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V. Summary 

The soil below the ploughed horizon of cropland, i.e. the subsoil, could be a large sink for 

carbon (C) and a valuable source of mineral-bound nutrients. C dynamics in subsoils need 

to be thoroughly understood to enable successful C sequestration in C-unsaturated 

subsoils. C turnover in the subsoil predominantly occurs in hotspots such as biopores, i.e. 

macropores induced by anecic earthworms or deep-rooting tap-roots. The OM in biopore 

walls induces preferred habitats for microorganisms as they become enriched in root 

detritus and earthworm faeces. Microbial action can mobilise these nutrients for future plant 

nutrition. This thesis consists of seven studies addressing the roles of different biopore 

types for C turnover and their relevance for nutrient cycling. Wall material of earthworm 

biopores (Lumbricus terrestris L.), root biopores of Cichorium intybus L. and their 

combination (‘earthworm-incubated biopores’) was sampled from 45–105 cm depth of a 

Haplic Luvisol and analysed for nutrient contents, microbial biomass, enzyme activities, 

microbial community composition and the composition of the organic matter and its 

decomposition state.  

The fate of the root biomass was evident two years after root death: C contents 

were 2.5 times higher in root biopores than in bulk soil and concomitantly increased were 

microbial biomass and enzyme activities of C and N cycle. The contributions of most plant 

biomarkers to the soil organic carbon (SOC) pool were equal to the bulk soil, except for 

lignin and suberin suggesting a late decomposition stage. The narrow C/N ratio, increased 

δ13C (relative to earthworm biopores) and turnover proxies like the lignin side-chain 

oxidation confirmed this. The microbial community composition reflected the ‘old’ root 

organic matter (OM): more phospholipid-derived fatty acids (PLFAs) of Gram-positive 

bacteria and actinobacteria, i.e. decomposers of residual C, were found than in the 

earthworm biopores. The microbial community fingerprint in root biopores was different 

from the earthworm-influenced biopores. Combining two C sources by incubating 

earthworms into root biopores made the largest impact on C contents and OM 

composition. Earthworms imported large amounts of weakly degraded OM and increased 

C contents by 200% and MBC (~ 30 times) relative to bulk soil. Weakly processed OM 

input by earthworms increased substrate richness by 30% relative to bulk soil. Among the 

biopores, earthworms induced the strongest increase in enzyme activities and nutrient 

cycling. Biopore formation generally had a low impact on the SOC composition — except 

for the large combined root and shoot-C input by root detritus and earthworms, which 

genuinely modified the SOC composition in the earthworm-incubated biopores. After six 

months of earthworm activities in former root biopores, the biomarker signature was 

overridden. More readily available OM was preferentially degraded as lignin underwent 
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less turnover than hemicelluloses in both earthworm-influenced biopore types. The 

microbial community reflected the higher C availability and the gut effects of L. terrestris: 

more PLFAs indicating fast-growing decomposers of readily available C (Gram-negative 

bacteria) were found than in root biopores. The microbial community in the earthworm-

incubated biopores was not distinguishable from the native earthworm biopores after six 

months. The native earthworm biopores received repeated inputs of fresh OM for at least 

2.5 years. This long-term activity of earthworms increased C contents by 200% relative to 

the bulk soil, i.e. slightly less than the combination of root detritus and earthworms. Like in 

the earthworm-incubated biopores, this boosted microbial biomass and increased enzyme 

activities. The OM in native earthworm biopores underwent the least turnover of all 

biopores — despite high microbial biomass and activity. This fact suggests regular C inputs 

and a microbial community adapted to frequently supplied, readily available OM. As a result 

of OM inputs, biopore walls were at least 100% enriched in nutrients like N, available P 

and S relative to bulk soil. Increased enzyme activities in all biopore walls suggest that 

these nutrients are available to crops. Therefore, from an agricultural point of view, 

biopores provide plant-available nutrients and improved access to subsoil resources.  

Crops may only benefit from these nutrients by rooting in biopores. However, 

biopore re-use — the master variable governing their potential agricultural relevance — 

has never been quantified up to now due to a lack of methods. For the first time in soil 

science, 137Cs was used as a tracer for hotspot formation, making use of its strong sorption 

to the soil matrix and β- decay allowing visualisation of biopores. A new dual radionuclide 

(137Cs+ 14C) labelling and two-step imaging approach (with selective shielding of 14C to 

separate the signals) allows identification of biopores (137Cs), roots (14C) and biopore re-

use (137Cs + 14C). 137Cs labelling was combined with 15N labelling to introduce pre-crop 15N 

simultaneously. Two pre-crops (tap-rooted C. intybus and fibrous P. tanacetifolia) induced 

similar biopores regarding their physical properties within one season of cover cropping. 

Subsequently, rhizosphere properties of the main crop wheat (T. aestivum L.) were not 

altered by the pre-crops. Pre-crop biopores were re-used by 200% more wheat roots than 

stochastically expected. Pre-cops allocated N down to 60 cm soil depth. Biopore re-use 

was positively correlated with the TN content of the wheat shoots, but wheat did not 

preferentially take up pre-crop 15N. Positive effects of pre-crops are 1) presumably based 

on several nutrients and N is not the key nutrient and 2) are very likely long-term effects 

from a long-term nutrient reservoir established in the biopores. 

In conclusion, biopores —irrespective of their formation — were not only shown to be often-

used pathways for C into the subsoil but also medium-term nutrient pools. Agricultural 

practices that promote biopore formation in subsoils are therefore highly relevant for C 

allocation into the subsoils and nutrient turnover.  
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VI. Zusammenfassung 

Der Boden unterhalb der Pflugsohle in Agrarökosystemen (Unterboden) stellt eine 

potentiell sehr bedeutsame, aber wenig gezielt genutzte Kohlenstoffsenke und 

Nährstoffquelle dar. Bevor Kohlenstoff (C) gezielt im Unterboden sequestriert werden 

kann, muss der C-Umsatz in diesem Teil des Bodens grundlegend verstanden werden. 

Mutmaßlich findet der größte Teil des mikrobiellen C-Umsatzes in eng begrenzten 

Volumina (‚Hotspots‘) wie Bioporen statt. Das sind Makroporen geformt durch anözische 

Regenwürmer oder Pfahlwurzeln. Deren Porenwände sind stark angereichert an 

organischer Substanz (OS) von Wurzeldetritus oder Regenwurmkot, und sind damit 

bevorzugte Habitate für Mikroorganismen im Unterboden, sowie Nährstoffreservoirs. 

Weiterhin erlauben Bioporen eine schnellere Durchwurzelung in den Unterboden und 

Zugang zu Unterbodenressourcen wie Nährstoffe und Wasser. 

Bioporenwände von Regenwurmgängen von Lumbricus terrestris L. (nativ oder 

nach sechs Monaten Aktivität) und Wurzelporen von der Gemeinen Wegwarte (Cichorium 

intybus L.) unterhalb der Pflugsohle (45–105 cm Tiefe) einer Normparabraunende auf Löss 

wurden auf ihre bislang wenig bekannte biochemische Zusammensetzung untersucht: 

Biomarkergehalte für mikrobielle Biomasse, Aktivität, funktionale Zusammensetzung der 

mikrobiellen Gemeinschaft in Zusammenschau mit der Charakterisierung der OS und 

ihrem Abbaugrad. Mutmaßlich steuert die Bioporenart (Wurzel-bürtig, Regenwurm-bürtig, 

gemischte Genese) diese biochemischen Parameter und damit den C-Umsatz in den 

Bioporen. 

Zwei Jahre nach dem Absterben von Wegwarte-Wurzeln war der C-Gehalt in den 

Wurzelporen 2.5-fach höher als im Bulk-Boden und damit die mikrobielle Biomasse 7-fach 

erhöht. Die Biomarkergehalte normiert auf den organischen Bodenkohlenstoffgehalt waren 

in Wurzelporen nur in wenigen Fällen (z.B. Lignin-Phenole, Suberin-bürtige Lipide) höher 

als im Bulk-Boden. Enzymaktivitiäten, die den Abbau komplexerer Substrate katalysieren, 

waren ebenfalls deutlich erhöht. Ein engeres C/N-Verhältnis, ein höherer δ13C-Wert (beide 

relativ zu Regenwurmporen) und Umsatzmarker (z.B. Lignin-Oxidationsgrad), die ähnlich 

hoch wie im Bulk-Boden waren, legten einen fortgeschrittenen Abbau des Wurzeldetritus 

nahe. Die mikrobielle Gemeinschaft spiegelte die ‚alte‘ OS wider: mehr Biomarker für 

Gram-positive Bakterien und Aktinobakterien als in den Regenwurm-beeinflussten Poren 

wurden bestimmt. Der molekulare Fingerabdruck der mikrobiellen Gemeinschaft der 

Wurzelporen unterschied sich deutlich von den Fingerabdrücken der Regenwurm-

Bioporen, aber nicht vom Bulk-Boden. Die Inkubation von Regenwürmern in 

Wurzelporen für sechs Monate führte zur höchsten OS-Akkumulation unter den drei 

Bioporen-Typen. Regenwürmer überprägten die Biomarker-Signatur des Wurzeldetritus 
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innerhalb von sechs Monaten. Relativ zum Bulk-Boden erhöhten die großen Mengen wenig 

degradierter Streu den C-Gehalt um 200%, die mikrobielle Biomasse (MBC) 30-fach und 

induzierten die höchsten Enzymaktivitäten. Fast alle Biomarker-Gehalte waren gegenüber 

dem Bulk-Boden erhöht, und nur die Kombination aus C-reichem Wurzeldetritus und 

Regenwurmaktivität führte zu einer deutlich unterschiedlichen Zusammensetzung des OS-

Pools relativ zum Bulk-Boden (Biomarkergehalte normiert auf Bodenkohlenstoffgehalt). 

Durch häufigen Streueintrag und mutmaßlich den Einfluss von L. terrestris baute die 

mikrobielle Gemeinschaft vor allem die eher bioverfügbaren Bestandteile der OS ab, z.B. 

wurde Lignin weniger stark umgesetzt als Hemizellulosen, sodass weniger verfügbare 

Bestandteile der Streu (Lignin, Suberin) relativ akkumulierten. Die mikrobielle 

Gemeinschaft wurde von der hohen Kohlenstoffverfügbarkeit, u.a. im Regenwurmdarm, 

stark beeinflusst, da mehr Marker für schnell wachsende Destruenten einfacherer OS 

gefunden wurden (Gram-negative Bakterien) als im Bulk-Boden. Die mikrobielle 

Gemeinschaft war nach sechs Monaten Regenwurmaktivität nicht von den nativen 

Regenwurmporen (> 2.5 Jahre Aktivität) zu unterscheiden. Das Hauptmerkmal der nativen 

Regenwurmporen war der regelmäßige Streueintrag über mehrere Jahre. Diese 

Langzeit-Aktivität führte zu 200% höheren C-Gehalten, was die mikrobielle Biomasse und 

Enzymaktivitäten in ähnlicher Weise wie in den inkubierten Regenwurmporen ansteigen 

ließ. Die OS in den nativen Regenwurmporen war am wenigsten stark degradiert unter den 

Bioporen — bei hoher mikrobieller Aktivität und Biomasse. Demzufolge war die mikrobielle 

Gemeinschaft an die regelmäßige Zufuhr einfacher abzubauender Substrate angepasst. 

Insgesamt führte die Bioporengenese und OS-Akkumulation dazu, dass die 

Substratdiversität in den Bioporen um 30% erhöht wurde. Der molekulare Fingerabdruck 

der OS (auf Basis aller identifizierten Substanzen) unterschied sich nicht zwischen den 

Bioporen, aber zwischen den Bioporen und dem Bulk-Boden. Bioporen sind somit Habitate 

mit stark erhöhten Nährstoffmengen und Umsatzraten im Vergleich zum restlichen 

Unterboden. Die N, P und S-Gehalte waren in Bioporenwänden mindestens 100% erhöht 

gegenüber dem Bulk-Boden. 

Aus der Sicht der Agrarwissenschaften stellen Bioporen mutmaßlich 

pflanzenverfügbare Nährstoffreservoirs dar, die weiterhin den Zugang zu 

Unterbodenressourcen sicherstellen. Folglich sollten Feldfrüchte von einer 

Durchwurzelung der Bioporen profitieren. Die Bioporennutzung konnte bislang nicht poren-

spezifisch bestimmt werden — trotz der potenziellen Relevanz der Bioporen für die 

Pflanzenernährung und den C-Eintrag in den Unterboden. Zur Bestimmung der 

Bioporennutzung wurde zum ersten Mal in der bodenkundlichen Forschung eine 137Cs-

Blattmarkierung eingesetzt. Nach 137Cs-Gabe wird der unterirdisch verlagerte Teil der 

Aktivität beim Absterben der Wurzeln freigesetzt und markiert aufgrund der starken 
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Sorption an die Bodenmatrix die entstehende Biopore. Mittels 137Cs/14C-Doppelmarkierung 

und selektiver Abschirmung des 14C bei der Bildgebung konnten Vorfrucht-Bioporen (137Cs) 

nach einem Jahr Verrottung von Hauptfrucht-Wurzeln (14C) unterschieden, sowie die 

Bioporennutzung (137Cs + 14C) bestimmt werden. Die 137Cs-Blattgabe wurde zeitgleich 

kombiniert mit einer 15N-Blattgabe, um die Wiederfindung von 15N im Weizenspross zu 

ermitteln und damit den Vorfrucht-Effekt auf Weizen. 

Weizen (Triticum aestivum L.) durchwurzelte in einer Fruchtfolge bis zu 75% der 

Vorfrucht-Bioporen von Cichorium intybus L. und Phacelia tanacetifolia Benth., das heißt 

3-fach mehr als stochastisch erwartet. Der Vorfrucht-Stickstoff wurde bis in 60 cm Tiefe 

verlagert. Nach Phacelia war die Sprossbiomasse signifikant erhöht, aber nicht der N-

Gehalt. Damit wirken Bioporen positiv auf Folgefrüchte. Beide Vorfrüchte erzeugten 

Bioporen mit gleichen geometrischen Eigenschaften nach 12 Wochen Anbau, was ebenso 

identische Wurzelsystem-Eigenschaften von Weizen bewirkte. Obwohl Weizen zu einem 

Großteil in Bioporen wurzelte, nahm er nicht bevorzugt den isotopisch markierten 

Vorfrucht-Stickstoff auf. Die Bioporen-Nutzung war aber positiv mit dem Stickstoffgehalt 

von Weizen korreliert. Sehr wahrscheinlich basiert die positive, direkte Wirkung der 

Bioporen hinsichtlich der Pflanzenernährung auf verschiedenen Nährstoffen, das heißt. 

nicht auf Vorfrucht-Stickstoff, sondern auf der Langzeitakkumulation von Nährelementen 

in der Bioporenwand wie etwa K und P. 

Bioporen sind nicht nur Pfade für große Mengen wenig abgebauter Streu in den 

Unterboden zwecks Kohlenstoffsequestration, sondern auch direkte Nährstoffreservoirs, 

die die Pflanzenernährung unterstützen können. Der Anbau von pfahlwurzelnden 

Zwischenfrüchten und ein Regenwurm-freundliches Management (zum Beispiel reduzierte 

Bodenbearbeitung) erschließen den Unterboden in Fruchtfolgen und unterstützen die 

Pflanzenernährung.  
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1 Extended Summary 

 Introduction 

 The relevance of subsoils for C sequestration and nutrient 

acquisition 

Soils are the third largest pool in the global carbon (C) cycle (Schimel, 1995) and subsoils 

store approximately half of the terrestrial C (Rumpel et al., 2012). Total C contents are 

considerable due to high bulk densities and larger volumes, although actual C contents are 

frequently low and decrease with depth (Rumpel et al., 2002). C stored in the subsoil may 

be characterised as mainly of microbial and root origin, slow cycling, enriched in 13C, and 

of high radiocarbon age (Miltner et al., 2012; Paul et al., 1997; Rumpel et al., 2002; Rumpel 

and Kögel-Knabner, 2011). Subsoils are assumed to be unsaturated in C and may act as 

additional C sinks (Kell, 2012; Lorenz and Lal, 2007; Rumpel and Kögel-Knabner, 2011), 

e.g. by physical stabilisation on unsaturated mineral surfaces (Lorenz et al., 2011). Deep 

rooting crops have been suggested to increase C allocation into cropland subsoils (Kell, 

2012), i.e. the soil below the ploughed horizon (Kautz et al., 2013). In this way, cropland, 

which is one of the largest global land uses, could actively contribute to C sequestration 

(FAOSTAT, 2017; Lambin and Meyfroidt, 2011). 

However, subsoils are not just C sinks, but also contain valuable resources 

including large contents of mineral-bound nutrients such as nitrogen (N), phosphorus (P), 

potassium (K) (Andrist-Rangel et al., 2006; Kautz et al., 2013; Schwertmann and Huith, 

1975), and soil water (Gaiser et al., 2012). Usually in agriculture, mostly the topsoil is taken 

into account for nutrient uptake (Kautz et al., 2013). Subsoil resources may become crucial 

in case topsoils become nutrient-depleted (e.g. in low input systems or organic agriculture) 

or dry due to more frequent droughts in future (Kuhlmann and Baumgärtel, 1991). Organic 

agriculture aims at increasing the nutrient acquisition from mineral phases in the subsoil 

and closing nutrient cycles. Smart subsoil management may generally support plant 

productivity, and especially in times of changing environmental conditions. 

 Both subsoil functions (C storage and provision of subsoil resources) are exciting 

examples of biogeochemical cycling. Subsoils can be considered from the points of view 

of organic geochemistry or agricultural research. From the organic geochemistry 

perspective, C can only be stored in the subsoil through improved management practices 

or crop selection, if C cycling in the low-dynamics subsoil is better understood (Dungait et 

al., 2012). In particular, it needs to be clear where and in which form organic matter (OM) 
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is long-term stabilised and how microorganisms and communities interact with OM inputs. 

C dynamics are assumed to be different in the subsoil compared to the topsoil — partly 

due to colder, but generally less fluctuating environmental conditions (Zhou et al., 2002) 

and higher spatial heterogeneity (Salome et al., 2010). From an agricultural point of view, 

subsoil nutrients bear great potential for plant nutrition. Deep-reaching roots acquire 

mineral-bound nutrients from the subsoil by exudation of enzymes and organic acids 

(Jones et al., 2009). Rhizodeposition boosts the microbial biomass, provides energy for the 

microbial release of mineral-bound nutrients and priming C for the turnover of soil organic 

matter (SOM)-bound nutrients (Bird et al., 2011; Kuzyakov, 2010). 

Both subsoil functions are intertwined: nutrient acquisition from the subsoil might 

increase the total C input into the subsoils. The time scales at play vary considerably: while 

in agriculture, crop rotation effects matter (e.g. nutrient status after a pre-crop), organic 

geochemistry takes a long-term view of C dynamics (e.g. stabilisation of SOM).  

 Biopores facilitate access to the subsoils 

While subsoil use appears promising, root-C allocation into the subsoil may be hampered 

by its unfavourable environmental conditions for roots, e.g. high bulk density, compaction 

and penetration resistance (Dungait et al., 2012). On the other hand, for nutrient 

acquisition, the subsoil resources are not readily accessible, e.g. due to adverse soil 

structure or lack of oxygen (Kautz et al., 2013). However, macropores created by biological 

activity like earthworms or roots provide easier access to the subsoils (McCallum et al., 

2004; Stirzaker et al., 1996). Biological macropores (biopores) are quantitatively formed by 

 
 

 
 Examples of biopores formed by roots (left) and earthworms (right). Photos courtesy of Silke Hafner 

and Marcel Lüsebrink. 
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the decomposition of tap-roots of, e.g. chicory (Cichorium intybus L.) or the burrowing 

activity of anecic earthworms like Lumbricus terrestris L. (Fig. 1).  

Physical characteristics of biopores include inner diameters up to about 12 

millimetres (Edwards and Bohlen, 1996), low tortuosity, more or less vertical alignment, 

and a high continuity (Hirth et al., 2005) down to 2–5 m in the soil (Cresswell and 

Kirkegaard, 1995). They can persist for decades (Hagedorn and Bundt, 2002), but only in 

the subsoil or under no-till management. Tillage removes the food sources for anecic 

earthworms and destroys root and earthworm biopores in the topsoil (Curry et al., 2002; 

Wuest, 2001). Only tap-root and earthworm biopores may be large and stable enough to 

reach down into the subsoil. On the larger field scale, they improve the subsoil 

macroporosity and soil aeration (Cresswell and Kirkegaard, 1995; Devliegher and 

Verstraete, 1997; McCallum et al., 2004). These properties have earned them the 

nickname ‘highways of root growth’ (Passioura, 2002) since they allow fast, unimpeded 

root growth into the subsoil. Consequently, biopores are an important pathway of C into 

the subsoil, where it may be sequestrated. Biopores contribute to subsoil C in three ways: 

by improving rooting in subsoils, macropore flow and particulate matter transport by anecic 

earthworms (Rumpel et al., 2012). Living roots release readily available C into the 

surrounding soil and, once they die, leave behind copious amounts of root necromass 

(Jones et al., 2009). Similarly, anecic earthworms import large amounts of plant litter from 

the soil surface, which is re-distributed during repeated ingestion, digestion and excretion 

(Brown, 1995; Curry and Schmidt, 2007).  

Furthermore, biopores are important habitats for microbial life because of the 

nutrient-rich OM accumulation in their walls, which induces microbial hotspots, i.e. 

locations with much higher microbial activity than in bulk soil (Kuzyakov and 

Blagodatskaya, 2015; Nakamoto, 2000). Microbial cycling, e.g. depolymerisation, 

respiration and transformations of SOM, releases nutrients and supports plant nutrition 

(Han et al., 2017; Jastrow et al., 2007). Even though biopores only occupy 1% of the soil 

volume, they are likely the largest hotspots of C turnover in the subsoil as their process 

rates are thought to be much higher than in bulk soil (Kuzyakov and Blagodatskaya, 2015). 

Thus, biopores support nutrient acquisition indirectly by increasing the rooting activity in 

the subsoil, and directly, by providing biopore wall nutrients (Kautz et al., 2013; van 

Groenigen et al., 2014). Throughout this thesis, the bulk soil shall be defined as the soil 

which does not contain hotspots. 

 Biopores and crop rotations 

Through biopore-promoting management subsoil resources could be more efficiently 

exploited, e.g. by including tap-rooted catch crops in crop rotations to 1) improve root 
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access for the next cropping cycle, and 2) to accumulate nutrients in the biopore walls. The 

relevance of biopores for agricultural production depends on whether they actually provide 

nutrients and subsoil access to subsequent plants in crop rotations. Biopores are generally 

believed to have mostly positive effects on crops (Kautz et al., 2013). Since crop roots 

reportedly use biopores preferentially in compacted soils, biopores may increase yields 

(Jakobsen and Dexter, 1988; Logsdon and Linden, 1992). 

Further findings hint at the importance of biopores for plant nutrition. Plants appear 

to have developed strategies to acquire biopore wall nutrients such as growing in a 

spiralling manner along the wall, or formation of root hairs to ‘reach out’ to the biopore wall 

(Athmann et al., 2013). Also, subsoil roots growing in biopores were found to be growing 

in contact with the biopore wall in 85% of the cases (Athmann et al., 2013). The root system 

architecture of barley responded on the preceding crop’s root system (fibrous vs tap-

rooted, (Han et al., 2016). So, it seems plausible that plants use biopores and, therefore, 

benefit from them. 

On the contrary, this may not always hold true. Roots may be trapped in biopores in 

hard-setting soils or in case biopore walls become too strong (Hirth et al., 2005). Root-soil 

contact may not always be sufficient for nutrient uptake, also possibly due to hydrophobic 

biopore walls (Carminati, 2013; Stirzaker et al., 1996; White and Kirkegaard, 2010). 

However, up to now, no quantitative information is available on the re-use of specific pre-

crop-induced biopores. Furthermore, there is a knowledge gap regarding the uptake of 

biopore nutrients by subsequent crops. It may be possible that, despite obvious rooting 

strategies, biopore wall / pre-crop nutrients are not decisively beneficial to crops.  

Therefore, first, quantitative data on biopore re-use is direly needed as it the principal 

factor for the potential relevance of biopores. Second, the biopore nutrient pool need to be 

characterised and linked to the intensity of microbial nutrient cycling to assess the 

availability of the nutrients. Third, the re-use and nutrient pools should be coupled with 

meaningful measures of plant performance to assess the implications of biopores for plant 

nutrition — ideally with tracer studies. 

 Biopores are the most relevant locations of C turnover in the 

subsoil 

C turnover in the subsoil is thought to occur predominantly in hotspots. Biopores are 

arguably the largest hotspots by volume in the subsoil (Kuzyakov and Blagodatskaya, 

2015), and therefore the most relevant locations for C turnover in subsoils. It may be 

hypothesised that different biopore types (earthworm vs root biopores) feature varying 

biogeochemical cycling, namely process rates and stabilisation of some parts of OM 

(Marschner et al., 2012; Stromberger et al., 2012). Conceptually, such differences stem 
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from several phenomena. The OM input quality varies considerably among biopore types: 

the root-C in root biopores may be stabilised more than shoot-C (Abiven et al., 2005; 

Mendez-Millan et al., 2010; Rasse et al., 2005), which is consumed by earthworms (Curry 

and Schmidt, 2007). Earthworms show a species-dependent food preference, but seem to 

prefer litter with a high soluble C content (Curry and Schmidt, 2007), which likely affects C 

mineralisation. Earthworms grind and mix the litter they feed on with mucus and soil during 

the gut passage (Marhan and Scheu, 2005), thereby not only boosting microbial biomass 

but also bringing in contact OM functional groups (e.g. hydroxyl groups) with mineral 

surfaces. The incorporation of OM in aggregates may be a strong physical stabilisation 

process, albeit there are some doubts about their relevance for long-term stabilisation 

(Brown, 1995; Collins et al., 2000; Don et al., 2008). On the other hand, earthworms may 

also reduce fungal biomass (Brown, 1995; Lorenz and Lal, 2007), which in turns may lower 

C sequestration (Jastrow et al., 2007). Microbial community composition and spatial 

distribution are strongly altered by earthworms (Bonkowski and Scheu, 2004), which in turn 

induces interactions between soil biota (Partsch et al., 2006). Apparently, the microbial 

community composition does affect C cycling through varying metabolism, C use 

efficiency, enzyme production or residue accumulation (Sanaullah et al., 2016). Microbial 

residues likely play a key role in the SOM formation (Liang and Balser, 2008; Miltner et al., 

2012).  

 As a consequence of the phenomena mentioned above, the biochemical 

environment of different biopore types should reflect the biopore-specific OM input, its 

decomposition state and microbial community composition — interactively relevant for C 

stabilisation. However, a comprehensive characterisation of biopore OM and the microbial 

community has not yet been reported despite their apparent importance to understand C 

turnover in subsoils better. The biopore and soil OM can be characterised by spectroscopic 

methods such as Fourier transformation infrared spectroscopy (Ellerbrock and Gerke, 

2004), or nuclear magnetic resonance spectroscopy (Deshmukh et al., 2005). However, to 

characterise the OM more comprehensively, multiple biomarker analyses need to be 

combined. Biomarkers are organic compounds which indicate presence or past presence 

of its producers (Amelung et al., 2008) like phospholipid-derived fatty acids for living 

microorganisms (Frostegård et al., 2011) or the pentoses arabinose and xylose, which are 

indicative of plant hemicelluloses (Kögel-Knabner, 2002; Oades, 1984). Hence, biomarkers 

enable the so far unknown compound-specific characterisation of OM, its turnover and the 

microbial community composition in bulk soil and biopores. 
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 Objectives of this thesis 

Biopores functions are relevant for at least two key scientific fields: firstly, from the 

perspective of organic geochemistry, biopores may be the most significant locations for C 

turnover and support C sequestration in the subsoil. Secondly, for agriculture, biopores 

support nutrient acquisition from the subsoil. The time scales of interest differ in both fields: 

while nutrient dynamics are of interest in time scales of crop rotations, i.e. two or more 

growing seasons, subsoil C dynamics from the perspective of organic geochemistry 

represent long-term processes. Different sets of methods and different scales are therefore 

necessary to study the corresponding effects. The primary objective of this thesis was to 

assess the relevance of biopores as locations of C turnover in agricultural subsoils. As 

nutrient-rich OM provides valuable nutrients to crops, the second objective was to assess 

the importance of biopores for plant nutrition depending on biopore re-use. 

The specific objectives were: 

• Biogeochemical assessment of biopore hotspots of different genesis 

o Characterisation of the OM of three subsoil biopore types (derived from 
earthworms, tap-roots or both), linking biopore OM to the source biomasses 
and comparison to the bulk SOM. 

o Assessment of biopore-specific C turnover. 

o Characterisation of the microbial community composition and activity to 
assess the intensity of C and nutrient cycling. 

 

• Assessment of benefits of root biopores based on their re-use in crop rotations 

o Development of a technique to determine root biopore re-use in crop 
rotations. 

o Quantification of biopore re-use depending on the preceding crop’s root 
system in crop rotations. 

o Assessment of biopores as nutrient storage in crop rotations. 

o Coupling biopore re-use to plant nutritional benefits of main crops, i.e. 
assessing interannual N transfer in crop rotations. 
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 Experiments and Methods 

 Field experiment: Study site and biopore treatments 

The field site near Bonn, Germany, features a maritime climate with temperate humid 

conditions (9.6 °C mean annual temperature, 625 mm annual precipitation). The soil type 

is a Haplic Luvisol (Hypereutric, Siltic; full details Table 1 on page 231) with a loamy texture 

and a high silt content (IUSS Working Group WRB, 2008; Vetterlein et al., 2013). Bulk TOC 

contents were 0.41 ± 0.02% and 0.35 ± 0.05% for the 45–75 cm and the 75–105 cm layer, 

respectively. Only biopores and bulk soil material below the ploughing depth were sampled. 

For the experiment, common chicory (Cichorium intybus L., var. Puna) was grown for three 

consecutive years to form roots of a specific age and diameter in the subsoil. In 2012, the 

soil down to 45 cm depth was removed. Three biopore types were induced and matured 

under the same environmental conditions (Fig. 3): root biopores, earthworm-incubated root 

biopores and native earthworm biopores, in a completely randomised block design. A 

comprehensive explanation of the treatments can be found in Study 3. In short, ‘root 

biopores’ represent three-year-old chicory roots, which were left to decay for two years — 

forming voids filled with root detritus. 'Earthworm-incubated root biopores’ are 1.5-year-old 

 
 Collage illustrating the biopore formation in the field. From top left to bottom right: a) Mapping chicory 

roots on plastic films in 45 cm depth, b) L. terrestris featuring an elastomer tag, c) refilling the topsoil 
and creation of a continuous biopore from the subsoil to topsoil (wooden stick), d) tagged earthworm 
incubation from the original soil surface. Photos courtesy of Marcel Lüsebrink. 
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root biopores, which were incubated for six months with tagged adult earthworms 

(Lumbricus terrestris L.). Before the earthworm incubation (Fig. 2), both biopore types were 

identical. ‘Native earthworm biopores’ represent the native earthworm population. All 

earthworms were fed with grass-clover litter put onto the soil surface. Bulk soil samples, 

i.e. the fourth treatment, were taken from adjacent plots with the same treatment. At the 

end of the biopore formation and maturation period in autumn 2014, each biopore was 

opened vertically, and samples were taken by shaving off the inner biopore wall material 

using micro spatulas (Andriuzzi et al., 2013). Thirty-two samples were taken in total: four 

replicates × four treatments × two soil depths (45–75 cm; 75–105 cm). Material for each 

combination was pooled from about 25 individual biopores. 

Plant nutrients (e.g. C, N, S) were analysed by elemental analysis (EA). 

Microbiological parameters were determined: microbial biomass C (MBC), metabolic 

quotient (qCO2) (Anderson and Domsch, 1978; Anderson and Domsch, 2010), along with 

biomarker contents and their contributions to soil organic C (SOC): amino sugars (Zhang 

and Amelung, 1996), neutral sugars (Amelung et al., 1996), lignin-derived phenols (Hedges 

and Ertel, 1982), cutin/suberin-derived lipids (Spielvogel et al., 2014), phospholipids 

(Apostel et al., 2013), and, free lipids. A comprehensive overview of the studied biomarker 

classes can be found in Table 1, next page. The relative contributions of the biomarkers 

make up its fingerprint. SOC normalisation, i.e. dividing biomarker contents by the sample’s 

total organic carbon (TOC) content, unveiled the biomarkers’ contribution to the biopore 

OC pool. Biomarker SOC contributions close to the bulk soil value indicate a late 

decomposition stage of the tissue represented by the biomarker. The respective sections 

on the statistics are 2.1.2.7, 2.2.2.3, 2.3.2.6, and 2.4.2.7. 

 
 Timeline of the field experiment. Root biopores are three-year-old chicory roots followed by two years 

decay. Earthworm-incubated biopores are equivalent to the root biopores but for the last six months 
of decay earthworms (L. terrestris) were incubated into chicory root biopores). Earthworm biopores 
represent the native earthworm population of the field site. Taken from Banfield et al. (2018). 
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 Overview of the biomarker approaches used to characterise OM sources, turnover and microbial 
communities. 
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The degree of OM turnover can be inferred from biomarker ratios (turnover proxies), 

which relate, e.g. plant-derived sugar monomers to microbial sugar monomers (GM/AX, 

Table 1) or oxidised to reduced lignin phenols. Microbial processing (Fig. 4, blue and red 

arrows) is the increase of an OM turnover proxy value from the source biomass value (red 

horizontal bars) to the value at the date of sampling. All changes brought about by 

earthworms or roots, e.g. in biomarker contents relative to the bulk soil value are 

summarised as earthworm effect or root effect (Fig. 4, green lines/brackets). Note that, 

before roots or earthworms were active in a soil volume, the same volume was bulk soil.  

 Lab experiment 1: A proof-of-concept tool for biopore re-use  

Up to now, no technique existed to study biopore re-use without disturbing the soil 

massively. This lab experiment established a novel technique based on dual radionuclide 

labelling, which for the first time enabled studying biopores and roots in a crop rotation 

without disturbing the soil. The method permits to evaluate the biopore re-use and couple 

it to potentially positive effects.  

For a proof of concept, alfalfa (Medicago sativa L.) and chicory (Cichorium intybus 

L.) were grown in 5-cm pots and simultaneously labelled with 14CO2 in an airtight chamber 

and with 137CsCl through cut leaves (leaf feeding). Both radionuclides were allocated 

 
 Illustration of the earthworm and root effects, i.e. the changes of the mean biomarker content or 

turnover proxy relative to bulk soil. In case of the turnover proxies*, the change from the 
undecomposed source biomasses (shown as vertical red lines) during biopore formation is the 
microbial processing of OM (blue and red arrows). 

Root 
biomass 

Root-OM 
after 2 yr 
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belowground into the same root channel, which simulates biopore re-use. Conceptually, in 

a crop rotation, pre-crop biopores would be labelled by 137Cs leaf feeding, while the main 

crop roots would be labelled through 14C photosynthate exudation (after one year of soil 

rest). A two-step phosphor imaging approach was tested to separate the contributions of 

both nuclides and test for spatial overlap, i.e. biopore re-use. In the first step, phosphor 

imaging without shielding captured both the 14C and the 137Cs β- signals together. In the 

second step, the β- signal of 14C was shielded off by 320 µm of polypropylene plastic film, 

so only the 137Cs β- signal is captured. Through image analysis, the signals of 14C and 137Cs 

are corrected, separated and give two spatial representations of the nuclides. 

 Lab experiment 2: Two-year crop rotation under controlled 

conditions  

Twelve undisturbed subsoil cores (45–115 cm soil depth) from the location of the field 

experiment were taken. On six cores, the pre-crops tap-rooted Cichorium intybus L. var. 

Puna and six with fibrous Phacelia tanacetifolia Benth. var. Maja KWS were cultivated for 

three months. All pre-crops were labelled with 137Cs through leaf feeding. Half of the soil 

cores cultivated with chicory or phacelia were labelled with K15NO3 by foliar application to 

label the biopores with 15N after plant death. The pre-crops were cut after three months 

 
 Illustration of the 137Cs labelling and imaging feasibility study (Banfield et al., 2017b). Three steps 

(from left to right): Labelling with 14CO2 in an airtight chamber and 137CsCl leaf feeding at the same 
time to simulate biopore re-use, i.e. 137Cs and 14C in the same rhizosphere. Cutting the soil core in 5 
cm depth and two-step phosphor imaging (with and without shielding of weaker 14C). Image 
processing, i.e. separating activities by subtraction of the attenuation-corrected 137Cs image from the 
unshielded image, i.e. 14C+137Cs. Finally, checking for overlap of activities. 
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and killed by herbicide application. The other half of the soil cores received a similar pulse 

of the same tracer by pipetting it onto the soil surface to simulate fertiliser application. The 

soil cores were stored at 7 °C for nine months, followed by two months at 18 °C to allow 

decomposition of the roots. After the pre-crop phase, wheat (Triticum aestivum L.) was 

grown under the same conditions for three months and received six 14CO2 pulses of 3 MBq 

each. The soil cores were cut, and biopore re-use was quantified by two-step phosphor 

imaging (details see study 5). 15N uptake into wheat shoots stemming from pre-crop 15N 

was determined by an elemental analyser coupled to an isotope ratio mass spectrometer 

(EA-IRMS) and using an isotopic two-pool mixing model. Biopores were destructively 

sampled, and the isotopic composition of biopores and bulk soil was determined. 

 

  

 

 Second lab experiment ‘Crop rotation’: Two different pre-crops (C. intybus, P. tanacetifolia) were 
cultivated on soil cores. After seven weeks all plants were labelled by 137Cs leaf feeding, and half of 
the plants were labelled by 15N leaf feeding. On the other half of plants, the same amount of 15N was 
applied to the soil surface as fertiliser. After 12 weeks, the pre-crops were cut and killed, soil cores 
were stored at 7 °C for root biopore formation for 11 months (last two months at 20 °C). Wheat (T. 
aestivum) was grown for 12 weeks and labelled six times with 3 MBq 14CO2. Soil cores were cut three 
times and biopore re-use, biopore statistics and 15N uptake were determined. 
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 Results and Discussion 

This section is split into two parts representing the main scientific disciplines’ perspective 

on biopores. While the first part deals with the biogeochemistry of different biopore types 

and implications for subsoil C turnover, the second part discusses the relevance of root 

biopores from the perspective of agricultural soil science. 

 Overview of the studies of this dissertation 

Study Objectives Main results and conclusions 

Study 1: “Biopores as 
carbon highways into 
the subsoil: organic 
matter origin and 
differentiation in 
microbial hotspots” 

Detailed characterisation of OM 
of three different biopore types 
vs bulk soil. 
 

Roots and earthworms strongly accumulate C in 
subsoils (>+100% TOC contents). Only lignin 
and suberin were enriched in biopore OC pool 
relative to bulk soil, thus limited alteration of OC 
pool by roots and earthworms. However, OM 
quality was changed (+30% substrate diversity 
relative to bulk soil). 

Study 2: “Microbial 
processing of plant 
residues in the subsoil – 
The role of biopores” 
 

Characterisation of OM 
decomposition in the same 
three biopore types to assess 
biopore-specific OM dynamics. 

Strong OM accumulation was weakly processed 
in earthworm biopores. Readily available OM 
preferentially turned over in biopores, structural 
OM relatively enriched in case of frequent inputs. 
OM dynamics discern biopores much better than 
OM composition. 

Study 3: “Biopore history 
determines the microbial 
community composition 
in subsoil hotspots” 
 

Characterisation of the 
microbial community 
composition in the same three 
biopore types vs bulk soil to 
assess biopore-specific 
communities. 
 

Higher C availability boosted microbial biomass 
>26 times relative to bulk soil. Clear link from OM 
quality to microbial community: Earthworms 
increased fungal and Gram-negative PLFAs. 
Root detritus increased Gram-positive PLFAs. 
Six months of earthworm activities overrode 
former root biomarker signature, i.e. earthworms 
are the strongest factor for the community. 
Biopores are important hotspots in the subsoil. 

Study 4: “Six months of 
L. terrestris L. activity in 
root-formed biopores 
increases nutrient 
availability, microbial 
biomass and enzyme 
activity” 
 

Assessment of the enzyme 
activity in the same three 
biopore types. 
 
Determination of nutrient stocks 
in biopore walls. 
 

Root biopore formation increased plant nutrients 
and enzyme activities (>+100% rel. to bulk soil). 
Short-term earthworm activity further increased 
availability of C, N, P and S (+200% relative to 
bulk soil). Biopores are nutrient reservoirs with 
strong nutrient cycling in the subsoil, from which 
crops should benefit. 

Study 5: “Labelling 
plants in the Chernobyl 
way: A new 137Cs and 
14C foliar application 
approach to investigate 
rhizodeposition and 
biopore reuse” 
 

Development of a biopore re-
use quantification tool. 
 

137Cs leaf feeding and 14CO2 labelling both label 
root biomass. β- decay of both nuclides can be 
separated by shielding during two-step phosphor 
imaging. Biopore re-use quantification 
successfully proved to work, which enables 
upscaling of biopore relevance to the field scale. 

Study 6: “Subsoil 
exploitation: The re-use 
of root biopore hotspots 
in crop rotations” 
 

Characterisation of biopore re-
use of wheat in biopores of 
either fibrous or tap-rooted pre-
crops. 

Biopore re-use likely positive for crops as it was 
three times higher than stochastically expected, 
increases with depth and bulk density. Twelve 
weeks cultivation of phacelia and chicory 
provided equal opportunities for subsoil 
exploration. Re-use positively correlated with N 
contents of the main crop. 

Study 7: “The fate of 
pre-crop nitrogen: 
Biopores as hotspots for 
interannual nitrogen 
transfer in crop 
rotations?” 
 

Assessment of the importance 
of pre-crop N for the next crop. 
 

15N leaf feeding labels biopores and bulk soil 
equally. Pre-crop 15N not preferentially taken up 
by subsequent wheat. Biopore effect not caused 
by last-year pre-crop N, but rather less mobile 
nutrients like P and K. 
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 Biogeochemistry of root and earthworm biopores 

The field experiment in an agricultural Haplic Luvisol allows an assessment of the effects 

of tap-root detritus, anecic earthworm burrowing and their combination on OM dynamics in 

subsoils.  

1.3.1.1 The effects of earthworms and tap-roots on sum parameters of OM (Study 1) 

Decaying chicory tap-roots and earthworm burrowing represented large OM inputs into the 

subsoils and, thus, sharply increased the TOC contents and microbial biomass in their 

biopores. Root biopores featured only chicory root detritus but no other OM inputs. After 

two years of root decay, the TOC and TN contents were still increased by 100% relative to 

the bulk soil (Table 3). Biopores inhabited by the native earthworm population had 200% 

higher TOC and TN contents than bulk soil. Introducing earthworms into root biopores for 

six months, i.e. combining two C sources for a limited time, increased the TOC contents 

more than either root detritus or earthworms individually. The TOC content decreased in 

bulk soil with depth, while in biopores it remained constant. Thus, the biopores relevance 

for C cycling increases in the deeper subsoil. A constant TOC content from 45–105 cm in 

biopores suggests similarly strong allocation of root-C and earthworm-C into both depths. 

The biopore OM was not only quantitatively but also qualitatively enhanced, namely 

by a 30% higher substrate richness relative to the bulk soil. Earthworm incubation (roots + 

earthworms) did not induce a higher substrate diversity than >2.5-year-old native 

earthworm biopores. Percolation likely contributed to the downward transport of C in root 

biopores because the count of identified compounds and TOC contents increased with 

depth (Kaiser and Kalbitz, 2012). Apart from a higher substrate diversity, the C/N ratio, a 

broad proxy for the past turnover of SOM (Wallander et al., 2003), was significantly wider 

in biopores than in bulk soil — hinting to weak degradation of biopore OM. The δ13C, a 

proxy for SOM turnover (Dorodnikov et al., 2007; Gunina and Kuzyakov, 2014), was 

significantly lighter in earthworm biopores. Therefore, accumulation of more diverse, wider 

C/N ratio and isotopically lighter OM underlined that biopore OM was less decomposed 

than bulk soil (Wilkinson et al., 2009). An absence of δ13C differences between root 

biopores and bulk soil suggested that root biopore OM was more decomposed than the 

earthworm biopore OM. The lowest C content and narrow C/N ratio (~7) in bulk soil 

reflected the low amounts of DOC inputs (Kalbitz and Kaiser, 2008; Rumpel et al., 2004; 

Schulz et al., 2012), long-term SOM turnover and accumulation of microbial necromass 

with a narrow C/N ratio (Rumpel and Kögel-Knabner, 2011).  
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1.3.1.2 Characterisation of OM biomarkers in bulk soil and biopores (Study 1) 

The findings of the previous section were fundamentally confirmed by the biomarker 

contents (Table 4). The principal 

component analysis (PCA, Fig. 7 on page 

18, right) of all biomarkers expanded our 

understanding of biopore OM. Both soil 

depths of one treatment were separated 

despite vertical burrowing of earthworms 

redistributing OM. Samples of both 

earthworm-influenced biopore types were 

overlapping, which indicated that 

earthworm incubation overrode the 

biomarker signature of the former root 

presence within six months. The root 

biopore samples were partly overlapping 

with earthworm biopores but were located 

between earthworm biopores and bulk soil. 

The root detritus had neither the 

composition of ‘old’ bulk subsoil nor the 

composition of ‘fresh’ earthworm biopores. 

Importantly, this showed that biopores and 

bulk soil can be differentiated by a 

combination of biomarkers (Amelung et al., 

2008). 

Among the treatments, the bulk 

soil had the lowest contents of plant-

derived OM (e.g. determined as Σ lignin, Σ 

cutin/suberin; Table 4) and the lowest 

microbial biomass (Table 3). Substrate 

diversity was lowest among all treatments. 

Neither the number of identified 

compounds nor their relative occurrences 

differed between soil depth — suggesting 

that most C turnover in bulk soil happens 

in the topsoil and not in the deep subsoil. 

Without prior turnover of OM in the topsoil, 

compounds may not be leached into the 

 Basic soil and microbiological parameters 
of the field experiment at Klein-Altendorf: Means ± 
SEM of TOC, TN, MBC, C/N, δ13C, ∑ PLFA g-1 soil, 
∑ PLFA g-1 SOC. Letters/asterisks indicate significant 
differences between treatments and between soil 
depth. Modified after Banfield et al. (2017).  
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subsoil (Kalbitz and Kaiser, 2008; Schulz et al., 2012). Bulk soil OM was a broad mixture 

of substance classes (Rumpel et al., 2012) — but not mostly root-C (Mendez-Millan et al., 

2010). 

The initial OM input by the perennial chicory tap-roots fuelled the root biopores for 

at least two years (Table 4). All microbial and plant biomarker contents were 33% lower 

than in the earthworm biopores. Relative to the bulk soil, the root biopores were enriched 

in lignin, hemicelluloses (75–105 cm), root suberin lipids and microbial residues (amino 

sugars), i.e. compounds often considered as residual C. This suggests a late 

decomposition stage and an accumulation of microbial residues lowered the C/N ratio 

(Rumpel et al., 2012; Wallander et al., 2003). After two years, the root effect was weaker 

than the earthworm effect. 

 Earthworm-incubated biopores combined two C sources (Table 4). Within six 

months L. terrestris had nearly completely overridden the biomarker signature of the former 

root. The combination of root, shoot and earthworm OM increased the substrate richness 

by 33% compared to bulk soil. The OM fingerprint matched well with the clover-grass 

source biomass (Table S7, Study 1), suggesting weak processing of the inputs (Jégou et 

al., 2000). The root/shoot biomarker ratio of the OM was highest among all treatments in 

root-influenced biopores (root biopores, earthworm-incubated biopores). The incubation 

tripled the hemicellulose contents, doubled n-alkane and lignin contents but did not change 

cutin/suberin contents relative to the root biopores. Relative to the bulk soil, the lignin 

contents were 15 times higher, which was by far the strongest increase compared to the 

other biomarkers. The microbial necromass dynamics appeared decoupled from the plant 

biomarker accumulation because the highest plant biomarker contents did not lead to 

equally high amounts of necromass. 

The native earthworm biopores were very similar to the earthworm-incubated 

biopores due to the strong earthworm influence and the same food sources (Table 4). Even 

though the ‘native’ earthworms had been active much longer than the ‘incubated’ 

earthworms, the mean TOC and biomarker contents were lower. The longer the 

earthworms had been active, the less pronounced the effect of the soil depth became. 

Biomarkers representing tissues with shorter turnover times showed more discernible 

depth effects.  
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 Biomarker contents [g-1 soil] and contributions to SOC [g-1 SOC]. Shown are means ± SEM. Letters 
indicate significant differences (one-way ANOVA, large: 45–75 cm, small 75–105 cm). Asterisks given in 75–
105 cm show significant differences between both soil depth.  
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1.3.1.3 The contributions of biomarkers to SOC composition (Study 1) 

Long-term native earthworm presence (> 2.5 years) and two years of tap-root decay only 

weakly affected biopore OM on the level of substance classes (Table 4, right). After TOC 

normalisation, only lignin was significantly enriched in the OC pool of all biopores compared 

to bulk soil, and cutin/suberin was significantly enriched in native earthworm and root 

biopore OM. Among the biopores, only earthworm incubation into root biopores changed 

the composition of the SOM strongly, i.e. additional enrichment of hemicelluloses and 

microbial sugars relative to bulk soil. On the individual substance level, the fingerprints of 

the three biopores were similar to each other but different to the bulk soil (shown by a 

similarity analysis; ANOSIM). The OM inputs were biopore-specific but the resulting OM 

after biopore-specific processing was not drastically different to the other biopore types. 

1.3.1.4 Turnover of biopore OM (Study 2) 

The isotopic composition, C/N ratio and SOC contribution of substance classes implied 

that relative to bulk soil there was little C turnover in earthworm biopores and considerably 

more in root biopores, which were approaching the decomposition stage of bulk soil. The 

PCA of the turnover proxies (Fig. 7, left) clearly differentiated fresh C input treatments (both 

earthworm biopore types) from older C, more degraded OM treatments (bulk soil, root 

biopores). The PCA of the turnover proxies (Fig. 7, left) separated the treatments much 

better than the PCA of all biomarkers (Fig. 7, right). The most discriminating individual 

biomarkers were markers for microbial stress and OM degradation. Thus, in biopores, OM 

turnover is more defining than the OM composition. 

  

 

 Two PCAs of turnover proxies (left) and the SOM fingerprints (~160 compounds; right). The left PCA 
describing OM turnover separated the bulk soil and root biopores better than the PCA of the SOM 
fingerprints, and explained a higher proportion of the total variance. OM turnover, which includes the 
interaction of the biota with the soil, characterises biopores better than the composition of SOM. In 
both cases, earthworm-influenced biopores featured much smaller within-group variance than bulk 
soil or root biopores, and the x-axis separated samples with frequent C inputs from those with 
infrequent C inputs. 

Turnover SOM 
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1.3.1.5 The effects of earthworms, roots and soil depth on the decomposition stage of 

biopore OM (Study 2) 

The overall decomposition of the OM in earthworm biopores was much less advanced than 

in bulk soil due to the fresh, weakly pre-processed OM brought into their burrows 

(earthworm effect). This underlines the immense role of earthworms as ecosystem 

engineers (Curry and Schmidt, 2007; Jones et al., 1996). In particular, hemicelluloses, 

lignin vanillyl subunits, suberin and n-alkanes were less degraded than in bulk soil. In 

contrast, the root effect was much weaker, and after two years, only suberin and lignin 

vanillyl subunits were not as degraded as bulk soil OM, suggesting like the PCA, biomarker 

contents and SOC contributions, that root biopores and bulk soil featured similarly 

degraded OM. The soil depth played a minor role when earthworms were active (Fig. 7) as 

earthworms vertically redistributed OM in their burrows (Jégou et al., 2000). The separation 

of root biopore samples in the PCA (Fig. 7, left) from both soil layers underlines that root 

detritus was more degraded in the deeper subsoil (Fig. 8). 

1.3.1.6 Microbial processing of OM inputs in biopores (Study 2) 

The microbial processing (illustrated in Fig. 4 and Fig. 8, next page) was negatively 

connected with the frequency of C inputs. Consequently, the OM in root biopores was 

generally most strongly processed among the biopores. The processing was substance 

class-specific: e.g. in all biopores, hemicelluloses (Fig. 8) were more strongly processed 

than lignin during the same period (Fig. 9) as hemicelluloses are more easily 

decomposable than lignin (Haider and Martin, 1979; Lorenz and Lal, 2007; Marhan and 

Scheu, 2006). The vanillyl subunits of lignin were almost untouched in earthworm biopores 

— probably they were not microbially attacked as vanillyl subunits represent parts of the 

lignin macromolecule, which are in the centre of the molecule (Thevenot et al., 2010). 

Consequently, earthworm activity relatively enriched less bioavailable lignin and suberin in 

their burrows. In the subsoil, intact suberin is mainly limited to biopores since in bulk soil 

the highest ratio of free/bound hydroxy fatty acids were found.  

At least four more factors influence the degree of processing. 1) Earthworms mix 

ingested soil with OM, thereby bringing chemical functional groups in contact with each 

other (von Luetzow et al., 2006). Such physicochemical stabilisation is not expected to be 

as strong in root biopores, as the root detritus is not actively incorporated into the 

surrounding soil (Lubbers et al., 2017; Schmidt et al., 2011). 2) Functional groups of the 

substance govern the interaction of OM with mineral surfaces, e.g. n-alkanes feature no 

functional groups as compared to hemicelluloses (hydroxyl groups) (Amelung et al., 2008).  
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  Ratio of microbial-derived galactose and mannose to plant-derived arabinose and xylose (GM/AX; 
grey bars) and as white bars, the ratio of mannose + fucose + ribose to arabinose and xylose 
(MRF/AX), both are markers for the turnover of hemicelluloses. The difference between the bulk soil 
mean and, e.g. the earthworm biopore mean is the ‘earthworm effect’ (on bulk soil). ‘Microbial 
processing’ is illustrated by the red and blue arrows and defined as the increase of the initial, 
undecomposed source biomass (vertical red line) during biopore formation. After Banfield et al. 
(2018). 

