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ARTICLE

Stochastic modelling reveals mechanisms of
metabolic heterogeneity
Mona K. Tonn1, Philipp Thomas 1, Mauricio Barahona 1 & Diego A. Oyarzún 2,3,4

Phenotypic variation is a hallmark of cellular physiology. Metabolic heterogeneity, in parti-

cular, underpins single-cell phenomena such as microbial drug tolerance and growth varia-

bility. Much research has focussed on transcriptomic and proteomic heterogeneity, yet it

remains unclear if such variation permeates to the metabolic state of a cell. Here we propose

a stochastic model to show that complex forms of metabolic heterogeneity emerge from

fluctuations in enzyme expression and catalysis. The analysis predicts clonal populations to

split into two or more metabolically distinct subpopulations. We reveal mechanisms not seen

in deterministic models, in which enzymes with unimodal expression distributions lead to

metabolites with a bimodal or multimodal distribution across the population. Based on

published data, the results suggest that metabolite heterogeneity may be more pervasive

than previously thought. Our work casts light on links between gene expression and meta-

bolism, and provides a theory to probe the sources of metabolite heterogeneity.
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Cellular heterogeneity is ubiquitous across all domains of
life. In microbes, clonal populations display phenotypic
variability as a result of multiple factors such as fluctua-

tions in the microenvironment, stochasticity in gene expression,
or asymmetric partitioning at cell division1–3. Variability is well
recognised at the transcriptional and translational levels. Yet
various single-cell phenomena result from the emergence of
distinct metabolic states within a clonal population. For example,
metabolic heterogeneity plays a key role in antibiotic tolerance4–6,
heterogeneous nutrient uptake7,8, and variations in growth
rate9,10. It has also been shown that nutrient shifts can cause
populations to split into two11,12 or more13 subpopulations with
distinct growth abilities. The emergence of subpopulations has
been theorised as a bet-hedging strategy that gives an evolu-
tionary advantage for survival in adverse environments4,14.

A central challenge to quantify metabolic variability is the lack
of techniques for measuring metabolites with single-cell resolu-
tion15. In contrast to single-cell measurements of protein
expression, for which powerful reporter systems have been
developed16,17, quantification of metabolites in single-cells
remains a major challenge. Some of the techniques employed so
far include Förster resonance energy transfer (FRET) sensors18,
metabolite-responsive transcription factors19,20, RNA sensors21,
and mass-spectrometry22, yet most of these technologies are in
the early stages of development15. As a result, metabolic hetero-
geneity is typically quantified indirectly via measurements of
metabolic enzymes or growth rate in single-cells9,12,23.

Our objective in this paper is to characterise heterogeneity in
metabolites as a result of stochastic enzyme expression and cat-
alysis. Metabolic models traditionally assume that enzymatic
reactions behave deterministically on the basis that both enzymes
and metabolites appear in high molecule numbers24. However,
single-cell proteomics in Escherichia coli show that metabolic
enzymes are as variable as any other member of the proteome17,
while metabolomics data suggest that average metabolite abun-
dances span several orders of magnitude25. The few datasets on
single-cell metabolite abundance already suggest substantial
variability in some metabolites in E. coli19,26. Such evidence casts
doubt on the traditional assumption of metabolism being a purely
deterministic process, suggesting a link between fluctuations in
enzyme expression and metabolites.

The role of stochastic gene expression in protein variability has
been well studied2,3,27–29, but the impact of such randomness on
metabolic reactions remains much less understood. Various
theoretical studies have analysed the impact of fluctuations in the
supply and consumption of metabolites30–32, or the propagation
of enzyme noise to a metabolite33. However, despite mounting
experimental evidence of stochastic effects in metabolism,
mathematical models still lack the sufficient detail to integrate the
processes that are known to shape protein heterogeneity, such as
stochastic promoter switching and transcriptional bursting.

In this paper, we propose a model for metabolite heterogeneity
in single-cells. The model integrates stochasticity in enzyme
catalysis24 and expression27, two well-established processes that
so far have been studied in isolation. Our approach includes a
stochastic formulation of various relevant mechanisms in enzy-
matic reactions, including reversible catalysis, stochastic switch-
ing of promoter activity, fluctuations in mRNA transcripts, and
consumption of the enzymatic product by downstream processes.

We probe the model for various sources of stochasticity using
simulations and analytical solutions for the stationary distribution
of the metabolite. The analysis reveals intricate patterns of het-
erogeneity that translate into bimodal and multimodal distribu-
tions for the number of metabolite molecules. These phenomena
arise from the interplay between a lowly abundant enzyme and its
catalytic parameters. Under the separation of timescales typical of

metabolic reactions, we show that metabolite distributions can be
accurately approximated by a Poisson mixture model (PMM)
across large regions of the parameter space. The mixture model
can be readily adapted to a wide class of gene expression models
and provides a quantitative tool to predict metabolite variability
from enzyme measurements in single-cells.

