists of seven open reading frames (ORFs) 

that encode for seven structural proteins: nucleoprotein (NP), viral protein 35, 40, 30, 

24 (VP35; VP40; VP30; VP24), RNA polymerase (L), and glycoprotein (GP) (Figure 

1B) [73–75]. NP encapsidates the viral genome, jointly with VP30, which acts as a 

transcriptional activator. The polymerase L is responsible for viral genome transcription 

and replication [76,77]. VP35 is a polymerase cofactor and along with NP, VP30 and 

L, forms the ribonucleocapsid. VP24 is required for nucleocapsid maturation [77–79]. 

VP40 forms the matrix of the virus and is responsible for virus assembly and budding 

[80,81]. Finally, GP is incorporated into the viral membrane and drives viral entry into 

target cells [82]. 

 

 

 

Figure 1. Particle architecture and genome organization of Ebola virus. A) EBOV particles 
are filamentous; GP is the only viral surface protein. VP35 is a polymerase cofactor and along with NP, 
VP30 and L, forms the ribonucleocapsid. VP40 forms the viral matrix along with VP24. B) Schematic 
representation of EBOV genome organization and the encoded proteins. (Adapted from ViralZone [83]) 
 
 
 
 



  Introduction 
 

 
8 

 

2.3. Ebola virus replication cycle 

EBOV and other filoviruses replicate in the cytoplasm. First, EBOV-GP attaches to host 

cell surface factors and viral particles are internalized via macropinocytosis [84]. 

Subsequently, virions are trafficked to late endosomes where GP is processed 

(primed) by the cellular cysteine proteases CatB/ L. Primed EBOV-GP then interacts 

with the intracellular receptor Niemann-Pick C1 (NPC1) [85,86]. Engagement of NPC1 

and a subsequent poorly defined stimulus triggers GP-driven fusion of the viral 

envelope with the endosomal membrane [87–89]. This requires large conformational 

changes in GP that are also observed with unrelated viral glycoproteins, collectively 

referred to a class I membrane fusion proteins [90]. In the course of these 

conformational rearrangements a fusion loop in GP2 is inserted into the host 

membrane and a thermostable six-helix bundle structure in GP2 is formed, which 

results in close approximation of the viral and the cellular membrane. Finally, a fusion 

pore is formed which allows the release of the nucleocapsid into the host cytoplasm 

[91–97]. Then, the viral polymerase L produces mRNAs and cRNA that will serve as 

template for generation of new genomic (-)ssRNA [98]. New viral ribonucleoprotein 

complexes (RNP) are assembled in the perinuclear region and, stimulated by VP40, 

transported to the budding sites via actin-dependent RNP trafficking [99,100]. GP is 

transported via the endoplasmic reticulum (ER) and Golgi apparatus to the site of viral 

budding where it colocalizes with VP40 in cholesterol-enriched microdomains [101–

103]. At the plasma membrane, VP40 forms hexamers and facilitates the incorporation 

of the RNP into filamentous particles. In order to facilitate release, VP40 recruits 

cellular proteins including Nedd4/Rsp5, Tsg101 and Vps4 [104–106], which induce 

translocation of VP40 to the phosphatidylserine-enriched inner leaflet of the plasma 

membrane and catalyze fission of the plasma membrane during budding [107] (Figure 

2). 
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Figure 2. Ebola virus replication cycle. (Reprinted from [83]) 
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2.4. Ebola virus glycoprotein  

The GP gene is the only gene of EBOV able to encode for different proteins. It can 

produce three mRNAs encoding for pre-soluble GP, pre-GP (GP0) and pre-small 

soluble GP proteins in approximately 14:5:1 ratio, although this ratio can be cell type 

dependent (Figure 3) [76,108].  

 

 

Figure 3. Proteins encoded by the GP open reading frame. Pre-sGP (left), is encoded by the 

primary transcript and is most abundant. Processing of pre-sGP leads to formation of mature 
N-glycosylated dimers of sGP and O-glycosylated monomers of Δ-peptide. The mRNA encoding for 
pre-GP0 (middle) results from a +1 frameshift. Cleavage of GP0 by furin separates the surface unit GP1 
from the transmembrane unit GP2, which remain associated by a disulfide bond. GP trimers are 
incorporated into the viral membrane that decorate the viral surface. Cleavage of GP by ADAM17/TACE 
results in the production of shed GP. Pre-ssGP (right) is encoded by a +2 frameshift in the GP ORF and 
is the least abundant transcript. Mature ssGP is secreted as N-glycosylated dimer. (Adapted from [109]) 

 

The soluble GP (sGP) is encoded by unedited mRNA and is the most abundant product 

of the GP gene. It is synthesized as pre-sGP and post-translational modifications 

include proteolytic cleavage by furin resulting in two products, sGP and delta-peptide 

(Δ-peptide). Both proteins are secreted due to their lack of transmembrane domains 

[110]. Mature sGP is released extracellularly as N-glycosylated dimer [111,112]. The 

role that sGP plays in EBOV pathogenesis is not completely understood. Since it 

shares the N-terminal 295 aa with full-length GP, it has been suggested that sGP acts 

as a decoy antigen for antibodies directed against full-length GP [101]. Furthermore, it 

has been postulated that it can lead to antigenic subversion, i.e. high amounts of sGP 

divert the immune response away from full-length GP by acting as a target for 

neutralizing antibodies [113]. Studies performed in cell culture have shown that sGP 
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may exert anti-inflammatory activity, such as restoration of the barrier function of 

endothelial cells, and inactivation of neutrophils [114,115]. Finally, it has been 

suggested that sGP could reduce viral cytotoxicity by limiting the expression of 

EBOV-GP [116,117]. 

 

The Δ-peptide is the C-terminal cleavage product of the pre-sGP protein and is 

O-glycosylated [110]. It has been proposed that Δ-peptide may prevent virus 

superinfection by binding to permissive cells and interfering with viral entry [118]. 

However, the in vivo relevance of this process has not yet been determined. Another 

hypothesis, based on in silico analysis of Δ-peptide sequences, suggests that it acts 

as a viroporin, but experimental evidence is lacking [119]. 

 

The small soluble protein (ssGP) is produced as the result of a +2 frameshift in the GP 

ORF [76,120]. It is largely N-glycosylated and secreted as dimers. Despite having 

similar biochemical properties and primary sequence as sGP, ssGP does not exhibit 

the same anti-inflammatory function in endothelial cells as sGP. To date, ssGP function 

and its contribution to EBOV pathogenesis are still unknown [108,121]. 

 

The full-length glycoprotein (GP) is the only viral surface protein. It is synthesized as a 

precursor (GP0) as the result of a +1 frameshift of the GP ORF [76,120]. GP0 

post-translational modifications start in the ER where it is N- and O-glycosylated. Then, 

it is transported into the Golgi apparatus where furin cleavage divides it into two 

subunits, the surface unit GP1 and the transmembrane unit GP2, remain associated 

via a disulfide bond between GP1 Cys53 and GP2 Cys609 [102,122]. The GP1-GP2 

heterodimers assemble into trimers that are transported to the cell surface where they 

are incorporated into in the viral envelope [109,123]. The GP1 subunit contains the 

signal peptide, the receptor binding domain (RBD), and a heavily N- and 

O-glycosylated mucin-like domain (MLD) that is rich in serine, threonine and proline 

residues. The GP2 subunit comprises an internal fusion loop, two heptad repeat 

regions (HR1, HR2), a transmembrane domain (TMD) and a short cytoplasmic tail 

[93,102]. A schematic representation of EBOV-GP domains and trimeric structure is 

depicted in figure 4. Additionally, EBOV-GP located at the plasma membrane can be 

cleaved by tumor necrosis factor alpha converting enzyme (TACE), a member of the 
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disintegrin and metalloproteinase family, resulting in release of  shed GP [124]. As well 

as sGP, shed GP can act as an antibody decoy capturing anti-EBOV-GP antibodies or 

stimulate antibody dependent enhancement of infection [124]. In addition, it has been 

suggested that shed GP might modulate the homeostasis of the endothelium, the 

secretion of pro-inflammatory cytokine [125,126], and may reduce the abundance of 

GP on the cell surface and in virions [117,127]. 

 

 

Figure 4. Ebola virus glycoprotein domain organization and 3D structure. Schematic 

representation of the domain organization of EBOV-GP is shown in the left panel. SP = signal peptide 
(yellow), RBD = receptor binding domain (red), glycan cap (green), MLD = mucin-like domain (blue),  
IFL = internal fusion loop (orange), HR = heptad repeat 1 and 2 (light blue), TD = Transmembrane 
domain (brown) (Adapted from [128]). The right panel shows the domain organization of the GP in the 
context of the 3D structure of the protein (Adapted from [129]) 
  

Role of the Ebola virus glycoprotein in viral pathogenesis. EBOV-GP mediates viral 

entry into host cells, the first step in the EBOV replication cycle. Entry comprises viral 

attachment to the cell surface, viral uptake into cells, binding of GP to its intracellular 

receptor NPC1 and membrane fusion, as outlined above and as described in detail 

below [82,130]. Several studies have suggested that GP is also involved in EBOV 

pathogenesis and in the activation of the inflammatory response [115,131,132]. 