 

 The ratios of the acidic phenol to the aldehyde phenol for lignin-derived subunits (grey bars Ac:Alv 
for the vanillyl phenols; white bars for Ac:Als for the syringyl phenols) are proxies for the oxidation 
state of the lignin molecule. Red lines indicate the respective ratios of the source biomasses prior to 
decomposition. Taken from Banfield et al. (2018). 

Root 
biomass 

Root-OM 
after 2 yr 
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3) The higher decomposition of root hemicelluloses in the deeper subsoil may result from 

a lower degree of lignification (Barros et al., 2015) or from a lower degree of cross-linking 

of hemicelluloses to lignin of the younger root parts (Amin et al., 2014; Bertrand et al., 

2005; Moorhead et al., 2014). 4) The effect of soil depth on processing was little and was 

only discernible in root biopores (Fig. 7, left). These facts suggest that the processing of 

OM was not strongly influenced by preferential OM inputs (e.g. by favoured earthworm 

activity in 45–75 cm). Biota likely had the most significant effect on microbial processing: 

in the PCA by far the smallest within-group variance was in both earthworm biopore types, 

illustrating the strong role of earthworms as ecosystem engineers (Jones et al., 1996). 

1.3.1.7 Microbial community composition (Study 3) 

The previous sections showed that the OM in earthworm biopores was not only ‘more’ but 

also ‘more diverse’ and ‘more available’ since it was frequently replenished. Preferential 

processing caused little need for microorganisms to consume less bioavailable compounds 

like lignin. In contrast, root 

biopores feature 33% less C but 

of an ‘older’ quality, i.e. later 

decomposition stage.  

The microbial 

community structure was a 

result of rooting/earthworm 

activities and the frequency and 

quality of inputs (frequent pre-

digested shoot vs infrequent 

root inputs). The C inputs led to 

26–35 times higher microbial 

biomass contents (∑ 

phospholipid-derived fatty acids 

g-1 soil, ∑ PLFA), relative to bulk 

soil (Fig. 10). The highest Σ 

PLFA and MBC were found in 

both earthworm biopore types. 

Thus, the highest C and nutrient turnover were expected. The Σ PLFA g-1 SOC was 33% 

lower in root biopores than in earthworm biopores (Fig. 10).  

The quality of the OM was linked to the microbial community (Sanaullah et al., 2016; 

Zhou et al., 2002). Its composition can be modelled from environmental variables by RDA. 

When the variable δ13C was included in the RDA model, the ordination improved 

 Microbial biomass g SOC-1 (grey bars) as determined by its 
proxy ∑ PLFAs, and the ratio of Gram-positive/Gram-
negative PLFAs (red dots). Letters indicate significant 
differences on α 0.05, separately tested for each depth 
Banfield et al. (2017a). 
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considerably (Fig. 4 on page 128). Therefore, C and N contents and C quality were likely 

the main factors governing the community composition. Gram-positive bacteria including 

actinobacteria were more abundant in root biopores than in earthworm biopores. Gram-

positive bacteria are known to include decomposers of structural and not readily available 

C (Goodfellow and Williams, 1983). Most readily available OM was already respired at this 

late decomposition stage in root biopores, leaving behind less bioavailable suberin and 

lignin. In contrast, both earthworm biopore types featured regular fresh litter input of a 

higher C availability than the older root detritus, promoting preferential growth of Gram-

negative bacteria and fungi (Gram-positive/Gram-negative bacteria ratio in Fig. 10). First, 

earthworm gut bacteria are mostly Gram-negative (Sampedro et al., 2006). Regular inputs 

of readily available shoot-C promoted a community of Gram-negative bacteria. Thus, the 

less bioavailable, structural OM (lignin, suberin) was weakly processed. Earthworms in root 

biopores shifted the composition of the microbial community entirely and effectively turned 

root biopores into earthworm biopores within six months of incubation — like the 

biomarkers describing the OM composition (Study 1). Certainly, environmental factors 

cannot be completely ruled out for shaping the communities, e.g. drier root biopores 

(relative to earthworm biopores) may be giving advantage to biofilm-dwellers (Vu et al., 

2009). However, C input quality and frequency were most strongly affected the community 

composition. Such a connection between C quality and input frequency on microbial 

communities was previously described for top and subsoils (change from Gram-negative 

in topsoil to Gram-positive in subsoil (Fierer et al., 2003; Kramer and Gleixner, 2008), as 

well as for the decomposition of root OM over time (change from Gram-positive to Gram-

negative over three years of root decay; (Sanaullah et al., 2016).  

The overall connection between microbial communities (Study 3), C quality (Studies 

1, 2) and the effect of earthworms was corroborated by the PLFA fingerprints (pattern of 

27 PLFAs). Fingerprints of both earthworm biopore types were not distinguishable from 

each other by ANOSIM or PCA, but both earthworm biopore types were different to root 

biopores.  
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1.3.1.8 Microbial activity and nutrient supply (Study 4) 

Along with higher MBC, much higher enzyme activities were apparent in biopores (Fig. 11). 

A sharply increased qCO2 in bulk soil points to less efficient and more stressed microbial 

biomass in bulk soil compared to biopores (Anderson and Domsch, 2010). C cycling 

releases nutrients from OM and mineral-bound nutrients by enzymes as catalysts 

(Tabatabai, 2007). The contents of C, N, P, and, S were at least doubled in the biopore 

walls of both soil depths compared to bulk soil (Study 4, Table 1). Plant-available P was 

10–15 times enriched in earthworm-incubated biopores and 7.5–10 times in root biopores. 

In bulk soil, the contents of TN and sulphur (TS) decreased with depth, while total 

phosphorus (TP) increased with depth. There were no depth effects in root biopores, but 

in earthworm biopores preferential burrowing led to higher TN and TP contents in the upper 

soil layer. Enzyme activities of the C cycle (cellobiohydrolase, ß-glucosidase and xylanase) 

and the N cycle (chitinase, chitotriosidase, leucine aminopeptidase) were increased in 

earthworm (2.9–5.6 times and 3–11 times, respectively), and less pronounced in root 

biopores relative to bulk soil (1.5–2 times and 2.5–3 times, respectively). N-cycling enzyme 

activities were more increased than C-cycling enzyme activities, suggesting that the 

biopore-N was being mineralised more rapidly than biopore-C. Also, mobilisation of 

nutrients is more likely in biopores than in bulk soil — potentially providing nutrients to 

crops that re-use biopores in crop rotations. 

  

 

 Enzyme activities of β-glucosidase, xylanase and cellobiohydrolase (nmol g-1 MUF h-1 or nmol g-1 AMC 
h-1) at two soil depths (45–75 and 75–105 cm) in three biopores types (abbreviated BP) and bulk soil. 
The asterisk (*) illustrated a significant effect of soil depth for one enzyme. Modified after Hoang et al. 
(2016). 
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 The relevance of root biopores in crop rotations 

The previous section on biogeochemistry showed that subsoil biopores are clearly 

hotspots, which are enriched in C and N, contain considerable nutrient pools (P), and cycle 

valuable nutrients — especially N — at much higher rates than the surrounding bulk soil. 

All of this makes biopores an attractive option for organic farming, which relies more on 

nutrient mobilisation in the subsoil than conventional agriculture (Kopke et al., 2015). 

Previous research pointed to physical benefits for plants such as faster subsoil access 

(Passioura, 2002). Biopores are seemingly beneficial as roots grow within them (Athmann 

et al., 2013; Nakamoto, 2000; Rasse and Smucker, 1998). However, from the viewpoint of 

agricultural soil science, just because biopores are microbial hotspots, and roots grow 

within them, does not necessarily mean that biopores increase yields (Han et al., 2015b) 

— albeit correlations between biopore densities and crop yields were modelled (Gaiser et 

al., 2013; Jakobsen and Dexter, 1988) or occasionally found (Volkmar, 1996). 

Conceptually, for biopores to be potentially relevant for plant nutrition, roots need to grow 

preferentially in them and in contact with the biopore wall to take up nutrients. Biopore re-

use has never been quantified pre-crop-specifically (only root growth in macropores) 

despite it being the prerequisite for the relevance of biopores. As in the field, the majority 

of biopores are induced by tap-rooted crops (Dinter et al., 2013; Han et al., 2015a; Kautz 

et al., 2014), a method to quantify root biopore re-use was developed and tested (Studies 

5, 6; lab experiment 1) and subsequently applied to study plant nutrition in order to assess 

the relevance of biopores in a crop rotation (Studies 6, 7, lab experiment 2). If the 

hypothesis of a beneficial biopore re-use holds true, then the biopore properties become 

very relevant for nutrient storage and uptake. Larger biopores may contain more nutrients, 

but in smaller biopores, the wall-root contact may be more intimate. Thus, geometric data 

of biopores are invaluable for upscaling studies. 

1.3.2.1 Method development (Studies 5 and 6) 

Identification and tracking of biopores in crop rotations requires an easily detectable label, 

which is immobile after biopore formation and re-use in the following years. 137Cs fulfils 

these requirements, as it is only negligibly taken up by microbes and strongly binds to 

mineral phases. Its high maximum β- decay energy, chemical behaviour similar to 

potassium, and, half-life of 30.2 years make it an excellent label for biopores, with 

quantification by phosphor imaging (IAEA, 1995; Zapata, 2003). 137Cs given through cut 

leaves of chicory (Cichorium intybus L.) and alfalfa (Medicago sativa L.) was distributed 

throughout the plant and roots. About 10% of the 137Cs activity was allocated into the roots 

— irrespective of the plant species and its root system. Hence, 137Cs is a unique and long-

term stable tracer for roots, which was established herein for the first time. Of the 14CO2 
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photoassimilates, about 33% was recovered below ground. The β- decay signal of 14C 

photoassimilates was successfully separated from the 137Cs β- signal by shielding the 14C 

radiation off during the two-step imaging procedure (with and without shielding 14C). 320 

µm of polypropylene films shielded off the 156 keV 14C β- radiation (Amato and Lizio, 2009) 

while allowing transmission of a large part of the 512 keV 137Cs β- decay radiation. The two 

images from the imaging procedure were successfully registered pixel by pixel, activity-

dependent attenuation of 137Cs by the shielding was corrected (by a separate 137Cs 

calibration with eight plastic films), and the images were subtracted from each other (Fig. 

12). This procedure resolved the separate spatial distributions of both radionuclides. The 

approach, with both labels applied at the same time, shows the feasibility of the approach 

(Study 5). Coupling the new 137Cs approach to the already established 14C labelling of roots 

(Pausch and Kuzyakov, 2011), offers exciting new opportunities for upscaling and long-

term fate of biopores. 

This feasibility study only implied but did not yet prove that the 137Cs is released 

from the roots upon death, nor that the 137Cs signal would be stable after biopore formation 

and re-use. These questions were resolved by the second lab experiment (Study 6). 137Cs 

was released from the root detritus and bound to the biopore walls, resulting in strong β- 

signals after 11 months decomposition and three months of wheat cultivation. Upscaling 

from 10-cm pots to 70-cm soil cores did not require multiple pulse labelling, but only 

application of higher 137Cs activities. The approach labels biopore in situ and enables 

studying re-use of individual biopores in crop rotations without disturbing the soil between 

crops and on larger scales. It is only limited by the size of the imaging plates. Importantly, 

the studies proved that the new 137Cs application by leaf feeding, with exclusion of litterfall, 

cutting the shoot and determining its activity, does indirectly label individual biopores with 

specific amounts of the tracer. This principle was also used to label biopores with 15N in 

study 7. 
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 Imaging processing from Study 5. Two examples are shown for chicory and alfalfa, respectively, shown 

are the main root locations. The first row shows the total activity of 137Cs and 14C, while the second 
row shows just the 137Cs activity. The last row shows the calculated 14C activity as explained in the 
text. From Banfield et al. (2017b). 

 
 Phosphor imaging of a soil core in 25 cm depth after one year of root decomposition (Study 6). 14C 

was shielded off by 320 µm of polypropylene plastic films. Red patches refer to 137Cs activity which 
was supplied to the preceding crop about one year before. Consequently, red patches are 137Cs-
labelled biopores. 
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1.3.2.2 Biopore re-use in crop rotations (Study 6) 

Biopores were re-occupied by wheat roots much more often (up to 75%) than stochastically 

expected from the contribution of biopores to the total soil volume (20%) or previously 

assumed (Nakamoto, 2000). Most wheat roots (65%) were growing in biopores, and only 

20-30% of roots were growing in bulk soil (Fig. 14, far right). The constant proportion of 

roots in the bulk soil (Fig. 14, centre left) suggests that plants cannot fulfil their entire 

resource demand from biopores alone (nutrients, water). Biopores became less frequent 

with depth (Fig. 14, far left) but the remaining biopores were more frequently re-used with 

depth. The re-use correlated positively with the bulk density which increased concomitantly 

from 0–50 cm depth (cf. Table 1 on page 231). This fact highlights the higher relevance of 

biopores for nutrient uptake in deeper subsoil. The re-use, which was three times above 

the stochastically expected value, clearly showed that biopores are beneficial to crops — 

and not random. Biopore re-use was positively correlated with TN contents of wheat 

(Spearman correlation coefficient 0.65-0.71), which was the motivation to study 15N uptake 

from biopores. Increasing biopore re-use by plant breeding, or because of deteriorated 

topsoil conditions (Dresemann et al., 2018; Kopke et al., 2015), could offer further plant 

nutritional benefits. 

 
 Differentiation of biopores and roots growing inside or outside biopores; determination of biopore 

reuse. From left to right: Count of biopores across depths; wheat roots in bulk soil; wheat roots in 
biopores and biopore re-use (%). Red lines and black (dotted) lines represent chicory and phacelia 
pre-crops, respectively. 
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 Selected biopore properties: volume, wall volume, radius and cut surface for the biopores of the two 

pre-crops chicory (dotted, black) and phacelia (red solid lines) down to 60 cm soil depth. 

1.3.2.3 Biopore properties and their effect on the root system of wheat (Study 6) 

The biopore properties (volume, radius, wall volume; Fig. 15) were similar between the two 

chosen pre-crops phacelia (fibrous) and chicory (tap-rooted) after 12 weeks of cultivation 

and 11 months of decay. Longer pre-cropping durations might have caused stronger 

differences in biopore abundance and geometry (Uteau et al., 2013). However, economic 

pressure in agriculture may in many cases only allow one season of pre-cropping. Thus, 

short-term effects of pre-cropping, as in this study, are very relevant for agricultural 

management. 

A larger biopore volume, larger radius and a higher biopore abundance make 

biopore re-use more likely (Gaiser et al., 2013; Perkons et al., 2014). Tap-rooted pre-cops 

may thus induce biopores which are more stable and more frequently re-used. The biopore 

wall volume characterises the physical size of the OM pool. Thus, such biopores 

characteristics have important implications for the choice of pre-crop species (root system, 

duration of cover cropping). Pre-cropping has profound effects on biochemical properties 

of biopores: TOC contents were 150% larger (largest for tap-rooted chicory), and TN 

contents were 70% higher than in bulk soil at the end of the experiment (Fig. 16). However, 
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the C/N ratio (~8) points 

towards lower OM 

decomposability of the biopore 

wall than of bulk soil OM (~5).  

Identical root system 

parameters of wheat (e.g. 

radius, volume) suggest that 

the pre-crops had no positive or 

negative influence on the root 

system of wheat. Thus, one 

season of pre-cropping did not 

induce physically different 

biopores, nor did it influence the 

root system parameters of 

wheat. Since the identical 

physical biopore properties did 

not induce any preference of 

wheat for distinct biopores, it is 

plausible that also the chemical 

biopore properties were 

comparable between chicory 

and phacelia biopores. 

 

 
 C/N ratio, TOC and TN contents inside (dotted lines) and 

outside (solid lines) the biopore walls of chicory (red) and 
phacelia (black lines, squares). Letters indicate significant 
differences in one soil layer (two-way ANOVA: factors pre-
crop; soil compartment). 
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1.3.2.4 N nutrition in crop rotations (Study 7) 

The translocation of leaf-fed nutrients into roots and the subsequent biopore labelling was 

successfully applied for 137Cs (Studies 5, 6). However, 15N leaf feeding did not exclusively 

label the biopores (Fig. 17, 

top), but also the bulk soil, 

likely because of exudation 

via fine roots into the bulk 

soil, higher mobility of N-

exudates and redistribution 

by fungal hyphae (Frey et 

al., 2000). Even though 15N 

was similarly distributed 

between bulk soil and 

biopores, wheat was 

preferentially rooting in 

biopores. The TN content of 

wheat was positively 

correlated with biopore re-

use (Spearman correlation 

coefficient 0.65–0.71). 

However, the TN content 

increase in wheat was not 

due to pre-crop-15N, which 

was taken up less after leaf 

feeding compared to the 15N 

fertiliser application on the 

soil surface. The organic 15N 

stemming from the last-year pre-crop residues was less available than fertiliser 15N (Evans 

et al., 2001). There was no significant difference in residue quality between chicory and 

phacelia. Accordingly, the positive biopore effects are nutrient-specific and may not be 

based on the pre-crop N but on older N (deposited before the experiment started) or 

physical factors. The importance of biopore nutrients may be much higher for immobile 

nutrients like K or P. 

 

 
 Fate of 15N applied during the pre-crop phase (top) and plant 

productivity of wheat, both depending on the pre-crop species 
and mode of 15N application(bottom). Letters indicate significant 
differences (Two-way ANOVA). 
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 Conclusions  

Biopores have at least dual functionality, which becomes apparent at different time scales. 

Their long-term effects on C dynamics are mainly considered in organic geochemistry, 

while their short and medium-term effects on nutrient dynamics are relevant issues in 

agricultural soil science. 

 The relevance of biopores in organic geochemistry 

The subsoil presents a large and potentially unsaturated C sink (Rumpel et al., 2012; 

Stockmann et al., 2013). C dynamics of this reservoir need to be better understood to 

enable appropriate C storage. Most C turnover in the subsoil is believed to occur in 

hotspots like biopores. Especially in the subsoil, the contrast between hotspots and bulk 

soil is much more pronounced than in the topsoil (e.g. hotspot lignin contents 15 times and 

MBC 30 times higher than in bulk soil). Consequently, all assessments of C inputs, 

stabilisation or remobilisation need to focus on hotspots, of which biopores — alongside 

preferential flow pathways like cracks — are the largest and most prominent.  

The previously uncharacterised OM of the three most relevant biopore types 

(formed by roots and/or earthworms under identical field conditions) were assessed 

biogeochemically across depth and compared to bulk subsoil OM for the first time in this 

thesis. A comprehensive OM characterisation revealed that years of biopore formation 

increased substrate richness by 30% (based on individual compounds), but only weakly 

affected the overall composition of the OC pool (based on the pattern of substance classes; 

Study 1). Short-term earthworm activities had by far the strongest influence on C contents 

and biomarker patterns, even overriding years of tap-root presence within six months 

(Studies 1, 2). Through biomarkers, the three biopore types could be differentiated from 

each other. Consequently, biomarker combinations can be used to identify biopores of 

unknown origin in the field, which allows upscaling their abundance, properties and 

potential functions (e.g. nutrient stocks; Study 1). 

The frequency and to a smaller degree the quality of the OM inputs governed the 

microbial biomass size and the microbial community in biopores, i.e. enrichment of fast-

growing Gram-negatives in earthworm biopores as compared to general decomposers / 

Gram-positives in root biopores. Readily available OM is preferentially consumed in all 

biopores with the less available parts relatively accumulating — unless the frequency is too 

low, in which case all inputs are eventually consumed (Studies 2, 3). 

Biopores facilitate the C input into the deeper subsoil as they are preferential rooting 

channels into the subsoil (Study 6). Tap-rooted chicory was shown to deposit especially 

large amounts of OM into the subsoil (Study 1), i.e. more OM than phacelia (Study 7). 
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Anecic earthworms may deposit OM of high microbial availability at great depths (4-5 m). 

Weakly processed OM containing large parts of less bioavailable or easily stabilised OM 

(e.g. long chain n-alkanes, aromatic compounds, or metabolites sorbed to mineral surfaces 

such as amino sugars) ends up in the deep subsoil (Studies 1, 2). Larger and more diverse 

inputs (Study 1) increase the total chance for C stabilisation, but large amounts of younger 

C may induce priming and therefore loss of old C. It is an open question under which 

circumstances the increased C allocation belowground outweighs priming losses. A higher 

substrate diversity should maintain a higher microbial diversity through additional niches 

and, therefore, contribute to more resilient soil microbial functioning.  

Irrespective of the equilibrium of priming vs stabilisation, biopores very likely support 

C sequestration at least indirectly by a positive feedback loop through nutrient dynamics 

and provision of subsoil resources (soil water), which increases the total C input and the 

plant survival under stress. Given its immense global land use, cropped land could strongly 

contribute to C sequestration in subsoils. 

The main biogeochemical effects of biopores depend on the input frequency and 

bioavailability of the OM input (Studies 1, 2, 3 and 4). As root biopores are on average 40 

times more frequent than earthworm biopores, they govern the main C input into the 

agricultural subsoil. Root-C may be more easily stabilised than shoot-C. Thus, root 

biopores are primarily responsible for C sequestration. The high frequency of shoot-C 

inputs causes a strongly boosted substrate availability in earthworm biopores and thus 

 
 The relevance of biopores comprises nutritional benefits, increased C input into subsoils and physical 

benefits, in total governed by biopore re-use. 
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induces significantly higher C turnover and microbial activity in earthworm biopores than in 

root biopores (Study 4). Consequently, earthworm biopores mostly feature nutrient cycling 

and mobilisation and are very likely of highest relevance for the agricultural perspective of 

biopores.  

This more profound understanding of subsoil C turnover in very contrasting hotspots 

is crucially important for managing the subsoil functions. This dissertation demonstrated 

that promoting biopores in cropland, especially formed by tap-rooted crops, is a strategy to 

increase subsoil C stocks. 

 The relevance of biopores in agricultural soil science 

As compared to organic geochemistry, agricultural soil science usually studies shorter time 

scales, e.g. nutrient carry over and mobilisation within the time scales of crop rotations. 

OM inputs into biopores strongly increased microbial biomass and activity — 

especially in earthworm biopores with its fresh aboveground litter, thus boosting 

mobilisation of mineral and OM-bound nutrients (Study 4). Subsequent crops potentially 

benefit from the elevated biopore nutrient pools, which was confirmed by the observation 

that crops preferentially root in biopores (200% over the stochastically expected re-use, 

Study 6). A newly developed dual labelling approach with 137Cs and 14C and two-step 

phosphor imaging with selective shielding for the first time enabled differentiation of biopore 

creation (137Cs), roots (14C) and biopore re-use (14C+137Cs) — without any disturbance 

during the experiment (Studies 5, 6). This method characterises biopores physically and, 

thus, enables optimisation of biopore management with regard to optimal biopore 

diameters and densities, e.g. for nutrient uptake. Further adaption to earthworm biopores 

is easily possible. 

Wheat was preferentially growing in biopores, and biopore re-use was positively 

correlated with shoot TN contents. However, wheat did not preferentially mobilise pre-crop-

15N from leaf feeding, and no significant increase in N content of wheat after chicory 

compared to phacelia was found (Study 7). Hence, the beneficial effects of biopores are 

not primarily based on pre-crop N, but rather on other nutrients. The relevance of biopores 

for nutrient storage and release may be higher for less mobile N species (amino sugars) 

or less mobile nutrients (P, K; Study 7). In future, the importance of K cycling in biopores 

will be quantified from 137Cs uptake (a K analogue) into wheat shoots. 

Root growth in biopores potentially saves C investment assuming improved nutrient 

uptake from biopores. Fewer roots would be sufficient to fulfil nutritional demands, allowing 

plants to invest more C in aboveground biomass and yields increase. If this held true, two 

management strategies are favourable: 1) increasing the number of biopores by tap-rooted 
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pre-crops and earthworm-friendly, i.e. reduced, tillage practices and 2) breeding new crop 

varieties to enhance biopore re-use as 30% of biopores remained not re-used (Study 6).  

If the findings are confirmed especially with regard to advantages for crop nutrition 

of less mobile nutrients, biopore-friendly management practices (e.g. reduced tillage, 

perennial cover cropping) could be part of smart subsoil management. Faster access to 

subsoil water and concentrated biopore nutrients safeguard agricultural production — 

especially in times of rising fertiliser costs (both monetary and environmental) and more 

frequent droughts. 
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Abstract 

Root growth and earthworm burrowing accumulate considerable organic matter (OM) in 

distinct biopores in subsoils. Apart from elevated C and nutrient contents, chemical 

characterisation of these crucial subsoil hotspots of C sequestration and nutrient cycling is 

missing. The specific OM inputs and transformations were assessed for native earthworm 

biopores (>2.5 years earthworms) vs root biopores (2 years decomposition) vs the 

combination of both (1.5 years root decomposition + 0.5 years active earthworms). Most 

substance classes had merely higher contents in biopores, but their contributions to soil 

organic carbon were the same as in the bulk soil except for lignin and cutin/suberin. Years 

of biopore formation increased the proportion of less readily available parts of soil OM and 

substrate diversity by 30%. Relative to the non-hotspot bulk soil, earthworms tripled C 

contents by feeding on plant litter and importing cell wall material (lignin, hemicelluloses), 

which boosted microbial biomass (microbial hexoses and lipids) – irrespective of the 

duration of earthworm activity. In root biopores, C and biomarker contents were 33% lower 

than in earthworm biopores. Residual root biomass markers (lignin, suberin) and microbial 

residues (amino sugars) made up the 100% higher C contents in root biopores than bulk 

soil. Only six months of earthworm incubation nearly completely overrode the original 

biomarker fingerprint of the root biopores and made them molecularly indistinguishable 

from native earthworm biopores. However, a molecular toolset differentiating root from 

earthworm biopores could be identified and points towards a higher relevance of pore-

specific turnover proxies than source-related markers for the identification of specific 

biopores types. 
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 Introduction 

Roots and earthworms in subsoils release a great deal of carbon (C) within an environment 

of very low C content, high radiocarbon age (Don et al., 2008; Rethemeyer et al., 2005) 

and long C mean residence time (Paul et al., 1997). These properties led to the 

consideration of the subsoils as C sinks for climate change mitigation. Subsoils may have 

the potential to store even more C than their current stock of 50% of the terrestrial C (Kell, 

2012; Kuhlmann and Baumgärtel, 1991; Rumpel and Kögel-Knabner, 2011; Salome et al., 

2010). C reaches the subsoil mainly by leaching as dissolved organic carbon (DOC), 

(Kalbitz and Kaiser, 2008). Due to the slow nature of this process, the multitude of C 

sources, the long distance and interactions along, highly processed, microbial-C enriched 

compounds are found in the subsoils (Rumpel and Kögel-Knabner, 2011). Alternatively, 

large amounts of C are transported into the subsoil faster and less processed within 

biopores, i.e. in long, tubular and vertical macropores created by roots or earthworms 

(Jakobsen and Dexter, 1988; Stirzaker et al., 1996).  

Agriculture as the largest global land use (Betts et al., 2007) could play a significant 

role in climate change mitigation. Smart agricultural management promoting biopores could 

enhance C contents in the subsoils and thus possibly promote long-term C storage 

(Rumpel et al., 2012). Tap-rooted pre-crops like chicory quantitatively create large biopores 

(Cichorium intybus L., (Ehlers et al., 1983; Perkons et al., 2014). Upon plant death and 

decomposition, the rhizosphere turns into the detritusphere, and a void is formed. 

Alternatively, anecic earthworms such as Lumbricus terrestris form large vertical biopores. 

They feed on plant litter near the soil surface and deposit digested, litter-containing faeces, 

casts, and mucus within their burrows, creating the drilosphere (Bouché, 1975; Jégou et 

al., 1998). As tillage destroys biopores, they mostly persist under no-till management or 

below the ploughed horizon, i.e. in the subsoil.  

Considering the large organic matter (OM) accumulations by roots and earthworms, 

biopores are not merely shortcuts for C into the subsoil, but they become microbial hotspots 

(Banfield et al., 2017a; Kuzyakov and Blagodatskaya, 2015). As their inner walls are coated 

in OM, microbial growth and enzyme activities are induced (Hoang et al. 2016). A 

disproportionally large part of the subsoil OM turnover, transformation and nutrient release 

is assumed to take place in such hotspots (Kuzyakov and Blagodatskaya, 2015; Rumpel 

et al., 2012). The composition of the OM reflects the C dynamics in the course of biopore 

formation. Even though, the inputs of biopores are conceptually known, especially in long-

lived biopores different inputs may be combined, and microbial turnover may lead to 

biopore-specific SOM fingerprints. However, a comprehensive SOM characterisation of 
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different hotspot types is lacking and is urgently needed to understand subsoil C dynamics 

better.  

Here, we comprehensively describe the SOM composition in earthworm- and root-

induced biopores created under identical field conditions - after determining more than 200 

compounds of 16 substance classes. In a field experiment over five years (Fig. XY), three 

biopore types were induced by either I) growing chicory for three years followed by two 

years of fallow, II) ≥ 2.5 years of native earthworm activities with defined food sources, or 

III) a combination of growing chicory for three years, 1.5 years of root decay and 6 months 

of earthworm incubation. The inner walls of the biopores were sampled and analysed for 

contents of lignin-derived phenols, cutin/suberin-derived lipids (fatty acids, hydroxy fatty 

acids and alcohols), hexoses and pentoses, amino sugars and free lipids including n-

alkanes to characterise the specific C sources. In root biopores, the primary C source is 

the root detritus comprising of cellulose, hemicelluloses, suberin and lignin (Kögel-

Knabner, 2002). In case of earthworm colonisation, decaying root tissues and earthworm-

digested C from the soil surface are combined, i.e. root biomarkers and aboveground 

biomass markers such as cutin and n-alkanes. We aim at identifying a characteristic subset 

of biomarker molecules allowing molecular differentiation of biopores of various origin and 

OM sources. 

 Material and Methods 

The study was conducted on Campus Klein-Altendorf experimental research station near 

Bonn, Germany. The site has a mean annual temperature of 9.6 °C, mean annual 

precipitation of 625 mm and features a Haplic Luvisol (Hypereutric, Siltic) developed from 

loess (IUSS Working Group WRB, 2008). C contents of the bulk soil were 0.41 ± 0.02% 

and 0.35 ± 0.05% for the 45–75 and the 75–105 cm layers, respectively. A full soil 

characterisation was given in Vetterlein et al. (2013).  

 The full sampling set-up was previously described in Banfield et al. (2017a). Briefly, 

from 2009 to 2012 Common chicory (Cichorium intybus L., var. Puna) was grown to induce 

intensive root penetration into the subsoil. Three biopore types were induced in the field: 

root biopores, earthworm-incubated biopores and (native) earthworm biopores (Banfield et 

al., 2017a). The treatments represent conditions found in agricultural fields after two years 

of no-till or fallow, i.e. earthworm burrowing and decaying roots. 

1) Root biopores: in 2012, the topsoil was removed and three-year-old chicory 

roots larger than 5 mm were mapped in 45 cm depth. The topsoil was filled 

back, the plots were kept fallow, and roots decayed until sampling in autumn 

2014. 
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2) Earthworm-incubated biopores: After 1.5 years of root decomposition, tagged 

earthworms (Lumbricus terrestris L.) were incubated into a subset of 25 root 

biopores per field replicate for six months (one earthworm per root biopore). 

A red elastomer tag was injected into the earthworm body to allow relocation 

of the earthworms (Butt and Lowe, 2007). Earthworms were fed with clover-

grass put on the soil surface.  

3) Native earthworm biopores were treated like the incubated earthworm 

biopores, i.e. the sites were kept fallow from 2012, grass-clover litter was put 

on the soil surface for six months from spring 2014, and they were expelled 

in autumn 2014. For this, a horizontal soil surface was prepared in 45 cm 

depth and covered with plant litter for three full days. Biopores with visible 

earthworm middens were considered colonised with native earthworms and 

labelled. The main difference to the incubated biopores is the length of the 

earthworm influence (6 months vs > 2 years). 

4) Bulk soil samples, i.e. soil not containing any biopores, were taken from the 

sides of the profile wall. 

2.1.2.1 Analysis of neutral sugars 

Depending on C content, 600-900 mg of dried and ground soil was hydrolysed according 

to Zhang and Amelung et al. (1996). Myo-inositol (500 µg) was added as the first internal 

standard (IS). The hydrolysate was filtered through glass fibre filters GF6 (Whatman, GE 

Healthcare, Freiburg, Germany) and the filtrate was reduced to dryness in a rotary 

evaporator at 40 °C. The residue was re-dissolved in 5 mL of Millipore water and 

transferred to DOWEX 50W X 8 solid phase extraction (SPE) columns (conditioned with 2 

M NaOH, water, 2 M HCl, water until the pH was 7). DOWEX exchange resins were used 

to remove cations such as iron and amino sugars. The organic phase was filtered through 

columns filled with anhydrous Na2SO4 and dried under N2 and finally, dissolved in 185 µl 

of ethyl acetate-hexane (1:1, v/v), 15 µg methyl tridecanoate were added as the IS 2. For 

quantification, a standard mixture containing 25, 50, 100, 200, 400 and 800 µg of external 

standard stock solution (monosaccharides galactose, glucose, mannose, ribose, 

rhamnose, fucose, arabinose, xylose and myo-inositol) was prepared and derivatised with 

the samples. 

 Separation was performed on the Agilent 7820A GC system equipped with a flame 

ionisation detector and Optima® 17 MS column (Macherey Nagel, Dueren, Germany; 

phenylmethyl polysiloxane, 50 % phenyl, 30 m × 0.25 mm inner diameter with 0.5 µm film 

thickness). The injected sample volume was 1 µl. The temperature program was as follows: 

the initial column temperature of 100 °C was held for 1 min and increased at 20 °C min-1 
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to 175 °C, held for 3 min. The temperature was increased again at 4 °C min-1 to 225 °C, 

held for 3 min, and finally increased at 50 °C min-1 to 300 °C and held for 7 min. Helium 

was used as a carrier gas at a flow rate of 1.1 ml min-1, and the split ratio was 30:1. The 

injector temperature was set to 250 °C, and the temperature of the detector was 300 °C.  

2.1.2.2 Analysis of lignin-derived phenols 

Depending on the C content, 250 – 400 mg of soil were analysed for their lignin phenol 

content according to Hedges and Ertel (1982). Ethyl vanillin (10 µg) was added as the IS 

1. After cooling, the hydrolysate was centrifuged for 15 min at 3000 rpm. Humic substances 

were precipitated by adding 6 M HCl until pH 1.8 – 2.2 was reached. After 60 min, samples 

were centrifuged at 4000 rpm for 25 min. The supernatant was transferred to 

preconditioned C18 SPE columns. After drying under N2, lignin monomers were eluted 

from the SPE columns by applying 10 x 0.5 mL ethyl acetate into reaction vials. Dry 

samples were re-dissolved in derivatisation reagent (0.3 ml), containing 200 µL BSTFA 

and 100 µL pyridine, and were heated at 60 °C for 20 min. After derivatization, samples 

were transferred to 250 μl GC vials containing 25 µg n-tetradecane as the IS 2. An external 

standard mixture containing 30, 60, 120, 240, 360, 480 and 600 µl of external standard 

stock solution (2.5 mg lignin monomers in 100 ml methanol) was used for quantification. 

Lignin-derived phenols were separated on the GC-FID system described above. The 

temperature program started at 100 °C (isothermal for 0.5 min) and increased to 160 °C at 

10 °C min-1, held for 6 min. Subsequently, the oven temperature was increased at 20 °C 

min-1 to 250 °C, and again at 50 °C min-1 to the final temperature of 300 °C, which was held 

for 5 minutes. The split ratio was 33:1. The injector temperature was set to 250 ° C, and 

the injected sample volume was 1 µl. 

2.1.2.3 Analysis of amino sugars 

For a full method description including the GC parameters, please see Banfield et al. 

(2017a), adapted from Zhang and Amelung (1996). In short, 500 mg of dried, ground soil 

were hydrolysed in 6 M HCl at 105 °C for eight hours. Iron was removed by centrifugation 

after adjusting the sample to pH 6.7. The dried sample was re-dissolved in MeOH and 

centrifuged to remove salts. Derivatisation to aldononitriles was in 4-dimethylamino-

pyridine and hydroxylamine at 75 °C for 30 min and subsequent derivatisation to 

aldononitrile acetates in acetic anhydride at 75 °C for 30 min. The samples were separated 

on the GC-FID system described above for the neutral sugars. 

2.1.2.4 Analysis of hexuronic acids 

Samples were treated as the neutral sugars; however, silylated for GC measurement. Dried 

samples were re-dissolved in N-methyl-2-pyrrolidone containing 50 µg of IS methyl-
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glucose. To this, 200 µl of the derivatisation reagent methoxyamine hydrochloride (4 mg in 

200 µl) were added and heated to 75 °C for 30 min. After cooling down, 400 µl N,O-

bis(trimethylsilyl)trifluoroacetamide (BSTFA) were added and heated to 75 °C for 5 min. 

Before injection, 50 µg pentadecane were spiked to each sample. External standards at 

concentrations of 10, 20, 40, 80 and 160 µg µl-1 were prepared and derivatised with the 

samples for the quantification. 

Samples were measured on an Agilent 7890A gas chromatograph coupled to an 

Agilent 7000A triple quadrupole mass spectrometer (both Agilent Waldbronn, Germany, 

equipped with a DB-5MS column (30 m x 250 µm coated with 0.25 µm 5% phenyl-methyl 

siloxane). Injection volume was 2 µl. Helium carrier gas flow was at 2.25 ml s-1. The mass 

spectrometer was set to the selected ion mode: selected m/z were 73, 147, 160, 205, 261, 

292 and 333, dwell time was 40 ms and 5 cycles per second. 1 µL amounts were injected 

in split mode (10:1), and injection temperature was 250°C. The total measured flow was 

1.18 mL/min. The oven programme started at 145°C, held for one minute, increased at 5 

°C min-1 to 160°C, and increased again at 6 °C min-1 to 185 °C, which was held for 3 min. 

To the final temperature of 300 °C heating was at 40 °C min-1 and was held for 0.5 min. 

2.1.2.5 Analysis of cutin- and suberin-monomers 

Three g of dried, sieved and ground soil were pre-extracted in a Soxhlet apparatus for 36 

h in a mixture of dichloromethane and methanol (2:1) to remove all free lipids. With 500 mg 

of the pre-extracted soil, a digestion in 1 M KOH in MeOH at 100 °C for 3 h was performed 

to cleave bound lipids. Lipids were extracted once with MeOH: KOH, twice with MeOH: 

DCM and once with DCM. Supernatants were combined, internal standards (deuterated 

stearic acid, deuterated hexadecenoic acid and 17-hydroxy heptadecanoic acid) were 

spiked and water was added to create two phases. The pH of the aqueous phase was 

adjusted to pH 1 by diluted hydrochloric acid. After shaking and complete phase separation 

overnight, the lower phase was dried and derivatised. Methylation was by addition of 500 

µl 1.3 M BF3 in MeOH solution and heating to 80 °C for 15 min. Derivatives were extracted 

by hexane, dried and subsequently acetylated in acetic anhydride: pyridine (400 µl, 1:1) 

over night. Residual derivatisation agent and water were removed by passing the samples 

through sodium sulphate. Samples were dissolved in 185 µl toluene and 15 µg IS 2 methyl 

tricedanoate (1 µg µl-1) was added before measurement. 50, 100, 200, 300 and 400 µl (~ 

1 µg µl-1) of the external standard mixture containing nine fatty acids, one diacid and two 

n-alkanols (after Spielvogel et al. (2014)) were derivatised together with the samples. 

Samples were measured on the GC-MS system used for hexuronic acids, however 

in scan mode (50-550 amu), 1 µl injection volume into the splitless inlet. The oven 
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programme started at 80°C, held for one minute, increased at 10 °C min-1 to 150 °C. Until 

275 °C heating was at 1 °C min-1, and finally at 10 °C min-1 to 300 °C. 

2.1.2.6 Analysis of free lipids 

Free lipids extracted during the Soxhlet procedure were spiked with internal standards 

(hexatriacontane for n-alkanes, pentadecanone for ketones, nonadecanol for n-alkanols, 

nervonic acid for the fatty acids, 12-OH stearic acid for hydroxy fatty acids). 20 ml of water 

were added to the samples and pH was adjusted to pH 10 by NaOH in MeOH. Three liquid-

liquid extractions with chloroform were collected and the extracts were pipetted onto SPE 

columns (activated silica gel in n-hexane, biopore size 63-200 µm, Sigma-Aldrich, Munich, 

Germany). Alkanes did not bind to the gel and were washed out with 30 ml of hexane. 

Ketones and n-alkanols were eluted by 30 ml of DCM and 50 ml of MeOH, acetylated and 

prepared for measurement as described above in the cutin and suberin section. After the 

first liquid-liquid extraction at pH 10, the pH was adjusted to pH 2, and the acidic fractions 

were extracted three times with chloroform. Dried extracts were methylated with 1.3 M BF3 

: MeOH solution and subsequently separated on a silica gel SPE from the hydroxy fatty 

acids by DCM. The hydroxy fatty acid fraction was eluted with MeOH, and the hydroxyl 

groups were acetylated as the n-alkanols. Samples were dried and re-dissolved in 185 µl 

toluene and 15 µg second IS methyl tridecanoate (1 µg µl-1) was added before injection. 

External standard mixes for each lipid fraction containing 20 n-alkanes (C17 to C36) or 27 

n-alkanols and 8 ketones or 28 fatty acids or 18 hydroxy fatty acids were derivatised like 

the corresponding samples and used for quantification. 

2.1.2.7 Statistical analyses 

Principal components analysis (PCA) was performed to screen for ordination, i.e. similarity 

of treatments and underlying factors, after removal of compounds which had more than 

10% missing data. Outliers between field replicates were identified using Nalimov’s test 

(Lozán and Kausch, 1998). No more than one outlier was removed. One-way analyses of 

variance (ANOVA) were carried out for each depth and significances were calculated by 

Tukey’s Honest Significance Difference test on α < 0.05 level. Levene’s test was used to 

test for homogenous variances. Normality of the residues was visually checked in Q-Q 

plots. Pairwise t-tests for dependent samples were used to determine differences between 

soil depths within each biopore type. Error bars in all charts were calculated as standard 

errors of the mean (SEM). In case assumptions were not met, non-parametric Kruskal-

Wallis ANOVAs were calculated instead, followed by post-hoc comparisons of mean ranks 

of all pairs of groups (Kruskal-Wallis test). Error bars reported are SEM. Wilcoxon matched 
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pair tests for dependent samples were used to determine differences between soil depths 

within each biopore type. 

 Analysis of similarity (ANOSIM) was performed on the outlier-corrected, treatment-

grouped biomarker dataset. A Bray-Curtis similarity matrix was calculated as the basis for 

the non-parametric ANOSIM with 9999 permutations. Results are given as Bonferroni-

corrected p-values. 

228 variables were describing 32 cases of four categories, creating 

multicollinearities. Traditional discriminant analysis failed because of computation errors 

due to collinearities. Dimension reduction and determination of suitable predictor variables 

was achieved by partial least squares (PLS) classification. The biopore type was chosen 

as a categorical dependent variable and the 228 biomarker variables as continuous 

predictors. We also included a previous data set on 27 phospholipid-derived fatty acids 

(Banfield et al., 2017a). Cases were dropped if more than 80% of variables were missing. 

Variables were dropped if no variance was detected or if more than 80% of cases were 

missing. Biomarker variables were sorted by VIP (variance importance in projection), and 

the eight variables with the highest importance were chosen as regressors for a linear 

discriminant analysis. Calculated were discriminant functions, classification functions from 

these ten variables (all effects) and the factor structure for the first two roots. Canonical 

scores were plotted as XY scatterplots to show the significant classification. 

 All statistical analyses were performed in Statistica Version 13.3 (TIBCO Inc., Palo 

Alto, CA, U.S.A.) and PAST 3.20 (Hammer et al., 2001). 

 Results 

The count of individually identified compounds was 33% lower in bulk soil (~ 80 

compounds; Table 1) compared to the biopores (~ 120 compounds). Only in root biopores, 

the number of identified compounds increased with depth, whereas in the other treatments 

the count was constant with depth. A comprehensive substance list of > 200 compounds 

and their contents can be found in Table S8 (Supplementary material). The 

characterisation of the primary inputs can be found in Table S1 and S7 (supplementary 

material). 
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 The first two principal components (PC) of the PCA (Fig. 1) based on 160 

biomarkers explained 31 and 14 % of the total variance, respectively. The grouping showed 

that the OM was different between soil depths, i.e. samples of each soil depth grouped 

together but were separated along PC 2 (y-axis) from the other soil depth. Therefore, PC 

2 likely represents soil depth. All three biopore types were at least partly overlapping and 

were separated from the bulk soil along PC 1 (x-axis). Both earthworm biopore types were 

overlapping almost perfectly. Root biopores grouped between bulk soil and both earthworm 

biopore types, indicating that among all biopore types, root biopores were similar to both 

bulk soil and biopores. 

The root biomarker content was significantly higher in the biopores than in the bulk 

soil (Table 1). The ratio of root/shoot biomarkers was lowest in the bulk soil among all 

treatments. However, the ratio of microbial/shoot biomarkers was highest in bulk soil, 

indicating that the root-C is strongly microbially colonised in bulk subsoil. No such trend 

was found for the ratio of microbial/shoot biomarkers.  

Based on the ANOSIM, the biomarker fingerprints of the three biopore types were 

statically similar to each other (Table 2), i.e. the substance lists could not be differentiated 

between the three biopore types. However, the fingerprints were different to the bulk soil, 

which is in excellent agreement with the PCA (Fig. 1) grouping. 

 

 

 

 

 Principal components analysis (PCA) based on correlation of the entire biomarker dataset. 
Triangles represent samples from 45–75 cm, while circles present samples form 75–105 cm. 
Principal component (PC) 1 (x-axis) explained 39% of the inertia, while PC 2 explained further 
15%. 
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 Means ± SEM of total organic carbon (TOC), total nitrogen (TN), microbial biomass (MBC, taken 
from Hoang et al. (2016)), count of identified compounds, matches/overlaps with the source 
biomass fingerprints, root/shoot biomass ratio, microbial/shoot biomass ratio and microbial/root 
biomass ratio; for two soil depths (45-75 cm (top) and 75-105 cm (below). Small and capital letters 
each indicate significant differences among treatments of one soil depth (one-way ANOVA, 
Tukey’s HSD on α 0.05; separated for contents and SOC contributions). Asterisks given in the 
lower soil depth indicate significant differences between soil depth (Two sample t-test for paired 
samples on α 0.05). 

45-75 cm Bulk soil 
Earthworm 

pores 
EW-incubated 

pores 
Root pores 

TOC 0.41 ± 0.02A 1.17 ± 0.05C 1.16 ± 0.04C 0.81 ± 0.03B 

TN 0.06 ± 0.00A 0.11 ± 0.00C 0.12 ± 0.00C 0.09 ± 0.00B 

MBC 33 ± 1D 463 ± 28c 820 ± 38b 181 ± 6a 

# of compounds 80 ± 7B 118 ± 4A 123 ± 2A 91 ± 1B 

Matches: chicory roots 57 ± 4A 79 ± 4A 76 ± 3A 61 ± 3A 

Matches: earthworm bodies 62 ± 5A 72 ± 4A 72 ± 3A 62 ± 3A 

Matches: clover-grass 35 ± 4A 67 ± 3A 63 ± 2A 44 ± 2A 

Root biomarkers 0.01 ± 0.00B 0.04 ± 0.00A 0.06 ± 0.01A 0.05 ± 0.01A 

Root / shoot biomass 0.6 ± 0.1B 1.8 ± 0.1AB 2.2 ± 0.0A 2.8 ± 0.5A 

Microbial / shoot biomarkers 39 ± 9A 29 ± 8A 19 ± 2A 31 ± 7A 

Microbial / root biomarkers 37 ± 15A 15 ± 4A 8 ± 0A 12 ± 3A 
     

75-105 cm         

TOC 0.35 ± 0.05b 1.05 ± 0.04a 1.07 ± 0.04a* 0.93 ± 0.06a 

TN 0.05 ± 0.00b* 0.10 ± 0.01a 0.11 ± 0.01a 0.10 ± 0.01a 

MBC 22 ± 3c 384 ± 38b 593 ± 88b 170 ± 9a 

# of compounds 82 ± 6b 117 ± 3a 122 ± 4a 120 ± 1a 

Matches: chicory roots 63 ± 6a 84 ± 2a 79 ± 2a 84 ± 2a 

Matches: earthworm bodies 74 ± 8a 77 ± 2a 77 ± 2a 82 ± 2a 

Matches: clover-grass 35 ± 4a 68 ± 2a 64 ± 2a 64 ± 1a 

Root biomarkers 0.01 ± 0.00c 0.04 ± 0.00ab 0.06 ± 0.01a 0.03 ± 0.01bc 

Root / shoot biomass 0.4 ± 0.1b 2.1 ± 0.2a 2.3 ± 0.4a 2.3 ± 0.4a 

Microbial / shoot biomarkers 33 ± 5a 33 ± 6a 21 ± 9a 61 ± 15a 

Microbial / root biomarkers 88 ± 4a 16 ± 3b 8 ± 3b 28 ± 7b 

     
 

 

 ANOSIM results based on 9999 permutations (p 0.0001). Shown are pairwise Bonferroni-corrected 
p-values in a matrix describing the similarity of biopore types and bulk soil. Significant p-values 
denote significantly different treatments. 

 

Root 
biopores 

Roots + 
Earthworms 

Earthworm 
biopores Bulk soil 

Root biopores -    

Roots + 
Earthworms 

p > 0.05 -   

Earthworm 
biopores 

p > 0.05 p > 0.05 -  

Bulk soil * * * - 
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2.1.3.1 Lignin 

 Roots and earthworms imported large amounts of lignin into the subsoil: while roots 

increased the lignin stock (Σ lignin-derived phenols of VSC subunits g-1 soil) moderately 

after two years, i.e. six times compared to bulk soil (Fig. 2, Table S2), earthworms imported 

much more lignin than roots, i.e. 10 times higher contents compared to bulk soil. Highest 

lignin stocks were brought about by the combination of roots and earthworms, which led to 

a 13-fold increase in VSC subunits (p< 0.05 relative to bulk soil). All contents tended to 

decrease from 45–75 cm to 75–105 cm, especially in biopores with short-term earthworm 

incubation (-40%, p< 0.05). The average lignin contents in both earthworm biopore types 

(mean values from 45–105 cm) were similar (500 vs 380 µg g-1 soil, Table S2). Vanillyl (V) 

and syringyl (S) subunits occurred at a ~ 1:1 ratio in all treatments. The cinnamyl (C) 

subunit was only present (5–10%) in earthworm biopores. Since chicory roots did not 

contain C subunits (<1%), these have to originate from the earthworm diet (Table S7, 

Supplementary material). Earthworm bodies and the clover-grass material used to feed 

earthworms during the biopore differentiation contained 30–60% C subunits. 

 

 Mean VSC-lignin contents ± SEM (two left bars of each treatment; µg g-1 soil) and their contributions 
to SOC ± SEM (two right bars; mg g-1 SOC) of the three biopore types and bulk soil in two subsoil 
depths (45–75 cm, 75–105 cm). Colours represent vanillyl (V), syringyl (S) and cinnamyl (C) subunits 
released during lignin CuO oxidation. Small and capital letters each indicate significant differences 
among treatments of one soil depth (one-way ANOVA, Tukey’s HSD on α 0.05; separated for contents 
and SOC contributions). Asterisks given in the lower soil depth indicate significant differences 
between soil depth (Two sample t-test for paired samples on α 0.05). Full and dashed red lines 
represent the level of the bulk soil contents and OM, respectively, to illustrate biopore effects. 
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 The contribution of lignin to soil organic carbon (Fig. 2) generally followed the trend 

of the stocks (Fig. 2), and all contributions were significantly higher than in bulk soil. It was 

again highest in both earthworm biopore types, reflecting the large inputs of lignin-rich plant 

material by earthworms - irrespective of the duration of their presence (Fig. 2). In root 

biopores, a considerable part of the lignin had to be already decomposed, since the 

biomass characterisation revealed extremely high lignin contents in roots.  

2.1.3.2 Carbohydrates: Neutral sugars, hexuronic acids and amino sugars 

 The two mainly plant-derived sugars arabinose and xylose made up 25-30% of the total 

neutral sugars (Table S3): their contents (Fig. 3, Table S3) followed the pattern of the lignin 

contents (Fig. 2). Lowest contents in 45–75 cm were found for the bulk soil (Fig. 3), 

intermediate contents for root biopores (+70% compared to bulk soil) and highest in both 

earthworm biopores (+ 250% and 350% for native and incubated treatments compared to 

bulk soil, respectively). The trends remained the same in 75–105 cm. With depth, contents 

decreased in incubated biopore types (p< 0.05, shown by the asterisks), which was in line 

with lignin pattern and hinted to preferential earthworm activities in 45–75 cm. The  

 

 Mean hemicellulose and hexuronic acids contents ± SEM (two left bars of each treatment; µg g-1 soil) 
and their contributions to SOC ± SEM (two right bars; mg g-1 SOC) of the three biopore types and 
bulk soil in two subsoil depths (45–75 cm, 75–105 cm). Colours represent sugar monomers. Small 
and capital letters each indicate significant differences among treatments of one soil depth (one-way 
ANOVA, Tukey’s HSD on α 0.05; separated for contents and SOC contributions). Asterisks given in 
the lower soil depth indicate significant differences between soil depth (Two sample t-test for paired 
samples on α 0.05). 
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 contribution of arabinose and xylose to SOC (Fig. 3, two right columns) was the same in 

the biopores and bulk soil, which indicates that hemicelluloses have already been 

decomposed to the level of the bulk soil. In this case, biopores merely feature higher SOC 

contents, but no SOC enrichment in hemicelluloses.  

