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Disclaimer 
The main part of this thesis consists of two papers which are published in the “Journal of Asian Earth 

Sciences” (2013) and in “Marine and Petroleum Geology” (2014). To increase the internal logic order of 

the thesis, the two publications were not placed according to their date of publication within the thesis. 

Every article is based on research I did in the previous time. As part of a research group I profited on a 

vivid exchange of knowledge and ideas which is hard to quantify. But since my colleagues were working 

in other areas of the South China Sea I can state that I developed my own ideas and the publications 

represent my own original work. 

In the first (2013) paper (Chapter 4) the chapter “Geological setting” was done in close collaboration with 

my co-author Dr. Dieter Franke. The rest of the text and the figures represent completely my own work. 

Dr. Florian Meresse and Prof. Dr. Manuel Pubellier helped by proof-reading the manuscript and Prof. Dr. 

Mario Aurelio provided additional data on the onshore geology of southern Palawan. Jean-Luc Auxietre 

was the coordinator of the project. 

In numbers: 85% of this publication represents completely my own work, 10% were contributed by my co-

author Dr. Dieter Franke and the other co-authors together contributed 5% to the text. 

The second (2014) paper (Chapter 3) represents almost completely my own work. During the proof-reading 

helpful comments on the structure of the article were given by Dr. Dieter Franke. Again, all figures were 

created by myself.  

In numbers: 95% of this publication represents my own work and Dieter Franke contributed 5% to the text. 

Since it was published at the very end of the project, I got no help or feedback from my French colleagues. 

Within the research group a second PhD-thesis was conducted by Dimitri Savva. This thesis was focusing 

on the onshore areas in south China and onshore Palawan Island. We exchanged ideas to seamlessly connect 

our research work onshore and offshore. 
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Preface 
Since the main part of this thesis consists of two published articles, the two corresponding chapters are 

almost exact copies of these articles. To increase the readability of the whole text the numbering of the 

figures was changed to fit the main thesis. Also the list of references was removed from each article. The 

reference list at the end of the thesis comprises the references of the articles as well as the rest of the text. 

Whenever possibly I used the colored figures (published in the online version of the articles) instead of the 

black-and-white figures from the printed version of the articles. Due to a software problem some figures 

from the first paper (Chapter 4) were lost and had to be re-created. The layout of these figures may differ 

slightly from the originally published, but the content and message of them is the same. 

The chapter about the tectonic evolution of the South China Sea was also used, in a slightly modified 

version, for the final report of the GRI project. Similar versions of this text are also used within publications 

Dr. Dieter Franke or I (co-)authored, e.g. (Barckhausen et al., 2014; Franke et al., 2014). The final report 

was distributed among the participants of the GRI-project but not published. 
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Main questions to be addressed in this thesis: 
In 2010 TOTAL initiated a research group to further investigate the hydrocarbon potential of the deepwater 

parts of the South China Sea. This region stands exemplarily for passive non-volcanic continental shelfs, 

which were actively deformed. At the beginning of this research project a series of questions rose. The most 

important questions to be tackled are given in the following. The chapter of this thesis in which the way to 

the answers is explained is given in brackets. 

 

- How did the southeastern margin of the South China Sea evolve over time? The special 

focus is laid on the post-breakup development and the collision of that area with a thrusted 

wedge. (Chapter 4)  

- Is it possible to find a way of constraining the post-rift development? When did the margin 

collide and how was this affecting the continental crust? (Chapter 3) 

- Is it possible to find the continent-ocean boundary of the proto-South China Sea?  

- How are the carbonates offshore western Palawan distributed? What are the constraints of 

their development and is it possible to link the development with regional tectonics? 

(Chapter 3) 

- Is it possible to correlate the various published and interpreted unconfomities over the 

Dangerous Grounds? (Chapter 3) 
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Schematic flowchart of the development of this thesis 
The following image was developed to illustrate the way I went from the raw data to the scientific 

discoveries described in the different chapters. Also it illustrates how the different chapters and conducted 

tasks depend on each other and are following each other. 
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Abstract 
The South China Sea is a quite narrow Cenozoic ocean basin. It is located between China in the north, 

Vietnam in the west, Malaysia and Brunei in the southeast and the Philippines in the north and northeast. 

Rifting in the South China Sea initiated in the late Cretaceous and the extension, including the spreading, 

prevailed until the Miocene. The post-rift development of the southwestern part of the South China Sea, 

the Dangerous Grounds, especially their collision with Palawan and Borneo can be deduced from the 

investigation of Oligocene to Pliocene limestone formations. Of special interest in that area is the 

Oligocene-Miocene “Nido” limestone. This limestone forms a widespread carbonate platform offshore W-

Palawan, Borneo and in the easternmost parts of the Dangerous Grounds. From seismic images it is clearly 

visible that this carbonate platform seals most of the extensional tectonics in the Dangerous Grounds. 

Towards the southeast this carbonate platform dips downward and is overthrusted by the thrust wedges of 

Borneo and southern Palawan. Offshore northern Palawan the Nido limestone has not been overthrusted 

and it dips gently towards the west. The division line between these two occurrences can be drawn across 

Ulugan Bay in the middle of Palawan Island. By analyzing the ages of this carbonates using biostratigraphic 

reports by Robertson Research the age for the top of the carbonate platform was assigned to 19 Ma, even 

though some of the reefs, growing on top of the platform continued to develop in some places up to recent 

times. 

A second limestone developed on top of the thrusted wedge offshore SW-Palawan. This limestone 

formation was named “Tabon Limestone”. Since it is only slightly affected by the thrust tectonics, it is used 

to constrain the final phase of collision between the Dangerous Grounds and Palawan. The base and top of 

this limestone were investigated similar to the Nido and revealed a strong time- and space- transgressive 

nature. The age for the base of the carbonates ranges between 16 and 7 Ma, depending on the sampling 

point. There is a clearly recognizable younging trend towards the west. This led to the idea that the 

development of the limestone was strongly affected by the development of the wedge and that it is possible 

to use this limestone to date that development. While seafloor spreading is assumed to have ceased at 

20.5 Ma (Barckhausen et al., 2014; Barckhausen and Roeser, 2004) the convergence in the Palawan area 

continued until around 5-7 Ma. A last uplifting event in the Pleistocene brought parts of southern Palawan 

above the sea level and exposed the Tabon limestone. Carbonate precipitates found on a marine bivalve in 

a cave near Quezon in the southern part of Palawan Island give indications to a working spleothem at 

1.2 Ma (Rehm, 2002). 

The following thesis presents the results of the investigation in the Dangerous Grounds and Palawan area, 

including the Reed Bank Block, as they were published in two papers: “Time constraints on the evolution 

of southern Palawan Island, Philippines from onshore and offshore correlation of Miocene limestones”, 

Journal of Asian Earth Sciences 2013 and “Oligocene-Miocene carbonates and their role for constraining 

the rifting and collision history of the Dangerous Grounds, South China Sea” Marine and Petroleum 

Geology 2014. 
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Introduction 
The South China Sea is a rather small, Cenozoic oceanic basin, located between China in the north, 

Vietnam in the west, the Philippines in the east (and south) and Brunei and Malaysia in the south. 

It covers approximately 3,685,000 km² and offers wide shelf areas with rifted continental crust 

underneath (in the north and south), an oceanic part with extinct spreading centers (in the middle) 

and an active subduction zone in the east. 

 
Figure 1: Satellite image of the South China Sea. The approximate outline of the investigation area is marked by a red 
rectangle. The thin yellow dotted line represents the approximate outline of the oceanic part of the South China Sea while 
the dashed white line marks the approximate position of the old mid oceanic ridge. 

Figure 1 shows a satellite image of the whole South China Sea. The approximate working area is 

marked by a red rectangle. It comprises the Reed Bank Block, the Dangerous Grounds, the Palawan-
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Borneo trough and Palawan Island. For locations see figure 3. Also the position of the spreading 

ridge and the outline of the oceanic basin are indicated. 

The geological map (highlighted part matches the red rectangle in figure. 1) of the South China Sea 

(figure. 2, (Pubellier, 2016)) shows highly stretched continental crust, covered by Miocene to 

Quaternary sediments in the area of the Dangerous Grounds. Also the occurrence of Miocene to 

recent reefs is indicated. The position and age of these reefs are one of my contributions to this map. 

It shows the investigation area with the Oceanic Basin at the top, the Dangerous Grounds in the 

center and the island of Palawan in the right part of the map. Areas outside the main area of interest 

are shaded. The full map is given in the appendix. 

 
Figure 2: Detail of the Structural Map of the South China Sea redrawn after Pubellier et al. (2016). Areas outside the 
main area of interest are shaded. The whole map showing the island of Palawan (coastline of the main island highlighted) 
in the right and the Dangerous Grounds in the central part. The oceanic basin of the South China Sea is visible in the 
upper part of the map and the Island of Borneo in the lower central part. 

Because of its relative young age, the South China Sea is well suited for investigations on the 

opening history and the mechanism of rifting and drift. Especially in the Dangerous Grounds in the 

southwestern part of the South China Sea, the structure of the rifted and tilted blocks (footwall of 

half-graben) is still visible in the bathymetry (Figure 1). During the last 30 years BGR has been 

conducting research in that area. This research comprised the acquisition of seismic data (Figure 
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14) during several cruises (listed in appendix), dredged samples (Kudrass et al., 1986) and the 

compilation of well data, provided by the Philippine department of Energy (DoE). 

The Groupe Recherché Industrie (GRI) 
To gain a better understanding for the opening history of the South China Sea an international 

research group was initiated by TOTAL, the Bundesanstalt für Geowissenschaften und Rohstoffe 

(BGR) and the Ecole Normale Supérieur (ENS). This group connected academic researchers from 

France, Germany and the Philippines with the oil and gas industry and benefitted highly from the 

mutually access of data and the good exchange of knowledge between the group members. 

Within this group different researchers focused on several areas within the South China Sea. One 

PhD thesis (by Dimitri Savva) focused mainly on the northern margin (mainland China), one post-

doc (Dr. Florian Meresse) worked on the southwestern margin and this work is focused on the 

Dangerous Grounds and Palawan Island in the southeastern part of the South China Sea.  

 
Figure 3: Overview map of the investigation area. The area of interest comprises the Reed Bank, Spratley islands, the 
Dangerous Grounds and the Palawan – Borneo trough. In the offshore areas the 1000m depth contours are shown. 
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The research group was coordinated by Prof. Dr. Manuel Pubellier (ENS) and Dr. Dieter Franke 

(BGR). Responsible for data access and funding was at first Benoit Mouly and in the second half 

of the project Jean-Luc Auxietre (both TOTAL). The field work onshore Palawan Island was 

supported by Dr. Mario Aurelio and two students from the National Institute for Geologic Sciences 

(NIGS) of the University of the Philippines (UP).  

The outcomes of the GRI were presented at various international conferences and workshops and 

are also published in peer-reviewed journals e.g. a special volume of Marine and Petroleum 

Geology (JMPG, 2014). Even though every member focused on different aspects, there was a vivid 

exchange of ideas between the GRI members and therefore it was customary to put every member 

of the GRI on the list of co-authors. 
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Name definition 
Some confusion exists on the names of special regions or features within the study area. Depending 

on the origin of a researcher different names were assigned to the same region or feature. Especially 

names in publications by Chinese authors differ from the names given by other researchers. 

Here a short overview of different names is presented. In this thesis the most common names 

(mostly used in publications) are used (given in the first column). 

 

Name used in this text: a.k.a: 

South China Sea West Philippine Sea (DoE website) 

Reed Bank Recto Bank (DoE website)  

Liyue Bank e.g. (Wu, 1994)  

Palawan-Borneo Trough Nansha trough e.g. (Ding and Li, 2011; Wu, 1994) 

Spratley Islands Nansha Islands e.g. (Liu et al., 2004) 

Dangerous Grounds Nansha Region e.g. (Ding and Li, 2011) 
Table 1: Overview of regional names used in this thesis and in international publications. DoE: Department of energy 
(www.doe.gov.ph). 

Another general naming problem exists in the term “unconformity”. At least two different 

definitions of this term are in use. First, the sedimentologic / stratigraphic definition, meaning an 

erosional (non-depositional) event resulting in a hiatus in the stratigraphic record. This can be a 

conformal hiatus or an angular unconformity.  

The second definition is from a geophysical point of view. Changes in the acoustic impedance of a 

subsurface material (mostly rocks) cause the (partly) reflection of a sound wave traveling through 

it. So this is an acoustic unconformity. It can be related to a change in the lithology, compaction, 

diagenesis or even just a change in the pore fluid (Nanda, 2016). Confusingly a seismic 

unconformity can also represent a stratigraphic unconformity.  

Unless stated otherwise, the term “unconformity” is mainly used for seismic unconformities in this 

thesis. 
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Conceptual framework 
Continental thinning and stretching leads to the formation of sets of normal faults and the 

development of graben- or half-graben-structures with rotated blocks, bounded by these normal 

faults. The main episodes of the rifting process are indicated by unconformities.  

 
Figure 4: Seismic time section showing a halfgraben in the Dangerous Grounds. At least three rifting episodes (divided 
by the green and light blue horizons) are visible within the halfgraben. The main tectonic activity is sealed by the Breakup 
unconformity (orange). 

The onset of rifting is associated with a widespread uplift of the area leading to a prominent 

stratigraphic unconformity. In the text this unconformity is named Rift Onset Unconformity or Base 

Rift Unconformity. In the interpretation of seismic sections it is marked by a purple horizon. 

The graben- or halfgraben-structures on top of the rotated fault blocks provide the accommodation 

space for sediments provided by the horsts, the tips of rotated fault blocks or other nearby sediment 

sources. If deposited during the active development of the bounding faults, these sediments show a 

significant triangular shape (Figure 4). From the time of their accumulation these sediments are 

addressed as synrift sediments. Different stages of rift development lead to varying sedimentary 

facies allowing distinguishing different rifting episodes in the seismic image (chapter 1). 

The end of the rifting and the opening of the oceanic basin is mostly marked by another prominent 

stratigraphic unconformity, addressed as “Breakup Unconformity” (BU). This widespread 

unconformity generally seals the main tectonic activity and it is marked Orange in seismic sections 

used within our project and given in this text. In the investigation area this unconformity is 

diachronous and in places coeval with other significant seismic unconformities (chapter 2). On the 

Reed Bank Block the Breakup unconformity is not developed. This block remained submerged with 

continuous carbonate sedimentation (chapter 3). 
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Another prominent seismic unconformity is located within the Middle Miocene. In this work it is 

called “Red Unconformity” and it is widespread in the Dangerous Grounds, but not on the Reed 

Bank Block. This unconformity is one of the main correlative horizons for the dating of formations 

in the Dangerous Grounds (chapter 3).  

The second important correlative horizon is marked by a seismic unconformity representing the top 

of a widespread carbonate platform (Nido carbonates). This unconformity could be precisely dated 

by some well data, but is only developed in the easternmost parts of the Dangerous Grounds and 

within the Palawan Borneo trough (chapter 4).  

Next to the rifted continental crust and the Reed Bank Block another important structural element 

is located in the east. Here the rifted continental crust is overthrusted and the associated wedge 

(Figure 5) is forming the southern part of Palawan Island and the western part of Borneo. 

 
Figure 5: Detail of a seismic line showin the thrusted wedge offshore SW-Palawan. The interpretation of the tops of the 
two correlative carbonate formations are shown. Top of Tabon Limestone in Purple and top of Nido Limestone in Blue. 
The thrusted wedge is located between these formations. 

The wedge is also causing the continental crust to bend down, leading to the formation of the deep 

Palawan-Borneo trough. Only on top of this wedge another prominent seismic unconformity is 

developed. It is associated with the so called Tabon Limestone (Purple in Figure 5). The Tabon 

Limestone was also used for dating the wedge development.
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Chapter 1: Tectonic evolution of the South China Sea 

Rifting and the origin of extension in the South China Sea 
While there´s no doubt on the existence of a wide rifted continental crust at the northern and 

southern rim of the South China Sea e. g. (Franke et al., 2011; Lin et al., 2018; Savva et al., 2013), 

several competing models exist aiming to explain the rifting and the subsequent formation of the 

oceanic basin.  

The extrusion model 

One suggestion it that the extension and the subsequent seafloor spreading resulted from the 

extrusion of Indochina relatively to South China, following India´s collision with Asia (Briais et 

al., 1993; Replumaz and Tapponier, 2003).  

 
Figure 6: Geodynamic setting in SE-Asia, showing age boundaries and offsets on large strike-slip faults. Minimum offsets 
(in km) and oldest ages of offsets (in Ma) are given. Bold arrows on strike-slip faults represent sense of largest Tertiary 
movement, small arrows show Quaternary movement. The approximate location of the working area is marked by a red 
rectangle. Redrawn after Briais et al. (1989). 
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Although there is no doubt about the existence of large strike-slip faults, affecting the western South 

China Sea region (Red River Fault Zone, East Vietnam Boundary Fault (Figure 6)), the timing, 

sense of motion, and the amount of offset on these structures is still not univocal. 

 
Figure 7: Reconstruction of the opening of the South China Sea. Redrawn after Briais et al.( 1993) . 



Chapter 1: Tectonic evolution of the South China Sea 
 
 
 

11 
 

The rift phases that subsequently resulted in the opening of the South China Sea started in the Late 

Cretaceous to Early Paleocene with an initial uplift of the rift shoulders followed by widespread 

erosion and peneplanation (Cullen et al., 2010; Franke, 2013; Pubellier et al., 2003; Schlüter et al., 

1996; Shipboard Scientific Party, 2000; Taylor and Hayes, 1980, 1983). Assuming the extension 

started in the latest Cretaceous (certainly in the Paleocene) there is a timing problem as mainland 

India collided with Asia not before the Eocene (Ali and Aitchison, 2008).  

Most scientific paper today argue that the collision started 50-55 million years ago. Some workers 

proposed that the collision started earlier from 65-70 Ma. Ali and Aitchison (2008) discussed in 

detail the collision and came to the conclusion that India collided with an intra-oceanic arc at about 

55 Ma, with a later impact into Asia starting around 35 Ma.  

An Early Eocene collision of India and Asia would be hardly in accordance with the initial extension 

affecting the South China Sea region (Hall et al., 2008; Morley, 2002). Assuming a Late Eocene 

collision age excludes any relationship between the India-Asia collision and the initial rifting in the 

South China Sea. 

The subduction model 

There is convincing evidence in the mountain ranges in Borneo, indicating that they resulted from 

subduction/collision (Hutchison, 2005b), a process that is excluded by the extrusion theory. This 

leads to the popular model of the opening being related to the slab-pull of a proto-South China Sea 

oceanic crust subducting underneath Borneo between the early Paleogene and the Early Miocene 

(Hall, 2002; Hall and Breitfeld, 2017; Hinz and Schlüter, 1985; Holloway, 1982; Rangin et al., 

1990). The reconstruction of the tectonic development of Asia by Hall (2002) is shown on Figure 

8. The first suggestion of a narrow (300 km wide) proto-South China Sea, subducting underneath 

NW Borneo along a SW migrating collision, was given by Rangin et al. (1990). Cullen (2010) 

interprets minimal Oligocene-Miocene subduction and suggests rifting in the South China Sea was 

accommodated over a wide zone by multiple mechanisms. Minimal subduction is preferred here as 

the better explains the narrow volcanic arc, if the Cagayan ridge in the Sulu Sea is considered as 

being the arc of the proto-SCS subduction. If so, the force of the slab-pull might not have been 

sufficient to initiate rifting in the SCS. Moreover, the formation of the subduction zone of the proto-

SCS along its southern margin was from the SW to the NE. If the opening of the SCS was caused 

only by subduction it must have started in the SW-subbasin and then jumped into the east subbasin, 

contradicting the research of Barckhausen et al. (2014; 2004).  
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Figure 8: Reconstruction of the tectonic history of Asia by Hall (2002). Examples are given for 5 My intervals between 
35 Ma and 10 Ma. The existence of a Proto-South China Sea is assumed. 
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The multiple mechanisms model 

The multiple mechanisms idea leaves room for other models. One is back-arc-spreading, triggered 

either from the subduction of the Indo-Australian plate beneath Sumatra or of the Pacific plate 

beneath Eurasia. However, the distance to the subduction of the Indo-Australian plate is quite large 

and a well-defined back-arc is located much to the south of the South China Sea. 

This leaves basically two alternatives to the slab-pull and extrusion model: Paleo-pacific plate 

subduction and an orogenic collapse. Also a combination of several processes and hybrid models 

seems possible. 

 
Figure 9: Schematic drawing of the slab-rollback underneath eastern China indicating the movement of the magmatic 
active zone towards the subduction zone. The transect is located in the northeastern SCS area near Taiwan. Redrawn 
after Zhou and Li (2000). 

For the Mesozoic subduction of the paleo-Pacific plate underneath SE China it was suggested that 

during the period from 180 to 80 Ma, the dip angle of the slab increased from a very low angle to a 

median angle (Zhou and Li, 2000). Consequently, magmatic activity of the SE China continental 

margin migrated to the southeast, from 800-1000 km inland to only 100-200 km inland.  

