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A B S T R A C T

Emerging cognitive control during childhood is largely supported by the development of distributed neural
networks in which the prefrontal cortex (PFC) is central. The present study used fNIRS to examine how PFC is
recruited to support cognitive control in 5–6 and 8-9-year-old children, by (a) progressively increasing cognitive
control demands within the same task, and (b) manipulating the social context in which the task was performed
(neutral, cooperative, or competitive), a factor that has been shown to influence cognitive control. Activation
increased more in left than right PFC with cognitive control demands, a pattern which was more pronounced in
older than younger children. In addition, activation was higher in left PFC in competitive than cooperative
contexts, and higher in right PFC in cooperative and neutral than competitive contexts. These findings suggest
that increasingly efficient cognitive control during childhood is supported by more differentiated recruitment of
PFC as a function of cognitive control demands with age.

1. Introduction

Cognitive control development, which enables goal-directed reg-
ulation of thoughts and actions, supports growing autonomy and
adaptive behaviors during childhood. As cognitive control is achieved
through prefrontally-mediated goals biasing information processing in
posterior regions, its protracted development is intertwined with the
development of the prefrontal cortex (PFC) (Crone and Steinbeis, 2017;
Luna et al., 2010; Moriguchi and Hiraki, 2013). Yet, little is known
about how PFC recruitment changes from early to middle childhood, a
developmental window characterized by profound transformations in
cognitive control engagement. Furthermore, although cognitive control
is often implemented in social contexts in which children interact with
other individuals and/or actions are socially relevant, the influence of
such social contexts on PFC recruitment has been largely overlooked in
children. Thus, the present study addresses potential differences from
early to middle childhood in PFC recruitment as a function of variations
in both cognitive control demands and social contexts.

Despite the widespread idea that cognitive control development
reflects exclusively engagement of more control with age, it may also
(and perhaps foremost) reflect better and more flexible engagement of
control to meet specific task demands (Chevalier, 2015). For instance,

studies using confirmatory factor analysis, which examines whether
variance across tasks tapping control is explained by one or multiple
latent factors (i.e., control components), showed cognitive control is
unitary at age 3 (e.g., Wiebe et al., 2011; Willoughby et al., 2010) and
progressively differentiates into two and three partially separable
components through middle childhood and adolescence, respectively
(e.g., Huizinga et al., 2006; Lee et al., 2013). In other words, with age
children engage control in an increasingly differentiated manner as a
function of specific demands to inhibit responses, update information in
working memory, or switch between tasks. This progressive differ-
entiation is accompanied by a diversification of control strategies with
age, including proactive strategies, verbalization, and active informa-
tion maintenance (Camos and Barrouillet, 2011; Chatham et al., 2009;
Chevalier et al., 2015; Fatzer and Roebers, 2012). Thus, school-age
children engage control in a less rigid fashion than preschoolers, more
flexibly tailoring control to changing task demands, which may include
both better control mobilization when demands increase and greater
control release when demands decrease (Chevalier et al., 2013).

Increasingly efficient cognitive control with age may be supported
by more differentiated recruitment of PFC, as reflected by two major
trends. First, PFC activation may increase in prefrontal regions that
show progressive specialization (i.e., which are increasingly critical in
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supporting control) with age (e.g., Buss et al., 2014; Moriguchi and
Hiraki, 2009; Perlman et al., 2014) and decrease in other, less critical
prefrontal regions (Adleman et al., 2002; Bunge et al., 2002; Casey
et al., 1997; Morton et al., 2009), leading to a progressive shift from
diffuse to focal pattern of prefrontal activation (Durston et al., 2006;
Marsh et al., 2006; Tamm et al., 2002; Tsujii et al., 2009). Second,
differentiation may also result in greater modulation of activation in
critical prefrontal regions. That is, not only may older children recruit
PFC more than younger children when control demands increase, but
they may also release control more when demands are low (see Durston
et al., 2002).