Hexuronic acids followed the trend of neutral sugars and accounted for 5% of 

neutral sugars (Fig. 3, Table S3). Galacturonic acid was recovered in higher amounts than 

glucuronic acid, likely representing residual pectin from plant cell walls. Galacturonic acid 

was significantly enriched only in earthworm biopores in 45–75 cm, while glucuronic acid 

was only enriched in root biopores in 45–75 cm.  

We considered rhamnose, mannose, ribose and fucose as microbial sugars 

(Moers 1990, Tanaka 1990), as we did not find them in relevant amounts in our plant 

biomass. However, galactose had to be excluded from that list due to high galactose 

contents in the chicory biomass (for the biomass characterisation see Table S1). The 

treatment effects of the Σ microbial sugars (Fig. 4) and Σ arabinose + xylose (Fig. 3) were 

similar. Contents significantly decreased with depth in the earthworm biopore, indicating 

preferential earthworm activities in the upper soil compartment. Despite a 100% increased 

stock compared to bulk soil, normalised to SOC neither root biopores nor native earthworm 

 

 Mean microbial hexoses contents ± SEM (two left bars of each treatment; µg g-1 soil) and biomarker 
contributions to SOC ± SEM (two right bars; mg g-1 SOC) of the three biopore types and bulk soil in 
two subsoil depths (45–75 cm, 75–105 cm). Colours represent sugar monomers of microbial origin. 
Small and capital letters each indicate significant differences among treatments of one soil depth 
(one-way ANOVA, Tukey’s HSD on α 0.05; separated for contents and SOC contributions). Asterisks 
given in the lower soil depth indicate significant differences between soil depth (Two sample t-test for 
paired samples on α 0.05). 
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biopores were significant enriched in the SOC pool. Incubated earthworm biopores, 

however, had significantly increased contents (+250%) and contribution to SOC in both 

depths. 

 The combined stock of the amino sugars glucosamine, mannosamine, 

galactosamine and muramic acid (Fig. 5, Table S4) represents microbial cell walls, i.e. 

predominantly microbial necromass. Only the amino sugars contents of root biopores in 

75–105 cm showed significant enrichment relative to bulk soil. The contribution of amino 

sugars to SOC was in both earthworm biopore types smaller than in bulk soil, hinting to 

fast turnover of microbial cell residues in these biopores. A dependency on soil depth was 

found for the root biopores and, less pronounced, in incubated biopores, i.e. treatments 

with former roots. No depth effect was apparent in native earthworm biopores. 

2.1.3.3 Free lipids: n-alkanes, n-alkenes, n-alkanols, ketones, fatty acids and hydroxy 

fatty acids 

The total contents of the free lipids did not differ among treatments (Fig. 6, Table S5). 

Neither was there any higher contribution to biopore SOC relative to bulk soil. 

 

 Mean amino sugars contents ± SEM (two left bars of each treatment; µg g-1 soil) and their 
contributions to SOC ± SEM (two right bars; mg g-1 SOC) of the three biopore types and bulk soil in 
two subsoil depths (45–75 cm, 75–105 cm). Colours represent amino sugar monomers of microbial 
origin (cell walls). Small and capital letters each indicate significant differences among treatments of 
one soil depth (one-way ANOVA, Tukey’s HSD on α 0.05; separated for contents and SOC 
contributions). Asterisks given in the lower soil depth indicate significant differences between soil 
depth (Two sample t-test for paired samples on α 0.05). 
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Among all treatments, n-alkanes and n-alkenes had by far the highest contents 

within the free lipids (Table S5). N-alkanes were considered to derive from plants starting 

from a chain length of C26 as indicated by the pronounced odd-over-even ratio for n-

alkanes >C26 found in soil and the biomasses (Fig. S1, Table S1). Despite lacking 

statistical confirmation, earthworms imported large amounts of long-chain n-alkanes from 

plants into their burrows (Fig. 6). The contribution of n-alkanes to SOC appeared smaller 

than in bulk soil in 75–105 cm. N-alkenes as degradation products of n-alkanols or 

conversion products of n-alkanes were recovered at roughly 60% of the n-alkane fraction 

(Fig. 6). In 45–75 cm, the ratio of n-alkanes to n-alkenes was highest in root biopores (0.90) 

and bulk soil (0.75), and the lowest in earthworm biopores with fresh input (0.40). In 

contrast, in 75–105 cm, the ratios were much narrower among all treatments (36–45%). 

The contents of ∑ n-alkanols + ketones were significantly higher in the incubated biopores 

than in bulk soil (Table S5).  

 

 Mean free lipids contents ± SEM (two left bars of each treatment; µg g-1 soil) and their contributions 
to SOC ± SEM (two right bars; mg g-1 SOC) of the three biopore types and bulk soil in two subsoil 
depths (45–75 cm, 75–105 cm). Colours represent lipid fraction: n-alkanes, ketones/alcohols, fatty 
acids and hydroxy fatty acids. Small and capital letters each indicate significant differences among 
treatments of one soil depth (one-way ANOVA, Tukey’s HSD on α 0.05; separated for contents and 
SOC contributions). Asterisks given in the lower soil depth indicate significant differences between 
soil depth (Two sample t-test for paired samples on α 0.05). 
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Like the other lipid fractions, the contents of free fatty acids appeared larger in the biopores 

in 45–75 cm than in bulk soil, and to a smaller degree, this was also the case in 75–105 

cm (Table S5). Their contribution to SOC was also generally lower in biopores than in bulk 

soil, hinting at their relatively rapid turnover under increased microbial activity. Stemming 

from mostly cutin and suberin, free hydroxy fatty acids may be indicative of the turnover 

and ongoing decomposition of these polymers (Table S5). Contents tended to increase 

with depth in all treatments, but more strongly in the treatments with roots previously 

growing in, i.e. root biopores and earthworm-incubated biopores.  

2.1.3.4  Hydrolysable lipids: Cutin and suberin-derived monomers 

Monomers studied herein derive from either cutin, suberin, both (i.e. non-specific lipids) or 

are of microbial origin. In 45–75 cm, root and incubated biopores had five times higher 

contents, and native earthworm biopores had nine times higher contents than bulk soil (Fig. 

7, Table S6). The total contents from 45–105 cm of both native and incubated earthworm 

biopores were comparable (~ 53 vs 40 µg g-1 soil), hinting to a comparable extent of 

earthworm activities in these two biopore types. In 75–105 cm, contents in biopores 

 

 Mean cutin/suberin contents ± SEM (two left bars of each treatment; µg g-1 soil) and their contributions 
to SOC ± SEM (two right bars; mg g-1 SOC) of the three biopore types and bulk soil in two subsoil 
depths (45–75 cm, 75–105 cm). Different colours represent cutin (C), suberin (S), unspecific (CS) and 
microbial (M) fractions. Small and capital letters each indicate significant differences among 
treatments of one soil depth (one-way ANOVA, Tukey’s HSD on α 0.05; separated for contents and 
SOC contributions). Asterisks given in the lower soil depth indicate significant differences between 
soil depth (Two sample t-test for paired samples on α 0.05). 
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increased relative to bulk soil six times (root biopores), 7.5 times (native earthworm 

biopores), and nine times (incubated biopores). Cutin/suberin contents and their 

contributions to SOC showed strong decreases with depth in bulk soil and native 

earthworm biopores (both p<0.05). The contents of the individual groups (cutin- vs suberin-

derived vs microbial) were differentiated. Mainly unspecific markers characterised bulk 

soils, i.e. markers neither representing cutin or suberin, whereas among the biopores the 

ratio of cutin, suberin, unspecific and microbial lipids hardly changed. The microbial lipid 

content was strongly correlated with the microbial community structure reported in Banfield 

et al. (2017a) and was the lowest in bulk soil and the highest in earthworm biopores. In 45–

75 cm, suberin- and also cutin-derived markers were significantly enriched in all biopores 

compared to bulk soil. In the deeper soil, even though none of the individual fractions were 

different from bulk soil, the total stock of all earthworm-influenced biopores were higher 

than the bulk soils. The SOC contribution of biopores was 2.5 times larger (45–75 cm and 

75–105 cm) than bulk soils’ and decreased with depth in all treatments. While no 

differences of fractions were found in 75–105 cm among the treatments, cutin contribution 

was larger in the both earthworm-influenced biopore types than in the root biopores or bulk 

soil in the upper soil layer. 

2.1.3.5 Identification of a biomarker subset to characterise unknown biopores 

The PLS procedure returned an ordered list of best predictors (Table 3, left), from which 

we have taken the top ten. The model returned 14 components with 54% cumulative 

variance explained by the first two and 99.9% of the variance explained by all. Linear 

discriminant analysis (LDA) on the reduced data set returned significant roots explaining 

51% and 41% of total discrimination. The classification functions, which can be used for a 

direct classification, can be found in Table 3 (right). The factor structure (Table 3, centre) 

and the LDA biplot (Fig. 8) show that root 2 (y-axis) separated the biopores from the bulk 

soil. Since all ten variables correlate positively and similarly with root 2, this root may mostly 

represent the TOC content. Root 1 (x-axis), which was most positively correlated with C 

subunits of lignin and negatively with actinobacteria (10Me 16:0), separated both 

earthworm biopores from root biopores.  
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 LDA biplot showing the discrimination scores as an XY scatterplot (triangles: samples from 45–75 cm, 
circles: samples from 75–105 cm) and the four variables with the highest discriminatory power 
(because of visibility). 

 Dimension reduction by partial least squares (PLS) classification (left) and linear discriminant 
analysis (LDA). The ten variables with the highest VIP from the PLS analysis were used to calculate 
linear discriminant functions, their factor structure and classification functions. 

PLS VIP  Discriminant 
functions 

 Factor structure  Classification functions 

Variable VIP 
Rank 

(of 
228) 

 Root 1 Root 2  Root 1 Root 2  Root 
biopores 

EW-inc. 
biopores 

Earthw. 
biopores 

Bulk 
soil 

10Me16:0 2.06 1  -0.49 0.45  -0.25 0.31  48.38 17.11 14.95 -4.19 

Ferulic acid 1.67 2  1.13 0.57  0.60 0.61  -1.45 2.41 3.59 -0.14 

Ketone 
(unknown) 

1.65 3  -0.70 0.92  -0.16 0.04  66.90 43.73 14.06 -10.33 

cy19:0 1.53 4  -0.59 0.33  -0.11 0.39  18.08 6.46 0.72 0.17 

Fucose 1.48 5  -1.53 1.08  0.04 0.29  1.17 0.41 -0.29 -0.36 

p-Coumaric 
acid 

1.47 6  -0.08 0.01  0.30 0.30  0.16 -0.25 -0.23 -0.21 

20:4w6c 1.42 7  0.58 -0.29  0.13 0.24  -138.96 -8.37 -33.66 9.23 

Ribose 1.40 8  0.93 -1.32  0.07 0.20  -0.82 -0.49 0.10 0.53 

22-
Hydroxydoco
sanoic acid 

1.40 9  0.11 0.07  -0.08 0.26  3.86 6.98 10.33 4.20 

Octacosanic 
acid (C28:0) 

1.37 10  -0.52 1.13  0.04 0.30  22.39 21.74 6.04 -5.85 

Residuals          -42.38 -37.46 -30.81 -4.17 

Eigenvalue    15.78 12.68         

Wilks' λ    0.001 0.022         

p    < 0.000 < 0.000         
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 Discussion 

The main differences between the biopores arise from the frequency and the properties of 

the C inputs and sources: continuous earthworm activities, i.e. repeated shoot-C inputs, 

are to be distinguished from the large single root C input. Chicory induced root biopores 

filled with detritus of a defined age (Hafner and Kuzyakov, 2016), equivalent to a two-year 

fallow after three years of cover cropping. In the field, under natural conditions, root 

biopores would be colonised by earthworms. Root biopores are abundant in the subsoil 

(Gaiser et al., 2013) and earthworm colonisation is likely. We emulated the earthworm 

colonisation by incubation of Lumbricus terrestris into root biopores for one growing 

season. Supplying them with defined food sources reveals the short-term effects of 

earthworms. To compare the short-term vs long-term earthworm presence, native 

earthworm biopores were sampled. Bulk subsoil samples were not subject to any 

experimental alteration and represented bulk subsoil conditions, i.e. long-term stabilised C 

and absence of hotspots due to low carbon inputs (Rumpel and Kögel-Knabner, 2011). 

2.1.4.1 Bulk soil 

In bulk subsoil, abiotic decomposition conditions and OM inputs are not as favourable as 

in the biopore hotspots (e.g. lower oxygen supply) (Brown, 1995; Gliński and Lipiec, 1990; 

Rumpel et al., 2012). The pathways of OM from the soil surface into the subsoil as DOM 

are slow, so compounds are heavily modified, and get partly respired (Kalbitz and Kaiser, 

2008; Rumpel et al., 2004; Schulz et al., 2012). Besides lower C contents, substrate 

richness was 33% lower in bulk soil than in earthworm biopores. The relative occurrences 

of substances to the substances classes did not change with soil depth – hinting to most 

dominant C turnover processes in the topsoil. This unspecific SOM pattern was further 

reflected by the low specificity of cutin-/suberin-derived lipids (Fig. 7, Table S6) caused by 

microbial modifications like depolymerisation, oxidation, breaking off side chains or 

desaturation (Engelking et al., 2007; Thevenot et al., 2010). Intact and unprocessed OM is 

therefore not to be expected in the deeper subsoil, in contrast to the biopores. The 

fundamental difference in C sources was discernible from the full OM fingerprints (>160 

substances): ANOSIM (Table 2) and PCA (Fig. 1) showed that the OM of bulk soil was 

statistically separated from the biopore OM. This fact suggests that intensive DOC 

processing and alteration is a key process causing the OM composition of the bulk soil.  

Despite low absolute biomarker content in bulk soil, some biomarker classes 

contributions to SOC were equal to the root biopores’ contribution (e.g. hemicelluloses, 

Fig. 3) or even all biopores (free lipid fractions, Fig. 6). Either the tissues represented by 

these biomarkers are fast-cycling in biopores, or they are stabilised in the bulk subsoil. 

Increases of SOC contribution with depth may be due to stronger physical stabilisation and 
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less favourable decomposition conditions in the bulk subsoil. Especially aliphatic 

compounds like n-alkanes may be persistent (Rumpel et al., 2012). N-alkane contents 

dominated the free lipid fraction (Fig. 6) (Jaffé et al., 1996; Marseille et al., 1999; 

Wiesenberg et al., 2004).  

Plant inputs will be eventually respired or immobilised as microbial necromass 

(Miltner et al., 2012). The highest ratios of microbial / root biomarkers were found in the 

bulk soil (Table 1, 75–105 cm), where plant inputs are highly processed and plant 

biomarkers are largely decomposed while the resulting microbial necromass remains. The 

higher OM degradation was confirmed by the lower substrate richness and the lower C/N 

ratio in the bulk soil than the biopores (Table 1). Bulk subsoil C is thought to be of root 

origin, rather processed, depleted in plant matter and enriched in microbial residues 

(Rumpel and Kögel-Knabner, 2011). Whereas we could confirm a high contribution of 

microbial residues, bulk soil OM was less enriched in root OM (lower root biomarkers, Table 

1). Residues include amino sugars (monomers of microbial cell walls) and the neutral 

sugars fucose, mannose, rhamnose and ribose (Basler et al., 2015; Oades, 1984; Paul, 

2016) in exopolymeric substances (EPS, biofilms (Vu et al., 2009) and lipopolysaccharides 

(LPS, components of Gram-negative cell membranes, Zelles et al., 1995). Due to strong 

interactions with mineral surfaces, amino and microbial neutral sugars accumulate after 

cell death (Gleixner et al., 1999; Miltner et al., 2012). The increased the contribution of 

microbial amino sugars to SOC with depth points to higher stabilisation on mineral phases 

in 75–105 cm and is very likely correlated with less saturated mineral phases in the deeper 

subsoil (Six et al., 2002). The microbial neutral sugars (Fig. 4) only partly replicated the 

trend of the amino sugars (Fig. 5), hinting to deviating stabilisation and decomposability of 

microbial residues. Summarising, the bulk soil OM comprises a mixture of compounds of 

varying decomposability (Liang and Balser, 2008) and is less diverse than the biopore OM. 

Its sources are relative to biopores less likely root-derived.  

2.1.4.2 Root biopores 

After two years of root decay and lack of recent C inputs, the sizeable initial root biomass 

was still apparent in the root biopores from I) high root/shoot biomarker ratio (Table 1) and 

II) all biomarkers contents were on average a third lower than in the earthworm biopores 

(Figs. 2–7, Tables S2–6). Root biopores had mostly increased contents of polymeric plant 

biomarkers ∑ (cutin + suberin) and lignin (Figs. 2, 7). The root biopore OM fingerprint did 

not match the intact root biomass fingerprint because the OM processing was rather 

advanced (Table 1). From the PCA (Fig. 1), the soil depths were more separated than in 

the other biopores or bulk soil, and the count of identified substances increased sharply 
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with depth (Table 1) — possibly less favourable decomposition conditions in the deeper 

soil or percolation contributed to this phenomenon. 

Before decomposition, chicory roots featured the largest lignin content of all source 

biomasses (Table S1). Consequently, roots were clearly the largest single contributor to 

lignin in the subsoil biopores. Despite the low initial bioavailability of the lignin 

macromolecule (Větrovský et al., 2014), within two years the most substantial part of lignin 

was decomposed in the root biopores, and only a fraction remained. The hemicellulose 

(arabinoxylan) signature got lost during root decomposition. In bulk soils and biopores, a 

1:1 instead of the 5:1 ratio of xylose to arabinose was found (Rumpel et al., 2010).  Such 

preferential respiration of xylose may be due to the crosslinking of the arabinoxylan (Amin 

et al., 2014). Chicory is commercially cultivated for inulin and pectin, i.e. polymeric 

homogalacturonic acid (Robert et al., 2008; Street et al., 2013). The use of uronic acids as 

specific and natural abundance biomarkers is challenging due to its widespread occurrence 

in nature. They derive from EPS, plant mucilage, from LPS or glycosaminoglycans 

containing glucuronic acid from earthworms, e.g. Eisenia andrei (Bouché, 1975). Due to 

this ubiquitous origin (Fig. 3) the uronic acids contents only weakly differentiated between 

treatments. 

After normalisation to SOC, the root biopores start telling a different story: the 

treatment effects of most biomarker contents disappeared — except for lignin and 

cutin/suberin. Some substance classes behaved differently during decomposition in root 

biopores: ∑ (cutin/suberin) and lignin were in contrast to n-alkanes and hemicelluloses 

enriched in the root biopore SOC pool, thus implying higher decomposability of two latter. 

After two years of decomposition, the contributions of hemicelluloses (Fig. 3), microbial 

sugars (Fig. 4) and n-alkanes to SOC (Fig. 6) were equal or lower than in the bulk soil. In 

the course of the decomposition, gradually the SOC pattern is approached – unless the 

biopore is re-used (Banfield et al., 2017b). No lower SOC contributions than in the bulk soil 

were expected since bulk soil OM is deemed long-term stabilised. Selective priming of such 

biomarker classes during OM turnover seems to be a plausible explanation (Kuzyakov, 

2010), e.g. episodic priming driven by percolated C (Kuzyakov, 2002, 2010).  

Root biopores and bulk soil have similar soil physical parameters (Pagenkemper et 

al., 2014). This fact and the late decomposition stage explain why the molecular 

characterisation of root biopores gave similar results like bulk soil. Even though the 

remaining OM was not particularly bioavailable (lignin and microbial residues), enzyme 

activities and the microbial biomass were still considerably increased relative to the bulk 

soil (Banfield et al., 2017a; Hoang et al., 2016). Contents of microbial lipids (Fig 8) and 

microbial hexoses (Fig. 4) closely followed the pattern of MBC and Σ PLFAs (Banfield et 

al., 2017a; Hoang et al., 2016).  
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2.1.4.3 Earthworm-incubated biopores 

Combining two C sources, i.e. active earthworms and root detritus, in the ‘earthworm-

incubated biopores’ led to the highest C accumulation among all biopore types (Table 1) 

— within six months of earthworm incubation. Conceptually, the OM composition in 

earthworm-influenced biopores depends on, e.g. the palatability of the food sources, the 

earthworm’s gut microbiome and the interactions of the inputs with the mineral phase 

during the gut passage (Bouché, 1975; Brown et al., 2000; Curry and Schmidt, 2007). 

Earthworms almost completely overrode the molecular structure of the former root detritus 

OM within six months. The resulting similar substrate quality between incubated and native 

earthworm biopores was underlined by an identical count of identified compounds (Table 

1), overlap in the PCA (Fig. 1) and by the fact that ANOSIM did not differentiate both (Table 

2). The earthworms’ specific biomarker signature stems from a combination of the 

earthworm bodies (especially through mucus secretion) and the earthworm food (clover 

grass; Table 1) since both earthworm-influenced biopore types showed the most matches 

with these source biomasses. Preferential earthworm activities were discernible from 

decreases with depths (lignin -15% from first to the second horizon, cutin/suberin -18%). 

Short-term incubation might have favoured preferential earthworm activities in 45–75 cm, 

which are likely to equalise over longer time spans. 

Earthworms in root channels did not increase substrate richness further than native 

earthworm biopores. Before the earthworm incubation, the root detritus contents were 

identical in the root biopores and the earthworm-incubated biopores. Six months of 

earthworm activities tripled the contents of hemicelluloses and doubled contents n-alkanes 

and lignin relative to root biopores but did not affect cutin/suberin contents. Six months of 

earthworms in root biopores accumulated more lignin than years of native earthworm 

activity (Fig. 2). The quality of the lignin changed with incubation: cinnamyl subunits were 

only recovered in the earthworm biopores. They stem from the earthworm forage of 

ryegrass and clover, which lignin fraction contained up to 60% ferulic acid, i.e. a cinnamyl 

derivative (Table S2, Supplementary material). This finding shows the utility of 

characterising the primary inputs to identify C sources. Earthworms may not easily digest 

lignin (Brown et al., 2004; Lee, 1985; Satchell, 1967), but support lignin degradation by 

priming through additional moisture and available C from the mucus (Al-Maliki and Scullion, 

2013; Kuzyakov, 2010). Nevertheless, lignin was most resistant to the decomposition in 

biopores, as it was most strongly enriched in all biopores SOC pools.  

The free lipid contents in all subsoil biopore hotspots were in the range of 

agricultural bulk topsoils previously reported by Wiesenberg et al. (2004). However, despite 

the high enrichment of biomarker contents in the incubated biopores, free lipids were not 

significantly enriched relative to bulk (Fig. 6). Free lipids are nevertheless of great 
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diagnostic value: I) the relative amounts of ∑ n-alkanes + n-alkanols and hydroxy fatty 

acids could be useful molecular turnover proxies of shoots and roots in the presence of 

earthworms, respectively (Vidal 2016) and II) the average chain length of n-alkanes could 

be a second proxy for plant OM turnover (Wiesenberg et al., 2004). High microbial turnover 

over time was linked to low lipid contents in soil (Fridland, 1976), as was the case in all 

earthworm biopores. 

Evidently, the plant cuticles were the primary source not only for cutin-derived lipids 

but also for most free lipids. Cutin vs suberin in biopores reflected the food sources of 

earthworms (Fig. 7, Table S6, Supplementary material). Cutin contents were significantly 

larger than in root biopores, while suberin was not higher in incubated biopores. This is 

easily explained by the cutin-only forage of the incubated earthworms and the same root 

detritus in both root-affected biopore types. Thus, earthworm food sources left behind a 

significant molecular fingerprint in the biopores after six months of incubation.  

In the earthworm-incubated biopores, most plant biomarkers had higher 

contributions to SOC than bulk soil as these biopores are made from a combination of two 

large C sources (Table 1). However, the highest plant biomarker accumulation among 

biopores did not lead to the highest amount of microbial necromass: the amino sugars 

contribution to SOC was not larger than in bulk soil, but it led to significantly higher microbial 

hexoses per SOC (Fig. 4). Apparently, both biomarkers represent differently stabilised 

microbial compounds in soil. 

2.1.4.4 Native earthworm biopores 

The ‘native earthworm biopores’ represent the long-term (> 2.5 years) earthworm 

burrowing. The biomarker contents were very comparable to the earthworm-incubated 

biopores likely because all earthworms were fed with the same forage. In contrast to the 

other two biopore types, there was no known former root influence in these biopores for at 

least two years. Earthworms introduced much more C into the subsoil than roots alone 

(+28%; Table 1). Preferential earthworm activities were also found in the native earthworm 

biopores albeit weaker than in earthworm-incubated biopores. Without pre-existing root 

detritus, the lignin decrease with depth was weaker than in the incubated biopores (Fig. 2). 

Over longer time spans, earthworm activities more likely equalise lignin contents in both 

soil depths, suggesting that periodic events (e.g. droughts) force earthworms to dig deeper 

into the subsoil. In contrast, Σ (cutin + suberin) showed a much stronger depth effect than 

lignin. Cutin and suberin are likely more bioavailable than lignin, which means preferential 

earthworm activities in the immediate time before sampling may have become more 

apparent. 
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Even though earthworms were at least two years longer active in native earthworm 

biopores than the incubated ones, the biomarker contents were usually lower than in the 

earthworm-incubated biopores, suggesting lower overall activity. As native earthworm 

biopores did not feature a drastically different SOM composition (Figs. 2–7) than bulk soil, 

rather intensive processing and a lower recent input than in the incubated biopores is likely. 

Consequently, lacking regular, active OM input earthworm biopores are during 2–3 years 

already converge to bulk soil. Therefore, an active biopore management and their re-use 

and re-fill of the C stocks is required in case their unique features and potentially beneficial 

roles in agroecosystems shall be maintained.  

2.1.4.5 Identification of unknown biopores 

To assess the importance of biopores on the larger field scale, the origin of unknown 

biopores need to be identified. This will allow large-scale assessment of the relative 

contributions of roots and earthworms to biopores. As this is seldom visually possible, 

biopores need to be identified by biomarkers. However, analysis of > 16 substance classes 

including > 220 substances requires not only large amounts of very scarce biopore wall 

material but also time. For a successful differentiation, only a couple of compounds may 

be necessary. In our data set, the PLS algorithm assigned variables a high VIP which were 

recovered in all replicates of a biopore type, but not in others. The best predictors stem 

from lignin, neutral sugars, phospholipids and hydroxy fatty acids (Table 3). Thus, multiple 

biomarker analyses may be necessary to differentiate biopores. Microbial metabolites, 

stress markers and compounds stemming from OM decomposition, i.e. markers of OM 

dynamics, are much more relevant for the characterisation of hotspots than biomarkers 

describing OM sources. This points towards the fact that the unique turnover dynamics of 

biopores is heavily contributing to its molecular fingerprint and that OM sources are rapidly 

overridden by the high OM turnover (Banfield et al., 2018). 

The subsequent discriminant analysis with its discriminant functions consequently 

enables differentiation by ten variables (Table 3). Comparing the cases’ canonical scores 

with the ten variables in a biplot (Fig. 8) reveals that fucose and ribose feature high loadings 

on the Y-axis, separating the biopores from bulk soil. The lignin phenols p-coumaric acid 

and ferulic acid (both C subunits) had high loadings on the x-axis, separating the root 

biopores from the earthworm biopores. Consequently, neutral sugars and lignin analyses 

may be a good starting point for biopore differentiation, if analytical effort needs to be 

minimised. 

The PLFA 20:4ω6 was previously discussed as an earthworm marker (Sampedro 

and Whalen, 2007; Stromberger et al., 2012), which was also among the top ten predictors. 

The vectors of the p-coumaric acid, ferulic acid and PLFA 20:4ω6 were overlapping in the 
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biplot (Fig. 8), suggesting all three are markers for earthworms. However, the loadings of 

p-coumaric acid and ferulic acid were much higher, and lignin C subunits are more likely 

of plant-origin. Therefore, p-coumaric acid and ferulic acid were valid earthworm markers 

here due to their food sources (which were only applied to earthworms), but PLFA 20:4ω6 

may be a more general marker for earthworms. Hence, we recommend comparing 

biomarker candidates with source biomass characterisation to differentiate earthworm 

biomarkers from earthworm food biomarkers. 

 Conclusions 

A comprehensive compound-specific description of the OM in biopores and the deep bulk 

subsoil was direly needed to help disentangle C source contributions and C dynamics in 

subsoil hotspots. Earthworms and perennial tap-roots are immense sources of weakly 

processed C, which increased C contents up to three times in distinct subsoil biopores and 

enhanced substrate diversity relative to bulk soil. Over time, earthworms and roots 

distributed OM within their biopores, forming rather homogenous habitats. Macropore flow 

contributed to the C transport downwards – presumably strongest in root channels where 

no earthworms might have transported C up again. The biomarker contents in biopores 

reflected their specific C inputs: incubated earthworms fed on clover grass shoots until 

sampling, thus contents of C, hemicelluloses, cutin and lignin accumulated. Six months of 

earthworm incubation were sufficient to override former root detritus molecular fingerprint 

nearly. In root biopores, two years after the last C input, contents of less bioavailable 

cutin/suberin and especially lignin were larger than in bulk soil but a third lower than in both 

earthworm biopores – suggesting more advanced decomposition. While C inputs 

enhanced microbial biomass, turnover in earthworm biopores decreased microbial 

necromass, possibly through N recycling or priming. Despite the prominently increased 

biomarker contents in biopores, the contributions of biomarkers to SOC were only in few 

cases higher than in bulk soil. So even in the long-term, earthworms and roots only weakly 

altered the SOM structure (i.e. relative abundances of compound classes relative to bulk 

soil) but mainly increase OM stocks. 

Subsoil hotspot OM was undoubtedly quantitatively a very attractive C source for 

microorganisms, being highly concentrated in the very C poor surrounding. However, the 

SOM was also qualitatively different: for instance, biopore OM was 33% more diverse, 

which might I) bring metabolic advantages especially for recycling of complex compounds 

from SOM, II) imply a higher resilience towards changing environmental conditions and III) 

enhance C sequestration as a higher number of different compounds increases the 

probability of C stabilisation. All these aspects require further investigations of the 

ecological relevance of OM complexity and biopores may serve as a practical example 
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where such a topic might have field-scale relevance up to the level of agricultural 

production.  

We conclude that promoting earthworms or cultivation of tap-rooted crops even for 

one vegetation period only, is an effective management tool to transport large amounts of 

weakly processed and diverse OM into the subsoil, whose origin and turnover can be 

traced by biomarker approaches at least over several years.  
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 Supplementary Material 

Table S1 Count data of identified substances and their contents [g-1 dry matter] in all 

samples and for the primary plant inputs: shoots and roots of Cichorium intybus L., shoots 

of Trifolium repens L., T. pratense L. and Lolium perenne L. and L. terrestris bodies 

 

Lumbric
us 

terrestris 

Cichorium 
intybus 
shoots 

Cichorium 
intybus 
roots 

Lolium 
perenne 
shoots 

Trifolium 
pratense 
shoots 

Trifolium 
repens 
shoots 

# of compounds 142 125 118 122 142 106 
# of cutin/suberin-
derived lipids 23 17 21 30 33 35 
# of lignin-derived 
phenols 8 8 8 8 8 8 

# of n-alkanes 25 26 18 3 14 0 
# of neutral and 
acidic sugars 8 8 8 8 8 0 
# of free 
alcohols/ketones 12 5 8 12 13 10 
# of free fatty 
acids 29 31 27 27 25 33 
# of free hydroxy 
fatty acids 37 30 28 34 41 20 

       
Contents of 
cutin/suberin-
derived lipids 1361 1846 2404 7349 9507 12029 
Contents of 
lignin-derived 
phenols 3717 3274 42363 12150 6723 7648 
Contents of n-
alkanes 11301 13868 5250 247 1021 0 
Contents of 
neutral and acidic 
sugars 21640 84588 64182 52545 130954 0 
Contents of free 
alcohols/ketones 814 478 589 255 254 279 
Contents of free 
fatty acids 135 593 254 155 93 140 
Contents of free 
hydroxy fatty 
acids 2509 1961 4117 3701 10061 4236 
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Table S2 Contents ± SEM of lignin-derived phenols [µg g-1 soil] and their contribution to 

SOC ± SEM [mg g-1 SOC] in the biopore types and bulk soil. V, S and C represent vanillyl, 

syringyl and cinnamyl subunits. Letters state significant differences in one soil depth 

(Capital letters: 45-75 cm; small letters: 75-105 cm; One-way ANOVA with Tukey’s HSD 

post hoc test, α 0.05). Significant differences between two soil depths are shown by 

asterisks (t test for dependent samples) 

Biomarker contents [µg g-1 soil]  SOC contribution [mg g-1 SOC] 

45-75 
cm 

Bulk 
soil 

Earthworm 
pores 

EW-
incubated 

pores 

Root 
pores 

 Bulk 
soil 

Earthworm 
pores 

EW-
incubated 

pores 

Root 
pores 

V 
8.0 ± 
0.1A 

91.1 ± 6.0C 
128.2 ± 

2.4D 
60.3 ± 
9.8B 

 1.9 ± 
0.0A 

7.8 ± 0.5B 
10.8 ± 
0.4C 

8.8 ± 
0.2B 

S 
13.0 ± 
0.5A 

84.8 ± 5.3C 
119.7 ± 

1.3D 
60.5 ± 
5.4B 

 3.0 ± 
0.1A 

7.3 ± 0.5B 9.3 ± 1.0B 
7.9 ± 
0.7B 

C n.d. 21.8 ± 0.9A 
19.6 ± 
2.3A 

n.d.  n.d. 1.9 ± 0.1A 1.7 ± 0.1A n.d. 

Σ VSC 
21.0 ± 
0.5A 

197.7 ± 
12.0C 

267.5 ± 
2.3D 

120.8 ± 
13.5B 

 4.9 ± 
0.2A 

16.9 ± 1.0B 
21.8 ± 
1.2C 

16.7 ± 
0.7B           

75-105 
cm 

         

V 
6.3 ± 
1.2a 

82.7 ± 
3.2ab 

108.7 ± 
13.5b 

46.9 ± 
23.5ab 

 2.2 ± 
0.4a 

7.9 ± 0.3ab 
10.2 ± 
1.2b 

8.3 ± 
0.9ab 

S 
6.2 ± 
1.5a 

83.0 ± 
9.1ab 

102.1 ± 
6.7b 

75.9 ± 
19.0ab 

 2.0 ± 
0.2a 

7.9 ± 0.8ab 9.6 ± 0.8b 
8.1 ± 
1.5ab 

C n.d. 20.0 ± 3.2a 
20.3 ± 
1.7a 

n.d.  n.d. 1.9 ± 0.3a* 1.9 ± 0.2a n.d. 

Σ VSC 
12.5 ± 
2.5a 

185.8 ± 
13.6ab 

231.2 ± 
18.0b 

122.8 ± 
19.0ab 

 4.1 ± 
0.2a 

17.8 ± 1.2b 
21.8 ± 
1.8b 

13.6 ± 
1.8b 
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Table S3 Contents ± SEM of the neutral sugars [µg g-1 soil] and their contribution to SOC 

± SEM [mg g-1 SOC]. Letters state significant differences in one soil depth (Capital letters: 

45-75 cm; small letters: 75-105 cm; One-way ANOVA with Tukey’s HSD post hoc test, α 

0.05). Significant differences between two soil depths are shown by asterisks (t test for 

dependent samples) 

Biomarker contents [µg g-1 soil]   SOC contribution [mg g-1 SOC] 

45-75 cm 
Bulk 
soil 

Earthworm 
pores 

EW-
incubated 

pores 
Root 
pores   

Bulk 
soil 

Earthworm 
pores 

EW-
incubated 

pores 
Root 
pores 

Rhamnose 20 ± 

2A 

70 ± 5C 71 ± 3C 45 ± 2B   4 ± 0A 6 ± 0A 6 ± 0A 6 ± 0A 

Ribose 17 ± 

3A 

32 ± 5AB 47 ± 2B 24 ± 

0AB 

  5 ± 1A 3 ± 1A 4 ± 0A 3 ± 0A 

Fucose 10 ± 

1A 

30 ± 6AB 46 ± 1B 21 ± 

1AB 

  2 ± 0A 3 ± 1A 4 ± 0A 3 ± 0A 

Arabinose 64 ± 

3A 

162 ± 4AB 188 ± 3B 95 ± 

3AB 

  16 ± 

0B 

15 ± 0AB 16 ± 0B 12 ± 0A 

Xylose 34 ± 

3A 

176 ± 14AB 269 ± 12B 72 ± 

3AB 

  8 ± 0A 17 ± 1AB 22 ± 2B 9 ± 0A 

Mannose 53 ± 

6A 

157 ± 9AB 189 ± 4B 97 ± 

5AB 

  12 ± 

0A 

14 ± 1AB 16 ± 1B 13 ± 

1AB Glucose 71 ± 

10A 

389 ± 23B 401 ± 35B 199 ± 

9A 

  15 ± 

1A 

35 ± 2B 33 ± 2B 25 ± 

1AB Galactose 60 ± 

7A 

190 ± 6C 213 ± 4D 116 ± 

4B 

  14 ± 

1A 

17 ± 0AB 18 ± 1B 15 ± 

1AB Uronic 
acids 

23 ± 

6A 
42 ± 5A 37 ± 3A 37 ± 8A   5 ± 2A 4 ± 0A 3 ± 0A 5 ± 1A 

Σ Plant 
pentoses 

98 ± 

6A 338 ± 16AB 457 ± 9B 

167 ± 

5AB   

23 ± 

0AB 32 ± 2AB 38 ± 2B 21 ± 1A 

Σ 
Microbial 
hexoses 

99 ± 

9A 289 ± 14AB 353 ± 9B 

187 ± 

6AB   

23 ± 

0AB 26 ± 2AB 29 ± 1B 25 ± 1A 

Σ Neutral 
sugars 

346 ± 

35A 

1249 ± 

13AB 

1461 ± 

34B 

706 ± 

27AB   

74 ± 

3A 107 ± 2AB 116 ± 5B 

85 ± 

3AB 

           
75-105 cm          
Rhamnose 13 ± 

2a 

66 ± 4c 70 ± 2c 48 ± 3b   4 ± 1a 6 ± 1a 7 ± 0a 5 ± 0a 

Ribose 13 ± 

1a 

25 ± 2a 48 ± 0a 23 ± 2a   4 ± 0b 2 ± 0a 5 ± 0b 2 ± 0a 

Fucose 8 ± 

0a 

21 ± 1a 50 ± 1a 21 ± 2a   3 ± 0a 2 ± 0a 5 ± 0b 2 ± 0a 

Arabinose 49 ± 

2a 

135 ± 8a 165 ± 8a 96 ± 4a   16 ± 

0c 

12 ± 1ab 16 ± 1bc 10 ± 1a 

Xylose 26 ± 

2a* 

145 ± 15a 217 ± 14a 74 ± 4a   9 ± 1a 13 ± 2a* 20 ± 1b 8 ± 0a 

Mannose 40 ± 

2a 

131 ± 8b 173 ± 8c 108 ± 

5b 

  13 ± 

1a 

12 ± 1a 16 ± 1a 12 ± 0a 

Glucose 54 ± 

4a 

341 ± 10c 319 ± 

19c* 

227 ± 

15b 

  18 ± 

2a 

31 ± 2b 30 ± 2b 24 ± 

1ab Galactose 47 ± 

3a 

167 ± 11c 191 ± 8d 131 ± 

7b 

  16 ± 

1a 

15 ± 1a 18 ± 1a 14 ± 1a 

Uronic 
acids 

15 ± 

2a 
33 ± 2a 33 ± 4a 32 ± 5a   5 ± 1a 3 ± 0a 3 ± 0a 4 ± 1a 

Σ Plant 
pentoses 

76 ± 

1a 281 ± 23a 383 ± 22b 

170 ± 

7a   

25 ± 

1a 25 ± 3a* 36 ± 2b 18 ± 1a 

Σ 
Microbial 
hexoses 

74 ± 

3a 243 ± 15ab 341 ± 11b 

200 ± 

11a   

24 ± 

2a 22 ± 2a 32 ± 2b 22 ± 1a 

Σ Neutral 
sugars 

267 ± 

10a 1065 ± 59a 

1266 ± 

63a* 

759 ± 

37a   

83 ± 

6ab 89 ± 8ab 113 ± 7b 77 ± 3a 
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Table S4 Contents ± SEM of the amino sugars [µg g-1 soil] and their contribution to SOC ± 

SEM [mg g-1 SOC]. Letters state significant differences in one soil depth (Capital letters: 

45-75 cm; small letters: 75-105 cm; One-way ANOVA with Tukey’s HSD post hoc test, α 

0.05). Significant differences between two soil depths are shown by asterisks (t test for 

dependent samples) 

Biomarker contents [µg g-1 soil]   SOC contribution [mg g-1 SOC] 

45-75 cm 
Bulk 
soil 

Earthworm 
pores 

EW-
incubated 

pores 
Root 
pores   

Bulk 
soil 

Earthworm 
pores 

EW-
incubated 

pores 
Root 
pores 

Glucosamine 

544 
± 

133A 
1308 ± 
296A 729 ± 57A 

437 ± 
138A   

135 
± 

32A 109 ± 22A 65 ± 5A 
54 ± 
16A 

Mannosamine 
3 ± 
1A 26 ± 2B 23 ± 4B 

18 ± 
2B   

1 ± 
0A 2 ± 0B 2 ± 0B 

2 ± 
0B 

Muramic acid 
13 ± 
2A 22 ± 8A 15 ± 4A 

9 ± 
4A   

3 ± 
0A 2 ± 1A 1 ± 0A 

1 ± 
0A 

Galactosamine 

203 
± 

32A 583 ± 167A 306 ± 34A 
225 ± 
43A   

50 ± 
7A 48 ± 12A 27 ± 3A 

28 ± 
4A 

Σ Amino 
sugars 
  

762 
± 

164A 
  

1933 ± 
464A 

  

1073 ± 
84A 

  

689 ± 
176A 

  
  
  

188 
± 

39A 
  

161 ± 34A 
  

95 ± 7A 
  

85 ± 
20A 

  

75-105 cm                   

Glucosamine 

606 
± 

56a 
1230 ± 
195a 

1010 ± 
77a* 

1600 
± 

340a   

184 
± 

34a 118 ± 19a 103 ± 6a* 
178 ± 
45a 

Mannosamine 
1 ± 
0a 28 ± 9a 17 ± 6a 

42 ± 
13a   

0 ± 
oka 3 ± 1a 2 ± 0a 4 ± 1a 

Muramic acid 
23 ± 
5a 25 ± 5a 23 ± 5a 

44 ± 
21a   

7 ± 
2a 2 ± 0a 2 ± 1a 5 ± 3a 

Galactosamine 

209 
± 

30b 605 ± 98ab 477 ± 5ab* 
776 ± 
177b   

63 ± 
14a 58 ± 9a 49 ± 2a* 

87 ± 
24a 

Σ Amino 
sugars 

838 
± 

85a 
1875 ± 
296ab 

1527 ± 
81ab* 

2451 
± 

529b   

255 
± 

49a 179 ± 28a 157 ± 7a* 
273 ± 
71a 
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Table S5 Contents ± SEM of the free lipid fractions n-alkanes, ketones/n-alkanols, fatty 

acids and hydroxy fatty acids [µg g-1 soil] and their contribution to SOC ± SEM [mg g-1 

SOC]. Letters state significant differences in one soil depth (Capital letters: 45-75 cm; small 

letters: 75-105 cm; One-way ANOVA with Tukey’s HSD post hoc test, α 0.05). Significant 

differences between two soil depths are shown by asterisks (t test for dependent samples) 

Biomarker contents [µg g-1 soil]   SOC contribution [mg g-1 SOC] 

45-75 cm 
Bulk 
soil 

Earthworm 
pores 

EW-
incubated 

pores 
Root 
pores   

Bulk 
soil 

Earthworm 
pores 

EW-
incubated 

pores 
Root 
pores 

Σ n-
alkanes 

118 ± 
19A 412 ± 99A 407 ± 87A 

203 ± 
46A   

35 ± 
7A 35 ± 7A 35 ± 6A 

25 ± 
5A 

incl. n-
alkanes > 
C26 

63 ± 
8A 258 ± 63A 307 ± 69A 

113 ± 
25A   

18 ± 
4A 22 ± 5A 26 ± 5A 

14 ± 
3A 

Σ n-
alkenes 

86 ± 
7A 162 ± 48A 209 ± 43A 

186 ± 
39A   

20 ± 
2A 14 ± 4A 18 ± 3A 

23 ± 
5A 

Σ ketones 
/ alcohols 

6 ± 
0A 13 ± 2AB 15 ± 2B 

10 ± 
1AB   

2 ± 
0A 1 ± 0A 1 ± 0A 1 ± 0A 

Σ fatty 
acids 

1 ± 
0A 6 ± 1A 8 ± 1A 4 ± 1A   

0 ± 
0A 1 ± 0A 1 ± 0A 0 ± 0A 

Σ hydroxy 
fatty 
acids 

15 ± 
1A 31 ± 15A 19 ± 4A 

27 ± 
10A   

4 ± 
0A 3 ± 1A 2 ± 0A 3 ± 1A 

Σ Free 
lipids 
  

227 ± 
11A 

  
624 ± 158A 

  
658 ± 125A 

  

429 ± 
79A 

  
  
  

56 ± 
3A 

  
54 ± 14A 

  
56 ± 9A 

  

53 ± 
10A 

  
          

75-105 
cm                   

Σ n-
alkanes 

156 ± 
13a* 287 ± 28a 330 ± 63a* 

219 ± 
47a   

45 ± 
5a* 27 ± 3a 31 ± 5a* 

25 ± 
9a 

incl. n-
alkanes > 
C26 

84 ± 
8a 163 ± 13a 199 ± 35a 

112 ± 
22a   

24 ± 
3a 15 ± 1a 18 ± 3a 

13 ± 
4a 

Σ n-
alkenes 

70 ± 
1a* 113 ± 15a 119 ± 26a 

92 ± 
26a   

20 ± 
3a 10 ± 1a 11 ± 2a* 

11 ± 
4a 

Σ ketones 
/ alcohols 

7 ± 
0a* 10 ± 1a 12 ± 2a 9 ± 3a   

2 ± 
0a 1 ± 0a 1 ± 0a 1 ± 1a 

Σ fatty 
acids 

2 ± 
1a 4 ± 2a 7 ± 2a 6 ± 2a   

1 ± 
0a 0 ± 0a 1 ± 0a 1 ± 0a 

Σ hydroxy 
fatty 
acids 

20 ± 
4a 35 ± 14a 45 ± 26a 

44 ± 
17a   

6 ± 
2a 3 ± 1a 4 ± 2a 5 ± 2a 

Σ Free 
lipids 

255 ± 
10a* 449 ± 52a 514 ± 111a* 

371 ± 
86a   

74 ± 
10a 41 ± 5a 47 ± 8a* 

43 ± 
15a 
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Table S6 Contents ± SEM of the cutin and suberin-derived lipids [µg g-1 soil] and their 

contribution to SOC ± SEM [mg g-1 SOC]. C, CS, S and M represent cutin-, cutin or suberin-

, suberin-, or, microbial-derived lipids as determined after characterisation of plant inputs. 

Letters state significant differences in one soil depth (Capital letters: 45-75 cm; small 

letters: 75-105 cm; One-way ANOVA with Tukey’s HSD post hoc test, α 0.05). Significant 

differences between two soil depths are shown by asterisks (t test for dependent samples) 

Biomarker contents [µg g-1 soil]  SOC contribution [mg g-1 SOC] 

45-75 cm 
Bulk 
soil 

Earthwo
rm 

pores 

EW-
incubate
d pores 

Root 
pores   

Bulk 
soil 

Earthw
orm 

pores 

EW-
incubat

ed 
pores 

Root 
pores 

C 
0.6 ± 
0.2A 

5.2 ± 
0.7C 

4.7 ± 
0.3BC 

2.4 ± 
0.2AB 

 0.1 ± 
0.1A 

0.4 ± 
0.0B 

0.4 ± 
0.0AB 

0.3 ± 
0.0AB 

S n.d. 
7.3 ± 
0.7B 

5.7 ± 
0.1AB 

4.2 ± 
0.2A 

 0.0 ± 
0.0 

0.6 ± 
0.1A 

0.5 ± 
0.0A 

0.5 ± 
0.0A 

CS 
3.3 ± 
0.6A 

18.2 ± 
1.2D 

6.9 ± 
0.0B 

11.1 ± 
2.0C 

 0.8 ± 
0.2A 

1.6 ± 
0.1A 

0.6 ± 
0.0A 

1.2 ± 
0.3A 

M 
0.4 ± 
0.2A 

7.2 ± 
0.7B 

4.4 ± 
0.1AB 

3.6 ± 
0.6AB 

 0.1 ± 
0.0A 

0.6 ± 
0.1B 

0.4 ± 
0.0AB 

0.4 ± 
0.1AB 

Σ 
Cutin/suberi
n 

4.4 ± 
0.7A 

37.9 ± 
1.3C 

21.7 ± 
0.6B 

21.4 ± 
2.0B 

 1.1 ± 
0.2A 

3.3 ± 
0.1C 

1.8 ± 
0.1AB 

2.5 ± 
0.2BC 

          
75-105 cm          

C 
0.1 ± 
0.1a 

3.0 ± 
0.4a* 

3.5 ± 
1.1a* 

1.3 ± 
0.3a 

 0.0 ± 
0.0a 

0.3 ± 
0.0a 

0.3 ± 
0.1a 

0.1 ± 
0.0a 

S 
0.4 ± 
0.0a 

3.8 ± 
0.3a 

4.2 ± 
1.2a 

3.5 ± 
1.1a 

 0.1 ± 
0.0a 

0.4 ± 
0.0a 

0.4 ± 
0.1a 

0.4 ± 
0.1a 

CS 
1.3 ± 
0.2a* 

5.4 ± 
0.7a* 

6.2 ± 
1.1a 

4.5 ± 
0.8a* 

 0.4 ± 
0.1a 

0.5 ± 
0.1a* 

0.6 ± 
0.1a 

0.5 ± 
0.1a* 

M 
0.1 ± 
0.0a 

2.7 ± 
0.5a 

4.0 ± 
1.0a 

2.6 ± 
0.7a* 

 0.0 ± 
0.0a 

0.3 ± 
0.1a 

0.4 ± 
0.1a 

0.3 ± 
0.1a* 

Σ 
Cutin/suberi
n 

1.7 ± 
0.4a* 

14.8 ± 
1.6b* 

17.9 ± 
4.3b 

11.8 ± 
2.6ab 

 0.6 ± 
0.1a* 

1.4 ± 
0.2a* 

1.7 ± 
0.4a 

1.3 ± 
0.3a 

 

 

Table S7 Full dataset of the biopore contents [µg g-1 soil] 

All compounds, only uploaded as Excel spreadsheet (200 x 32 data points) 

 

See CD attached 
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Highlights 

• Subsoil C turnover in hotspots was evaluated using biomarkers as proxies 

• The hotspot type (earthworm vs root biopores) governs OM processing 

• Degree of OM processing highest in bulk subsoil, lower in biopores 

• Stronger processing of hemicelluloses than of lignin in biopores    

• Short-term anecic earthworm activities effectively renew biopore OM  
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Abstract 

Most subsoil carbon (C) turnover occurs in biopore hotspots such as root channels and 

earthworm burrows. Biopores allocate large C amounts into the subsoil, where a vast 

capacity for long-term C sequestration is predicted. We hypothesise that organic matter 

(OM) cycling in biopores depends on their origin. 

Earthworm and root biopores were induced under field conditions and were 

sampled from the subsoil (45–75 and 75–105 cm) after two years of biopore formation. The 

effects of biopore formation on OM decomposition were studied by biomarkers: neutral 

sugars, cutin and suberin-derived lipids, lignin-derived phenols and free lipids. The 

degradation stage of OM was biopore type-specific but was only governed by the soil depth 

in root biopores. Degradation of OM increased from earthworm biopores to root biopores 

and bulk soil. Hemicelluloses (GM/AX ratio) were more strongly degraded than lignin side-

chains (relative change from initial values). Two years of microbial processing during 

biopore formation increased the GM/AX ratio in earthworm biopores from 0.65 to 1.05 and 

in root biopores from 0.15 to 1.35 (both relative to source biomasses). Root biopores and 

bulk soil had the highest GM/AX ratios (1.2 – 1.3), hinting to rapid processing of plant 

residues and accumulation of microbial residues. The regular, frequent OM inputs by 

earthworms stimulated microbial growth and processing of mostly bioavailable OM and, 

thus, relatively enriched more persistent OM (e.g. lignin). Syringyl subunits of lignin 

underwent low (ratio changed from 0.35 to 0.55 relative to initial input) and vanillyl subunits 

underwent almost no processing in earthworm biopores indicating the preferential microbial 

utilisation of the easily available compounds frequently replenished by earthworm activity. 

After two years of decomposition of the root detritus, mainly structural plant material was 

enriched in root biopores. Short periods (6 months) of earthworm activity effectively 

recharged the highly processed OM in root biopores with fresh OM.  