Such a slab rollback around greater SE Asia may have also caused the early episode of extension. 

In any case it can be expected that various degrees of mantle wedge melting and basaltic 

underplating during the subduction provided the heat necessary to weaken the lower and middle 

crust, allowing the generation of a wide rift (Franke et al., 2014). 
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Figure 10: Sketches illustrating the early evolution of the South China Sea rift (not to scale). (A) In the rifting stage brittle 
deformation in the upper crust results in basin formation while ductile extension in the middle crust is compensated by 
doming in the Moho. Lacustrine / deltaic sedimentation prevails. (B) Extension localizes in the rift basins. The faults are 
becoming shallower and detachment faulting initiates. Continuing extension in the middle crust is compensated by further 
Moho uplifts beneath the rift basins. Lacustrine / deltaic sedimentation continues. (C) Crustal thinning approaches the 
point where the entire crust becomes brittle and crustal-scale faults at the rim of crustal blocks cut through the entire 
crust. Sedimentation is shallow marine. (D) Mantle exhumation along a detachment fault that develops from the previous 
crustal-scale fault at the rim of crustal blocks. When the asthenospheric mantle reaches the surface accretion of oceanic 
crust and post-rift volcanism takes place. (Franke et al., 2014) 

The breakup 
A wide variety of ages has been proposed for the breakup unconformity, even at the well explored 

South China margin. Feng et al. (1992) proposed a Late Eocene/Early Oligocene age (~ 35 Ma) 

while Edwards (1992) suggested a Late Oligocene age (~ 25 Ma) and Lüdmann and Wong (1999) 

considered a Middle Oligocene age (~ 32 Ma) for the breakup unconformity. From nanofossil 

determinations conducted at Petroleum industry wells in the Pearl River Mouth basin the end of 

rifting can be limited to earlier than about 28 Ma (Clift et al., 2001). The identification of this 

unconformity is complicated by the fact that during the proposed breakup time there was a deep 

marine trough in that region (Clift et al., 2002b). ODP drilling site 1148 revealed water depths of 

more than 500 m at the time of the breakup (Shipboard Scientific Party, 2000). Drillings on the 

Reed Bank block also identified deepwater, clastic sedimentary rocks of pre-Middle Eocene age 

(Taylor and Hayes, 1980). Therefore a continuously developed breakup unconformity may not be 

expected.  

Ru et al. (1994) and Cullen et al. (2010) suggested from the fact that the breakup is diachronous 

that the corresponding unconformity has to be diachronous too. They suggest that the Breakup 

unconformity gets younger by 10 Ma from East to West. This shows the necessity to relate the age 

of this unconformity to specific geographic regions. 
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Perhaps the best evidence for a breakup unconformity was found in the northeastern South China 

Sea, close to Taiwan where a missing section ranges at least from 37 to 30 Ma as judged by the 

ages of its youngest underlying and oldest overlying sediments (Lin et al., 2003). Oligocene uplift 

was followed by rapid post-breakup subsidence (about 30 – 18 Ma).  

For the Pearl River Mouth Basin the hiatus around the breakup unconformity was identified based 

on fossil records in wells (Zhou et al., 1995) this provides an approximate time range for the hiatus 

from 33 – 32 Ma in the eastern and from 28 – 27 Ma in the western Pearl River Mouth basin. ODP 

site 1148 in contrast revealed the most significant unconformity at 23.8 Ma, evidenced by sharp 

changes in the geochemistry and a total of 2.5 to 3 Ma hiatus adjacently before 23.8 Ma (Shipboard 

Scientific Party, 2000). This hiatus was explained by a ridge jump towards the south. This timing 

fits well with the proposed breakup related hiatus from 23 – 22 Ma for the Qiongdongnan basis 

(Zhou et al., 1995). 

In the Vietnamese Cuu Long basin rifting continued until the end Oligocene time when a distinct 

unconformity at the Oligocene/Miocene boundary marks the onset of post rift sagging (Fyhn et al., 

2009). This unconformity was interpreted as breakup-related and traced seaward into the Nam Con 

Son basin. There it indicates the onset of a second rift phase in the basin. This implies that along 

the western margin of the South China Sea there is a link with the active period of major strike-slip 

movement along the Red River fault, extending from the Himalayan to offshore Vietnam from 25 

to 17 Ma (Morley, 2002).  

In the northeastern Dangerous Grounds, the Reed Bank and the NW Palawan shelf the rift to drift 

transition is directly overlain by a widespread carbonate platform (Nido Limestone). Ages for the 

breakup are mainly derived from these carbonates, which were drilled by several commercial wells. 

The top of these carbonates is at Lower Miocene level (~ 22 – ~ 17 Ma (Schlüter et al., 1996), 22 – 

18 Ma (Steuer et al., 2013), Table 4). Offshore NW Palawan the platform carbonate formation was 

established in the Early Oligocene (Grötsch and Mercadier, 1999) respectively in the upper Early 

to lower Late Oligocene ((Steuer et al., 2013), Table 4) and the formation of the limestones ceased 

in the Early Miocene (~ 20 Ma ((Steuer et al., 2013), Table 4)). Several dredge samples of Late 

Oligocene to Early Miocene platform carbonates, collected south and southwest of Reed Bank also 

confirm this interpretation (Kudrass et al., 1986). This indicated a mid-Oligocene age for the 

breakup in the Reed Bank and NW Palawan area, similar to the conjugate margin offshore South 

China (Pearl River Mouth basin). 

Due to a large number of unconformities in the southern South China Sea some confusion exists 

about a potential breakup unconformity there. (Hutchison, 2004) focused on the southern 

Dangerous Grounds where he refers to the most prominent unconformity as Mid Miocene 

Unconformity (MMU). The overlying basal draping strata were dated 16 Ma, however, he pointed 

out that the unconformity represents a hiatus of about 3 – 5 Ma. Offshore NW Borneo 
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Clift et al. (2008) suggested that this unconformity is an equivalent of the Deep Regional 

Unconformity (~ 16 Ma) that is widespread offshore Sabah. However Cullen (2010) proposed that 

the Deep Regional Unconformity (DRU) is associated with tilting and uplift of the Sabah margin 

and thus is a local feature. He suggested it as being inappropriate to consider correlating the MMU 

to the DRU. Ingram et al. (2004) suggested an age of 21 Ma for the top of the downgoing continental 

plate offshore NW Borneo, which means that a potential breakup unconformity would be older than 

this, while Cullen (2010) proposed an age of 18 – 15.5 Ma for this unconformity, which he refers 

to as South China Sea Unconformity (SCSU). Hall and Morley (2004) suggested a 17 – 16 Ma old 

syn-rift to drift unconformity at the same stratigraphic position. Drilling results in the southern 

Dangerous Grounds confirmed the proposed age of 16 Ma for the erosion at the MMU that 

preserved much of the sedimentary section close to the Luconia platform margin, but has eroded 

much of the 25 – 16 Ma section further from the margin (Thies et al., 2005). 

Seafloor spreading 
In the Early Oligocene crustal extension and thinning reached a point where oceanic spreading 

initiated and the formation of the deep-sea basin of the Central South China Sea began. Shipboard 

micropaleontologic results of IODP Expedition 349 (South China Sea Tectonics) and Ar/Ar dating 

of the basement basalt near the fossil spreading center indicate that seafloor spreading took place 

between ~33 Ma to ~16 Ma (Ding et al., 2018). Since very few wells penetrated the igneous crust 

in this basin the identification of seafloor spreading anomalies in magnetic data provides other 

important constraint on the age of the seafloor with the potential of precisely dating the major 

tectonic events during the opening of the basin. The seafloor spreading history of the South China 

Sea has been interpreted in different ways in the past and the debate over the correct timing of the 

major tectonic events is still on. Conditions for magnetic measurements are difficult in the South 

China Sea due to its location in vicinity of the so-called equatorial electrojet, an ionospheric current 

system that causes severe time varying disturbances of the magnetic field. In addition to that the 

oceanic basin is relatively small, seafloor spreading rates were slow and the spreading was not 

continuous but interrupted by at least one ridge jump and associated changes in the spreading 

direction. Additionally the oceanic crust shows many seamounts producing local magnetic 

anomalies which disturb the seafloor spreading pattern (Barckhausen et al., 2014). Most authors 

agree on a decreasing age of the oceanic crust towards the southwest. In the northeastern part of the 

South China Sea, Hsu et al. (2004) interpreted Late Eocene / Early Oligocene oceanic crust (37.8 – 

30.1 Ma) but the nature of the crust is ambiguous. Structural data and seismic velocities from the 

University of Texas (unpublished) indicate attenuated continental crust at the position where 

magnetic spreading anomalies have been interpreted. 

The timing of seafloor spreading in the central South China Sea of 32 – 15.5 Ma (Briais et al., 1993; 

Taylor and Hayes, 1983) has been revised to 31 – 20 Ma by Barckhausen et al. (2014).  



Chapter 1: Tectonic evolution of the South China Sea 
 
 
 

17 
 

 
Figure 11: Bathymetric map of the SCS with magnetic profiles shown as wiggles along shiptracks and magnetic anomaly 
interpretation (yellow). Heavy lines are abandoned spreading ridges, numbers indicate magnetic crons. Figure from 
Barckhausen et al. 2014 

The main argument for older ages are resulting spreading rates which are continuously at levels 

between 28 and 40 mm / yr (half spreading rate) with the higher spreading rates at the younger ages. 

In contrast to that the model of Briais et al. (1993) and the similar but extended model of 

Yeh et al. (2010) assume a decline in spreading rates down to very low rates of only 15 mm / yr 

over most of the spreading history of the South China Sea with a sharp increase shortly before the 

end of seafloor spreading which is quite unusual (Barckhausen et al., 2014). 
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The main argument for younger seafloor spreading ages are findings from the Phu Khan basin close 

to Vietnam at the western margin of the South China Sea. Here the rifting did not cease before 12 

– 10 Ma, a variance with models derived from magnetic anomalies recognized over the oceanic 

portion of the South China Sea (Savva et al., 2013). Offshore Vietnam three stages of extension are 

clearly identifiable with ages well constrained by wells. The oldest rift sequence is identified from 

basement to Oligocene horizons (32 Ma). A second one from Oligocene to Middle Miocene 

(15.5 Ma) and a third one from Middle Miocene to Late Miocene (10.5 Ma). These three rift 

structures have been formed by at least two directions of extension, the first was North-South and 

the second Northwest-Southeast. The distinct Mid-Miocene (15.5 Ma) horizon is tilted, as well as 

parts of the subsequent fan shaped infilling. If the older seafloor spreading ages turn out to be 

correct, younger extension may be attributed to movements along the Red River fault, which in that 

case would have been most active from the Middle Miocene onwards. This relationship is also 

supported by the fact that Middle to Late Miocene extension is only found on the western margin. 

The spreading duration from 33 Ma to 16 Ma, as supposed by Ding et a. (2018) however is 

coincident with the collisions between Palawan and Borneo and Mindoro-Central Philippines (Clift 

et al., 2008; Cullen et al., 2010; Ding et al., 2018; Hutchison, 2004), suggesting a causal relationship 

between the cessation of spreading and collision events. 

Palawan Island 
The island of Palawan is located at the eastern margin of the South China Sea. The island itself is 

elongated and more or less orientated in NNE-SSW direction (see Figure 3, Figure 13). 

Geologically the island can be divided along the so-called Ulugan Fault Zone. The Ulugan Fault 

Zone is named after Ulugan Bay in the central part of Palawan. The fault zone runs almost in N-S 

direction thrugh the bay and across the Island, dividing it into two parts. The northern part of 

Palawan is dominated by rocks of continental affinity which were likely rifted from mainland 

China. It consists of Jurassic olistostromes containing olistoliths of Permian limestone, Permian 

and Triassic chert, sandstone and basaltic rocks in a predominantly mudstone matrix (Aurelio, 2010; 

Suzuki et al., 2000). An analysis of the detrital zircon age distributions indicates that the northern 

part of Palawan was attached to the South China margin until the breakup of the SCS (Shao et al., 

2017). The southern part is dominated by rocks of oceanic affinity. It is comprised mainly of a 

thrusted wedge of Eocene rocks that has been overrun by Ophiolites in the Late Eocene (Aurelio, 

2010; Encarnacion, 2004; Rammlmair et al., 1987; Wolfahrt et al., 1986).  
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Figure 12: Geologic map of Palawan Island. Offshore wells are indicated. Picture from (Steuer et al., 2013)(Chapter 4) 

The timing of the formation of southern Palawan was investigated using two prominent limestone 

formations the Oligocene to Early Miocene “Nido” limestone and the Middle to Late Miocene 

“Tabon” limestone. From carefully dating these limestones it was deduced that the thrusted wedge 

was not present in the southern Palawan area before 18 Ma and that the thrusting continued until 

5 - 7 Ma (Steuer et al., 2013). Ilao et al. (2018) argue for a slightly older age for the cessation of the 

wedge development. Based on their investigation of two wells and a 3D-seismic block they state 

that the convergence ended at 9 Ma. After the end of conversion and thrusting the wedge was 

subjected to gravity sliding, especially near the wedge front.  
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The Dangerous Grounds 
The island of Palawan is bound to the west to a vast area of highly attenuated and rifted continental 

crust. The half-grabens are filled with Cenozoic sediments, but the sediment input was not sufficient 

to fill them completely (Steuer et al., 2014). So the rift-structure with the tilted and elevated rift 

blocks is still visible in the bathymetry (Figure 11). The tips of the tilted blocks are in many times 

in shallow water depths, allowing the development of reefs. The occurrence of many reefs and 

shoals, rising rapidly from quite significant water depths, represented a high thread to ships sailing 

that area. Therefore, this area was called “Dangerous Grounds” and that name prevailed. 

The Dangerous Grounds stretch from the Reed Bank block in the north to the Luconia platform in 

the south. Towards the east they are bounded by Palawan Island and Borneo and they stretch 

towards the west until the Continent Ocean Boundary. 

This strongly rifted piece of continental crust dips down underneath Palawan Island and Borneo 

forming the Palawan – Borneo through.  

Summary for the Palawan area 

 
Figure 13: Schematic drawing of the opening history of the SCS. Redrawn after Savva (2013); Holloway (1982) and 
Kudrass (1990). Drawing not to scale. 
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Figure 13 was developed together with D. Savva and summarizes schematically the tectonic history 

of the Palawan area. It is assumed that the “break” in the oceanic crust of the Proto-SCS occurred 

at or very close to the old spreading center. Indications for that hypothesis are taken from 

Rammlmair et al. (1987), who indicates a relatively high temperature for the obducting ophiolites 

onshore Palawan island. The convergence led to the formation of two accretionary wedges which 

were thrusted upon the continental crust of the Dangerous Grounds and were overthrusted by the 

hot ophiolite. A second “break” in the oceanic crust of the Proto-SCS occurred close to the 

continental block that today contains the Cagayan ridge. The subduction of this part of the oceanic 

crust led to the volcanism of the Cagayan ridge (Kudrass et al., 1990). This volcanism was not 

strong enough to be related to the subduction of a large oceanic crust, so it is assumed that only 

little subduction happened beneath the Cagayan ridge. The convergence continued until the (almost) 

full closure of the Proto-SCS. Only the western sub-basin of the Sulu Sea is left, but it is completely 

underlain by continental crust (Chapter 5). 
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Chapter 2: Techniques and methods 

Seismic interpretation  
A careful and detailed interpretation of seismic lines builds the foundation of this work. The 

interpreted horizons are correlated, if possible, with well markers and assigned ages based on well 

and dredge data.  

Data base 

For this work a set of 2D-seismic lines, shot by BGR in the last 30 years, was available. This data 

base was enlarged by several surveys, shot by the petroleum industry. All in all over 30,000 km of 

seismic lines were interpreted (Figure 14). The full list of seismic surveys with the amount of lines 

in each survey is given in the appendix. 

 
Figure 14: Overview of used seismic lines in the Dangerous Ground: Seismic lines shot by BGR are colored red 
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Data loading and used software 

A set of several software products was used for the seismic interpretation. The data loading and a 

first interpretation was done using the IESX-Module of GeoFrame (Schlumberger). Seismic lines, 

provided by the petroleum industry consist of a file with the actual seismic data in SEG-Y- format 

and a navigation file with the coordinates of the lines. Usually the second file is an ascii-tabular text 

file, containing the coordinates of every shotpoint of a line. In the data loading process both files 

were combined and stored in the software. Since the navigation file contained the coordinates of 

every shotpoint (SP) and the seismic traces were processed to “common depth points” (CDP), a 

correct CDP/SP relation (usually 1/3) had to be assigned.  

After the loading in GeoFrame the seismic lines were transferred in the Kingdom Software Suite 

(IHS) for interpretation. All available well data were also loaded into the Kingdom suite. This 

software package was then used for the main part of the project. 

Seismostratigraphic concept and Interpreted horizons 

Based upon well data and older publications (Hinz and Schlüter, 1985) new seismostratigraphic 

concepts were developed for the NW-Palawan shelf, the SW-Palawan shelf and the Dangerous 

Grounds (Figure 15).  

 
Figure 15: Seismostratigraphic concepts for the southeastern part of the South China Sea 
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This division was necessary because of the sometimes different nature of interpreted unconformities 

(Chapter 3). An example is the “Red” unconformity. Offshore northwest Palawan this unconformity 

gets weaker towards the west and even turns into conformity close to the continent-ocean boundary 

(Hinz and Schlüter, 1985). The “Red” unconformity also turns into a strong diachronous event in 

the Dangerous Grounds (Steuer et al., 2014). In these concepts the main marker horizons were 

defined and dated (Steuer et al., 2013). These horizons were primarily interpreted in the seismic 

lines. Whenever necessary additional horizons were defined and interpreted. This was e.g. 

necessary to distinguish between different variations of a single horizon. The unconformity “D” by 

Hinz and Schlüter (1985) for example represents not only the top of a carbonate platform (Nido), 

but also a chance in clastic lithology or even an erosional unconformity. To indicate these changes 

three different horizons were used for the interpretation of “D”.  

To interpret the seismic unconformities mainly positive amplitudes were picked, only the 

interpreted base of the Nido carbonates, in areas where it does not represent the breakup 

unconformity, is represented by a negative amplitude.  
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Main stratigraphic intervals 

The interpreted horizons from Base rift to the Sea bottom divide the seismic section into five main 

stratigraphic intervals (Nido Formation and Nido Reefs are treated as one interval).  

     Seismic  Schematic 
drawing Amplitude Frequency Continuity Geometry Geology 

  

medium to 
High 

medium to 
high 

continuous parallel to 
sub-parallel 

Youngest unit, deposited 
after the Matinloc 
formation. Silty 
claystones to siltstones 
with interbeds of fine 
sandstone. 
On the Palawan shelf 
carbonates on top of the 
unit, reaching the sea 
bottom (Carcar limestone) 
Age: Pleistocene 

  

medium to 
High 

medium to 
high continuous parallel 

Matinloc Formation,  
composed of soft 
claystones and marls. 
Deposited in deep water. 
Offshore northern 
Palawan intercalated 
coarse grained sandstones, 
in places conglomerates. 
Age: Upper Miocene - 
Pliocene 

  

low to 
medium medium continuous parallel 

Pagasa Formation, 
composed of calcareous 
silty claystone. Becoming 
with depth marly, 
interbedded with thin, fine 
grained sandstone  
Age: Lower – Middle 
Miocene 

  

medium to 
high medium 

continous top, 
discontinous 
body 

up to 3 
parallel 
reflecions 
over chotic 
body 

Nido Formation, 
Carbonate platform  
Partly recrystallized 
limestone 
Age: Upper Oligocene – 
Lower Miocene 

  

medium to 
high medium discontinuous subparallel 

to chaotic 

Nido Formation 
Carbonate reef  
Fossiliferous, micritic 
limestone 
Age Lower Miocene – 
recent (sometimes) 

  

medium to 
high 

medium to 
high discontinuous 

subparallel, 
fan-shaped 

Syn-rift 
continental to shallow 
marine deposits 
Age: Upper Cretaceous - 
Paleogene 
Not drilled in the 
Dangerous grounds and 
the Palawan shelf 

Table 2: Overview of the main interpreted stratigraphic units, showing the characteristic seismic representation. 
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Interpreted faults 

Generally, faults are mainly divided into normal and thrust faults in the interpretation. Thrust faults 

are restricted to the thrusted wedge underneath Palawan and Boneo. 

Due to the sometimes sparse density of seismic lines, interpreted faults are hard to connect across 

several seismic lines. Nevertheless, it was possible to assign some interpreted normal faults to single 

(half-) grabens. In close collaboration with TOTAL a larger set of NE-striking normal faults was 

interpreted offshore central Palawan. (Figure 16) 

 
Figure 16: Map of the interpreted main fault system offshore SW Palawan. Coastline, wells and depth contours are shown 
for orientation. 

Strike-slip faults are not so common and could only be interpreted in a few profiles. Due to the 

above mentioned sparse density of lines, these faults could not be traced across two or more lines. 