Results
Stochastic model of an enzymatic reaction. We consider a
model that combines enzyme kinetics and enzyme expression
into a single stochastic description (Fig. 1a). The model includes
an enzymatic reaction with standard Michaelis–Menten kinetics,
in which substrate and enzyme bind reversibly to form a complex
that undergoes reversible catalysis into a metabolite. We assume
that enzyme expression follows the well-established three-stage
model for gene expression3,27, where a single copy gene switches
stochastically between an inactive state (Doff) and active state
(Don). In the active state, mRNAs are transcribed and translated
into protein. The model also includes consumption of the
metabolite by downstream pathways, degradation of mRNA
transcripts, and dilution by the growth of all species. Since
metabolic reactions operate far from thermodynamic equilibrium,
we assume that the substrate pool remains constant so that the
system reaches a non-zero flux, e.g. when the substrate is a highly
abundant extracellular carbon source or a slowly varying intra-
cellular metabolite. The model reactions are shown in Eqs. (R1)–
(R9) in the Methods section.

To investigate the emergence of metabolic heterogeneity, we
need to compute the stationary probability distribution of
metabolite molecules (np) for relevant combinations of model
parameters. Figure 1b shows a typical simulation of the model
obtained with Gillespie’s algorithm34. A key challenge for such
simulations, however, is the multiscale nature of enzymatic
reactions: not only do metabolic reactions operate in a much
faster timescale (milliseconds) than enzyme expression (tens of
minutes)30,35,36, but also the average number of enzymes is much
lower than the number of metabolites. These multiple scales
result in reaction propensities that differ by several orders of
magnitude, thus leading to extremely slow simulations which
make the exploration of the parameter space infeasible. An
alternative is to use simulation algorithms that exploit the
separation of scales to increase computational speed, such as tau-
leaping or slow-scale approximations37. Yet in our case it is
unclear how such numerical approximations impact the predic-
tions drawn from the simulations.

To determine the impact of genetic and catalytic parameters on
metabolic heterogeneity, we obtained an analytic approximation
for the distribution of metabolite molecules that can be evaluated
efficiently without expensive stochastic simulations. Our solution
allows the exploration of parameter space to characterise the
different regimes promoting metabolic heterogeneity. The
approximation follows from exploiting time scale separation in
the chemical master equation of the stochastic process38. In
physiological regimes, the model has three timescales: a fast
metabolic time scale, in which substrate and enzyme bind and
unbind; an intermediate time scale associated with the catalysis of
the metabolite (np); and a slow timescale associated with the
expression of the enzyme and dilution by cell growth.

The total amount of enzyme (free and substrate-bound,
denoted as ne and nc, respectively) varies in the slowest timescale,
and therefore the binding/unbinding of substrate and enzyme
equilibrates quickly. As a result, in the timescale of gene
expression, the metabolite can be assumed to depend directly
on the total enzyme netot= ne+ nc rather than on ne and nc
individually. Under this approximation, it is convenient to use the
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law of total probability:

P np
� �

¼
X1
netot¼0

P netotð Þ|fflfflffl{zfflfflffl}
gene expression

P npjnetot
� �

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
catalysis

: ð1Þ

The formula in (1) decomposes the distribution of metabolite
P(np) into stochasticity originating from enzyme expression,
P(netot), and from fluctuations in the catalytic reaction itself,
described by the conditional distribution of metabolite given the
amount of total enzyme, P(np|netot). In the timescale of
metabolite fluctuations, the total enzyme can be assumed to be
in a quasi-stationary state. Further, exploiting the fast binding/
unbinding between substrate and enzyme, we showed that the
metabolite follows a birth–death process with effective propen-
sities (details in the Methods section):

keffbirth ¼ kcatE ncjnetot; np
� �

� kcat
k�1

k�1þk1nsð Þ netot;

keffdeath ¼ krevE nejnetot; np
� �

þ kc

� krev
k1ns

k�1þk1nsð Þ netot þ kc;

ð2Þ

where Eðnejnetot; npÞ and Eðncjnetot; npÞ are the conditional
expectations of the free enzyme (ne) and complex (nc) given the
total enzyme and metabolite. In Eq. (2), ns is the constant number
of substrate molecules, the parameters k1, k−1, kcat, and krev are
the rate constants of the Michaelis–Menten mechanism (defined
in Fig. 1a), and kc is an effective first-order rate constant of
metabolite consumption by downstream pathways. The condi-
tional distribution needed in Eq. (1) can then be computed
explicitly:

P npjnetot
� �

� Poisson np; λ netotð Þ
� �

; ð3Þ

with Poisson parameter

λ netotð Þ ¼ λ1
1þ K=netot

; ð4Þ

and (λ∞, K) are two effective kinetic parameters

λ1 ¼ ns
kcatk1
krevk�1

; andK ¼ kc
k1ns þ k�1

krevk�1
: ð5Þ

The parameters λ∞ and K are in units of molecules/cell and
depend on the interplay between substrate abundance, enzyme
kinetics, and downstream processes.