In total, deep-rooting catch crops and short-term earthworm activities promote C 

accumulation in the subsoil followed by biopore-specific microbial processing 

predominantly governed by the C input frequency. As root biopores are up to 40 times 

more common than earthworm biopores, they dominate the OM input into subsoils. Such 

C inputs create several years lasting hotspots for preferential root growth and nutrient 

mobilisation in the subsoil. We conclude that root- and earthworm-derived biopores are 

vertical pathways for plant C from the soil surface into the subsoil and for intensive 

processing of litter C and sequestration of microbial necromass.  
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 Introduction 

Steadily increasing carbon (C) dioxide concentrations in the atmosphere are driving global 

climate change (IPCC, 2014). Its prominent projected consequences such as rising global 

mean temperatures and more variable precipitation (Li et al., 2009; Pal et al., 2004) are 

deemed unfavourable by society and therefore are to be mitigated (Tompkins et al., 2010; 

Urry, 2015). Sequestering carbon dioxide from the atmosphere in soils is being discussed 

as a viable option for reducing carbon dioxide concentrations (Lal et al., 2015; Poeplau and 

Don, 2015). Soils are the largest pool in the terrestrial C cycle (Scharlemann et al., 2014; 

Schimel, 1995) and are comparatively easy to manage in comparison to geological or 

marine pools. This holds particularly true for croplands as they are under management. 

Usually, mostly the topsoils are considered for plant nutrition in arable fields as the main C 

cycling and nutrient pools are found in the top part of the soil (Kautz et al., 2013). Recently, 

the subsoils, i.e. the soil below the ploughed horizon, have been pushed into the centre of 

attention of soil science. Subsoils have the capacity of storing large amounts of C when 

their mineral phases (clay, iron oxides) are not saturated (Kell, 2012). The large land cover 

of cropland (FAOSTAT, 2017), their manageability and the potential C storage capacity of 

subsoils make them attractive as long-term C sinks (Dignac et al., 2017; Torres-Sallan et 

al., 2017). However, for successful C sequestration, the dynamics of C in subsoils need to 

be better understood first.  

Carbon reaches the subsoil predominantly through leaching as dissolved organic 

carbon (Kalbitz and Kaiser, 2008; Kindler et al., 2011). It involves potentially strong 

microbial modifications to the leached C compounds (e.g. respiration) and depends on the 

water solubility of the allocated compounds (Kaiser and Kalbitz, 2012). Large amounts of 

C may be also brought into the subsoils by roots or soil fauna such as earthworms, i.e. in 

biopores (Kautz, 2015; Stirzaker et al., 1996). Compared to leaching, organic matter (OM) 

ends up faster in the subsoil (Munyankusi et al., 1994), but in defined vertical macropores. 

They feature not just elevated C stocks, but also strong and intense microbial activity 

relative to the non-biopore bulk soil (Hoang et al., (2016). Hence, they are considered as 

hotspots, i.e. small soil volumes with much higher microbial processing rates than the 

average soil conditions (Kuzyakov and Blagodatskaya, 2015). The bulk subsoil is 

characterised by low C stocks, high radiocarbon age and slow microbial cycling (Rumpel 

et al., 2002; Rumpel and Kögel-Knabner, 2011). Biopores could contribute to higher C 

stocks in the subsoil because with higher C inputs, more C may remain stabilised as soil 

organic matter (SOM). Conversely, more easily available C may cause priming of older, 

potentially stabilised SOM, which would cause a loss of C (Fontaine et al., 2007; Kuzyakov, 

2010). Studies on microbial communities and their residues in biopores have hinted to 
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different functions of biopores, i.e. nutrient cycling vs. C sequestration – depending on their 

genesis, i.e. root vs earthworm-derived biopores (Banfield et al., 2017). C stabilisation may 

vary mechanistically among different hotspot types. Earthworms may change the texture 

of the soil in their burrows through selective feeding (Zhang and Schrader, 1993) and OM 

is strongly physically and chemically modified during the gut passage (Cheshire and 

Griffiths, 1989; Thakuria et al., 2010). Depending on the biopore-specific C inputs, the 

resulting microbial necromass may further contribute to long-term C sequestration (Miltner 

et al., 2012; Six et al., 2006). If C turnover depends on the biopore type, this will have 

consequences for the total subsoil C turnover, which mainly takes place in hotspots 

(Kuzyakov and Blagodatskaya, 2015).  

The chemical composition of OM, its sources and degradation can be assessed by 

biomarkers (Amelung et al., 2008; Simoneit, 2005). Biomarkers are organic molecules 

whose detection indicates presence of an organism, tissue, secreted metabolites or their 

past presence. For instance, root influence is reflected by the contents of mid-chain ω-

hydroxy alkanoic acids and lignin-derived phenols (Armas‐Herrera et al., 2016; Spielvogel 

et al., 2008; Thevenot et al., 2010). The degradation stage of the OM is assessed by 

biomarker ratios, e.g. contents of oxidised / reduced lignin-derived phenols (Thevenot et 

al., 2010). Ideally, undecomposed source biomasses (e.g. crop shoots as earthworm food) 

are collected before the experiment and characterised for their biomarker composition 

together with the soil samples (Gunina and Kuzyakov, 2015). The change of the biomarker 

pattern of the undecomposed source biomass to the biomarker pattern in soil can be 

related to the experiment duration, herein termed ‘microbial processing’. 

To better understand C dynamics in hotspots and their relevance for subsoil C 

turnover, we conducted a biomarker study to link the biopore type and soil depth with C 

processing. Biomarker ratios known to characterise the degradation state of plant residues 

were used to reconstruct microbial processing by relating them to microbial biomarkers. In 

a field experiment over five years, three biopore types were induced by either I) growing 

tap-rooted chicory (Cichorium intybus L.) for three years followed by two years of fallow 

(root biopores), II) at least ≥ 3 years of earthworm activities (native earthworm biopores) or 

III) 6 months of earthworm incubation into root biopores (earthworm-incubated biopores). 

We sampled the material on the inner walls of the biopores and analysed it for lignin-

derived phenols, cutin and suberin-derived biomarkers, neutral sugars and free lipids. 

Proxies describing the processing of plant residues were calculated from these data and 

compared among the biopore types. 
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 Material and methods 

2.2.2.1 Sampling 

The study was conducted on the Campus Klein-Altendorf experimental research station 

near Bonn, Germany. The location had a mean annual temperature of 9.6 °C, a mean 

annual precipitation of 625 mm and featured a Haplic Luvisol (Hypereutric, Siltic; (IUSS 

Working Group WRB, 2008). A characterisation of the soil and its genetic horizons was 

given in Vetterlein et al. (2013). The experimental set-up was previously described in 

Banfield et al. (2017). In short, three biopore types were induced in the field and studied in 

two subsoil depths (45-75 cm; 75-105 cm), namely root biopores, native earthworm 

biopores and a combination of both: earthworm-incubated biopores (Fig. S1, 

Supplementary Material). Each treatment combination was replicated four times in different 

locations of the same agricultural field. 

1) Root biopores: from 2009 to 2012 chicory (Cichorium intybus L., var. Puna) 

was grown to induce taproots of at least 4 mm diameter in the subsoil. In 

2012, the topsoil (0-45 cm) was temporarily removed and live roots were 

mapped in 45 cm depth. After filling the disturbed topsoil back, the plots were 

kept fallow and did not receive any clover-grass. Roots had two years to 

decay until sampling in autumn 2014. 

2) Earthworm-incubated biopores: after 1.5 years of root decomposition, 

earthworms (Lumbricus terrestris L.), a native earthworm species in Central 

Europe, were inserted into a subset of at least 25 root biopores per field 

replicate for six months. In spring 2012, the topsoil (0-45 cm) was temporarily 

removed, and earthworms were incubated into previously identified and 

mapped 1.5-year-old root pores. Prior to incubation, an elastomer tag was 

injected into each earthworm body to allow re-discovery of the earthworms 

(Butt and Lowe, 2007). Earthworms were fed with clover-grass (shoots of 

Trifolium repens L., T. pratense L. and Lolium perenne L.) put on the soil 

surface until four weeks prior to sampling. 

3) Native earthworm biopores (colonised with predominately L. terrestris) were 

treated similarly to the earthworm-incubated biopores: plots were kept fallow 

from 2012 on and grass-clover material was placed on the soil surface as 

food. Native earthworm biopores were identified at the end of the experiment 

in September 2014 as follows: after removing the topsoil, a new soil surface 

was prepared in -45 cm and covered with litter for three days. Biopores with 

visible earthworm middens were considered colonised with earthworms.  
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4) Bulk soil samples, i.e. soil not containing any macroscopic biopores, were 

taken from areas next to the biopore plots. These plots were kept fallow and 

did not receive any clover grass amendment. 

In September 2014, after removing the topsoil down to -45 cm, soil around each 

identified biopore was manually removed first down to -75 cm, then to -105 cm. The 

biopores were opened vertically and the inner wall coating was sampled by shaving it off 

with micro spatulas once, i.e. approximately 1 mm (Andriuzzi et al., 2013). Thirty-two 

samples were taken: four field replicates were taken from each treatment (three biopore 

types + bulk soil) and from two subsoil depths (45–75 cm; 75–105 cm). Each sample was 

pooled from about 25 biopores. 

2.2.2.2 Biomarker analyses 

Contents of neutral sugars from hemicelluloses and microbial polysaccharides were 

determined after 4 M trifluoroacetic acid hydrolysis of 500 mg dried soil, followed by sample 

clean-up on DOWEX 50W X8 exchange resin and derivatization to aldononitrile acetates 

after Zhang and Amelung (1996). Lignin-derived phenols were determined after alkaline 

CuO oxidation, sample purification (precipitation of humic acids and C18 solid phase 

extraction columns, SPE), derivatisation of the lignin-derived phenols to trimethylsilylates 

by N,O-Bis(trimethylsilyl)trifluoroacetamide. To separate bound and free lipids, 3 g of dried 

and ground soil were extracted in a Soxhlet apparatus for 36 h in a 2:1 (v:v) mixture of 

dichloromethane and methanol. The extracted soil was used for cutin/suberin analyses, 

while the solvent extract was used for the free lipid analysis. The extracted soil was 

hydrolysed in methanolic KOH to cleave monomers off the bound lipids cutin and suberin, 

cleaned up by liquid-liquid extraction at pH 1 and finally derivatized in two steps 

(methylation by BF3: MeOH, 1.3.M, and acetylation by acetic anhydride: pyridine). The free 

lipids consisted of the free n-alkanes, n-alkenes, n-alkanols + alkanones, n-alkanoic acids, 

α,ω-alkanedioic acids and ω-hydroxy alkanoic acids. Liquid-liquid extraction at two pH 

values separated the acidic from the neutral fraction, while silica gel SPE separated the 

substance classes. Carboxylic groups were methylated (cf. above), while hydroxyl groups 

were acetylated (cf. above). All analyses included internal standards to correct for analyte 

loss during preparation and for autosampler injection volume. Five to seven volumes of 

external standard solutions were derivatized with the samples of each biomarker approach 

and the regressions of the resulting peak areas and the concentrations of standards were 

used for analyte quantification. The samples were measured by gas chromatography on 

Agilent 7820A or 7890A GCs fitted with DB-5MS (lipids) or OV-17 (carbohydrates) columns 

coupled to mass selective detectors (Agilent 7000A) or flame ionisation detectors (all 

Agilent Technologies, Waldbronn, Germany). Full details about oven programmes, GC and 
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MS parameters can be found in the Table S1 (Supplementary Material). The following 

proxies were calculated (Table 1): 

• The ratio of microbial sugars to plant-derived sugars ∑ (galactose + mannose) / ∑ 

(arabinose + xylose), in short: GM/AX, is a general proxy for the decomposition of 

plant material (Oades, 1984). With processing the proportion of plant-derived 

sugars decreases, whereas the proportion of microbial sugars successively 

increases. 

• A source-adapted ratio of ∑ (mannose + ribose + fucose) / ∑ (arabinose + xylose), 

in short MRF/AX, was calculated after characterisation of the source biomasses. 

Into the biopores, e.g. root residues of chicory or shoot litter of clover grass was 

introduced. The source biomasses were analysed like the samples to receive their 

‘undecomposed’ biomarker pattern. Substances were only used as plant 

biomarkers if they were identified in substantial amounts (> 10% of ∑) in the plant 

source biomasses such as chicory roots or clover shoots (Gunina and Kuzyakov, 

2015; Moers et al., 1990; Oades, 1984; Rumpel et al., 2010). Hexoses were 

assumed to be microbial markers only if they were known in the literature (Tanaka 

et al., 1990) and if they were absent in the source biomasses (Gunina and 

Kuzyakov, 2015). 

• The ratios of the lignin-derived syringyl/vanillyl phenols (S/V) or cinnamyl/vanillyl 

phenols (Ci/V) describe the lignin decomposition since syringyl and cinnamyl 

subunits are preferentially decomposed (Thevenot et al., 2010). 

• The ratio of the acidic phenol to the aldehyde phenol for each lignin-derived subunit, 

e.g. (Ac/Al)v for the vanillyl phenols, is a proxy for the side chain oxidation state of 

the lignin macromolecule (Thevenot et al., 2010). 

• The ratio of ∑ free / ∑ bound (ω-hydroxy alkanoic acids + α,ω-alkanedioic acids), 

i.e. solvent extractable suberin-derived molecules, describes the breakdown of 

polymeric plant tissues (mostly root suberin), which are the quantitatively most 

relevant source for free hydroxy alkanoic acids ≥ C16 (Armas‐Herrera et al., 2016; 

Bull et al., 2000; Kolattukudy, 1984), i.e. depolymerisation products (Naafs and van 

Bergen, 2002). Albeit minor sources include oxidative degradation of free alkanoic 

acids (Quenea et al., 2004), relating the contents of free to suberin-derived ω-

hydroxy alkanoic acids was suggested to be a biomarker for suberin degradation 

(Otto and Simpson, 2007). 

• Analogous to the above, the ratio of ∑ free / ∑ bound saturated alkanoic acids was 

calculated as a potentially meaningful proxy for the cleavage of suberin. Longer 

alkanoic acids (≥ C20) were suggested to be mainly derived from suberins (Bull et 

al., 2000; Kolattukudy, 1980; Naafs and van Bergen, 2002; Vidal et al., 2016).  
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• The ratio of ∑ n-alkenes / ∑  n-alkanes ≥ C26 (both odd and even chain length) was 

calculated as a proxy for the microbial processing of cuticles and root tissues 

(Amblès et al., 1994; Vidal et al., 2016) (Naafs and van Bergen, 2002). Long-chain 

n-alkanes derive from plant waxes (Lichtfouse, 1997; Wiesenberg et al., 2004), 

while n-alkenes are microbial products (Amblès et al., 1994; Lichtfouse et al., 1998). 

• The C/N ratio and bulk isotopic composition (δ13C) are broad proxies for SOM 

processing (Balesdent et al., 1987). 

These proxies needed to be related to the intact source biomasses since prior to 

decomposition the source biomasses already differ in their proxy values (Table S2, 

Supplementary material). We characterised the biomasses of L. terrestris bodies, C. 

intybus shoots, C. intybus roots, Lolium perenne shoots, Trifolium pratense shoots and T. 

repens shoots. Data on the bulk isotopic composition (δ13C), as well as C and nitrogen (N) 

contents of the same treatments, were taken from Banfield et al. (2017). 

 

Table 1 Overview of the biomarker proxies used to evaluate the microbial processing and degradation of 
plant inputs in biopores 

Biomarker Abbreviation Description References 

∑(galactose + mannose) / 

∑(arabinose + xylose) 
GM/AX 

Processing of plant-derived 

hemicelluloses 

(Gunina and Kuzyakov, 

2015; Moers et al., 

1990; Oades, 1984; 

Rumpel et al., 2010) 

∑(mannose + ribose + 

fucose) / ∑(arabinose + 

xylose) 

MRF/AX 
Processing of plant-derived 

hemicelluloses, source-

adapted 

Source adaption 

(Gunina and Kuzyakov, 

2015) 

Ratio of syringyl / vanillyl 

lignin phenols 

Ratio of cinnamyl / vannilyl 

lignin phenols 

S/V 

 

 

Ci/V 

 

Processing of lignin-derived 

phenols (subunit-specific) 

(Rasse et al., 2006; 

Thevenot et al., 2010) 

Ratio of acidic / aldehyde 

phenol for each lignin 

subunit 

(Ac/Al)v 

(vanillyl); 

(Ac/Al)s 

(syringyl) 

Oxidative degradation state 

of lignin-derived phenols 

(Rasse et al., 2006; 

Thevenot et al., 2010) 

Ratio of ∑ free / ∑ (bound 

ω-hydroxy alkanoic acids 

(C16-C24) + α,ω-

alkanedioic acids (C16-

C26)) 

HO-AA Processing of suberin and 

root lipids 

(Ertel and Hedges, 

1984; Hedges and 

Ertel, 1982; Thevenot 

et al., 2010) 

Ratio of ∑ free / ∑ bound 

n-alkanoic acids (C20-

C30) 

AA 
Processing of suberin and 

root lipids 

(Bull et al., 2000; Vidal 

et al., 2016) 

∑ n-alkenes (≥C14) / ∑ n-

alkanes (≥C26) 

APR (alkene/ 

precursor 

ratio) 

Processing of epicuticular 

waxes (≥C26) to n-alkenes 

(≥C14) 

(Kolattukudy, 1980; 

Naafs and van Bergen, 

2002) 

Bulk isotopic composition δ13C 
General turnover marker for 

SOM 

(Amblès et al., 1994; 

Vidal et al., 2016) 
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These proxies needed to be related to the intact source biomasses since prior to 

decomposition the source biomasses already differ in their proxy values (Table S2, 

Supplementary material). We characterised the biomasses of L. terrestris bodies, C. 

intybus shoots, C. intybus roots, Lolium perenne shoots, Trifolium pratense shoots and T. 

repens shoots. Data on the bulk isotopic composition (δ13C), as well as C and nitrogen (N) 

contents of the same treatments, were taken from Banfield et al. (2017a). 

2.2.2.3 Statistical evaluation 

Each dataset containing the proxy values was screened for outliers by Nalimov’s test and 

maximum one outlier per treatment combination and proxy was removed. A principal 

component analysis (PCA) based on correlations was performed on the combined dataset 

of all proxies. For the treatments, factor coordinates were calculated from the two principal 

components with the highest eigenvalues. Likewise, for the variables (biomarker ratios), a 

correlation circle was calculated. The MRF/AX ratio was excluded due to collinearity with 

the GM/AX ratio. The grouping variable was the treatment (three biopore types and bulk 

soil). Data given in the tables and figures are mean values ± standard errors. Significant 

differences of means among biopore types were tested by one-way analyses of variance 

(ANOVA) for each depth separately since the two soil depths provide paired samples. 

Levene’s test was used to test for homogenous variances. Normality of the residues was 

checked in Q-Q plots. Post-hoc comparisons were by Tukey’s Honest Significant 

Differences Test. If assumptions were not met, non-parametric ANOVA (Kruskal-Wallis 

ANOVA) including post-hoc comparisons of mean ranks were used instead. Pairwise two-

sample t-tests for dependent samples were used to determine differences between soil 

depths for each biopore type and proxy. All statistical analyses were performed in Statistica 

13.2 (StatSoft Inc., Tulsa, OK, U.S.A.). 

 Results 

The PCA calculated from seven variables explained 51% of the total variance (Fig. 2). All 

variables, i.e. biomarker proxies, were positively correlated with the principal component 

(PC) 1 (x-axis, Fig. 2, right). The GM/AX and (Ac/Al)v ratios were most strongly correlated 

with PC 1, which separated the earthworm biopores from root biopores and bulk soil (Fig. 

2, left). Both earthworm biopore types showed little in-group variance and were 

overlapping. Earthworm incubation for six months obscured the former root presence by 

incorporation of fresh material. Bulk soil and root biopores showed much higher in-group 

variance along PC 2, which separated root biopore samples from to -45–75 cm and form 

of -75–105 cm. The effect of the soil depth was most strongly represented by the lignin 

biomarkers (S/V, (Ac/Al)s, (Ac/Al)v ratios; Fig. 2, right). Long-term and short-term 
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earthworm activities in the earthworm biopores obscured any soil depth effect. The other 

proxies were equally correlated with both principal components. As the Ci/V ratio correlated 

only weakly with either axis, it was only included in the supplementary material (Fig. S2). 

2.2.3.1 Neutral sugar ratios 

The sugar ratios values did not differentiate the biopores types from the bulk soil in 45–75 

cm but in 75–105 cm (Fig. 2). Earthworms decreased the degradation stage of the 

hemicelluloses in the deeper subsoil (relative to bulk soil, i.e. ‘earthworm effect’ illustrated 

exemplarily in Fig. 2), while after two years of root decay in the root biopores the 

hemicelluloses were as degraded as in bulk soil. Relative to the source biomasses, native 

earthworm activity increased the GM/AX ratio from 0.65 (clover grass) to 1.0, while short-

term earthworm incubation in root biopores increased it from 0.42 (50% clover grass + 50% 

roots) to 0.95. So, the means of the earthworm biopores were close to the source 

biomasses, suggesting that polysaccharides in earthworm biopores had undergone the 

least microbial processing among the biopores. In comparison, the GM/AX ratio after two 

years decomposition was 1.3 in root biopores, while the undecomposed root necromass 

had a GM/AX ratio of 0.2, which underlines the strong processing of polysaccharides 

compared to the earthworm biopores. The high GM/AX ratio of bulk soil reflected the long-

term turnover. Equivalent results were found for the MRF/AX ratio. 

 

Fig. 1 Left: Principal component analysis of seven proxies describing the degree of processing: GM/AX, 
Ac/Al for S and V subunits, S/V and Ci/V ratios; free/bound ω-hydroxy alkanoic acids or alkanoic 
acids ratios, as well as the n-alkene / n-alkanes ratio. Source biomasses were added as 
supplementary data (black diamonds): earthworm feed, chicory root detritus and a combination of 
both. Different colours represent the four treatments (bulk soil vs native vs earthworm (EW)-
incubated biopores vs root biopores). Triangles represent samples from 45–75 cm, while circles 
are samples from 75–105 cm. Ellipses show the within-group variance. PC 1 and 2 explained 35% 
and 17% of the inertia, respectively. The arrows illustrate the effects of earthworms (corresponding 
to PC 1, i.e. x-axis), soil depth (mainly corresponding to PC 2, i.e. y-axis), earthworm incubation 
and tap roots. Right: Correlation circle describing the correlation between biomarker ratios and the 
two PC. 
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2.2.3.2 Processing of the lignin macromolecule 

The oxidation state of the lignin side chains (Fig. 3) confirmed the degree of OM processing 

in biopores previously seen in the polysaccharides – irrespective of the subunit studied 

(Fig. 2). Relative to bulk soil, the lignin oxidation state in earthworm biopores was lower in 

both subsoil depths. However, lignin in root-influenced biopores was only less oxidised in 

the 75–105 cm horizon. Highest oxidation was apparent in bulk soil. Both earthworm 

biopores had the lowest lignin oxidation state and also the least microbial processing during 

biopore formation (oxidation state increased from initial 0.4 → 0.55 for (Ac/Al)s). Vanillyl 

subunits underwent almost no processing in any of the earthworm biopore types. Like in 

the case of sugars, root biopore lignin underwent the strongest processing among 

biopores. The S/V ratio showed stronger processing in bulk soil than in earthworm biopores 

(Fig. S2, Supplementary material), especially in 45–75 cm. The Ci/V could only be applied 

to the earthworm biopore types since only in them cinnamyl subunits were recovered, 

which stem from the clover-grass feed. Preferential earthworm activities may be deduced 

 

Fig. 2 Proxies for hemicelluloses: the GM/AX ratio ∑ (galactose + mannose) / ∑ (arabinose + xylose) as 
grey bars and the source-adapted MRF/AX ratio as white bars ∑ (mannose + ribose + fucose) / ∑ 
(arabinose + xylose). Shown are means ± standard errors of all four treatments. Capital letters 
indicate significant differences for 45–75 cm (one-way ANOVA, Tukey’s HSD test on α 0.05), 
whereas small letters indicate significant differences for 75–105 cm. Asterisks indicate significant 
differences of a variable between both soil depths according to t-test for dependent samples. Red 
lines indicate the values of the source biomasses, i.e. plant litter or residue inputs prior to 
decomposition (earthworm biopores: clover grass only; EW-incubated biopores: 50% clover grass 
+ 50% roots; root biopores: root detritus only). The red and blue arrows indicate the effects of 
biopore-specific microbial processing, which in the case of earthworms (*) also includes earthworm 
/ gut microflora processing. The difference to the bulk indicates the effects of roots and/or 
earthworms, respectively (shown as an example of interpretation, red dashed line as a visual 
guide).  
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from the Ci/V ratio since significant differences were only found in 45–75 cm between both 

earthworm biopore types. 

2.2.3.3 Lipid-derived proxies 

The HO-AA ratio, describing the depolymerisation of suberin to free ω-hydroxy alkanoic 

acids, was highest in bulk soil (p<0.05 in 75–105 cm, Fig. 4). Suberin in earthworm 

biopores remained rather intact relative to bulk soil. The effects of root decay, earthworm 

incubation and earthworm burrowing on the depolymerisation state of suberin were similar 

in 75–105 cm, however, no data was available for 45–75 cm. Significant differences among 

biopores were found for the AA ratio, describing the depolymerisation of suberin to free 

alkanoic acids: highest values were found in the root biopores relative to native earthworm 

biopores (75–105 cm). The ratio of n-alkenes to their pre-cursors n-alkanes (describing the 

degradation of epicuticular waxes) had a similar behaviour among treatments like the 

GM/AX ratio: the highest degree of processing in bulk soil and root biopores, lowest in both 

earthworm biopore types. However, both root detritus-influenced biopore types featured a 

lower degree of degradation of waxes with depth (p<0.05). Summarising, the proxies for 

 

Fig. 3 Oxidation state of the lignin side chains. Ratios of vanillic acid/vanillin (Ac/Al)v as grey bars and 
syringic acid/syringaldehyde (Ac/Al)s as white bars. Shown are means ± standard errors of all four 
treatments. Capital letters indicate significant differences for 45–75 cm (one-way ANOVA, Tukey’s 
HSD test on α 0.05), whereas small letters indicate significant differences for 75–105 cm. (Ac/Al)s 
for bulk soil represents only one value. Red lines indicate the values of the source biomasses, i.e. 
plant inputs prior to decomposition. The red and blue arrows indicate the effects of biopore-specific 
microbial processing. The difference to the bulk indicates the effects of roots and/or earthworms, 
respectively. The red dashed lines correspond to the bulk soil degradation state as a visual guide.  
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the hemicelluloses, suberin and lignin showed increasing OM processing in the order: 

earthworm biopore < root biopores < bulk soil.  

 

  

 

Fig. 4 Lipid-based proxies: free/bound ω-hydroxy alkanoic acids (HO-AA) as black bars on the left y-axis; 
free/bound alkanoic acids (AA) as white bars and ∑ n-alkenes / ∑ n-alkanes as grey bars, both on 
the right y-axis. Shown are means ± standard errors of all four treatments. Capital letters indicate 
significant differences for 45–75 cm (one-way ANOVA, Tukey’s HSD test on α 0.05), whereas small 
letters indicate significant differences in 75–105 cm. Asterisks indicate significant differences of a 
variable between both soil depths (Two sample t-test for dependent samples). Red lines indicate 
the values of the source biomasses, i.e. plant inputs prior to decomposition. The red and blue 
arrows indicate the effects of biopore-specific microbial processing. The difference to the bulk 
indicates the effects of roots and/or earthworms, respectively. The red dashed lines correspond to 
the bulk soil degradation state as a visual guide. 
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 Discussion 

2.2.4.1 Applicability of biomarker-derived proxies 

This study employed biomarkers ratios to determine the degree of microbial processing of 

biopore OM and the effects of soil biota. Biomarker ratios have been used extensively in 

the past to study OM dynamics (Glaser et al., 2004; Otto and Simpson; Spielvogel et al., 

2007). As with many biomarkers, their sources are frequently generalised and thus not 

always undoubted or specific (Amelung et al., 2008; Frostegård et al., 2011), e.g. in the 

case of neutral sugars (Gunina and Kuzyakov, 2015). Thus, we characterised the input 

biomasses (e.g. chicory roots, clover grass) to get source-adapted biomarkers. The lignin, 

suberin and hemicellulose markers represent the main structural components of shoot litter 

and root residues (Bull et al., 2000; Kögel-Knabner, 2002). They reflect medium and long-

term decomposition processes and are not appropriate to characterise the very early 

stages of litter decomposition (Haider and Martin, 1979; Schöning et al., 2005).  

As the time points of the last C input into different biopore types were not identical 

in our study, a direct comparison of the decomposition rates in the biopores is not 

quantitatively possible (Figs. 2, 3, 4). As under field management conditions inputs into 

different biopores also occur at different times of the cropping season (Eriksen-Hamel et 

al., 2009), our design features representative conditions for biopores in agricultural soils. 

Therefore, our findings can be generalised: the conditions described herein, i.e. earthworm 

burrowing and decaying roots, are common in arable fields under fallow or no-till (Chan, 

Table 2 General soil properties and information regarding the biopores. Shown are mean values ± standard 
errors of TOC and TN contents, C/N ratios and δ13C for root biopores, EW-incubated biopores, 
native earthworm biopores and bulk soil. Capital letters indicate significant differences for 45–75 
cm (one-way ANOVA, Tukey’s HSD test on α 0.05), whereas small letters correspond to 75–105 
cm. Asterisks indicate significant differences of a variable between both soil depths (two sample t-
test for dependent samples). Taken from Banfield et al. (2017a). 

 

 

  Bulk soil 
Earthworm 

pores 
EW-incubated 

pores Root pores 

  

45-75 
cm 

75-105 
cm 

45-75 
cm 

75-105 
cm 

45-75 
cm 

75-105 
cm 

45-75 
cm 

75-105 
cm 

Total 
organic 

carbon [%] 

0.41 ± 
0.02A 

0.35 ± 
0.05b 

1.17 ± 
0.05C 

1.05 ± 
0.04a 

1.16 ± 
0.04C 

1.07 ± 
0.04a* 

0.81 ± 
0.03B 

0.93 ± 
0.06a 

Total 
nitrogen 

[%] 

0.06 ± 
0.00A 

0.05 ± 
0.00b* 

0.11 ± 
0.00C 

0.10 ± 
0.01a 

0.12 ± 
0.00C 

0.11 ± 
0.01a 

0.09 ± 
0.00B 

0.10 ± 
0.01a 

C : N 7.2 ± 0.1D 7.7 ± 0.9a 
10.3 ± 
0.2C 

10.3 ± 
0.5a 

9.6 ± 0.1B 9.9 ± 0.4a 8.6 ± 0.2A 9.7 ± 0.5a 

δ13C [‰] 
-25.0 ± 
0.05B 

-23.5 ± 
0.75a 

-25.3 ± 
0.25AB 

-23.8 ± 
0.66a 

-26.5 ± 
0.21A 

-25.6 ± 
0.51a 

-25.7 ± 
0.46AB 

-23.4 ± 
1.17a 
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2001). Certainly, the OM input amounts were not identical among the biopore types. By 

calculating biomarker ratios, the absolute biomarker contents are taken out of the equation 

and the decomposition stage under field conditions becomes evident.  

At a glance, all proxies present a certain degree of degradation of the biopore OM. 

The biopore development was intensive enough to affect all proxies irrespective of the 

analytical method and suggested mutual validation of the proxies (also visible in the 

correlation circle of Fig. 1, right). However, comparing e.g. lignin and n-alkane proxies in 

root biopores (Figs. 3, 4), a depth effect was apparent only for the latter. Therefore, it is 

crucial to compare proxies for multiple substance classes to get the ‘big picture’, i.e. the 

compound and hotspot-specific OM transformations. Apart from the biomarker-derived 

proxies, the microbial processing also impacted the bulk isotopic composition (δ13C) and 

the C/N ratio through the relative increase of microbial necromass relative to the 

successively decomposed plant material (Table 2). As less pronounced treatment effects 

were apparent relative to the biomarkers, δ13C was clearly a less sensitive marker for the 

processing of OM compared to the biomarker ratios. 

The distinction between the GM/AX ratio and the source-adapted MRF/AX ratio was 

not immediately obvious in case of the investigated hotspots (Fig. 2). The similarity of both 

ratios underlines that both are suitable for C dynamics studies due to the same 

methodological background (Gunina and Kuzyakov, 2015). However, the MRF/AX ratio is 

less biased than the GM/AX ratio in our setup: a high galactose content in chicory roots 

and other plants (Angers and Mehuys, 1990), raises concerns if the frequently applied 

GM/AX ratio is always the best ratio. Galactose found in biopores of chicory may be mostly 

root-derived and not microbial. We, therefore, recommend checking the primary inputs for 

confounding sugar contents and calculating source-adapted biomarkers. 

Reduced explanatory power may result from sampling: the bulk soil and the soil 

ingested by earthworms contains native lipids and carbohydrates (Gunina and Kuzyakov, 

2015; Kögel-Knabner et al., 2008). This potentially influences the apparent degree of 

processing at the end of the experiment. In our setup, this effect is not expected to play a 

major role for two reasons. First, the lipid and carbohydrate contents in the deep bulk 

subsoil were rather low and the C inputs into the biopores were orders of magnitude larger 

resulting already after two years in a threefold higher C content (Banfield et al., 2017). 

Second, no or only little bulk soil was sampled with the biopore linings. Care was taken not 

to take all biopore linings by shaving off the inner walls only once with a micro spatula. 

Earthworm biopores are expected to be influenced by carbohydrate-containing mucus 

produced by the earthworms (Brown et al., 2000; Curry and Schmidt, 2007). 
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2.2.4.2 The effects of earthworms, roots and soil depth on the decomposition stage of 

biopore OM 

The PCA illustrated the similarities between both earthworm biopore types and between 

root biopores and the bulk soil (Fig. 1, left): earthworm-influenced biopore types were fully 

overlapping with each other, and the root biopores were partly overlapping with the bulk 

soil. Earthworm activities were discernible in the PCA from smaller within-group variance 

than the other biopores or bulk soil. This already anticipated some important conclusions 

of the experiment: I) the strong and fast impact of earthworms on OM dynamics and II) the 

late stage of residue turnover in root biopores and their similarity to bulk soil after two years 

of decomposition. Principal component 1 clearly distinguished the ‘fresh input’ (earthworm 

influence; Fig. 1) from the ‘old C’ samples (no recent C input in bulk soil and root biopores). 

As earthworms were fed with clover grass during the entire experiment, they brought new 

C into the biopores and induced the ‘earthworm effect’. The earthworm effect is most 

strongly correlated with GM/AX and (Ac/Al)v ratios apparently indicative for low processed 

clover grass. Figure 2 exemplarily illustrates I) microbial processing, i.e. the red arrow 

shows the increase of the biomarker ratio from the undecomposed source biomass during 

biopore development, and II) the earthworm effect, i.e. less decomposed earthworm 

biopore OM relative to bulk soil. Microbial processing includes processing in the earthworm 

gut by microflora, which is predominantly derived from soil microflora, and also enzymes 

produced by the earthworm itself (Brown et al., 2000; Curry and Schmidt, 2007). 

Earthworms replenished the OM, i.e. hemicelluloses (Fig. 2), lignin (V subunits, Fig. 3) and 

suberin and n-alkanes (Fig. 4) were less degraded than in bulk soil. This underlines the 

immense role of earthworms as ecosystem engineers (Jones et al., 1996).  

The effect of the soil depth on both native earthworm and earthworm-incubated 

biopores was little: the degradation state was almost identical between soil depths and the 

variance of the proxies was smallest among the biopores (smallest ellipses in Fig. 1; Figs. 

2, 3, 4). Therefore, even short-term earthworm burrowing for six months effectively added 

and redistributed OM within the burrows and equalised depth effects (Jégou et al., 2000). 

Earthworm incubations are almost independent of their duration beneficial for C and 

nutrient accumulation in the subsoil and could be easily implemented by reduced tillage 

(Athmann et al., 2017; Rumpel et al., 2012). While the soil depth had little effect on the OM 

in earthworm biopores, it was apparent for the root biopores along PC 2 (Fig. 1). Root 

detritus was more decomposed in the lower subsoil (Fig. 2, Table 2 C/N). The higher 

decomposition of root hemicelluloses (Fig. 2) may either result from a lower degree of 

lignification (Barros et al., 2015) or from a lower degree of cross-linking (arabinoxylan to 

lignin) of the younger root detritus in the deeper subsoil (Amin et al., 2014; Bertrand et al., 

2005; Moorhead et al., 2014). 
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The root effect on all biomarker ratios was weaker than the earthworm effect (Figs. 2, 3, 4) 

and appeared to be wearing off after two years of root decomposition: only suberin and 

lignin (V subunits) were not yet as decomposed as the bulk SOM (Figs. 3, 4). Root biopores 

had not yet fully reached the decomposition state, nor the C contents of the bulk SOM 

(Table 2). Thus, until less bioavailable inputs will be fully turned over at least 1-2 years 

more of accelerated C and nutrient turnover may be expected in the root biopores 

(Schöning et al., 2005). 

2.2.4.3 OM processing in the biopores 

The microbial processing (illustrated by the red and blue arrows in Figs. 2, 3 and 4) in the 

biopore hotspots was lowest with the highest frequency of C input. First, taproot residues 

underwent the strongest microbial processing among biopores. Residues were probably 

only weakly incorporated into the surrounding soil as compared to earthworms’ ingesting 

and casting (Lubbers et al., 2017). This limits the contact between root residues and 

mineral surfaces and, therefore, limits physicochemical C stabilisation (Schmidt et al., 

2011). In contrast, intimate mixing of partly processed OM in the earthworm gut brings 

polar functional groups in contact with mineral surfaces and generates aggregates 

stabilised by organo-mineral interactions (Jégou et al., 2000; von Luetzow et al., 2006). It 

may be speculated that such protection might have contributed to the lower degree of 

processing of OM in earthworm biopores compared to root biopores (Figs. 2, 3, 4). For 

instance, the proxies of hemicelluloses and n-alkanes showed divergent trends with depth 

in root-influenced biopores (Figs. 2, 4). The microbial processing of polysaccharides and 

lipids is, therefore, not governed by the same factors. Likely the varying interaction with the 

mineral phases due to oxidation state and functional groups as well as the low 

bioavailability of n-alkanes can help explain this behaviour (Rumpel et al., 2010; Rumpel 

et al., 2012; Vidal et al., 2016). 

The frequent OM inputs by earthworms regularly replenished the decaying pool of 

easily bioavailable C (hemicelluloses) - fuelling a large-size microbial community of fast-

growing Gram-negative bacteria, which preferentially grow on easily available C (Banfield 

et al., 2017; Curry and Schmidt, 2007; Hoang et al., 2016). The less bioavailable, structural 

OM (lignin, suberin) is then, consequently, only weakly decomposed (Figs. 3, 4). In the 

case of the single OM input in the root biopores, a gradual conversion of plant biomass into 

more stabilised microbial necromass is likely (Puget and Le Drinkwater, 2001). The OM in 

root biopores enriched the microbial community in Gram-positive bacteria and 

actinobacteria (Banfield et al., 2017), i.e. slowly growing decomposers of structural and not 

easily available C (Větrovský et al., 2014). 
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As hemicelluloses, suberin and lignin derive from primary and secondary plant cell 

walls and have similar functions and locations in plants (Kögel-Knabner et al., 2008), it was 

expected that they are decomposed at similar stages of decomposition (Cotrufo et al., 

2013). However, the GM/AX ratio was more increased than the lignin oxidation state or 

HO-AA (relative to the inputs) demonstrating that the processing of hemicelluloses was 

faster than of lignin or suberin (Figs. 2, 3, 4). Therefore, the more easily available C of the 

hemicelluloses was preferentially processed. 

OM processing in earthworm pores is dominated by two contrasting processes: I) 

high microbial activity due to fresh C inputs likely caused intensive microbial processing of 

the biopores OM, and, II) the biomarker ratios of earthworm biopores might be vastly 

dominated by the high frequency of imported ‘unprocessed’ OM from which only the highly 

bioavailable parts were utilised by microorganisms. Our observation of lower microbial 

processing especially of less bioavailable substance classes (lignin) points toward the 

dominance of the second process. The two processes of I) increased microbial processing 

by high activity vs II) dominance of frequent input of ‘unprocessed’ biomass can also be 

distinguished by the δ13C value of the biopore OM. When earthworms accelerate the 

turnover of OM, increased fractionation processes take place leading to an increase of the 

δ13C (Werth and Kuzyakov, 2010). In contrast, the imported fresh shoot litter (clover grass) 

decreased the δ13C of biopore OM by the input of ‘unprocessed’ OM. This process is 

enhanced by the microbial preference for easily decomposable substance classes 

(Blagodatskaya et al., 2009), which are isotopically heavier. This results from processes 

during plant biomass synthesis (Hobbie and Werner, 2004; Park and Epstein, 1961) where 

lignin undergoes many fractionating reaction steps during its biosynthesis and becomes 

isotopically lighter than sugars which remain longer in the unreacted photosynthate pool 

and undergo fewer reaction steps to hemicelluloses (Boerjan et al., 2003; Pauly et al., 

2013). The lower 13C abundance of earthworm-incubated biopores (Table 2) confirms the 

relative accumulation of isotopically lighter substances (e.g. lignin) in biopores by the 

preferential decomposition of the isotopically heavier parts of the fresh clover grass litter 

as e.g. hemicelluloses (Figs. 2, 3). Presumably, as soon as the C input ceases – e.g. in the 

root biopores – microorganisms would use all forms of C or even re-use, e.g. in the case 

of the bulk soil where the supply is very limited (Fierer et al., 2003; Richter and Markewitz, 

1995), resulting in the higher 13C value of bulk SOM (Table 2).  

The strong processing of bulk SOM indicated by its 13C value is also confirmed by 

highest (Ac/Al)v ratios for bulk soil lignin. The bulk SOM derives from a wide range of inputs 

and was highly oxidised which is likely a pre-requisite for stabilisation of lignin (Vidal et al., 

2016). The subunit-specific processing of lignin was similar in bulk soil and biopores: 

syringyl subunits were oxidised faster than vanillyl subunits (Heim and Schmidt, 2007; 
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Thevenot et al., 2010). Although Banfield et al. (2017) found higher fungal / bacterial ratios 

in earthworm-incubated biopores, there was no indication that lignin processing in the 

biopore hotspots was mechanistically different from the bulk subsoil (Rasse et al., 2006). 

This may most likely be explained by the high functional redundancy of the microbial 

community in hotspots (Delmont et al., 2014) and the scarcity of specialists capable of co-

metabolically attacking the lignin backbone (Tuomela et al., 2000; Větrovský et al., 2014). 

Suberin-derived lipids are also discussed as parts of the rather resistant SOM pool 

(Mendez-Millan et al., 2010). However, in bulk subsoil only very little intact suberin was 

recovered and the ratio of free depolymerisation products to suberin was highest (Fig. 4). 

Consequently, such long decomposition times as observed in bulk soil illustrated the 

intensive suberin decomposition of agricultural SOM and showed that intact suberin in the 

subsoil is mainly limited to hotspots. 

2.2.4.4 The relevance of the biopore C turnover in the subsoil 

Microbial hotspots are central to the understanding of subsoil C turnover (Kuzyakov and 

Blagodatskaya, 2015). Biopores are likely the largest subsoil hotspots by volume and 

almost all C and nutrient turnover in the subsoil is assumed to take place in hotspots 

(Kuzyakov and Blagodatskaya, 2015). Considering how long root biopores remained ‘hot’ 

(Figs. 2, 3, 4), they provide nutrients and C for time spans which are definitely long enough 

for subsequently grown crops to benefit from biopores’ nutrients. Due to their large number 

(e.g. 400 m-2; Athmann et al., 2013) and considerable C contents (Table 2), root biopores 

are very relevant for the total C input and SOM formation especially in the subsoil (Figs. 2, 

3, 4) and therefore nutrient accumulation. Catch crop practices like greening incentivised 

by the EU’s Common Agricultural Policy could prove to have further long-term effects as 

root biopores are easily induced in great numbers by deep-rooting catch crops (Kautz et 

al., 2013; Wuest, 2001). Biopores can facilitate the acquisition of nutrients from the subsoil 

via (1) increasing the root-length density in the bulk soil or (2) uptake of nutrients from the 

biopore wall (Gaiser et al., 2012; Han et al., 2016; Jakobsen and Dexter, 1988; Kautz, 

2015).  

The earthworm biopores featured considerably higher C contents (Table 2), enzyme 

activities and higher nutrient mobilisation than the root biopores (Athmann et al., 2017; 

Banfield et al., 2017; Hoang et al., 2016), so the specific relevance of earthworm biopores 

for nutrient mobilisation is likely higher compared to root biopores. It remains unclear if 

earthworms overcompensate their forty times lower count (Dinter et al., 2013; Kautz et al., 

2014) and actually cause higher C turnover than root biopores on the field scale. Being 

voids makes biopores attractive for new root growth which may actually hold back long-

term C sequestration. Potentially stabilised OM in biopores, e.g. oxidised lignin (Fig. 3; 
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(Kiem and Kögel-Knabner, 2003; Vidal et al., 2016), may not be out of reach of roots: 

priming through biopore re-use makes direct C sequestration less likely (Kuzyakov, 2010). 

Consequently, biopores may mostly indirectly promote long-term C sequestration by 

increasing the total belowground C input by boosted nutrient cycling and subsoil access. If 

long-term C sequestration was mainly improved indirectly, then the earthworm biopores 

may support plant growth more than the slow-cycling root biopores. 

 Conclusions 

Biopores are the largest-size hotspots of C and nutrient turnover in the subsoil, especially 

when induced by earthworms. The microbial processing of the C inputs was biopore-

specific. More easily available parts of the OM (e.g. hemicellulose) were preferentially 

processed in biopores compared to lignin. The repeated inputs by earthworms relatively 

enrich less bioavailable and weakly processed OM (e.g. lignin) in the biopore environment. 

Earthworms incubation in root biopores bring new life to the root detritus: within six months 

they replenished the highly processed OM of the root biopores with only weakly processed 

shoot litter. Earthworms in root biopores led to 60% less processed hemicelluloses relative 

to root biopores. Consequently, even short periods of earthworm promotion have long-

lasting effects on C contents and the degree of processing of the OM. Root necromass of 

perennials is likely to be processed roughly in the time it took to form the biomass (3-4 

years). The nutrient accumulation and boosted mobilisation in root biopores hold up at least 

for durations relevant for crop rotations. Despite the 50% higher C accumulation in 

earthworm biopores, root biopores are up to forty times more frequent and therefore they 

quantitatively provide most of the OM input into subsoils. This may pose further incentives 

for growing perennial tap-rooted catch crops (also for shorter-term ‘greening’). We 

conclude that all biopore hotspots remain ‘hot’ at least for several years and, therefore, 

likely provide valuable nutrients along their preferential root growth pathways for 

subsequently grown crops. Thereby, biopores likely indirectly support long-term C 

sequestration through boosting plant productivity creating a positive feedback on C 

sequestration. 
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 Supplementary Material 

Table S1 Proxies for the main primary inputs: L. terrestris bodies, C. intybus shoots, C. 

intybus roots, L. perenne shoots, T. pratense shoots, T. repens shoots. 

 
L. 

terrestris 
bodies 

C. 
intybus 
shoots 

C. 
intybus 
roots 

L. 
perenne 
shoots 

T. 
pratense 
shoots 

T. 
repens 
shoots 

δ13C -26.9 -32.0 -29.7 -33.9 -30.1 -30.8 

C/N 4.1 19.9 33.7 18.1 19.0 14.9 

GM/AX 4.0 1.0 0.19 0.27 0.77 0.89 

MRF/AX 2.9 0.3 0.13 0.07 0.25 0.33 

(Ac/Al)v 5.5 0.2 0.1 0.6 0.4 0.4 

(Ac(Al)s 2.5 0.6 0.1 0.4 0.4 0.4 

S/V 1.3 1.0 2.5 1.3 1.2 1.1 

Ci/V 2.2 0.2 0.0 3.7 0.5 1.1 

Free/bound ω-
hydroxy alkanoic 
acids 

4.1 28.3 4.12 1.78 7.82 3.3 

Free/bound 
alkanoic acids 

0.12 0.281 0.108 0.028 0.004 0.009 

∑ n-alkenes / ∑ n-
alkanes 

1.3 0.79 0.37 0 0.63 0 
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Table S2 Instrumentation and GC measurement details 

Substance class 
/ Fraction 

GC oven programme GC + detector settings 

Free lipids 
including 
n-alkanes, n-
alkanoic acids, 
α,ω-alkanedioic 
acids 

Identical for all free 
lipids fractions: 
Measurement on GC-
MS 

Setup:  Agilent 7890A GC coupled to Agilent 
7000A triple quadrupole mass spectrometer 
(both Agilent Waldbronn, Germany, equipped 
with a DB-5MS column (30 m x 250 µm 
coated with 0.25 µm 5 % phenyl-methyl 
siloxane). Helium carrier gas flow was 2.25 ml 
s-1. Scan mode (50-550 amu), 2 µl injection 
volume into the splitless inlet at 270 °C. The 
oven programme started at 80°C, held for one 
minute, then increased at 10 °C min-1 to 
150°C. Until 275°C heating was at 1 °C min-1, 
and finally at 10 °C min-1 to 300°C. 
 

Lignin-derived 
phenols 

Measurement of 
trimethylsilylates on 
GC-FID, peak 
identification on GC-
MS 

Setup: Agilent 7820A GC system equipped 
with a flame ionization detector and Optima® 
17 MS column (Macherey Nagel, Dueren, 
Germany; phenylmethyl polysiloxane, 50 % 
phenyl, 30 m × 0.25 mm inner diameter with 
0.5 µm film thickness). The injected sample 
volume was 1 µl, split ratio was 33:1 and the 
injector port temperature was set to 250 ° C. 
The temperature programme started at 100 
°C (isothermal for 0.5 min) and increased to 
160 °C at 10 °C min-1, then held for 6 min. 
Subsequently, the oven temperature was 
increased at 20 °C min-1 to 250 °C, and again 
at 50 °C min-1 to the final temperature of 300 
°C, which was held for 5 minutes.  

Cutin/suberin-
derived lipids 

Measurement on GC-
MS 

Identical to free lipid method 

Neutral sugars Measurement of 
aldononitrile acetates 
on GC-FID, peak 
identification on GC-
MS 

Identical to Lignin-derived phenols: the 
injector port temperature was set to 250 °C 
and the temperature of detector was 300 °C. 
The oven programme was as follows: the 
initial column temperature of 100 °C was held 
for 1 min and then increased at 20 °C min-1 to 
175 °C, held for 3 min. The temperature was 
increased again at 4 °C min-1 to 225 °C, held 
for 3 min, and finally increased at 50 °C min-1 
to 300 °C and held for 7 min. Helium was used 
as a carrier gas at a flow rate of 1.1 ml min-1 
and the split ratio was 30:1.  
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Fig. S1 Experiment timeline: chicory was grown for three years, followed by two years of 

fallow. After 18 months of root decomposition, earthworms were introduced into a subset 

of root biopores for six months, which was compared to native earthworm biopores. 

Modified after Banfield et al. (2017). 

 

 

Fig. S2 Proxies relating the syringyl/vanillyl subunits as grey bars (left y-axis) and 

cinnamyl/vanillyl subunits as white bars (right y-axis). Shown are means ± standard errors 

of all four treatments. Capital letters indicate significant differences for 45-75 cm (one-way 

ANOVA, Tukey’s HSD test on α 0.05), whereas small letters indicate significant differences 

for 75-105 cm. Red lines indicate the plant inputs prior to decomposition. The red and blue 

arrows indicate the two-year effects of roots and earthworms, respectively. 
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Abstract 

Biopores are hotspots of nutrient mobilisation and shortcuts for carbon (C) into subsoils. C 

processing relies on microbial community composition, which remains unexplored in 

subsoil biopores. Phospholipid fatty acids (PLFAs; markers for living microbial groups) and 

amino sugars (microbial necromass markers) were extracted from two subsoil depths (45–

75; 75–105 cm) and three biopore types: I) drilosphere of Lumbricus terrestris L., II) 2-year-

old root biopores, and III) 1.5-year-old root biopores plus six months of L. terrestris 

activities. Biopore C contents were at least 2.5 times higher than in bulk soil, causing 26-

35 times higher Σ PLFAs g-1 soil. The highest Σ PLFAs was in both earthworm biopore 

types, thus highest SOM and nutrient turnover were assumed. Σ PLFAs was 33% lower in 

root pores than in earthworm pores. The treatment affected the microbial community 

composition more strongly than soil depth, hinting to similar C quality in biopores: Gram-

positives including actinobacteria were more abundant in root pores than in earthworm 

pores, probably due to lower C bioavailability in the former. Both earthworm pore types 

featured fresh litter input, promoting growth of Gram-negatives and fungi. Earthworms in 

root pores shifted the composition of the microbial community heavily and turned root pores 

into earthworm pores within six months. Only recent communities were affected and reflect 

a strong heterogeneity of microbial activity and functions in subsoil hotspots, whereas 

biopore-specific necromass accumulation from different microbial groups was absent.   
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 Introduction 

After decades of disregard, the subsoils have only recently regained interest within soil 

science, despite the fact they store approximately half of the terrestrial carbon (C) and 

contain pools of nutrients such as magnesium, calcium and phosphorus significant to plant 

nutrition (Kell 2012; Kuhlmann and Baumgärtel 1991; Rumpel and Kögel-Knabner 2011; 

Salome et al. 2010). Aside from dissolved C transport, large amounts of C are transported 

into the subsoil by earthworms and roots, i.e. in biopores (Don et al. 2008; Kautz 2015). 