Expression of EBOV-GP causes cytotoxic effects, cell rounding and detachment of 

adherent cells in vitro. Moreover, analogous observations have been reported in 

explanted blood vessels, which results in increased vascular permeability [133,134]. 

The MLD contributes to cellular cytotoxicity by masking adhesion molecules, including 

intercellular cell adhesion molecule-1 (ICAM-1), platelet/endothelial cell adhesion 

molecule-1 (PECAM-1), vascular cell adhesion molecule-1 (VCAM-1) and epidermal 

growth factor receptor (EGFR) of the host cell surface [135–137]. The steric shielding 

not only reduces accessibility and function of adhesion molecules but also of the major 
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histocompatibility complex class I, suggesting that the immune cell recruitment might 

be altered. Therefore, shielding might contribute to immune suppression and activation 

of the inflammatory response during EBOV infection [131,132,136,138,139]. Although 

it has been shown that the MLD plays a major role in EBOV-GP mediated cytotoxic 

effects, it is dispensable for EBOV-GP-driven entry [102,140]. It has been suggested 

that the MLD glycans cover antigenic epitopes within the RBD. This might be an 

immune evasion strategy mediated by the MLD since it blocks the activity of 

neutralizing antibodies directed against this domain [136,137,141]. Finally, sGP and 

shed GP might modulate immune responses and integrity of the vasculature as 

outlined above.  

 

2.5. Ebola virus entry 

Ebola virus entry can be divided in four steps: attachment, viral uptake and proteolytic 

priming of GP, receptor binding and membrane fusion. 

 

2.5.1. Cellular attachment factors 

Attachment is mediated by interactions of the GP1 subunit or phosphatidylserine 

(PtdSer) in the viral envelope with proteins located at the surface of host cells [142–

144]. Engagement of these attachment promoting factors can augment virion uptake 

but is not essential for EBOV-GP- driven entry 

 

2.5.1.1. Phosphatidylserine-mediated virus entry enhancing receptors  

PtdSer-mediated virus entry enhancing receptors (PVEERs) are a group of receptors 

and receptor complexes with the ability to bind PtdSer present on the viral envelope. 

The mechanism underlying augmentation of viral infectivity by PVEERs is called 

apoptotic mimicry. It was first postulated to be used by hepatitis B virus and was first 

experimentally confirmed in the context of vaccinia virus infection [145,146]. PVEERs 

bind to PtdSer, which is expressed on the inner leaflet of the plasma membrane of 

living cells. However, PtdSer is exposed on the surface of apoptotic or necrotic cells, 

allowing phagocytic cells to recognize and remove these cells [145,147]. PtdSer 

binding to PVEERs can occur through direct interaction or through a ligand that can 

bind both PtdSer and the receptor [148,149]. Several viruses, including members of 

the flavivirus, filoviruses, arenavirus, baculovirus and alphavirus families are known to 
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take advantage of apoptotic mimicry [143,144,149,150]. The PVERRs used by 

filoviruses for attachment are TIM-1, TIM-4, Axl, Dtk and MER [143,151,152]. 

 

T-cell immunoglobulin and mucin (TIM) family. The human TIM family proteins are type 

I cell surface glycoproteins with an N-terminal immunoglobulin variable (IgV)-like 

domain, a mucin-like domain (O-glycosylated), a transmembrane domain and a 

C-terminal cytoplasmic tail [153]. The ligand binding pocket of TIM-1 and TIM-4 is 

located between two loops of the IgV domain [154–156]. Aspartate and asparagine 

residues present in the upper loop coordinate calcium ions and form hydrogen bonds 

with the phosphate and serine groups of PtdSer [157]. Binding of PtdSer to TIM 

proteins is necessary for clearance of apoptotic bodies and immune cell regulation 

[158–162]. TIM-1 is mainly expressed on immune cells such as B cells, mast cells, Th2 

CD4+ T cells but is also found on epithelial cells of kidney, airway and eye mucosa 

[163–167]. TIM-4 is expressed on macrophages and mature dendritic cells (DCs) 

located in spleen, lymph node, and peritoneum [154,155,168]. Macrophages and DCs 

are known to be early and sustained target cells during EBOV infection [169,170]. It 

has been demonstrated that EBOV-GP can interact with TIM-1 and TIM-4 via its 

receptor binding domain, further leading to virus internalization and increased 

infectivity [167]. However, subsequent studies showed that TIM proteins recognize 

PtdSer displayed on the viral envelope and thereby augment viral entry [143,144]. 

 

Tyro3/Axl/Mer (TAM) family. Tyro3, Axl, and Mer (TAM) belong to the family of receptor 

tyrosine kinases. They possess two N-terminal immunoglobulin (Ig)-like domains, 

followed by two fibronectin type III domains, a single transmembrane domain, and a 

cytoplasmic protein tyrosine kinase (PTK) domain. TAM proteins interact via their 

Ig-like domains with their ligands Gas6 (Axl) and protein S (Tyro3 and Mer). This 

interaction activates the TAM receptors and results in autophosphorylation of tyrosines 

in the PTK domain [171,172]. TAM proteins are involved in cytokine release, cell 

proliferation, survival, and adhesion [173]. Similar to TIM proteins, they bind to PtdSer 

exposed on apoptotic cells, and binding is facilitated by the γ-carboxyglutaminc acid 

residues present in Gas6/Protein S [174,175]. PTK activity and signaling of TAM 

proteins is required for inhibition of inflammation and augmentation of viral entry 

[149,176,177]. TAM proteins are expressed on a broad spectrum of tissue and cells, 
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e.g. lung, brain, kidney, platelets, macrophages, natural killer (NK) cells, and DCs 

[173,178–181] and might thus promote EBOV entry into a broad spectrum of target 

cells. Finally, it is noteworthy that Axl may promote EBOV host cell entry by enhancing 

macropinocytosis [151,182–184], and that Axl, unlike TIM-1, requires proper ligand 

binding and kinase signaling to enhance EBOV entry [185,186]. 

 

The mechanism by which PtdSer is exposed on the outer leaflet of the membrane of 

enveloped viruses is unknown. A recent study by Nanbo and colleagues suggests that 

XK-related protein (Xkr) 8, a cellular scramblase responsible for exposure of PtdSer 

on apoptotic cells, plays an important role. Thus, Xkr8 and EBOV-GP are trafficked 

together to the viral budding sites and are incorporated into EBOV-like particles, and 

incorporation of Xkr8 is required for augmentation of viral entry in a PtdSer-dependent 

manner [187]. 

 

2.5.1.2. C-type lectins 

C-type lectins (CTLs) are one of the largest families of animal lectins that have been 

classified into 17 groups (I-XVII), based on phylogeny as well as structural and 

functional properties [188]. In vertebrates, CTLs functions include serum glycoprotein 

homeostasis, pathogen sensing, and the initiation of immune response [189]. CTLs 

depend on Ca2+ to recognize glycan ligands. They recognize a wide range of ligands 

including proteins, lipids, inorganic molecules, and ice crystals [190].  

 

Myeloid C-type lectins. Myeloid CTLs are pattern recognition receptors (PRRs) 

specialized in glycolipid and glycoprotein recognition [191,192]. They are mainly 

expressed by antigen-presenting cells including DCs, macrophages and monocytes 

[189]. C-type lectin receptors (CLRs) are at the frontline of innate and adaptive antiviral 

immune responses, CLR-virus interaction triggers a signaling cascade that induces the 

production of pro-inflammatory cytokines [193,194]. Dendritic cell-specific intercellular 

adhesion molecule-3-grabbing non-integrin (DC-SIGN) also known as CD209, is a type 

II transmembrane receptor composed of a short N-terminal cytoplasmic tail, a 

transmembrane region, a flexible neck domain involved in oligomerization, and a 

Ca2+-dependent carbohydrate recognition domain. DC-SIGN binds to high mannose 

glycans and fucose-containing glycans [195–197]. Several viruses, including human 
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immunodeficiency virus type 1 (HIV-1), EBOV, dengue virus (DENV) and severe acute 

respiratory syndrome coronavirus (SARS-CoV) are recognized by DC-SIGN [198]. 

Lymph node-specific intercellular adhesion molecule-3-grabbing integrin (L-SIGN) also 

known as DC-SIGNR has a similar structure as DC-SIGN. However, it has a 

polymorphic neck region and the length of the DC-SIGNR neck region may impact 

affinity for ligands and viral pathogen specificity [193,198]. L-SIGN binds to N-linked 

high mannose oligosaccharides, with preference for mannosylated residues 

[193,198,199]. EBOV [200], MARV [201], HIV-1 [202], hepatitis C virus (HCV) [203], 

hepatitis B [204], and SARS-CoV [205] exploit L-SIGN for glycoprotein-mediated 

attachment and internalization. Liver and lymph node sinusoidal endothelial cell C-type 

lectin (LSECtin) recognizes glycans containing mannose, N-acetylglucosamine and 

fucose residues. LSECtin can enhance EBOV and SARS-CoV but not HIV-1 or HCV 

infection and may do so in a mannose-independent manner [206–208]. Macrophage 

galactose C-type lectin (MGL) binds galactose and N-acetylgalactosamine residues, 

and viruses like EBOV, MARV and influenza A virus (IAV) use it for cellular entry and 

for evasion of host immune responses [209–213]. 