As illustrated in Fig. 1b, the distribution in Eq. (1) is a
PMM39–41 that convolves the enzyme distribution P(netot) with
various Poisson modes P(np|netot) arising from the catalytic
activity. In our model, the analytical distribution of the total
enzyme abundance follows the standard solution of the three-
stage model for gene expression27, which can be computed
explicitly in terms of model parameters. In certain limits, the
three-stage model produces approximately Gamma or normal
distributions depending on the mean expression level and the
half-lives of mRNAs and proteins3,27.

The decomposition in Eq. (1) shows that the PMM is not
limited to the model for gene expression we have considered here.
Other models may be used, either by using closed-form
expressions for P(netot), or by inferring the enzyme distribution
directly from single-cell protein expression data such as flow
cytometry or single-cell microscopy1,17. The PMM thus provides
a versatile tool to predict metabolite heterogeneity from modelled
or measured enzyme heterogeneity viewed as an upstream source
of variation41. Figure 1c shows that the PMM distribution
provides a good approximation to Gillespie simulations com-
puted with typical parameter values.

Qualitative features of the Poisson Mixture Model. At the heart
of the PMM is the interplay between variability from gene
expression and that originating from enzyme kinetics. Specifi-
cally, the Poisson parameter λ(netot) in Eq. (4) controls the
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Fig. 1 Stochastic model for an enzymatic reaction. a The model integrates reversible Michaelis–Menten kinetics with the three-stage model for gene
expression24,27. The model includes consumption of the metabolite by downstream pathways, degradation of mRNA transcripts, and dilution of all
chemical species by cell growth (not shown in the diagram); rate constants are shown in the figure and model reactions are shown in Eqs. (R1)–(R9),
Methods. The inset shows a typical simulation for a realistic parameter set shown in Table 1. b Construction of the Poisson Mixture Model (PMM) for the
number of metabolite molecules (np). This approximation is valid under a separation of timescales between enzyme expression and enzyme catalysis. The
mixture model, shown in Eq. (1), comprises Poisson distributions weighted by the distribution of enzyme expression P(netot). The Poisson parameter λ
(netot) depends on enzyme kinetics via the nonlinear relation in Eq. (4). In the irreversible case (krev= 0), the λ(netot) parameter scales linearly and
produces equi-spaced Poisson modes. The first mode, Poisson (np, 0), is highlighted as a bar. c The PMM provides an accurate approximation of the
stationary distributions. Insets show distributions for enzyme and metabolite, computed via Gillespie simulations and the PMM approximation for fixed λ∞
= 1080 molecules, K= 8 molecules, and three different promoter switching parameters, shown in Table 1
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location and dispersion of the Poisson modes, which in turn
shape the overall pattern of variability. As shown in Fig. 1b, there
are several cases of interest. For example, for irreversible reactions
(krev= 0), the Poisson parameter simplifies to

λ netotð Þ ¼ k1nskcat
k1ns þ k�1ð Þkc

netot; ð6Þ

which scales linearly with the enzyme abundance and thus the
Poisson modes have equidistant means. In reversible reactions, on
the other hand, the Poisson parameter saturates and causes the
Poisson modes to concentrate around λ∞. This effect is stronger
for strong reversibility (high krev), in which case the kinetic
parameter K is small. Note also that in either case, as the enzyme
number netot grows, the Poisson modes spread out since λ(netot)
controls both their mean and variance.

From the construction of the PMM in Eq. (1), we observe that
the enzyme distribution weighs the various Poisson modes,
potentially producing metabolite distributions that are unimodal,
bimodal, or even multimodal. For example, for highly expressed
reversible enzymes, the distribution P(netot) is non-negligible for
large netot only. Hence most Poisson modes do not contribute to
the final metabolite distribution, except the mode centred at λ∞,
which leads to a unimodal metabolite distribution with a mean
close to the deterministic average.

Conversely, for lowly expressed enzymes, there is a non-
negligible probability of enzymes not being expressed, and thus
the first term of the PMM, i.e. P(0)Poisson(np, 0), causes the
metabolite distribution to peak at zero. However, the metabolite
distribution may also display a second peak at λ∞ if, for example,
the λ(netot) parameter causes many Poisson modes to concentrate
around λ∞. This results in a bimodal metabolite distribution,
whereby an isogenic population splits into metabolite producers
and non-producers. Similar reasoning can be used to understand
the emergence of multimodal metabolite distributions, which
correspond to three or more subpopulations with varying metabolic
activities. This qualitative analysis suggests that metabolic sub-
populations can emerge even in cases where enzymes display

unimodal distributions across the population. Crucially, this also
indicates that metabolic subpopulations emerge through mechan-
isms that do not follow trivially from transcriptional heterogeneity
alone, as we explore in more detail in the next section.