Furthermore, PFC recruitment during childhood may vary as a
function of the immediate social context, as cooperation and competi-
tion can enhance children’s behavioural performance on tasks tapping
cognitive control (Butler and Walton, 2013; Fischer et al., 2018; Qu,
2011). Competition may increase enjoyment, motivation, and task en-
gagement (Cagiltay et al., 2015; Conti et al., 2001; Plass et al., 2013),
which in turn may result in better cognitive control engagement. In
cooperative contexts, socially shared goals may be especially salient
and thus more easily maintained in working memory (Decety et al.,
2004; Qu, 2011). If these social contexts influence cognitive control
through different processes, they may be associated with different
patterns of prefrontal activation, yet this has never been studied in
children. In adults, although both cooperation and competition lead to
greater activation in superior frontal gyrus relative to neutral contexts,
they are associated with distinct patterns of activation in medial pre-
frontal cortex in a task that required the participant and other player to
take turns to reproduce complex visuospatial patterns (Decety et al.,
2004). Furthermore, cooperation in adults is associated with greater
activation in right inferior gyrus (Liu et al., 2015), greater signal co-
herence across partners in right superior frontal gyrus (Cui et al., 2012),
but lower activation in left superior frontal gyrus (Decety et al., 2004)
than competition. Therefore, these diverging patterns of prefrontal ac-
tivation suggest cooperation and competition may enhance cognitive
control through distinct processes in adults.

The present study used fNIRS, an especially appropriate neuroima-
ging technique for younger children (Lloyd-Fox et al., 2010; Moriguchi
and Hiraki, 2013), to investigate how cognitive control may be sup-
ported by changes in PFC recruitment from early to middle childhood,
by manipulating two factors that influence cognitive control engage-
ment: control demands and the social context in which cognitive con-
trol is engaged. Specifically, 5–6- and 8–9-year-olds completed a task in
which inhibition and switching demands were progressively in-
troduced, in three social contexts: neutral, cooperative, and competi-
tive. Both preschool and school-age children were targeted because of
important gains in flexible cognitive control engagement between these
two periods of development, making it especially likely to reveal dif-
ferent patterns of PFC recruitment with age. We expected performance
to increase with age, decrease with increasing cognitive control de-
mands, and benefit from cooperative and competitive contexts. Im-
portantly, more differentiated PFC recruitment with age should result
in greater variation of prefrontal activation as a function of control
demands in older children than in younger children. Although more
exploratory, we expected this pattern to be more pronounced in co-
operative and competitive than neutral contexts, as these contexts en-
hance cognitive control in children. However, as they may affect cog-
nitive control through distinct factors (goal salience and motivation,
respectively) and are associated with distinct patterns of prefrontal
activation in adults, we explored whether they would be associated
with different patterns of prefrontal activation. In contrast, if PFC re-
cruitment simply increases with age in an undifferentiated manner,
older children should show greater prefrontal activation than younger
children across the board and even more so as control demands in-
crease.

2. Materials and methods

2.1. Participants

Participants included 30 five to six-year-old children (M=5.9
years, SD=0.6, age range=5.1–6.9, 16 girls) and 30 eight to nine-
year-old children (M=8.8 years, SD=0.6, age range= 8.1–10.0, 6
girls). They were mostly Caucasian (56 children) and from middle to
high socioeconomic backgrounds (49 children had at least one parent
with a university degree). The data of one additional younger child
were dropped as she failed to complete the session. Families were re-
cruited from the community through adverts on social media. Informed
written consent was obtained from the accompanying caregivers. All
children provided verbal and written assent to participate. Parents re-
ceived £10 compensation for their time and travel costs. Each child
received age-appropriate prizes and a ‘young scientist’ certificate. The
study received approval from the local university’s research ethics
committee.