 

Asialoglycoprotein receptors. Asialoglycoprotein receptors (ASGPRs) are Ca2+ 

dependent type II transmembrane proteins, with a short cytoplasmic tail, a 

transmembrane domain and a carbohydrate binding domain. Their main function is to 

regulate glycoprotein levels in serum, thereby maintaining homeostasis. ASPGR-1 is 

expressed in liver and has been shown to enhance MARV entry [188,214,215].  

 

Cellular lectins such as MGL, DC-SIGN, L-SIGN, LSECtin, and ASGPR-1 can increase 

filovirus attachment to susceptible cells [200,207,209,214,216,217] by binding to 

N- and/or O-linked glycans on GP. However, binding to these molecules is usually not 

sufficient to allow for infectious entry, although one study suggested that directed 

expression of DC-SIGN and L-SIGN on the T cell line Jurkat renders these cells 

susceptible to GP-driven entry  [200,216,218,219]. 
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2.5.2. Virus internalization and processing of EBOV-GP 

The next steps of EBOV entry are particle uptake and proteolytic processing of GP. 

Initially it was thought that EBOV and filoviruses in general were internalized in a 

clathrin- and/or caveolin-dependent fashion [220–222]. However recent studies 

showed that macropinocytosis is the main mechanism for EBOV uptake and it depends 

on particle size, since particles bigger than 100 nm are usually internalized via 

macropinocytosis. Furthermore, it was shown that EBOV induces PI3K, Rac1, PKC, 

Cdc42 and Pak1 activity and triggers plasma membrane ruffling, which are factors 

required for macropinocytosis [84,182,184,223]. Moreover, it is known that 

macropinocytosis is active in macrophages [224] and DCs [225], primary targets of 

EBOV. After uptake, virions are trafficked to late endosomes where GP is primed by 

the cysteine proteases CatB and L. 

 

Cathepsin B and L. Cathepsins are divided into three families according to the amino 

acid present in their active site: serine, aspartate and cysteine cathepsins. The latter 

are members of the family of papain-like cysteine proteases. At sequence level, there 

are 11 human cysteine cathepsins, B, C, F, H, K, L, O, S, V, X, and W [226–228]. 

Cathepsins are synthetized as preproenzymes. The signal peptide is cleaved by signal 

peptidase during the import of the nascent polypeptide chain into the ER. The 

propeptide maintains cathepsins in their inactive form while they are trafficked through 

the ER and Golgi apparatus. Once sorted into late endosomes they are proteolytically 

processed into their mature and proteolytically active form [229–232]. Most cathepsins 

have endopeptidase activity. However, CatB can act as carboxypeptidase [233,234]. 

They require a slightly acidic environment, such as the one found in endosomes and 

lysosomes, to have proper proteolytic activity [230,235]. Cathepsins are ubiquitously 

and redundantly expressed. Hence, cathepsins can be upregulated to take over the 

function of a related enzyme that has been eliminated by gene knockout or inhibited 

[227,229,236–238]. 

 

CatB and CatL are involved in antigen processing and presentation, and apoptosis 

[239,240]. Also, they have been identified as the proteases responsible for filovirus GP 

priming in endosomes [220,241–243]. Priming of EBOV-GP by CatB/L occurs in two 

steps: First, GP1 (130 kDa) is cleaved by CatB and/or CatL into a 50 kDa form, that is 
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further cleaved, again by CatB/L or probably by other host proteases into a 19 kDa 

form [242,244–246]. In this step, the glycan cap and the MLD are removed by these 

enzymes, exposing the RBD and potentiating the capacity for membrane fusion. The 

GP1-RBD remains associated with GP2 via a disulfide bond in a metastable 

conformation [82,244,245]. Schornberg and colleagues showed that virions bearing 

the 19 kDa GP1 (achieved by processing virions bearing EBOV-GP with thermolysin, 

a bacterial derived protease that mimics CatB/L cleavage, and recombinant CatB/L) 

depicted higher infectivity as compared to untreated virions which harbor unprocessed 

GP. Furthermore, it was demonstrated that entry of virions containing the 19 kDa GP1 

was largely resistant to CatB/CatL inhibitors but remained sensitive to a lysosomotropic 

agent and a cysteine protease inhibitor [87,242,243], suggesting that GP is first 

cleaved by CatB/CatL and subsequently another lysosomal factor, likely a thiol 

reductase, is required to trigger membrane fusion. It is important to note that CatB/L 

dependence varies among filoviruses, for instance CatB activity is required for EBOV-, 

TAFV- and BDBV- but not for SUDV-, RESTV- or MARV-GP-driven entry [247]. 

Moreover, several but not all studies demonstrating a role of CatB/L in filovirus entry 

used vesicular stomatitis virus (VSV) [248] or murine leukemia virus (MLV) [249] 

vectors pseudotyped with filovirus GPs [247,250] and shape and size of these particles 

differs significantly from those of authentic filoviruses. Notably, Marzi and colleagues 

showed that CatB-/- or CatL-/- knockout mice supported EBOV spread as efficient as 

wild type mice [251]. These contradictory findings suggest that protease choice of 

EBOV in cell culture might not adequately reflect protease choice in the infected host 

or that EBOV can use proteases other than CatB/L to secure GP priming in the host. 

 

2.5.3. Receptor binding  

After GP priming by CatB/L, the primed EBOV-GP interacts with the intracellular 

receptor NPC1 [85,86], which, jointly with an unknown stimulus, triggers membrane 

fusion, the final step of viral entry. 

 

Niemann-Pick C1. NPC1 is a late endosomal/lysosomal protein that is ubiquitously 

expressed. It has 13 transmembrane-spanning helices (sterol sensing domain, SSD), 

and 3 luminal domains, domain A (N-terminal domain, NTD), domain C and domain I 

[252–255]. NPC1 has been implicated in cholesterol homeostasis and absorption. To 
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accomplish this function, NPC1 (NTD domain and domain C loop 2) binds to 

Niemann-Pick C2 (NPC2) which in turn binds to cholesterol [256–259]. Abrogation of 

NPC1 or NPC2 function leads to cholesterol accumulation in lysosomes, causing the 

fatal Niemann-Pick disease [252,260–262]. NPC1 was first identified to be an 

important entry factor for EBOV by two studies: the first one, performed by Carette and 

colleagues, used genome-wide screening of haploid human cells to identify those that 

were not compatible with filovirus GP-driven entry [86]. The second study was done by 

Côté and coworkers, who screened a library of chemical compounds for filovirus entry 

inhibitors, including U18666A, which mimics Niemann-Pick disease [85]. Later it was 

shown that U18666A blocks EBOV-driven entry into host cells, despite the fact that it 

binds to a different domain (SSD) than EBOV-GP (domain C). However, the 

concentration of U18666A needed to block EBOV-driven entry is 100-fold higher 

[85,87,263,264] than the one needed to inhibit cholesterol trafficking. It was 

hypothesized that when applied at high concentrations, U18666A and other cationic 

amphiphiles may interact with the NPC1 C-loop 2 with low affinity but sufficient to block 

virus entry [265]. Further, studies revealed that primed EBOV-GP but not unprocessed 

EBOV-GP binds to loops 1 and 2 from domain C, indicating that the RBD has to be 

fully exposed in order to interact with NPC1 [255,266,267]. The in vivo relevance of 

NPC1 was demonstrated by Herbert and colleagues, using NPC1-/- mice [268]. They 

could show that these mice were completely resistant to mouse-adapted EBOV 

infection, which indicates that NPC1 expression is essential for filovirus replication and 

pathogenesis, making it a promising therapeutic target. In sum, NPC1 is an intracellular 

receptor of EBOV and interactions of primed GP with NPC1 in conjunction with low pH 

might help release the internal fusion loop (IFL) and facilitate the conformational 

changes in GP required for membrane fusion [93,255,269]. 
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2.6. Ebola virus and the interferon system 

2.6.1. Innate immune system 

All live forms are constantly exposed to pathogens, and humans are no exception. 

However, the immune system allows us to prevent and or control infections. In 

vertebrates, the immune system is divided in an innate and an adaptive arm. Adaptive 

responses are highly specific but slow, taking between one or two weeks to develop 

upon the first exposure to a pathogen, since specific clones of B and T cells reactive 

against the new pathogen need to be activated and proliferate [270]. Subsequently, 

the adaptive but not the innate responses lead to the development of immunologic 

memory. Thus, memory B and T cells have the ability to respond more rapidly to 

subsequent encounters with the same antigen or pathogen and may provide lifelong 

protection [271].  