Mechanisms for metabolic bimodality. First, we explored the
impact of stochastic promoter switching on the emergence of
metabolite bimodality. Figure 2a shows the summary of calcula-
tions when evaluating the PMM for variations in the promoter
time scale and promoter activity across several orders of magni-
tude for various values of the kinetic parameter λ∞. We found
three qualitatively distinct parameter regimes for the metabolite
distribution that emerge from the combination of stochastic
switching and catalysis: (1) a regime where both enzyme and
metabolite have unimodal distributions, akin to the results shown
earlier in Fig. 1c; (2) a regime where both enzyme and metabolite
have bimodal distributions; and (3) a regime in which the enzyme
is unimodal but the metabolite is bimodal.

It can be shown that the deterministic version of our model in
Eqs. (R1)–(R9) has a single steady state. Hence regime (1) can be
thought of as a stochastic correction consisting of unimodal
distributions around a deterministic steady state. This is the
expected behaviour under the traditional assumptions of high
abundance of enzyme and metabolite molecules.

The other two regimes, however, correspond to alternative
routes of noise-induced bimodality that cannot be explained
using deterministic models42–44. Regime (2) is a highly stochastic
regime dominated by the slow stochastic switching of the
promoter, which drives and entrains the metabolic response.
Hence we term it switching-induced bimodality. Slowly switching
promoters are known to produce bimodal gene expression29,41,
and thus this regime corresponds to a case in which bimodality
propagates from enzymes to metabolites. Figure 2a shows that
this behaviour appears robustly for slow switching and high
promoter activity across values of the λ∞ parameter.

Regime (3), the second route for metabolite bimodality,
originates from a unimodal but weakly expressed enzyme (low
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Fig. 2 Mechanisms for metabolite bimodality. a We evaluated the Poisson Mixture Model across a broad range of promoter switching timescale and
promoter activity. Unimodal distributions for enzyme and metabolite (similar to those shown in Fig. 1c) cover a large fraction of the parameter space. We
identified two regimes in which metabolites are bimodal: in the switching-induced regime, bimodality propagates from the enzyme to the metabolite. In the
catalytically-induced regime, bimodality originates from a lowly abundant enzyme and the strong separation of timescales between expression and
catalysis. The small panels show model predictions for a fixed kinetic parameter K= 0.1333 molecules, and increasing λ∞= {300, 3000, 30000}
molecules, obtained by increasing the turnover rate constant kcat. b Exact simulations for two parameter sets verify the predictions drawn from the PMM
approximation. We simulated over a long time horizon to obtain accurate estimates for stationary distributions; insets show only a small portion of the time
courses. The parameter values for the promoter switching rates are indicated in panel (a) and we fixed λ∞= 500 molecules. Both types of bimodality can
be clearly distinguished in the time courses, but we note that they lead to almost identical distributions for the metabolite. In both cases, the PMM provides
an accurate approximation for the stationary distributions
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kon/koff) expressed from fast switching promoters. In this case, the
birth of a small number of enzyme molecules is sufficient to kick-
start catalysis and make it rapidly settle in a quasi-stationary
regime. This distinct phenomenon is a result of the separation of
time scales between enzyme expression and catalysis, and we refer
to it as catalytically-induced bimodality. From Fig. 2a, we observe
that this form of bimodality appears for a narrow range of
promoter switching parameters corresponding to fast switching
genes with medium to low promoter activity. This behaviour
disappears altogether for a low λ∞ parameter, for example in case
of strong reversibility.

To validate the predictions of the PMM approximation, we ran
full Gillespie simulations over a long time horizon for different
parameter sets. Figure 2b shows the simulation time courses and
resulting histograms. For switching-induced bimodality, we
observe how slowly switching promoters cause a single cell to
lack the enzyme over several cell cycles, a period during which the
metabolite is not produced. In the case of catalytic-induced
bimodality, however, fast switching combined with a low average
expression level causes the metabolite abundance to drop for
shorter but more frequent intervals. In both cases, the PMM
provides an excellent approximation to the bimodal histograms
obtained from the stochastic simulations. Furthermore, we observe
that the bimodal metabolite distributions both regimes are almost
indistinguishable from each other, yet they are produced by
enzymes with substantially different time courses and distribu-
tions. These regimes therefore correspond to distinct forms of
bimodality, arising from fundamentally different mechanisms.