2.2. Experimental design

Children were tested individually in a child-friendly laboratory
setting. Each child completed a modified version of the Real Animal
Size Test (RAST; Catale and Meulemans, 2009). On each trial, children
were presented with a pair of cartoon animals and instructed to identify
the animal that was either visually bigger (Picture Game) or bigger in
real life (Animal Game), by pressing on the gamepad button located on
the same side as the bigger animal on the screen, as quickly and ac-
curately as they could. The stimuli were drawn from four small animals
in real life (ant, mouse, duck, cat) and four large animals in real life
(cow, bear, elephant, whale). These animals were selected because (a)
they are familiar to children and (b) they can be unambiguously clas-
sified as big or small, as confirmed by children successfully naming and
categorizing them as big or small when presented on a sheet before the
task started. Each time, one of the two animals presented side by side
was visually bigger than the other (side counterbalanced across trials;
Fig. 1). The animal visually bigger on the screen was also bigger in real
life in congruent trials (e.g., a visually big elephant with a visually small
duck), whereas it was smaller in real life in incongruent trials (e.g., a
visually big mouse with a visually small cow). Congruent and incon-
gruent trials were equally frequent in all cognitive control demand
phases and social contexts. Each trial started with a 1000-ms fixation
cross accompanied by an auditory task cue (i.e., either the word ‘pic-
ture’ or the word ‘animal’) that was then replaced with a pair of animals
(stimuli) until a response was entered. The subsequent 500-ms trial
feedback consisted of two stars if the response was correct and fast (i.e.,
faster than the prior response), one star if it was correct but slow (i.e.,
slower than the prior response), or a red cross if it was incorrect. After
each run of 6 trials, children were shown how many stars they accu-
mulated during the run (feedback).

2.2.1. Cognitive control demands
The task started with a Control phase in which children were in-

structed to press the gamepad button on the same side as the animal
that was visually bigger (Picture Game). The word ‘picture’ was orally
presented with the fixation cross on all trials. As the animals’ visual size
is especially salient, cognitive control demands were relatively low in
this phase. Children then completed the Inhibition phase in which they
had to press the button on the same side as the animal that was bigger
in real life (Animal Game), as cued by the word ‘animal’ orally pre-
sented alongside the fixation cross on all trials. This phase required
inhibiting visual size to attend to real-life size instead. Finally, in the
Switching phase, children unpredictably switched back and forth be-
tween the Picture and Animal games, as a function of the auditory cue
(either ‘picture’ or ‘animal’) presented with the fixation cross. As this
phase required both inhibition and task-switching, it was especially

N. Chevalier, et al. Developmental Cognitive Neuroscience 36 (2019) 100629

2



taxing in terms of cognitive control. Each phase started with initial
practice trials that were followed by 5 runs of 6 test trials each (2
congruent and 4 incongruent trials). Trial runs were separated by at
least 10 s to allow the hemodynamic response function to return to
baseline before the start of the following run. The stars were used to
ensure children stayed motivated throughout the session and for the
social context manipulation (see below). Children were told that the
more stars they accumulated in total throughout the session, the nicer
the prizes they would get at the very end. In reality, all children re-
ceived the same prizes regardless of their performance.

2.2.2. Social context
Each participant completed all three phases of the RAST in three

social contexts: cooperative, competitive, or neutral (order counter-
balanced across participants). At the start of the session, the experi-
menters pretended that another child (Amy or Ben) would also play the
same game but in a different room. To make it more convincing, they
showed the participant a picture of the other ‘player’ (matched on the
participant’s age and gender) and pretended to take a picture of the

participant that would be similarly shown to the other ‘player’. In the
Cooperative context, the participant was told that they played with the
other ‘player’ as a team, and each player would receive half of the stars
that the team accumulated by the end of the game (to be later traded for
prizes). In the Competitive context, the participant was told they played
against the other ‘player’ and the player who accumulated the most
stars would receive their own stars at the end of the game, while the
other one would not receive any stars for this round (condition). In the
Neutral context, children played on their own and were told they would
receive the stars they themselves accumulated, regardless of the other
player’s performance.