 

The innate immune system is not only present in vertebrates, but also in invertebrates 

and plants. It is the first line of defense against pathogens, taking only minutes to 

activate and hours to remove the threat. It plays a critical role in activation and 

regulation of the adaptive immune system [272,273]. The innate immune system is 

known to be a non-specific response against pathogens. However, this concept is 

changing. New evidence suggests that NK cells and macrophages can develop 

specific immune memory based on recognition of certain PAMPs. After PAMP 

recognition, epigenetic changes at the level of histone methylation and acetylation 

reprogram the cells, thereby increasing their activity upon secondary stimulation with 

the same or similar stimuli and providing protection in a T/B-cell-independent manner 

[274–276]. The main components of the innate immunity include physical barriers (i.e. 

skin, mucosal membranes, and gut-associated lymphoid tissue), chemical barriers (i.e. 

low pH, hydrolytic enzymes, antimicrobial peptides and pro-inflammatory cytokines) 

present on the surface of physical barriers. The third component includes a cellular 

response, carried out by phagocytic cells (macrophages, neutrophils, monocytes and 

DCs), which is triggered upon invasion by a pathogen that was able to overcome the 

epithelial barriers [272,277]. 

 

Macrophages, neutrophils and DCs are able to recognize pathogen-associated 

molecular patterns (PAMPs), including lipopolysaccharide (LPS), peptidoglycans or 
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complex carbohydrates present on bacteria, fungi and other pathogens. PAMPs are 

sensed by PRRs and PRR binding triggers gene expression of proteins of the innate 

immune system (e.g. interferons, defensins, cytokines) [272,278,279]. 

 

2.6.1.1. Interferon system 

The interferon (IFN) system is an important innate defense against viral infections. 

IFNs are divided in type I, type II and type III, based on their structural homology, 

chromosomal location and interaction with their receptor chains. Type I IFNs include 

IFN-α, IFN-β, IFN-ε, IFN-κ, and IFN-ω and are essential for eliminating viral infections. 

Type II IFNs (IFN-γ) are also required for defense against viral infection. In addition, 

they regulate expression of major histocompatibility complex and modulate the 

adaptive immune response [272,277,280,281]. Type III IFNs comprise IFN-λ1, IFN-λ2, 

IFN-λ3 and IFN-λ4. They display similar functions as type I IFNs [282–284].  

 

Expression of IFNs is induced in infected cells upon recognition of PAMPs by PRRs 

such as toll-like receptors (TLRs), retinoic acid-inducible gene-I (RIG-I)-like receptors 

(RLRs), and nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) 

[285]. TLRs are membrane spanning proteins with a leucine-rich repeats (LRRs) 

extracellular region and toll-IL-1 receptor (TIR)-domains. So far, 10 TLRs have been 

identified in humans. They can be expressed in the plasma membrane (TLR1, TLR2, 

TLR4, TLR5, TLR6) or in endosomes/lysosomes (TLR3, TLR7, TLR8, TLR9). The 

TLRs responsible for sensing viral PAMPs are: TLR3 (double stranded RNA, dsRNA), 

TLR7 and TLR8 (single stranded RNA, ssRNA), and TLR9 (unmethylated CpG) 

[272,286].  

 

RLRs and NLRs receptors are cytosolic PRRs. RLRs are RNA helicases with caspase 

recruitment domains (CARD) that recognize different species of RNAs: RIG-I binds to 

short dsRNA and 5’-tri- or diphosphate ssRNA [287–289]. MDA5 recognizes long 

dsRNA and viral mRNAs lacking 2’-O-methylation [290,291]. The third RLR is LGP2, 

which can enhance MDA5 activation when binding to dsRNA in tandem with MDA5, 

and inhibit RIG-I by direct interaction or by competing for dsRNA [292–294]. NLRs 

induce production of immune and inflammatory responses. They are able to recognize 

flagellin, LPS, peptidoglycans, bacterial toxins, and nucleic acids from bacteria and 
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viruses. The best characterized NLRs are NOD1 and NOD2, similar to RLRs, they 

have a CARD domain and can recognize breakdown products formed during synthesis 

or degradation of the bacterial cell wall. NOD2 can also activate responses against 

viruses like IAV [272,295,296].  

 

After viral PAMPs recognition, a signaling cascade to produce nuclear factor 

kappa-light-chain-enhancer of activated B cells (NF-κB), IFN-regulatory factors (IRFs) 

and type I and III IFNs is triggered. First, PRRs interact with their adapter proteins 

(TLRs: TRIF, MyD88; RLRs: MAVS). In the case of NLRs the cascade starts with NOD 

binding to the serine/threonine kinase RIP2. Adaptor proteins then recruit TRAF 

ubiquitin ligases, IKKα/β and TBK1 kinases. Subsequently, phosphorylation, 

dimerization, activation and nuclear translocation of IRF3, IRF7, and NF-κB takes 

place. Finally, these protein bind to the promoter region of IFN-stimulated elements 

inducing expression of type I and III IFNs and some IFN-stimulated genes (ISGs) 

[272,297–302]. IFNs are secreted into the extracellular space, where they bind to IFN 

receptors (IFNR1, IFNR2, IFNLR) on neighboring cells [303]. IFN receptor binding 

leads to the activation of the JAK/STAT pathway. In short, Janus-kinases (JAK-1 and 

TYK2) are activated upon IFN binding and phosphorylate signal transducer and 

activator of transcription (STAT) factors 1 and 2. This leads to the formation of the 

IFN-stimulated gene factor 3 complex via the interaction of STAT1 and STAT2 with 

IRF9. Finally, this complex translocates into the nucleus, binds to IFN-stimulated 

response elements  and triggers expression of over 500 ISGs [300,301,304–306]. 

 

2.6.1.2. Interferon induced genes 

IFNs induce a so-called antiviral state, and synthesis of different ISGs helps to inhibit 

different stages of the viral replication cycle. In the following paragraphs some of the 

most characterized will be discussed. 

 

Myxovirus resistance (Mx) proteins. Mx proteins belong to the family of dynamin-like 

large guanosine triphosphatases (GTPases). They have an N-terminal GTPase (G) 

domain, a middle domain (MD), and a C-terminal GTPase effector domain (GED). The 

MD and GED domains are important for Mx antiviral activity, self-oligomerization and 

formation of the ring-like structures. These ring-like structures bind to the viral 
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nucleocapsid, induce conformational changes and stimulate GTPase activity. In 

human cells two Mx proteins are expressed, Mx1 (MxA) and Mx2 (MxB) [307–310]. 

They inhibit early stages of the virus replication cycle and display broad antiviral activity 

and. For example, MxA traps incoming viral nucleocapsids from IAV or Thogoto 

viruses, preventing their import into the nucleus. Also, it can inhibit mRNA synthesis of 

VSV and human parainfluenza viruses [311–314]. Human MxB prevents integration of 

HIV-1 into the host genome by targeting the viral capsid and inhibiting uncoating, 

nuclear uptake or integration by the viral pre-integration complex [315–318].  

 

Human interferon-induced transmembrane (IFITM) proteins. IFITMs comprise four 

proteins: IFITM1, IFITM2, IFITM3 and IFITM5. IFITM1, 2, and 3 are viral restriction 

factors with constitutive and ubiquitous expression. However, upon IFN stimulation 

their expression is enhanced [319,320]. IFITM1 is mainly located at the plasma 

membrane while IFITM2 and IFITM3 localize in late endosomes, lysosomes and 

autolysosomes [321,322]. IFITM proteins inhibit the fusion of the viral envelope with 

the membrane of the target cell [323]. IFITMs inhibit viruses like IAV, coronaviruses, 

filoviruses, flaviviruses and HIV-1 [321,324,325]. There are two models that could 

explain IFITMs antiviral mechanism. One suggests that IFITM proteins alter endosome 

acidification, inhibit cellular proteases required for priming of viral glycoproteins 

[326,327] or redirect viruses to a non-fusogenic pathway [322,327]. The second 

mechanism proposes that IFITMs may inhibit membrane fusion by altering the 

biological properties of cellular membranes such as curvature and fluidity [328]. 

 

Tripartite motif (TRIM) family proteins. Tripartite motif (TRIM) family proteins are highly 

conserved proteins with a N-terminal RBBC motif, one or two B-box domains and a 

C-terminal coiled-coil domain. They are a group of E3 ubiquitin ligases involved in cell 

functions including cell cycle progression and autophagy, and can display antiviral 

activity [329,330]. TRIM5α is known to inhibit HIV-1 uncoating. Thus, recognition of 

incoming capsids by TRIM5 α accelerates uncoating and resulting in premature 

exposure of the nucleoprotein complex [331]. TRIM22 is another protein that inhibits 

HIV-1. TRIM22 targets Gag trafficking to the plasma membrane, resulting in decreased 

particle production [332]. In addition, TRIM22 can inhibit hepatitis B virus by preventing 

the transcription of viral genes [333], encephalomyocarditis virus by promoting 
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ubiquitination of the viral C3 protease [334], and IAV by targeting the viral nucleoprotein 

for degradation [335]. 

 

2’-5’-oligo-adenylate synthetase (OAS) proteins and the protein kinase R (PKR). Two 

examples of antiviral effector proteins that interfere with viral infection at the stage of 

protein synthesis are OAS proteins and PKR. The 2’-5’-OAS family in humans 

comprises four genes: OAS1, 2, 3 and OAS-like (OASL) and they are able to inhibit 

viral protein synthesis [336]. For this, they bind to dsRNA, synthesize 2’,5’-linked 

phosphodiester bonds, which in turn form 2’-5’-olygoadenylates that activate the latent 

ribonuclease L (RNase L). RNase L then degrades cellular and viral RNAs [337,338]. 