Emergence of metabolic multimodality. To explore the emer-
gence of multimodality, we examined the analytical formula of the
PMM in Eq. (1) to identify kinetic regimes associated with distinct
enzyme distributions. A necessary condition for the emergence of
multiple modes is that the Poisson components do not overlap

and are sufficiently spaced from each other. From the definition of
the λ(netot) parameter in Eq. (5), this happens when the kinetic
parameter K is large. As discussed earlier, depending on the dis-
tribution of the enzyme, the Poisson modes may appear or cancel
in the final metabolite distribution. We thus swept the parameter
K and evaluated the PMM across various enzyme expression
levels, including low expression with a skewed distribution and
high expression with a normally distributed enzyme.

As shown in Fig. 3, we found intricate patterns of multimodal
distributions, depending on the interplay between the hetero-
geneity of the enzyme, P(netot), and the enzyme kinetics
encapsulated by the K parameter. Multimodality appears when
the enzyme expression levels are low as compared to the parameter
K. For instance, the values of K in Fig. 3 are approximately 5-, 20-,
and 100-fold those used in the bimodal examples in Fig. 2. For
enzymes expressed at intermediate levels, in the order of tens of
molecules/cell on average, we found metabolite distributions that
are unimodal but highly skewed. In the case of highly expressed
enzymes, metabolites followed approximately normal distributions
for a wide range of kinetic parameters.

The predictions are confirmed by Gillespie simulations of the
full stochastic model, which display a striking match with the
PMM approximation, even for complex multimodal distributions.
The simulation time courses (shown in the insets of Fig. 3) show
that the multiple modes for weakly expressed enzymes corre-
spond to cells remaining in a fixed metabolic state over the scale
of the cell cycle but fluctuate across other states over longer time
scales. For intermediate enzyme expression and large values for K,
the metabolite does not settle in the quasi-stationary states and
displays a long-tailed distribution. A decrease in K suppresses the
tail of the distribution driving the PMM towards an approxi-
mately normal distribution. Altogether, these results indicate that
the relation between enzyme expression and the kinetic
parameters λ∞ and, in particular, K are key determinants for

Fig. 3 Emergence of metabolic multimodality. We used the PMM approximation to find regimes for multimodality through perturbations to the enzyme
kinetics. We vary the kinetic parameter K to control the dependency of the Poisson parameter λ(netot) in Eq. (4) on the total enzyme abundance. Parameter
values are λ∞= 750 molecules and K= {10.0400, 2.1630, 0.4660} molecules obtained by variations to the kinetic rate constants kcat and krev with a
constant ratio kcat/krev. We shape the mean enzyme abundance with the promoter switching rates kon= {1.56, 5.9, 20} × 10−4 s−1 and koff= {9.8, 9.3, 8} ×
10−4 s−1. From the PMM, we found intricate patterns of multimodal distributions in the metabolite, all of which show an excellent match with the
corresponding Gillespie simulations. The simulated time courses show metabolite numbers traversing various quasi-stationary regimes
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the emergence of multimodality. This underscores the utility of
the PMM to guide the prediction of qualitative and quantitative
features of metabolite distributions for a wide range of parameter
combinations.

Discussion
Metabolic reactions are the powerhouse of living systems, fuelling
the activity and dynamics of most cellular functions. Yet meta-
bolism has been traditionally considered as a static process iso-
lated from the rest of the cellular machinery. Currently, the
accepted notion is that due to the large number of molecules
involved, metabolism is a deterministic process at the cellular
level, modulated by potentially random extrinsic factors12,45.
Here, we integrated enzyme kinetics and enzyme expression to
propose a theoretical model for the variability of metabolites in
single cells. The model suggests that cell-to-cell metabolite var-
iation can also arise as a result of intrinsic sources such as sto-
chastic fluctuations in enzyme expression.

The majority of work on non-genetic heterogeneity has focused
on stochastic gene expression and the resulting variability in
protein levels1,2. This has produced a wealth of single-cell data
and models to understand the variability in transcription and
translation observed in clonal populations. Metabolite hetero-
geneity, however, remains poorly understood theoretically and
has been observed only indirectly (e.g. through measurements of
metabolic enzymes12,23 or growth rate9) due to the lack of
techniques to measure metabolite abundance in single cells.

Using the separation of time scales characteristic of metabolic
reactions, we found that the stationary distribution of a meta-
bolite follows a PMM. The PMM can be efficiently evaluated
across large domains of the parameter space and provides
excellent approximations to the distributions computed from full
stochastic simulations. Importantly, the model can be readily
adapted to include different stochastic models for enzyme
expression, beyond the three-stage model considered here3,46, or
even stochastic and time-dependent enzyme expression modelled
as upstream drives41. The model can also be parameterised from
experimentally measured distributions for enzyme levels in
single-cells17. In combination with the enzyme kinetic para-
meters, the PMM could provide a powerful tool to predict
metabolite variability from single-cell protein data obtained with
flow cytometry or time-lapse microscopy.