Rooting plants and burrowing earthworms leave not just voids behind through which plants 

reach the deeper soil faster to explore soil resources (Ehlers et al. 1983; Han et al. 2015), 

but they additionally induce hotspots of increased microbial activity (Kautz et al. 2013; 

Nakamoto 2000). Apart from C transport, they have further functions such as soil organic 

matter (SOM) turnover or possibly C sequestration depending on their genesis. 

 Biopores make up about 1–10% of the total soil volume (Ehlers et al. 1983; 

Kuzyakov and Blagodatskaya 2015) and are only persistent in subsoils, i.e. below the 

ploughed horizon, or in topsoils which are not frequently tilled (Ehlers et al. 1983). Large, 

vertical biopores reaching into the subsoils are in particular created by crops with allorhizic 

root systems like common chicory (Cichorium intybus L.) (Ehlers et al. 1983; Perkons et al. 

2014). Roots deposit large amounts of C into their surroundings, which partly remain after 

root death, creating the rhizo-detritusphere. Alternatively, anecic earthworms such as 

Lumbricus terrestris L., create earthworm biopores. They feed on plant residues near the 

soil surface and deposit residues, mucus and casts in their burrows, creating the 

drilosphere (Bouché 1975; Jégou et al. 1998). Root detritus and earthworm activities enrich 

the inner walls of biopores with C, N and P, which induces microbial growth, enzyme 

activities and, therefore, greater C and N turnover compared to the surrounding bulk soil 

(Graff 1967; Hoang et al. 2016; Jégou et al. 2001; Parkin and Berry 1999). This leads to 

nutrient release from SOM and from the solid phases, enhancing soil fertility (Jégou et al. 

2001; van Groenigen et al. 2014; Volkmar 1996). C input into subsoils is usually much 

lower than into topsoils (Hafner and Kuzyakov 2016; Rumpel and Kögel-Knabner 2011). It 

is more and more questioned if subsoil C turnover is governed by the very same 

mechanisms as topsoil C turnover - since environmental and soil conditions are rather 

different in subsoils (Salome et al. 2010; Sanaullah et al. 2011; von Luetzow et al. 2006). 

Even though biopores are thought to be the main locations of C turnover in the subsoil, 

little is known about these hotspots (Kuzyakov and Blagodatskaya 2015). For climate 

change mitigation, it is desirable to sequester C in subsoils through biopores, e.g. by deep 

rooting plants or deep burrowing earthworms (Kell 2012). Prior to this, the role and 

relevance of biopores for C turnover and sequestration, particularly in the subsoil, need to 
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be clarified. The importance of the microbial community composition for C turnover is 

frequently mentioned in the literature, but its investigation has received surprisingly little 

attention (Fierer et al. 2003; Schmidt et al. 2011; Struecker and Joergensen 2015). The 

links between the microbial community composition and C turnover are not straightforward, 

and microbial activity may be more important than their diversity (Nannipieri et al. 2003). 

Nevertheless, the microbial community composition influences the enzyme activities 

(Waldrop et al. 2000). So, the functional microbial groups such as fungi or Gram-positives, 

and their residues are key to assess the relevance of subsoil biopores for short and long-

term C turnover. We characterised both by biomarkers: 

1) Phospholipids are parts of microbial cell membranes and quickly 

decomposed after cell death, thus accounting for the living microorganisms 

(Frostegård and Bååth 1996; Zelles 1999). Microbial group-specific fatty 

acids in the phospholipids (PLFAs) allow broad characterisation of the 

microbial community with some limitations (Zelles 1999) and the total PLFA 

content (∑ PLFAs) is a proxy of the living microbial biomass (Frostegård et 

al. 1991).  

2) Amino sugars make up microbial cell walls and are more persistent to 

decomposition as their polymers need to be broken up first and the resulting 

amino sugars are likely stabilised in soil (Amelung 2001, 2003; Glaser et al. 

2004; Lauer et al. 2011; Miltner et al. 2012). Thus, they reflect mainly 

microbial necromass (Glaser et al. 2004; Glaser and Gross 2005; Parsons 

1981). Prokaryotic bacterial cell walls consist of peptidoglycan, a polymer of 

N-acetylglucosamine (GlcN) and N-acetylmuramic acid (MurAc), while fungi 

produce chitin, an (N-acetyl) glucosamine polymer, and galactosamine 

(GalN) (Amelung 2001; Engelking et al. 2007; Glaser et al. 2004). The ratios 

of amino sugars to MurAc are used to qualitatively assess long-term changes 

in the microbial community composition (Glaser et al. 2004).  

This work aims at better describing subsoil hotspots and their heterogeneity in situ 

through characterising functional microbial groups. We hypothesised that different biopore 

types featured deviating abiotic (e.g. water fluctuations, pH) and biotic factors (e.g. C 

content and C quality) causing a strongly different microbial community composition. 

However, our study mainly focussed on biotic controls to link C dynamics with microbial 

community composition. We assumed that the frequent C input by earthworms would lead 

to microbial communities adapted to abundant fresh C, i.e. mainly enrichment of Gram-

negatives (Bird et al. 2011; Gunina et al. 2014; Treonis et al. 2004), while the one-time C 

input by roots would promote communities of more complex SOM degraders, i.e. mainly 
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Gram-positives including actinobacteria (Kramer and Gleixner 2008). Furthermore, we 

hypothesised that the necromass pattern would reflect the recent community pattern. 

Biopore wall coatings were sampled from root pores, earthworm pores and their 

combination in the subsoil and were analysed for broad taxonomic groups of 

microorganisms (PLFAs) and microbial residue composition (amino sugars). 

 Material and methods 

The study site was the Campus Klein-Altendorf experimental research station near Bonn, 

Germany. The site is characterised by a maritime climate with temperate humid conditions 

(9.6 °C mean annual temperature, 625 mm annual precipitation). The soil type is a Haplic 

Luvisol (Hypereutric, Siltic) developed from loess, resulting in a loamy soil with high silt 

content (IUSS Working Group WRB 2008). C contents of the bulk soil were 0.41 ± 0.02% 

and 0.35 ± 0.05% for the 45–75 cm and the 75–105 cm layers, respectively. The soil was 

comprehensively described by Vetterlein et al. (2013). These layers were chosen 

according to the ploughing depth and our definition of the subsoil, i.e. the soil below the 

ploughed (Ap) horizon. In this field, the ploughing depth was 30 cm and we added another 

15 cm to safely exclude any effects related to plough pans. 

 The preparation for the experiment started in 2009: common chicory (Cichorium 

intybus L., var. Puna) was grown for three consecutive years (2009–2012), inducing many 

roots in the subsoil. In 2012, the topsoil down to 45 cm depth was removed and different 

biopore types were induced by the experimental setup: old root pores, earthworm-

incubated root pores and native earthworm pores (Fig. 1). 

 

Fig. 1 Timeline of the experiment. Chicory was grown for three consecutive years (2009-2012), followed 
by two years during which the three biopore types differentiated 
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1) Old root pores: after excavating the topsoil in 2012, transparent plastic films 

were put onto the soil surface prepared in 45 cm depth. The locations of only 

fresh and live chicory roots ≥ 5 mm were manually mapped on plastic films 

by a permanent marker. Large nails were also pushed into the soil – marking 

the positions of the plastic films, which were then taken off the surface. The 

topsoil was filled back and the plots were kept fallow, i.e. weeds were 

manually removed, until the sampling in autumn 2014 to allow the decay of 

the chicory roots. For the sampling, the topsoil was removed again and the 

plastic films were put back onto the soil surface in 45 cm depth and aligned 

to match the locations of the nails. This allowed relocation of the now decayed 

roots. Since the last C input was the plant roots and the last input 

predominantly drives the microbial community differentiation, the simplified 

term root pores is used herein. Although these pores did not contain visible 

root tissue anymore, their environment can be described as detritusphere as 

this pore type showed enrichment in suberin and lignin (data not shown).  

2) Earthworm-incubated pores: in spring 2014 after 1.5 years of fallow and root 

decomposition, per replicate more than twenty-five pores, which previously 

contained chicory roots, were incubated with tagged earthworms (Lumbricus 

terrestris L.). For the tagging, a red elastomer tag was injected into the 

earthworm body (Butt and Lowe 2007). The incubation was performed by 

placing tubes (8 mm diameter) containing the tagged earthworms onto the 

pores’ opening at 45 cm depth, adding the topsoil again, and then removing 

the tube, thus creating a void. Earthworms were fed for 6 months with clover-

grass put on the soil surface until sampling of biopores in autumn 2014. The 

number of earthworms incubated was chosen to be comparable to the native 

earthworm abundance. The pore history is well known: only 1.5 years-old root 

channels of chicory were incubated with earthworms of one species and fed 

with known food sources. Only pores were selected from which the tagged 

earthworms were expelled in 45 cm depth. Thus, this pore type’s full 

description is ‘root biopores incubated with earthworms for six months’, or in 

short, earthworm-incubated pores. 

3) Native earthworm pores were treated similarly to the incubated earthworm 

pores, i.e. the sites were kept fallow from 2012, grass-clover litter was 

regularly added to the soil surface for six months from spring 2014 and they 

were expelled in autumn 2014. For this, a horizontal soil surface was 

prepared in 45 cm depth and covered with plant litter for three full days. Pores 

with visible earthworm middens were considered colonised with native 
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earthworms and labelled. We assumed this pore type to be representative of 

the average native earthworm population in this field. Despite the large 

majority of earthworms identified being L. terrestris, colonisation by different 

earthworm species cannot be fully excluded. 

4) Bulk soil samples, i.e. soil not containing any biopores, were taken from the 

sides of the profile wall. 

 In September 2014, a trench was dug next to the plots with an excavator to facilitate 

sampling. The location of each pore opening on the soil surface in 45 cm was labelled with 

a tiny flag and the soil around the pore was manually removed down to 75 cm. Each pore 

was opened vertically with a knife and samples were taken by carefully shaving off the 

inner wall coating using micro spatulas (Andriuzzi et al. 2013). Only pores with a minimum 

diameter of 4 mm were selected. Thirty-two samples were taken: four replicates were taken 

from each of the four treatments (three biopore types; bulk soil) and from two subsoil depths 

(45–75 cm; 75–105 cm). Sample material for each treatment combination was pooled from 

about 25 pores. All samples were stored at 5 °C until PLFA extraction, within three weeks. 

Sample material not required for the PLFA analysis was then dried at 60 °C for 48 hours 

to determine the soil moisture and amino sugar contents. 

2.3.2.1 Phospholipid fatty acid analysis 

Phospholipids were extracted by a method modified after Frostegård et al. (1991). All 

chemicals were of at least p.a. grade and obtained from Sigma-Aldrich Munich, Germany. 

Prior to extraction 25 µg of the first internal standard (IS 1) phosphatidyl 

cholinedinonadecanoic acid (Larodan, Sweden) was added to each sample, and 

additionally for the neutral lipid fraction 25 µg of dodecanoic acid triglyceride (1 µg µl-1; 

Sigma-Aldrich Munich, Germany). About 3.5 g fresh pore wall material and 6 g of bulk soil 

were extracted twice with a solution of methanol, chloroform and citrate/KOH buffer (pH 4, 

v:v:v = 1:2:0.8) (Bligh and Dyer 1959). Following purification of phospholipids by solid 

phase extraction (SPE), derivatisation to fatty acid methyl esters (FAMEs) was by 

hydrolysation by NaOH in MeOH for 10 min at 100 °C and subsequent methylation by BF3 

in MeOH (~ 1.25 M) at 80 °C for 15 min. Samples were transferred to autosampler vials 

after adding 15 µg of the second internal standard (IS 2; 1 µg µl-1) tridecanoic acid methyl 

ester and measured by the GC-MS system (GC5890 with MS 5971A, Agilent Waldbronn, 

Germany) with a 45 m DB5-MS column (5%-Phenyl)-methylpolysiloxane, 0.25 mm I.D., 

0.25 µm film thickness; Agilent Waldbronn, Germany). Stock solutions containing external 

standards of 27 fatty acids and IS 1 with fatty acid contents of 1, 4.5, 9, 18 and 24 µg were 

derivatised and measured together with the samples. The relation between the integrated 

peak area of each FAME and the peak area of the IS 2 was calculated. Calibration lines 
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were determined by a linear regression from the external standard substances at five 

different concentrations. The quantifications of each FAME considered the losses during 

the sample preparation, which were corrected for by the recovery of the IS 1. The GC 

parameters were as follows: injection was splitless, the inlet temperature was set to 270 

°C and the detector temperature to 280 °C. Column head pressure was kept constant at 

0.79 bar. The initial oven temperature was 80 °C, held for 1.5 min, then increased at 10 °C 

min-1 to 167 °C and further at 0.7 °C min-1 to 196 °C, and finally at 10 °C min-1 to 300 °C 

and held for 8 min. The MS parameters were: Scan mode, m/z 50–550 and 1.5 cycles per 

second. 

 Single fatty acids are assigned to broad microbial groups but the relationship 

between the groups and the fatty acids may not be 100% accurate, e.g. because the 

classification of marker fatty acids to taxa comes from pure culture studies (Zelles 1999). 

Thus, redundancies and mismatches, e.g. due to changing environmental conditions, might 

occur and only cultivatable taxa are used for the classification (Frostegård et al. 2011). 

Briefly, branched PLFAs represent Gram-positive, while monounsaturated PLFAs mostly 

represent Gram-negative bacteria. Actinobacteria produce 10-methyl-branched PLFAs, 

whereas polyunsaturated PLFAs represent eukaryotes and PLFA 18:2ω6,9 fungi 

(Drenovsky et al. 2004; Fierer et al. 2003; Frostegård and Bååth 1996; Harwood and 

Russell 1984; Zelles 1997).  

2.3.2.2 Neutral lipid analysis 

During the PLFA purification, the neutral lipid fraction was collected from the SPE columns 

using 5 ml chloroform and subsequently derivatised like the PLFA samples. The PLFA 

16:1ω5 represents arbuscular mycorrhiza fungi (AMF), but it may also be derived from 

Gram-negative bacteria. Therefore, Olsson (1999) suggested that the ratio of the storage 

lipid NLFA 16:1ω5 and the phospholipid PLFA 16:1ω5 is a more sensitive indicator for 

AMF. A ratio of PLFA/NLFA < 1 indicates Gram-negative origin of the PLFA 16:1ω5, while 

PLFA/NLFA > 1 is indicative for AMF. 

2.3.2.3 Total bacterial biomass and fungal: bacterial biomass ratio 

Total bacterial biomass was calculated as the sum of all bacterial PLFAs. The ratio of PLFA 

18:2ω6,9 to bacterial PLFAs represents the fungal: bacterial biomass ratio in soils 

(Frostegård and Bååth 1996).  

2.3.2.4 Amino sugar analysis  

Amino sugars were extracted by a method modified after Zhang and Amelung (1996). All 

chemicals of at least p.a. grade were obtained from Sigma-Aldrich, Munich, Germany. 

About 450 mg of each dried and ground soil sample, containing ~ 0.3 mg N, were subjected 
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to hydrolysis by 6 M HCl under N2 atmosphere for 8 h at 105 °C, filtration through glass 

fibre filters (Whatman GF6, GE Healthcare, Pittsburgh, PA, U.S.A), drying by a rotary 

evaporator with removal of the remaining acid. One hundred µg methylglucamine (MeGlcN) 

were added as the first internal standard (IS 1) after neutralisation. For the removal of iron 

and salts, pH was adjusted to 6.6–6.8 by KOH and centrifuged at 2000 g for 15 min. The 

supernatant was taken and lyophilized. Amino sugars were extracted from this by 

anhydrous methanol. Derivatisation to aldononitrile acetates was by the derivatisation 

reagent 32 mg ml-1 hydroxylamine hydrochloride and 40 mg ml-1 4-(dimethylamino) pyridine 

in pyridine-methanol (4:1 v/v) for 30 min at 75 - 80 °C. Samples were then reheated for 30 

min after adding 1 ml of acetic anhydride. Excess derivatisation agents were removed by 

three washing steps after addition of 2 ml dichloromethane, first by 6 M HCl and 

subsequently twice by 1 ml of deionised water. The organic phase was then dried under 

N2 and dissolved in 185 µl ethyl acetate-hexane (1:1), and 15 µl of second internal 

standard tridecanoic acid methyl ester (1 µg ml-1) in ethyl acetate-hexane (1:1) were added. 

Compounds were separated gas chromatographically on a 30 m OPTIMA® 17 column 

(phenylmethyl polysiloxane, 50 % phenyl, 0.25 mm I.D., 0.50 µm film thickness; Macherey-

Nagel, Dueren, Germany) followed by flame ionisation detection (GC-FID system Agilent 

GC7820A, Waldbronn, Germany). The split ratio was set to 1:10, injector temperature was 

250 °C, the detector temperature was 300 °C and column flow was kept constant at 1.1 ml 

min-1. The oven temperature programme was set as follows: initial temperature was 120 

°C, held isothermal for 1 min, then increased at 5 °C min-1 to 250 °C, held for 2 min and 

increased at 10 °C min-1 to the final temperature 280 °C, which was held for 10 min. Peak 

identification was performed by analysing retention times of single amino sugar standards. 

Stock solutions of external standards of the amino sugars GlcN, GalN, MurAc and MeGlcN 

containing amounts of 25, 50, 125, 250 and 500 µg were derivatised and measured 

together with the samples. The relation between the peak area of each amino sugar and 

the peak area of the IS 2 was calculated. By a linear regression of five external standards’ 

peak areas and their concentrations, analytes were quantified. The recovery rate was 

determined based on the peak area of the IS 1 and applied to the quantifications of the 

amino sugars. 

2.3.2.5 C and N contents and δ13C determination 

For the analysis of C and N contents and δ13C values, 40–50 mg of dried and ground 

sample were filled into 12 mm tin capsules (IVA, Meerbusch, Germany). The samples were 

measured on the FLASH 2000 CHNS/O Elemental Analyser (Thermo Fisher Scientific, 

Cambridge, United Kingdom) coupled by a ConFlo III interface to the Delta V Advantage 

isotope ratio mass spectrometer (both Thermo Fisher Scientific, Bremen, Germany). δ13C 
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may act as a proxy for SOM quality, as during SOM decomposition δ13C increases as 12C 

is preferentially lost (Werth and Kuzyakov 2010). 

2.3.2.6 Statistical analyses  

Outliers between field replicates were identified using Nalimov’s test (Lozán and Kausch 

1998). No more than one replicate was removed by the outlier test. In case only three 

values were available, no outlier test was carried out. Through factor analysis, microbial 

groups of similar statistical behaviour according to factor loadings (> 0.7) and algebraic 

sign were determined based on the normalised data set. Thus, ubiquitous and plant-

derived fatty PLFAs were excluded from the statistical analysis. One-way analyses of 

variance (ANOVA) were carried out for each depth and significances were calculated by 

Tukey’s Honest Significance Difference test on α < 0.05 level. Levene’s test was used to 

test for homogeneous variances. Normality of the residues was visually checked in Q-Q 

plots. No bulk soil data was included in the ANOVA as the assumptions were not met due 

to missing normal distribution of residues and missing data, so only trends regarding bulk 

soil were reported. All data were given as percent of Σ PLFAs, except for the two 

summative parameters Σ PLFAs g-1 soil and Σ PLFAs g-1 SOC. PLFA contents were 

normalised to SOC to express the microbial colonisation of the organic matter. Pairwise t-

tests for dependent samples were used to determine differences between soil depths within 

each pore type. Error bars in all charts were calculated as standard errors of means (SEM). 

The contributions of the factors pore type, depth and their interactions to the total variance 

were calculated by dividing the factor’s type III sum of squares by the total sum of type III 

sum of squares. 

 Constrained redundancy analysis (RDA) was performed on the relative 

abundances of the PLFA data set showing statistically relevant behaviour in the factor 

analysis, and the three explanatory environmental variables TOC, TON and δ13C. 

Response scores are reported herein as weighted average scores and type I scaling plots 

are shown. The RDA was performed in Addinsoft XLSTAT 2015 (Addinsoft SARL, Paris, 

France). 

 For the analysis of similarities (ANOSIM), the PLFA data set showing statistically 

relevant behaviour was taken. ANOSIM tests if datasets are significantly different in their 

species composition, i.e. the PLFA fingerprints as markers for microbial groups. A Bray-

Curtis similarity matrix was calculated, which was then used to calculate the non-

parametric ANOSIM. P values reported herein for ANOSIM are Bonferroni-corrected 

sequential p values. For this analysis, PAST 3.08 was used (Hammer et al. 2001).  

 For the amino sugar data, non-parametric Kruskal-Wallis ANOVAs were calculated 

for each depth due to missing homoscedasticity, followed by post-hoc comparisons of 
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mean ranks of all pairs of groups (Kruskal-Wallis test). Error bars reported are SEM. 

Wilcoxon matched pair tests for dependent samples were used to determine differences 

between soil depths within each pore type. All other statistical analyses were performed in 

Statsoft Statistica Version 12.5 (StatSoft Inc., Tulsa, OK, U.S.A.). 

 Results 

Σ PLFAs g-1 soil was similar between the two soil depths, indicating constant microbial 

biomass irrespective of depth (Table 1; Online Resource 1). This was also true for Σ 

PLFAs g-1 SOC (Table 1; Fig. 2). There was a close correlation between Σ PLFAs and SOC 

content (R2 = 0.85, p < 0.001). Earthworm-influenced pores, i.e. after six months of 

earthworm presence (2.89 ± 0.18 mg g-1 SOC) and native earthworm pores (3.14 ± 0.31 

mg g-1 SOC) showed ~ 33% higher PLFA amounts in 45–75 cm than root pores (2.05 ± 

0.09 mg g-1 SOC) and ~ 8.5 times higher PLFA amounts than bulk soil (0.36 ± 0.08 mg g-1 

SOC) (Fig. 2). Significant differences were mainly found between biopore types in 45–75 

cm, indicating that pore genesis gets less relevant with depth when gradients to bulk soil 

increase. However, the Σ PLFAs g-1 SOC increased with depth in root pores and the 

earthworm-incubated pores (2.2 ± 0.02 mg g-1 SOC and 3.24 ± 0.59 mg g-1 SOC). Biopores 

in both soil depths had on average 7.5–13.5 times higher Σ PLFAs g-1 SOC than bulk soil 

(Fig. 2). 

Table 1 Summary of the PLFA data, including complimentary data: Mean values (± SEM) are given. 
Different letters indicate statistically significant differences. Lowercase letters indicate parameters 
from 45–75 cm, while uppercase letters indicate parameters from 75105 cm. Differences between 
soil depths are significant on * = p < 0.05 – given next to the lower depth letters 

 Root pores 
EW-incubated 

pores 
Earthworm pores Bulk soil 

  
45–75 

cm 
75–105 

cm 
45–75 

cm 
75–105 

cm 
45–75 

cm 
75–105 

cm 
45–75 

cm 
75–105 

cm 
Total organic 
carbon [%] 

0.81 ± 
0.03b 

0.93 ± 
0.06A 

1.16 ± 
0.04c 

1.07 ± 
0.04A* 

1.17 ± 
0.05c 

1.05 ± 
0.04A 

0.41 ± 
0.02a 

0.35 ± 
0.05B 

Total organic 
nitrogen [%] 

0.09 ± 
0.00b 

0.10 ± 
0.01A 

0.12 ± 
0.00c 

0.11 ± 
0.01A 

0.11 ± 
0.00c 

0.10 ± 
0.01A 

0.06 ± 
0.00a 

0.05 ± 
0.00B* 

C : N 
8.6 ± 
0.2a 

9.7 ± 
0.5A 

9.6 ± 
0.1b 

9.9 ± 
0.4A 

10.3 ± 
0.2c 

10.3 ± 
0.5A 

7.2 ± 
0.1d 

7.7 ± 
0.9A 

δ13C [‰] 
-25.66 ± 
0.46ab 

-23.87 ± 
1.17A 

-26.47 ± 
0.21a 

-25.55 ± 
0.51A 

-25.30 ± 
0.25ab 

-23.76 ± 
0.66A 

-25.00 ± 
0.05b 

-23.51 ± 
0.75A 

Σ PLFAs [µg g-1 
soil] 

16.65 ± 
1.04a 

23.02 ± 
3.30A 

33.51 ± 
2.13b 

25.48 ± 
9.11A 

36.61 ± 
3.43b 

26.42 ± 
3.85A 

1.09 ± 
0.46† 

0.70 ± 
0.12† 

Σ PLFAs [mg g-1 
SOC] 

2.05 ± 
0.09a 

2.20 ± 
0.02A 

2.89 ± 
0.18b 

3.24 ± 
0.59A 

3.14 ± 
0.31b 

2.57 ± 
0.45A 

0.36 ± 
0.08† 

0.197 ± 
0.04† 

Σ bacterial PLFAs  
[mg g-1 SOC] 

1.09 ± 
0.05a 

1.35 ± 
0.11A 

1.45 ± 
0.10b 

1.69 ± 
0.32A 

1.56 ± 
0.14b 

1.31 ± 
0.24A 

0.12 ± 
0.06c 

0.03 ± 
0.01B 

Fungal : bacterial 
biomass [%] 

3.6 ± 
0.3a 

2.3 ± 
0.5A 

8.2 ± 
0.9b 

4.4 ± 
0.1A 

4.9 ± 
1.7ab 

4.1 ± 
1.2A 

0.0 ± 
0.0c * 

(NLFA: PLFA) 
16:1ω5  

6.56 ± 
0.75a 

5.03 ± 
0.85A 

3.30 ± 
0.32b 

2.85 ± 
0.69A 

3.23 ± 
0.34b 

3.10 ± 
0.53A * * 

                  
* too many missing data 
  

              
† not tested, assumptions not 
met 
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2.3.3.1 Microbial community composition 

Grouping of PLFAs to functional microbial groups was achieved by combining factor 

analysis of the PLFA contents and literature data (Apostel et al. 2013; Gunina et al. 2014). 

Mean values of total bacterial biomass followed the pattern of Σ PLFAs not showing any 

differences between pore types in 75–105 cm (Table 1). Two distinct groups of Gram-

positive bacteria (based on a15:0; i15:0 and i17:0) and one group of actinobacteria 

(10Me16:0 and 10Me18:0) were identified (Fig. 3). Both Gram-positive groups were 

predominantly found in root pores, i.e. microhabitats characterised by low amounts of 

available C. Based on the signature fatty acids 16:1ω7c, 18:1ω7c and cy17:0, one group 

of Gram-negative bacteria was identified (Fig. 3). In contrast to the Gram-positives, this 

group was enriched in 45–75 cm in both earthworm pores types compared to root pores  

and bulk soil (Fig. 3). All 

three pore types featured 

a trend towards higher 

Gram-negative 

abundance in 75–105 

cm compared to 45–75 

cm. Earthworm-

influenced pores 

contained higher 

amounts of saprotrophic 

fungi (18:2ω6,9) 

compared to root pores 

(Fig. 3). For all biopores, 

fungal abundances 

decreased with soil 

depth, which was also 

represented by the 

corresponding fungal: 

bacterial biomass ratios 

(Table 1). The biomarker 

PLFA 16:1ω5 had 

generally lower contents 

in root pores compared 

to the other biopores 

(Fig. 3). However, ratios 

of NLFA: PLFA 16:1ω5 

 

Fig. 2 Distribution of Σ PLFAs per unit soil organic C in each biopore 
type (root pores, earthworm-incubated pores, native earthworm 
pores) and the bulk soil in two subsoil depths (4 samples x 4 
treatments x 2 depths) and ratios of Gram-negative PLFAs to 
Gram-positive PLFAs (top: 45 – 75 cm, bottom: 75 – 105 cm). 
Bars show Σ PLFAs (left vertical axis), while red circles show the 
ratios of Σ Gram-positive / Σ Gram-negative PLFAs (right vertical 
axis, note the logarithmic scale). Mean values (± SEM) are given. 
Letters indicate significant differences between pore types in 
each depth (p < 0.05). Differences between soil depths were not 
significant. Σ PLFAs g-1 SOC in the three pore types (root pores, 
incubated pores, native earthworm pores) was in 45–75 cm 7.5 
times, and in 75–105 cm 13.5 times higher than in bulk soil. Pores 
with earthworms showed higher Σ PLFAs g-1 SOC than root pores 
and bulk soil. 
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indicated highest arbuscular mycorrhiza fungi contribution in root pores (~ 5.0–6.5, Table 

1), and lower AMF contribution to the 16:1ω5 fatty acid in earthworm-influenced pores (~ 

3). Higher Gram-negative abundance in earthworm-influenced pores explained the higher 

16:1ω5 contents there. 

 

 

 

Fig. 3 Microbial communities in the three biopore types and bulk soil from two subsoil depths (4 samples 
x 4 treatments x 2 depths): Note the truncated y-axis. Mean values of percentage of Σ PLFAs (± 
SEM) are given. Letters indicate significant differences between pore types in each depth (p < 
0.05). Lowercase and uppercase letters indicate 45 – 75 cm and 75 – 105 cm depth, respectively. 
Differences between soil depths were significant on * = p < 0.05 and ** = p < 0.01 – given next to 
the lower depth letters. Gram-positives I and Gram-positives II are both Gram-positive groups, 
which, however, showed different behaviour in the factor analysis. Root pores featured enrichment 
of Gram-positives and actinobacteria, whereas both earthworm pore types showed enrichment of 
Gram-negatives and saprotrophic fungi. Note very high contribution of non-specific PLFAs to bulk 
soil. 
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 The analysis of similarity (Table 2) showed that the microbial community fingerprints 

of both earthworm biopores were not different from each other, but different to the root pore 

fingerprint. Bulk soil showed no deviation in community composition from the three pore 

types. The community differentiation was also discernible in the constrained redundancy 

analysis (Fig. 4), which explained 48% of the inertia. A strong scattering of the bulk soil 

community data in the redundancy analysis indicates that bulk soil communities were 

affected by various biotic and abiotic factors and obviously in some cases also by 

macroscopically non-visible biopores (Fig. 4). It also clearly showed that the depth affects 

PLFA composition in bulk soil much more strongly than in the biopores. The depth effect 

was almost eliminated from the biopores. Both earthworm pore types were overlapping, 

indicating a high degree of similarity. The variability of each biopore type was smaller than 

the bulk soil’s variability. The three biopores combined variability was also smaller than the 

bulk soil’s. Comparing the constrained RDA with an unconstrained principal components 

analysis (Online Resource 4), the grouping improved considerably. The x-axis of the RDA, 

defined by C and N contents, clearly separated biopores from bulk soil. The y-axis defined 

by δ13C, a proxy for SOM quality, separated the earthworm pores from the root pores.  

 

 

Fig. 4 Constrained redundancy analysis on the PLFA fingerprints from Fig. 3. Response scores were 
calculated as weighted average scores. The overall RDA was significant based on 9999 
permutations. A type I scaling (distance) plot is shown. Green vectors illustrate the explanatory 
variables C, N and δ13C. Arrows illustrate the depth effects within a pore type. 48% of inertia is 
explained by the soil parameters C and N content, δ13C. 52% is explained by other factors 
(unconstrained). 
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 Variance partitioning showed that most variance (> 60%) of all microbial groups, 

except Gram-negative and fungi, was explained by the pore type and not by soil depth (Fig. 

5). 

 

Table 2 ANOSIM results: Values reported are Bonferroni-corrected sequential p values based on 9999 
permutations on the Bray-Curtis similarity matrix of the lipid fingerprint. Differences between pores 
were significant on * = p < 0.05 – given next to the lower depth letters. Both earthworm types were 
similar. Both are, however, different from root pores. The bulk soils were not different from any 
pore type 

  45–75 cm  75–105 cm 

  
  

Root 
pores    

EW-
incubated 

pores    

Earthworm 
pores           

Bulk 
soil          

 
Root 
pores              

EW-
incubated 

pores    

Earthworm 
pores         

Bulk 
soil        

45–75 
cm 

Root pores          

EW-
incubated 
pores 

*         

Earthworm 
pores *         

Bulk soil          

75–
105 
cm 

Root pores  * * *      

EW-
incubated 
pores 

*     *    

Earthworm 
pores *     *    

Bulk soil * * * *  * * *  
 

 
Fig. 5 Contribution of the factors depth, pore type and their interactions to the total variance of microbial 

community composition. Bulk soil was not included, i.e. in total 24 samples were analysed. The 
contribution of the factors and their interactions to the total variance was calculated by dividing the 
factor’s type III sum of squares by the total sum of type III sum of squares. Most variance (40-85%) 
of microbial groups is explained by the pore type. Gram-negatives and fungi are also influenced by 
soil depth. 
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2.3.3.2 Amino sugars 

Total mean amino sugar contents among all treatments were for the 45 - 75 cm depth 1179 

± 183 µg g-1, and for 75–105 cm 1673 ± 214 µg g-1, i.e. an increase of 42% with depth 

(Table 3; Online Resource 2). Both amino sugar ratios GalN: MurAc and GlcN: MurAc 

showed no different patterns among biopores (Fig. 6a, b) and gave smaller fungal: bacterial 

necromass ratios with depth for earthworm and root pores and bulk soil. Muramic acid 

contents were similar among the biopore types (Table 3). Highest bacterial contribution to 

the necromass was in bulk soil and earthworm-incubated pores, whereas root pores and 

earthworm pores showed the highest fungal contribution to the necromass (Fig. 6a, b). 

 

 

Fig. 6 Amino sugars ratios of a) glucosamine to muramic acid, and b) galactosamine to muramic acid. 
Data from 4 samples x 4 treatments x 2 depths. Mean values (± SEM) are given. Letters indicate 
significant differences between pore types in each depth. Differences between soil depths were 
significant on * = p < 0.05 – given next to the lower depth letters. Red and white bars show 45 – 
75 cm and 75 – 105 cm depth, respectively. The shaded areas indicate the ratios found in a broad 
range of bulk soils and the dashed lines indicate ratios of pure cultures of fungi, bacteria and 
actinobacteria (data taken from Glaser et al., 2004)). Both ratios represent fungal : bacterial 
necromass (45–75 cm, 75–105 cm). No pore effects were found. 
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 Discussion 

The decisive factors for the microbial community composition were the biopore history and 

the biopore properties (Fig. 5). We assumed that the heterogeneous C inputs of varying 

frequency (root detritus vs. digested shoot biomass of clover-grass) in the pore types have 

mainly driven the community development (Fig. 3) and that abiotic soil factors like the 

texture (Sleutel et al. 2012), pH (Rousk et al. 2010) and moisture (Chen et al. 2007) have 

likely contributed to this community differentiation. Earthworms and roots strongly 

increased the C contents in the biopores, which led to 26–35 times higher PLFA 

abundances than in bulk soil (Table 1). This corresponds to a larger living microbial 

biomass and higher activity (Hoang et al. 2016), which are often linked to increased SOM 

decomposition rates and C turnover. In contrast, very low PLFA contents in bulk soil 

indicate lower C turnover but higher mean residence times (Don et al. 2008). 

 The root pore community fingerprint was unique to the communities of both 

earthworm pore types (ANOSIM, Table 2), which was also supported by their lower PLFA 

contents (Fig. 2). Both earthworm pore type fingerprints were not different from each other, 

suggesting that earthworm activity was the strongest factor for the microbial community 

composition in the pore walls (Table 2). Especially the earthworm gut taxa influence the 

microbial composition rather strongly in the casts (Brown 1995; Sampedro and Whalen 

2007). Six months of earthworm activities have been long enough to turn a root pore into 

an earthworm pore regarding the microbial community composition. In this experiment, this 

Table 3 Summary of the amino sugar data: Mean values (± SEM) are given. Different letters indicate 
statistically significant differences. Lowercase letters indicate amino sugar contents for 45 – 75 cm. 
Uppercase letters indicate 75 – 105 cm. Different letters indicate significant differences. 
Differences between soil depths are significant on * = p < 0.05 

45–75 cm  
[µg g-1 soil] 

Root pores 
EW-

incubated 
pores 

Earthworm 
pores 

Bulk soil   

Glucosamine 727 ± 305A 729 ± 57A 1308 ± 296A 544 ± 133A   

Mannosamine 18 ± 2A 23 ± 4A 26 ± 2A 3 ± 1A   

Muramic acid 12 ± 5A 19 ± 2A 22 ± 8A 13 ± 2A   

Galactosamine 225 ± 43A 306 ± 34A 583 ± 167A 203 ± 32A   

Σ 921 ± 264A 1071 ± 86A 1933 ± 464A 762 ± 164A 1179 ± 183 

            

75–105 cm  
[µg g-1 soil] 

          

Glucosamine 1600 ± 340b 1010 ± 77ab* 1230 ± 195ab 606 ± 56a   

Mannosamine 42 ± 13a 11 ± 1a 28 ± 9a 1 ± 0a   

Muramic acid 23 ± 7a 23 ± 4a 25 ± 5a 23 ± 5a   

Galactosamine 776 ± 177b 394 ± 83ab* 605 ± 98ab 209 ± 30a   

Σ 2425 ± 516c 1517 ± 79ab* 1875 ± 296b 838 ± 85a 1673 ± 214 
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pore type was specifically designed to assess the effect of short-term earthworm activity in 

old root pores. This is also supported by the overlapping of the native earthworm and the 

earthworm-incubated pores in the RDA plot (Fig. 4). 

 The PLFA fingerprints remained constant with depth (Table 2), indicating that depth 

is a minor factor for the microbial community composition in continuous pores due to root 

detritus and earthworm activities throughout the burrows. The contrast between pores and 

bulk soil increased with soil depth, as pore PLFA contents remained constant but bulk soil 

contents decreased with depth. This emphasises the importance of such hot spots, 

especially in the deeper subsoil. Very comparable findings for the bulk soil and native 

drilosphere using 16S rRNA gene fingerprinting were reported for the same chicory-planted 

soil (Uksa et al. 2014). Such mutual validation underlines the power of the PLFA analysis, 

even though it comes with some pitfalls and uncertainties (Frostegård et al. 2011). The 

bulk soil PLFA fingerprint was not statistically different from the biopores. This might be 

explained by the high variability of the bulk soil, especially in 45-75 cm. This high variability 

might also be caused by small, non-visible biopores in the bulk soil subsample, which may 

not have been 100% excluded, as compared to the lower subsoil layer. Additionally, due 

to the C inputs - which are pore-specific, but partly similar - certain microbial groups 

preferentially grew in pores. Thus, pores can be differentiated from each other, but they 

are not necessarily different from bulk soil regarding their community composition. 

 Irrespective of the reasons for this, biopores increase or decrease variability 

depending on the scale: they increase the overall ecological variability in soil (Ehlers et al. 

1983; Stromberger et al. 2012), but among biopores, it is considerably lower and even 

lower within one biopore. Therefore, different types of biopores presumably increase 

habitat diversity (as a function of substrate quality, input frequency, moisture, texture, 

aggregation or pH) – even if individual pores are along their vertical axis less diverse. 

Vertical variability of one biopore is rather low, as the defining factors e.g. C quality, oxygen 

availability (Gliński and Lipiec 1990) and moisture controlling their properties remain rather 

constant along the biopore. The variability between biopores and bulk soil increases with 

soil depth, as the bulk soils variability decreases while the pore’s properties remain 

constant (Zhou et al. 2002). This increased variability is linked to higher resilience, a classic 

ecosystem property – in this case attributed to soils (Ponge 2015). As biopores can be re-

used, different subsequent crops may cause further variability in e.g. C quality. Likewise, 

earthworms facilitate the introduction of species from the soil surface into the subsoil.  

 Multivariate statistics considerably improved the grouping of the principal 

component analysis (Online resource 4) as soon as the explanatory variable δ13C was 

included in the analysis (Fig. 4). δ13C, a proxy accounting for SOM quality and related to 

turnover and decomposability, separated the upper bulk soil from the lower bulk soil 
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reflecting the increased C processing with depth. However, also the lower bulk soil was 

clearly separated from the pore habitats by the RDA along the δ13C vector suggesting a 

difference in C quality between biopores and bulk soil in 75-105 cm (Dorodnikov et al. 2007; 

Gunina and Kuzyakov 2014). Thus, the differences in microbial community composition 

between bulk soil and biopores also depend on SOM decomposability. A clear separation 

was also visible between root and earthworm-influenced pores which was partially along 

the δ13C vector, i.e. explained by SOC quality. However, as the second axis describes a 

much lower proportion of the variance, this effect is much weaker than the difference 

between pores and bulk soil. To summarise, biopores featured 26-35 times higher PLFA 

abundances than bulk soil, and earthworm activities induced microbial communities unique 

to the root pores within six months. 

2.3.4.1 Microbial community composition 

Bacterial abundances 

The bacterial group patterns are well explained by the organic matter input history and 

assumed quality. The root pores’ most recent input of C was two years prior to sampling, 

so the more easily degradable C has been largely mineralised, having left behind less 

available compounds. The two groups of Gram-positive bacteria (I and II) and 

actinobacteria were enriched in the root pores and in the bulk soil compared to other 

microbial groups (Fig. 3). Two Gram-positive groups were distinguished as they showed 

statistically different behaviour from each other (Fig. 3), but more precise taxonomic 

description is not possible with PLFAs. In both habitats, older, more complex and more 

processed SOM is expected, of which Gram-positive and actinobacteria are frequently 

described to be decomposers of (Brant et al. 2006; Heuer et al. 1997; Kramer and Gleixner 

2008; McCarthy and Williams 1992). The root pores in 75-105 cm were also significantly 

drier than the earthworm pores (data not shown). Soil moisture modulates the activity of 

bacteria, but it is not yet known how the microbial communities react to moisture 

fluctuations in biopores, e.g. through physiological adaptions to episodic macropore flow 

(Chen et al. 2007; Lundquist et al. 1999). In the root pores, biofilm-forming bacteria may 

have endured lower moisture more successfully (Hueso et al. 2012; Vu et al. 2009). 

However, soil moisture may not strongly affect the soil C stock or its turnover (Aira et al. 

2009; Guenet et al. 2012). 

 Earthworm activities, such as mucus secretion, selective ingestion of plant litter and 

microbial-rich aggregates, create very distinct habitats (Aira et al. 2009; Lal and Akinremi 

1983; Sampedro and Whalen 2007; Stromberger et al. 2012; Tiunov and Dobrovolskaya 

2002). Earthworms import fresh labile C into their burrows, which had the highest amount 

of microbial biomass with a clear predominance of Gram-negative bacteria (Fig. 3). Gram-
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negatives are thought to be decomposers of easily available organics (Bird et al. 2011; 

Griffiths et al. 1998; Gunina et al. 2014; Paterson et al. 2007; Treonis et al. 2004). 

Obviously, the C quality, represented by the δ13C value, was linked to the abundances of 

Gram-negative and Gram-positive bacteria. In the course of SOM decomposition, δ13C 

increases as the lighter 12C gets preferentially lost (Werth and Kuzyakov 2010), leading to 

higher abundances of Gram-positives – a pattern also discernible in the RDA plot (Fig. 4). 

The earthworms’ mucus secretion, selective grazing on and selective survival of 

microorganisms in the presence of gut enzymes increase activities of microbes specialised 

on earthworm faeces. Sampedro et al. (2006) have shown that the prokaryote population 

in the earthworm gut was mainly Gram-negative. This is in line with the Gram-negative 

dominance in the earthworm pores (Fig. 3), as well as our analysis of fresh earthworm 

casts, which contained predominantly PLFAs representing Gram-negatives (Online 

Resource 3). Moreover, the resulting environmental conditions in the drilosphere, i.e. 

higher moisture due to mucus secretion, aggregation and more neutral pH in casts (Brown 

1995; Parkin and Berry 1999; Tiunov and Scheu 1999), may also shape the community 

composition and activity. At higher soil moisture, higher growth rates may be sustained due 

to a greater diffusion of the limiting C resource (Zhou et al. 2002). While the pH effect on 

the ∑ PLFA content is often not significant (Rousk et al. 2010), small pH changes likely 

influence the communities and the abundances of single PLFAs (Bååth and Anderson 

2003). Individual groups like fungi might cope better with lower pH (Sleutel et al. 2012), 

while at more neutral pH growth of bacteria might be promoted. However, we did not 

assume the pH to change throughout these pores as the earthworms were active in both 

soil depths and the pH of the bulk soil increased only weakly from 45-75 to 75-105 cm 

(Vetterlein et al. 2013). Earthworms affect the texture of their burrow wall compared to the 

bulk soil (Lal and Akinremi 1983), but this effect is likely more pronounced in sandy soils 

(Zhang and Schrader 1993). The important role of the texture for microbial activity (Bach 

et al. 2010; Sleutel et al. 2012) may not play a large role in affecting the microbial 

community in our field site because of the low sand content of about 3.8 %. 

 After two years of bare fallow and therefore absence of C inputs, the microbial 

abundance in the root pores was still 8 times higher compared to bulk soil, with a trend 

towards increased bacterial biomass and significantly increased abundances of Gram-

positives 1 and actinobacteria with depth. This may be explained by less decomposed root 

material in 75–105 cm compared to 45-75 cm, which is supported by an increase in the C 

content and C/N ratio from 45-75 cm to 75–105 cm (Table 1). The slow and continuous 

decomposition of roots may have led to the continuous release of bioavailable C over two 

years (Fontaine et al. 2003; Kuzyakov 2010; Kuzyakov and Blagodatskaya 2015), resulting 

in increased bacterial PLFAs with depth in both pore types that contained roots. Thus, 
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positive effects of biopores on microbial nutrient cycling and consequently plant nutrition 

are expected for at least two years. These results are in good agreement with Sanaullah 

et al. (2016), who incubated root detritus and bulk subsoil for three years. They reported 

sequential growth of first Gram-negatives and fungi on fresh root detritus, while Gram-

positives appeared only much later and were linked to turnover of more processed and 

native SOM. 

 Finally, it can be summarised that root pores without fresh C input for 2 years and 

potentially drier conditions were mainly colonised by general decomposers (Gram-

positives, actinobacteria) whereas in earthworm pores featuring recent C inputs, additional 

moisture and near neutral pH, a higher Gram-negatives abundance was found in 45-75 

cm, i.e. degraders of more easily available low molecular weight organic substances. This 

coincides with the general shift of Gram-negative dominance near the soil surface towards 

Gram-positive dominance in deeper soil layers as a function of C content, C quality, mean 

annual temperature and soil moisture (Blume et al. 2002; Franzmann et al. 1998; Kramer 

and Gleixner 2008; Stromberger et al. 2012).  

 

Fungal abundances  

Higher fungal PLFA contributions were found in both earthworm pore types than in root 

pores in 45-75 cm. This may be connected to a lack of plant residues since fungi are 

primary decomposers of structural plant material. In the two-year-old root pores, visible 

cellulose fibres or lignocellulose structures were absent, thus this late decomposition state 

accounts for the rather low importance of fungi in subsoil root pores (Sanaullah et al. 2016). 

Regarding earthworm pores, often no increases of fungi relative to bacteria are reported 

(Devliegher and Verstraete 1997; Stromberger et al. 2012; Tiunov and Scheu 1999).  

 PLFAs and amino sugar ratios were consistent as both methods returned 

decreased fungal contribution with depth for almost all treatments (Fig. 3, 6). Consequently, 

this community shift was present not only in living microflora but had already affected the 

accumulated microbial necromass. Such a decrease of fungal abundance with depth is 

common for bulk soils (Fierer et al. 2003; Moll et al. 2015) and mainly explained by a 

decrease of available C with depth. However, in biopores, where the C content is rather 

constant throughout the pores because earthworms distribute organic matter vertically 

(Table 1; Jégou et al. 1998; 2000), this explanation is not valid. Other mechanisms and soil 

properties which co-regulate the fungal biomass may need to be considered: apart from a 

change in SOM quality with depth, lower oxygen availability and the promotion of bacterial 

growth by an increased pH in the bulk soil (6.9 to 7.1) may help explain this pattern in this 

loess soil. 
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 Comparing the microbial necromass data with the literature, smaller amino sugars 

to muramic acid ratios have been reported for agricultural soils (Amelung 2001; Engelking 

et al. 2007; Glaser et al. 2004), indicating that mainly fungal residues make up the microbial 

necromass in these biopores. The amino sugar ratios GalN : MurAc and GlcN : MurAc were 

similar among the pore types (Fig. 6a, b), leading to the conclusion that, despite deviating 

communities, the amount of necromass accumulated during two years of pore wall genesis 

has not been sufficient yet to achieve a representative imprint of the PLFA pattern on the 

necromass. The ratio of MurAc: GlcN may be skewed since after the depolymerisation of 

peptidoglycan a single, yet very strong, ether bond needs to be broken up to convert 

muramic acid to glucosamine. Such reactions are catalysed by high pH conditions, e.g. 

found in earthworm guts (Amelung 2001; Millar and Casida 1970; White et al. 1996).  

 The highest ratios of NLFA: PLFA of 16:1ω5 (value was approximately 6) were 

found in root pores showing residual storage lipids by former mycorrhization. Lower ratios 

around 3 were found in pores with earthworm activity (45-75 cm) and thus, 16:1ω5 needs 

to be interpreted as a Gram-negative marker fatty acid there. We also found PLFA 16:1ω5 

in fresh earthworm casts (Online Resource 3) and this further supports the generally high 

Gram-negative abundance in the earthworm pores (Fig. 3). To sum up, earthworm pores 

showed highest fungal biomass among treatments, while the ratio of fungal: bacterial 

necromass was not different between pores and got smaller with depth.  

 

Implications for C turnover in subsoil biopores 

The majority of studies on subsoil microbial communities have focused on bulk soils, where 

C decreases with depth, the localisation of C inputs and biopores are not accounted for 

and the fluctuations of the environmental conditions are not as strong as near the surface. 

When the C content remains constant with depth, changing abiotic factors help explain the 

microbial community composition (Struecker and Joergensen 2015). As similar C contents 

with depth occur in the investigated biopores, it also likely that soil physical factors such as 

water fluctuations control the microbial community composition. The root pores in the 

deeper subsoil were significantly drier than the earthworm pores and this is one of the likely 

explanations for the higher abundance of biofilm-forming Gram-positives under such 

circumstance. However, apart from the C content in the pores, the quality of the C input is 

likely a key factor governing abundances and activities of microbes (Fierer et al. 2003). 

 In bulk soil, more stable and less bioavailable compounds are usually found in 

deeper soil (Rumpel and Kögel-Knabner 2011), leading to stronger specialisation of 

microbial communities compared to the topsoil. It has been suggested subsoil microbial 

communities were specialised to their environment and distinct from the topsoil 

communities (Fierer et al. 2003; Moll et al. 2015). This might not be true in the case of 
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biopores as they feature high oxygen availability (Gliński and Lipiec 1990; Stewart et al. 

1999), abundant C sources (Hafner and Kuzyakov 2016) and microbes and C distributed 

nearly homogeneously throughout the pores (Fig. 2, Table 1). Also, biopores have been 

likened to topsoil due to repeated fresh C inputs (Don et al. 2008). Compared to the bulk 

soil, microorganisms in biopores live in the ‘land of plenty’. Although absolute C contents 

are not unusually high, they are three times higher than in bulk soil.  

 

Earthworm pores 

Earthworms influence larger soil volumes than the 2 mm around their burrows (Don et al. 

2008; Jégou et al. 2000; Tiunov and Scheu 1999). However, horizontal diffusion is not an 

important process in earthworm pores (Don et al. 2008; Schrader et al. 2007), due to higher 

bulk densities and higher hydrophobicity than in root pores (Lipiec et al. 2015). This 

hampers C export from the burrow into the bulk soil, creating distinct burrows of C 

accumulation. Also, this would explain the not decreasing C contents along the vertical 

extension of the pores, as C contents and bacterial biomass did not change significantly 

with depth. 

 It remains to be determined to which degree C stabilisation occurs in earthworm 

pores (Kögel-Knabner et al. 2008). Long-term stabilisation depends on physical 

disconnection, sorption on reactive mineral surfaces (Lee 1985; Schmidt et al. 2011) and 

absence of labile C sources promoting priming (Kuzyakov 2002). Large C inputs, increased 

moisture and good oxygen supply (Dziejowski et al. 1997; Gliński and Lipiec 1990; Görres 

et al. 1997) paired with frequent disturbance by the earthworms destabilise organic matter. 

The mixing of C input with mineral phases during the gut passage may enhance 

stabilisation. However, no increased adsorption of C on iron oxides by earthworms was 

found so far (Don et al. 2008). The C sequestration may be favoured in earthworm-

incubated pores with higher fungal abundance compared to native earthworm pores. It was 

hypothesised, that this may be due to improved aggregate formation by hyphae (Rillig et 

al. 2015; Six et al. 2006), the decomposability of the melanised necromass (Clemmensen 

et al. 2015) or higher C use efficiency of fungal-dominated communities (Herrmann et al. 

2014; Jastrow et al. 2007). Furthermore, extended hyphal networks may help sequester 

more C by exporting it to the bulk soil. Don et al. (2008) found no evidence of persistent C 

enrichment, short mean residence times of 3-8 years of earthworm-imported C and also 

high turnover rates. This does not necessarily contradict C sequestration. Earthworm pores 

likely indirectly support C sequestration by stimulation of root growth through e.g. soil 

structure changes and improved nutrient and water supply in subsoils, which in turn 

increase belowground biomass and C input (Brown 1995). Depending on pore angle, relief, 

bulk density and moisture, roots growing in earthworm pores also may re-enter the bulk 
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subsoil after having benefitted from higher nutrient supplies in the pore, effectively 

increasing root biomass in deep soil layers (Athmann et al. 2013; Hirth et al. 2005). To 

conclude, repeated priming hampers C sequestration, boosts C turnover in the earthworm 

pores and earthworm pores support C sequestration through large C accumulation and 

root growth promotion. 