Similar to OAS, PKR binds to viral dsRNA. PKR is constitutively expressed but its 

expression is upregulated upon IFN stimulation [339]. The antiviral activity of PKR 

relies on phosphorylation of the alpha unit of eukaryotic translation initiation factor 2. 

Phosphorylation leads to sequestration of a guanine nucleotide exchange factor called 

eIF2b which facilitates recycling of guanidine diphosphate (GDP) to guanidine 

triphosphate (GTP). This results in inhibition of both cellular and viral translation by 

preventing the conversion GDP to GTP [340,341]. 

 

Virus inhibitory protein, endoplasmic reticulum-associated, IFN-inducible (Viperin). 

ISGs can also target late steps of the replication cycle. One well-known example is 

viperin. Viperin is a virus inhibitory protein associated with the ER that can inhibit 

farnesyl diphosphate synthase. Decreased expression of this enzyme interferes with 

cell membrane fluidity. By altering fluidity of lipid rafts, it affects budding of enveloped 

viruses that require these microdomains, such as IAV and HIV-1 [342–344]. 

Furthermore, it has been shown that viperin inhibits RNA replication of HCV by binding 

to the non-structural 5A protein and interfering with the stability and function of the viral 

replication complex [345]. Another ISG that inhibits a late step in viral replication is 

tetherin and this protein will be discussed in detail in the following chapter. 

 

 

 



  Introduction 
 

 
25 

 

2.6.2. Tetherin 

Tetherin, also known as BST-2, HM1.24 or CD317, is constitutively expressed and its 

expression is upregulated by type I and II IFNs [346,347]. It was first identified as a 

surface marker of terminally differentiated normal and neoplastic B cells [348,349]. 

Tetherin is a type II transmembrane protein composed of 180 amino acids and exhibits 

the following domain organization: A N-terminal cytoplasmic tail, a transmembrane 

domain (TMD), followed by a coiled-coil ectodomain and a C-terminal 

glycosylphosphatidylinositol (GPI)-anchor [350,351]. Tetherin forms homodimers via 

disulfide bonds between cysteine residues 53, 63, and 91 [352,353], which are located 

in the extracellular domain. It is mainly located at the plasma membrane within lipid 

rafts but it can also be found in the trans-Golgi network (TGN) and in vesicular 

compartments [350,354]. The GPI anchor of tetherin is essential for its transport 

through the ER and localization in lipid rafts, while the cytoplasmic tail, via a conserved 

double tyrosine motif, mediates endocytic recycling through the TGN in a 

clathrin-dependent manner [355,356]. Also, upon virus tethering the cytoplasmic tail of 

tetherin can induce activation of NF-κB, resulting in the expression of ISGs and thereby 

amplification of the innate immune response [357,358]. 

 

The unique structure and domain organization of tetherin, having two membrane 

anchors, allows it to inhibit release of budding virions from infected cells by forming a 

physical tether between them. This ability was discovered when HIV-1 virions, lacking 

viral protein U (Vpu) were retained at the cell surface [359–361]. Later it was shown 

that tetherin prevents release of several enveloped virus families such as 

rhabdo- [362], alpha- [363,364], arena-, paramyxo-, orthomyxo- [365,366], 

herpes- [367], orthohepadna- [368], flavi- [369–371], and filoviruses [372,373]. 

 

There were three proposed mechanism by which tetherin cross-links virions. First, one 

molecule within a tetherin dimer might insert into envelope of the budding virus, while 

the second molecule remains on the host cell membrane. In this scenario, the disulfide 

bonds between the ectodomains of the tetherin molecules are responsible for the 

tether effect [374]. A study performed by Fitzpatrick and colleagues provided evidence 

that supports this theory. Treatment with phosphatidyl inositol-specific phospholipase 

C, an enzyme that cleaves the GPI anchor, did not efficiently release tethered virions 
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from the cell surface [375]. The second mechanism suggests that both GPI-anchors of 

a tetherin homodimer are taken up by the virus, in a parallel orientation, and the TMDs 

remain inserted into the plasma membrane, or vice versa [375]. Findings that support 

this scenario are that dithiothreitol treatment, which reduces disulfide bonds, failed to 

release tethered particles [375]. Furthermore, data observed via cryo-electron 

tomography showed that expected and experimental distance between virions and cell 

membrane matched, when the coiled-coil domains of tetherin are extended, [376]. 

Finally, an antiparallel orientation to tether virions has been suggested. In this 

configuration, the GPI anchor of one tetherin molecule and the TMD of the second one 

are incorporated into the virion while their opposite membrane anchors remain inserted 

in the plasma membrane [376,377]. A study performed by Venkatesh and Bieniaz 

provided conclusive proof that the tetherin conformation associated with antiviral 

activity are homodimers in which tetherin monomers are assembled in a parallel 

fashion and in which the GPI anchors are preferably inserted into the viral membrane 

[378]. Studies to identify determinants important for tetherin antiviral activity concluded 

that domain organization, topology, and intracellular transport are more important than 

amino acid sequence. Most importantly, Perez-Caballero and colleagues found that a 

synthetic molecule that was engineered to have the same domain organization as 

tetherin but not sequence homology was able to restrict viral release [360]. 

 

The in vivo relevance of tetherin has been shown in tetherin-deficient mice. In 

Chikungunya infected mice, viral load at the inoculation site was higher in tetherin 

deficient animals than in wild type mice and more prominent infection of lymphoid 

tissue was observed in the absence of tetherin [379]. Similar results were found when 

tetherin knockout mice were infected with murine retroviruses including mouse 

mammary tumor virus and MLV [380,381]. Furthermore, studies conducted with Friend 

retrovirus showed that wild type mice had increased CD4+ and CD8+ T cell responses 

as compared to tetherin knockout mice. These responses were critical for recovery and 

are possibly driven by tetherin cytoplasmic tail signaling [382]. Thus, tetherin can inhibit 

viral spread in the host and modulate immune response in vitro and in vivo. 
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2.6.2.1. Tetherin antagonists  

Several viruses susceptible to tetherin restriction evolved countermeasures – viral 

proteins that interfere with tetherin expression or antiviral activity at the site of viral 

budding or antiviral activity ([361,383] table 1).  

 

Virus Tetherin antagonist Mechanism 

HIV-1 Vpu [359,384] Downregulation, degradation, 

removal from lipid rafts 

HIV-2 Env [385,386] Intracellular sequestration 

SIV Nef/Env [387–389] Downregulation 

KSHV K5 [390]  Downregulation and degradation 

HSV gM [391] Downregulation 

SARS-CoV ORF7a [392] Glycosylation interference 

CHIKV nSP1 [363] Downregulation 

hPIV-2 V protein [393] Downregulation 

Sendaivirus GP [394] Unknown 

EBOV  GP [372,373,395] Unknown 

MARV GP [365] Unknown 

Table 1. Tetherin antagonists and mechanisms. 

 

The best studied tetherin antagonists is HIV-1 Vpu protein. Vpu’s antagonism, relies 

on interaction between its TMD with the TMD of tetherin [396,397]. An 

AXXXAXXXAXXXW motif within Vpu’s TMD was found to be crucial for tetherin-Vpu 

interaction, mutation of the alanine residues in this motif impairs the ability of Vpu to 

counteract tetherin [396,398]. As mentioned above, the mechanisms employed by Vpu 

to counteract tetherin include cellular surface down-regulation and degradation of 

tetherin [384,399–401]. For degradation, tetherin is ubiquitinated and targeted for 

lysosomal degradation in the presence of Vpu [401,402]. For this, Vpu recruits E3 

ubiquitin ligase via a conserved phosphoserine motif in its cytoplasmic tail. Mutation of 

this motif prevents Vpu’s interaction with the ubiquitin ligase complex, ß-TrCP2, and 

hence the initiation of the ubiquitination cascade and ultimately tetherin antagonism 

[403,404]. Furthermore, Vpu inhibits the anterograde transport of tetherin by 

preventing proper cellular transport of newly synthetized tetherin from the ER and/or 
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from early endosomes to the cell surface [397,405]. In the case of tetherin removal 

from lipid rafts, Vpu forms a complex with tetherin via the tryptophan residue 76 of the 

cytoplasmic tail of Vpu [401,406]. This anchors the C-terminus of Vpu to the lipid bilayer 

and displaces tetherin from budding sites [406]. However, tetherin antagonism by 

several viral proteins other than Vpu has in not been fully elucidated and it is largely 

unclear how tetherin is antagonized by EBOV-GP. 

 

2.6.2.2. EBOV-GP as a tetherin antagonist 

Kaletsky and colleagues demonstrated that EBOV-GP like HIV-1 Vpu can promote 

release of VP40-based, EBOV-like particles from tetherin-positive cells [395]. 

Moreover, they were able to prove that EBOV-GP interacts with tetherin, a finding 

confirmed by separate studies, without altering tetherin expression levels. Additionally, 

they provided initial insight on the domains within GP involved in tetherin antagonism. 