Importantly, after each run of trials in the cooperative and compe-
titive contexts, children were shown both their run score (i.e., the
number of stars they accumulated during the run) presented besides
their first name on the left-hand side of the screen, and the other
player’s run score, which was shown besides the other player’s picture
on the right-hand side of the screen. The participant’s run score was
always accurate, whereas that of the other ‘player’ was calculated by
adding or subtracting 0, 1, or 2 stars from the participant’s score

Fig. 1. Real Animal Size Test and fNIRS probe. (A) After the fixation cross and auditory task cue, children had to press on the side of the animal that was either bigger
on the screen (Picture Game) or in real life (Animal Game). (B) After each trial run, participants were shown either just their own score beside their first name
(Neutral condition) or their own score, and that of the other ‘player’ beside the other player’s picture (Cooperative and Competitive conditions). (C) Projection of the
probe onto a standard brain atlas with 10–20 system landmarks. (D) Probe layout. Sources are indicated in red and detectors in blue. Digits in color indicate the
channel number within each region. Brain regions are shown in orange, purple, and green. Channels marked with dotted lines showed no difference between HbO
and HbR (see Table 1) and were not included in statistical analyses. (E) Example of a participant wearing the fNIRS probe (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article).
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(counterbalanced across runs). In contrast, children only saw their own
run score in the neutral context to minimize the risk that they may
believe they were (still) playing with or against the other ‘player.’
Finally, at the end of each round, children were asked to recall the
context in which they just played by choosing among three pictures
showing either a single cartoon character (neutral), two characters
shaking hands (cooperative), or two characters on a start line (com-
petitive). Testament to the success of the social context manipulation,
the vast majority of children answered all questions correctly; only 3
younger children provided correct answers for just 2 of the 3 condi-
tions.

In each social context, children completed five runs of six trials for
each of the three cognitive control phases. As children were tested in all
three social contexts, they completed 270 trials in total.

2.2.3. fNIRS recording
Concentrations of oxygenated hemoglobin (HbO) and deoxygenated

hemoglobin (HbR) were measured while participants completed the
RAST, using an NTS Diffuse Optical Topography System (University
College London/Gowerlabs, London, UK), operating at wavelengths of
780 and 850 nm and with a 10-Hz sampling rate (Everdell et al., 2005).
The NIRS probes contained 16 optodes, including 8 sources and 8 de-
tectors, mounted on a customized nylon cap fitting the participant’s
head circumference and arranged in a layout of 20 channels covering
the left and right frontal poles (Fp1, Fp2), ventrolateral (F7, F8) and
dorsolateral (F4, F3) prefrontal cortices, as assessed using AtlasViewer
(Aasted et al., 2015) (Fig. 2). Channel distance was proportional to cap
size (Wijeakumar et al., 2015) based on a 58-cap with 30mm channels:
25 mm for the 48 cm cap (one younger child), 26mm for the 50 cm cap

(5 younger and 3 older children), 27mm for the 52 cm cap (15 younger
and 9 older children), 28mm for the 54 cm cap (9 younger and 16 older
children), and 29mm for the 56 cm cap (2 older children). The optodes
were placed on the cap using plastic adapters permanently affixed to
the cap relative to the 10–20 landmarks (directly shown on the cap).
After measuring the participant’s head circumference and fitting the
corresponding cap size, correct cap placement was checked by ensuring
that the Cz landmark on the cap sat exactly halfway between the nasion
and inion and halfway between the two ears, as indicated by tape
measurement. Pictures of the cap on the participants’ head were taken
so that placement could be checked again a posteriori.

2.3. Statistical analysis

Response times were log-transformed (to correct for skewness and
minimize baseline differences between age groups) and analyzed after
removing trial outliers lower than 200ms or greater than 3 standard
deviations above the mean or 10,000ms (1.9% of trials). fNIRS data for
each run of test trials were processed using HomER2 (Huppert et al.,
2009). The raw data were first converted from intensity to optical
density measurements. Motion artefacts were detected by channel
(using a standard deviation threshold of 40 absorbance units and am-
plitude threshold of 0.20 over .5 s intervals) and corrected using Wa-
velet filtering (iqr= 1.50) (Brigadoi et al., 2014; Cooper et al., 2012).
Data were subsequently band-pass filtered (.01–.5 Hz). They were
converted from optical density to concentration with differential
pathlength factor values derived from Scholkmann and Wolf (2013)
using mean age for each age group: 5.5 for 780 nm and 4.5 for 850 nm
for younger children, and 5.6 and 4.6 (respectively) for older children.