So they are not displayed in the map. Unfortunately the Ulugan fault zone, which is thought to 

represent a large strike-slip fault and was closely investigated onshore Palawan (Figure 17), could 

not be identified in the offshore seismic data. Nevertheless the offshore direction of this fault zone 

can be deduced at least for some kilometers from the bathymetry (dotted line in Figure 16 and 

Figure 17).  
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Figure 17: Ulugan Fault Zone. Top left: Satellite image (Google Earth) of Central Palawan and Ulugan Bay with the 
inferred position of the fault (dotted line). Top right: Satellite image (Google Earth) of Ulugan Bay. Two side-branches 
of the fault could be deduced from the position of an island within the bay and the dipping of rocks on it. Bottom left: 
Almost vertical fault plane of Ulugan fault at Ulugan Bay (location see top left image). Bottom right: schematic drawing 
(not to scale) of Ulugan Fault Zone. The normal faults will most likely feature a strong strike-slip component. 
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Well correlation 

Data base 

Early 1985 Dr. Schlüter from BGR was able to take a look on several wells offshore W-Palawan at 

the Bureau of Energy Development (now Department of Energy) in Manila. He was allowed to 

make copies of 36 well reports and take them back to BGR. Wells of the producing oilfields Nido 

and Matinloc offshore NW-Palawan were not included. These copied well data (in many cases 

transcriptions) are classified and only for internal use at the BGR. Additional well data was provided 

by TOTAL for this project. So all in all well information of 132 wells and dredge sites (Kudrass et 

al., 1986) were available for this study. For wells, drilled by the petroleum industry, only 

stratigraphic logs with lithologic- and sometimes velocity information were available.  

 
Figure 18: Overview map showing the locations of wells and dredge sites used in this investigartion. 

This data set was enlarged by biostratigraphic reports, conducted by Robertson Research. These 

reports are a part of the data set collected by Schlüter in 1985 and are also classified for internal use 

only. In these reports depth intervals of planctonic foraminiferal zones are given. An example is 
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given in Figure 19. The depth information of the tops of these foraminiferal zones were taken and 

ages were assigned to them (Figure 19 right). These ages were taken from biostratigraphic 

investigations of the IODP-Site 1148 in the northern South China Sea (Qianyu Li, 2004). 

Juxtapositions of the wells with the zone tops are given in the appendix. The dredge information 

was taken from Kudrass et al. (1986). Theses samples were also dated but since the exact position 

of the sample within a stratigraphic interval could not be specified, these dates can only give a rough 

estimation of the ages. See Kudass et al. (1986). 

 

  
Figure 19: Re-drawn well-log of Paz-1 with biostratigraphic markers from Robertson Research (colored). Ages for 
zonetops are given on the right. 
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Biostratigraphic correlation 

Ages for the tops of foraminiferal zones were correlated with the lithologic and seismostratigraphic 

units from the well logs. For the correlation the investigation area was divided into three parts: The 

Northwest Palawan shelf, the Southwest Palawan shelf and the Sulu Sea. Wells within these parts 

were correlated, an example is given in Figure 20. Additionally, some selected representative wells 

were correlated between these parts to get the overall picture for the ages of the units.  

 
Figure 20: Well correlation across the SW-Palawan shelf 

All the correlation figures are given in the appendix. 
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Time-depth conversion of well data 

For some wells velocity information were available. This information was restricted to static 

velocities, given for single stratigraphic intervals. Based upon this information a layered velocity 

model, using constant velocities within a layer, was developed. In a first step this velocity model 

was created in 1D to time-convert the well data and the depth information of the tops of 

foraminiferal zones. Stratigraphic markers from the well logs were also converted and a check with 

the seismic image showed good correlation between the top of a stratigraphic unit (e.g. the top of 

the carbonate platform) and a prominent seismic reflector associated with the change in lithology.  

Time-depth conversion of interpretation grids 

In a second step a velocity model for the W-Palawan shelf was developed. The aim of this model 

was to provide depth information of the Nido carbonate platform. It involved a stepwise approach 

via several calculated grids: The interpretation grids, thickness grids in time, velocity grids and 

finally thickness grids in meter. By adding the thickness grids of the overlying formations the depth 

grid of the Nido carbonate platform was finally created. First the outline of the interpreted Nido 

platform was taken as boundary. It is well defined in the north and west, but due to the lack of 

seismic data the southern boundary is hard to determine. The Palawan-Borneo trough extends 

towards the south until the West Baram Line (Cullen, 2014) and it is possible that the Nido platform 

is also present there, so the southern boundary for the grids was set at the West Baram Line. The 

eastern boundary is also unknown since seismic surveys terminate well before the coast. 

Nevertheless, it can be speculated that the Nido platform extends at least until the coastline and 

therefore the boundary was set approximately at the coastline of Palawan and Borneo. In this area 

a set of time grids was created based upon the interpretation of marker horizons: “Sea Bottom”, 

“Top thrusted wedge” and “Top Nido Platform”. The grid for the sea bottom is exemplarily shown 

in Figure 21. 

Negative values of the grids, which occurred in the “Sea Bottom” and “Top Nido Platform” grid in 

a small region onshore northern Palawan were set to zero to avoid inconsistent data (negative 

velocities). 

Based upon these grids, thickness grids for water, sediment and wedge were calculated (still in 

time). Since the grid of the wedge is significantly smaller than the “Top Nido Platform” grid, it had 

to be enlarged using zero thickness outside the actual wedge distribution. 
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Figure 21: Gridded depth to the seafloor in seconds (TWT). Bathymetry by GEBCO shown by the blue isolines. Seismic 
lines are also shown. 

For the calculation of the interval velocities constraints were taken from well data and published 

interval velocities (Franke et al., 2008). With these velocities the grids were depth converted and 

the results were compared with available well marker. The first approach was to use fixed velocities 

for the intervals. This did not lead to a good fit with the well marker. So several velocity functions 

with an internal velocity increase were calculated using the well velocity data and the published 

values as reference (Table 3). 
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V 

water 
V sediments V wedge 

fixed 
1500 

m/s 
2400 m/s 3800 m/s 

function  
1500 

m/s 
V(t) = 0,24 * thickness + 1800 m/s V(t) = 490 * thickness + 2300 m/s 

function 1 
1500 

m/s 
V(t) = 0,125 * thickness + 1800 m/s V(t) = 490 * thickness + 2300 m/s 

function 2 
1500 

m/s 
V(t) = 0,5 * thickness + 1800 m/s V(t) = 490 * thickness + 2300 m/s 

function 3 
1500 

m/s 

V(t) = 0,75 * thickness + 1800 m/s 

V(max) = 3000 m/s 
V(t) = 0,2 * thickness + 3000 m/s 

Table 3: Velocity functions 

The last velocity function (function 3) revealed the best fit of the grids with the welltops and led to 

reasonable interval velocities. In two deep troughs on top of the thrusted wedge the sediments reach 

very high thicknesses and according to that velocity law unusual high velocities. In these troughs 

the velocity was limited to a maximum value of 3000 m/s. The transition from the sediments on top 

of the thrusted wedge to the wedge itself is marked as a positive reflection in the seismic image. 

This means an increase in the velocity of the sound wave. Because of the velocity law of the wedge 

starting slightly faster than 3000 m/s the velocity within the sediments must be less than that. So a 

v(max) of 3000 m/s is plausible. 

Based on velocity function 3 of Table 3 velocity grids for the internal velocity at the base of the 

sediments and the wedge were calculated (Figure 22 and Figure 23).  
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Figure 22: Velocity grid for the sediments  

 
Figure 23: Velocity grid for the thrusted wedge. 
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In a final step thickness grids (in meter) for the sediments and the wedge were created. The depth 

grid of the Nido platform (Figure 24) was calculated by summing up the thickness grids for water, 

sediment and wedge.  

 
Figure 24: Depth grid for the top of the Nido Platform. 
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Abstract 
The attenuated continental crust of the Dangerous Grounds is located in the southeastern part of the 

South China Sea. It was affected by unconformities as identified by several authors (Cullen et al., 

2010; Hinz and Schlüter, 1985; Hutchison, 2010; Hutchison and Vijayan, 2010). In the northeastern 

Dangerous Grounds, a prominent reflector in seismic data is associated with the top of a widespread 

Oligocene to Early Miocene (18-20 Ma) carbonate platform. This reflector and the underlying 

carbonates can be used to constrain the timing of the unconformities and the rifting history of the 

Dangerous Grounds. By carefully interpreting seismic reflection lines we trace the platform 

carbonates based upon their appearance in the seismic image. This platform is continuous in the 

Palawan-Borneo trough and gets patchy toward the Dangerous Grounds. In the Dangerous Grounds 

the image of this key reflector changes and here it merely forms the top of a clastic layer. Carbonates 

remain abundant but mainly as isolated reefs that grew on top of tilted fault blocks. In the 

southwestern Dangerous Grounds the prominent unconformity sealing the tectonic activity is 

known as the Middle Miocene Unconformity. This in fact is an Early Miocene unconformity, which 

represents a sequence boundary in the Borneo Palawan trough and in various parts of the Dangerous 

Grounds, while in other parts of the Dangerous Grounds, it represents a major angular 

unconformity. The unconformity characteristics supplemented with tentative ages indicate that 

Luconia and the southern Dangerous Grounds were sub-aerial during the Early Miocene, while the 

Reed Bank, the northern Dangerous Grounds and parts of the central Dangerous Grounds were 

mostly submerged except for some islands concentrated on the western edge of the Borneo-Palawan 

trough. This trough is interpreted as a foreland basin where the flexural forebulge provided shallow 

marine conditions that promoted reef growth. As the carbonate deposition migrated from the 

Borneo Palawan trough toward the Dangerous Grounds we suggest that the flexural forebulge 

provided shallow water conditions for further reef growth on the eastern Dangerous Grounds. 
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Introduction 
The southern margin of the South China Sea remains lightly explored despite the numerous oil and 

gas discoveries made in the shallow water areas around the basin. The southeastern margin 

underwent several tectonic phases. It was strongly rifted up to the breakup of the SW-subbasin of 

the South China Sea and its eastern part collided and was partly overthrusted by what is now 

Palawan Island and Borneo. A prominent unconformity, sealing the extensional tectonic activity in 

the southern part of the Dangerous Grounds is traceable over large parts of the southern and western 

Dangerous Grounds. We could correlate this unconformity with the “Red” unconformity (RU) 

named by Hinz and Schlüter (1985) for the northern part of the Dangerous Grounds, keeping in 

mind that offshore west Palawan this unconformity no longer represents the breakup unconformity. 

This unconformity is interpreted by many authors to represent the Middle Miocene Unconformity 

(MMU). But, as Hutchison (2010) revealed, the MMU turns out to be a complex of Early to Middle 

Miocene events and the MMU may turn into a conformity at some places. We therefore summarize 

this set of Early to Middle Miocene events as “Red” unconformity (RU). A prominent seismic 

reflector is associated with the top of a widespread Oligocene to Lower Miocene carbonate 

platform, particularly in the northeastern Dangerous Grounds. The development and demise of 

carbonate deposition provide good constraints on the paleo-environment and the paleo-water depths 

since they only develop in shallow water with little or no clastic input (Bosence, 2005). These 

platform carbonates are sealing the extensional structures similar to the RU. In the Dangerous 

Grounds area carbonates are mainly isolated reefs, growing on top of tilted fault blocks. So by 

carefully dating these carbonates it is possible to further constrain the tectonic development of the 

Dangerous Grounds. 

With this article we address the following questions: 

1. How far to the southwest were the platform carbonates deposited across the Dangerous Grounds? 

2. How can we explain the evolution from an Oligocene/Miocene carbonate platform to an erosional 

unconformity at the same stratigraphic position (Middle Miocene)? 

3. What are the implications on our understanding of the evolution of the Dangerous Grounds 

Basin? 

Here we discuss the timing and the origin of the observed transition from an unconformity, 

indicating a major hiatus, to an Oligocene-Early Miocene carbonate platform deposited in shallow 

water. The influence of the continental collision zone to the east, which is manifest in Borneo and 

Palawan, is considered. Underpinned by the interpretation of seismic lines and industrial wells, an 

evolution scenario for the Dangerous Grounds and its tectonic evolution in the key episode from 

the Oligocene to the Pliocene is derived. 
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Geological Setting  
The strongly attenuated continental crust, forming the southeastern margin of the South China Sea 

is known as Dangerous Grounds (e.g. Holloway (1982)). The Dangerous Grounds are bound to the 

Reed Bank block in the north, Palawan and Borneo Islands in the east, the Luconia platform in the 

south and the oceanic basin of the South China Sea in the northwest (Figure 25). They stretch over 

750 km in NE-SW-direction and 400 km in NW-SE-direction. The overall area of our investigations 

can be divided into four specific regions. 

 
Figure 25: The southeastern South China Sea with depth contours indicated in 1000 m spacing. The continent -ocean 
transition is approximately located at the 3000 m contour. Positions of the seismic reflection lines, wells and dredge sites 
are shown. The data set comprises about 30,000 km of 2D multichannel seismic lines, 110 wells and 30 dredge sites. 
Seismic lines, presented in this article, are marked by a bold line. The symbols of wells mentioned in other figures are 
shown enlarged. 
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Oceanic basin 

In the Early Oligocene crustal extension reached a point where oceanic spreading initiated and the 

formation of the deep sea basin of the central South China Sea began. Since no deep sea boreholes 

exist in this basin that penetrated the igneous oceanic crust, the identification of seafloor spreading 

anomalies in magnetic data provides the most important constraint on the age of the seafloor. The 

seafloor spreading history of the South China Sea has been interpreted in different ways in the past 

and the debate over the correct timing of the major tectonic events is still ongoing. Most authors 

agree on a decreasing age of the oceanic crust toward the southwest. The timing of seafloor 

spreading in the central South China Sea has been revised to 31-20.5 Ma by Barckhausen and 

Roeser (2004) and Barckhausen et al. (2014) and from 32 to 15.5 Ma (Briais et al., 1993; Taylor 

and Hayes, 1983). The southwest subbasin of the South China Sea that bounds the Dangerous 

Grounds to the northwest opened only at about 25 Ma. 

Stretched continental crust 

The Dangerous Grounds crustal architecture as interpreted from geophysical data and occasionally 

dredge samples indicates that the area is underlain by highly attenuated continental crust (Clift et 

al., 2008; Ding et al., 2013; Hutchison and Vijayan, 2010; Schlüter et al., 1996). Gravity modeling 

revealed crustal thicknesses between 14 and 19 km (Braitenberg et al., 2006). It is widely accepted 

that the Dangerous Grounds rifted away from mainland China in the Eocene. Rifting on the proto-

China continental margin is believed to have started in the latest Cretaceous-Early Paleocene (Ru 

and Pigott, 1986; Taylor and Hayes, 1980; Zhou et al., 2009) and led to a series of (half-) grabens 

filled with Paleogene continental to shallow marine deposits (Taylor and Hayes, 1980, 1983). Due 

to a relatively low sedimentation rate in comparison with the northern margin (Clift et al., 2008), 

the tectonic framework of rift structures in the Dangerous Grounds is still recognizable in the 

bathymetry. 

Collision zone with Borneo and Palawan 

In the southeast the Dangerous Grounds are bound to Borneo Island. The Crocker-Rajang mountain 

belt extends along the central part of Borneo, from Sabah to central-south Sarawak, and likely 

formed as an accretionary complex during south- or southeastdirected subduction of an oceanic 

basin (Berggren, 1995; Hall, 2002; Hutchison, 2005b; Pubellier et al., 2003; Rangin, 1991). The 

passage from subduction to collision divides the Crocker-Rajang mountain belt into two main units: 

the Rajang (Eocene)-Crocker (Oligocene-Lower Miocene) Wedge and the Frontal (Middle 

Miocene to Pleistocene) Wedge (Sapin et al., 2011) that continues also into the shallow offshore 

area (Levell, 1987). They are separated by a widespread regional unconformity, the Deep Regional 

Unconformity (DRU) or Sabah Orogeny (~16 Ma). 
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The formation of the accretionary wedge offshore south and central Palawan is constrained by the 

underlying and overlying carbonate formations (Steuer et al., 2013). The formation of this wedge 

must have occurred after the formation of the carbonatic sequences underneath (Nido-) and must 

have ended before the overlying and sealing Tabon Limestone was deposited. Biostratigraphic 

correlation gives an Early Miocene age of 18-20 Ma for the top of the Nido platform carbonates. 

Steuer et al. (2013) thus concluded that the wedge was not present before 18 Ma because some time 

interval is necessary for the platform carbonates to subside to their present depth. The Tabon 

Limestone seals the wedge and was therefore deposited after the formation of the wedge. Onshore 

the oldest Tabon Limestones is about 16 Ma old (late Early Miocene) and the youngest is 10.8 Ma 

(Rehm, 2002). The formation of the wedge thus started between 18 and 16 Ma ago and continued 

migrating northwest until the upper Late Miocene (~7 Ma). 

Palawan Borneo trough, the foredeep 

The attenuated continental crust of the Dangerous Grounds was overthrusted by the Crocker-

Palawan accretionary wedge from the southeast. The load of this wedge drove tectonic subsidence 

in the Palawan-Borneo trough which is interpreted as flexural foreland basin (Milsom et al., 1997). 

Presently the Palawan - Borneo Trough marks the eastern edge of the Dangerous Grounds but the 

rifted continental crust of the Dangerous Grounds continues underneath the trough and likely partly 

underneath the accretionary wedges of Borneo and Palawan (e.g. Cullen et al., (2010); Franke et 

al., (2008); Hinz and Schlüter, (1985); Hutchison and Vijayan, (2010); Steuer et al., (2013)). 

Possibly it extends as far east to the onshore beneath Mt. Kinabalu (Cottam et al., 2010). 

Data and interpretation 
Between the years 1983 and 2008 the Federal Institute for Geosciences and Natural Resources 

(BGR) acquired a set of 2D MCS seismic lines across the Dangerous Grounds. This data set was 

extended by seismic lines shot by the petroleum industry. All together ~30,000 km of seismic lines 

covering an area of 150,000 km2 from 6°N to 11°N and 113°E to 117.5°E were available for this 

study. The location of the seismic lines is given in Figure 25. In addition, well logs and 

biostratigraphic information of 30 wells, drilled by the petroleum industry since 1970 and 30 dredge 

samples by Kudrass et al. (1986) were used. The position of the wells and dredge sites is also given 

in Figure 25. The interpretation of seismic lines is constrained by correlating the interpreted 

unconformities with the information of several dredge samples and the age information collected 

by an IODP-well (Shipboard Scientific Party, 2000). An overview of the main lithologies and 

unconformities interpreted in the Dangerous Grounds and the Palawan-Borneo wedge is given in 

Figure 26. 
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Major unconformities 

The deep regional unconformity (DRU) 

The DRU is located within the accretionary wedge of Borneo. Clift et al. (2008) suggested that this 

DRU (~16 Ma) is an equivalent of a ‘Middle Miocene’ unconformity, a view that is shared by Hall 

and Morley (2004), who suggested a 16-17 Ma syn-rift to drift unconformity (Breakup 

Unconformity BU) at the same stratigraphic position. However, Cullen (2010) proposed that the 

Deep Regional Unconformity is associated with tilting and uplift of the Sabah margin and is a quite 

local feature (Levell, 1987). This author suggested it as inappropriate to consider correlating the 

MMU with the Deep Regional Unconformity. 

The South China Sea unconformity (SCSU) 

A strong unconformity, separating the syn-rift from the overlying post rift sediments (BU), is 

traceable throughout the South China Sea. Hutchison (2004) refers to this unconformity as MMU. 

Cullen (2010) indicates a diachronous age for the breakup unconformity in the South China Sea. 

He therefore rejects the name MMU as given by Hutchison (2004) and refers to this prominent 

unconformity, as South China Sea Unconformity (SCSU). Cullen 

(2010) proposed an age of 18-15.5 Ma for this unconformity. 
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Figure 26: Generalized seismostratigraphy for the Dangerous Grounds summarized from Steuer, Franke, Vihajan, 
Cullen, etc... The main formations are divided into the western part and the eastern part close to the Palawan-Borneo 
wedge. The main unconformities (Breakup and “Red” unconformity) are time- and space-transgressive over the 
investigation area. Breakup of the Southwestern Subbasin of the South China Sea initiated first in the north and 
propagated toward the southwest. The Breakup unconformity follows this direction. The Top Nido unconformity is a 
seismic horizon caused by the velocity increase at the top of a carbonate succession. 
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The “MMU” and the “Red” unconformity 

In the southwestern Dangerous Grounds the most prominent unconformity, sealing the syn-rift 

deposits, has been given several names. By Hinz and Schlüter (1985) it was introduced as “Blue*” 

unconformity in the northeastern Dangerous Grounds (West Palawan shelf). Hutchison (2004) 

introduced the most prominent unconformity between underlying rifted terrane and overlying post-

rift draping strata as the Middle Miocene Unconformity (MMU). Thies et al. (2005) confirmed from 

drilling results in the southern area of the Dangerous Grounds the proposed age of 16 Ma for the 

erosion at this unconformity that preserves much of the sedimentary section close to the Luconia 

Platform margin, but has eroded much of the 25 Ma to 16 Ma section further from the margin. 