 

Root pores 

To sequester high C amounts in the subsoils, deep rooting plants with abundant 

belowground biomass appear useful (Kell 2012; Lorenz and Lal 2007). Regarding C 

sequestration, first, the root pore walls may not be as hydrophobic as the earthworm pores 

(Lipiec et al. 2015), facilitating soluble C export into the bulk soil, where it can be stabilised 

on mineral surfaces. Second, lateral roots, root hairs and fungal hyphae are likely to leave 

the root pores and export C into the bulk soil. In contrast, labile C in the earthworm biopores 

limits the C stabilisation, since priming provides energy for the simultaneous mineralisation 

of pre-existing, possibly more complex compounds (Fontaine et al. 2007; Kuzyakov and 

Blagodatskaya 2015). In the root pores, C input happens only once. As soon as the easily 

available C is respired, subsoil root C may be stabilised. C stabilisation was already 

apparent as a large microbial necromass accumulation relative to the bulk soil (75-105 cm; 

Table 3). For large C sequestration, new root pores are ideally created regularly and pores 

are cut off from the fresh C supply by e.g. harvesting. 

 Conclusions 

At the heart of discussion on the roles of biopores lies the fundamental issue of promoting 

C turnover for nutrient supply or promoting C sequestration in unsaturated subsoils. In both 

cases, microorganisms are key actors and their community composition is one important 

factor regarding C turnover or microbial necromass production to be stabilised. Microbes 

in subsoil biopores live in the land of plenty compared to the bulk subsoil due to high C and 

oxygen supply, resulting in 26-35 times higher PLFA abundances in biopores. Soil depth 

affected the microbial community composition of the bulk soil much more strongly than of 

the biopores. The distribution of bacteria and fungi among pore types was an indicator for 

SOM quality in the pore walls. Decomposers of more complex organic matter (Gram-

positives and actinobacteria) had higher abundances in the root pores, whereas the 

earthworm pores featured fungi and Gram-negatives. Earthworms had strong effects on 

microbial communities: highest Σ PLFAs and highest amounts of rapidly metabolising 

Gram-negatives were found for both earthworm pore types and, thus, highest C and 

nutrient turnover are assumed. Introducing earthworms into decaying root pores influenced 
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the microbial community heavily. The microbial community in these pores was rendered 

hardly distinguishable from native earthworm pores after six months of earthworm activity.  

 C turnover is inversely correlated with C sequestration. Therefore, low 

sequestration per unit of C input is expected in biopores unless C is stabilised in organo-

mineral associations, exported to the bulk soil or occluded in aggregates. Earthworm pores 

support C sequestration through improving root growth in the subsoil. In the root pores, 

more of the remaining detritus C might be sequestered since no fresh C is repeatedly 

supplied from the surface. Overall, biopores strongly contribute to C input into subsoils. 

The functions of C and nutrient turnover, as well as, C sequestration in subsoils depend on 

the biopore history: earthworm biopores boost C turnover and plant nutrition in the subsoil, 

whereas root pores may be more responsible for C sequestration because of lacking 

priming. Biopores contribute to C sequestration directly by 1) large C inputs in the subsoil, 

2) mixing with mineral phases for stabilisation, and indirectly 3) by promoting deep root 

growth, i.e. increasing the total C input into subsoils. 
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 Supplementary Material 

Table S1 Full PLFA dataset: Given are PLFA amounts in µg per g dry soil for each pore 

type and bulk soil for two soil depths 
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Table S2 Full amino sugar dataset: Given are PLFA amounts in µg per g dry soil for each 

pore type and bulk soil for two soil depths 
[µ

g
 g

-1
 d

ry
 

s
o

il
] 

R
o

o
t 

p
o

re
s

 
4
5
 -

 7
5
 c

m
 

E
W

-

in
c

u
b

a
te

d
 

p
o

re
s
 4

5
 -

 

7
5
 c

m
 

N
a
ti

v
e
 

e
a
rt

h
w

o
r

m
 p

o
re

s
 

4
5
 -

 7
5
 c

m
 

B
u

lk
 s

o
il

 

4
5
 -

 7
5
 c

m
 

R
o

o
t 

p
o

re
s

 

7
5
 -

1
0

5
 

c
m

 

E
W

-

in
c

u
b

a
te

d
 

p
o

re
s

 

7
5
 -

1
0

5
 

c
m

 

N
a
ti

v
e
 

e
a
rt

h
w

o
r

m
 p

o
re

s
 

7
5
 -

1
0

5
 

c
m

 

B
u

lk
 s

o
il

 

7
5
 -

1
0

5
 

c
m

 

S
a
m

p
le

 #
 

1
 

5
 

9
 

1
3

 

2
 

6
 

1
0

 

1
4

 

3
 

7
 

1
1

 

1
5

 

4
 

8
 

1
2

 

1
6

 

1
7

 

2
1

 

2
5

 

2
9

 

1
8

 

2
2

 

2
6

 

3
0

 

1
9

 

2
3

 

2
7

 

3
1

 

2
0

 

2
4

 

2
8

 

3
2

 

G
lu

c
o

s
a
m

in
 

5
7
7

 

1
6
2

 

5
7
3

 

1
5
9

5
 

8
0
2

 

1
2
2

 

6
1
8

 

7
6
8

 

5
5
9

 

1
7
2

9
 

1
8
3

1
 

1
1
1

4
 

5
8
2

 

2
3
9

 

4
7
2

 

8
8
2

 

6
7
4

 

1
5
1

1
 

2
0
3

7
 

2
1
7

6
 

1
0
4

1
 

4
6

 

8
6
5

 

1
1
2

4
 

7
0
4

 

1
1
7

1
 

1
4
6

8
 

1
5
7

7
 

5
4
1

 

4
8
7

 

7
3
1

 

6
6
5

 

M
a

n
n

o
s

a
m

in
 

2
1

 

1
9

 

1
5

 

3
6

 

1
5

 

6
 

3
0

 

2
6

 

2
2

 

2
5

 

0
 

3
0

 

0
 

3
 

5
 

3
 

1
7

 

6
0

 

0
 

5
0

 

2
8

 

1
4

 

1
0

 

1
3

 

1
7

 

0
 

4
7

 

2
1

 

0
 

1
 

0
 

0
 

M
u

ra
m

ic
 a

c
id

 

3
 

1
6

 

7
 

2
4

 

1
7

 

2
2

 

6
 

2
1

 

7
 

2
6

 

4
3

 

1
3

 

9
 

1
4

 

1
0

 

2
0

 

1
3

 

3
6

 

1
0
6

 

2
1

 

1
4

 

2
1

 

2
4

 

3
2

 

1
5

 

3
0

 

0
 

3
2

 

1
8

 

1
3

 

2
2

 

3
6

 

G
a
la

c
to

s
a
m

in
 

2
8
2

 

1
4
2

 

2
5
0

 

6
4
3

 

3
7
4

 

1
6
7

 

2
6
4

 

2
8
1

 

2
2
4

 

8
5
4

 

8
7
9

 

3
7
3

 

1
7
6

 

1
3
1

 

2
2
6

 

2
8
0

 

2
9
3

 

7
3
6

 

1
0
7

8
 

9
9
8

 

4
8
7

 

1
4
7

 

4
7
0

 

4
7
2

 

3
7
8

 

5
2
5

 

6
8
6

 

8
3
0

 

1
3
8

 

1
8
3

 

2
5
7

 

2
5
9

 

 

  



Publications and Manuscripts  

149 

 

Table S3 PLFA amounts of fresh earthworm casts, given in µg per g dry material 

[µg g-1 soil] 
Fresh 

earthworm 
casts 
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Fig S4 Principal component analysis of the PLFA dataset, without rotation. 
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 Study 4: Six months of L. terrestris L. activity in root-
formed biopores increases nutrient availability, microbial 
biomass and enzyme activity  
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Abstract  

In arable fields, biopores are primarily formed by taproots, but may also be bored by 

earthworms. Irrespective of the pore origin, repeated use by anecic earthworms yields a 

wall coating that is rich in carbon, nutrients and microorganisms. However, this effect is 

halted by routine tillage, and it remains unclear how quickly earthworms are able to alter 

biopore properties in subsoil. We conducted an earthworm incubation field experiment in 

arable soil to test the capacity of Lumbricus terrestris to i. increase total nutrient contents 

including plant available P, ii. alter the microbial community and iii. increase enzyme 

activities in biopore walls over one vegetation period. Firstly, biopores that contained 

chicory roots were identified on a plot scale (4.2 x 1.5 m). After two years under fallow, 

roots were decomposed. We then inserted individual earthworms at 45 cm depth into a 

subset of these pores, afterwards refilling with topsoil. After six months, earthworms were 

removed and soil was opened at 45 - 75 cm and 75 - 105 cm soil depth layers. The inner 

pore wall (1 mm) of individual root biopores (‘RBP’) or root biopores modified by 

earthworms (‘EBP’) as well as the bulk soil were sampled in 6 depth intervals of 10 cm 

each and analyzed for total C, N, S content, plant available P, microbial biomass, 

phospholipid fatty acids (PLFA) and enzyme activity. Biochemical properties of bulk soil, 

RBP and EBP clearly differed after one vegetation period as indicated by principal 

component analysis. PLFA markers of fungi and protozoa were detected only in biopores. 

Compared with the bulk soil, total C, N, S were enriched in RBP by a factor of 2.0-3.1, plant 

available P by a factor of 8-10, and microbial biomass by a factor of 12-36. In EBP, all of 

these parameters were as in RBP or elevated even further (C, N, S: factor 1.0-1.4, plant 

available P: factor 1.3-1.5, microbial biomass: factor 1.5-2.0, PLFA markers of fungi: factor 

2.6-4.4, PLFA markers of protozoa: factor 9.2-14.2). PLFA markers indicative of the ratio 

of Gram-positive to Gram-negative bacteria  

(G+ : G-) were 5-10 fold lower in RBP than in bulk soil, the microbial metabolic quotient 

(qCO2) was 0.4-0.6 times as high. In EBP, these parameters were further reduced (ratio 

G+: G-: factor 0.7, qCO2: factor 0.7-0.8). RBP were particularly characterized by high 

contents of 10-methyl branched fatty acid indicators of actinobacteria. 

Activities of enzymes involved in the C-cycle (xylanase, cellobiohydrolase, ß-glucosidase) 

and N-cycle (chitinase, chitotriosidase, leucine aminopeptidase) were also elevated in RBP 

as compared to the bulk soil (factor 1.1-3.6) and further increased in EBP (factor 1.2-3.7). 

All these effects were more pronounced in the 45–75 cm soil layer. We conclude that, in 

only six months, L. terrestris in arable fields modified ordinarily nutrient-rich biopores into 

‘super-hotspots’ of microbial biomass, enzyme activity and nutrient availabilities. Hence, 

even short-term promotion of earthworm populations by agricultural management practices 
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can increase microbial biomass and enzyme activity in biopores and its coupling to nutrient 

mobilization in the subsoil.  

 Introduction 

Tubular shaped, continuous vertical biopores in arable fields are typically created either by 

taprooted crops or, to a minor degree, by anecic earthworms (Kautz et al., 2014). These 

biopores have diameters of up to 12 mm (Edwards and Bohlen, 1996), can be several 

meters deep, and can persist for decades in the subsoil beneath the plow layer (Hagedorn 

and Bundt, 2002; Shipitalo et al., 2004). Crop roots have been reported to preferentially 

follow such pores especially in compacted soils (Logsdon and Linden, 1992; Passioura, 

1991), allowing them to reach deeper soil horizons more rapidly, thereby facilitating water 

uptake during dry spells (Gaiser et al., 2012). Likewise, anecic earthworms repeatedly 

utilize biopores, covering the pore walls with material rich in organic matter and nutrients, 

particularly N and P. Thus, they have been characterized as hotspots of microbial activity 

(Kuzyakov and Blagodatskaya, 2015) and a potential source of nutrients in the subsoil 

(Kautz et al., 2013). Moreover, earthworm burrows markedly contribute to water infiltration 

(Edwards et al., 1988; Ehlers, 1975), which can be advantageous for draining heavy 

rainfalls.  

In general, biopore generating earthworms can be promoted by reduced tillage 

intensity (Ehlers et al. 1983; Kuntz et al., 2013; Pelosi et al., 2014), because tillage 

operations remove their surface food supply and destroy the top portion of permanent 

burrows (Kladivko, 2001). Fodder crops such as grass clover also have beneficial effects 

on earthworm populations, especially when cultivated as perennials (Mäder et al., 2002; 

Riley et al., 2008). Recently, occasionally reduced tillage (ORT) was shown to also result 

in increased earthworm abundances (Moos et al., 2016). However, the positive effects of 

perennial fodder cropping or ORT are temporary, as increases in earthworm populations 

following ca. two vegetation periods of soil dissipate with the onset of tillage.  

Anecic earthworms such as Lumbricus terrestris reach maturity after approximately 

one year under field conditions (Satchell, 1967). In the early growth stages, they are known 

to largely behave like endogeics (Lowe and Butt, 2005), i.e. they predominantly stay 

beneath the soil surface. As such, the time for L. terrestris to generate biopores and 

influence pore properties in the subsoil during cultivation of perennial crops or ORT may 

be on the scale of only a few months. Kautz et al. (2014) have shown that the number of 

anecic earthworms increased during cultivation of perennial fodder crops, but the worms 

hardly contributed to the formation of new biopores in the subsoil, primarily as a 

consequence of re-colonization of established pores. However, in another study X-ray 

computed tomography in combination with in situ endoscopy revealed considerable effects 
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of short-term earthworm incubation in microcosms on physical pore properties such as 

pore diameter distribution, pore connectivity, and accessible pore surface area 

(Pagenkemper et al., 2015). The extent to which earthworms are able to alter biochemical 

properties and thus pore quality in the short-term remains uncertain. Graff (1967) 

distinguished ‘young’ burrows from ‘old’ burrows by the color of the pore wall and 

demonstrated that the former exhibited higher nutrient contents. Similarly, Athmann et al. 

(2014) found that only biopores showing visible signs of earthworm passage were 

significantly elevated in C and N contents in comparison to the bulk soil. For grassland 

subsoils, Don et al. (2008) reported that pores inhabited by earthworms exhibited higher 

nutrient contents and enzyme activities than abandoned earthworm burrows, but no such 

data are available for short-term effects in arable fields. In this study, we conducted an 

earthworm incubation field experiment in arable soil to test the capacity of L. terrestris to i. 

increase total nutrient contents including plant available P, ii. alter the microbial community 

and iii. increase enzyme activities in biopore walls over one vegetation period. 

 Material and Methods 

2.4.2.1 Site conditions and experimental design 

The field trial was performed at ‘Campus Klein Altendorf’ experimental station in 

Rheinbach, Germany (50°37’N, 6°59’E) with a mean annual temperature of 9.4°C and total 

annual precipitation of 603 mm. The soil is a Haplic Luvisol derived from loess with a clay 

content of 18 % in the Ap and 29-32 % in the Bt horizon. A detailed description of soil 

properties at the experimental site is given by Vetterlein et al. (2013).  

The experiment had a completely randomized block design with four replications 

that had the following treatments: i. bulk soil, ii. root channels after two and a half years of 

decay (i.e., root biopores ‘RBP’) and iii. root channels after two years of decay followed by 

earthworm incubation for six months (i.e., earthworm modified biopores, ‘EBP‘). It is 

important to note that the age and origin of these pores was not known. It is likely that most 

were older biopores that had been visited by both roots and earthworms before chicory 

cultivation, while a smaller portion of biopores were newly generated by chicory taproots. 

In detail, the treatments were established as follows: Four 6 x 10 m replicate field 

plots of a larger randomized field experiment with arable crops were selected for this study. 

Chicory ‘Puna’ (Cichorium intybus L.) was sown in spring 2009 with a sowing density of 

385 seeds m-2 (5 kg ha-1) and cultivated continuously for 3 years. On January 30th 2012, 

the trial was plowed to 30 cm depth. On September 10th 2012, the topsoil was removed 

down to 45 cm depth in subplots with surface areas of 4.2 x 1.5 m in each of the replicate 

field plots and stored adjacent to the study area. A depth of 45 cm was chosen to be sure 
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to also remove the plow pan. The horizontal area in 45 cm depth was carefully planed and 

biopores were cleared from loose and smeared soil particles using a vacuum cleaner. The 

prepared surface was covered with transparent films and the locations of large biopores 

(diameter > 5 mm) containing roots were mapped. No visible signs of earthworm activity 

were detected in these root containing biopores. Afterwards, the topsoil was put back and 

the plots were left under fallow conditions for 19 months to allow for root decomposition 

and to remove all food sources, thereby discouraging earthworms native to the site from 

colonizing these biopores. 

In April 2014, half of the subplots (2.1 x 1.5 m) were re-opened, and the topsoil was 

stored next to the experimental area as before. Again, a horizontal area in 45 cm depth 

was prepared for identification of biopores. In each field replicate, 25 biopores were 

identified that had previously contained roots, but were now found to be empty. Each 

selected pore was incubated with one dew worm (L. terrestris). The worms were adults 

obtained from Canadian wild harvesting (Superwurm e.K., Düren, Germany), and were 

kept for four weeks at 4-6°C in buckets with nutrient rich soil and horse manure. Prior to 

incubation all worms were kept on filter tissues for 3 days to ensure complete defecation. 

Then they were labeled with visual implant elastomers (Butt and Lowe, 2007). Wooden 

sticks (diameter 8 mm, length 45 cm) were inserted into all incubated pores before the 

subplots were refilled with topsoil. Finally, removal of the wooden sticks created a 

connection between incubated pores and the soil surface. For the next six months all 

subplots were covered with mulching material from a grass clover field. Weeds that 

occasionally emerged were manually removed from the experimental area. After the 

incubation period the topsoil was removed from all subplots and incubated earthworms 

were removed via the octet method (Thielemann, 1986).  

2.4.2.2 Sampling 

In October 2014, an excavator was used to create a trench along the long side of the 

subplots as a base for collecting samples from the bulk soil and from pore walls of RBP 

and EBP. For RBP, no visible signs of earthworm activity were detected before or during 

sampling. EBP were only taken into account if an earthworm with a clearly recognizable 

implant elastomer was found after the incubation period. The recovery rate of labeled 

earthworms was 39% (39 of 100 pores), with 6-13 pores sampled in each plot. Within a 

layer of 10 cm (45 - 55 cm depth) single biopores were opened and approximately 1 mm 

of the inner wall material was sampled with microspatulas. The procedure was repeated 

for 6 depth intervals down to a maximum depth of 105 cm. Bulk soil was also collected 

from each treatment and depth layer with a spatula, keeping a distance to biopores of at 
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least 5 cm. Samples from 45 - 75 cm and 75 - 105 cm depth layers were merged to gain 

sufficient material for all analyses. 

Due to the large volume of work, several persons were required to collect all of the 

samples. We were aware that a change in the sampling personnel might influence the 

results due to individual differences in the amount of material taken from the pore wall. To 

minimize such effects, the sampling personnel was trained prior to the field work and each 

field replicate was sampled by one person only. 

2.4.2.3 Plant nutrients 

Total C, N and S contents of pore wall and bulk soil samples were analyzed by dry 

combustion with an elemental analyzer. Soil pH was around 6.5 so we considered total C 

as soil organic content (Corg).  

Calcium-acetate-lactate soluble P (CAL-Pi) was extracted according to Schüller 

(1969). Specific P pools were determined following the sequential extraction procedure of 

Hedley et al. (1982) as modified by Tiessen und Moir (1993); however, residual P was 

extracted by digestion in aqua regia. Concentrations of inorganic P (Pi) in each of the 

extracts were determined with a spectrophotometer by the molybdenum blue method 

(Murphy und Riley, 1962). Total P concentration in the extracts was determined by 

inductively coupled plasma optical-emission spectroscopy. Concentrations of organic P 

(Po) were calculated as the difference of inorganic to total P. We classified P pools 

according to Negassa and Leinweber (2009), distinguishing highly available P (resin and 

NaHCO3 extracts), moderately available P (NaOH extracts) and stable P (HCldil, HClconc 

and residual P in aqua regia) for interpreting our findings, but restrict to mentioning the 

chemical extractions as nomenclature. 

2.4.2.4 Basal respiration, microbial biomass carbon (Cmic) and microbial metabolic 

quotient (qCO2) 

A fresh subsample (1 g oven-dry soil equivalent) was adjusted to 50% of the water holding 

capacity (WHC) and gravimetrically controlled. After two days preincubation at room 

temperature to avoid side effects of sieving (Blagodatskaya et al., 2011), samples were 

incubated at 20 °C (Creamer et al., 2014) in 12 ml septum-capped vials. Six other vials 

without soil were prepared as controls to correct for atmospheric carbon dioxide.  

The basal respiration was measured at time 0 (t0, i.e., right after adding the soil to 

the vials and flushing the vials with ambient air), then at 24 hour intervals for three 

additional time points (t1, t2, t3). Thereafter, 100 µl of a glucose solution (60 mg mL-1) were 

amended to all the vials to determine the soil microbial biomass (µg Cmic g-1 soil dry mass) 

by the substrate induced respiration (SIR) method (Anderson and Domsch, 1978; Lin and 
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Brookes, 1999; West and Sparling, 1986). The WHC reached 70% after aliquot 

amendment. Immediately after glucose addition, we used a manifold combined with a 

pump to standardize air inside vials with ambient air. All vials were then incubated for 2h 

at 20 0C (Lin and Brookes, 1999). The measurements of basal respiration and substrate 

induced respiration were undertaken directly via gas chromatography. The CO2 evolution 

(ppm) was calculated by subtracting the CO2 concentrations of the blanks from those of 

the sample.   

The basal respiration (µg C g-1 h-1) was calculated by subtracting CO2 

concentrations in soil vials measured at t1, t2 and t3 from CO2 concentrations in blank vials 

and the initial CO2 evolution of soil vials at t0 (Creamer et al., 2014). Using the Ideal Gas 

Equation, CO2 respiration was converted from ppm to µg C g-1 h-1 in accordance with 

headspace volume of the sealed flask containing the soil sample, incubation temperature 

and air pressure (Orchard and Cook 1983). The SIR was applied to calculate microbial 

biomass C (µg C g soil-1) based on the equation by Anderson and Domsch (1978)  

                      x = 40.4y +0.37       (1) 

where y is the maximum initial rate of respiration (CO2 evolution 2 h after adding glucose). 

Similarly, the microbial metabolic quotient (qCO2) was calculated by dividing initial 

respiration (BR) by Cmic and expressed as µg CO2-C mg-1 Cmic h-1 (Anderson and Domsch, 

1990).  

2.4.2.5 Phospholipid fatty acids (PLFA)  

Phospholipids were extracted based on the protocol of Frostegård et al. (1991) with the 

modifications described by Apostel et al. (2013) using phosphatidylcholine-dinonadecanoic 

acid and tridecanoic acid methyl ester as internal standards (IS 1 and IS 2, respectively). 

Samples were measured on a coupled gas chromatography mass spectrometry (GC-MS) 

system employing a 45 m DB5-MS column (0.25 mm I.D., 0.25 µm film thickness). Stock 

solutions containing external standards of 27 fatty acids and IS 1, with total fatty acid 

contents of 1, 4.5, 9, 18 and 24 mg, were derivatised together with the samples. The 

detailed measurement procedure is described in supplement 1. Individual groups of 

microorganisms were determined based on previously published PLFA biomarker data 

(Zhang et al., 2015). Specifically, 18:2ω6,9 was used as a marker for fungal biomass 

(Frostegård and Bååth, 1996); 10Me16:0 and 10Me18:0 were used as markers for 

actinobacteria; a15:0, i15:0, i17:0, a17:0 were used as markers for Gram-positive bacteria, 

and 16:1ω5c, 16:1ω7c, 18:1ω7c, Cy17:0 were used as markers for Gram-negative 

bacteria. In addition, 20:4ω6 was used as a marker for protozoa (Fierer et al., 2003). 
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2.4.2.6 Enzyme activities  

Enzymes were assayed according to the modified methodology of Razavi et al. (2015) for 

three out of four field replicates. Half a gram of fresh soil (dry weight equivalent) was 

dispersed in 50 mL sterilized water of which 50 µL soil suspension was pipetted to a 96-

well microplate. Subsequently, 50 µL of buffer [MES C6H13NO4SNa0.5. (pH: 6.5) buffer for 

4-methylumbelliferone (MUF) substrate and TRIZMA C4H11NO3•HCl, C4H11NO (pH: 7) 

buffer for 7-amino-4-methylcoumarin (AMC) was added. We measured activities of 3 

enzymes regarding the C-cycle: 1) β-glucosidase (EC 3.2.1.21) measured with MUF-β-D-

glucopyranoside (MUF-G), 2) cellobiohydrolase (EC 3.2.1.91) measured with MUF-β-D-

cellobioside (MUF-C), and 3) xylanase (EC 3.2. 1.8) measured with MUF-β-D-

xylopyranoside (MUF-X); and 3 enzymes regarding the N-cycle: 1) chitotriosidase 

(EC 3.2.1.14) measured with 4-methylumbelliferyl-β–DN, N′,N″-triacetylchitotrioside (MUF-

Tr), 2) chitinase (EC 3.2.1.14) measured with MUF-N-acetyl-β-D-glucosaminide (MUF-N); 

3) leucine-aminopeptidase (EC 3.4.11.1) measured with L-Leucine-7-amido-4-

methylcoumarin hydrochloride (AMC-L). 

The reaction solution was buffered at pH 6.5 whereas the optimal pH is 5.5 for 

xylanase (Schinner and von Mersi, 1990), 6.0 for cellobiohydrolase (Hong et al., 2003), 5.2 

for chitotriosidase (Hollak et al., 1994), 5.5 for chitinase (Parham and Deng, 2000), 6.0 for 

β-Glucosidase (Eivazi and Tabatabai, 1988), and 7.5 for leucine aminopeptidase (Niemi 

and Vepsäläinen, 2005). For these assays that were not run at optimal pH, the results 

cannot be compared to other studies where the optimal buffered pH was used.  Also, in 

these cases, the activities would be expected to be reduced compared to if it had been 

done at optimal pH. Thus, differences between treatments may have been underestimated.  

The microplate was incubated with 100 µL/well of fluorescent substrate solution at 

the desired concentration range: 0, 10, 20, 30, 40, 50, 100, 200 nmol g-1 dry weight in a 

96-well microplate. The concentration that resulted in saturation of fluorogenic substrate 

was determined based on preliminary experiments for which one field replicate was used. 

The assay of each enzyme at each substrate concentration was replicated three times in 

each plate, and each plate included a standard curve of the product (4-

methylumbelliferone, MUF) or (7-amino-4-methylcoumarin, AMC), substrate controls (for 

each substrate concentration), and homogenate controls. Enzymatic activity (nmol product 

released h-1 g-1 dry soil) was calculated from the MUF or AMC standard curve following 

Razavi et al. (2015). However, we did not run a control for autohydrolysis. We assumed 

autohydrolysis of the two substrates MUF and AMC to be ignorable because according to 

Rakels et al. (1993) substrate hydrolysis occurs for 0.5 % of the total amount of substrate 

in 1 h and is thus negligible. The calibration solutions were prepared using soil suspension 

(50μL) and MUF to obtain a series of concentrations 0–1.2 mM (Razavi et al., 2015). The 
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time from substrate addition to the fluorescence measurement (30, 60 and 120 min.) was 

the same for all enzymes and samples. Linear increase of fluorescence over time during 

the assay was checked and data obtained after 2 h used for further calculation (Razavi et 

al., 2015). The fluorescence was measured using a Multilabel Counter at an excitation 

wavelength of 355 nm and an emission wavelength of 460 nm. In order to calculate Vmax, 

a calibration curve was prepared by adding MUF or AMC instead of substrates to the same 

amount of soil solution and buffers (MES or TRIZMA, respectively) following Freeman et 

al. (1995) and Razavi et al. (2015). Enzyme activities were calculated as released MUF or 

AMC in nmol g-1 h-1 (Marx et al., 2005). Vmax values were determined by nonlinear curve 

fitting using the software OriginPro 8.5 (OriginLab, Massachusetts, USA).  

2.4.2.7 Statistical analyses  

Shapiro-Wilk tests were used to confirm normal distribution of the datasets. Means were 

compared by one-way ANOVA followed by Tukey-tests. For enzyme activities, only three 

field repetitions were considered, for all other parameters all four field repetitions were 

included in the analysis. For the 45–75 cm soil depth interval principal component analysis 

(PCA) was used for further data evaluation. All parameters analyzed were subjected to 

PCA, including individual PLFAs. Only components with Eigenvalues > 1 were considered. 

Principal components were not rotated. All calculations were performed using IBM SPSS 

version 22. 

 Results 

2.4.3.1 Nutrient contents 

In walls of pores with or without earthworm incubation total contents of C, N, P, S were 

generally higher than in the bulk soil (Tab. 1). This effect was particularly pronounced for 

C, N and S with at least two-fold increased contents in pore walls relative to the bulk soil in 

both depths (45–75 cm and 75–105 cm). Moreover, short-term earthworm incubation in 

EBP resulted in higher C contents than in RBP in the 45–75 cm soil depth layer.  

Hedley fractionation of phosphorus revealed markedly higher contents of resin Pi, 

NaHCO3 Pi, NaHCO3 Po, NaOH Pi, NaOH Po, and HCLdil Pi in pore walls than in the bulk 

soil, and the same was also observed for CAL-Pi. Furthermore, in EBP CAL-Pi and resin 

Pi were significantly enriched as compared to RBP in the 45–75 cm soil depth layer, and 

NaHCO3 Po in both soil depths. In the bulk soil, increased soil depth resulted in lower 

contents of total N and S as well as NaOH Po, while total P and HClconc Pi increased with 

depth. In RBP generally no effect of depth on nutrient contents was observed, but in EBP 
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contents of total N and NaOH Po and HClconc Po were higher at 45–75 cm than at 75–105 

cm.  

 

2.4.3.2 Microbiological properties 

Microbial biomass (Cmic) related to soil organic carbon was low in bulk soil regardless of 

soil depth (Fig. 1). In both biopore types, but especially in EBP, Cmic was considerably 

elevated, with the highest value in EBP at 45–75 cm soil depth. The microbial metabolic 

quotient (qCO2) related to the microbial biomass was very high in bulk soil, especially in 

the 75–105 cm soil depth layer (Fig. 1), and decreased in both biopore types.  

Similarly, to Cmic, the total PLFA content (Fig. 2a) was much higher in both biopore 

types than in the bulk soil, increasing by a factor of 12-54 depending on biopore type and 

soil depth. Total PLFA was further increased by short-term earthworm incubation (factor 

1.5-2.0 as compared to RBP; this difference was significant in the 45–75 cm soil depth 

Table 1 Total nutrient contents and P fractions in bulk soil and the walls of different pore types. Different 
uppercase and lowercase letters indicate significant differences between depth levels and soil 
compartments respectively (one way ANOVA with Tukey-HSD, p < 0.05). 

Soil depth 

Treatment 

45–75 cm 75–105 cm 

EBPa RBPb Bulk soil EBPa RBPb Bulk soil 

C (mg g−1) 11.6 a 8.10 b 4.10 c 10.7 a 9.30 a 3.50 b 

N (mg g−1) 1.60 a A 1.40 a 0.70 b A 1.30 a B 1.30 a 0.60 b B 

S (mg g−1) 0.15 a 0.14 a 0.07 b A 0.10 a 0.11 a 0.03 b B 

P (mg kg−1) 917 a 800 a 454 b B 825 a 797 a 580 b A 

CAL-Pi (mg kg−1) 242 a 163 b 15.8 c 194 a 153 a 19.8 b 

Resin Pi (mg kg−1) 74.3 a 40.4 b 16.0 c 55.3 a 34.5 ab 14.8 b 

NaHCO3 Pi (mg kg−1) 35.1 a 33.1 a 15.9 b 27.9 31.8 18.9 

NaHCO3 Po (mg kg−1) 23.9 a 7.19 b n.d. 19.6 a 9.21 b n.d. 

NaHCO3 Pt (mg kg−1) 59.0 a 40.3 b 15.9 c 47.5 a 41.0 a 18.9 b 

NaOH Pi (mg kg−1) 72.5 a 68.1 a 48.8 b 69.0 66.9 49.9 

NaOH Po (mg kg−1) 31.7 a A 24.7 ab 16.8 b A 20.4 a B 20.5 a 10.1 b B 

NaOH Pt (mg kg−1) 104 a 92.7 a 65.6 v 65.6 b 87.4 59.9 

HCldil Pi (mg kg−1) 194.4 a 207 a 135 b 214 231 240 

HClconc Pi (mg kg−1) 171 186 144 B 187 159 166 A 

HClconc Po (mg 

kg−1) 

40.6 A 30.2 35.9 10.7 b B 53.2 a 33.3 ab 

HClconc Pt (mg kg−1) 211 ab 216 a 180 b 198 213 199 

Residual Pt (mg kg−1) 31.5 ab 40.7 a 25.6 b 28.1 38.1 27.8 

  Pi: inorganic phosphorus, Po: organic phosphorus, Pt: total phosphorus. 
a EBP: Earthworm-modified biopores. 
b RBP: Root biopores. 
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layer). The ratio of Gram positive : Gram negative bacteria as determined with PLFA 

biomarkers (Fig. 2b) was much higher in bulk soil than in both biopore types (factor 3.4-

16.3). In the bulk soil there was a significant effect of soil depth, with a much higher ratio 

in 75–105 cm soil depth. Biomarkers for fungi and protozoa (Fig. 2c) were not found in bulk 

soil, and both parameters were significantly increased by short-term earthworm incubation 

as compared to RBP (factor 2.6-4.4 for fungi and 9.2-14.2 for protozoa). Biomarkers for 

actinobacteria (Fig. 2d) in bulk soil were present only at trace levels and only in the upper 

soil layer (45–75 cm). In the 45–75 cm soil depth layer there were almost equal amounts 

of actinobacteria in both biopore types, while at 75–105 cm, biomarkers for actinobacteria 

were about 1.8 times higher in RBP as compared to EBP. This increase was not significant.  

Activities of enzymes related to the C-cycle (cellobiohydrolase, ß-glucosidase and 

xylanase) and of enzymes related to the N-cycle (chitinase, chitotriosidase, leucine 

aminopeptidase) were increased in EBP and partially also in RBP as compared to the bulk 

soil (Tab. 2). These effects were more pronounced in the 45–75 cm soil depth layer. While 

there was only one effect of soil depth in the bulk soil and depth effects in RBP were 

inconsistent, all enzyme activities except for chitinase were higher in the upper depth layer 

(45–75 cm) of EBP (Tab. 2). 

 

 
Fig. 1 Microbial biomass (C mic ) related to organic carbon content and microbial metabolic quotient (qCO 

2 ). Error bars indicate standard deviation. RPB: root biopores, EBP: earthworm-modified biopores. 
C mic is significantly higher in EBP than in RBP and bulk soil in both soil depth horizons and, only 
in EBP, significantly higher at 45–75 cm (ANOVA with Tukey-HSD, p < 0.05). qCO 2 is significantly 
lower in EBP and RBP as compared to the bulk soil and, only in bulk soil, significantly lower at 45–
75 cm. 
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Fig. 2 a) Microbial biomass (total PLFA), b) ratio of biomarkers for gram-positive and gram-negative 
bacteria (a15:0, i15:0, i17:0, a17:0 and 16:1 ω 5c, 16:1ω7c, 18:1ω7c, Cy17:0), c) biomarkers for 
fungi (18:2ω6,9) and protozoa (20:4ω6) and d) biomarkers for actinobacteria (10Me16, 10Me18). 
Different uppercase and lowercase letters indicate significant differences between depth levels and 
soil compartments (ANOVA with Tukey-HSD, p < 0.05). Error bars indicate standard deviation. 
RPB: root biopores, EBP: earthworm-modified biopores. 

Table 2 Enzyme activities (Vmax) in bulk soil and the walls of different pore types. Different uppercase 
and lowercase letters indicate significant differences between depth levels and soil 
compartments, respectively (one way ANOVA with Tukey-HSD, p < 0.05). 

Soil depth 

Treatment 

45–75 cm 75–105 cm 

EBPa RBPb Bulk soil EBPa RBPb Bulk soil 

Vmax Cellobiohydrolase 

(nmol g−1 MUF h−1) 

89.0 a A 31.7 b B 16.1 c 70.7 a B 43.3 b A 12.1 c 

Vmax ß-Glucosidase 

(nmol g−1 MUF h−1) 

1169 a A 511.1 b A 234.5 c 347.8 a B 295.3 ab B 256.8 b 

Vmax Xylanase 

(nmol g−1 MUF h−1) 

66.6 a A 32.0 b 23.7 b 38.0 a B 27.1 b 23.1 b 

Vmax Chitotriosidase 

(nmol g−1 MUF h−1) 

22.5 a A 7.58 b 6.11 b 15.4 a B 6.48 b 5.99 b 

Vmax Chitinase 

(nmol g−1 MUF h−1) 

68.6 a 24.4 b 10.4 b 45.5 a 30.4 ab 13.3 b 

Vmax Leucine amino-

peptidase 

(nmol g−1 AMC h−1) 

540 a A 147 b 48.9 c B 354 a B 142 b 89.1 b A 

a EBP: Earthworm-modified biopores. 
b RBP: Root biopores. 
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2.4.3.3 Principal component analysis 

Bulk soil, RBP and EBP were clearly distinguished by PC 1, explaining 68.3 % of total 

variance (Fig. 3a). Additionally, RBP were separated from bulk soil and EBP by PC 2, which 

explained 14.6 % of total variance. PC 1 loads high on C, N, CAL-Pi, microbial biomass, 

biomarkers for fungi and protozoa and enzyme activities such as xylanase and chitinase 

(Fig. 3b). Negative loadings were recorded for iso-branched fatty acids. PC 2 loadings were 

particularly high for 10-methyl branched fatty acids.  

 Discussion 

2.4.4.1  General properties of biopore walls 

The increased C and N contents in pore walls vs bulk soil observed in our study are 

consistent with previous laboratory and field studies (e.g.  Stromberger et al., 2012; 

Amador et al., 2003; Pankhurst et al., 2002; Tiunov and Scheu, 1999). These 

characteristics of biopores are obviously a result of organic material inputs by earthworms 

and plant roots. Accordingly, pore walls were previously found to be enriched in P, in 

particular in resin-Pi, NaHCO3-Pi, NaOH-Pi and NaOH-Po compared with the bulk soil (Barej 

et al., 2014). Also, increased microbial biomass (Stromberger et al., 2012; Tiunov et al., 

2001; Tiunov and Scheu, 1999), bacterial counts (Parkin and Berry, 1999), PLFA contents 

(Pankhurst et al., 2002) and enzyme activities (Hoang et al., 2016; Jégou et al., 2001; 

Stehouwer et al., 1993; Uksa et al., 2015) in pore walls have repeatedly been reported.  

 

Fig. 3 a) Principal-component scores for bulk soil (open circles), root biopores (gray circles) and 
earthworm-modified biopores (black circles) in 45–75 cm soil depth and b) selected factor loadings 
of the first two principal components extracted from the dataset. 
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2.4.4.2 Properties of root biopores  

We differentiated between pores filled with roots prior to the experiment (RBP) and pores 

incubated with L. terrestris for one vegetation period (EBP). Despite RBP not being visited 

by earthworms for at least two years, their properties clearly differed from the bulk soil, with 

higher nutrient contents, microbial biomass and enzyme activity.  In particular, this pore 

type was characterized by increased contents of the 10-methyl branched fatty acid 

biomarkers of actinobacteria (Fig. 2 and 3).  

Actinobacteria are involved in late stages of plant residue degradation (Bernard et 

al., 2007; Goodfellow and Williams, 1983) and are adapted to survive at slower growth 

rates when resources are limited or consist of more complex organic matter (Bastian et al., 

2009). Relative enrichment of these biomarkers in RBP supports the assumption that the 

resident microbes primarily respire old and recalcitrant plant residues.  

2.4.4.3 Properties of earthworm-modified biopores 

Short-term earthworm incubation resulted in import of carbon, increased enzyme activity 

and changes in the microbial community. L. terrestris removes plant residues from the soil 

surface and deposits organic matter on the burrow wall (Lavelle, 1988; Stromberger et al., 

2012). Intake of primary organic matter into soil generally results in higher activity of 

enzymes related to the decomposition of polysaccharides from plant tissues (Bandick and 

Dick, 1999; Debosz et al., 1999; Kautz et al., 2004). Xylanase is mainly bound to particulate 

organic matter (Kandeler et al., 1999a; Kandeler et al., 1999b) which is likely to be enriched 

in the drilosphere. Hence, it is plausible that presence of L. terrestris increases the activity 

of such enzymes in the burrow wall, as also reported by Don et al. (2008). Additionally, the 

composition of the microbial community in pore walls was evidently altered by the presence 

of L. terrestris: actinobacteria were reduced, as indicated by the relatively lower abundance 

of 10-methyl branched fatty acids, while fungal and protozoan fatty acids (i.e., 18:2ω6,9 

and 20:4ω6, respectively) were relatively enriched in comparison with RBP. Both fungi and 

protozoa are assumed to form a substantial part of the earthworm diet (Curry and Schmidt, 

2007; Edwards and Fletcher, 1988) and were previously determined to be enriched in 

burrow walls of L. terrestris (Tiunov et al., 2001). Moreover, 20:4ω6 was also found to be 

increased in drilosphere vs bulk soil samples (Stromberger et al., 2012). Thus, L. terrestris 

acts as an ecosystem engineer (Jones et al. 1994) by defecating and importing plant 

residues into the pore wall, thus creating a distinct habitat for microorganisms which in turn 

provide a suitable food source. The increased content of a PLFA-biomarker for fungi as a 

result of earthworm incubation is in line with higher activity of chitotriosidase and chitinase, 

possibly indicating a decomposition of chitin from fungal cell walls. These results indicate 

that fungal hyphae and spores may be transported downwards through biopores by 
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earthworm activity. However, Tiunov and Scheu (1999) found a lower ratio of 

fungal:bacterial biomass in drilosphere samples than in the bulk soil, while Stromberger et 

al. (2012) reported no difference in this ratio in bulk soil and drilosphere as revealed by 

PLFA analysis. As explained by Stromberger et al. (2012), the reason for these 

contradictory results may be the complex equilibrium of fungi, bacteria, and fungivorous 

and bacterivorous fauna in drilosphere and bulk soil. This equilibrium is affected by 

earthworms via dispersal and activation, predation, habitat destruction, competition for 

organic matter, and production of fungicides and bactericides (Brown et al., 2004). Further 

research is required to determine the conditions under which earthworm activity promotes 

fungal or bacterial growth. 

Apart from the diet, changes in PLFA contents in the burrow wall can also be related to 

processes in the digestive tract of L. terrestris. Sampedro and Whalen (2007) reported that 

the fatty acid pattern markedly changed in the gut of L. terrestris with enrichments of 

16:1ω5 and 20:4ω6 in the gut content. These PLFA were also enriched in the walls of EBP. 

Increased enzyme activity can also promote the mobilization of nutrients. The 

enrichment of total P and particularly of labile P forms in RBP vs. the bulk soil was similar 

to the results of Barej et al. (2014), who sampled biopores with a smaller lower diameter 

limit (> 2 mm) at the same site. This is plausible as smaller biopores are visited by 

earthworms less often than larger pores. Further significant enrichments of labile P as a 

result of earthworm activity suggest that walls of recently inhabited burrows can be 

hotspots of P acquisition by plants. This notion is supported by the finding of Kuczak et al. 

(2006) that earthworm casts are enriched in total P with higher proportions of P mainly in 

forms that are more readily extracted (resin, NaHCO3, NaOH and HCldil). Moreover, Vos et 

al. (2014) noted that in a pot experiment the presence of L. terrestris increased plant growth 

and P uptake, but it remained questionable if this result could be applied to native, 

structured soils. Our results support the link between L. terrestris activity and P uptake by 

plants, as the shared burrows of L. terrestris and plant roots in natural conditions were 

significantly loaded with plant available P after earthworm incubation for a period of just six 

months. 

2.4.4.4 Effects of soil depth 

Microbial activity and availability of plant nutrients such as N and P have generally been 

reported to decline with soil depth (e.g., Fierer et al., 2003; Lynch und Brown; 2001). In the 

bulk soil from our field trial, significant decreases in the 75–105 cm depth layer were merely 

found for total N, total S and NaOH Po, and significant increases were observed in the 

microbial metabolic quotient and the ratio of Gram positive : Gram negative bacteria. 

Interestingly, these depth effects were not observed in RBP, showing that these pores 
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feature rather stable conditions throughout the soil profile and provide an attractive 

environment for plant roots even in greater soil depths. The effect of short-term incubation 

of L. terrestris on nutrient contents and microbial biomass was more pronounced at 45–75 

than at 75–105 cm soil depth, resulting in many significant differences between both depth 

levels. Little is known about the in situ patterns of vertical movement of L. terrestris. One 

older study (Joyner and Harmon, 1961) indicates that earthworms tend to oscillate in rather 

stable day-and-night cycles between the soil surface around midnight and about 60 cm soil 

depth around noon. These observations coincide with our field experiment, where 

earthworm activity was obviously greater in the upper subsoil, although a clear impact on 

burrow properties was also detected in the deeper soil layers.  

 Conclusions 

Subsoil biopores inhabited by roots for at least two years were enriched in microbial 

biomass and enzyme activity as well as N and plant available P compared to surrounding 

bulk soil. These hotspots turned into ‘super-hotspots’ with further inputs of C and nutrients, 

higher microbial and enzyme activities and altered microbial community composition as a 

consequence of colonization by Lumbricus terrestris – even during only one vegetation 

period. Both biopore properties and microbial performance in biopores are thus highly 

dynamic – and prone to effects of even short-term management practices that influence 

earthworm activity. 
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 Supplementary Material 

Supplement 1: Detailed description of PLFA quantification 

15 µl of IS 2 was added prior to measurement. The relation between the integrated peak 

area of each fatty acid methyl ester (FAME) and the peak area of the IS 2 was calculated. 

Calibration curves were determined by a linear regression from the external standard 

substances at five different concentrations. Losses during sample preparation were 

corrected for by applying the recovery rate of the IS 1 to the quantifications of each FAME. 

The GC parameters were as follows: Injection was splitless, the inlet temperature was set 

to 270 °C and the detector temperature to 280 °C. Column head pressure was kept 

constant at 0.79 bar. The initial oven temperature was 80 °C, held for 1.5 min, then 

increased at 10 °C min-1 to 167 °C and further at 0.7 °C min-1 to 196 °C, and finally at 10 

°C min-1 to 300 °C and held for 8 min. 

 

Supplement 2: PLFAs in bulk soil and the walls of different pore types ± standard 

deviation. Highest values are not shaded, lowest values are shaded dark grey.  

Soil depth (cm)   45-75 cm      75-105 cm   

Treatment1  EBP 
† RBP 

‡ bulk  EBP † RBP ‡ bulk 

PLFAtotal  (µg g-1 soil) 33.51 ± 4.26 16.65 ± 2.08 1.43 ± 0.7 33.97 ± 8.10 23.02 ± 6.6 0.63 ± 0.25 

a15:0 (µg g-1 soil) 1.89 ± 0.34 1.04 ± 0.13 0.08 ± 0.08 1.91 ± 0.51 1.51 ± 0.32 0.01 ± 0.01 

i15:0 (µg g-1 soil) 2.22 ± 0.29 1.45 ± 0.22 0.23 ± 0.15 2.51 ± 0.76 2.01 ± 0.44 0.07 ± 0.05 

i17:0 (µg g-1 soil) 0.77 ± 0.11 0.57 ± 0.06 0.09 ± 0.05 0.83 ± 0.22 0.79 ± 0.21 0.02 ± 0.02 

a17:0 (µg g-1 soil) 0.2 ± 0.10 0. ± 0. 0. ± 0. 0.09 ± 0.05 0.04 ± 0.04 0. ± 0. 

16:1ω5c (µg g-1 soil) 2.83 ± 0.27 1.08 ± 0.18 0.02 ± 0.02 3.06 ± 0.88 1.6 ± 0.47 0. ± 0. 

16:1ω7c (µg g-1 soil) 4.73 ± 0.50 1.79 ± 0.21 0.12 ± 0.06 4.92 ± 1.27 2.53 ± 0.67 0.01 ± 0.01 

18:1ω7c (µg g-1 soil) 4.95 ± 0.71 2.27 ± 0.30 0.1 ± 0.07 5.21 ± 1.18 3.33 ± 0.93 0. ± 0. 

Cy17:0 (µg g-1 soil) 1.09 ± 0.17 0.75 ± 0.11 0.03 ± 0.05 1.57 ± 0.28 1.53 ± 0.41 0. ± 0. 

10Me16:0 (µg g-1 soil) 0.3 ± 0.06 0.52 ± 0.09 0.02 ± 0.03 0.32 ± 0.13 0.63 ± 0.13 0. ± 0. 

10Me18:0 (µg g-1 soil) 0.61 ± 0.14 0.44 ± 0.08 0. ± 0. 0.39 ± 0.12 0.38 ± 0.12 0. ± 0. 

18:2ω6,9 (µg g-1 soil) 1.39 ± 0.43 0.31 ± 0.04 0. ± 0. 0.77 ± 0.16 0.29 ± 0.18 0. ± 0. 

20:4ω6 (µg g-1 soil) 0.16 ± 0.07 0.01 ± 0.02 0. ± 0. 0.17 ± 0.06 0.02 ± 0.01 0. ± 0. 
† EBP: Earthworm-modified biopores, ‡ RBP: Root biopores.  
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Supplement 3: Factor by which PLFA contents are increased by root biopores as 
compared to the bulk soil and by earthworm-modified biopores as compared to root 
biopores and to the bulk soil. 

Effect of  
 Bulk →  
RBP †† 

RBP †† → 
EBP † 

Bulk →  
EBP 

† 
 Bulk → 
RBP †† 

RBP †† → 
EBP † 

Bulk →  
EBP 

† 

PLFAtotal  (µg g-1 soil) 11.7 2.0 23.5 36.3 1.5 53.5 

a15:0 (µg g-1 soil) 13.1 1.8 23.7 190.3 1.3 241.0 

i15:0 (µg g-1 soil) 6.3 1.5 9.6 29.5 1.2 36.8 

i17:0 (µg g-1 soil) 6.5 1.4 8.9 34.6 1.1 36.6 

a17:0 (µg g-1 soil) 0.0 n.d. n.d. n.d. 2.5 n.d. 

16:1ω5c (µg g-1 soil) 71.8 2.6 187.3 n.d. 1.9 n.d. 

16:1ω7c (µg g-1 soil) 15.1 2.6 40.0 191.0 1.9 371.2 

18:1ω7c (µg g-1 soil) 22.4 2.2 49.0 4304.2 1.6 6743.3 

Cy17:0 (µg g-1 soil) 27.0 1.5 39.4 332.9 1.0 341.4 

10Me16:0 (µg g-1 soil) 32.2 0.6 18.3 n.d. 0.5 n.d. 

10Me18:0 (µg g-1 soil) n.d. 1.4 n.d. n.d. 1.0 n.d. 

18:2ω6,9 (µg g-1 soil) n.d. 4.4 n.d. n.d. 2.6 n.d. 

20:4ω6 (µg g-1 soil) n.d. 14.2 n.d. n.d. 9.2 n.d. 
† EBP: Earthworm-modified biopores, ‡ RBP: Root biopores.  
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Abstract 

Background and Aims: Biopores as microbial hotspots provide additional nutrients to crops 

– but only if their roots grow within the biopores. Such reuse has never been quantified as 

pre-crop-specific biopores were hardly differentiated from the multitude of pre-existing 

biopores. Quantification requires e.g. radionuclide labelling of pre-crops (137Cs, to label 

their biopores) and main crops (14C, to detect new roots). Preliminary testing was 

performed on simulated biopore reuse: both nuclides given to the same plant were 

excreted into the same rhizosphere. 

 

Methods: Cichorium intybus (cv. Puna) and Medicago sativa (cv. Planet) were each 

sequentially labelled via the leaves with 137Cs and 14CO2. β-signals were visualised by 

imaging of horizontal soil cuts - with and without shielding off the weaker 14C.  

 

Results: Both species allocated 7.1-9.4% of the 137Cs and 21-63% of the 14C below ground. 

The first image gave both activities; while the second gave only 137Cs. Subtracting the 

second from the first image gave the 14C distribution, resulting in successful separation of 

the signals. Thus, separate spatial representations of the roots were obtained. Main root 

locations by 137Cs and 14C showed a very high spatial overlap coefficient (> 0.95). 

 

Conclusions: Biopore reuse quantification likely becomes feasible with this sequential 

labelling and shielding approach. 
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 Introduction 

The root system and its surrounding soil, known as the rhizosphere (Hiltner 1904), are 

recognised as a key interface of carbon (C) cycling. Roots induce strong chemical, 

biological and physical changes in soil, e.g. by exudation of easily available carbon 

sources, i.e. rhizodeposition. As the exuded C sources boost microorganisms, the 

rhizosphere is deemed a microbial hot spot (Jones et al. 2009; Kuzyakov and 

Blagodatskaya 2015; Paterson 2003). After their death, roots leave behind voids, so-called 

biopores (Kautz et al. 2013), through which subsequently grown crop roots grow faster into 

the subsoil and reach additional resources. One of the presumably largest benefits for 

subsequent crops is the biochemical environment created by root decay and 

rhizodeposition. In the field, even two years after root death and decomposition, C contents 

in root biopores, also known as the detritusphere, were still 2.5 times higher than in bulk 

soil, leading to up to 5.5 times higher microbial biomass and concomitantly increased 

enzyme activities (Hoang et al. 2016). This likely causes faster C turnover and 

simultaneously nutrient mobilisation from soil organic matter and solid phases. Biopores 

appear particularly interesting for promoting plant growth in low-input systems such as 

organic agriculture. It was reported that crops growing in previously established biopores 

may benefit from nutrients and from the reduced mechanical resistance (Athmann et al. 