Fig. 2. Accuracy (top panel) and log-transformed response times (RTs; bottom panel). Error bars indicate standard errors. In both age groups, performance decreased
with increasing cognitive control demands, and was especially affected by competition.
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The data were then segmented from 2 s pre run onset to 30 s post run
onset (with the initial 2 s serving as baseline), and averaged across the 5
runs for each phase and condition. The window when the hemodynamic
response function (HRF) was maximal (12–22 sec after run onset) was
determined by visual inspection. This 10-sec window was used to cal-
culate oxygenated hemoglobin (HbO) and deoxygenated hemoglobin
(HbR) changes, as this window adequately captured peak HRF in both
age groups across all cognitive control demand phases, social contexts
and channels (see Fig. 3), despite variability in mean run durations
(Supplemental Materials)1 . Paired t-tests showed mean HbO was sig-
nificantly greater than mean HbR in 13 channels after Bonferonni
correction (see Table 1); the other channels were dropped from sub-
sequent analyses as they did not show specific task-related activity (e.g.,
Buss and Spencer, 2017). The remaining 13 channels (Figs. 1 and 3)
were entered in the subsequent analysis, which focused on HbO, as it is
considered a more sensitive parameter of blood flow (e.g., Cui et al.,
2011) and has been used in most developmental studies (see Moriguchi
and Hiraki, 2013). However, the analysis of HbR is provided in Sup-
plemental Materials.

Linear mixed models were run on accuracy and log-transformed
response times (RTs) to examine the fixed effects of age group (younger,
older), control demands (control, inhibition, switching), social context
(neutral, cooperative, competitive), congruency (congruent, incon-
gruent), and gender (boys, girls). In addition to random intercepts for
subjects, random slopes were included for congruency, control de-
mands, and social contexts as they provided the best fit to the data. The
model on HbO included channel (r-FP1, r-FP2, r-VLPFC2, r-VLPFC3, r-
DLPFC1, r-DLPFC2, r-DLPFC4, l- FP1, l-FP2, l-VLPFC2, l-VLPFC3, l-
DLPFC1, l-DL-PFC4), control demands (control, inhibition, switching),
social context (neutral, cooperative, competitive), age group (younger,
older), and gender (boys, girls). Mean run duration was also entered to
control for its potential effects given the variability in mean run

durations (Supplemental Materials). Congruency could not be included
as it was manipulated within rather than between runs of trials. In
addition to random intercepts for subjects, random slopes for control
demands and social contexts were included as they provided the best
fit. Given that gender distribution differed between age groups, χ2(1,
N=60)= 7.18, p= .007, gender was entered in all models to control
for its effect. Models were run using lme4 package in R (R Development
Core Team, 2012). Satterthwaite approximations for degrees of
freedom are reported. Only significant effects are reported.

3. Results

3.1. Behavior

Response accuracy decreased as control demands increased, F(2,
57) = 32.08, p < .001, η2p= .53, and from congruent to incongruent
trials, F(1, 58)= 96.03, p =< .001, η2p= .62 (Fig. 2). In addition,
control demands interacted with congruency, F(2, 696) = 21.85, p <
.001, η2p= .06, due to a significant drop in performance between the
control and inhibition phases on incongruent trials, p < .001, but not
on congruent trials, p= .485. Importantly, age group, which did not
have a significant main effect, showed an interaction with control de-
mands, F(2, 57)= 3.65, p= .032, η2p= .11. Younger children’s per-
formance decreased significantly between inhibition and switching (.93
vs. .86, p < .001), whereas older children’s dropped mostly from
control to inhibition (.92 vs. .87, p < .001). Social context, whose
main effect was not significant, showed an interaction with age group, F
(2, 57)= 5.17, p= .008, η2p= .15. Older children responded more
accurately in the cooperative (.89) and neutral (.89) contexts than in
the competitive context (.86), p= .014 and p= .012, respectively,
whereas there were no differences in younger children.