Madon et al. (2013) identified an Early Miocene Unconformity between ~19 Ma and 17 Ma in the 

northern Luconia province. However, Hutchison and Vijayan (2010) argue that this unconformity 

is rather an amalgamate of multiple Lower/Middle Miocene events. The so called Middle Miocene 

Unconformity, recognized as a pronounced angular unconformity throughout the deepwater 

Sarawak area, is in fact Early Miocene with a strontium isotope age of 18.5-19.0 Ma, with a 2.0-

2.5 My hiatus at the unconformity (Hutchison and Vijayan, 2010). A Middle Miocene 

Unconformity (15.5 Ma) was introduced by Hinz and Schlüter (1985) as “Red” unconformity. This 

unconformity is marked by a prominent seismic reflector and can be traced over large areas in the 

Dangerous Grounds. In the Borneo-Palawan trough the “Red” unconformity represents rather the 

top of a sedimentary layer, the so called Pagasa Formation (Steuer et al., 2013), than an erosional 

unconformity. The Bako-1 and Mulu-1 wells, targeting noncarbonated paleo-highs, in addition 

reveal that this unconformity is covered by a condensed section that comprises about 10 My 

(Hutchison and Vijayan, 2010). Below the “Red” unconformity a fine clastic deepwater sequence 

was deposited in the Borneo Palawan trough. The “Red” unconformity separates this fine clasitic 

sequence from coarse clastic sediments above and rather represents the top of a sedimentary unit 

than an erosional unconformity. It has been dated 15.2 Ma (Steuer et al., 2013). The seismic 

reflector representing this unconformity is used as time marker for the correlation of the other 

unconformities. In the following we refer to this marker as the “Red” unconformity. 

Correlation between Red Unconformity and the breakup unconformity 

The Red Unconformity changes its character over the area under investigation. In the northern part, 

offshore northwestern Palawan, it is clearly a post-rift feature. It is located above the “Nido” 

carbonate platform which in turn seals the rift structures. Tracing the reflector associated with this 

unconformity toward the southwest the sedimentary succession between the unconformities Red 

and Breakup decreases continuously until they coincide. Franke (2013) discussed in detail a 

potential breakup unconformity in the South China Sea. He concluded that, if we agree with the 

proposed ages of the oceanic crust as derived from the interpretations of the magnetic spreading 

anomalies a breakup unconformity in the South China Sea postdates the formation of earliest 
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oceanic crust by about 6-8 My. However, it is evident that the breakup unconformity gets younger 

in SW direction following the propagating rift (Franke et al., 2014). 

The platform carbonates 
In the northeastern Dangerous Grounds, the Reed Bank area and NW Palawan the breakup 

unconformity is directly overlain by a widespread carbonate platform (Nido carbonates), which is 

considered as important petroleum reservoir (Williams, 1997). Offshore NW Palawan the platform 

carbonate formation was established in the Early Oligocene, not before the formation of the breakup 

unconformity at about 31 Ma (Steuer et al., 2013). A definition about when the platform carbonates 

terminated is complicated by the fact that most wells drilled reefal buildups on top of the platform 

carbonates that locally continued growing when the deposition of the platform carbonates was 

ended. Steuer et al. (2013) did a careful evaluation of well reports for wells penetrating the platform 

carbonates and narrowed the time of last carbonate deposition by calculating sedimentation rates 

for the carbonates and the overlying strata. This resulted in a correction of previously given ages 

for the end of platform carbonate deposition from latest Oligocene times to earliest Miocene times, 

at 18-20 Ma (Steuer et al., 2013). 

Seismic facies of the platform carbonates 

A prominent stratigraphic sequence, concurrent with the Oligocene to Early Miocene seafloor 

spreading episode, is the Nido carbonate sequence (Figure 26, Figure 27, Figure 29). It is made up 

of a shallow marine carbonate platform, followed on top by limestones, wackestones, and 

packstones, deposited in an open marine, to shelfal setting. On the seismic data, this sequence 

exhibits subparallel reflections of high continuity and low frequency content (Franke et al., 2011; 

Steuer et al., 2013). Samples from dredging on the Dangerous Grounds, south of Reed Bank, 

indicate shallow marine carbonates (wacke-, pack-, boundstone) with ages ranging from Late 

Oligocene to lower Middle Miocene (Kudrass et al., 1986).  

In the NW Palawan region the deposition of the Nido carbonates ceased with the drowning of the 

carbonates in the Early Miocene (Aquitanian-Burdigalian) and the carbonate buildups were sealed 

by Early to Middle Miocene basinal Pagasa clastics (Fournier et al., 2005; Williams, 1997). Also 

in the eastern Dangerous Grounds the rift structures are sealed by the “Nido” carbonates which 

were drilled in wells Penascosa and Aboabo offshore S-Palawan (Steuer et al., 2013). Our 

interpretation approach was to compare the seismic appearance of the carbonates at the drill sites 

with the appearance of a strong positive reflector in the Dangerous Grounds at the same 

stratigraphic position. We found that the strong positive reflector resulted from a sharp increase in 

the seismic velocities from the clastic sediments to the carbonates. 



Chapter 3: Oligocene-Miocene Carbonates and their role for constraining the rifting and collision history of the 
Dangerous Grounds, South China Sea  
 
 

46 
 

 
Figure 27: Seismic profile across the southern Dangerous Grounds, running from northwest (up-left) to southeast (low-
right). The depth is given in two-way-time and the horizontal distance in kilometers. The profile is divided into two parts 
for better visibility. Distinct features from left to right are draped reefs in the Dangerous Grounds, the stronger uplifted 
forebulge, the Palawan-Borneo trough and the western end of the Palawan-Borneo wedge. This wedge is located on top 
of the downgoing rifted continental crust of the Dangerous Grounds. Reefs are marked with light blue color, also the 
“Red” unconformity was emphasized. Reefs that were covered by sediments prior to the “Red” unconformity are located 
e.g. at km 14 or at km 178. Reefs with an onlapping “Red” unconformity are located e.g. at km 194. A reef with almost 
no sedimentary cover is located at km 214, but it is at a water depth that inhibits further reef development. 

This reflector can be traced over wide areas. There are some criteria for interpreting a facies: 

Magnitude of the amplitudes of the reflector, direction (positive/negative) of the reflections, the 

lateral continuity of the reflection and the internal structure of the layer. Our main criterion for 

interpreting platform carbonates is the presence of a strong positive reflection in the seismic image 

that is followed by up to three additional strong positive reflections which are parallel to subparallel 

to the first reflection. This set of reflections typically overlies more chaotic reflections (see Figure 

27 and Figure 29). The base of the carbonate platform is harder to determine it was set on a weak 

negative reflector that marks the change of the reflection pattern from chaotic to more stratified, 

which is associated with clastic sediments. Younger reef buildups can be clearly recognized from 

their appearance in the seismic data (Figure 29, Figure 30 and Figure 32). In western direction the 

positive reflection becomes weaker in the reflection seismic data and the pattern underneath 

indicates parallel bedding rather than the typical chaotic pattern associated with the carbonates. In 

this case we suggest that the sediments are more clastic-prone rather than pure carbonates but we 

still suggest the top of this succession is time equivalent to the top of the carbonates (Early 

Miocene). Tracing the reflection westward from NW Palawan it not only gets weaker but finally 

turns into a conformable sequence close to the oceanic basin (Schlüter et al., 1996). 
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Stratigraphy of reefs in the Dangerous Grounds 
Reefs are abundant in the Dangerous Grounds area and a large number of those were mapped along 

the seismic lines. These data were supplemented with information on the location of reefs taken 

from other publications (Hutchison and Vijayan, 2010; Letouzey et al., 1988), see Figure 31.  

 
Figure 28: Two schematic crustal-scale profiles across the Dangerous Grounds in NW-SE direction. The location of the 
lines is given in fFigure 25. The depth of the Moho is modeled from refraction and gravity data and extrapolated in the 
eastern (right) part of profile B. The limit of available refraction data is indicated by a white vertical line. Both profiles 
show the rifted continental crust of the Dangerous Grounds. The “Red” unconformity, sealing the tectonics in the western 
(left) part is indicated. Also the Oligocene-Miocene carbonates are highlighted. The position of the foredeep and 
forebulge is shown. It is noticeable that the Sabah Basin in NW Borneo formed over the most attenuated part of the 
continental crust. 

The reefs are draped by strata at different levels. Our main reference level is a distinct horizon in 

the Borneo-Palawan trough, which previously has been assigned an age of about 17 Ma (Hinz and 

Schlüter, 1985). It corresponds to the DRU by Levell (1987), “Red” unconformity by Hinz and 

Schlüter (1985), or MMU by Hutchison and Vijayan (2010). From their stratigraphic position we 

infer that the reefs initiated on the crests of tilted fault blocks during the deposition time of the Nido 

carbonate platform in the Late Oligocene to Early Miocene. In some places Miocene reefs are 

growing on top of the Early Miocene 

Unconformity, but these locations are limited to a small area in the central part of the Dangerous 

Grounds (Figure 28 and Figure 30). 
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Figure 29: Seismic image of the carbonate platform and a Miocene reef on top at the location of the Cadlao-1 well. The 
vertical scale is given in two-way-time. The most distinct reflection is the positive reflector on top of the carbonates. The 
“Red” unconformity is represented by a weak reflector, indicating that at this point it rather represents the top of a clastic 
succession than an erosional unconformity. The interpreted horizons are matched to the drilled stratigraphy of the well 
Cadlao-1 given at the right side. 
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Figure 30: Image of a 2D multichannel seismic line in NW-SE-direction across the Borneo-Palawan trough at the well 
Aboabo A-1X, offshore southern Palawan. The vertical scale is given in two-way-time, the horizontal scale is in kilometer. 
The base of the carbonate platform is sealing most of the extensional tectonics before it was overthrusted by the Palawan-
Borneo wedge (right). The “Red” unconformity is located well above the carbonate platform. So it is a post-rift-feature 
in the trough. Parts of the strata underneath this unconformity are incorporated in the wedge. 
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Figure 31: The distribution of the Oligocene-Miocene carbonate platform and the position of reefs in the Dangerous 
Grounds. Areas where the existence of the carbonate platform is less clear are shaded in lighter gray. Reefs were 
categorized according to the end of their development and marked with different colors. Reefs taken from literature 
(Letouzey et al., 1988) or with unknown age for the end of development are also given in this map. An elongated cluster 
of “post red drowned reefs” is located at the western edge of the carbonate platform, the development of these reefs 
probably is related to the development of the Palawan-Borneo trough. 

We classify the Miocene reefs into 4 groups, according to the timing and reasons for the end of 

their development. The reference level for this is the previously described unconformity “Red” 

(15.2 Ma), the letters refer to Figure 32: 

- Early Miocene reefs (A) are completely covered by the clastics that underlie the “Red” 

unconformity (e.g. the Pagasa Formation). These reefs ended their development clearly before the 

formation of unconformity “Red”. The coverage by the Pagasa formation indicates a drowning of 

these reefs due to strong subsidence in the Borneo-Palawan trough that may be caused by the 

loading of the Borneo-Palawan accretionary wedge. Alternatively or additional a sea-level rise at 

the Oligocene/Miocene boundary as proposed by Williams (1997) may have caused the drowning 

of these reefs. Early Miocene reefs are predominately found between the Reed Bank and Palawan 

Island. Some of them are also present on the western edge of the Palawan-Borneo trough. In the 

Palawan-Borneo trough an increased sediment input from the east may have also contributed to 

end the reef development. 

- Top “Red” reefs (D) continued to develop until the formation of the “Red” unconformity. These 

are cut at the top by the “Red” unconformity. 

- Post “Red”/Drowned reefs (B, C) continued to grow after the “Red” unconformity. The interpreted 

horizon associated with the unconformity onlaps on the reefs. In several places these reefs reach 

up to the present sea bottom but are now in water depths greater than 1 s TWT (c. 750 m). 
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- Recent (“keep up”) reefs and shoals occur in water depths significantly less than 750 m and, in 

most cases, reach the sea level or build up small islands like the Spratley Islands or Reed Bank. 

Reefs without clastic cover in water depths up to 750 m are also put in this group even though 

there is most probably no active reef development in such high water depths. 

 
Figure 32: Seismic images of reefs ending their development at different times. The reference horizon for timing the 
development is the “Red” unconformity (RU). The reefs could be clearly identified by their specific shape in the seismic 
image. A: Early Miocene reefs are covered by Early Miocene strata and therefore ended their development prior to the 
formation of the RU; B,C: Post-“Red”/drowned reefs continued to develop during the Early Miocene and are not affected 
by the RU. They are draped by Middle Miocene or younger sediments. This sedimentary cover occasionally is very thin 
(~0.2 s TWT) as shown in C; D: Top “Red” reefs are cut at their top by the RU indicating uplift above sea level in the 
Early Miocene. 
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Tectonic evolution of the Reed Bank Block 
The continental Reed Bank block, directly north of the Dangerous Grounds is outstanding in the 

evolution of the area. Rifting substantially affected the Reed Bank block in the Early Paleocene, 

resulting in a significant rift onset unconformity. Most Late Cretaceous strata were eroded. Wells 

on the Reed Bank drilled pre-rift upper Lower Cretaceous (Alb.-Abt.) marly siltstones to 

sandstones. These rocks are unconformably overlain by Paleocene formations. In the Kalamansi-1 

and Sampaguita-1 well a succession of synrift sediments was drilled. These sediments can be 

correlated with the three rifting episodes in the Paleocene, Early to Middle Eocene and Late Eocene 

to Early Oligocene as described for the northern margin of the South China Sea (Zhou et al., 1995). 

The youngest sediments prior to the carbonate deposition are sandstones and clays of a sublittoral 

to littoral facies. 

The development of platform carbonates initiated on Reed Bank in the Early Oligocene (w30 Ma) 

and continued without interruption until the Pleistocene (Figure 34). To check for the continuity of 

the carbonate section we calculated the average growth rates of the carbonates on Reed Bank. Major 

changes in the growth rate or unusually high or low rates could give indications on tectonic events 

as e.g. uplift. The calculated average growth rate between 30 Ma and 14.5 Ma is 48 m/My, between 

14.5 Ma and 2.5 Ma 98 m/My and 137 m/My for the time since 2.0 Ma. We conclude that the 

initiation of carbonate sedimentation started prior to the breakup of the SW-Subbasin of the South 

China Sea (~25 Ma (Barckhausen and Roeser, 2004)). Since the Early Oligocene the Reed Bank 

Block was continuously submerged below sea level. Unlike in many areas around the South China 

Sea we see no evidence for a “Breakup Unconformity” in the seismic sections and the drill data of 

the wells at Reed Bank. 
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Discussion 

The paleo-landscape during the Early Miocene 

From the distribution of the reefs and the position of the major erosional unconformities we deduce 

a generalized paleogeographic map for the central part of the Dangerous Grounds during Early 

Miocene times (Figure 33). Reefs whose tops are cut by the “Red” unconformity are considered to 

represent the remains of Early Miocene islands. Widespread erosional unconformities also indicate 

exposed landmasses. The sediments provided by these landmasses likely were deposited in the 

surrounding marine areas and terminate the growth of the preexisting reefs there. We therefore 

suggest the “Early Miocene reefs” were submerged but quite close to an island or landmass in the 

Early Miocene. More distal from these islands the sediment influx was not sufficient to completely 

cover the reefs. Therefore these continued to develop during the Upper Miocene until they finally 

drowned (post “Red”/Drowned reefs). These reefs are sometimes still visible in the bathymetry, but 

the water depth is nowadays too large for further reef development. 

 
Figure 33: Paleo-landscape of the Dangerous Grounds in the Early Miocene as inferred from the position of reefs and 
unconformities as shown in fFigure 31. For orientation the present coastline is shown as thin, continuous line. The area 
is divided into three parts. The oceanic domain is almost completely submerged and covered by deep water. The Palawan-
Borneo trough acts as trap for sediments provided by a landmass in the southeast, the main directions of sedimentation 
are indicated by arrows. Due to this sediment trap only a minor amount of clastic sediments was deposited in the central 
Dangerous Grounds. The forebulge provided shallow water conditions favorable for reef development. Partly this 
forebulge was above sea level and most of the islands in Early Miocene times are located on it. There was probably 
another landmass southwest of the forebulge, due to our limitation of seismic lines in this area its outline is speculative. 
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Figure 34: 2D seismic line across the Reed Bank block at well Sampaguita-1. On the Reed Bank block the carbonates 
also seal the extensional tectonics. In contrast to the Dangerous Grounds the carbonate deposition on the Reed Bank 
initiated in the Early Oligocene (~30 Ma) and continued until present as it is also indicated in the lithology of the well at 
the right side of the figure. 

The most important sediment source was in the southeast, where emerging portions of northern 

Borneo provided massive influx of sandstones and conglomerates (Cullen, 2010) but these 

sediments were mainly trapped in the Borneo-Palawan trough. An additional source for sediments 

was the emerged Luconia platform (Mansor et al., 1999). In the central part of the Dangerous 

Grounds area the sediments were partly ponded or distributed along the submerged half grabens 

(Hutchison, 2004). Offshore northwest Palawan and between Palawan and Reed Bank the reefs are 

covered by clastic sediments, indicating an uplift of northern Palawan at 12 Ma (Steuer et al., 2013). 

In Figure 31 an elongated cluster of c. 35 reefs is distinct at the western edge of the Borneo-Palawan 

trough. This area is approximately 100 km wide and extends from southeast of Reed Bank over at 

least 600 km toward the southwest. The shape in our view implies a relationship with the collision 

of the Dangerous Grounds with Borneo and Palawan. We suggest that the formation of a flexural 

forebulge in front of the Borneo-Palawan trough provided the appropriate water depth for reef 

formation. In the Early Miocene south of Reed Bank there were two larger islands and about six 
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smaller islands in this area. Rapid drowning of the entire Dangerous Grounds after Middle Miocene 

times ended the reef evolution. 

Isolated reefs occur in the central parts of the Dangerous Grounds. The scarcity of available seismic 

lines in the southwestern part of the Dangerous Grounds hinders an interpretation of the 

stratigraphic position of these reefs. Hutchison and Vijayan (2010) describe them as post Middle 

Miocene, so we assigned them to the Post “Red”/Drowned reefs. By integrating these data we 

resolve a distinct zonation of reef development across the Dangerous Grounds (Figure 33): 

- In the northwestern part, including the Reed Bank and the Spratly Islands we propose the oceanic 

South China Sea as the main controlling factor. This area was almost completely submerged since 

the breakup of the oceanic SW-Subbasin of the South China Sea. Reed Bank and the apex of tilted 

fault blocks remained in shallow waters since Oligocene times, allowing carbonate development 

until Present. Single reefs reach up to the water surface (Spratly Islands). 

- The Borneo - Palawan trough formed as a result of the collision between Borneo and Palawan 

Island with the Dangerous Grounds. Subsequently the major portion of sediments, delivered from 

the east and southeast since Early Miocene times, were trapped in this depression or already on 

the shallow shelf of the developing wedge (Hall and Nichols, 2002; Morley and Back, 2008). A 

vast part of the sediments were incorporated in the Palawan-Borneo wedge by a combination of 

further crustal shortening and gravity tectonics (Franke et al., 2008; Hesse et al., 2009, 2010b; 

King et al., 2010). 

- The forebulge of the collision area is characterized by many reefs of varying size. While there are 

numerous small emerged reefs we also found larger areas where the “Red” unconformity forms 

amajor angular unconformity cutting down in older formations. By mapping the extent of this 

angular unconformity we found evidence for two Early Miocene islands with a non-reefal origin, 

which are located to the south of Reed Bank (Figure 33). They are also seen as sediment source 

in the central Dangerous Grounds but here the majority of the sediment was trapped in the 

underfilled half-grabens of the Dangerous Grounds. 

- In the central part of the Dangerous Grounds the image is more ambiguous. There are indications 

for some Early Miocene islands but vast parts of the central DG remained submerged during the 

“Red”-event allowing further reefal development. The scarcity of available seismic lines does not 

allow for a more precise description. 
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Sea level variations 
The demise of carbonate platforms has variously been related to factors such as tectonics, influx of 

clastic material, and environmental stress, sometimes in combination with eustatic fluctuations. 

According to Ma et al. (2011) and Haq et al. (1987) the changes in sea level are minimal in the 

Middle Miocene. The variations lie well inside the growth potential of carbonates (Schlager, 1981). 

We can therefore exclude global changes in sea level as course for the termination of carbonates in 

the Dangerous Grounds. 