Thus, they demonstrated that sGP and shed GP, which lack the TMD and cytoplasmic 

tail of EBOV-GP, did not inhibit tetherin, indicating that full-length GP is required for 

tetherin antagonism. However, deletion of the MLD did not affect tetherin counteraction 

by GP. Later, Lopez and colleagues and other laboratories showed that Vpu requires 

a specific sequence within the tetherin TMD to counteract tetherin and target it for 

degradation while EBOV-GP was able to antagonize even artificial tetherin and did not 

remove tetherin from the cell surface [372]. Radoshitzky and colleagues confirmed 

previous findings showing that release of virus-like partices (VLPs) based on the matrix 

proteins of several enveloped viruses, including EBOV, HIV-1 and Lassa virus (LASV) 

are restricted by tetherin and that co-expression of several viral antagonist could 

rescue viral release. In contrast, EBOV-GP and MARV-GP failed to rescue LASV-like 

particles release from tetherin-positive cells [365] and the reasons for the failure of GP 

to promote particle release from tetherin-positive cells is at present unknown. Finally, 

they demonstrated that tetherin expression does not reduce EBOV infection [365], a 

finding confirmed by another study [407], and that GP and tetherin fail to colocalize in 

infected cells. Whether these findings indicate that GP-mediated tetherin antagonism 

promotes viral spread in tetherin-positive cells or that EBOV-release is intrinsically not 

sensitive to tetherin remains to be elucidated. 
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Kühl et. al. and subsequent studies showed that EBOV-GP can antagonize tetherin 

orthologues of diverse species [360,373,408], confirming that tetherin antagonism is 

sequence independent. Furthermore, they provided evidence that EBOV-GP interacts 

with tetherin via GP2 and confirmed that co-expression of GP does not modulate 

tetherin levels at the cell surface [372,373]. Lopez and colleagues investigated whether 

GP might remove tetherin from lipid rafts, which have been proposed as platform for 

EBOV budding [103,409]. However, they found that neither EBOV-GP nor Vpu affected 

localization of tetherin in lipid rafts and did not prevent colocalization of viral particles 

and tetherin at the budding sites. Furthermore, they did not find evidence of EBOV-GP 

being a lipid-raft protein, which contrasts previous findings [103]. 

 

Gustin and colleagues reported that EBOV-GP enhances egress of VP40-based VLPs 

by preventing the interaction of tetherin and VP40 [395,410]. Moreover, they found that 

GP can mask tetherin from recognition by antibodies and that tetherin is efficiently 

incorporated into VP40-based particles. A role for VP40 in tetherin sensitivity was also 

supported by a study conducted with MARV: It was reported that MARV-VP40 is largely 

resistant to inhibition by tetherin and that MARV adaptation to mice resulted in 

acquisition of mutations in VP40 that markedly increased sensitivity towards human 

but not mouse tetherin [411]. Collectively, these results suggest that both VP40 and 

GP can impact tetherin sensitivity and that GP might antagonize tetherin by disrupting 

VP40-tetherin interactions. Finally, it is noteworthy that tetherin antagonism by feline 

immunodeficiency virus (FIV) envelope (Env) glycoprotein was reported to entail 

Env-mediated exclusion of tetherin from virions or virion assembly sites and failed to 

promote release of HIV-based particles from tetherin-positive cells [412]. Unlike GP, 

FIV-Env can only counteract carnivore tetherins and only in the context of FIV particles. 

These findings suggest that Env affects tetherin sensitivity at the point of FIV budding 

and does not exert a cell-wide phenotype and the same might apply to EBOV-GP. 

 

The studies discussed above demonstrated that the GP2 subunit interacts with tetherin 

[373] and a separate study showed that the TMD of EBOV-GP contributes to tetherin 

counteraction [413]. However, introducing the EBOV-TMD into LASV-GPC did not 

confer tetherin antagonism to LASV-GPC. This indicated that the TMD is not the only 

determinant in EBOV-GP that controls tetherin antagonism [413]. Indeed, during the 
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course of the present thesis Vande Burgt and colleagues confirmed the importance of 

the TMD for tetherin antagonism [413,414] and showed that also the glycan cap of GP 

is important [414]. Moreover, Brinkmann and colleagues showed that mutations in the 

EBOV-GP RBD can abrogate tetherin antagonism [395,415] and that tetherin 

antagonism requires adequate GP glycosylation [415]. In sum, the TMD, glycan cap 

and RBD as well as proper glycosylation of EBOV-GP are required for GP driven 

tetherin antagonism but it is unknown how they contribute to tetherin antagonism.  
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3. Aims 
Ebola virus disease (EVD) is a severe disease that threatens human and animal health. 

Infection by Ebola virus (EBOV) is major cause of EVD and understanding how EBOV 

interacts with host cells and evades immune control might open novel avenues for 

antiviral intervention. The EBOV glycoprotein (GP) is the only viral surface protein and 

mediates the first step in EBOV infection, viral entry into target cells [82]. For this, 

EBOV-GP needs to be processed (primed) by the host cell proteases cathepsin B/L 

(CatB/L) [241], at least in cell culture. However, studies with CatB-/- or CatL-/- knockout 

mice indicated that these proteases are dispensable for viral spread in the infected 

host [251]. The reasons for the discrepancy between the in vitro and in vivo findings 

are poorly understood. Therefore, one goal of the present thesis was to identify 

determinants that control CatB/CatL dependence of EBOV entry.  

 

Apart from mediating viral entry, EBOV-GP also counteracts the interferon-induced 

antiviral host cell factor tetherin [82,395]. It is conceivable that tetherin counteraction 

may allow EBOV to spread in tetherin-positive cells and tissues, and efficient spread 

of EBOV in tetherin transfected cells has been demonstrated. However, the 

determinants in GP that govern counteraction of tetherin and the contribution of this 

process to viral spread are incompletely understood [413–415]. Therefore, a second 

aim of this thesis was to identify determinants in EBOV-GP that contribute to tetherin 

antagonism and to obtain insights whether antagonism can promote viral spread in cell 

culture. A GXXXA motif within the transmembrane domain (TMD) of EBOV-GP was 

found to be required for the well-documented cytotoxic effects associated with 

expression of EBOV-GP in cell culture [416] and served as starting point for the thesis 

research. In summary, the aims of this thesis were to: 

 

1) Identify determinants governing the CatB/L dependence of EBOV-GP-driven 

entry into host cells. 

2) Identify the contribution of a GXXXA motif in EBOV-GP to tetherin antagonism 

and determine whether antagonism contributes to viral spread. 
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4.1. First manuscript 

 

 

 

 

 

 

 

 

Calu-3 cells are largely resistant to entry driven by filovirus 

glycoproteins and the entry defect can be rescued by directed 

expression of DC-SIGN or cathepsin L. 

 

González-Hernández, M., Hoffmann, M., Pöhlmann, S. 

 

Virology, submitted on January 9th, 2019. Submission number: VIRO-19-3 

 

 

 

 

 

 

 

 

 

Individual contributions: 

 

I performed the experiments that resulted in the data shown in figure 1 (panels A, D, 

and E), figure 2 and figure 4 (panels A-E). Moreover, I analyzed all the data that I 

generated and I contributed to the writing of the manuscript. 
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4.2. Second manuscript 

 

 

 

 

 

 

 

A GXXXA Motif in the Transmembrane Domain of the Ebola Virus 

Glycoprotein Is Required for Tetherin Antagonism. 

 

González-Hernández, M., Hoffmann, M., Brinkmann, C., Nehls, J., Winkler, M., 

Schindler, M., Pöhlmann, S. 

 

Journal of Virology, 2018. 92(13):e00403-18. doi: 10.1128/JVI.00403-18. 

 

 

 

 

 

 

 

 

Individual contributions: 

 

I conducted the experiments that resulted in the data presented in figure 1 (panels B-

D), figure 2 (panels A-D), figure 3 (panels A-C) and figure 4 (panels C, D and E). 

Furthermore, I analyzed the data that I generated, quantified the immunoblots blots 

and wrote parts of the manuscript.  
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5. Discussion 

Ebola virus constitutes a severe threat to human health. Understanding how EBOV 

enters cells and evades control by the immune system may pave the way to novel 

options for antiviral intervention.  

 

EBOV must be handled in biosecurity level 4 (BSL-4) laboratories which slows down 

research progress. Therefore, surrogate systems have been developed to study EBOV 

infection. For instance, MLV- and VSV-vectors pseudotyped with EBOV-GP (MLVpp, 

VSVpp) have been used to study viral entry [248–250]. Moreover, EBOV-like particles 

containing VP30 linked to luciferase (VP30-luc) are used to study viral entry in the 

context of exclusively EBOV-derived proteins [128]. However, VP30-Luc EBOV-VLPs, 

VSVpp and MLVpp allow only one round of infection and are not able to replicate. In 

contrast, a novel transcription- and replication-competent virus-like particle (trVLP) 

minigenome system allows to study all steps of EBOV infection [417] in the context of 

authentic filamentous particles [418].  

 

Similar to other viral glycoproteins, including influenza hemagglutinin [419], EBOV-GP 

depends on priming by host cell proteases to transit into a membrane-fusion competent 

form. Proteolytic priming of EBOV-GP can be facilitated by the endosomal cysteine 

proteases CatB/CatL [241,248]. However, CatB/CatL dependence was mainly 

documented with surrogate systems and a study conducted with authentic EBOV and 

CatB or CatL knockout mice found that expression of these proteases was dispensable 

for viral spread and pathogenesis [251]. Therefore, the first goal of this work was to 

identify determinants governing the CatB/L dependence of EBOV-GP-driven entry into 

host cells. The results of this research are reported in manuscript 1 and will be 

discussed below.  