Log-transformed response times were affected by social context, F(2,
58) = 4.13, p= .02, η2p= .124, control demands, F(2, 58) = 195.99,
p < .001, η2p= .871, congruency, F(1, 58) = 208.96, p < .001,
η2p= .78, and age group, F(1, 59.63) = 46.39, p < .001, η2p= .44

Fig. 3. Group average of the hemodynamic response function (HRF) for each channel. The time window used for statistical analysis (12–22 s) is denoted by the dotted
vertical lines. HbO=oxygenated hemoglobin. HbR=deoxygenated hemoglobin. FP= frontal pole. DLPFC=dorsolateral prefrontal cortex. VLPFC=ventrolateral
prefrontal cortex.

1 Similar patterns of results were observed with alternative windows (10–25
or 15–20 s).

N. Chevalier, et al. Developmental Cognitive Neuroscience 36 (2019) 100629

5



(Fig. 2). Moreover, age group interacted with control demands, F(2, 58)
= 7.58, p= .001, η2p= .21, and social context, F(2, 58) = 3.89, p=
.025, η2p= .12, and control demands also interacted with congruency, F
(2, 696)= 9.71, p < .001, η2p= .03. Response times slowed down
from the control to the inhibition phases in both younger (6.59 vs. 6.9
log ms, p < .001) and older (6.15 vs. 6.46 log ms, p < .001) children,
with additional slowing from inhibition to switching in younger (6.99
log ms, p= .001), but not older children (6.44 log ms), p= .337.
Older children responded faster in the competitive (6.27 log ms) than
the cooperative (6.38 log ms, p= .002) and neutral (6.39 log ms, p=
.002) contexts, whereas younger children’s RTs did not differ across
social contexts.

3.2. fNIRS

At the brain level, the effect of control demands on HbO, F(2, 61.5)
= 3.55, p= .034, η2p= .10, interacted with age group (whose main
effect was not significant), F(2, 56.1)= 3.29, p= .044, η2p= .11
(Figs. 3 and 4). In older children, HbO significantly increased across all
three phases (.15 μM, .26 μM, .37 μM), ps< .028, whereas in younger
children, HbO was relatively high across all phases (.33 μM, .39 μM,
.38 μM) but did not vary significantly across phases, all ps> .373.

Control demands also interacted with channel, F(24, 6383.1)
= 2.67, p < .001, η2p= .01. HbO increased with control demands in
all channels over the left PFC but one (l-FP2), ps< .047, whereas only
two of the seven channels showed an HbO increase with control de-
mands over the right PFC (r-VLPFC3 and r-DLPFC), ps< .027.
Significant pairwise comparisons for each channel are provided in
Table 1. Therefore, cognitive control demands mostly affected activa-
tion in the left PFC. One may wonder whether the less pronounced
effect of cognitive control demands over the right PFC was due to
overall little activation in these channels or consistently high activation
across all phases. To answer this question, HbO was averaged across all
seven right PFC channels and compared to the average of all six left PFC
channels. HbO in the right PFC was higher than in left PFC in the
control phase (.29 μM vs. .18 μM), p= .005, and did not differ from the

left PFC in the inhibition (.35μM vs. .31μM) and switching phases
(.35μM vs. .40μM), ps> .335. Thus, right prefrontal activation was
already high in the (least demanding) control phase, while left pre-
frontal activation was low, and remained high in the other phases
where it matched left prefrontal activation, which generally rose with
control demands.

Furthermore, social context did not have significant main effect, but
there was an interaction with channel, F(24, 6382.4)= 2.23, p <
.001, η2p= .01. HbO was lower in the competitive than the neutral and/
or cooperative contexts in two channels over the right PFC (r-FP1 and r-
DLPFC4), ps< .034, whereas the opposite pattern was observed in two
channels over the left PFC (l-VLPFC2 and l-DLPFC4), with lower HbO in
the cooperative than the competitive contexts, ps< .012 (see Table 1
for significant pairwise comparisons).