2013; Ehlers et al. 1983; Yunusa and Newton 2003). If biopores are indeed largely 

beneficial, their relevance depends on if they are reused in a crop rotation or not. Reuse of 

biopores could be promoted by management practices such as no-till and crop rotations 

with tap-rooted pre-crops, which create large-sized biopores (Kautz et al. 2013). On the 

contrary, it is also possible that depending on soil conditions or other not well-understood 

factors, this may not always be the case: roots may end up trapped within biopores, which 

may have had their walls compacted due to root expansion or earthworm burrowing (Hirth 

et al. 2005). Biopores may be lined with hydrophobic root-derived substances hampering 

water and nutrient uptake (Carminati 2013). What is more, in some biopores the root-soil 

contact may be limited (White and Kirkegaard 2010). Such points underline that we are far 

from a full understanding of biopore dynamics and their controlling factors. 

Regardless of the positive or negative effects, biopores are re-used by subsequent 

crops (White and Kirkegaard 2010): barley modified its root size distribution depending on 

the pre-crops’ root system (Han et al. 2016). Up to now, there has been only scarce 

quantitative information on the reuse of biopores by subsequently grown crops. This is due 

to the challenging and often impossible determination of roots growing in specific biopores 

among countless other biopores of varying age and genesis (Athmann et al. 2013; Han et 

al. 2015). Therefore, a tool is needed to separate and to quantify biopores and active roots. 
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For this purpose, we propose radionuclide labelling of pre-crops with radiocaesium (137Cs), 

labelling main crops with 14CO2 and visualisation of each. 137Cs was released into the 

atmosphere by nuclear weapon tests until 1953 and by nuclear power plant accidents, e.g. 

in Chernobyl, Ukraine (UNSCEAR 2011). 137Cs has been used as a long-term soil erosion 

proxy all around the globe due to its half-life of ~ 30 years and its strong binding to soil 

particles, especially clay (Cremers et al. 1988; Schuller et al. 2002; Walling and He 1999). 

The Chernobyl fallout including 137Cs has also been used to assess the age of preferential 

flow paths in soil (Hagedorn and Bundt 2002). This makes 137Cs an excellent candidate for 

the biopore labelling. Its chemical behaviour is also similar to potassium, which means 

137Cs may be used to simulate solute dynamics once released by the roots.  

The inspiration for our concept was the path of the 137Cs fallout caused by the 

Chernobyl nuclear disaster through the plant leaves to the roots and into the rhizosphere, 

where 137Cs strongly binds to the soil matrix. Our approach imitates this by labelling crops 

through the leaves with 137CsCl to create 137Cs-labelled roots. The roots may be left to 

decompose to form 137Cs-labelled biopores before the next crop. The second labelling with 

14C is thought to be performed on the new crops. Assimilated 14CO2 will be exuded as 14C-

photosynthates into the rhizosphere of some of the previously created 137Cs-biopores. Both 

radionuclides’ β- decay can be visualised by phosphor imaging of soil cross sections, but 

the main challenge lies in separating the 137Cs and 14C signals, which are spatially 

overlapping in some biopores in the case of reuse. The separation of activities should be 

possible because during the 137Cs decay 95% of the energy is released as β- radiation with 

an energy of 514 keV, whereas the maximum energy of the 14C β- decay is 156 keV 

(Nucleonica GmbH 2014). Therefore, the two β- radiations can be separated by shielding 

off the weaker 14C β- radiation while allowing the higher energy 137Cs radiation to pass 

through (Amato and Lizio 2009). 

This up-to-now theoretical concept requires at least 1.5 years to test, so we 

simulated the biopore reuse in a pot experiment to test its feasibility (Fig. 1). The same 

plants of either fibrous (alfalfa) or tap-rooted (chicory) root systems were labelled first with 

137Cs through leaf feeding and after a few days with 14C in 14CO2 atmosphere, instead of 

waiting for root decomposition and growth of new plants. As both radionuclides are 

excreted into the same locations, this would be the simulation of a reused biopore, i.e. the 

spatial overlap of both radionuclides in a specific root channel. wo sequential imagings of 

soil cross sections with and without shielding and image processing will separate the β- 

signals (Fig. 1). Thus, two-dimensional representations of the root systems will be 

acquired, which can be quantified, and the feasibility of visualising biopore reuse will be 

apparent. 
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 Material and methods 

2.5.2.1 Soil and plant preparation 

Five specimens of chicory (Cichorium intybus L. cv. Puna) and five specimens of alfalfa 

(Medicago sativa L. cv. Planet) were grown for 200 days in pots of 15.5 cm height and 5 

cm diameter. These species were chosen, as they feature different root system 

architectures and both species have been widely used in our research group, i.e. their 

features and peculiarities are well known. The soil was taken from a long-term field 

experiment site of the Department of Soil Science of Temperate Ecosystems of the Georg-

August University of Goettingen in Hohenpoelz (Bavaria), Germany. This loamy Luvisol 

was chosen as its properties are well known through previous studies (Dippold and 

Kuzyakov 2016; Gunina et al. 2014). Selected soil properties are given in Online Resource 

6. The soil was dried at 40 °C, disaggregated by passing through a 2 mm sieve and then 

mixed with 25 % fine sand to reduce shrinking and swelling.  

The seeds were germinated on wet filter paper for two days. One seedling was 

planted in each pot at the depth of 0.5 cm. Plants were kept in controlled conditions, i.e. at 

a temperature of 22 °C, humidity of 50-60% and constant light intensity of ~ 200 µmol m-2 

s-1. During the growth period, weak fertilisation was carried out twice (Norg, Porg, K) and 

plants were watered every other day. 

 
 Concept of the experiment: 1) Labelling the same plants with first 137Cs and then with 14C, 2) 

imaging with and without shielding and 3) subtracting the signals and image processing. 
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2.5.2.2 Dual labelling experiment 

When plants were 200 days old, the labelling experiment started. The 137Cs labelling 

solution was prepared as follows: 18.5 MBq of 137CsCl dissolved in 0.1 M HCl were obtained 

from POLATOM (Otwock, Poland) through Hartmann Analytic (Brunswick, Germany). 

About 50 Bq µl-1 were added to aqueous solutions of unlabelled 133CsCl (0.5 mM) (Sigma-

Aldrich Chemie GmbH, Munich, Germany) in 5 ml Eppendorf vials (Eppendorf AG, 

Hamburg, Germany). 

For the 137Cs labelling, two chicory leaves of each plant were cut with a razor blade 

at their widest part and immediately immersed in a 5 ml vial containing 2500 µl of the 137Cs 

solution (Online Resource 1), whereas 2 - 3 alfalfa stems were cut with a razor blade and 

immersed in a 1 ml vial filled with 500 µl 137Cs solution. Both solutions contained the same 

137Cs activity concentration of 50 Bq µl-1. It was chosen as previous tests carried out with 

younger plants at 25 Bq µl-1 resulted in satisfying images. Eppendorf vials were put into 20 

ml scintillation vials for stability and these in turn fixed by clamps attached to a lab stand 

(Online Resource 1). Transparent tape was used to secure the plant parts onto the vials 

and to limit evaporation. To monitor evaporation, one vial was filled with a defined volume 

of 133CsCl solution and left next to the plants. There were considerable differences in the 

volumes of solution taken up by the plants. As the alfalfa vials were empty after 24 hours, 

250 µl of distilled water was added to enable uptake of residual activity possibly remaining 

in the vials. Chicory leaves took up less solution so that after 2 days the immersed leaves 

were taken out of the vial, patted dry and two different leaves were cut and immersed for 

another 24 hours. Remaining 137Cs activity in the vials was measured by the gamma 

counter HiDex Automatic Gamma counter (550-750 keV, 3“ NaI detector, count time 10 

min, count efficiency 17.5%; HiDex Oy, Turku, Finland). In this case, the γ radiation from 

the 137Cs decay chain is used instead of the direct 137Cs β- emission. The remaining 

activities in the vials were related to the initial activities to calculate the uptake of the 137Cs 

tracer. 

To show the potential of the approach, the same plants were labelled also with 14CO2 

instead of waiting for root decomposition and growth of new plants (Fig. 1). 14CO2 labelling 

was performed in an airtight and transparent plastic chamber under a plant growth lamp. 5 

MBq of Na2
14CO3 (Hartmann Analytic, Brunswick, Germany) were dissolved by phosphoric 

𝐸𝑓𝑓137𝐶𝑠 =
(𝐴𝑖𝑛𝑖𝑡𝑖𝑎𝑙 − 𝐴𝑣𝑖𝑎𝑙)

𝐴𝑖𝑛𝑖𝑡𝑖𝑎𝑙
∗ 100% 

(Eq. 1) 

with:  

Eff137Cs, the uptake efficiency of the 137Cs tracer from the vial [%] 

Avial, the 137Cs activity of the vial and its remaining volume [Bq] 

Ainitial, the total 137Cs activity of the vial and the tracer solution prior to 

labelling [Bq] 
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acid (Sigma-Aldrich, Chemie GmbH, Munich, Germany) and the formed 14CO2 was 

pumped into the chamber by a peristaltic pump and cycled for 36 h. A 120-mm fan 

supported the even distribution of the 14CO2 inside the chamber. Four days after the 14C 

labelling, the soil cores were cut horizontally at depth of 5 cm below the soil surface with a 

sharp utility knife. Prior to this, the plastic pot was cut open with a cut-off wheel tool (Dremel 

4000 series, Dremel Corp. Racine, WI, U.S.A.).  

2.5.2.3 137Cs and 14C imaging 

The cut soil surfaces were placed on a phosphor imaging plate (BAS-MS 2040; 20 by 40 

cm; Fujifilm Europe GmbH, Düsseldorf, Germany). A 12 µm Hostaphan® film (Mitsubishi 

Polyester Film GmbH, Wiesbaden, Germany) was placed between the samples and the 

imaging plate to protect it from the labelled soil during the first imaging. This first image 

showed the activities of 137Cs and 14C, while the second imaging showed only the 137Cs 

activity. For the second imaging, six additional plastic films (polypropylene, 40 µm 

thickness, density 0.95 g cm-³, MDF-Verpackungen GmbH, Bergisch Gladbach, Germany) 

were used to shield off the 14C radiation. Full shielding was checked by 1 µl drops of 

activities of 125 Bq of 137Cs and 14C put next to the soil cuts. Exposure was three hours for 

both images. The imaging system FLA 5100 (Fujifilm Europe GmbH, Düsseldorf, Germany) 

was used to read the images with a resolution of 100 µm. The same procedure was carried 

out once for each plant species for the dried and flattened leaves and stems. 

2.5.2.4 Determination of exposure and shielding 

The number of plastic films required for shielding off the 14C β- radiation was worked out 

separately. On a sheet of coated paper (DescProtect, LLG Labware GmbH, Meckenheim, 

Germany) 1 µl drops of dissolved 137CsCl and 14C-glucose were added at increasing 

activities ranging from 1 to 125 Bq. Additionally, the remaining β- radiation of 137Cs, as well 

as, the optimal exposure time for the imaging were determined. 

2.5.2.5 Image processing 

The emitted β- radiation from the decay of 137Cs and 14C was stored in 16-bit digital images. 

The imaging plates store the signal as the quantum level (i.e. the logarithmic pixel-wise 

greyscale data) for each pixel. These were then converted to standardised PSL (photo-

stimulated luminescence) units, which is an arbitrary unit describing the absorbed and 

corrected energy on the imaging plate. For the conversion, we followed the protocol given 

in the technical documentation of the image format (Fuji Photo Film Co. Ltd. 2003): 
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Image processing was performed in MATLAB 2015 (The MathWorks GmbH, 

Ismaning, Germany). As the first step, the converted images were normalised to get a 

similar background based on a blank area in the images. There were two sets of images 

for each plant: one capturing the decay of both 137Cs and 14C, and the other one showing 

the decay of only 137Cs after shielding off the 14C. Each set of images was taken separately 

and, therefore, were not overlapping pixel by pixel. To quantitatively separate the 

contribution of 137Cs and 14C, overlapping both sets of images enabled subtraction of the 

two images, i.e. the second from the first image. The two images were aligned by defining 

one image the reference and applying geometric transformations to the other image. For 

this purpose, an intensity-based image registration was used. Since the second imaging 

also reduced the intensity of the 137Cs signal, this was corrected by calculating the 

attenuation from defined 137Cs activities put next to the soil samples. Photos of soil cross 

sections were taken prior to imaging. These photos were aligned with the images obtained 

by imaging. Thanks to the big contrast between the roots and the soil in these photos, the 

roots were easily segmented from the soil through a threshold method. We focussed on 

the main root of each plant. A Euclidean distance map was applied to the segmented root 

to calculate the root radius. This distance map was used to categorise pixels around the 

roots according to their lateral distance from the rhizodermis, i.e. the outermost primary 

cell layer of the root tissue. The pixel-wise PSL values were then converted to activities 

(full details see next section). To calculate the radial profiles of the nuclide-specific activities 

as a function of the distance from the rhizodermis, mean activities were determined at given 

distances from the rhizodermis (Zarebanadkouki et al. 2016) - assuming radial symmetry 

around the roots. Summing up the increments of activities at each distance gave the total 

activity excreted by the root (Eq. 3). 

  

𝑃𝑆𝐿 =
𝑃2

100
.
4000

𝑆
10𝐿.

𝑄𝐿
𝐺

−0.5
 

(Eq. 2) 

with:  

P, the pixel size (P=100 µm), 

QL, the pixel-wise grey value (quantum level) initially stored in 16-bit 

images, 

S, the sensitivity factor (S=1000) 

L, the latitude (L=5) and 

G, related to the image format and equals to 65535 for 16-bit images. 
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Since different initial activities were applied to the plant species and the root 

diameter was different among species, we normalised the total excreted activities 

accordingly (Eq. 4). 

2.5.2.6 Quantification of the images 

The pixel-wise PSL values were converted to 137Cs and 14C activities by a regression 

describing the relation between PSL values and the activities of 137Cs and 14C standards. 

The regression function was obtained by imaging known activities of 137Cs and 14C. For 

this, 0.5 g of the soil from the plant experiment were adjusted to 25% soil moisture 

(gravimetric) by dropwise addition of 150 µl of dissolved 14C-glucose and 137Cs activities 

ranging from 20 to 325 Bq µl-1. The soil was mixed to achieve a uniform mixture and 

transferred to a 96-well microtiter plate (U-shaped well with a diameter of 6.94 mm and a 

depth of 11.65 mm; Brandplates®, Brand GmbH + Co KG Wertheim, Germany). A smooth 

soil surface was prepared on the level of the rim of each cup. Aliquots of 14C-glucose were 

dissolved in Rotiszint® eco plus scintillation cocktail (Carl Roth GmbH + Co. KG, Karlsruhe, 

Germany) and activities were determined by the liquid scintillation counter Tricarb™ B3180 

TR/SL (PerkinElmer Inc., Waltham, MA, U.S.A.). Activities of 137Cs were measured on the 

HiDex Automatic Gamma counter. The images were normalised to the background and 

emitted energies were converted to PSL values. The 137Cs and 14C activities and their PSL 

 𝐴𝑡𝑜𝑡 = ∑ (𝜋𝑟𝑖
2 − 𝜋𝑟𝑖−1

2 ) × 𝐴𝑖
𝑖=𝑛
𝑖=1  (Eq. 3) 

 

with: 

𝐴𝑡𝑜𝑡, the total activity of each nuclide excreted by the root [Bq] 

ri, the distance of a pixel i from the rhizodermis [mm] with r0, the root radius 

𝐴𝑖, the mean activity of each nuclide in the distance ri from the rhizodermis [Bq mm-2] 

 𝐴𝑡𝑜𝑡,𝑛𝑜𝑟𝑚 =
𝐴𝑡𝑜𝑡

𝐴𝑟𝑐𝑣𝑑×2𝜋𝑟0
  (Eq. 4) 

 

with: 

𝐴𝑡𝑜𝑡,𝑛𝑜𝑟𝑚, the normalised total activity of each nuclide [Bq Bq mm-1] 

𝐴𝑡𝑜𝑡, the total activity of each nuclide excreted by the root [Bq] 

𝐴𝑟𝑐𝑣𝑑, the total activity of a nuclide recovered in a pot and shoot 

r0, the root radius 
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values were normalised to the applied areas and a linear function was fitted to the PSL 

values.  

2.5.2.7 Spatial overlap of 137Cs and 14C hot spots 

The quantified and ready images of 137Cs and 14C were taken and the spatial overlap (𝑟) of 

the main activities was estimated by the spatial overlap coefficient (Eq. 5) (Bolte and 

Cordelières 2006; Manders et al. 1993). This was performed by means of the JACoP plugin 

(Cordelières and Bolte 2009) in Fiji (Schindelin et al. 2012; Schindelin et al. 2015) using 

manually set thresholds. 

2.5.2.8 Determination of 137Cs and 14C bulk activities 

At the end of the experiment, all soil was collected, plants were cut above ground and the 

dry weight of soil and shoots were determined after drying at 75 °C for 120 h. Visible, larger 

roots were pre-ground separately in a ball mill (PM 100; Retsch, Haan, Germany) for at 

least 15 min prior to adding the soil and milling for another 15 min. Five replicates of ~ 1 g 

of soil and roots were taken and 137Cs γ activity was measured. The same samples were 

incinerated at 500 °C and the resulting 14CO2 was trapped in Oxysolve C-400 scintillation 

cocktail (Zinsser Analytic GmbH, Frankfurt, Germany) prior to the scintillation 

measurement. 

The belowground tracer allocation was expressed as the belowground activity 

relative to the total recovered activity (shown for 137Cs in Eq. 6a). The aboveground 

allocation was calculated as the aboveground activity relative to the total activity recovered 

(shown for 14C in Eq. 6b). 

𝑟 =
∑ 𝐴𝑖 × 𝐵𝑖𝑖

√∑ (𝐴𝑖)2 ×  ∑ (𝐵𝑖)²𝑖𝑖

 
(Eq. 5) 

 

with: 

A, the intensities of a pixel of channel A, 

B, the intensities of the corresponding pixel of channel B 
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 Results 

2.5.3.1 Labelling with 137Cs and 14C 

137Cs transported within the leaves of both plant species was detectable 6 hours after 

labelling had started using a Geiger-Müller counter with a small probe. Presence of 137Cs 

in the roots, i.e. at the bottom of pots, was detectable two days after labelling. Imaging 

confirmed that strongly increased 137Cs activities were allocated to the more distal parts 

within four days in the case of both plant species, e.g. in young leaves and leaf bases of 

chicory (Online Resources 2 and 3). 137Cs uptake was 98.0 ± 0.8% for chicory and 99.8 ± 

0.1% for alfalfa (Table 1). Root allocation of 137Cs did not strongly depend on the plant 

species: chicory allocated 9.4 ± 1.5% and alfalfa allocated 7.1 ± 1.6% of the tracer below 

ground (Table 1). Even after four days, more than 90% of the 137Cs was still in the shoot, 

which is also discernible in the imaging of the shoot (Online Resources 2 and 3).  

Imaging revealed that the 14C β- radiation was completely shielded to the 

background level when using six layers of 40 µm polypropylene film and one layer of 12 

µm Hostaphan® film (Online resource 7). Shielding attenuated the 137Cs radiation by 35.8 

± 1.5%. 

𝐶𝑠𝑏𝑒𝑙𝑜𝑤𝑔𝑟𝑜𝑢𝑛𝑑 =  

∑
𝐶𝑠𝑏𝑒𝑙𝑜𝑤𝑔𝑟𝑜𝑢𝑛𝑑,𝑖

137

( 𝐶𝑠𝑎𝑏𝑜𝑣𝑒𝑔𝑟𝑜𝑢𝑛𝑑,𝑖 + 𝐶𝑠𝑏𝑒𝑙𝑜𝑤𝑔𝑟𝑜𝑢𝑛𝑑,𝑖)137137
𝑛
𝑖=1

𝑛
137 ∗ 100% 

(Eq. 6a) 

with: 
137Csbelowground, the mean belowground 137Cs allocation of a plant species [%] 
137Csbelowground,i, the total belowground 137Cs activity of a replicate i, i.e. soil and 

roots [kBq] 
137Csaboveground,i, the 137Cs activity in the shoot of a replicate i [kBq] 

n, the number of replicates 

 

 

𝐶𝑎𝑏𝑜𝑣𝑒𝑔𝑟𝑜𝑢𝑛𝑑 =

∑
𝐶𝑎𝑏𝑜𝑣𝑒𝑔𝑟𝑜𝑢𝑛𝑑,𝑖

14

( 𝐶𝑎𝑏𝑜𝑣𝑒𝑔𝑟𝑜𝑢𝑛𝑑,𝑖 +  𝐶𝑏𝑒𝑙𝑜𝑤𝑔𝑟𝑜𝑢𝑛𝑑,𝑖)1414
𝑛
𝑖=1

𝑛
∗ 100% 14  

(Eq. 6b) 

with: 
14Cbelowground, the mean aboveground 14C allocation of a species [%] 
14Cbelowground,i, the total belowground 14C activity recovered in a replicate i, i.e. 

roots and soil [kBq] 
14Caboveground,i, the aboveground 14C activity recovered in a replicate i [kBq] 

n, the number of replicates 
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The 137Cs and 14C labelling technique and its feasibility will be first illustrated 

exemplarily for two replicates per species. Detailed images of all pots are given as Online 

Resources 4 and 5. The example images of both species are shown in Fig. 2, in which the 

intensities correspond to the quantum level, i.e. the logarithmic pixel-wise greyscale data. 

Both plants, roots and their rhizosphere showed strongly increased activities of 137Cs and 

14C and therefore, their spatial distribution can be easily distinguished. Pixel-wise 

subtraction of 137Cs images from the images of total 137Cs and 14C activity gave the 14C 

 
 Imaging of 137Cs and 14C (top) and 137Cs only (middle) activities in the soil at a depth of 5 cm for 

alfalfa (left) and chicory (right). Below the imagings are rotated photos of the respective soil cuts. 
The images presented quantum level data (QL, i.e. the pixel-wise grey values stored in 16-bit 
images) which was initially captured during imaging. The red colour corresponds to the higher 
activities. Note that here two plants are given as examples and all plants are given as 
supplementary information (Online Resources 4 and 5). Numeric identifiers and red arrows relate 
to 1) lateral root emerging from the single tap root of chicory, 2) a large number of fine roots growing 
in the gap between the soil and the container, 3) sloughed off rhizodermis, and 4) smaller 
secondary roots as opposed to chicory’s taproot. 

Table 1 137Cs and 14C budget. Shown are means of five replicates ± standard errors of the mean 

 

137Cs 

uptake 

137Cs 

aboveground 

137Cs 

belowground 

14C 

 aboveground 

14C 

belowground 

 [%] [%] of recovery [%] of recovery [%] of recovery [%] of recovery 

Chicory 98.0 ± 0.8% 90.6 ± 1.5% 9.4 ± 1.5% 37.4 ± 4.5% 62.6 ± 4.5% 

Alfalfa 99.8 ± 0.1% 92.9 ± 1.6% 7.1 ± 1.6% 79.4 ± 6.0% 20.6 ± 6.0% 
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contribution (Fig. 3). Here, subtracting the 137Cs image from the total image worked 

remarkably well and resulted in two separate datasets of 137Cs and 14C, which was the main 

aim of this experiment. Both radionuclide distributions gave good representations of the 

roots (Fig. 2, top and below, Online Resources 4 and 5), including the prominent main roots 

and laterals (chicory), as well as secondary roots (alfalfa). Congruence of the main root 

locations by both radionuclide distributions was very high as determined by the overlap 

coefficient with 96.0 ± 1.1% for chicory and 95.3% ± 0.9% for alfalfa 

. 

2.5.3.2 Quantification of the intensities 

The two separated radionuclide visualisations were quantified by a regression function, 

which described the linear relation between PSL value and the activities of each 

radionuclide (R2 > 0.98, Fig. 4). For further quantifications, we focussed on the main root 

of each plant. Radial distributions of 137Cs and 14C activities as a function of distance from 

the rhizodermis are given in Fig. 5. For both plants, the activities were higher near the 

rhizodermis and decreased towards the bulk soil. In general, the 137Cs activity at the 

rhizodermis was about 4-5 times higher than the activity of 14C. The radial extension of 

137Cs was also larger in both plants than the 14C (e.g. alfalfa, ca. 0.25 cm vs. 0.15 cm). The 

 
 Procedure of image processing after conversion to PSL units and successful subtraction of 137Cs 

activity (middle) of total activity (top) to yield the pure 14C activity (bottom), shown for two examples 
of the largest, i.e. main roots, to which a colour map was applied. 
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rhizosphere extensions of 137Cs and 14C were about 40% smaller in the case of alfalfa 

compared to chicory. The two plant species initially received different total activities and 

their roots had different diameters. Therefore, Fig. 6 shows activities normalised to the total 

recovered activities and root perimeter: chicory excreted ~ 23 times more 14C and 15 times  

more 137Cs than alfalfa. Both species gave more 137Cs than 14C into the rhizosphere at 5 

cm depth. So, the excretion of nuclides depended on the plant species and the type of 

nuclide. 

  

 
 Standardisation of 137Cs and 14C activities and their PSL (photo-stimulated luminescence) values 

by linear regression 

 
 Radial profiles of 137Cs (left) and 14C (right) activities as a function of distance from the rhizodermis 

for five alfalfa replicates (top) and four chicory replicates (bottom). Data averaged in radial direction 
around (360 °) the largest root of each plant. Error bars show the variance of the activities (as 
standard errors) in the respective distance from the rhizodermis. 
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 Discussion 

2.5.4.1 The double labelling approach 

We presented a proof-of-concept, which should enable the visualisation and quantification 

of the reuse of biopores (Fig. 1). Our approach simulates the path of the Chernobyl 137Cs 

fallout from the leaves into the roots by labelling crops through the leaves with 137CsCl to 

create 137Cs-labelled root biopores. The roots of the subsequently grown crop could then 

be differentiated by 14CO2 labelling to create 14C-labelled roots. The feasibility of our 

concept was shown in an experiment, in which the same plants were labelled by both 

tracers. This simulates the situation of a re-used root channel, i.e. both radionuclides 

spatially overlapping in the same root channel. 

Applying 137Cs and 14C to plants was easy, fast and straightforward. Labelling plants 

with 14CO2 and 14C-photosynthate release into the soil is well established (Pausch and 

Kuzyakov 2011). There were earlier hints that the labelling with 137Cs might be feasible: 

137Cs from seedlings incubated in 137CsCl solution was released from their roots into the 

137Cs-free soil (Bystrzejewska-

Piotrowska and Urban 2004). Of 

the total 137Cs activity, 7.1-9.4% 

was allocated below ground 

within four days (Table 1). At 

least four reasons explain why 

the 137Cs labelling worked 

remarkably well: I) the absence 

of uptake-regulating barriers in 

cut leaves and stems as 

compared to roots (e.g. 

Casparian strip in the root 

endodermis), II) the 

comparatively high mobility of 

caesium in plants (Online 

Resources 1 and 2; 

Bystrzejewska-Piotrowska and 

Urban 2004), III) its similarity to K 

and, therefore, possibly selective uptake, and IV) the translocation of it to the roots through 

the phloem (Buysse et al. 1995; Zhu and Smolders 2000). It may be speculated that the 

137Cs uptake follows the uptake mechanisms of other cations, i.e. uptake through the cut 

surface or stomata, or cuticular penetration (Fernández and Eichert 2009; Stock and 

 

 Total 137Cs and 14C activities in the rhizosphere of 
alfalfa and chicory obtained from Eq. 4, normalised by 
total activities taken up by each plant and the root 
perimeter. The data are averaged among replicates 
and error bars show standard errors. 
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Holloway 1993). The contributions of the three mechanisms for the two species cannot be 

estimated from our data. However, we found evidence of selective uptake of 137Cs by 

chicory. Almost all 137Cs activity was taken up from the tracer solution (Table 1). Yet, there 

was still solution present at the end of the experiment in the chicory vials, which contained 

137Cs activities lower than the 137Cs activity expected in the remaining volume. Hence, we 

assume selective uptake of Cs compared to water, most probably since Cs is a K analogue.  

The belowground allocation induced very strong signals in the soil - far above the 

detection limit and the background luminescence of the imaging plate. Herein, we focused 

on the main roots, which turn into biopores desirable in organic agriculture (Kautz et al. 

2013), but finer roots were also labelled. The main challenge was to prove that both 

nuclides are individually detectable. This required separation of 137Cs and 14C β- radiation 

signals, which was achieved by shielding during the two-step imaging procedure (Fig. 3, 

Online Resource 7). It was shown that the root release of radionuclides could be used to 

visualise roots, their locations and features such as laterals or secondary roots - 

irrespective of the species (Fig. 2). After labelling, the 137Cs distribution in the rhizosphere 

represents the Cs+ and K+ excretion from the roots from the start of the labelling to imaging. 

Also, it gives the size distribution of the roots and later biopores in a soil cut. 14C-

photosynthates in the rhizosphere are representative of the root exudation of low molecular 

organic substances. Like 137Cs, the 14C activity distribution gives the size, extension and 

locations of the roots (Fig. 3). Consequently, the size distribution and count data of roots 

and biopores of both fibrous and tap-rooted plants could be determined and compared in 

situ. The descriptive statistics are needed as a foundation for future research. 

Our experiment has shown, that both radionuclides were allocated below ground, 

gave satisfying representations of the roots and the strong signals were successfully 

separated from each other through shielding during imaging (Fig. 3). The low mobility of 

137Cs in soil and its long half-life of about 30 years are well-established properties and 

should lead to stable labelling of biopores (Cremers et al. 1988; Walling and Quine 1995). 

Also, the rhizodeposition of 14C-photosynthates is frequently and successfully applied. With 

these prerequisites met, biopore reuse quantification comes within reach. 

2.5.4.2 Implications for biopore reuse 

The reuse of pre-crop biopores in crop rotations by subsequently grown main crops is 

obvious (Elkins 1985; Han et al. 2016), but has not been quantified yet due to a lack of 

methods. Although not specifically tested herein, our approach should be feasible for 

biopore studies. Even under the assumption, that only low 137Cs activities were excreted 

by the roots within four days, the signal was already strong enough for imaging (Fig. 2). 

The exact 137Cs activities excreted are only of secondary importance in this regard. As long 
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as 137Cs is translocated into the roots prior to root death, it will be released into the 

developing root channel upon cell death and during root decomposition. Hypothetically and 

according to our concept, after the main crop phase in a crop rotation, unused biopores 

would feature only 137Cs, while reused biopores would show a spatial overlap of 137Cs and 

14C activities. Finally, roots growing in bulk soil would be only labelled with 14C and not with 

137Cs. In principle, earthworm biopores could also be labelled by feeding earthworms 137Cs- 

or 14C-labelled litter, which would enable more earthworm-related research opportunities. 

14C and bomb-fallout 137Cs were already shown to be possible tools to determine the age 

of individual burrows, bioturbation and organic matter turnover (Cheshire and Griffiths 

1989; Hasegawa et al. 2013; VandenBygaart et al. 1998).  

We presented one approach to quantify the 137Cs and 14C signals to later quantify 

biopore reuse from the imagings: the overlap coefficient (Bolte and Cordelières 2006; 

Manders et al. 1993). Since both labellings were performed on the same plants without 

waiting for root decomposition after the pre-crop phase, all 137Cs-labelled roots were also 

labelled with 14C (Fig. 3). This is discernible from the high overlap coefficient of > 0.95.  

2.5.4.3 Further applications 

This dual labelling approach could be particularly useful to localise and visualise further 

processes on different scales: on the smaller rhizosphere scale, estimating the rhizosphere 

extension for organic and inorganic substances, and on a larger scale, the root system 

architecture. 

 

Extension of photosynthates and solutes’ diffusion in the rhizosphere: the 

rhizosphere boundary 

As the highest 137Cs and 14C activities were located around the main roots, i.e. the tap roots 

and largest fibrous roots, these were considered the main regions of interest (Fig. 2). Radial 

distributions of 137Cs and 14C starting from the rhizodermis into the bulk soil are shown in 

Fig. 5. The distance of the rhizodermis to the point where the activity was for the first time 

down to 5% of the activity of the root centre was defined the rhizosphere extension. This 

definition is rather arbitrary since it only serves the purpose of showing the feasibility of the 

approach also in the narrow rhizosphere: heterogeneous rhizodeposition patterns in 

varying soil depths can be determined easily. 

The radionuclide localisation and activity distribution explain I) the pattern of the 

gradients and II) the amount of tracer excreted by the root. Radionuclide-specific 

rhizosphere extensions were expected according to size and charge of the excreted 

compounds (Fig. 5). 137Cs+ strongly binds to iron oxides and clays (Giannakopoulou et al. 

2007; Riise et al. 1990) and is not taken up by microorganisms in large amounts like C, 



Publications and Manuscripts 

192 

 

e.g. as an energy source. This results in a 137Cs rhizosphere extension which is 

monotonically decreasing. The 137Cs distribution represents the microbially non-

decomposable release of K. On the contrary, 14C-labelled photosynthates are taken up 

very fast and efficiently by microorganisms (Fischer et al. 2010), respired, used for biofilm 

formation or stabilised as necromass (Miltner et al. 2012). The locations of such processes 

are clearly visible in Fig. 5 as the distribution of 14C increases and decreases within the 

rhizosphere. The radial distribution of 14C was similar to the distribution of enzyme activities 

in the rhizosphere (Razavi et al. 2016). Apart from these lateral patterns, exudation along 

the roots could be studied by cutting the soil cores either horizontally at different depths, 

by cutting it vertically or by using rhizotrons (Razavi et al. 2016). 

Separating and quantifying radionuclides in the rhizosphere on a resolution of 100 

µm was accomplished (Fig. 3). Enhancing the resolution to 25 µm is possible and will 

capture finer details and more exact rhizosphere extensions. Utilising the 14C activity as a 

proxy for organic compounds in the rhizosphere will help elucidate C dynamics in root-

induced hot spots (Pausch and Kuzyakov 2011). 137Cs as an analogue for the nutrient 

potassium could be a new tool not just for biopore reuse but also a proxy for solute 

excretion from roots. To our knowledge, there is no tool available yet to quantitatively 

visualise the rhizosphere dynamics of both root exudates and solutes in situ. We, therefore, 

propose this radionuclide imaging/shielding approach, which should in principle also work 

with 40K, 90Sr (as an analogue for Ca), 36Cl, 35S or 33P. Changing the radionuclides would 

also enable to study other processes or elements, e.g. behaviour of anions in the 

rhizosphere.  

 

Root system architecture 

Albeit the biopore reuse was our prime interest, the approach may also be useful to study 

the root system architecture. Herein, the soil core was cut once in 5 cm depth. By 

increasing the number of cuts, one may be able to get a 3D approximation of the root 

system. Additionally, extra vertical cuts could be helpful for modelling. Repeated pulses of 

14C and 137Cs ensure that the roots are homogenously labelled. Compared to computer 

tomography, this approach may be less accurate and needs destructive sampling, but it is 

certainly more affordable. 

2.5.4.4 Methodological recommendations 

It is recommended to label the first crop with 137Cs and the subsequent crop with 14C due 

to the rapid microbial C tracer turnover in the rhizosphere and fast losses as 14CO2 

compared to 137Cs. If biopore reuse of further crops appears interesting, a third crop could 

be labelled with radionuclides having maximum β- decay energies not too close to 156 or 
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514 keV, such as 40K (1.31 MeV) or 36Cl (0.71 MeV). In case extremely high activities are 

used, an overglow effect may occur, i.e. very high activities paired with long exposure times 

may cause not proportional luminescence on the imaging plates. We have not found this 

to impact the image quality in our setup. If this effect occurs, two measures could help to 

maintain a high localising resolution: I) keeping the distance between the soil and imaging 

plate as small as possible and II) 3D collimators or anti-scatter grids cutting off scattered 

radiation. 

High CsCl concentrations in plants may inhibit photosynthesis and may cause 

contractile roots in young plants (Bystrzejewska-Piotrowska et al. 2004). Even though the 

actual 137Cs tracer concentrations are orders of magnitude too low to cause such effects, 

we recommend high activities of the 137Cs tracer and lowest concentrations of a 133CsCl 

medium. Mature plants are expected to be less affected by salinity as compared to young 

plants (Hasegawa et al. 2015). Leaves of our 200 day-old plants did not show any colour 

changes at CsCl concentration of 0.5 mM. Chicory leaves were left in the 137Cs solution for 

up to 48 h without visible damage. In a different pre-test (not shown), damages were 

observed after > 48 h, but this may vary for different species or growth stages. We, 

therefore, recommend pre-tests with the desired plant species and unlabelled solutions. 

The unlabelled CsCl medium is also required to handle the 137Cs, as its actual concentration 

would be too small to handle: the slightest contamination with clay or iron oxides in a tracer 

solution without 133Cs would bind a large part of the 137Cs. 

For the leaf-feeding, cutting the leaves under water and adding a surfactant such 

as Silwet® Gold (Spiess-Urania, Hamburg, Germany) to the CsCl solution may further 

reduce the risk of unsuccessful labellings caused by embolies. If performed in the field, the 

leaf feeding procedure may be carried out like in the laboratory, i.e. cutting the leaves and 

immersing them in a solution of tracer and surfactant. Repeated 137Cs pulse labelling at 

different growth stages is expected to label the root pores more homogenously throughout 

soil depths. 

14CO2 pulse labelling is regularly performed and specific issues were reviewed 

extensively elsewhere (Kuzyakov and Domanski 2000; Meharg 1994). Due to rapid C 

turnover in soil and rhizosphere, the imaging procedure should be carried out as soon as 

possible after the second, i.e. 14C labelling, to receive the strongest 14C signals. In the field, 

the 14CO2 labelling can be performed in a portable plastic chamber similar to our laboratory 

setup (Hafner and Kuzyakov 2016). In the field and unlike in this experiment, roots will not 

be as concentrated as in our pots, but rather be more dispersed. One countermeasure 

could be to use larger imaging plates (i.e. maximum 35 x 43 cm with our manufacturer). 

Also, the signals may be weaker because of a higher root mass and, therefore, possibly 

lower 137Cs activity per rhizodermis. To maintain a high image quality, two measures are 
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recommended: I) repeated pulse labelling of both nuclides (cf. above) and II) longer 

exposure.  

For easier cutting of the soil cores, we adjusted the water content to 45-50% of the 

water holding capacity. Freezing the soil cores could also be a suitable approach to avoid 

the redistribution of soil particles during the cutting (Kuzyakov et al. 2003). However, care 

should be taken not to cause excessive stress on the surrounding soil. Regarding 

occupational health and safety, during the cutting and handling of the soil and solutions in 

the lab, we strongly recommend to always follow common radiation protection rules to keep 

radiation exposure as low as reasonably achievable. Incorporation of 137Cs-contaminated 

soil dust could be minimised by wearing face masks and performing dust-producing tasks 

in a fume hood. 

Some issues are conceivable and may need consideration when scaling this proof-

of-concept up to a crop rotation – since this was not yet tested. The largest difference 

between this experiment and a crop rotation would be the duration of root decomposition 

and with this comes a range of issues regarding the feasibility of the approach. First, 137Cs 

release upon root cell death needs to be shown. In soils with a high biotic activity, the 

signals might be disturbed in the long run: even though 137Cs should not diffuse away from 

mineral surfaces, soil particles may be pushed away by earthworms or roots. For instance, 

secondary thickening or growth of thicker main crop roots may be expected to weakly 

impact the positions of 137Cs signals by slightly pushing soil particles away from their former 

position. Even if the main crops pushed 137Cs-labelled soil away, e.g. in the case of a 

fibrous pre-crop and a tap rooted main crop, spatial overlap of 137Cs and 14C would still be 

expected. In the opposite case, i.e. the main crop features small roots compared to the 

biopore diameter, the main crop 14C signal may be small. In this case, multiple pulse or 

continuous labelling is recommended. It remains to be determined if these effects are 

relevant for the time frame of root decomposition in a crop rotation. 

 Conclusions 

A new dual labelling approach with foliar application of 137Cs and 14C and selective shielding 

during the imaging of soil cuts was successfully tested: more than 99% of the 137Cs tracer 

was taken up irrespective of the plant species and of this 7.1-9.4% were allocated below 

ground within four days. β- radiation around the roots proved both 137Cs and 14C were 

released into the rhizosphere, effectively creating roots labelled with both 137Cs and 14C. 

Shielding successfully separated the two signals. Albeit not specifically tested herein, if the 

two tracers are applied to separate, subsequent crops in a crop rotation, the ultimate goal 

of biopore reuse quantification appears feasible: the long half-life of 137Cs, its relatively high 

energy β- radiation and very low mobility in soil should enable stable and long-term labelling 
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of rhizosphere soil and, after decomposition, root biopores. Labelling main crops with 14C 

would enable quantification of the reuse of root biopores and would help estimate their 

importance over longer periods and on larger scales – possibly under field conditions. We 

conclude that 137Cs can be a useful proxy of biopore reuse and possibly for the extent of 

solute dynamics in the rhizosphere and root system architecture studies.  
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 Supplementary Material 

 

ESM 1 Leaf feeding of Cichorium intybus with 137CsCl solution in action. 
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ESM 2 Imaging of one Medicago sativa shoot, exposure was 3 hours with 6 layers of 

polypropylene to shield off 14C, showing the mobility of 137Cs. 

 

 

ESM 3 Imaging of one Cichorium intybus shoot, exposure was 3 hours with 6 layers of 

polypropylene to shield off 14C, showing the mobility of 137Cs. 
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ESM 4 All replicates of the imaging of Medicago sativa. Top: Quantum level (QL) data of 

137Cs and 14C activities; below: QL data for the 137Cs activity only. 

 

 

ESM 5 All replicates of the imaging of Cichorium intybus. Top: Quantum level (QL) data of 

137Cs and 14C activities; below: QL data for the 137Cs activity only. 
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ESM 6 Physico-chemical properties of the Ap horizon of the Haplic Luvisol. Data compiled 

from Dippold and Kuzyakov (2016) and Gunina et al. (2014) 

Soil parameter  

Sand content 36 ± 5% 

Silt content 8 ± 5% 

Clay content 56 ± 5% 

pH KCl 4.88 ± 0.12 

pH H2O 6.49 ± 0.11 

Total organic Carbon 1.77 ± 0.07%  

Total nitrogen  0.19 ± 0.01% 

Cation exchange capacity 13.6 cmolc kg-1 soil 

Microbial biomass C  42.5 ± 1.1 µmol C g-1 soil 

Microbial C/N ratio 9.9 ± 0.3 

 

 

ESM 7 A shielding and exposure pre-test with Hostaphan® film (to protect the imaging 

plate; left side) and Hostaphan® film plus 3 layers of polypropylene for shielding (right 

side). Activities increasing from 1 to 125 Bq of 14C-glucose were applied to coated paper. 

All 14C was shielded off (right side). Please note, the signals in case of higher 14C activities 

were visually discernible after shielding (right side; identifiers 7-11), but were in fact only 

marginally above the background value (36 PSL vs 21 PSL of the background). The 

number of PP films was increased after this test 
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Summary 

• Root biopores provide nutrients and shortcuts to subsoil resources like water. 

Succeeding crops potentially benefit if they root within biopores, which was 

quantified pre-crop-specifically. 

• 137Cs + 14C labelling of pre- and main crops, respectively, followed by phosphor 

imaging of soil cuts with selective shielding enabled quantification of biopores 

(137Cs), roots (14C), re-use (14C + 137Cs) and estimation of geometric biopore 

properties. 

• Biopore properties of Cichorium intybus L. and Phacelia tanacetifolia Benth. were 

similar after 12 weeks cultivation: biopore volume of 0.0027 m3 m-3 and a wall 

volume of 0.0040 m3 m-3. Biopore abundance decreased with depth but re-use 

increased, following bulk soil density. 53–75% of biopores were re-used by wheat 

irrespective of the pre-crop, i.e. 200% higher than stochastically expected, 

suggesting positive biopore effects. Biopore re-use was positively correlated with 

wheat shoot nitrogen contents. A constant proportion of roots (25%) grew in bulk 

soil, likely to acquire additional resources limited in biopores.  

• This method successfully applied imaging to characterise the spatial distribution of 

biopores, their geometric properties, and re-use in crop rotations. One season of 

cover cropping with tap-rooted vs fibrous crops provided equal opportunities for 

subsoil exploitation by main crops and were crucial for aboveground wheat biomass 

production. 
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 Introduction 

Agriculture has long neglected subsoils with regard to crops’ nutrient acquisition (Kautz et 

al., 2013a). Agricultural subsoils, i.e. the soil below the ploughed horizon, also contain 

relevant stocks of nutrients like potassium (Andrist-Rangel et al., 2006), calcium and 

phosphorus (Schwertmann & Huith, 1975; Barej et al., 2014). Organic agriculture aims at 

acquiring nutrients from the subsoil (Kautz et al., 2013a), e.g. through growing deep rooting 

crops. Considering an increasing population at times of global climate change (Godfray et 

al., 2010; IPCC, 2014), maintaining crop productivity is of pivotal importance. Not just 

nutrients, but also water resources can become scarce in future. As drought periods may 

become more frequent in the course of climate change (Pal et al., 2004; Li et al., 2009), 

subsoil water resources could alleviate drought stress of plants (Lynch & Wojciechowski, 

2015). Therefore, strategies or plant traits to make use of subsoil resources could 

contribute to more sustainable agriculture. 

 Macropores induced by earthworms or decomposed taproots (biopores) provide 

opportunities for faster subsoil access (Ehlers et al., 1983; Cresswell & Kirkegaard, 1995) 

(Stirzaker et al., 1996; Kautz, 2015). Large root biopores with diameters of up to 10 mm 

may stretch from the soil surface down to three meters, while anecic earthworms may even 

induce biopores down to four meters depth. Following the principle of least effort, roots use 

these shortcuts to access subsoil resources. In crop rotations, growing tap-rooted pre-

crops could be useful to create ‘highways of root growth’ (Passioura, 2002). They do not 

only ‘drill’ the soil but also accumulate nutrient-rich organic matter (OM) on the inner walls, 

which induces microbial hotspots of nutrient turnover and release (Kuzyakov & 

Blagodatskaya, 2015). Roots growing in biopores could consequently acquire additional 

nutrients from the subsoil biopore walls as well as the bulk subsoil (by leaving the biopores 

with side roots) to improve crop nutrition and thus yields (Jakobsen & Dexter, 1988; Gaiser 

et al., 2013). 

 A higher share of roots exploring the subsoils would also increase the amount of C 

stored in subsoils. As subsoils are assumed unsaturated in C, they would make an effective 

and long-term C sink (Kell, 2012). However, any direct benefit of biopores for crops or 

indirect effect for C sequestration depends on the utilisation of previously created biopores. 

The quantification of biopore re-use in crop rotations was never achieved, despite the fact 

that it is often hinted at, e.g. yield improvement studies (Elkins, 1985) or from morphological 

changes: the root system architecture of barley reacted to the preceding crop’s root system 

(fibrous vs tap-rooted,(Nakamoto, 2000; Han et al., 2016). Plants also have developed 

strategies to exploit the biopore nutrients, e.g. by growing in a spiralling manner in contact 

with the pore walls (Athmann et al., 2013) or by root hairs (White & Kirkegaard, 2010). 
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Consequently, roots could benefit twice, i.e. from biopore wall nutrients and from using the 

biopore as a shortcut into the subsoil. 

In agriculture, the links between biopore properties, re-use and their effects are of 

interest to optimise subsoil exploitation and nutrient cycling. The re-use’s relevance 

depends on the outcome to be optimised, e.g. yields (Kautz et al., 2010), resilience towards 

drought (Kirkegaard et al., 2007), or, C sequestration in subsoils (Lorenz & Lal, 2007). 

Higher biopore re-use may not lead to more positive outcomes since effects may be soil, 

crop or nutrient-specific (Duncan et al., 2018) and may be modulated by same-species 

successions: maize root growth in maize root channels was low (Rasse & Smucker, 1998). 

Regarding soil properties, especially in hard-setting soils, clumped wheat roots may end 

up trapped in biopores (Cresswell & Kirkegaard, 1995), which may deplete the biopore 

nutrient quickly and limit water uptake. 

Commonly, biopore effects are studied after cultivation of biopore-inducing crops 

for up to three years, followed by main crop cultivation and comparing yields, nutrient 

uptake and the proportion of roots growing in macropores. Such set-ups have severe 

shortcomings like mixing other pre-crop effects (e.g. topsoil nutrient mobilisation or 

pathogen reduction) with the pure biopore effect. We suspect that methodological 

constraints have hampered biopore re-use quantification so far. It appears too challenging 

to determine roots growing in specific biopores among countless other pre-existing 

macropores of varying age and genesis (Athmann et al., 2013; Han et al., 2015). We 

recently showed the feasibility of a dual radiotracer labelling and selective shielding 

approach for this scenario (Banfield et al., 2017). This approach was further developed to 

allow quantification of biopore properties and biopore re-use in real crop rotations. A two-

year crop rotation was carried out in the laboratory: Two pre-crops (chicory and phacelia 

for different root systems) were grown on undisturbed subsoil cores to create root biopores 

and labelled with 137Cs. After 11 months of decomposition of root residues of pre-crops, 

wheat was grown for three months and labelled with 14CO2. Wheat roots growing in pre-

crop root pores were identified by dual (137Cs + 14C) phosphor imaging. Image processing 

gave fundamental geometric data like size distributions – invaluable for modelling and 

upscaling of biopores’ role in agroecosystems. 
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 Material and Methods 

2.6.2.1 Origin of the soil cores 

Undisturbed subsoil cores were taken from 45–115 cm soil depth of a Haplic Luvisol 

(Hypereutric, Siltic) from the research station Klein-Altendorf, Germany. The soil properties 

(Table 1) were previously described by Vetterlein et al. (2013). A maritime climate 

characterises the location near the river Rhine with temperate humid conditions (50°37′9″N 

6°59′29″E, 9.6 °C mean annual temperature, 625 mm annual precipitation).  

2.6.2.2 Pre-crop phase: Labelling with 137Cs 

The soil cores (20 cm diameter each) were stored at 8 °C and were pre-incubated at 20 °C 

for two weeks before seeding. Twelve soil cores were used for this experiment: on six cores 

chicory (Cichorium intybus L. var Puna; ~ 20 seeds per core) was grown for three months), 

and on the remaining six phacelia (Phacelia tanacetifolia Benth. var Maja KWS; ~ 20 seeds 

per core). The temperature was kept constant at 20 °C, air humidity was kept constant at  

 

 

Fig. 1 Overview of the experimental design including tracer application during pre-crop and main crop 
phase, biopore formation and imaging. 137Cs was applied to all pre-crop plants (fibrous Phacelia 
tanacetifolia Benth. vs tap-rooted Cichorium intybus L., grown for three months) to label above- 
and belowground biomass and, after root decay, the biopores. After 11 months of biopore 
formation, T. aestivum L. was grown for three months during which 6 pulses of 14CO2 were applied. 
Spatial overlap of 14C and 137Cs spots was determined on soil cuts in 10, 25 and 50 cm soil depth. 
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50% (relative humidity), and the light intensity kept constant at 200 µmol m-2 s-1. The 

photoperiod was set to 14 hours. The soil surface was covered with gravel to limit soil 

surface drying by strong evaporation and subsequent cracking. A drip irrigation system 

watered plants. Mildew infections were treated with azoxystrobin and sulphur. 

Each pre-crop plant was labelled with 75 kBq of 137Cs (137CsCl dissolved in 0.1 M 

HCl, POLATOM, Otwock, Poland; additional carrier: unlabelled 0.5 mM mL-1 133CsCl 

(Sigma-Aldrich Chemie GmbH, Munich, Germany) by cutting one of its leaf tips off with a 

sterile razor blade. The leaf tips were immersed for 36 hours in 1.5 mL Eppendorf vials 

(Eppendorf AG, Hamburg, Germany) containing the aqueous radiotracer solution and 

Silwet Gold surfactant (Spiess-Urania Chemicals GmbH, Hamburg, Germany). The pre-

crop shoots were harvested after three months by cutting them off at the soil surface. 

Dicamba was applied after the harvest to kill the pre-crops. The soil cores were stored at 

5 °C for nine months, followed by two months at 18 °C to simulate spring. The soil moisture 

was kept constant throughout root rotting.  

2.6.2.3 Main crop phase: Labelling with 14CO2 

On the same soil cores, the main crop wheat (Triticum aestivum L. var. KWS Scirocco) 

was sown at 20 seeds per core and was kept at the same conditions as the pre-crops and 

harvested after three months (BBCH 77). Main crops were fertilised as recommended by 

the seed provider, i.e. 120, 80 and 60 kg N, P and K ha-1, respectively. 

Table 1 Selected properties of the Haplic Luvisol, after Vetterlein (2013) including soil organic carbon 
(SOC) and total nitrogen (TN) of bulk soil, and, total organic carbon (TOC) contents ± SE in bulk 
soil and biopores of the soil core of the experiment. Letters regarding TOC indicate significant 
differences (p<0.05) between biopores and bulk soil for the pre-crops (two-way ANOVA). 
Asterisks indicate significant differences of one treatment (soil compartment, pre-crop species) 
between soil depths. 