 

EBOV-GP post-translational modifications involve cleavage by furin into the subunits 

GP1 and GP2. However, this cleavage is dispensable for GP-driven entry [420–422]. 

In contrast, removal of the MLD and glycan cap in host cell endosomes exposes the 

RBD and is required for viral entry. These cleavage events are facilitated by CatB/CatL 

[241]. CatB/CatL are involved in apoptosis and have been targeted for treatment of 

diseases like traumatic brain injury [423], cancer [424] or viral infections [425]. Their 
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enzymatic activity can be inhibited by E-64d, an epoxysuccinate inhibitor, and 

MDL28170, an aldehyde inhibitor [426–429], and both compounds inhibit 

EBOV-GP-driven entry [243,248,250]. In the present study, these inhibitors and the 

above listed surrogate systems were used to determine whether the shape of the GP 

presenting particle impacts CatB/CatL dependence of GP-driven entry. These studies 

were motivated by the observation that many published studies examining CatB/CatL 

dependence of GP-driven entry used spherical retroviral or bullet shaped rhabdoviral 

particles [220,241,247,248,250], which might be taken up into cells via different 

mechanisms [220,221] as compared to filamentous particles [84,182,223] and might 

thus exhibit differential CatB/CatL dependence. I was able to show that GP-driven 

entry was CatB/CatL dependent irrespective of whether GP was presented in the 

context of spherical, bullet shaped or filamentous particles and irrespective of the 

target cell line.  

 

My results suggested that host cell entry of filamentous particles bearing GP is 

CatB/CatL dependent and hence fails to provide an explanation for the striking finding 

that CatB or CatL are dispensable for EBOV spread in mice [251]. A second scenario 

that may account for the findings of Marzi and colleague is that other cathepsins can 

compensate for the loss of CatB or CatL expression. These compensatory enzymes 

might be responsible for GP processing and allow efficient spread in mice. In this 

context, it is important to note that although E-64d and MDL28170 inhibit CatB and 

CatL respectively, they can also interfere with the proteolytic activity of other cysteine 

proteases and may thus block the activity of compensatory proteases. 

 

My studies revealed that the lung derived cell line Calu-3 is largely refractory to entry 

driven by diverse filovirus glycoproteins. In contrast, the cells were susceptible to entry 

driven by rhabdo-, paramyxo- and arenavirus glycoproteins. The absence of robust 

GP-driven entry was striking, since EBOV has a broad cell tropism and its GP can drive 

entry into a diverse range of cells, with only T and B cells being refractory for 

incompletely understood reasons [249,430–432]. A study by Park and colleagues 

revealed that Calu-3 cells express low levels of CatL. Therefore, uncleaved Middle 

East respiratory syndrome coronavirus (MERS-CoV) spike protein is unable to mediate 

entry into Calu-3 cells [433]. This finding raised the question whether the low 
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expression levels of CatL could also account for the inefficient EBOV-GP-driven entry 

into Calu-3 cells. Using quantitative RT-PCR, I could confirm that Calu-3 cells express 

lower mRNA levels of CatL than 293T or Huh-7 cell lines, while CatB mRNA copies 

were only slightly lower than those measured for 293T and Huh-7 cells. In order to 

reveal if CatL expression limits filovirus GP-driven entry, I generated Calu-3 cell lines 

that stably express CatL. I could show that directed expression of CatL significantly 

increased MARV-GP-driven entry and moderately improved EBOV-GP-, SUDV-GP-, 

TAFV-GP-, RESTV-GP-driven entry but did not appreciably enhance BDBV- and 

LLOV-GP-driven entry and had no effect on VSV-G driven entry which is CatL 

independent. My observations are in keeping with previous studies which show that 

CatB/CatL dependence varies among filovirus GPs [247,250]. For instance, directed 

expression of CatB but not CatL in CatB/CatL knockout cells promotes EBOV-GP- and 

TAFV-GP-driven entry. In contrast, CatL but not CatB increased MARV-GP-driven 

entry while expression of both enzymes promoted RESTV-GP-driven entry [247].  

 

Expression of attachment factors can greatly augment EBOV-GP-driven entry. 

Therefore, in parallel to CatL, I also evaluated whether filovirus attachment factors 

(DC-SIGN, Axl) or receptor (NPC1) could account for limited GP-driven entry into 

Calu-3 cells. To investigate this, I generated stable Calu-3 cell lines expressing either 

DC-SIGN, Axl, NPC1 or CatB. I could show that CatB, NPC1 and Axl do not increase 

entry into Calu-3 cells. The finding that directed expression of CatB and NPC1 did not 

rescue was not unexpected since it is well known that these proteins are ubiquitously 

expressed [229,252,253]. In contrast, expression of Axl is cell line dependent. 

However, its entry enhancing activity should not depend on the cellular context and it 

is unclear why directed expression of Axl failed to augment entry into Calu-3 cells. One 

can speculate that expression levels of Axl in Calu-3 cells might have been insufficient 

for entry augmentation. In contrast, directed expression of DC-SIGN which can boost 

GP-driven entry up to 50-fold [200,216] and renders Jurkat cells susceptible to 

GP-driven entry [216], rescued EBOV-GP, SUDV-GP and MARV-GP entry into Calu-3 

cells. Moreover, DC-SIGN expression moderately increased entry driven by 

RESTV-GP and TAFV-GP. Finally, I provided evidence that increased entry into Calu-3 

cells engineered to express DC-SIGN or CatL was due to direct effects of these 
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proteins on the entry reaction. In sum, my results indicate that entry driven by filovirus 

GPs in Calu-3 cells is limited at the stage of attachment and priming.  

 

The IFN system is the first line of defense against viral infections. Upon infection, 

signaling cascades stimulate IFN production, and IFN then triggers the expression of 

approximately 500 ISGs, many of which exert antiviral activity [300,301,306]. Tetherin 

is an IFN-induced protein that prevents viral release by forming a physical bridge 

between viral and cellular membrane [347,359,360]. Several viruses encode proteins 

that antagonize tetherin, usually by interfering with tetherin expression [361,383]. 

Filovirus GPs can antagonize tetherin but the mechanism used by these proteins to 

counteract tetherin remains incompletely understood. Therefore, the second goal of 

my research was to identify domains and amino acid motifs in GP that are required for 

tetherin antagonism. The results of my research have been documented in manuscript 

2 and will be discussed below.  

 

It has been shown that the glycan cap, RBD and TMD in GP contribute to tetherin 

antagonism [413–415]. However, no specific amino acids within the TMD have been 

identified that are required for tetherin antagonism. However, a GXXXA motif within 

the TMD of EBOV-GP has been associated with GP-mediate cellular detachment 

[416], raising the question whether this motif could also contribute to 

EBOV-GP-mediated tetherin antagonism.  

 

My results revealed that the GXXXA motif is not required for EBOV-GP expression, 

particle incorporation and viral entry, although it should be stated that mutation of the 

motif reduced entry by about 50% in Vero E6 and EpoNi/22.1 cells. Moreover, mutation 

of this motif did not affect the ability of EBOV-GP to promote release of HIV- and 

EBOV-based viral particles from tetherin-negative cells [373,413,415,434]. In contrast, 

mutation of this motif abrogated tetherin counteraction by EBOV-GP in the context of 

spherical HIV Gag- [373,413] and filamentous EBOV VP40-based particles [103,104].  

 

Hacke and colleagues reported that the GXXXA motif and membrane cholesterol are 

required for GP-mediated cellular detachment. Based on these findings they 

suggested that the GXXXA motif drives GP-GP homotypic interactions within lipid rafts 
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and that this is required for cellular detachment [416]. In contrast to what Hacke and 

colleagues postulated, a previous study suggested that GP is not located in lipid rafts 

[435]. Moreover, it was suggested that GP does not alter tetherin localization in lipid 

rafts [435] and that targeting sGP, which does not counteract tetherin, to lipid rafts is 

not sufficient for it to mediate tetherin antagonism [414]. My results show that cellular 

detachment but not tetherin antagonism by a LXXXL mutant of GP (i.e. GXXXA motif 

mutated) can be rescued by addition of exogenous cholesterol, arguing against an 

important role of cholesterol in tetherin antagonism. It has been suggested that the 

interaction between the TMD of single-pass membrane proteins depends on GXXXG 

or (small amino acid)XXX(small amino acid) motifs, and the presence of these motifs 

could be used, in some cases, as indicator of TMD oligomerization [436]. This raises 

the possibility that the GXXXA motif might contribute to formation and/or stability of 

EBOV-GP trimers, which in turn might be required for tetherin antagonism. However, I 

obtained no evidence for an impact of the GXXXA motif on trimer stability. As an 

alternative explanation for the role of the GXXXA motif in tetherin counteraction one 

could speculate that this domain is required for GP interactions with a cellular factor 

required for tetherin antagonism and this possibility remains to be investigated. 