Post Middle Miocene development 

After the widespread erosional event in the Early to Middle Miocene, the Dangerous Grounds 

underwent subsidence. In the east the compression and thrusting continued until the Late Miocene 

with the formation of the Palawan Borneo wedge (Steuer et al., 2013) and the uplift of Palawan 

Island. Sediments provided from Palawan and Borneo are mainly trapped in the Palawan Borneo 

trough and in the half grabens (Hutchison and Vijayan, 2010) leading to the underfilling of the rift 

structure in the area of the Spratly Islands, which can be still recognized in the bathymetry. In the 

central part of the Dangerous Grounds the preexisting seafloor topography was draped by 

sediments. These sediments are approx. 0.5 s TWT thick and show parallel bedding. The general 

scarcity of clastic sediment input also aided the development of reefs in the whole Dangerous 

Grounds. A catastrophic fall in eustatic sea level after 10.5 Ma proposed by Haq et al. (1987), 

resulted in the formation of a major unconformity all across the South China Sea shelf and resulted 

in a peak in sedimentation at the continental slopes as it is exemplarily described for the conjugate 

NW-margin at ODP Site 1148 (Clift et al., 2002a). 

Development of the forebulge 

Suitable depositional conditions for carbonates were provided during Oligocene-Early Miocene all 

along the Borneo-Palawan Trough. This continuous deposition of the “Nido” platform carbonates 

implies a structural relationship with collision-related structures onshore Borneo and Palawan. The 

thrusting of the Crocker/Pulute wedges onto the downgoing Dangerous Grounds plate certainly 

caused a down bending of the rifted continental crust of the Dangerous Grounds. This bending 

resulted in the formation of a foredeep that is still preserved as the Borneo-Palawan Trough. Further 

toward the northwest the formation of a forebulge would be the natural consequence. We suggest 

that on the elevated positions of this forebulge the initial deposition of carbonates took place in 

shallow water facies. With the subsequent propagation of the Borneo-Palawan thrusted wedge 

toward the northwest (Hesse et al., 2010c; Morley et al., 2003), the position of the foredeep and the 

forebulge also moved toward the northwest. This likely resulted in the drowning of the carbonate 

platform on its southeastern end and the propagation of the platform toward the northwest. This 

would result in a strong time-transgressive development of the Nido carbonates. The current 
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position of the elevated forebulge is recognizable in the seismic, e.g. on the left side of the lower 

section of Figure 27. Such a concept is also supported by the distribution of the younger reefs 

(Figure 31 and Figure 33). Reefs that were drowned during the Early Miocene, are located 

predominantly in the eastern part of the Dangerous Grounds. These reefs developed mainly on top 

of the Nido carbonate platform. The deepwater facies overlying the reefs indicates rapid drowning. 

In the area of the central Dangerous Grounds, further toward the west, only the tips of tilted fault 

blocks provided the shallow water conditions for the development of small carbonate platforms or 

isolated reefs, while the major part of the southern Dangerous Grounds likely was above sea level. 

A general northward tilt of the Dangerous Grounds is implied by our data. The submergence of the 

platform in the east was fast, as indicated by the deepwater clayish Pagasa Formation burying the 

shallow water carbonates. 

 
Figure 35: Schematic development of the carbonate platform on top of a forebulge. This section is running in NW-SE 
direction in the southern part of the Dangerous Grounds. In the Oligocene the carbonate development initiated on the 
highest crests of tilted fault blocks. With the uplift of the forebulge, caused by the arrival of the wedge (right) the shallow 
water conditions with active carbonate development migrated toward the northwest while in the southeast the carbonates 
drowned. A red rectangle is indicating the NW migrating zone of active carbonate deposition. In the Early Miocene parts 
of the carbonates were exposed, on the wedge the Deep Regional Unconformity (DRU) forms. In the Late Miocene the 
convergence had stopped. The frontal part of the wedge is deformed by gravitational tectonics and the Dangerous 
Grounds undergo subsidence. In many places reefs were able to keep up and to further develop until present. 
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The development of carbonates on the western end and the rapid drowning of the platform at its 

eastern end continued until the early Middle Miocene offshore Borneo. Tilting and uplift of the NW 

Borneo margin resulted in a major change in the sedimentation pattern and the formation of the 

‘Deep Regional Unconformity’ (late Early Miocene (Cullen et al., 2010; Levell, 1987)), which 

marks a change from generally deep marine clastic sedimentation from younger clastic shelf/slope 

deposits. In the area of south Palawan thrust tectonics continued much longer, until the Late 

Miocene (Steuer et al., 2013). After the Middle Miocene the Dangerous Grounds generally 

underwent subsidence. Only locally reefs could keep up the pace of the subsidence in the Dangerous 

Grounds before they also were drowned. On elevated structures like the crests of tilted fault blocks 

the reef development continued until present. 

The “Red” unconformity and the coeval “Top Pagasa Formation” horizon in the Palawan Borneo 

trough seal the extensional tectonics in the southern Dangerous Grounds. After the “Red” 

unconformity only quiet subsidence took place in the southern Dangerous Grounds leading to 

parallel bedded sediment deposition, draping the underlying structures. 

The top Early Miocene horizon represents the top of a clastic sedimentary layer in the DG. It was 

deposited at the end of the rifting period and is only displaced sporadically by large normal faults 

limiting large half-grabens. 

Conclusions 
By tracing a prominent seismic reflection, we derive the regional extent of an Oligocene-Early 

Miocene carbonate platform in the Borneo-Palawan trough and in the Dangerous Grounds. This 

carbonate platform is well known from NW Palawan where it was penetrated by several wells. 

From the appearance in the seismic data the platform carbonates are continuous to NW Borneo and 

underlie the entire Borneo-Palawan trough. However, further west only patchy parts are interpreted 

as platform carbonate deposits. 

Here, this prominent seismic reflector marks the top of a clastic succession. On the top of tilted 

fault blocks and in the southwestern part of the Dangerous Grounds this Early Miocene reflector 

represents an erosional phase. 

The “Red” unconformity is not continuous across the Dangerous Grounds. We deduced a paleomap 

for the Dangerous Grounds during this large erosional event. The accumulation of islands along the 

western edge of the Palawan-Borneo trough leads to the conclusion that this area was stronger 

uplifted/exposed during the event. This may be related to the additional uplift caused by the 

development of a forebulge of the trough. 

The northern Dangerous Grounds were not or only slightly affected by the uplift. Continuous 

carbonate development on the Reed Bank and also in the area of the Spratly islands indicates 

shallow water conditions in that area since the Oligocene. 
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In the central part of the Dangerous Grounds the erosional event only affected the highest tips of 

tilted fault blocks. In many places the reef development was also continuing through this event. 

Toward the south the influence of the erosional event grew. The area of the Luconia platform and 

the adjacent southern Dangerous Grounds were elevated and eroded. The Palawan-Borneo Trough 

is considered as a foreland basin created by the down bending of the crust by the overthrusting of 

the Crocker/Pulute wedge. 

The platform carbonates were found continuously deposited all along the Palawan-Borneo trough 

and NW Palawan. We propose a concept in which the development of these carbonates was aided 

by the formation of the forebulge of this foreland basin. As the overthrusting moved northwestward 

the eastern parts of the platform were drowned and subsequently overthrusted by the wedge while 

the deposition of the carbonates followed the shallow water conditions on top of the forebulge 

toward the northwest. This would result in a strong time transgressive development of the Nido 

platform as it is drawn schematically in Figure 35. The sudden change between very shallow water 

carbonates and the overlying deep marine clays in the trough indicates a very rapid subsidence of 

the trough. Reefs are widespread in the Dangerous Grounds. They started to develop in the Early 

Miocene more or less coeval to the drowning of the carbonate platform. Some isolated reefs were 

able to keep pace with the subsidence until the late Miocene. These buildups are not or only slightly 

covered by younger clastic sediments. 

The Reed Bank block showed a different tectonic history. Like the north Palawan block it was rifted 

during the Paleocene and Eocene. But while the north Palawan block drifted away from mainland 

China with the opening of the South China Sea at 31 Ma, the Reed Bank block remained attached 

to the Macklesfield Bank. These two blocks were separated during the opening of the SW Subbasin 

of the South China Sea at about 25 Ma. The Reed Bank Block was submerged below sea level 

probably since the Eocene. The development of carbonates started at ~30 Ma way before the 

breakup of the SW-Subbasin and the separation of Reed Bank and Macklesfield Bank. The 

carbonate sedimentation was continuous until the end of Pliocene. 
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Abstract 
The link between the deformation of southern and central Palawan Island, Philippines and the 

deformation of the adjacent offshore wedge is investigated. The wedge is a continuation of the 

Palawan fold and thrust belt and bounds the Borneo–Palawan Trough to the Dangerous Grounds 

and to Palawan Island. Key parameters for the understanding of the formation and development of 

this wedge are two limestone formations: 

The Oligocene to Middle Miocene Nido limestone and the Upper Miocene to Lower Pliocene 

Tabon limestone. The initiation of the thrust belt formation is constrained by the Nido limestone, 

which was deposited from shortly before the breakup of the eastern South China Sea (~ 35 Ma) 

until the Early Miocene. Age data available from wells offshore central Palawan gives an age of 

Early Miocene close to the base of the Nido limestone. While cropping out onshore north Palawan, 

these limestones were overthrusted by the wedge in southern and central Palawan. Seismic images 

show gently east dipping carbonates below the wedge. The seismic data show that these limestones 

are only mildly affected by the wedge formation. 

The end of the wedge development can be constrained by the Tabon limestone. With an age of ~9 

to ~4 Ma, this limestone sequence overlies unconformably the offshore wedge. A detailed 

biostratigraphic correlation of the Tabon limestone along the southwest Palawan shelf, using well 

data, combined with multichannel seismic data and investigations onshore southern and central 

Palawan, shows a time and space-transgressive development of these limestones. They are 

progressively younging towards the west. We propose that the formation of the Tabon limestone is 

directly linked with the development of the wedge that tectonically controls the formation of this 

carbonate platform. This constrains the time for the final phase of the formation of the Palawan 

thrust belt. After the final compressional phase and wedge formation in the lower Early Pliocene 

the wedge underwent a phase of subsidence. 
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Based upon the detailed correlation of these limestones we propose that the wedge did not form in 

the southern Palawan area prior to ~18 Ma. Using the sealing Tabon limestone as time constraint 

we suggest that the development of the wedge in the south Palawan area started in the lower Middle 

Miocene (~15 Ma) and continued developing towards the west until the upper Late Miocene to 

Early Pliocene (~5 Ma). 

After the wedge propagation stopped, the wedge front collapsed in several places due to 

gravitational sliding. 

Southern and central Palawan were uplifted above sea level during a second phase of compression 

in the Late Pliocene. Onshore outcrops give indications to a working spleothem since ~1.2 Ma. 

Introduction 
The island of Palawan, is located between the South China Sea and the Sulu Sea in the southwestern 

part of the Philippines. It stretches about 600 km in NE–SW direction and consist of at least two 

major tectonostratigraphic blocks (McCabe and Almasco, 1983; Schlüter et al., 1996). Northern 

Palawan is dominated by rocks of a continental margin affinity thought to have rifted from mainland 

China. It is also referred as North Palawan continental block (Holloway, 1982). It is commonly 

assumed that this block drifted from mainland China to the present position during the Oligocene 

to Early Miocene seafloor spreading stage of the South China Sea. In contrast, central and south 

Palawan are considered to be emerged imbricated thrust belts (Hinz and Schlüter, 1985), which 

were overthrusted by an ophiolitic formation. The N–S trending Ulugan Fault Zone (Figure 36) 

divides Palawan Island and its western shelf. The offshore position of this structure is speculative; 

however, its proposed position marks the eastern boundary of the thrusted wedge (Pulute 

Formation), which is confined to only the central and southern part of the shelf (Figure 36 and 

Figure 43). 

For simplicity and orientation we subdivide the island of Palawan into three parts as indicated in 

Figure 36. When we refer in the following to northern Palawan this comprises the island to the 

north and east of the Ulugan Bay and the Ulugan Fault Zone (10°N 

118°50´E). Central Palawan, to the south and west of the Ulugan Bay ranges as far south as to the 

City of Quezon (09°14´N, 118°E). Finally, southern Palawan is south of Quezon City and includes 

Balabac Island (Figure 36). 
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Figure 36: Regional map showing the locality of Palawan Island and main tectonic features, as well as the location of 
wells offshore Palawan. Wells which are referred to in the text are enlarged and the names are shown in the map. Solid 
black lines indicate the locations of the three seismic lines shown in figures XXX. The extend of the offshore accretionary 
wedge is indicated. The bathymetric data is taken from the General Bathymetric Chart of the Oceans (GEBCO) 

The general change in the onshore geology (Figure 38) between North Palawan on the one hand 

and central and south Palawan on the other hand coincides with remarkable variations in 

bathymetry. The most striking bathymetric feature offshore Palawan is the 

Borneo–Palawan Trough. As shown by Hinz and Schlüter (1985) and pointed out by Hutchison 

(2010) there is no northern extension of the Borneo–Palawan Trough between the Reed Bank and 

the NW Palawan microcontinental block. The trough thus may be a collisional foredeep. Central 

and south Palawan are considered to be emergent imbricated thrust belts, that developed subsequent 

to the early Middle Miocene collision between the Cagayan volcanic arc and the NW Palawan 

microcontinental block (Holloway, 1982; Letouzey et al., 1988; Taylor and Hayes, 1983). The 
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thrust belts might have originated from the Northwest Sulu Sea Basin thrusted onto the highly 

stretched Dangerous Grounds continental block (Hinz and Schlüter, 1985; Schlüter et al., 1996). 

With the ongoing spreading of the South China Sea, an older region of oceanic crust, the Proto-

South China Sea (Hall et al., 2008; Hinz et al., 1989; Morley, 2002) was consumed beneath NW 

Borneo. In Early Miocene times, the continental crust of the Dangerous Grounds entered the 

subduction zone, before its buoyancy blocked the system in the latest Early Miocene (Hinz et al., 

1989; Hutchison, 1996; Milsom et al., 1997). 

The thrust belts might have originated from the Northwest Sulu Sea Basin thrusted onto the highly 

stretched Dangerous Grounds continental terrane (Hinz and Schlüter, 1985; Schlüter et al., 1996). 

Offshore NW Borneo, two key mechanisms have been discussed in the past as main controlling 

factors for deepwater compressional deformation (Franke et al., 2008; Hesse et al., 2010c; Ingram 

et al., 2004); (1) basement-driven crustal shortening and (2) gravity-related tectonics. 

The transition from predominantly basement-driven crustal shortening around central and southern 

Palawan to the mainly gravity related delta tectonics offshore NW Borneo may be indicated by the 

high-velocity body (Franke et al., 2008) marking considerable variation in the structural style within 

the deepwater NW Borneo fold and thrust belt (Hesse et al., 2010a). 

In any case, the formation of central and south Palawan is related to the closure of a Proto-South 

China Sea. However, it is still unclear if the accretionary wedge of central and south Palawan rests 

on pieces of continental crust (the Dangerous Grounds block, 

or the NW Sulu Sea basin) or on remnants of the Proto-South China Sea. Moreover, the timing of 

the assumed collision or collisions is widely speculative. 

Underpinned by detailed biostratigraphic correlation and seismic interpretation, we present a 

method to constrain the timing of the collision by dating two carbonate sequences being located on 

top and below the accretionary wedge. Both carbonate sequences are only slightly affected by the 

wedge formation and provide therefore time constraints for the wedge development. 

Geological Setting 
Palawan Island and its shelf consist of two different blocks separated by the Ulugan Fault Zone. A 

generalized offshore stratigraphy with the main interpreted unconformities is shown in Figure 37. 

For location of the onshore geologic units see geologic map (Figure 38). 

Northern Palawan 

The northern portion of Palawan is dominated by rocks of continental affinity which were likely 

rifted from mainland China. It consists of Jurassic olistostromes containing olistoliths of Permian 

limestone, Permian and Triassic chert, sandstone and basaltic rocks in a predominantly mudstone 

matrix (Aurelio, 2010; Suzuki et al., 2000). 
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Barton group 

The Barton group, covering the central and southern part of northern Palawan, is made of slightly 

metamorphic Cretaceous rocks (Aurelio, 2010). It is subdivided into the Caramay Schist, 

Cretaceous muscovite schists in the east, the Conception Phyllite, Cretaceous phyllites adjacent to 

the Caramay Schist and the Boayan Formation, Late Cretaceous sandstones and mudstones 

(Aurelio, 2010). These successions were deposited in deep submarine fans and basinal plains 

(Suzuki et al., 2000) and deformed during the collision of the North Palawan block with the 

Philippine Mobile Belt. The composition of these sandstones support the proposal that these clasts 

originated from a continental source region (Suzuki et al., 2000). Suzuki et al. (2000) proposed 

southern China (Kwangtung and Fukien regions) as the source area for these sandstones. 
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Figure 37: Generalized stratigraphic columns of the western Palawan shelf. Separate columns are given for the northern 
and southern part of the shelf. The ages for the boundaries between the epochs are taken from the International 
Stratigraphic Chart by the International Commission on Stratigrapy ICS, 2012 (www.Stratigraphy.org). Ages given on 
the right side next to the unconformities were derived from a biostratigraphic correlation. The main interpreted 
unconformities are highlighted and assigned the colors shown in the seismic sections. In addition the main tectonic events 
are also plotted to the columns. 
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Carbonates 

Well known carbonates in North Palawan are the some hundred meters thick St. Pauls limestones, 

massive reef-like carbonates, predominantly limestone in North Palawan (Aurelio, 2010; Wolfahrt 

et al., 1986). These limestones were dated Early Miocene by Wolfahrt et al. (1986), based upon 

foraminifera. According to these authors large parts of North Palawan must have seen a major uplift 

as the St. Pauls limestone is the youngest marine onshore deposit left by erosion. 

The offshore equivalents of the St. Pauls limestones are the Nido platform carbonates (Figure 37). 

These limestones were frequently drilled and also interpreted on seismic section on the northwest 

Palawan shelf (e.g. (Franke et al., 2011; Grötsch and Mercadier, 1999)). Offshore, the development 

of carbonates started earlier, forming e.g. the Malampaya buildup. Grötsch and Mercadier (1999) 

proposed an age for the beginning of Nido deposition in the Lower Oligocene (Rupelian) based on 

Sr-isotope dating. They proposed a model in which the carbonate buildup started on the crest of 

tilted fault blocks. During the Late Oligocene and Early Miocene reef buildups developed on the 

highest parts of the platform keeping pace with a rapid relative sea level rise (Grötsch and 

Mercadier, 1999). 

Samples from dredging on the Dangerous Grounds, south of Reed Bank indicate shallow marine 

carbonates (wacke-, pack-, boundstone) with ages from Late Oligocene to lower Middle Miocene 

(Kudrass et al., 1986). 

While there is sufficient evidence for the continental composition of the crust of the North 

Palawan/Calamian area (e.g. (Berggren, 1995; Holloway, 1982; Letouzey et al., 1988; Suzuki et al., 

2000; Taylor and Hayes, 1980; Zamoras and Matsuoka, 2004)) the crustal composition in central 

and South Palawan is ambiguous. 

Central and southern Palawan 

Central and southern Palawan is dominated by rocks of oceanic affinity. These show similarities 

with the northwestern part of Borneo. The most prominent lithologic unit onshore is the ophiolitic 

sequence that was thrusted onto the island. The lithologies and formations onshore central and south 

Palawan are as follows (Figure 38). 
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Cretaceous Ophiolites; ‘‘Basement’’ 

In central and south Palawan, and on the island of Balabac (~8°N, 117°E), the oldest sediments 

associated with ophiolitic rocks and pillow basalts are of Early Cretaceous age (Letouzey et al., 

1988). These remnants of the Proto-South China Sea oceanic crust are believed to be also present 

in Sabah and Sarawak/Borneo (Hutchison, 2005a). Several authors suggested the ophiolites of 

Borneo to be the equivalents to the ophiolite complexes of south and central Palawan (Cullen, 2010; 

Rangin et al., 1990; Schlüter et al., 1996). Müller (1991) obtained Cretaceous nanoplanktons from 

calcareous red clays, associated with the pillow basalts in south Palawan and Balabac Island. The 

initiation of the consumption of this Proto-South China Sea oceanic basin likely took place in 

Middle Eocene times, around 44 Ma (Tongkul, 1991). Oceanic subduction evolved until collision 

(late Early Miocene to early Middle Miocene) when the Dangerous Grounds and NW Palawan 

microcontinental blocks entered the subduction zone (Concepcion et al., 2012; Cullen, 2010; 

Hutchison, 2010; Tongkul, 1991). Encarnacion (2004) derived an 39Ar/40Ar isochron age of 34 

Ma (Late Eocene) from pillow basalts on southern Palawan. This age is commonly referred to as 

obduction age for the ophiolites (e.g. (Cullen, 2010)) and coincides with the Late Eocene obduction 

age of the Telupid ophiolites in central Sabah which were thrust over the Crocker Formation 

(Concepcion et al., 2012). Cullen (2010) therefore proposed that the Sarawak Orogeny was a 

regional Eocene to Early Oligocene event that extended from Sarawak, through central Sabah and 

into Palawan. 

Early Tertiary Espina formation.  