We found complex patterns of metabolite heterogeneity
depending on the interplay between the timescale of promoter
activation/deactivation, the enzyme expression level, and the
enzyme kinetics. The model predicts that bimodal and multi-
modal metabolite distributions can emerge in various parameter
regimes. In such regimes, single-cells spend several cell cycles in a
constant metabolic state, but in timescales as long as tens of cell
cycles, they switch stochastically across different states. Such
long-term fluctuations in single cells result in highly hetero-
geneous populations containing several subgroups of metaboli-
cally distinct cells.

Bimodal metabolic phenotypes have been observed as a result
of transcriptional regulation14,23, post-translational control11,
and stochastic effects triggered by environmental shifts12. Our
model reveals two distinct regimes in which metabolites display
bimodality. One regime, which we call switching-induced
bimodality, corresponds to the intuitive case in which a bimo-
dal enzyme produces a bimodal metabolite. In agreement with
previous studies on stochastic gene expression, this type of
bimodality appears as a result of slow switching between pro-
moter states29,47. In addition, we identified a fundamentally
different mechanism of catalytically-induced bimodality, in
which a unimodal enzyme produces a bimodal distribution of

metabolite. This phenomenon results from a combination of
slow fluctuations of a weakly expressed enzyme and the com-
paratively faster timescale of enzyme catalysis. Catalytic time-
scales are typically in the order of seconds or faster, so that slow
fluctuations in enzyme expression levels produce two quasi-
stationary metabolic states in single cells. At a population level,
this leads to two distinct subpopulations of metabolite producers
and non-producers.

As shown in Fig. 4a, single-cell measurements in E. coli suggest
that metabolic enzymes appear in low copy numbers across most
cellular pathways17. In the specific growth conditions of that
experiment, the data did not reveal the bimodal expression of
enzymes, which precludes the emergence of switching-induced
bimodality in the metabolites they catalyse. However, as illu-
strated by the three representative distributions in Fig. 4a, a
number of enzymes have a low mean and a long-tailed dis-
tribution, akin to those required for catalytically-induced
bimodality and multimodality. This suggests that enzyme dis-
tributions found in nature have the characteristics needed for the
emergence of subpopulations with two or more distinct meta-
bolite abundances.

Further requirements for metabolite bimodality and multi-
modality involve conditions on the parameters λ∞ and K in Eq.
(5). However, their computation requires rate constants (k1, k−1,
and krev) that are rarely measured individually, and
instead enzymology data typically provides values for kcat and
KM= (kcat+ k−1)/k1 only48. In the Methods section, we show
that the ratio λ∞/K can be expressed as λ1=K ¼ ϵ ´ kcat=kc, where
ϵ is the saturation level of the enzyme and kc is the first-order rate
constant of metabolite consumption. As illustrated in Fig. 4b, the
ratio λ∞/K corresponds to a straight line in a (λ∞, K)-space, and a
specific enzyme (i.e. with specific values for k1, k−1, and krev)
corresponds to a single point on the line. In Fig. 4b, we compare
model predictions for a lowly abundant enzyme with different
λ∞/K ratios computed for kcat constants measured in E. coli49.
Considering the large spread in measured kcat values, of up to
seven orders of magnitude, plus the multiple combinations of
metabolite consumption rates and enzyme saturation, the analysis
suggests that catalytically-induced bimodality and multimodality
are plausible within physiological regimes. Further validations of
our predictions require measuring metabolite distributions
directly, but this is still subject to a number of challenges in
single-cell measurement technologies15.

Our analysis shows that metabolite heterogeneity depends on a
delicate interplay between enzyme expression and enzyme
kinetics. It is reasonable to expect that energy-critical enzymes,
such as those in central carbon metabolism, filter away fluctua-
tions through post-translational regulatory mechanisms com-
monly found in metabolism. However, this may not be the case in
pathways that are dynamically regulated in response to changes in
the environment or cellular context. For example, transcriptional
regulation in response to nutrient shifts may steer enzyme levels
into regimes of low copy numbers where heterogeneity may
dominate the resulting phenotypes. Such a mechanism has been
already shown to produce growth bimodality in the gluconeo-
genic switch of E. coli12, while a similar mechanism could
underpin the large variability observed in single-cell measure-
ments of S-adenosyl methionine21. Noise-induced phenomena
also have implications for the design of dynamic control systems
for heterologous pathways, which are focus of much research in
synthetic biology and metabolic engineering50.