 

Two studies demonstrated that EBOV replicates efficiently in tetherin-positive cells 

[365,373]. However, it was not elucidated whether this was due to GP-mediated 

tetherin antagonism. A replication-competent VSV-EBOV-GP chimera is an EVD 

vaccine candidate [42,43] and offers the possibility to study whether GP counteracts 

tetherin in infected cells without having to recur to BSL-4 experiments [437,438]. I could 

show that both, GP wt and the LXXXL mutant, were expressed at similar levels upon 

infection and were both efficiently incorporated into viral particles. Moreover, mutation 

of the GXXXA motif had little effect on VSV-EBOV-GP replication in tetherin-negative 

cells, and the small effect observed might be due to slightly reduced viral entry, as 

discussed above. Finally, replication of VSV was strongly inhibited by tetherin, in 

keeping with the finding that this virus does not encode for a tetherin antagonist [439]. 

Collectively, these results suggest that GP-mediated tetherin counteraction can occur 

in the context of infected cells, at least when surrogate systems are used. Therefore, 

mutation of the GXXXA motif in the context of authentic EBOV might allow to determine 

whether tetherin antagonism occurs in infected cells and contributes to viral spread. 
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6. Outlook 

 
During my doctoral thesis I was able to determine that proteolytic priming of EBOV-GP 

by CatB and CatL is independent of viral particle shape and cell line. A remarkable 

finding was the identification of Calu-3 cells as one of the few cell lines that are largely 

resistant to filovirus GP-driven entry and I could provide evidence that entry is restricted 

at the stages of attachment and GP priming. Future studies need to determine whether 

Calu-3 cells are also resistant to entry of authentic EBOV and if entry is enhanced in 

Calu-3 cells expressing CatL or DC-SIGN. Furthermore, it needs to be elucidated 

whether co-expression of both proteins further augments entry efficiency. Finally, it will 

be interesting to determine if usage of certain attachment factors like DC-SIGN might 

impact CatB/CatL dependence of viral entry potentially by introducing viral particles 

into different uptake pathways. 

 

My work on the antiviral host cell factor tetherin revealed that a mutation within the 

TMD domain of EBOV-GP abrogates tetherin antagonism while largely maintaining 

efficient host cell entry. This finding provided the first evidence that EBOV-GP can 

antagonize tetherin in the context of an infectious surrogate system. Further studies 

are required to identify fully selective mutations that have no effect on entry but 

completely abrogate tetherin antagonism. Moreover, it remains to be determined 

whether mutating the GXXXA motif in the context of infectious EBOV inhibits tetherin 

antagonism and whether this inhibition affects viral spread. Finally, it is essential 

determine how GP counteracts tetherin and how the GXXXA motif contributes to this 

process.  
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8. Appendix 

8.1. List of abbreviations 

ADAM17 A disintegrin and metalloproteinase 17 

ASGPR Asialoglycoprotein receptors  

ASGPR-1  Asialoglycoprotein receptor-1 

BDBV Bundibugyo virus 

BOMV Bombali virus 

BSL4 Biosecurity level 4 

BST-2 Bone marrow stromal antigen 2 

CARD caspase recruitment domains 

CatB Cathepsin B 

CatL Cathepsin L 

CD209 Cluster of differentiation 209 

CD317 Cluster of differentiation 317 

CD4+ Cluster of differentiation 4 

Cdc42 Cell division control protein 42 homolog 

CHIKV Chikungunya virus 
CLR C-type lectin receptors 

cRNA Complementary ribonucleic acid 

CTL C-type lectins 

Cys Cysteine 

DC Dendritic cells 

DC-SIGN Dendritic cell-specific intercellular adhesion molecule-3-grabbing 
non-integrin 

DENV Dengue virus 

DNA Deoxyribonucleic acid 

DRC Democratic Republic of Congo 

dsRNA Double-stranded ribonuclec acid 

EBOV Ebola virus 

EBOV-GP Ebola virus glycoprotein 

EGFR Epidermal growth factor receptor  

ER Endoplasmic reticulum 

EVD Ebola virus disease 

Gas6 Growth arrest-specific 6 

GDP Guanidine diphosphate 

GED GTPase effector domain 

GP Glycoprotein 

GP0 Glycoprotein 0 

GP1 Glycoprotein 1 

GP2 Glycoprotein 2 

GPI Glycosylphosphatidylinositol 

GTP Guanidine triphosphate 

GTPase Guanosine triphosphatase 

HCV Hepatitis C virus 

HIV-1 Human immunodeficiency virus 1 
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HIV-2 Human immunodeficiency virus 2 

hPIV-2 Human parainfluenza virus type 2 

HR Heptad repeat  

HSV Herpes simplex virus 

IAV Influenza A virus 

ICAM-1 Intercellular cell adhesion molecule-1 

IFITM Interferon-induced transmembrane protein 

IFL Internal fusion loop 

IFN Interferon 

IFNR Interferon receptor 

IFN-γ  Interferon gamma 

Ig Immunoglobulin  

IgM Immunoglobulin M 

IgV Immunoglobulin variable 

IRF Interferon-regulatory factors  

ISG Interferon stimulated gene 

JAK Janus-kinases  

KPNA Karyopherin α 

KSHV Kaposi's sarcoma-associated herpesvirus 

LGP2 Laboratory of Genetics and Physiology 2 

LLOV Lloviu virus 

LPS Lipopolysaccharide 

LRR Leucine-rich repeats  

LSECtin Liver and lymph node sinusoidal endothelial cell C-type lectin 

L-SIGN Lymph node-specific intercellular adhesion molecule-3-grabbing 
integrin 

MARV Marburg virus 

MAVS Mitochondrial antiviral signaling protein 

MD Middle domain  

MD5A Melanoma differentiation-associated protein 5 

MERS Middle east respiratory syndrome 

MFG-E8 Milk fat globule-epidermal growth factor-factor 8 

MGL Macrophage galactose C-type lectin  

MLD Mucin-like domain 

MLV Murine leukemia viruses 

mRNA Messenger ribonucleic acid 

Mx Myxovirus resistance protein  

MyD88 Myeloid differentiation factor 88 

Nedd4 Neural precursor cell expressed developmentally down-regulated 
protein 4 

NF-κB Nuclear factor kappa-light-chain-enhancer of activated B cells 

NHP Non-human primate 

NK Natural killer 

NLR NOD-like receptors 

NOD Nucleotide-binding oligomerization domain  

NP Nucleoprotein 
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NPC1 Niemann-Pick C1  

NPC2 Niemann-Pick C2 

NTD N-terminal domain 

OAS 2’-5’-oligo-adenylate synthetase 

OASL OAS-like 

ORF Open reading frame 

PACT PKR activator  

Pak1  Serine/threonine-protein kinase 

PAMP Pathogen-associated molecular patterns 

PECAM-1 Platelet/endothelial cell adhesion molecule-1  

PHEIC Public Health Emergency of International Concern 

PI3K Phosphatidylinositol 3-kinases 

PKC Protein kinase C 

PKR Protein kinase R 

PRR Pattern recognition receptors  

PtdSer Phosphatidylserine 

PTK Protein tyrosine kinase  

PVEERs Phosphatidylserine-mediated virus entry enhancing receptors  

Rac1 Ras-related C3 botulinum toxin substrate 1 

RAVV Ravn virus 

RBD Receptor binding domain 

RESTV Reston virus 

RIG-I Retinoic acid-inducible gene-I  

RLR RIG-I-like receptor 

RNA Ribonucleic acid 

RNase L Ribonuclease L 

RNP Ribonucleoprotein  

Rsp5 Reversion of Spt phenotype 

RT-PCR Reverse transcription polymerase chain reaction 

SARS-CoV Severe acute respiratory syndrome coronavirus 

sGP Soluble Glycoprotein 

siRNA Small interfering ribonucleic acid 

SIV Simian immunodeficiency virus 

SP Signal peptide 

SSD Sterol sensing domain 

ssGP Small soluble Glycoprotein 

ssRNA Single-stranded ribonucleic acid 

STAT Signal transducer and activator of transcription 

SUDV Sudan virus 

TACE Tumor necrosis factor alpha-converting enzyme 

TAFV Taï Forest virus 

TAM Tyro-3, Axl, and Mer receptors 

TBK1 TANK-binding kinase 1 

TGN Trans-Golgi network  

TIM T-cell immunoglobulin and mucin-domain containing protein 

TIR Toll-IL-1 receptor 
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TLR Toll-like receptor 

TMD Transmembrane domain 

TRAF TNF receptor-associated factor 

TRIF TIR-domain-containing adaptor-inducing IFN-  factor 

TRIM Tripartite motif protein 

trVLP Transcription- and replication-competent virus-like particle  

Tsg101 Tumor susceptibility gene 101 

TYK2 Tyrosine kinase 2 

VCAM-1 Vascular cell adhesion molecule-1 

VLP Virus-like particle 

VP24 Viral protein with molecular mass of 24 kilodalton 

VP30 Viral protein with molecular mass of 30 kilodalton 

VP35 Viral protein with molecular mass of 35 kilodalton 

VP40 Viral protein with molecular mass of 40 kilodalton 

Vpu Viral protein U 

VSV Vesicular stomatitis virus 

VSV-EBOV-GP Vesicular stomatitis virus with Ebola virus glycoprotein 

WHO World Health Organization 
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