Wolfahrt et al. (1986) reported an Upper Cretaceous to ?Early Tertiary highly indurated shale with 

some limestone and spilitic basalt, and interbeds of chert (Espina FM). These authors proposed that 

the formation is widespread on south and central Palawan Island but only patchy remains of these 

rocks are found in central Palawan because vast areas of the island were overthrusted by ophiolites. 

Some larger areas are preserved in southern Palawan (Aurelio, 2010). Radiolaria determine a Late 

Cretaceous (top Campanian/base Mastrichian) age for the lower part of this formation (Almasco et 

al., 2000). Some foraminifera in the upper part of the formation suggest an Early Tertiary 

(?Paleocene) age. The Espina FM was suggested by Aurelio (2010) to represent the youngest unit 

of the Palawan ophiolites. In Figure 38 we combined the Espina Fm with the ophiolites into a single 

unit. 

Sedimentary cover 

The successions of sedimentary rocks in central and south Palawan are comparatively young and 

distinctly different from North Palawan (Wolfahrt et al., 1986). Metamorphic rocks, which cover 

wide areas in North Palawan are restricted to small patches in south and central Palawan (Wolfahrt 

et al., 1986). 
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Eocene to Oligocene Panas (Pulute) Formation.  

The Eocene to Lower Oligocene Panas Formation (or Pulute FM) consists of beds of arkose with 

intervals of mudstone and siltstone (Wolfahrt et al., 1986). Onshore it also comprises massive 

sandstones, shales and conglomerates (Aurelio, 2010). According to Schlüter et al. (1996) the Panas 

Formation is also present offshore, forming the major part of the northwestern accretionary wedge, 

adjacent to the Borneo–Palawan Trench and is correlative to the Crocker formation of Sabah. 

The thrusted wedge is called Pulute formation in several well logs offshore W-Palawan. We follow 

this nomenclature even though the wedge development continued until the Upper Miocene, 

reworking the Eocene sediments and incorporating younger sediments (Middle Miocene) into the 

wedge front. 

Oligocene to Miocene carbonates.  

Little is known from the Early Miocene platform carbonates onshore and offshore south and Central 

Palawan. Wolfahrt et al. (1986) reported an Early Miocene massive, cross-fractured limestone 

(Ransang limestone) in southern central Palawan (Quezon area) which they consider as identical to 

the St. Pauls limestone from North Palawan. The carbonates are preserved on top of the ophiolites. 

Dating of the carbonates in the Quezon area (09°10´N 118°E) by Rehm (2002) gave Middle 

Miocene ages of about 16.5 Ma (planktonic foraminifer zone N7) to 13.5 Ma for these limestones. 

They started to develop at about the same time as the youngest dated Nido carbonates drowned. We 

question therefore the idea that these limestones are equivalents of the Nido limestone and suggest 

that these are rather part of a younger sequence, the Tabon limestone or Alfonso XIII Formation 

(Aurelio, 2010). 

The Alfoso XIII Formation is known from the Quezon area in the southern part of central Palawan 

and the western coast of south Palawan. Formaninifera and nanofossils indicate a Late Miocene (or 

a ?late Middle Miocene to Late Miocene) age for the massive to bedded, mostly micritic packstone 

and wackestone (Wolfahrt et al., 1986). More recent dating by Rehm (2002) on this formation gave 

an age of late Middle Miocene. This study also showed that these carbonates onshore are getting 

younger towards the west. Age information collected near the base of this formation showed ages 

from 15 Ma to 13.5 Ma. 

Offshore the Alfonso XIII Formation coevals with the Tabon limestone (Aurelio, 2010; Schlüter et 

al., 1996). 
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Figure 38: Geological map of Palawan Island adapted and modified from the JICA-MMAJ data and maps (1989). 
Offshore wells are indicated. The legend shows the main geological units of northern and central-south Palawan. 

Data base 
In the past 30 years more than 50 commercial wells were drilled offshore on the West Palawan 

shelf. Here we used data from the 15 best documented wells, 10 on the SW Palawan shelf and 5 on 

the NW Palawan shelf, for correlation and detailed investigation (Figure 36, Table 4 and Table 5). 

The 10 wells on the SW Palawan shelf are spread over 360 km along the shelf from the northernmost 

well P_296 at 10°17´N to the southernmost well Likas-1 at 07°43´N. For these 10 wells detailed 

biostratigraphic reports were available. In addition to the reports, well summaries, giving tentative 
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ages were available for all wells. Five of these 10 wells penetrated the Tabon limestone. To interpret 

the extent of the Tabon limestone across the region a set of multichannel 2D seismic lines, acquired 

by BGR in the last 30 years, was used. For location of the seismic lines see Figure 40. Ages were 

assigned to the biostratigraphic zones according to the biostratigraphic correlation of the ODP-site 

1148 on the northern South China Sea (Qianyu Li, 2004). Ages for about 25% of the biomarkers 

which were not dated in the ODP-site 1148 were assigned according to age data given by Berggren 

(1995). 

From the biostratigraphic reports zones of planktonic foraminifera assemblages were identified and 

the tops of these foraminiferal zones were defined as biostratigraphic markers. Biostratigraphic 

zones in the well data range from N2 (top is 26 Ma) to N22 (top is 1.8 Ma). Figure 39 shows the 

well data with the identified biostratigraphic zones for each five wells on the NW and SW shelf. 

For better visibility the Tabon limestone, the Nido limestone and the Pulute Formation are 

highlighted by shading. 

Interpretation 

Oligocene to Early Miocene platform carbonates, the Nido carbonates 

The Nido carbonates comprise both platform carbonates and reefs growing on top of these platforms 

(Figure 37 and Figure 45). The carbonate platform is widespread in the Palawan–Borneo trough 

and on the NW-Palawan shelf (Figure 40). Since the reefs on top of the platform started and ended 

their development at different times we used only the Nido carbonate platform for dating. Depth 

and age of the Nido carbonates for each well are given in Table 4. 

Distribution of Nido limestone 

Based on 2D-seismic data, tied to wells a depth-structure map at the top of the Nido platform 

carbonates is presented in Figure 40. The lateral extent of the continuous Nido carbonate platform 

as plotted on the map is well constrained by seismic lines at its western and northern boundary. 

Towards the south the platform continues to offshore Sabah. Due to the decreasing resolution of 

the seismic lines close to the Palawan shore it is not possible to define the eastern boundary of the 

platform underneath the thrusted wedge. The western limit of the platform carbonate was 

interpreted on reflection seismic data only. Only areas with a distinct low-frequency pattern, 

indicating the presence of such carbonates are indicated in Figure 40. However, such reflection 

pattern may change to a more regular image when the platform becomes thinner and we may have 

missed some areas still being covered by carbonates. Thus this figure indicates a minimum extend 

of the platform carbonates. Smaller, isolated carbonates of Oligocene to Early Miocene age are also 

present in the Dangerous Grounds but not shown in Figure 40. 
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Table 4: Depth and age of the Nido Limestone 

Well name 
Depth top 

Nido (m) 
Age top Nido 

Age top Nido 

(Ma) 

Depth base 

Nido (m) 
Age base Nido 

Age base 

Nido (Ma) 
TD 

Base 

drilled 

Busuanga 1600 Late Oligocene 26.00 1857 Early Oligocene 32.40 1857  

Busuanga (Nido Reef) 1341 Early Miocene 17.00      

Nalaut 1410 Late Oligocene 22.50 1524 Late Oligocene 24.30 1524  

Galoc-1 2357 Early Miocene 16.40 3634 Late Oligocene 24.70 3700 yes 

Cadlao-1 2298 Early Miocene 22.60 2634 Late Oligocene 25.70 3295 yes 

Cadlao-1 (Nido Reef) 1720 Early Miocene 16.40      

Enterprise Point A-1x 2222 Middle Miocene 14.50 2598 Early Miocene N.A. 2598  

Catalat-1 2631 Early Miocene 19.00 4037 Late Oligocene 25.00 4362 yes 

P_296 2868 Early Miocene N.A. 3025 Early Miocene N.A. 3025  

SW-Palawan shelf         

Penascosa-1 3215 Middle Miocene 15.20 3706 Early Miocene N.A. 4267 yes 

Anepahan 2603 Early Miocene 16.40 2743 Early Miocene N.A. 2743  

 
Table 5: Depth and age of the Tabon Limestone 

Well name 
Depth top 

Tabon (m) 
Age top Tabon 

Age top 

Tabon (Ma) 

Depth base 

Tabon (m) 
Age base Tabon 

Age base 

Tabon (Ma) 

AboAbo A1-x 1252 Lower Late Miocene 7.45 1445 Lower Late Miocene 9.2 

Kamonga-1 840 Lower Late Miocene 7.34 1045 Lower Late Miocene 9.2 

Murex-1 979 Upper Late Miocene 5.5 1169 Upper Late Miocene 6.8 

Paz-1 728 Lower Pliocene 4.6 1057 Lower Late Miocene 9.2 

Likas-1 740 Lower Pliocene 4.35 1137 Lower Late Miocene 7.8 

 

 
Figure 39: Correlation chart of ten selected wells offshore west Palawan. Superimposed on the lithologs of the wells the 
tops of planktonic foraminifera zones are shown. The assigned ages for these formation tops are given in the legend. The 
three main formations (Tabon limestone, Nido limestone and the thrusted wedge) are highlighted by shaded background. 
The location of the wells is given on the small inset maps and on Figure 36 and Figure 38. The inferred position of the 
Ulugan Fault Zone is drawn as a dotted black line. 
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In the Reed Bank area the time equivalent of the Nido limestones was drilled at depths of ~1700 m. 

Well logs show a continuous deposition of carbonates since the Oligocene on Reed Bank. This is 

likely related to the fact that the Reed Bank is a relatively stable block which subsided less than the 

surrounding area, but was continuously submerged since the Oligocene. 

 
Figure 40: Depth of the Top Nido platform carbonates. Thick solid lines indicate the coastline and 100 m depth contours 
are shown as dashed lines. The inferred position of the Ulugan Fault Zone and the outline of the thrusted wedger are 
indicated. Gray lines indicate the reflection seismic dataset used for the regional interpretation of the platform 
carbonates. This map shows the outline of the continuous Nido platform. Isolated carbonates occur also on the Reed 
Bank and in the Dangerous Grounds. The color code of the legend ranges from very shallow (bright yellow) to deep 
(blue). 

Offshore north Palawan, to the northeast of the proposed Ulugan Fault Zone, the carbonates are 

generally at shallow depth and dip towards the west (Figure 40). From a depth of about 3.5 km 

(orange) at ~11.5°N, 118.5°E they rise to less than 0.5 km (bright yellow) close to the shore and 

crop out onshore northern Palawan. 

Off the coast of central and south Palawan the Nido limestones dip in the opposite direction, towards 

the southeast. The depth increases from ~1.5 km (yellow) at ~9°N, 116°E to more than 8 km (green) 

at ~8°N, 117°E, or even more offshore Sabah. 

This dipping is likely caused by the down bending of the Dangerous Grounds plate due to the 

loading effects by the thrusted wedge. 
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The trend of the Ulugan Fault Zone may be inferred from a rapid depth change of the carbonates at 

10.5°N 118.8°E. 

The seismic data indicate that at least wide parts (if not all) of the downgoing plate beneath south 

and central Palawan are covered by carbonates which likely are equivalents of the Nido limestone 

as found on the northwest Palawan Shelf. 

Age for the base of Nido limestone 

The onset of the Nido limestone deposition was controlled by pre-Nido extensional deformation 

leading to a rugged seafloor relief. The carbonates started to develop at the highest points of the 

seafloor (Grötsch and Mercadier, 1999). For three wells offshore North Palawan age information 

near the base of the Nido platform carbonates are available. These ages are upper Late Oligocene 

(~25 Ma). The calculated ages range from 24.3 Ma (Nalaut-1 well) to 24.7 Ma (Galoc-1 well). The 

top of foraminiferal zone N3 (23.3 Ma) could be identified in the Cadlao-1 well, about 40 km west 

of North Palawan, at about 180 m above the base of the limestones. We therefore calculated an age 

of about 25.7 Ma for the onset of carbonate sedimentation (see Table 4). 

In five wells offshore north Palawan age information within the Nido succession are available 

(Table 4). These ages range from the Early Oligocene (zone O3/N1 (top is 29.4 Ma)) to the lower 

Early Miocene (zone N4 (top is 21.5 Ma)). The oldest marker (top O3) is located ~800 m above the 

base of the limestones. Due to thrust tectonics in the area of this well the true thickness of the 

limestones is difficult to determine. In the Busuanga-1 well 60 km north of the previously described 

the top of zone N2 (26 Ma) is located ~200 m above the base of the limestone giving an age of 

Early Oligocene (32 Ma). 

Age for the top of Nido limestone 

The deposition of the Nido carbonates ceased with the drowning of the carbonates in the early Early 

Miocene (Aquitanian–Burdigalian) and the carbonate buildups were sealed by Early to Middle 

Miocene basinal Pagasa clastics (Fournier et al., 2005; Williams, 1997). With the data at hand it is 

not possible to assign a specific age to the top of the carbonates. 87Sr/86Sr dating of a sample in the 

Malampaya field offshore northwestern Palawan indicate a drowning age of the Nido Carbonates 

of about 20 Ma (Grötsch and Mercadier, 1999). Two additional samples at the base of the Pagasa 

formation yielded dates of 15.1–13.7 Ma and 18.8–17.3 Ma respectively (Grötsch and Mercadier, 

1999). The youngest reef buildup was drilled by the well Enterprise Point ~ 1100 km off the coast 

of North Palawan where the top of foraminiferal zone N8 (15.2 Ma) occurs only 1 m above the top 

of the limestone, confirming in some places the reef buildup continued until the early Middle 

Miocene (Williams, 1997). A reef of similar age is shown in Figure 47 at 5 km offset. 

We found no outcrop or reference claiming the existence of equivalents of the Nido carbonates 

onshore south and central Palawan. 
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In the wells offshore central Palawan the dating of the Nido carbonates is not straight forward due 

to the general poor occurrence of indicative fossils. Only in the well Penascosa-1 the top of 

foraminiferal zone N8 (top is 15.2 Ma) was identified four meters above the top of the Nido 

limestone (Figure 39). In addition, most wells penetrated only reef buildups above the platform 

carbonates. These reefs ended their development in the Early Miocene (16.4 Ma) in the Anepahan-

1 well and in the Middle Miocene (15.2 Ma) in the nearby Penascosa-1 well (see Figure 36 for 

location). As locally reef growth continued when the deposition of the platform carbonates had 

terminated throughout the area these young ages may be misleading in defining when the deposition 

of the Nido carbonates ceased. Since we focused on the ages of the carbonate platform, we did not 

take these younger ages of the reefs into consideration. 

In two wells (Anepahan-1 and Penascosa-1) off the coast of central Palawan Nido limestones were 

drilled and easily correlated with a distinct unconformity in the seismic data. 

On the seismic data, the platform carbonate sequence exhibits subparallel reflections of high 

continuity and low frequency content. The top of these limestones is clearly visible in the seismic 

data as a distinctive positive reflector and can be traced also offshore central and south Palawan, 

and further into the Dangerous Grounds area west of Sabah (Figure 40). 

Age and stratigraphy of Tabon limestone 

Extent and stratigraphy 

In the offshore area the Tabon limestone was exclusively deposited on the thrusted wedge in front 

of south and central Palawan (Figure 43). To the north it can be confidently traced in the seismic 

data to N10°25´. To the south the extent of the Tabon limestone is not unequivocally clear. In the 

seismic data the Tabon limestone can confidently be traced to N09°17´, but it was confirmed by the 

well Likas-1 at N07°38´ and the well Kudat-1 offshore Sabah at N07°11´. The data at hand does 

not allow defining the southern extent of the Tabon limestone more precisely. The Tabon limestone 

is interbedded in horizontally to subhorizontally layered fine clastic sequences. It is overlain by the 

clayish to very fine sandy Matinloc Formation (top is 7.8 Ma) or the Quezon Marl and below there 

is occasionally a succession of the fine-sandy/clayish lower Matinloc Formation. This lower 

Matinloc Formation reaches its greatest thickness of ~200 m in the westernmost well (Murex-1). In 

the other wells offshore central and south Palawan the Lower Matinloc Formation below the Tabon 

limestone reaches thicknesses of at maximum 55 m (e.g. Kamonga-1). The depth of Tabon 

limestone for all wells is given in Table 5. The Lower Matinloc Formation probably originated from 

erosion of the onshore area further towards the east. The latter sediments lie unconformable on top 

of the accreted wedge. 
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Figure 41: Correlation chart of five wells that penetrated the Tabon limestone offshore SW-Palawan. The tops of 
foraminiferal assemblage zones are superimposed shown on the lithologs of the wells. The Tabon limestone and the 
accretionary wedge are highlighted by shaded background and the ages of the formation tops are given in the lagend. 
The insert map shows the position of the wells on the shelf (see also Figure 36). 

Rehm (2002) found that the late Middle Miocene carbonates outcropping in the southern part of 

central Palawan (shaded areas in Figure 43) are getting younger at their base from east (16.5 Ma) 

to west (12 Ma) over a distance of 4–5 km. Using the biostratigraphic data from five offshore wells 

that drilled through Tabon limestone (Figure 41, Figure 43 and Table 5) this younger-westward 

trend can be extended for 45 km across the offshore area. The age determination for the Tabon 

limestone is exemplarily described for the Paz-1 well (Figure 36 and Figure 41): The thickness of 

the Tabon limestone in this well is 330 m. There is one biostratigraphic marker (top N16; 8.3 Ma) 

within the Tabon limestone sequence in this well. The neighboring biostratigraphic markers at 
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shallower and greater depth, which are top N18 (4 Ma) and top N14 (10.2 Ma) are present in the 

sandy sediments overlying and underlying the carbonates. 

The question is about how to determine the age when the carbonate sedimentation started and 

terminated. Our approach was to calculate average sedimentation rates for both, the clastic 

sediments and the carbonates. The calculated sedimentation rate for the carbonates of 1 mm/year is 

well within the average growth potential of carbonate platforms and reefs (Schlager, 1981). Effects 

of compaction were not taken into account for this calculation. As these calculation bear some 

uncertainties we have marked the calculated ages as dashed lines in Figure 42. 

 
Figure 42: Deposition scheme of Tabon limestone. Bars indicate the measured (solid) and Calculated (dashed) deposition 
times for the limestone. The thickness of the limestones is given for each well. Inset map shows the position of the wells 
on the shelf. 
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Age for the base of Tabon limestone 

The initial development of the Tabon limestone was found to be diachronous across the SW 

Palawan Shelf. The scarcity of seismic lines and well information did not allow a continuous 

interpretation of the Tabon limestone across the SW Palawan Shelf. The northern and southern parts 

in contrast are well underpinned by seismic lines (shaded area in Figure 43), but we suggest that 

the Tabon limestone is also present in the area in between. 

Onshore the oldest Tabon limestones (late Early Miocene; ~16 Ma) were found approximately 4 

km from the coastline in the Quezon area (Rehm, 2002). Directly at the coast late Middle Miocene 

to early Late Miocene (~13 Ma) carbonates crop out. 

The Tabon limestones onshore coincide roughly with the tops of Zones N11 (13.2 Ma) and N7 

(16.5 Ma). 

In the Aboabo-A-1x well, about 30 km off the coast of Central Palawan (9°23´N 117°36´E) the 

Tabon limestone deposition started in the early Late Miocene (~9 Ma). This shows a trend to young 

in westward direction for the onset of carbonate deposition. 

Further south, about 35 km southwest of the coast of Balabac Island (7°43´N 116°42´E) the Tabon 

limestone started growing in the early Late Miocene (~8 Ma; Likas-1 well). The youngest drilled 

carbonates of the Tabon limestone formation were found at the Murex-1 well, 30 km off the coast 

of south Palawan. In this well no top of a foraminiferal zone could be identified within the Tabon 

limestone section. By extrapolating the age, using the calculated sedimentation rate, we suggest a 

late Late Miocene age (~7Ma) for the beginning and also late Late Miocene (~5 Ma) for the end of 

the deposition of the Tabon limestone here. Thus, there is again an age trend showing successive 

younger carbonates in westward direction between the wells Kamonga-1 and Murex-1. In the 

Kudat-1 well 63 km south of Likas-1 the Tabon limestone has Tortonian (Late Miocene) 

nanoplankton, which is in accordance with the age of the Tabon limestone in the Likas-1 well. 

The temporal and spatial transgressive development of Tabon limestone is probably linked to 

tectonic activity during the formation of the wedge. We propose that pulses of uplift from the 

southeast towards the northwest brought the top of the wedge progressively into shallow water 

conditions, allowing the carbonates to grow. This uplift started in the eastern, now onshore, part of 

central Palawan where the Tabon limestone is found to directly overlie the ophiolites. Here, the 

limestones are dated as late Early Miocene (Rehm, 2002). A general rise in sea level between 10 

and 5Ma (Haq et al., 1987) likely provided the space for the further growing of the limestones. 