In our efforts to build a theory that includes components
shared by most enzymatic reactions, we have purposely over-
looked a number of processes that can shape metabolic activity.
For example, we have not addressed the impact of feedback
mechanisms that control enzyme activity, including e.g. product
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inhibition and allostery, or transcriptional mechanisms that
control enzyme expression in response to metabolites. Since post-
translational regulation operates on timescales much shorter than
enzyme expression, with similar timescale separation arguments
it should be possible to express the metabolite distribution as a
mixture model akin to ours. In such a case, the mixture com-
ponents are not necessarily Poisson and their distribution will
depend on the particular mechanism under study. We expect that
bimodal and multimodal responses are likely to emerge in this
setting, but the precise parameter conditions would have to be
studied on a case-by-case basis. Transcriptional feedback can also
display various mechanisms depending on the particular pathway
under study. One common motif relies on transcription factors

(TF) that up- or down-regulate enzyme expression upon binding
to a specific metabolite20. These mechanisms have been shown to
play important roles on metabolic activity51, but they also bring
to the fore subtle questions that require detailed examination, for
example, on the role of fluctuations coming from TF expression
itself, or the impact of negative TF autoregulation52. Our study
paves the way for these and other questions to be addressed and
raises exciting prospects for the future research in metabolic
heterogeneity.

In this paper, we laid theoretical foundations to study meta-
bolism in conjunction with stochastic enzyme expression. We
brought together classic models for gene expression and enzyme
kinetics, and discovered a rich array of distinct stochastic phe-
nomena that underpin the emergence of metabolic subpopula-
tions. Our theory provides a quantitative basis to draw testable
hypotheses on the sources of metabolite heterogeneity, which
together with the ongoing efforts in single-cell metabolite mea-
surements, will help to re-think metabolism as an active source of
phenotypic variation.

Methods
Stochastic modelling and simulation. We built a fully stochastic model for the
reaction scheme describing a metabolic reaction coupled with gene expression
(Fig. 1a):

Substrateþ Enzyme
k1
$
k�1

Complex ðR1Þ

Complex
kcat
$
krev

Metaboliteþ Enzyme ðR2Þ

mRNA
ktl!mRNAþ Enzyme ðR3Þ

DNAon

ktx!DNAon þmRNA ðR4Þ

DNAoff

kon
$
koff

DNAon ðR5Þ

Metabolite
kc!; ðR6Þ

mRNA
kdeg
! ; ðR7Þ

Enzyme
δ!; ðR8Þ

Complex
δ
!; ðR9Þ

All reactions are assumed to follow mass action kinetics. Model simulations
were computed with Gillespie’s algorithm34 over long time horizons, in the order of
hundreds of cell cycles for all simulations. Because of the complex multimodality
observed, long simulations are needed to obtain accurate approximations of the
stationary molecular distributions. The time courses shown in figures correspond
to a small time window of the overall simulation. Unless mentioned in figure
captions, all parameter values were fixed to their nominal values shown in Table 1.
The parameters are selected in a physiologically realistic range respecting the scale
separation of molecule numbers between mRNA (~1–5 molecules), total enzyme
abundance (~100 molecules) and metabolites (~1000 molecules).

To identify bimodality in Fig. 2, we detected the existence of one or two peaks in
a distribution and defined it as bimodal if the height of the smaller peak is a least
10% of the larger peak and the trough between peaks is at most 10% of the height
of the smaller peak.

Analytical expressions for the metabolite distribution. To derive an analytic
approximation for the probability to observe np metabolites in a cell, we first use
the law of total probability as shown in Eq. (1).
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Fig. 4 Model predictions and experimental data. a Single-cell
measurements reveal that metabolic enzymes are as variable as other
members of the proteome17. Data correspond to ~80% of the E. coli
proteome, including 268 enzymes involved in various metabolic functions55

(coloured circles). The coefficient of variation (CV) is defined as the
standard deviation over the mean of measured distributions. Distributions
with CV > 1 (dashed line) are long-tailed and peak at zero, which resemble
the distributions required for catalytically-induced bimodality and
multimodality (Figs. 2b and 3); shown are the distributions of three
representative enzymes computed from fitted Gamma distributions17.
b Predictions of the Poisson Mixture Model for combinations of parameters
λ∞ and K in Eq. (5). For a lowly abundant enzyme (distribution in inset), the
model predicts unimodality, catalytically-induced bimodality and
multimodality in large regions of the (λ∞, K) space. The red line represents
a constant ratio λ∞/K for the median kcat≈ 16.5 s−1 across 752 enzymes in
E. coli, see kcat distribution displayed in the inset49. Shaded red corresponds
to the lines obtained for kcat values within a range 0.5- and 2-fold of the
median (highlighted in green in the inset). The grey lines and shaded areas
correspond to perturbations to the consumption rate constant (kc) and
enzyme saturation ϵð Þ; more details in Methods
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Distribution of the total enzyme: Because free enzymes and complexes degrade
at the same rate and netot= ne+ nc is conserved by the metabolic reaction, in the
slow timescale the enzyme distribution P(netot) follows the standard solution27 of
the three-stage model for gene expression:

P netotð Þ ¼ Γ αþþnetotð ÞΓ α�þnetotð ÞΓðγÞ
Γ netotþ1ð ÞΓ αþð ÞΓ α�ð ÞΓ γþnetotð Þ

´ b
1þb

� �netot
1� b

1þb

� �αþ

´ 2F1 αþ þ netot; γ� α�; γþ netot;
b

1þb

� �
;

ð7Þ

where Γ is the Gamma function and 2F1 is the ordinary hypergeometric function. The

parameters are γ= (kon+ koff)/δ and α± ¼ aþ γ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaþ γÞ2 � 4akoff=δ

q� �
=2,

with a= ktx/δ and b= ktl/kdeg.
Conditional distribution for the metabolite: To compute the second term in

Eq. (1), we observe that enzyme expression occurs on a much longer timescale than
enzyme kinetics, and thus metabolites can be considered to be in a quasi-
equilibrium state of the catalytic reactions (R1) and (R2) and metabolite
consumption (R6).

To explicitly compute the mixture components P(np|netot), we assume that
reversible binding between substrate and enzyme in reaction (R1) is much faster
than the catalytic step and metabolite consumption35. In this limit, the metabolite
number evolves according to the effective reactions:

;
keffcat
$

keffrev

Metabolite
kc!;; ð8Þ

where keffcat and keffrev are effective propensities averaged over the fast fluctuating
variables nc and ne:

keffcat ¼ kcatE ncjnetot; np
� �

;

keffrev ¼ krevE nejnetot; np
� �

;
ð9Þ

where E denotes the expectation operator. The derivation of the effective
propensities in Eq. (9) corresponds to a particular case of a more general
methodology for timescale separation in stochastic chemical systems29,53,54. Note
that since the total enzyme levels are conserved in the catalytic timescale, it follows
that

E nejnetot; np
� �

þ E ncjnetot; np
� �

¼ netot: ð10Þ

To derive the conditional expectations in Eq. (9), we write the first-order moment
equation for the free enzyme ne, which according to Eqs. (R1) and (R2) reads

d
dt E nejnetot; np

� �
¼�k1nsE nejnetot; np

� �

þ k�1E ncjnetot; np
� �

þ kcatE ncjnetot; np
� �

� krevE nejnetot; np
� �

np:

ð11Þ

Under the assumption that the reversible binding of substrate and enzyme is much

faster than the other processes, the first two terms dominate the right-hand side of
Eq. (11) and determine the enzyme–complex quasi-equilibrium. Equating these
two terms and using the conservation relation in Eq. (10), we obtain

E nejnetot; np
� �

� k�1
k�1þk1nsð Þ netot;

E ncjnetot; np
� �

� k1ns
k�1þk1ns

netot;
ð12Þ

and thus both conditional expectations depend on netot and are independent of the
metabolite abundance. Therefore, the reactions in Eq. (8) correspond to a
birth–death process with a zero-th order birth propensity keffcat and two linear death
propensities. The mixture components P(np|netot) are thus Poissonian with
parameter λ(netot) as shown in Eqs. (3) and (4).

Comparison of PMM predictions and measured kinetic parameters. The PMM
depends on the effective parameters λ∞ and K, which are functions of five rate
constants (kcat, k1, k−1, kc, and krev). Most of these parameters are not available,
except kcat and KM= (kcat+ k−1)/k1. From Eq. (5) it follows

λ1
K

¼ kcat
kc

´
k1ns

k1ns þ k�1|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
saturation ϵ

; ð13Þ

which allows the computation of λ∞/K for measured kcat values in different
saturation conditions and consumption rate constants. The red line in Fig. 4b
represents the λ∞/K ratio for a saturated enzyme ϵ ¼ 1ð Þ, fast consumption (kc=
100 × δ), and the median kcat ≈ 16.5 s−1 in E. coli49. The top grey line is the case
without consumption, i.e. metabolites are diluted by cell growth (kc= δ). Lower
saturation ϵ ¼ 0:2ð Þ moves the red line down the vertical axis (bottom grey line).
The enzyme distribution in Fig. 4b was produced with promoter switching para-
meters {kon, koff}= {1.56, 3} × 10−4 s−1, ktx= 0.025 s−1, and ktl= 0.2 s−1. The
boundaries between unimodal, bimodal, and multimodal distributions were com-
puted as follows. Unimodal distributions are those with a single maximum.
Bimodal distributions were detected as in Fig. 2. Multimodal distributions are those
with at least one additional peak higher than a threshold of 1 × 10−4 and the trough
between neighbouring peaks at most 90% of its height.

Code availability. The code for producing model simulations is available from the
authors upon request.

Reporting summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All data are available from the authors upon request.
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