Depth 
[cm] 

Horizon 
(WRB) 

Reference soil 
group (WRB) 

Bulk 
density 
[g cm-3] 

SOC 
 [g 

kg-1] 

TN 
 [g 

kg-1] 

Soil depth 
of 

soil core 
used 

herein 

TOC 
[%] 

       

Biopores 
 
 

Bulk soil 
 C. 

intybus 
P. 

tanacetifolia 
C. 

intybus 
P. 

tanacetifolia 
0–27 Ap SiL 1.29 10.0 1.02      
27–41 E/B SiL 1.32 4.6 0.55      

41–75 Bt1 SiCL 1.42 4.5 0.51 -10 cm 
(45-55 cm) 

0.68 ± 
0.04%b 

0.55 ± 
0.04%c 

0.35 ± 
0.01%a 

0.32 ± 
0.00%a 

      
-25 cm 

(55-70 cm) 
0.58 ± 

0.02%b 
0.58 ± 

0.02%b* 
0.31 ± 

0.02%a* 
0.28 ± 

0.02%a 

75–87 Bt2 SiCL 1.52 3.9 0.50 -50 cm 
(70-95 cm) 

0.71 ± 
0.04%b 

0.59 ± 
0.03%c* 

0.24 ± 
0.01%a* 

0.21 ± 
0.02%a* 

87–115 Bt3 SiL 1.52 2.5 0.34 
>-50 cm 
(95-115 

cm) 

0.72 ± 
0.09%a 

0.57 ± 
0.02%a 

0.13 ± 
0.02%a* 

0.15 ± 
0.00%a 

115–
127 Bw SiL 1.46 2.6 0.34      

127–
140+ 

C SiL 1.47 n.d. > 0      

SOC soil organic carbon, TOC total organic carbon, WRB World Reference Base 
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Six repeated pulses of 14CO2 were applied to the main crops. Each time, 3 MBq of 

Na2
14CO3 (Hartmann Analytic, Brunswick, Germany) were added to unlabelled Na2

12CO3.  

Labelled CO2 was generated from this solution by adding lactic acid (100%, p.a., Carl Roth, 

Karlsruhe, Germany) within an airtight labelling chamber for 6 h under the conditions 

mentioned above. About 1000 ppm CO2 were released in total per pulse. 

2.6.2.4 Imaging procedure 

After the wheat shoots were harvested, the 20-cm diameter soil cores and 70 cm depth 

were cut in 10, 25 and 50 cm depth, i.e. into four intact layers of 10, 15, 25 and 20 cm 

height. The plastic tubing (5 mm strength) was horizontally cut open with a circular saw. A 

thin, strong wire was used to cut the soil, and the cut surface was immediately cleaned with 

a 30-cm knife and a soft brush. 

The cut surfaces were placed on storage phosphor screens (BAS-MS 2040; 20 by 

40 cm; Fujifilm Europe GmbH, Düsseldorf, Germany). A 12 µm Hostaphan® film 

(Mitsubishi Polyester Film GmbH, Wiesbaden, Germany) was put between the soil surface 

and the screen to protect the latter from contamination. This first image captured the 

activities of 137Cs and 14C. For the second imaging, eight plastic films (polypropylene, 40 

µm thickness, density 0.95 g cm-³, MDF-Verpackungen GmbH, Bergisch Gladbach, 

Germany) were put between same soil surface (used for first imaging) and the screen to 

shield off the 14C radiation (Banfield et al., 2017). Thus, the second imaging captured only 

the 137Cs decay. Exposure was 20 hours. The imaging system FLA 5100 (Fujifilm Europe 

GmbH, Düsseldorf, Germany) was used to read the screen with a resolution of 100 µm. 

2.6.2.5 Determination of biopore re-use by image processing 

The images capturing the emitted β- radiation from the decay of 14C and / or 137Cs were 

converted to PSL units, i.e. the captured raw data was log-linearised in AIDA Image 

Analyzer (Fujifilm Europe GmbH, Düsseldorf, Germany) and were saved as 16-bit images. 

All further image processing was performed in Fiji 1.51 (Schindelin et al., 2012; Schindelin 

et al., 2015). First, all data which did not correspond to the imaging plates was discarded. 

The second imaging with eight plastic films did not only shield off all 14C radiation but also 

attenuated the stronger 137Cs β- radiation. The intensities of these images were reverted to 

the original intensities: a separate calibration of seven 137Cs activities were added to soil, 

and an identical imaging routine was carried out. The linear relationship between the 

intensities of the first (one plastic film) and the second image (eight plastic films) was 

calculated (r² = 0.999). All intensities of the 137Cs only images were multiplied by the inverse 

of the slope. Both images were normalised by selecting a region of interest (ROI) with 

representative, normally distributed noise and calculating the mean background intensity. 
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All pixelwise intensity data was divided by the mean background intensity to reduce the 

noise. The corresponding pairs of images were combined into a stack and were registered 

by the ImageJ implementation of Linear Stack Alignment with SIFT (Scale-invariant feature 

transform; (Lowe, 2004). For this, the 14C+137Cs image was defined as the source image 

and 137Cs the target image. If no registration was obtained, the TurboReg/StackReg 

algorithm was used instead (Rigid Body or Scaled Rotation transformations, (Thévenaz et 

al., 1998). The registered 137Cs image was subtracted from the 14C+137Cs image using the 

Image Calculator gave the 14C image. 

2.6.2.6 Comparison of 137Cs and 14C hotspots 

The separated, registered images of 14C and 137Cs represent the main crop roots and the 

biopores, respectively. For each image, the spots with the highest activities were 

considered roots and biopores and were manually saved as regions of interest (ROI) in the 

ROI manager. Spatial overlap of the ROI of both activities was manually determined, i.e. 

the count of overlapping 14C and 137Cs spots divided by the count of biopores (137Cs spots). 

The ROI data was used to calculate basic biopore and geometric properties of the roots 

and their rhizosphere as well as biopore re-use. We calculated the following parameters: 

I) volumes, II) biopore wall/rhizosphere volumes (assuming 1 mm extension), III) area 

fraction of all 137Cs or 14C spots on a cross-section, and, IV) lateral surface per biopore / 

root, surface area assuming a cylindrical shape (Supporting Information Table S1). 

2.6.2.7 Statistics 

All data presented in the text, figures and tables are mean values ± standard errors to 

account for uncertainties. Samples from the three soil depths were assumed to be 

dependent (paired). Therefore, means of chicory- or phacelia-induced samples were 

compared to each other separately in each soil depth. Two sample t-tests for dependent 

samples were used to identify significant depth effects in each pre-crop treatment. For all 

tests, we assumed significance below α = 0.05. Biopore size distributions were compared 

by F statistics, i.e. pairwise tests for significantly different variances. The counts of 

biopores, roots and re-used biopores (presented in Fig. 6) were compared by Mann 

Whitney U-tests. Associations were analysed by the Spearman correlation coefficient. For 

the ANOVA, homogeneity of variances was checked by Levene’s test. Normality of the 

residues was checked in Q-Q plots. Post-hoc comparisons were by Tukey’s Honest 

Significant Differences test. If assumptions of the linear ANOVA model were not met, non-

parametric ANOVA (Kruskal-Wallis ANOVA) including post-hoc comparisons of mean 

ranks were used instead. All statistical analyses were performed in STATISTICA 13.3 

(TIBCO Software Inc., Palo Alto, CA, U.S.A.). 
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 Results 

2.6.3.1 Biopore properties 

At the end of the experiment, the total biopore volume (0–50 soil depth; Fig. 3, Supporting 

Information Table S2) was significantly higher after phacelia as a pre-crop than after 

chicory. The biopore volumes in the individual soil layers (0–10, 10–25, 25–50 cm) were 

similar and decreased with depth. Relative to 0–10 cm, the biopore volume was 50% and 

70% lower in 10–25 cm and 25–50 cm, respectively. Likewise, the volumes of the biopore 

walls (assuming a 1 mm extension, (Parkin & Berry, 1999), Fig. 3) decreased with depth. 

While for chicory it decreased two and four times from 0–10 cm to 10–25 cm and 25–50 

cm, respectively, the decrease with depth was lower for phacelia (20% and 40% for the 

same layers). The lateral surface, describing the inner biopore surface area created per 

pre-crop plant, was significantly higher after phacelia in the topmost layer. The mean 

biopore radius was independent of pre-crop species or soil depth (≈ 0.15 cm, Fig. 3). 

Related to the mean radius, the biopore cut surface was between 1.3 and 1.6% of the total 

area (Fig. 3) and sharply decreased with depth to nearly zero - irrespective of the pre-crop 

species. The size class distribution (Fig. 4) revealed that the experimental setup created 

 

Fig. 2 The three-step image processing calculates the spatial representation of 14C by subtracting an 
attenuation corrected 137Cs-only image from the 137Cs+14C image. Shown are the three 
consecutive steps (from top to bottom) for chicory in 25 cm soil depth (20 cm diameter). 
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mostly larger biopores. In the case of chicory, the distribution changed from 10 cm to 25 

cm depth. 

2.6.3.2 Rhizosphere parameters 

The total rhizosphere volume of wheat (0–50 cm) did not correspond to the pre-crop 

species: it was smaller than the total biopore volume (Fig. 5, Supporting Information Table 

S3) and decreased with depth (p<0.05 for chicory). The rhizosphere volume (assuming a 

1 mm extension around a detectable root signal) was similar among soil depths and pre-

crops. The lateral surface of the rhizosphere was also not dependent on the pre-crop 

species and decreased significantly with depth. The mean radius of wheat rhizosphere was 

not affected by soil depth or pre-crop. The proportion of wheat roots growing in bulk soil 

did not change with depth (Fig. 6). 

 

 
Fig. 3 Physical biopore properties (means ± SE) 

volume, wall volume, radius and cut surface) of 
biopores induced by Phacelia tanacetifolia 
Benth. (dotted lines, squares) and Cichorium 
intybus L. (red, solid lines, triangles) from 0–50 
cm depth. Letters indicate significant differences 
on α 0.05 (two sample t-test for one soil depth), 
while asterisks indicate significant differences for 
one pre-crop between two soil depths (denoted 
in lower depth). 

Fig. 4 Biopore size distributions [%] in 10 
cm (top), 25 cm (middle) and 50 
cm (below) soil depth created by 
Phacelia tanacetifolia Benth. 
(black lines) or Cichorium intybus 
L. (red lines). Given are means ± 
SE. Significantly different 
variances between chicory and 
phacelia are denoted with 
asterisks (F statistics). 
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2.6.3.3 Biopore re-use 

Figure 6 illustrates biopores abundances and re-use depending on soil depths using count 

data and frequencies: pre-crop biopores of phacelia and chicory decreased with depth 50% 

and 75%, respectively (far left). The count of wheat roots growing in bulk soil was constant 

(centre left) with depth, while the wheat roots in biopores decreased (centre right). The 

number of biopores also decreased, and the biopore re-use was constant with depth 

(phacelia) or increased from 0–10 cm to 10–25 cm, and then remained constant (chicory). 

In the topmost layer (0-10 cm) about 64% and 58% of chicory and phacelia biopores were 

re-used by wheat, respectively (Fig. 6, Supporting Information Table S2), while in 10-50 

cm around 75% of chicory biopores were re-used. 

 

Fig. 5 Physical rhizosphere properties (means ± SE) volume, wall volume, radius and cut surface) of 
biopores induced by Phacelia tanacetifolia Benth. (dotted lines, squares) and Cichorium intybus L. 
(red lines, triangles) from 0–50 cm depth. Letters indicate significant differences on α 0.05 (two 
sample t-test for one soil depth), while asterisks indicate significant differences for one pre-crop 
between two soil depths (denoted in lower depth). 
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Biopore reuse was significantly positively correlated with the TN content of the 

wheat shoots: in 10, 25 and 50 cm depth, the Spearman correlation coefficients were 0.61, 

0.71 and 0.65, respectively. Consequently, the highest correlation between TN contents 

and reuse was for the 10-25 cm soil depth. 

 Discussion 

2.6.4.1 Biopore properties 

The count of biopores (Fig. 6, Supporting Information Table S2) decreased with depth, 

and most parameters decreased concomitantly. One cropping season was not sufficient to 

cause differences in biopore abundance or geometry between the pre-crops. With depth, 

the biopore count was decreasing. Since the biopore re-use increased (Fig. 6), biopores 

become more relevant in deeper soil. Thus, the number of biopores was suggested as a 

major determinant for root growth in the subsoil (Wang et al., 1986). The biopore radius 

(Fig. 3) may be a meaningful approximation for the likelihood of biopore re-use as larger 

biopores are seemingly more often re-used (Volkmar, 1996; Han et al., 2015). It is unclear 

if this is merely a matter of probability or higher wall density (‘trapping’). Smaller biopores 

are much more frequent than larger biopores (Wuest, 2001) and may force more root-pore 

wall contact and higher nutrient uptake (Stirzaker et al., 1996). Larger biopores may 

therefore not be necessarily better for nutrient supply, but they could be more long-term 

stable (Hagedorn & Bundt, 2002). Compared to methods like endoscopy (Athmann et al., 

2013), the method presented visualises biopores smaller than 1 mm.  

The biopore size distribution (Fig. 4) remained relatively constant with depth for 

both pre-crop species. Large biopores get less frequent with depth (Athmann et al., 2013) 

but biopore diameters stay rather constant with depth (Passioura, 2002), confirming our 

 

Fig. 6 Distributions of biopores and wheat roots depending on soil depth and pre-crop species (Phacelia 
tanacetifolia Benth., dotted lines; Cichorium intybus L., red, solid lines). Given are means ± SE of 
counts of biopores (left), counts of wheat roots outside biopores (centre left), wheat roots in 
biopores (centre right) and biopore re-use (%, right). Letters indicate significant differences 
between crops in one soil depth. Asterisks denote significant differences (p < 0.05) of a soil layer 
and the layer above. 
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data (Fig. 3). Possibly, the effect on the radius was weak as only the top 50 cm were 

studied. The biopore volume (Fig. 3) describes 50‒80% of the soil macroporosity 

(Pagenkemper et al., 2013; Zhang et al., 2018). The volume was in good agreement with 

Gaiser et al. (2013) who have determined a biopore volume of 0.44–0.62% from 300–660 

roots m-2 in the field. In our experiment, 0.19–0.35% biopore volume was determined from 

520–620 younger roots m-2 (Fig. 3, Supporting Information Table S2). Thus, our lab data 

reflects real soil conditions. The larger the biopore volume, the more likely is a deep 

penetration into the subsoil. Maximum root density was simulated to occur at 2% biopore 

volume (Gaiser et al., 2013). Consequently, an eight times higher biopore volume (0.25%; 

Fig. 3) may be required to ensure optimal rooting of wheat. The biopore wall volume is an 

approximation for the physical size of the OM pool from which nutrients can be mobilised. 

The small volumes (0.2–0.9%) and high TN contents (+70% relative to the bulk soil, Table 

1) illustrate the concentration of nutrients, potentially attractive for roots. The biopore wall 

volume is possibly underestimated as we did not account for tortuosity or surface 

roughness. In the case of tap-rooted crops, the tortuosity is not expected to contribute 

strongly (Hirth et al., 2005).  

The limited effects of pre-crop species on biopore (Fig. 3, Supporting Information 

Table S2) or rhizosphere parameters (Fig. 5, Supporting Information Table S3) fade with 

the duration of cover cropping (Han et al., 2017). Nearly identical rhizosphere parameters 

suggest that neither pre-crop had a positive or negative influence on the root system of 

wheat. However, this does not allow any conclusion on physiological responses. If one 

cover cropping season is included in a crop rotation, the choice of pre-crop may not matter 

for physical biopore properties. When pre-crops are cultivated perennially, tap-rooted crops 

likely induce larger biopores than fibrous crops. 

2.6.4.2 Biopore re-use 

From the biopore properties limited can be inferred on the relevance of biopores. Biopores 

can only be potentially relevant if subsequent crops re-use them. Root growth in 

macropores is positively correlated with the count and mean diameter of pores (Wang et 

al., 1986), i.e. re-use should be higher after tap-rooted chicory than after fibrous phacelia. 

This was not confirmed after one season as biopore size distributions, and re-use did not 

differ between species (Figs. 3, 4). The pure chance of a wheat root to grow into an existing 

biopore in a given soil depth was between 0.1–1.5% (Fig. 3, (Perkons et al., 2014)). 

Considering the wheat root counts, the theoretical biopore re-use in 10 cm depth was 19 ± 

4% for chicory and phacelia (Fig. 6). However, biopores were re-used to a much larger 

extent (53–75%; Fig. 6). Root growth in macropores was previously estimated between 

25–47% (Nakamoto, 2000; Athmann et al., 2013; Han et al., 2017), i.e. 50% lower than in 
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our study, which considers both large and small biopores. The reasons may be that I) this 

results from a closed soil column, which may force roots into biopores (albeit the plant 

density was not higher than in the field) or, II) during the field sampling, fine roots may get 

lost or have died before sampling and counting visible roots strongly underestimates re-

use, or, III) without labelling, it is hardly possible to determine the re-use of small biopores. 

Nevertheless, our method may underestimate total biopore re-use, as some pre-existing 

biopores may have been re-used by wheat, but not by a pre-crop and were not 137Cs 

labelled. Pre-crop-specific biopore re-use is not affected, which is an important issue as 

the re-use of same-species biopores may be lower than different-species biopores (Rasse 

& Smucker, 1998).  

Biopore re-use increased with depth (Fig. 6) and bulk density (from 1.42 to 1.52 g 

cm-3, Table 1), which was previously postulated (Ehlers, 1975; Kautz et al., 2013b; 

Dresemann et al., 2018). The increase of bulk density did not reduce the proportion of 

wheat roots in bulk soil (Fig. 6). The bulk density is only one factor driving roots into 

biopores. Alternatively, roots may have been searching for available nutrients in biopores 

since the TN and TOC contents decrease with depth in bulk soil (Table 1). This finding was 

supported by the positive significant association of biopore re-use and TN contents of 

wheat – which was independent of soil depth. Biopore re-use was far above the 

stochastically estimated value; it is likely not random (Rasse & Smucker, 1998). Crops 

have developed traits to acquire biopore wall nutrients, e.g. increasing contact with the 

biopore wall by growing in a spiralling manner or by root hairs (Athmann et al., 2013). 

Furthermore, roots tips may sense OM decomposition by glutamate sensors (Edwards & 

Lofty, 1980; Filleur et al., 2005). As in the subsoil the strongest OM turnover occurs in 

biopores (Kuzyakov & Blagodatskaya, 2015), it is plausible that roots grow towards 

biopores. This fact could explain the high biopore re-use and the increase with depth. 

However, not under all circumstances are biopores more advantageous than bulk soil, e.g. 

high wall strength biopores lock up roots in hard-setting soils (White & Kirkegaard, 2010).  

2.6.4.3 Plant properties influence biopore re-use 

The root system of the main crop governs the spatial accessibility of nutrients in the 

biopore. The delicate roots of wheat can easily exploit the biopores of both phacelia and 

chicory. Smaller roots may use biopores more frequently (Nakamoto, 2000) as they suffer 

from stronger mechanical limitations in bulk soil. In contrast, a tap-rooted main crop might 

not have accessed the one-season biopores as easily as fibrous crops.  

Most wheat roots were found to be rooting in biopores in 50 cm soil depth (Fig. 6; 

(Ehlers et al., 1983; White & Kirkegaard, 2010). Crops may vary in their likelihood to grow 

in biopores: e.g. it was already shown that wheat prefers macropores compared to maize 
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(Nakamoto, 2000). Wheat roots tend to clump together when growing in biopores (White & 

Kirkegaard, 2010), which was confirmed in this study. Larger 14C spots could not always 

be differentiated to single roots. It is not clear if clumping affects yields (White & Kirkegaard, 

2010). 

 Even if wheat biopore re-use was considerable (Fig. 6), the proportion of roots 

outside biopores was constant from 0–50 cm depth. Not all resources are sufficiently 

available in biopores, so that a part of roots needs to grow in bulk soil – even though 25–

40% of pre-crop biopores were unused (Fig. 6). It may be speculated that this was due to 

low water availability in biopores due to hydrophobic pore walls (Czarnes et al., 2000) or 

because roots branch to occupy more volume. If biopore re-use was detrimental, roots 

would not preferentially grow in biopores. Also, the physiological activity of roots would 

decrease drastically. The 14C signals were not obviously lower in biopores than in bulk soil. 

Consequently, the C exudation activity, i.e. physiological activity related to exudation, was 

not altered between roots in biopores and those in bulk soil. 

 Conclusions 

Dual isotope labelling (137Cs + 14C) enables localisation of biopores, determination of their 

properties, and specific biopore re-use in crop rotations — without disturbing the soil and 

root systems. Crops benefit from biopores — as shortcuts to subsoil resources — since 

biopores were occupied three times more often than expected (20-25%): most wheat roots 

(65%) were growing inside biopores. However, a constant proportion of roots was growing 

in bulk soil ‒ possibly to obtain resources which are scarce in biopores. After one season 

of cover cropping, neither biopore re-use nor their physical properties depended on the 

root characteristics of the pre-crops. The choice of species for cover cropping may only 

matter for more extended pre-cropping periods. Biopores became less frequent with depth, 

but their re-use increased with depth (up to 75% of biopores were occupied with wheat 

roots) suggesting a higher relevance of biopores especially in the subsoil. Preferential root 

growth and unaffected physiological activity (14C exudation) in biopores clearly confirms 

their benefits for plants especially in the subsoil. Second, higher biopore re-use was closely 

correlated with higher wheat shoot biomass production. If biopores increase the availability 

of a limiting factor for crop production, e.g. water or nutrients from subsoil, then not only 

pre-crop management but also optimisation of main crops towards an improved root 

biopore use is a further direction for plant breeding. Since 25–45% of biopores were not 

occupied by roots, a considerable potential is expected. If roots met a larger part of their 

demands from biopores, the need for an extensive root system is reduced. A lower 

belowground C investment is beneficial for aboveground productivity but detrimental to the 

total C input into the subsoil.  
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Biopores may have various functions depending on their diameter and wall 

strength. While larger, stable biopores lead roots to subsoil resources, smaller biopores 

may provide more nutrients and therefore may effectively increase total C deposition close 

to the subsoil mineral phases. Consequently, the choice of pre-crop could depend on the 

desired advantageous aspect and agricultural management targets (tap-rooted perennials: 

more drought resilience vs. fibrous roots: C sequestration). After three months of 

cultivation, both pre-crops of varying root system provided equal opportunities for subsoil 

exploration and nutrient uptake by wheat. 
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 Supplementary Material 

Table S1 Overview of the calculated biopore and rhizosphere properties including 

equations. 

Wheat root / biopore volume (𝑉) [cm³]: 𝛴 of 

cylindric volumes with base areas (𝑟2𝜋)𝑖 
and multiplied by height (ℎ) of soil layer 

𝑉 = ∑(𝑟2𝜋 ℎ)𝑖

𝑛

𝑖=1

 

Volume [cm³] of biopore wall / rhizosphere 
(𝑉𝑤𝑎𝑙𝑙): radius of base area enlarged by 0.1 

cm: (𝑟 + 0.1)𝑖
2

𝜋 minus base area (𝑟2𝜋)𝑖 

multiplied by height (ℎ) of soil layer 

𝑉𝑊𝑎𝑙𝑙 = ∑(((𝑟 + 0.1)2 − 𝑟2) 𝜋 ℎ)
𝑖

𝑛

𝑖=1

 

Lateral surface (𝐴) of biopores / roots 
assuming cylindrical shapes: circumference 
of pore (2𝑟 𝜋) multiplied by height (ℎ) of soil 
layer, normalised by number of pre-crops 
per soil core 

𝐴 =
∑ (2𝑟 𝜋 ℎ)𝑖

𝑛
𝑖=1

𝑛 (𝑐𝑟𝑜𝑝𝑠)𝑖
 

Area fraction [%] describing the cut surface 
area of all biopores / roots on a 20-cm cross 

section (𝑟𝑡𝑡𝑙²𝜋) 
𝐴𝐶𝑢𝑡 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 =

∑ (𝑟2𝜋)𝑖
𝑛

𝑖=1

(𝑟𝑡𝑡𝑙²𝜋)
 

Biopore reuse (𝐵𝑃𝑅) [%] describing the 
count of overlapping 14C and 137Cs spots 
divided by the count of biopores created 
(137Cs spots)  

𝐵𝑃𝑅 =
 𝑛( 𝐶14 + 𝐶137 𝑠 )

𝑛( 𝐶137 𝑠 )
 

Wheat roots growing in bulk soil expressed 
as the count of 14C spots (wheat roots) 
minus wheat roots in biopores (overlap) 
divided by the count of wheat plants 

𝑊𝐵𝑆 =
𝑛( 𝐶14 ) − 𝑛( 𝐶14 + 𝐶137 𝑠 )

𝑛(𝑤ℎ𝑒𝑎𝑡)
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Table S2 Full quantitative data on the physical biopore properties in different soil depths 

after the pre-crops Cichorium intybus or Phacelia tanacetifolia.  
Soil depth C. intybus P. tanacetifolia 

Biopore volume [%] 0-10 cm 0.4 ± 0.1%a 0.5 ± 0.1%a  
10-25 cm 0.2 ± 0.0%a 0.4 ± 0.1%a  
25-50 cm 0.1 ± 0.0%a* 0.2 ± 0.1%a  

Ø 0.19 ± 0.03%b 0.35 ± 0.06%a     

Biopore wall volume [%] 0-10 cm 0.91% ± 0.23%a 0.71% ± 0.12%a  
10-25 cm 0.43% ± 0.13%a* 0.58% ± 0.15%a  
25-50 cm 0.19% ± 0.04%a 0.41% ± 0.13%a  

Ø 0.35% ± 0.09%a 0.46% ± 0.11%a     

Biopore lateral surface  0-10 cm 8.6 ± 1.2b 14.4 ± 2.4a 

per plant [cm²] 10-25 cm 3.8 ± 0.8a* 11.9 ± 3.0a 

 25-50 cm 2.0 ± 0.5a 6.8 ± 2.1a 

    

Biopore radius [cm] -10 cm 0.15 ± 0.01a 0.16 ± 0.01a  
-25 cm 0.15 ± 0.01a 0.14 ± 0.00a  
-50 cm 0.17 ± 0.02a 0.15 ± 0.00a*  

Ø 0.16 ± 0.01a 0.15 ± 0.01a     

Biopore cut surface  -10 cm 1.3% ± 0.2%a 1.6% ± 0.3%a 

[% of total cut surface] -25 cm 0.5% ± 0.1%a* 1.0% ± 0.3%a  
-50 cm 0.1% ± 0.1%a 0.0% ± 0.0%a 

    

Biopore reuse [%] -10 cm 63.6% ± 5.9%a 58.1% ± 7.3%a 

 -25 cm 75.3% ± 5.8%a* 65.5% ± 12.3%a 

 -50 cm 75.3% ± 10.4%a 53.3% ± 11.2%a 

    

Theoretical biopore reuse [%] -10 cm 19.4 ± 3.9% 18.6 ± 4.0% 

 -25 cm 6.9 ± 2.0% 14.9 ± 7.9% 

 -50 cm 1.7 ± 1.6% 0.1 ± 0.1% 
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Table S3 Full quantitative data on the physical rhizosphere properties of Triticum aestivum 

in different soil depths after the pre-crops Cichorium intybus or Phacelia tanacetifolia. 

  Soil depth After 
C. intybus 

After 
P. tanacetifolia   C. intybus 

 

P. tanacetifolia 

 
Rhizosphere volume [%] 0-10 cm 0.35 ± 0.06%a 0.41 ± 0.09%a 
 10-25 cm 0.23 ± 0.06%a* 0.32 ± 0.07%a 
 25-50 cm 0.07 ± 0.04%a* 0.15 ± 0.03%a 
 Ø 0.17 ± 0.04%a 0.25 ± 0.05%a 
    

Rhizosphere wall volume [%]  0-10 cm 0.65 ± 0.07%a 0.70 ± 0.15%a 
 10-25 cm 0.47 ± 0.08%a 0.64 ± 0.16%a 
 25-50 cm 0.14 ± 0.11%a 0.27 ± 0.07%a 
 Ø 0.34 ± 0.08%a 0.47 ± 0.09%a 
    

Rhizosphere surface 
 [cm² plant-1] 

0-10 cm 8.60 ± 1.28a 9.44 ± 2.26a 
10-25 cm 6.17 ± 1.29a* 7.66 ± 1.99a 

 25-50 cm 1.82 ± 1.33a* 3.32 ± 0.00a* 
    

Rhizosphere radius [cm] 0-10 cm 0.12 ± 0.01a 0.13 ± 0.01a 
 10-25 cm 0.11 ± 0.01a 0.12 ± 0.01a 
 25-50 cm 0.12 ± 0.02a 0.13 ± 0.00a 
    

Roots in bulk soil [%] 0-10 cm 25.5% ± 5.9%a 21.8% ± 7.2%a 
 10-25 cm 31.4% ± 3.6%a 29.6% ± 17.1%a 
 25-50 cm 23.4% ± 12.5%a 4.4% ± 2.3%a 
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Abstract 

In crop rotations, plants likely benefit from rooting within biopores — but it is not clear to 

which extent crops take up nutrients localised in biopores of preceding crops. We tested if 

there is an interannual nutrient transfer from pre-crops to wheat by applying 15N to the 

leaves of the pre-crops Cichorium intybus L. and Phacelia tanacetifolia Benth. to label their 

biopores vs 15N fertiliser application. After eleven months of root biopore development, 15N 

mobilisation was determined in the shoots of the succeeding crop Triticum aestivum L.  

 15N supplied during the pre-crop phase was mobilised by wheat after one year of 

soil rest. Leaf feeding did not exclusively label the biopores with 15N but was dispersed 

homogeneously in biopores and bulk soil. Pre-crop 15N was 3–5 times more available after 

fertiliser application (~11% recovery) than after leaf feeding (~3% recovery) — irrespective 

of pre-crop species — suggesting that the plant-derived organic N of both pre-crops was 

equally available to wheat. Lower biopore re-use was correlated with lower TN contents, 

but re-use was not correlated with 15N. Consequently, wheat preferentially mobilised older 

SON and likely other nutrients (K, P), which boosted its dry matter.  

Even though the availability of last-year pre-crop N is rather small in biopores, the most 

substantial part of the pre-crop-N remained in soil and may be available in future — posing 

a slow-release fertilisation add-on. The direct relevance of biopores for plant nutrition is 

likely much higher when topsoils become nutrient-depleted and for less mobile nutrients 

such as potassium and phosphorus.  



Publications and Manuscripts  

229 

 

 Introduction 

In times of climate change and a growing global population, sustainable and resource-

efficient agriculture is needed to maintain food production (Cordell and White, 2011; 

Godfray et al., 2010; Schmidhuber and Tubiello, 2007). Organic agriculture addresses this 

issue by aiming at closing nutrient cycles, e.g. through crop rotations and exploiting the 

subsoils, i.e. the soil below the ploughed horizon in agricultural lands. So far, nutrient 

acquisition from the subsoil has received little attention. Total nutrient stocks are 

considerable in the subsoil, but their concentrations are low. Therefore, subsoils do not 

appear especially attractive for plant nutrition on a first glance (Kautz et al., 2013; Rumpel 

et al., 2012). Roots mobilise nutrients from the mineral phases in the subsoil, e.g. through 

exudation of enzymes and acids, or by boosting the root-associated microflora through 

exuding organic C (Jones et al., 2009). Boosted microbial turnover increases in turn 

nutrient release from both soil organic matter (OM) and weathering of mineral phases. 

Deep-reaching roots concentrate nutrients accumulated from various sources within them 

(Riedell et al., 2009). When roots grow into the subsoil and die, they leave behind nutrients 

not only from the topsoil but also those mobilised in the subsoil (Kautz et al., 2013). Upon 

death, the root OM with the concentrated nutrients turns into microbial hotspots 

(detritusphere; (Kuzyakov and Blagodatskaya, 2015; Mathers et al., 1975). Microbial 

turnover releases and cycles nutrients in the pore walls (Passioura, 2002; Volkmar, 1996). 

On top of the microbial cycling, the former root becomes an accessible macropore, a 

biopore (McCallum et al., 2004). Biopores are preferential pathways of root growth into the 

dense subsoil according to the principle of least resistance (Athmann et al., 2013; 

McCallum et al., 2004). Subsequent crops benefit from the physically accessible and 

biochemically available biopore nutrients (Gaiser et al., 2013) but this does not 

automatically mean that biopores contribute to plant nutrition. Plants appear to have 

developed strategies to acquire root detritus-derived nutrients by growing in contact with 

the inner pore walls, e.g. by root hairs or by a spiralling growth (Athmann et al., 2013). Yield 

improvements in crop rotations were previously linked to biopore densities (Gaiser et al., 

2013; Kautz et al., 2010; Riedell et al., 2009), but never linked to actual physical biopore 

re-use and remobilisation of detritus-N. It remains unclear if biopores are beneficial for the 

plant nutrition and under which conditions. This is the case for wheat, which under dry 

conditions was estimated to get 10% of its N demand from former root residues (Evans et 

al., 2001). Nitrogen is strongly enriched in biopores and enzyme activities related to N 

turnover are increased relative to the bulk soil (Athmann et al., 2017; Hoang et al., 2016). 

We hypothesise that the use of accessible biopore nutrients, i.e. pre-crop nutrient ‘carry 
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over’ in biopores to the next crop (‘interannual nutrient transfer’), significantly contributes 

to the plant nutrition. 

 We tested the interannual nutrient transfer hypothesis for N in a crop rotation. 

Subsoil columns were planted either with tap-rooted chicory (Cichorium intybus L.) or 

fibrous phacelia (Phacelia tanacetifolia Benth.) as the pre-crop, which were labelled once 

with 15N-NO3
- through the leaves (to label the biopores) or onto the soil surface (to mimic 

fertiliser application). After eleven months of root decay, the uptake of pre-crop N was 

determined from 15N in wheat shoots (Triticum aestivum L.), which was grown for three 

months. 

 Material and Methods 

2.7.2.1 Experimental setup 

Undisturbed soil columns of 20 cm diameter and 70 cm length were taken from 45‒115 cm 

soil depth of a Haplic Luvisol (Hypereutric, Siltic) located at the agricultural research station 

Klein-Altendorf near Bonn, Germany. The soil properties (Table 1) were previously 

reported by Vetterlein et al. (2013). The C and N contents of the layer 45‒70 cm were 0.32 

± 0.05% and 0.05 ± 0.00%, respectively. Likewise, for the layer 70‒115 cm, the 

corresponding values were 0.18 ± 0.01% and 0.04 ± 0.00%. It was assumed that pre-

existing biopores were equally distributed among all soil columns (Gaiser et al., 2013; Han 

et al., 2015a). The location (50°37′9″N 6°59′29″E) is characterised by a maritime climate 

with temperate humid conditions (9.6 °C mean annual temperature, 625 mm annual 

precipitation). After sampling, the soil columns were stored at 8 °C and were pre-incubated 

at 20 °C for two weeks until the beginning of the experiment. Twelve soil columns were 

used for this experiment (Fig. 1): on six columns chicory was grown for three months 

(Cichorium intybus L. var. Puna; 20 seeds per column) and on the other six columns 

Phacelia tanacetifolia Benth. (var. Maja KWS; 20 seeds per column) was grown. The 

temperature in the growth chamber was kept at 20 °C, air humidity was kept at 50% 

(relative humidity), and the light intensity kept at 200 µmol m-2 s-1 for 14 hours a day. The 

columns were watered regularly with a redundant drip irrigation system. Mildew infections 

were treated with azoxystrobin and sulphur. The pre-crops were cut after three months, 

and Dicamba was applied to the stems to kill the plants. The soil columns were stored at 5 

°C for nine months, followed by two months at 18 °C. The soil moisture was kept constant 

during the fallow. Triticum aestivum L. var. KWS Scirocco was sown at ~ 20 seeds per 

column; plants were kept at the same conditions as before and harvested after three 

months at BBCH 77 (Meier, 1997). Main crops were fertilised as recommended, i.e. 120, 

80 and 60 kg N, P and K ha-1, respectively. 
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2.7.2.2  Labelling with 15N and determination of tracer fate 

Half (six) of the soil columns planted with chicory or phacelia were labelled with K15NO3 by 

leaf feeding. For the leaf feeding, one leaf tip per pre-crop plant was cut with a sterile razor 

blade. The leaf was immersed for 36 hours in 1.5 ml Eppendorf vials (Eppendorf AG, 

Hamburg, Germany) containing an aqueous solution of the tracer at 1 mM ml-1 and Silwet 

Gold surfactant (Spiess-Urania Chemicals GmbH, Hamburg, Germany). The other half of 

the soil columns received the same amount of K15NO3 by pipetting it onto the soil surface 

to simulate conventional fertiliser application. 15N uptake in wheat shoots and 15N remaining 

in the pre-crops shoots were determined by cutting the shoots near the soil surface, drying 

them at 60 °C for four days, determining the total dry mass of the shoots, shredding and 

mixing the shoots to obtain a representative aliquot, which was ground in a ball mill into a 

fine powder (MM 200, Retsch GmbH, Haan, Germany). Aliquots were measured by EA-C-

IRMS (details below). 

 After the wheat harvest, soil columns were cut horizontally into four layers in 10 cm, 

25 cm and 50 cm depth, i.e. in layers of 10, 15, 25 and 20 cm thickness. Biopores were 

visually identified, and the soil around them was removed with knives. The biopores were 

opened on one side, and the inner pore wall coating was taken as a composite sample 

from the entire layer with micro spoons and dried at 60 °C for four days and ground in a 

ball mill. Soil (40-50 mg) and plant samples (2 mg) were put in tin capsules (IVA, 

Meerbusch, Germany) and were incinerated by the FLASH 2000 CHNS/O Element 

Table 1 Selected properties of the Haplic Luvisol at Klein-Altendorf, modified after Vetterlein (2013) 
including TN contents in bulk soil and biopores of the soil core of the experiment (own data). 

Depth 
[cm] 

Horizon 
(WRB) 

Reference 
soil group 

(WRB) 

Bulk 
density 
[g cm-

3] 

SOC 
 [g kg-

1] 

Ntot 
 [g kg-

1] 
 

TN 
[%] 

       

Biopores 
 
 

Bulk soil 
 

C. 
intybus 

P. 
tanacetifolia 

C. 
intybus 

P. 
tanacetifolia 

0–27 Ap SiL 1.29 10.0 1.02      
27–41 E/B SiL 1.32 4.6 0.55      

41–75 Bt1 SiCL 1.42 4.5 0.51 
-10 cm 
(45-55 

cm) 

0.08 ± 
0.01%b 

0.07 ± 
0.00%b 

0.06 ± 
0.00%a 

0.05 ± 
0.00%a* 

      
-25 cm 
(55-70 

cm) 

0.08 ± 
0.00%b 

0.08 ± 
0.00%b 

0.05 ± 
0.00%a* 

0.05 ± 
0.00%a* 

75–87 Bt2 SiCL 1.52 3.9 0.50 
-50 cm 
(70-95 

cm) 

0.08 ± 
0.00%b 

0.08 ± 
0.00%b 

0.05 ± 
0.00%a* 

0.05 ± 
0.00%a* 

87–115 Bt3 SiL 1.52 2.5 0.34 

>-50 
cm 

(95-115 
cm) 

0.07 ± 
0.00%c* 

0.07 ± 
0.00%c* 

0.03 ± 
0.00%a* 

0.04 ± 
0.00%a* 

115–
127 Bw SiL 1.46 2.6 0.34      

127–
140+ 

C SiL 1.47 n.d. > 0      
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analyser which was coupled by the ConFlo III interface to the Delta V Advantage isotope 

ratio mass spectrometer (all Thermo Fisher Scientific, Cambridge, U.K.). Contents of total 

organic carbon (TOC) and total nitrogen (TN), as well as δ15N values, were determined. 

2.7.2.3 Calculations and statistics 

Total N in a pool (Npool) was partitioned into N derived from the tracer (Ntracer-derived) and N 

originating from the soil (Nsoil_bg), with 15N atom percent of the unlabelled background soil 

columns used as the reference value (atom%soil_bg): 

 

𝑁𝑡𝑟𝑎𝑐𝑒𝑟−𝑑𝑒𝑟𝑖𝑣𝑒𝑑 = 𝑁𝑃𝑜𝑜𝑙 ×
(𝑎𝑡𝑜𝑚%𝑡𝑜𝑡 − 𝑎𝑡𝑜𝑚%𝑠𝑜𝑖𝑙_𝑏𝑔)

(𝑎𝑡𝑜𝑚%𝑡𝑟𝑎𝑐𝑒𝑟 − 𝑎𝑡𝑜𝑚%𝑠𝑜𝑖𝑙_𝑏𝑔)
 

(Eq. 1) 

 

where atom%tot and atom%tracer are the 15N abundances of the measured N and of the 

added N, respectively. In the case of the fertiliser application mode, all excess 15N in the 

bulk soil derives from the tracer. The 15N input into the biopore (Nbiopore) is the amount of 

 

Fig. 1 A crop rotation experiment: after the pre-crop phase of either a fibrous root system crop (P. 
tanacetifolia) or tap-rooted chicory (C. intybus; top), the root biomass had one year to decay and 
enrich biopores with 15N from leaf labelling. K15NO3 was applied either through the leaves (to label 
the pre-crop root biomass and therefore biopores) or onto the soil surface (to simulate fertiliser 
application). After the decay, wheat (T. aestivum) was grown (below) and 15N was quantified in the 
wheat biomass to determine the uptake and remobilisation of 15N from either biopores or bulk soil. 
The percent data indicates the 15N partitioning between above and belowground allocation of 15N 
± SEM. 
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15N tracer (Ntracer) in the Eppendorf vial minus the 15N which was not taken up (Nrem) minus 

the 15N in the pre-crop shoot at harvest (Nshoot). 

𝑁𝑏𝑖𝑜𝑝𝑜𝑟𝑒 = 𝑁𝑡𝑟𝑎𝑐𝑒𝑟 − 𝑁𝑟𝑒𝑚 − 𝑁𝑠ℎ𝑜𝑜𝑡 (Eq. 2) 

 The results of the mixing model were normalised to the applied tracer amounts 

(i.e.by leaf feeding or fertiliser application).  

2.7.2.4 Statistics  

Each dataset was screened for outliers by Nalimov’s test, and maximum one outlier per 

treatment combination and proxy was removed, if more than three data points were 

available. Data given are mean values ± standard errors to account for uncertainties. 

Significant differences of means between treatments were tested by two-way analyses of 

variance (ANOVA; factors: mode of 15N application and pre-crop species) for each depth 

separately since biopores provide paired samples between soil depths. Homogenous 

variances were checked for by Levene’s test. Normality of the residues was visually 

checked in Q-Q plots. If the ANOVA model was significant, post-hoc comparisons were 

analysed by Tukey’s Honest Significant Differences test. If assumptions were not met, non-

parametric ANOVA (Kruskal-Wallis ANOVA) including post-hoc comparisons of mean 

ranks were used instead. Pairwise t-tests for dependent samples were used to determine 

differences between soil depths. All statistical analyses were performed in Statistica 13.3 

(TIBCO Software Inc., Tulsa, U.S.A.). 

 Results 

2.7.3.1 15N budget 

49-56% of the 15N applied to either the soil surface or by leaf feeding was recovered in the 

pre-crop – without any clear trend between the application modes (Fig. 1). The remainder 

was allocated belowground, of which 5-10% was recovered in the main crop wheat (details 

below) and 8-18% was recovered in biopores and bulk soil (Fig. 4). Regardless of the 

application mode, both biopores and bulk soils were statistically equally labelled with 15N 

(Fig. 4). 

2.7.3.2 Carbon and nitrogen contents 

The TOC content of the bulk soil decreased steadily from 0 to 60 cm depth by 60% - 

independent of the pre-crop species (Fig. 2, above, solid lines). At the time of sampling 

after the main crop phase, the biopore wall material stemming from both pre-crops had 

higher TOC contents than bulk soil throughout the entire subsoil. On average, the TOC 

content was 150% higher in biopores than in bulk soil. The difference between biopores 
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and bulk soil increased with soil depth. Chicory increased the biopore TOC content more 

than phacelia, likely due to its tap roots as compared to the fibrous roots of phacelia. Both  

pre-crops featured either increasing or constant TOC contents with increasing depth, 

illustrating the increasing relevance of biopores in the deeper soil. 

 

Fig. 2 C:N ratio (top), TOC (middle) and TN contents (below) ± standard errors from 0‒70 cm soil depth 
at the end of the experiment in biopores (dotted lines) and bulk soil (solid lines for the soil columns 
planted with either chicory (red) or phacelia (black with cubes as symbols, six replicates each). 
Letters indicate significant differences in one soil depth on α 0.05 (ANOVA). Asterisks show 
significant differences between soil depths (two-sample t-test for paired samples). 
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 In the bulk soil, the TN content decreased steadily from 0 cm to 60 cm depth by 

30% – like the TOC content irrespective of the pre-crop (Fig. 2, below). Biopores stemming 

from both pre-crops had 70% higher TN contents relative to bulk soil when averaging over 

all depths. The TN contents in biopores kept constant from 0 cm to 37.5 cm depth and 

decreased below - likely because the maximum rooting depth was around 50 cm depth. 

The mode of application (leaf feeding vs fertilisation) did not influence the N contents of 

either pre-crop or main crops. 

 The C/N ratio (Fig. 2) decreased steadily in bulk soil irrespective of the pre-crop 

and was always narrower than in the biopores. In the biopores, there was no difference in 

the C/N ratio among pre-crops. 

 The shoot biomass production per wheat plant depended on the pre-crop species 

and was doubled after phacelia (Fig. 3, black bars). However, the TN content of the shoots 

was not significantly affected either by the application mode or the pre-crop species (Fig. 

3, white bars) – albeit there was a trend towards higher TN contents after chicory. The C 

contents of the shoot biomasses of the main crop wheat depended on the mode of 

application or the plant species to which the tracer was applied to (Table S1, 

Supplementary data).  

 

Fig. 3 Plant productivity (dry mass of wheat shoots, white bars) and TN contents of wheat shoots (red 
bars); 15N recovery from biopores and bulk soil (relative to applied tracer). Given are means ± 
standard errors. Letters indicate significant differences between response application modes and 
pre-crop species (Two-way ANOVA, Tukey’s HSD test on α 0.05). 
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2.7.3.1 Tracer recovery in wheat shoots 

15N applied to either pre-crop was recovered in the shoot biomass of the main crop wheat 

(Fig. 3, red bars). 3% and 2.6% of the 15N applied to chicory and phacelia were recovered 

in wheat, respectively. Wheat mobilised 3.4‒4.8 times more 15N from the bulk soil than from 

biopores, i.e. 10.3‒12.2% of the fertiliser-15N applied during the pre-crop phase was 

recovered in wheat shoots. The pre-crop species did not affect the 15N mobilisation.  

 Discussion 

2.7.4.1 Pre-crops (but not biopores) enable interannual N transfer to main crops 

To assess the relevance of biopores for plant nutrition, prior studies have correlated root 

growth in macropores with shoot parameters, e.g. yield or N content (Volkmar, 1996). 

Isotopic tracers can help assess nutrient uptake from biopores, e.g. after cover cropping. 

The tracer enrichment of biopore walls through pre-crop leaf feeding was shown in principal 

for 137Cs (Banfield et al., 2017b). However, for 15N, leaf feeding of pre-crops did not 

exclusively label the biopores (Fig. 4). When a root decays and forms a biopore, the biopore 

 

Fig. 4 Recovery of the pre-crop applied 15N in wheat (main crop; green bars, left), or in soil (black stacked 
bars: biopores, white stacked bars: bulk soil) – depending on pre-crop species and application 
mode. Given are means ± standard errors. Letters indicate significant differences between 
application modes and pre-crop species (Two-way ANOVA, Tukey’s HSD test on α 0.05). 
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wall is not necessarily strongly enriched in N. The dispersed N distribution is likely due to 

the high mobility of N-exudates, transport in fungal highways, and exudation from fine roots 

outside the main biopore (Frey et al., 2000; Mäder et al., 2000). Consequently, nutrients 

with low mobility such as K (by its tracer 137Cs+) or P (by 33P-PO4
3-) behave differently 

(Cremers et al., 1988; Hagedorn and Bundt, 2002). Regarding N, the pre-crop effects can 

be assessed, but not the effect of biopores.  

2.7.4.2 The relevance of pre-crop N and its speciation for nutrient uptake 

Crops exploit the subsoils for water and nutrients: e.g. wheat may cover 25% of its N 

demand from the subsoil (Kuhlmann et al., 1989). The nutrient acquisition from the subsoils 

is expected to increase when topsoils become nutrient-depleted or dry (Dresemann et al., 

2018; Gaiser et al., 2012). Nutrients acquired by the pre-crop are partly re-allocated to the 

subsoil, where they can be mobilised by subsequent crops (Kautz et al., 2013). N cycling 

in crop rotations is very relevant for plant nutrition: Pre-crop-N was spatially accessible and 

chemically available as 3–12% of pre-crop-15N was recovered in the subsequently grown 

wheat (Fig. 4) – independent of the pre-crop species or its N quality (root detritus, 

exudates). Pre-crop N may either reduce necessary fertiliser applications or can be 

considered a slow-release add-on to conventional fertilisation because the polymeric 

structure needs hydrolysis first (Evans et al., 2001). 

Neither did the above/belowground partitioning of 15N depend on the application 

mode (Fig. 1), nor did the partitioning between biopores and bulk soil depend on it (Fig. 4). 

Consequently, the 15N was similarly spatially distributed in bulk soil and biopores. If tracer-

N was spatially similarly distributed but the recovery in wheat was up to five times lower 

after leaf feeding (Fig. 4), then there must be a (physico-)chemical reason. The speciation 

of SON may be the decisive factor for the lower mobilisation after leaf feeding. After 

fertiliser application, the N may have been much more available. It may be speculated that 

the largest part of 15N released in the leaf feeding treatment was organic N, while in the 

fertiliser treatment possibly a large part was in the form of mineral N (Filleur et al., 2005) – 

or in a fast-cycling microbial pool. This theory would agree with Evans et al. (2001) who 

found that wheat-N is more likely obtained from soil N reserves than from the previous 

year’s residues.  

2.7.4.3 Accessibility of pre-crop N 

It is plausible that roots grow towards and within biopores because of I) environmental 

conditions and II) active regulation. Regarding environmental conditions, dry and nutrient-

depleted topsoils and higher bulk density (Table 1) in the deeper soil make rooting in 

biopores physically more probable and biochemically more attractive (Hirth et al., 2005). 
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Regarding active regulation, roots sense organic N decomposition by glutamate sensors 

and, therefore, grow directly towards biopores (Edwards and Lofty, 1980; Filleur et al., 

2005). In the subsoil, OM decomposition occurs predominantly in biopores as they strongly 

accumulate OM and microbial biomass relative to the bulk soil (Banfield et al., 2017a; 

Hoang et al., 2016; Kuzyakov and Blagodatskaya, 2015). Plants have developed further 

strategies to acquire nutrients from the biopore walls. These strategies include spiralling 

root growth and root hairs reaching out to the biopore walls so that up to 85% of roots in 

large biopores grew in contact with their walls (Athmann et al., 2013). Apparently, roots are 

attracted to the concentrated nutrients in biopores such as C and N (Fig. 2). 

 Phacelia increased the dry matter of wheat shoots (Fig. 3) but did not significantly 

increase its TN contents (Fig. 3). Thus, the phacelia crop rotation influenced wheat 

biomass, but not shoot-N. This biomass increase was likely because of biopores, as wheat 

was preferentially rooting in biopores. However, the TN content of wheat was positively 

correlated with biopore re-use. Thus, lower biopore re-use reduced TN contents in shoots. 

Consequently, biopores of N nutrition — however, this was not based on the last-year pre-

crop 15N but on much older N stored in biopores or on different nutrients (like K or P; 

(Kuhlmann and Baumgärtel, 1991). Biopores after this experiment had 70% higher N 

contents than bulk soil, but the C/N ratio was higher (~8 vs ~5 in bulk soil; Fig. 2, top) — 

suggesting a small but relatively more concentrated N pool of a lower availability — 

apparently moderately available for wheat. 

 Conclusions 

Nitrogen supplied to pre-crops during cover cropping is stored below ground at least for 

one year and is mobilizable by wheat (interannual N transfer). Despite application of the 

recommended N fertilisation, wheat mobilised considerable quantities of the pre-crop-15N 

(>3–12%) – with the most substantial part of 15N remaining for future crops (~87-97%). 

Wheat took up more N from the bulk soil than from the last year residues but the stored N 

resources in the subsoil support plant nutrition at least for the medium-term. Even though 

biopores were not exclusively 15N-labelled, wheat was preferentially rooting in biopores. 

This rooting increased shoot biomass – but not shoot TN.  Biopore benefits are 

consequently nutrient-specific. In conclusion, biopores obviously present a beneficial 

microenvironment to roots: Active wheat roots colonised up to 75% of biopores, but 

stochastically only 20-25% was expected. After one season of cover cropping, the pre-crop 

species (fibrous vs tap-rooted) provided equal opportunities for N mobilisation 
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Table S1 TN and TOC contents (means of three replicates ± standard errors, %) of the 

shoots of the pre-crops chicory and phacelia depending on the mode of application (soil 

application vs leaf feeding, i.e. biopore vs fertiliser-derived tracer, as well as untreated 

background samples). Letters indicate significant differences on α 0.05 (Two-way ANOVA). 

 

 TN [%] TOC [%] 

Pre-crop phase    

C. intybus fertiliser 1.10 ± 0.03 A 32.56 ± 1.22 a 

C. intybus leaf feeding 1.07 ± 0.02 A 35.06 ± 0.48 b 

   

P. tanacetifolia fertiliser 0.85 ± 0.09 B 35.19 ± 0.47 c 

P. tanacetifolia leaf feeding 0.79 ± 0.04 B 36.28 ± 0.23 d 

   

C. intybus background 0.83 29.65 

P. tanacetifolia background 0.91 36.14 
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