However, as the top of the wedge is widely horizontal we exclude sea level variations as main 

explanation for the westward migrating carbonate deposition. Assuming a tectonically stable area 

which is already partly under subaerial conditions (central Palawan with the onshore Tabon 

limestone) a rise of the sea level would result in a transgression towards the east. 
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Figure 43: Distribution of Tabon limestone on the western Palawan shelf. Areas with proven occurences of the limestones 
are shaded. Onshore outcrops near the city of Quezon are also shaded. Ages are given for the oldest parts of Tabon 
limestone at different locations. 

In this case the deposition of carbonates and the development of reefs would start in the west in the 

shallow water and then propagate eastward, but the contrary is the case. We thus propose that a 

tectonically induced uplift of the wedge in front of central and south Palawan provided 

progressively shallower water conditions, allowing the Tabon limestone to prograde towards the 

west. 
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Age for the top of Tabon limestone and end of deposition 

The limestone sedimentation may have finished as result of either a slow retreat of the carbonates 

or their rapid drowning. The area around the Paz-1 and Likas-1 wells offshore Balabac Island in the 

south and the area of Murex-1 and Kamonga-1 offshore southern Palawan show different 

developments of the Tabon limestone. In Murex-1 and Kamonga-1 the Tabon limestone is overlain 

by marls. This indicates a retreat of the reef probably towards the west. Offshore southern Palawan 

this retreat terminated the Tabon limestone development first in the Kamonga-1 well in the lower 

Late Miocene (Tortonian). Around the same time the deposition of Tabon limestone started in the 

Murex-1 well 8 km further towards the west and went on until the upper Late Miocene (Messinian) 

before here the carbonates were also overlain by marls. 

To the southwest of Balabac Island, the rocks overlying the limestones are predominately 

claystones. This indicates deep water conditions and therefore a much faster drowning of the Tabon 

platform in this area. We derive an end of the carbonate sedimentation at 4.6 Ma (Paz-1) and 4.4 

Ma (Likas-1). We thus propose that the platform drowned in both places southwest of Balabac 

Island more or less simultaneously in the lower Early Pliocene. 

Similar to the Kamonga-1 well offshore South Palawan, in the Aboabo A-1x well offshore Central 

Palawan the deposition of Tabon ended at around 7 Ma, but here the platform drowned quickly and 

the carbonates were overlain by clays. The fast drowning of the platform in central Palawan is 

possibly linked to a local gravitational collapse at the wedge front, leading to rapid extension and 

subsidence. We could identify at least two separate areas where such a collapse took place. It is 

clearly visible along several seismic lines across the wedge and is shown exemplarily in Figure 44 

and Figure 46. 

Structure of the Tabon limestone 

The Tabon limestone can be traced offshore towards the west until close to the edge of the wedge 

in front of Palawan. The seismic images (e.g. Figure 46) show clearly that the Tabon limestone is 

not affected by the thrusting of the wedge in the offshore area. It lies undisturbed and 

unconformable on the thrusted rocks of the wedge, showing horizontal to subhorizontal internal 

reflectors. Only at the far western edge of the wedge, the Tabon limestone is affected by a late 

extensional deformation at the wedge front. This extension is most probably caused by gravitational 

collapse or sliding of the wedge front. The general mechanisms of collapse at the front of a thrusted 

wedge are described exemplarily by Moores and Twiss (1995). This localized extension fits 

together with the rapid facies change from shallow water carbonates to deep marine clays as 

observed in several wells. Onshore the equivalent of the Tabon limestone, overlying the ophiolites 

of Mesozoic age is heavily folded. This folding resulted in a large anticline with a ridge-axis 

oriented in NE–SW-direction in southern central Palawan. In fact the topography of the whole 

South Palawan Island reflects that anticline. The folding took place after the deposition of the Tabon 
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limestone in that area. The youngest samples of this limestone in the Quezon area are dated upper 

Middle Miocene, so the uplift and folding must be younger. 

Discussion 
From a detailed interpretation of the seismic lines and a close examination of the biostratigraphic 

data available, we could conclude constraints for the development of the limestone formations and 

the Panas/Pulute wedge. 

Nido limestone 

Variations in the structure and evolution of Palawan Island are mirrored by the distribution of the 

Nido limestone. Offshore North Palawan these limestones show a general west-dip and finally crop 

out onshore (Figure 47). Offshore central and south Palawan, the Nido limestone platform dips 

eastward and is overthrusted by the Panas/Pulute wedge in front of Palawan and the Crocker wedge 

in front of Sabah (Figure 44 and Figure 45). 

 

 
Figure 44: Reflections seismic profile A-A´, running across the Palawan-Borneo Trough and the accretionary wedge 
offshore southern Palawan. In the interpreted section (bottom) the main unconformities are shown. (color code is given 
in Figure 37). The rifted half-graben structure of the Palawan-Borneo Trough is shown in the central and left part, the 
thrusted wedge is visible on the right side. The full litholog of the well is given on the right, next to the seismic line. The 
location of the profile is shown in Figure 36. 
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Figure 45: Reflection seismic profile C-C´, running across the Palawan-Borneo Trough and the accretionary wedge 
between southern Palawan and Balabac Island. This line illustrates the structure of the thrusted wedge and the two 
limestone formations, the Nido and the Tabon. The position of the profile is shown in Figure 36. Top: not interpreted 
seismic; bottom: Line-drawing interpretation with limestones highlighted by bold lines. The reference well Murex-1 was 
projected from a distance of approximately 15 km onto the line. The inferred position of the Nido limestone underneath 
the wedge is indicated by a dashed line due to the strong decrease in seismic resolution underneath the wedge. The 
rectangle indicates the position of the enlarged section shown in figure 37 

In the Catalat-1 well, slightly north of the Ulugan Bay in northern Palawan the top of the Nido 

limestone is drilled at a depth of 1.65 s TWT (2630 m). In the next seismic line, about 27 km further 

south the distinct reflector – associated with the top of the Nido limestone – is at 3.14 s TWT (~4600 

m) and the platform dips east. In between the supposed Ulugan Fault Zone must be located, yet no 

trace of this fault zone can be observed in our seismic data. Modest variations in the magnetic signal 

across the NW Palawan shelf (Ishihara and Kisimaoto, 1996) may indicate the prolongation of the 

Ulugan Fault Zone from north of Ulugan Bay into NNW-direction. 

Relationship between the Nido, Tabon, and Pulute Formations 

Nido and Tabon relationship 

Our data show that the Nido platform carbonates were deposited before the Middle Miocene. Thus, 

Middle Miocene and younger carbonates in the Quezon area in central Palawan are rather the Tabon 

limestone and not the St. Pauls (Nido) limestone. This has been proposed earlier by Rehm (2002). 

Nido and Panas/Pulute relationship 

Seismic images (Figure 44 and Figure 45) show clearly that the Nido platform was, after its 

deposition, overthrusted by the Panas/Pulute wedge. The Nido platform was not or only mildly 

affected by the thrust tectonics indicating a detachment at the top of the carbonates or slightly above. 
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Tabon and Panas/Pulute relationship 

The thrusting and development of the Panas/Pulute wedge led to prograding shallow water 

conditions from east to west. These shallow water conditions allowed the Tabon limestone to build 

up. A rising sea level may have provided additional space for the limestone deposition but the 

tectonically uplift remained to the main controlling factor for the propagation of the limestones. 

The limestones were not affected by the thrusting indicating a deposition after the formation of the 

accretionary wedge. 

 

 
Figure 46: Reflection seismic profile showing the expression of the Tabon limestone. (top – not interpreted; bottom – 
interpreted; right: lithology of Murex-1 well). The position of the Tabon limestone is highlighted in the interpreted section. 

Time constraints for the initiation of wedge development 

The timing of the formation of the offshore wedge is constrained by the underlying and overlying 

carbonate formations. The thrusting postdates the underlying Nido platform carbonates and must 

have ended before the formation of the overlying Tabon limestone. Even though it is not clear how 

far the Nido carbonates reach to the east beneath south Palawan their age provides a clear constraint 

for the initial formation of the thrusted wedge. Biostratigraphic correlation gave an Early Miocene 

age of 18–20 Ma for the top of these platform carbonates. We conclude that the Pulute wedge was 

not present before 18 Ma. It needed certainly some time allowing the platform carbonates to subside 

to the present depth but the wedge may have started to form at any time after 18 Ma ago. The Tabon 

limestone seals the wedge and was therefore deposited after the formation of the wedge. This further 
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constrains the development of the wedge in the south Palawan area. Onshore the oldest Tabon 

limestone is about 16 Ma old (late Early Miocene). 

This indicates that the formation of the Pulute wedge started between 18 and 16 Ma ago. From the 

sealing Tabon limestone it is concluded that the Pulute wedge continued migrating west until the 

upper Late Miocene (~7 Ma). The Tabon limestone continued growing vertically for two more 

million years before carbonate sedimentation ended at about 5 Ma in the late Late Miocene. 

Uplift of southern and central Palawan Island 

If we assume the island of central and south Palawan as a continuation of the thrusted offshore 

wedge (Hutchison, 2010), which is underpinned by the seismic line BGR8410 running across the 

wedge between Palawan and Balabac Island, we are able to further constrain the evolution of this 

island. Central and south Palawan developed during the Miocene with the propagation of the 

thrusted wedge from the east towards the west. At least the central Palawan area was below sea 

level before the late Early Miocene. The thrusting and wedge development continued in the offshore 

area until the early Early Pliocene when the depositional environment on top of the wedge changed 

from shallow marine to deep marine conditions. This change in the depositional environment 

coincides with the end of the convergence in the area. 

Young uplift of the area around the city of Quezon can be deduced from carbonate precipitates 

covering a marine bivalve found in a cave. 87Sr/86Sr dates of these precipitates, provides an age 

between the Pleistocene (1.2 Ma) and Recent (Rehm, 2002); from which we infer that subaerial 

conditions prevailed at least since the Pleistocene. An investigation of the lithologies above the 

Tabon limestone in the wells offshore SW-Palawan shows predominantly claystones and marls in 

the wells on the southwestern part of this shelf with very minor amounts of silt and very finegrained 

sandstone further towards the northeast. From this observation we exclude a high input of terrestrial 

clastics and therefore a nearby landmass. The youngest limestones onshore at the western coast of 

south Palawan were dated late Middle Miocene (Rehm, 2002).  

We suggest therefore that south Palawan and potentially also central Palawan were not exposed 

before the late Middle Miocene, allowing the reef buildups to develop before their subaerial 

exposure. 

In the seismic lines on the west Palawan shelf an unconformity (named ‘‘Base Carcar Limestone’’ 

in Figure 44) is distinct. The unconformity was dated as Late Pliocene by Schlüter et al. (1996) and 

late Late Pliocene (3.4 Ma) in this work. The unconformity is suggested to mark a widespread uplift 

which is related to a Pliocene tectonic event resulting in folding of the Tabon limestone onshore 

and probably causing the uplift and subaerial exposure of southern Palawan Island while the 

Panas/Pulute wedge, in contrast was probably continuously below sea level. The fact that the 

offshore is not folded may be due to the loss of significance of this tectonic event in western 

direction. This tectonic event may also be a local feature. 
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Having shown show that the Tabon limestone developed from east to west, we believe that the 

development of these carbonates is tectonically controlled by the uplift associated with the 

prograding development of the wedge from east to west.  

 
Figure 47: Reflection seismic section across the NW Palawan shelf (top - not interpreted; bottom - interpreted). Position 
of profile is indicated in Figure 36. The position of the Nido limestone is highlighted by shading. Welltops of two wells 
are given for correlation. Rift structure and postrift strata are shown. The reef at ~ 5 km in an example for isolated 
carbonate development after the overall cessation of the Nido platform growth. 

Uplift of northern Central Palawan 

Further to the north in the Palawan–Borneo Trough the sedimentation within the clastic Matinloc 

Formation (coeval with the Tabon limestone deposition on the wedge) gets coarser. In front of 

northern central Palawan two coarse grained (sand- stone/conglomerate) formations with a 

thickness of about 100 m were drilled by the Penascosa-1 well. These two sequences of coarse 

material may give indications for uplift episodes of the northern part of central Palawan. These two 

episodes took place at ~12 Ma, resulting in the deposition of conglomerates and 8–9 Ma, resulting 

in the deposition of sandstones. In front of NW-Palawan the coarse grained Matinloc Formation 

was deposited during the Upper Miocene. This indicates a much earlier uplift to subaerial conditions 

of north Palawan in comparison to central and south Palawan. Onshore northern Palawan this uplift 

is difficult to confirm since the Oligocene–Early Miocene ‘‘St. Pauls/Nido’’ limestones are the 

youngest preserved units (Wolfahrt et al., 1986). It may be speculated that the uplift phase was 

coeval with the folding of the St. Pauls limestone (equivalent of Nido limestone) however, the 

timing is poorly constrained. 
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Conclusions 
1. The two limestones, Nido and Tabon limestone provide time constraints for the development of 

the Pulute wedge. The Pulute accretionary wedge did not form in the Palawan area prior to ~18 Ma. 

Thrusting continued to ~7 Ma. 

2. A detailed age determination and correlation of the Tabon limestone onshore and offshore central 

and southern Palawan indicates a prograding of these limestones towards the west. This prograding 

is tectonically controlled by the development of the underlying Pulute wedge. 

3. The thrusting of the wedge may be linked to the final collision of the northern (Dangerous 

Grounds) and southern margin (Cagayan block) of the proto-South China Sea (Rangin et al., 1990). 

The tectonic uplift of the wedge is related to the outward propagation of the deformation in the 

thrusted wedge. 

4. We show that there is no evidence for the presence of Nido carbonates onshore central and 

southern Palawan. The limestones cropping out there are merely the younger Tabon limestone. 

5. The Nido limestone is distinct underneath the Pulute wedge and could be traced in the seismic 

lines throughout the Palawan–Borneo Trough until west of Borneo. 

6. A second pulse of uplift caused the folding of the Tabon limestone onshore central and southern 

Palawan. Time constraints for this event are the late Late Pliocene unconformity on the west 

Palawan shelf and a working spleothem in the Quezon area since 1.2 Ma.  

Acknowledgments 
We gratefully acknowledge Total Exploration & Production GSR/PN/BTF Team for stimulating 

discussions. 

We benefited greatly from constructive reviews from Andrew Cullen, Mike Cottam and an 

anonymous reviewer which considerably helped to improve the manuscript. Funding of this study 

by TOTAL E&P is kindly acknowledged. 

Erratum 
A typo survived the reviewing process of this paper. In the chapter “Age for the top of Nido 

limestone” the position of the well Enterprise Point was given as “1100 km off the coast of North 

Palawan”. This is not correct. The actual position of this well is 65 km off the coast of N-Palawan.
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Chapter 5: Discussion 
There were a series of questions raised at the beginning of this thesis. This chapter will summarize 

what answers could be given to them and how these answers were derived. 

How did the southeastern margin of the South China Sea evolve during time?  
As stated before the extrusion theory, relating the opening of the South China Sea with the collision 

of India and Asia, will not only result in a massive timing problem (the collision was later) but also 

in geometrical issues. It is very hard to relate a zipper-like opening with strike-slip faults. The best 

explanation of the zipper-like opening of the SW-subbasin is the slab-pull theory: The subduction 

of a piece of oceanic crust (Proto South China Sea) towards the southeast. Also the occurrence of 

Ophiolites onshore southern Palawan indicates the presence of a Proto South China Sea. (Chapter 3 

and 4) 

After the breakup the southeastern margin of the South China Sea collided with a thrusted wedge 

to form what is now south Palawan Island (and western Borneo). The load of this wedge caused the 

rifted continental crust to bend down to form the Palawan-Borneo trough. In this trough early post-

rift sediments are at a depth of up to 14 km and the syn-rift sediments are buried even deeper 

(Chapter 4; Figure 40). Directly west of the trough the crust is slightly bend upward, forming a 

forebulge. This forebulge enabled the widespread development of carbonates additionally to the 

tips of tilted fault blocks that provide the shallow water conditions for carbonate development 

further to the west. (Chapter 3). 

The whole system stopped shortly after the collision and some gravitational sliding affected the 

westernmost parts of the Palawan-Borneo wedge. (Chapter 3). 
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Is it possible to find a way of constraining the post-rift development? When 
did the margin collide and how was this affecting the continental crust? 
In the oceanic part of the South China Sea the spreading history was recently investigated by 

Barckhausen et al. (2014; 2004) and Ding et al. (2018). In the rifted continental part the 

development was constrained by using seismic unconformities that could be traced over large areas 

of the Dangerous Grounds (Chapter 3). Two of these seismic unconformities were assigned to 

represent the tops of two limestone formations. These limestones were dredged and drilled in 

several places, allowing the dating of them. Based upon these dating the timing of the collision 

between the Dangerous Grounds and the Palawan accretionary wedge could be constrained to have 

happened between 18 and 7 Ma (Chapter 4).  

The constraining of this age was a little bit problematic since many of the seismic lines end close 

to the front of the accretionary wedge and seismic lines shot on the wedge did not resolve the 

underlying Dangerous Grounds plate. In addition, the wells drilling the Nido limestone are also 

located close to the wedge front. From some seismic lines it can be inferred that these limestones 

continue towards the east underneath southern Palawan. Therefore, it is very likely that the collision 

and wedge initiation started prior to 18 Ma, but it is impossible to give an exact age for them. 

Assuming the development of a forebulge (Chapter 3) as the main controlling factor for the 

development of the Nido carbonates it is possible to date the collision back to at least the Late 

Oligocene. 

Another prominent seismic unconformity was used to constrain the post rift development. This 

unconformity was named “Red unconformity” “C”, “Top Pagasa”, or “Middle Miocene 

Unconfomity” (Chapter 3). By closely investigating it in the seismic image, it came to view that 

this unconformity does not represent an erosional event throughout the whole investigation area. 

Towards the west the erosion at this unconformity gets lesser and it turns into conformity close to 

the COB offshore North Palawan. Also in the Palawan-Borneo trough it seems that this seismic 

unconformity does not represent an erosional unconformity (Figure 48).  

 
Figure 48: Part of seismic profile so197-30 located in the Palawan-Borneo trough.Red reflector shows no indication of 
beeing a stratigraphic unconfirmity. 
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Offshore North Palawan this unconformity was dated 15.2 Ma (Chapter 4). This unconformity 

could be traced across the Dangerous Grounds to the Mulu-1 well, here it was dated 11.5 Ma. So 

this unconformity is also diachronous. The erosional event, associated with the Red unconformity 

follows the direction of the opening of the SW-subbasin of the South China Sea (Chapter 3). 

Is it possible to find the continent-ocean boundary of a proposed proto-South 
China Sea? 
Unfortunately this is not possible. There are no seismic lines crossing south Palawan Island and 

most of the seismic lines terminate at the western wedge front about 40 km off the coast. The only 

lines crossing the Palawan-Borneo wedge are located between south Palawan and Balabac Island 

and between Balabac and Borneo. In that area the reflector of the Nido carbonates, which marks 

the top of the downgoing plate, is located in a depth of about 6 to 7 seconds TWT. The resolution 

of the seismic lines is not sufficient to resolve any features below a depth of about 2 to 3 seconds 

TWT underneath the wedge (Figure 49). Illao et al. (2018) could trace the top of the Nido Platform 

further towards the coastline, but couldn´t also find the COT of the Proto South China sea in the 

3D seismic they used. 

 
Figure 49: Detail of seismic line BGR84-01, crossing the wedge south of Balabac Island. The reflecion of the Top Nido 
Platform is hardly visible underneath the western edge of the wedge (left) and underneath the wedge no clear signal 
could be received below ~ 3000 ms. 

Approaching Palawan Island from the east the seismic lines do also not reach closer to the shoreline 

than 10 km and do not resolve any features below the “pink reflector” that is considered to represent 

the top of the obducted ophiolite. 

  



Chapter 5: Discussion 
 
 
 

90 
 

How are the carbonates offshore western Palawan distributed? What are the 
constraints of their development and is it possible to link the development 
with regional tectonics? 
From the detailed interpretation of seismic lines the distribution of Oligocene to recent carbonates 

could be deduced (chapter 3). Recent reefs are mainly located on the Reed Bank Block and the tips 

of tilted fault blocks e.g. the Spratley Islands (Figure 31) and are widespread across the Dangerous 

Grounds until close to the Palawan Borneo Trough. The Nido Carbonate platform could be traced 

over large distances within the Palawan Borneo Trough and the easternmost part of the Dangerous 

Grounds. Here the outline of the platform is lobate and 4 smaller carbonate platforms are located in 

front of it. Nevertheless these smaller platforms are also seen as Nido Carbonate platform. Further 

within the Dangerous Grounds no larger continuous carbonate platform could be identified. In the 

central part of the Dangerous Grounds several reefs seem to have developed along a straight line. 

This is not a result of geologic development, but results in the fact that only one single seismic 

profile was available in that area and the reefs could only be interpreted along this profile. 

Two other carbonate sequences have developed on top of the accretionary wedge offshore 

southwest Palawan: The Late Miocene Tabon Limestone and the Quarternary Carcar Limestone. 

While the Tabon Limestone is restricted to the southwest Palawan shelf, the Carcar Limestone can 

be found in the shallow water areas all around the island.  

The development of the different carbonate formations is controlled by different factors. For the 

Nido carbonate platform a development on top of a forebulge is inferred by the data. This forebulge 

developed in response to the loading of the advancing Borneo-Palawan accretionary wedge (chapter 

3). Isolated Miocene reefs developed in the shallow water areas on top of the tilted fault blocks in 

the Dangerous Grounds, some of them prevailed until present. 

The advancing accretionary wedge provided also shallow water conditions for the development of 

carbonates on his top. With the progradation of this wedge the carbonate development also 

prograded before the carbonates were covered by clastics from Palawan Island (chapter 4).  

Finally, the recent carbonates developed in the shallow water areas around Palawan Island. 

Carbonates on Reed Bank and in some places in the Dangerous Grounds continued their 

development almost continuously since the Miocene. 

There is a clear linkage between the tectonic history and the development of carbonates in the 

investigation area. The development of the accretionary wedge and the adjacent forebulge control 

the development of the Nido and Tabon limestone. 

Important constraints on the tectonic evolution can also be taken from the carbonates on the Reed 

Bank block. As pointed out in chapter 3 it can be deduced from the age and the growth rates of the 

carbonates that after the rifting the Reed Bank block submerged prior to the opening of the SW-

subbasin and stayed in shallow water depth for the whole time. From the carbonate deposition can 
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be concluded that, unlike in other areas, there is no breakup unconformity on the Reed Bank Block. 

It may be speculated that the weight of the nearby oceanic crust of the northeastern subbasin held 

this block down. 

Is it possible to correlate the various published and interpreted stratigraphic 
unconfomities? 
In chapter 3 an overview on the different names and relationships of the different unconformities 

was given. The special focus was set on the prominent unconformity within the Miocene (Red, C, 

MMU,..). The timing of these unconformities is difficult because all of them are diachronous. The 

zipperlike opening of the SW-subbasin from the northeast to the southwest caused the breakup 

unconformity also to get younger towards the southwest. 
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Chapter 6: Conclusions 
Within the GRI-project the knowledge of the development of the Dangerous Grounds could be 

substantially deepened by this investigation (Steuer et al., 2013; Steuer et al., 2014). The Dangerous 

Grounds started rifting in the Cretaceous. With the onset of the opening of the southwestern oceanic 

basin at 25 Ma the Dangerous Grounds started moving towards the southeast. Driving force for 

spreading was the subduction of a Proto-South China Sea in the area east of Palawan. The Kagajan 

volcanic ridge in the Sulu Sea is seen to be a remnant of it. The seafloor spreading ceased at 20.5 Ma 

probably due to the blocking of the system by the arrival of the Dangerous Grounds continental 

plate in the subduction zone. From the southeast the Dangerous Grounds were overthrusted by an 

accretionary wedge. This convergence continued until 7 to 5 Ma, leading to the formation of South 

Palawan Island. 

The development of this accretionary wedge caused a substantial loading of the crust and therefore 

the development of a foredeep (Palawan-Borneo trench) and a forebulge (Steuer et al., 2014). In 

the area of the Palawan-Borneo trench the rifted half-grabens of the Dangerous Grounds are 

submerged in quite high depths. Within the synrift sediments are potential source rocks for 

hydrocarbons and with the development of the Nido carbonate platform a possible reservoir was 

deposited prior to the deep submergence. Finally, deepwater clays are deposited shortly after the 

carbonate sedimentation, building a possible seal over them. 
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Chapter 7: Outlook 
During the three years of the project significant new discoveries were made. Still there are a lot of 

questions left. 

How are the Miocene (and younger) reefs distributed over the Dangerous Grounds? 

Is it possible to trace the Breakup Unconformity further across the Dangerous Grounds? 

The oilfields offshore NW-Palawan (e.g. Malampaia oil field) are located in reefal plays. Why 

aren´t these plays present offshore SW-Palawan, or are they just not found jet? 

A similar setting is found within the Dangerous Grounds, is it working / productive?  

 

To address these questions and challenges some more work will be needed: 

The amount of seismic lines, especially in the southern part of the Dangerous Grounds should be 

increased to better constrain the unconformities. With the available lines it was very difficult to 

trace the Red unconformity from the Mulu-1 well in the south to the wells offshore western 

Palawan. 

Also the number and shape of Miocene reefs within the Dangerous Grounds strongly depends on 

the number of seismic lines. The linear arrangement of the reefs in Figure 31 is due to the fact that 

there was only one seismic line available. Additionally, more samples of the Nido carbonate 

platform on top of the forebulge will be needed to underpin the theory of its westward movement. 

 

Unfortunately, the political situation in the Dangerous Grounds area is quite complex. The region 

is disputed between the neighboring countries and research is highly hindered by these uncertain 

territorial claims.  
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Figure 10: Sketches illustrating the early evolution of the South China Sea rift (not to 

scale). (A) In the rifting stage brittle deformation in the upper crust results in basin 

formation while ductile extension in the middle crust is compensated by doming in 

the Moho. Lacustrine / deltaic sedimentation prevails. (B) Extension localizes in 

the rift basins. The faults are becoming shallower and detachment faulting initiates. 

Continuing extension in the middle crust is compensated by further Moho uplifts 

beneath the rift basins. Lacustrine / deltaic sedimentation continues. (C) Crustal 

thinning approaches the point where the entire crust becomes brittle and crustal-

scale faults at the rim of crustal blocks cut through the entire crust. Sedimentation 

is shallow marine. (D) Mantle exhumation along a detachment fault that develops 

from the previous crustal-scale fault at the rim of crustal blocks. When the 

asthenospheric mantle reaches the surface accretion of oceanic crust and post-rift 

volcanism takes place. (Franke et al., 2014) ................................................................... 14 

Figure 11: Bathymetric map of the SCS with magnetic profiles shown as wiggles along 

shiptracks and magnetic anomaly interpretation (yellow). Heavy lines are 

abandoned spreading ridges, numbers indicate magnetic crons. Figure from 

Barckhausen et al. 2014 .................................................................................................. 17 

Figure 12: Geologic map of Palawan Island. Offshore wells are indicated. Picture from 

(Steuer et al., 2013)(Chapter 4) ....................................................................................... 19 

Figure 13: Schematic drawing of the opening history of the SCS. Redrawn after Savva 

(2013); Holloway (1982) and Kudrass (1990). Drawing not to scale. ............................ 20 

Figure 14: Overview of used seismic lines in the Dangerous Ground: Seismic lines shot 

by BGR are colored red .................................................................................................. 23 

Figure 15: Seismostratigraphic concepts for the southeastern part of the South China Sea

 ........................................................................................................................................ 24 

Figure 16: Map of the interpreted main fault system offshore SW Palawan. Coastline, 

wells and depth contours are shown for orientation........................................................ 27 
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Figure 17: Ulugan Fault Zone. Top left: Satellite image (Google Earth) of Central 

Palawan and Ulugan Bay with the inferred position of the fault (dotted line). Top 

right: Satellite image (Google Earth) of Ulugan Bay. Two side-branches of the fault 

could be deduced from the position of an island within the bay and the dipping of 

rocks on it. Bottom left: Almost vertical fault plane of Ulugan fault at Ulugan Bay 

(location see top left image). Bottom right: schematic drawing (not to scale) of 

Ulugan Fault Zone. The normal faults will most likely feature a strong strike-slip 

component. ...................................................................................................................... 28 

Figure 18: Overview map showing the locations of wells and dredge sites used in this 

investigartion. .................................................................................................................. 29 

Figure 19: Re-drawn well-log of Paz-1 with biostratigraphic markers from Robertson 

Research (colored). Ages for zonetops are given on the right. ........................................ 30 

Figure 20: Well correlation across the SW-Palawan shelf ...................................................... 31 

Figure 21: Gridded depth to the seafloor in seconds (TWT). Bathymetry by GEBCO 

shown by the blue isolines. Seismic lines are also shown. .............................................. 33 

Figure 22: Velocity grid for the sediments .............................................................................. 35 

Figure 23: Velocity grid for the thrusted wedge. ..................................................................... 35 

Figure 24: Depth grid for the top of the Nido Platform. .......................................................... 36 

Figure 25: The southeastern South China Sea with depth contours indicated in 1000 m 

spacing. The continent -ocean transition is approximately located at the 3000 m 

contour. Positions of the seismic reflection lines, wells and dredge sites are shown. 

The data set comprises about 30,000 km of 2D multichannel seismic lines, 110 

wells and 30 dredge sites. Seismic lines, presented in this article, are marked by a 

bold line. The symbols of wells mentioned in other figures are shown enlarged. ........... 39 

Figure 26: Generalized seismostratigraphy for the Dangerous Grounds summarized from 

Steuer, Franke, Vihajan, Cullen, etc... The main formations are divided into the 

western part and the eastern part close to the Palawan-Borneo wedge. The main 

unconformities (Breakup and “Red” unconformity) are time- and space-

transgressive over the investigation area. Breakup of the Southwestern Subbasin of 

the South China Sea initiated first in the north and propagated toward the southwest. 

The Breakup unconformity follows this direction. The Top Nido unconformity is a 

seismic horizon caused by the velocity increase at the top of a carbonate succession.

 ......................................................................................................................................... 43 
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Figure 27: Seismic profile across the southern Dangerous Grounds, running from 

northwest (up-left) to southeast (low-right). The depth is given in two-way-time 

and the horizontal distance in kilometers. The profile is divided into two parts for 

better visibility. Distinct features from left to right are draped reefs in the Dangerous 

Grounds, the stronger uplifted forebulge, the Palawan-Borneo trough and the 

western end of the Palawan-Borneo wedge. This wedge is located on top of the 

downgoing rifted continental crust of the Dangerous Grounds. Reefs are marked 

with light blue color, also the “Red” unconformity was emphasized. Reefs that were 

covered by sediments prior to the “Red” unconformity are located e.g. at km 14 or 

at km 178. Reefs with an onlapping “Red” unconformity are located e.g. at km 194. 

A reef with almost no sedimentary cover is located at km 214, but it is at a water 

depth that inhibits further reef development. .................................................................. 46 

Figure 28: Two schematic crustal-scale profiles across the Dangerous Grounds in NW-

SE direction. The location of the lines is given in fFigure 25. The depth of the Moho 

is modeled from refraction and gravity data and extrapolated in the eastern (right) 

part of profile B. The limit of available refraction data is indicated by a white 

vertical line. Both profiles show the rifted continental crust of the Dangerous 

Grounds. The “Red” unconformity, sealing the tectonics in the western (left) part 

is indicated. Also the Oligocene-Miocene carbonates are highlighted. The position 

of the foredeep and forebulge is shown. It is noticeable that the Sabah Basin in NW 

Borneo formed over the most attenuated part of the continental crust. .......................... 47 

Figure 29: Seismic image of the carbonate platform and a Miocene reef on top at the 

location of the Cadlao-1 well. The vertical scale is given in two-way-time. The most 

distinct reflection is the positive reflector on top of the carbonates. The “Red” 

unconformity is represented by a weak reflector, indicating that at this point it rather 

represents the top of a clastic succession than an erosional unconformity. The 

interpreted horizons are matched to the drilled stratigraphy of the well Cadlao-1 

given at the right side. ..................................................................................................... 48 

Figure 30: Image of a 2D multichannel seismic line in NW-SE-direction across the 

Borneo-Palawan trough at the well Aboabo A-1X, offshore southern Palawan. The 

vertical scale is given in two-way-time, the horizontal scale is in kilometer. The 

base of the carbonate platform is sealing most of the extensional tectonics before it 

was overthrusted by the Palawan-Borneo wedge (right). The “Red” unconformity 

is located well above the carbonate platform. So it is a post-rift-feature in the trough. 

Parts of the strata underneath this unconformity are incorporated in the wedge. ........... 49 
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Figure 31: The distribution of the Oligocene-Miocene carbonate platform and the 

position of reefs in the Dangerous Grounds. Areas where the existence of the 

carbonate platform is less clear are shaded in lighter gray. Reefs were categorized 

according to the end of their development and marked with different colors. Reefs 

taken from literature (Letouzey et al., 1988) or with unknown age for the end of 

development are also given in this map. An elongated cluster of “post red drowned 

reefs” is located at the western edge of the carbonate platform, the development of 

these reefs probably is related to the development of the Palawan-Borneo trough. ........ 50 

Figure 32: Seismic images of reefs ending their development at different times. The 

reference horizon for timing the development is the “Red” unconformity (RU). The 

reefs could be clearly identified by their specific shape in the seismic image. A: 

Early Miocene reefs are covered by Early Miocene strata and therefore ended their 

development prior to the formation of the RU; B,C: Post-“Red”/drowned reefs 

continued to develop during the Early Miocene and are not affected by the RU. 

They are draped by Middle Miocene or younger sediments. This sedimentary cover 

occasionally is very thin (~0.2 s TWT) as shown in C; D: Top “Red” reefs are cut 

at their top by the RU indicating uplift above sea level in the Early Miocene. ............... 51 

Figure 33: Paleo-landscape of the Dangerous Grounds in the Early Miocene as inferred 

from the position of reefs and unconformities as shown in fFigure 31. For 

orientation the present coastline is shown as thin, continuous line. The area is 

divided into three parts. The oceanic domain is almost completely submerged and 

covered by deep water. The Palawan-Borneo trough acts as trap for sediments 

provided by a landmass in the southeast, the main directions of sedimentation are 

indicated by arrows. Due to this sediment trap only a minor amount of clastic 

sediments was deposited in the central Dangerous Grounds. The forebulge provided 

shallow water conditions favorable for reef development. Partly this forebulge was 

above sea level and most of the islands in Early Miocene times are located on it. 

There was probably another landmass southwest of the forebulge, due to our 

limitation of seismic lines in this area its outline is speculative. ..................................... 53 

Figure 34: 2D seismic line across the Reed Bank block at well Sampaguita-1. On the 

Reed Bank block the carbonates also seal the extensional tectonics. In contrast to 

the Dangerous Grounds the carbonate deposition on the Reed Bank initiated in the 

Early Oligocene (~30 Ma) and continued until present as it is also indicated in the 

lithology of the well at the right side of the figure. ......................................................... 54 
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Figure 35: Schematic development of the carbonate platform on top of a forebulge. This 

section is running in NW-SE direction in the southern part of the Dangerous 

Grounds. In the Oligocene the carbonate development initiated on the highest crests 

of tilted fault blocks. With the uplift of the forebulge, caused by the arrival of the 

wedge (right) the shallow water conditions with active carbonate development 

migrated toward the northwest while in the southeast the carbonates drowned. A 

red rectangle is indicating the NW migrating zone of active carbonate deposition. 

In the Early Miocene parts of the carbonates were exposed, on the wedge the Deep 

Regional Unconformity (DRU) forms. In the Late Miocene the convergence had 

stopped. The frontal part of the wedge is deformed by gravitational tectonics and 

the Dangerous Grounds undergo subsidence. In many places reefs were able to keep 

up and to further develop until present. .......................................................................... 57 

Figure 36: Regional map showing the locality of Palawan Island and main tectonic 

features, as well as the location of wells offshore Palawan. Wells which are referred 

to in the text are enlarged and the names are shown in the map. Solid black lines 

indicate the locations of the three seismic lines shown in figures XXX. The extend 

of the offshore accretionary wedge is indicated. The bathymetric data is taken from 

the General Bathymetric Chart of the Oceans (GEBCO) ............................................... 63 

Figure 37: Generalized stratigraphic columns of the western Palawan shelf. Separate 

columns are given for the northern and southern part of the shelf. The ages for the 

boundaries between the epochs are taken from the International Stratigraphic Chart 

by the International Commission on Stratigrapy ICS, 2012 (www.Stratigraphy.org). 

Ages given on the right side next to the unconformities were derived from a 

biostratigraphic correlation. The main interpreted unconformities are highlighted 

and assigned the colors shown in the seismic sections. In addition the main tectonic 

events are also plotted to the columns. ........................................................................... 66 

Figure 38: Geological map of Palawan Island adapted and modified from the JICA-

MMAJ data and maps (1989). Offshore wells are indicated. The legend shows the 

main geological units of northern and central-south Palawan. ....................................... 70 

Figure 39: Correlation chart of ten selected wells offshore west Palawan. Superimposed 

on the lithologs of the wells the tops of planktonic foraminifera zones are shown. 

The assigned ages for these formation tops are given in the legend. The three main 

formations (Tabon limestone, Nido limestone and the thrusted wedge) are 

highlighted by shaded background. The location of the wells is given on the small 

inset maps and on Figure 36 and Figure 38. The inferred position of the Ulugan 

Fault Zone is drawn as a dotted black line. ..................................................................... 72 
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Figure 40: Depth of the Top Nido platform carbonates. Thick solid lines indicate the 

coastline and 100 m depth contours are shown as dashed lines. The inferred position 

of the Ulugan Fault Zone and the outline of the thrusted wedger are indicated. Gray 

lines indicate the reflection seismic dataset used for the regional interpretation of 

the platform carbonates. This map shows the outline of the continuous Nido 

platform. Isolated carbonates occur also on the Reed Bank and in the Dangerous 

Grounds. The color code of the legend ranges from very shallow (bright yellow) to 

deep (blue). ...................................................................................................................... 73 

Figure 41: Correlation chart of five wells that penetrated the Tabon limestone offshore 

SW-Palawan. The tops of foraminiferal assemblage zones are superimposed shown 

on the lithologs of the wells. The Tabon limestone and the accretionary wedge are 

highlighted by shaded background and the ages of the formation tops are given in 

the lagend. The insert map shows the position of the wells on the shelf (see also 

Figure 36). ....................................................................................................................... 76 

Figure 42: Deposition scheme of Tabon limestone. Bars indicate the measured (solid) 

and Calculated (dashed) deposition times for the limestone. The thickness of the 

limestones is given for each well. Inset map shows the position of the wells on the 

shelf. ................................................................................................................................ 77 

Figure 43: Distribution of Tabon limestone on the western Palawan shelf. Areas with 

proven occurences of the limestones are shaded. Onshore outcrops near the city of 

Quezon are also shaded. Ages are given for the oldest parts of Tabon limestone at 

different locations. ........................................................................................................... 79 

Figure 44: Reflections seismic profile A-A´, running across the Palawan-Borneo Trough 

and the accretionary wedge offshore southern Palawan. In the interpreted section 

(bottom) the main unconformities are shown. (color code is given in Figure 37). 

The rifted half-graben structure of the Palawan-Borneo Trough is shown in the 

central and left part, the thrusted wedge is visible on the right side. The full litholog 

of the well is given on the right, next to the seismic line. The location of the profile 

is shown in Figure 36. ...................................................................................................... 81 
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Figure 45: Reflection seismic profile C-C´, running across the Palawan-Borneo Trough 

and the accretionary wedge between southern Palawan and Balabac Island. This 

line illustrates the structure of the thrusted wedge and the two limestone formations, 

the Nido and the Tabon. The position of the profile is shown in Figure 36. Top: not 

interpreted seismic; bottom: Line-drawing interpretation with limestones 

highlighted by bold lines. The reference well Murex-1 was projected from a 

distance of approximately 15 km onto the line. The inferred position of the Nido 

limestone underneath the wedge is indicated by a dashed line due to the strong 

decrease in seismic resolution underneath the wedge. The rectangle indicates the 

position of the enlarged section shown in figure 37 ....................................................... 82 

Figure 46: Reflection seismic profile showing the expression of the Tabon limestone. 

(top – not interpreted; bottom – interpreted; right: lithology of Murex-1 well). The 

position of the Tabon limestone is highlighted in the interpreted section. ..................... 83 

Figure 47: Reflection seismic section across the NW Palawan shelf (top - not interpreted; 

bottom - interpreted). Position of profile is indicated in Figure 36. The position of 

the Nido limestone is highlighted by shading. Welltops of two wells are given for 

correlation. Rift structure and postrift strata are shown. The reef at ~ 5 km in an 

example for isolated carbonate development after the overall cessation of the Nido 

platform growth. ............................................................................................................. 85 

Figure 48: Part of seismic profile so197-30 located in the Palawan-Borneo trough.Red 

reflector shows no indication of beeing a stratigraphic unconfirmity. ............................ 88 

Figure 49: Detail of seismic line BGR84-01, crossing the wedge south of Balabac Island. 

The reflecion of the Top Nido Platform is hardly visible underneath the western 

edge of the wedge (left) and underneath the wedge no clear signal could be received 
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List of used seismic surveys 

Survey Number of seismic lines 
BGR08 32 
BGR84 32 
BGR86 41 
Bendix 70 25 
DPS93 16 
Hightower 71 9 
Mobil 71 20 
Nido 2004 1 
Palawan 71 11 
SC6307 12 
So23 37 
So27 32 
So49 23 
All surveys 291 
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- Operating systems (Windows/OSX/Linux): experienced user / administrator
- SAP advanced user
- Experiences in using other geologic software like PetroMod, GM-Sys, MOVE, FEFlow,

Visual Modflow, Ansys.
Other: 
- Business studies (university of applied sciences)
- Driving license for cars up to 7.5 tons
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