Finally, we also checked whether HbO was significantly higher than
HbR even in cognitive control demand phases and social contexts where
it was lowest. In each age group, HbO was higher than HbR in all three
phases, all ps< .020. In all channels showing an effect of control de-
mands, HbO was significantly higher than HbR in all phases
(ps< .027), except in the control phase for l-VLPFC3 (p= .708).
Similarly, HbO was significantly higher than HbR in all social contexts
(ps< .009), except for l-DLPFC4 in the cooperative context (p= .107).

3.3. Correlations between HbO and behavior

We ran Pearson’s correlations to explore whether prefrontal acti-
vation related to behavioral performance in both age groups focusing
on HbO, as it varied more than HbR across channels. Given the lack of
interaction between control demands and social contexts for accuracy,
RTs, and HbO, correlations were run after collapsing measures across
control demands and social contexts. No significant correlations were
found in younger children. In older children, however, higher accuracy
was associated with lower HbO in right PFC (r-VLPFC2: r = −.515,
p= .004; Fig. 5), which held after False Discovery Rate (FDR) cor-
rection (Benjamini and Hochberg, 1995). Additional negative correla-
tions, which did not pass FDR correction, were observed in right lateral

Table 1
HbO-HbR comparisons for all channels, and significant pairwise comparisons for Channel×Cognitive Control Demands and Channel× Social Context effects on
HbO for each channel showing significantly greater HbO than HbR.

Channel HbO vs. HbR HbO: Cognitive Control Demands HbO: Social Context

r-FP1 t(59)=4.81, p<.001, d= .62* – Cm (.28 μM) < N (.47 μM), p= .033
r-FP2 t(59)=5.24, p<.001, d= .68* – –
r-VLPFC1 t(59)= .74, p= .462, d= .10
r-VLPFC2 t(59)=5.43, p<.001, d= .70* – –
r-VLPFC3 t(57)=3.49, p=.001, d= .46* C (.12 μM) < S (.30 μM), p= .026 –
r-VLPFC4 t(59)= .69, p= .491, d= .09
r-DLPFC1 t(57)=6.63, p<.001, d= .87* – –
r-DLPFC2 t(57)=4.21, p<.001, d= .55* – –
r-DLPFC3 t(57)=1.52, p=.134, d= .20
r-DLPFC4 t(57)=5.29, p<.001, d= .69* C (.22 μM) < S (.42 μM), p= .025 Cm (.18 μM) < N (.40 μM), p= .022

Cm (.18 μM) < Co (.39 μM), p= .028
l-FP1 t(59)=5.67 p< .001, d=.73* C (.18 μM) < I (.34 μM), p= .012

C (.18 μM) < S (.44 μM), p< .001
–

l-FP2 t(59)=3.23, p=.0020, d= .42* – –
l-VLPFC1 t(59)=2.19, p=.033, d= .28
l-VLPFC2 t(59)=7.04 p< .001, d=.91* C (.32 μM) < S (.58 μM), p< .001 Co (.33 μM) < Cm (.55 μM), p= .011
l-VLPFC3 t(59)=3.88, p<.001, d= .50* C (.02 μM) < I (.27 μM), p= .001

I (.27 μM) < S (.48 μM), p= .008
–

l-VLPFC4 t(58)=-2.17, p= .034, d=.28
l-DLPFC1 t(59)=4.63, p<.001, d= .60* C (.26 μM) < I (.38 μM), p= .046

S (.24 μM) < I (.38 μM), p= .027
–

l-DLPFC2 t(58)=1.61, p=.112, d= .21
l-DLPFC3 t(58)= .59, p= .560, d= .08
l-DLPFC4 t(59)=4.98, p<.001, d= .64* C (.18 μM) < S (.44 μM), p= .010

I (.23 μM) < S (.44 μM), p= .036
Co (.08 μM) < Cm (.39 μM), p= .006

r = right; l= left; FP= frontal pole; VLPFC=ventrolateral prefrontal cortex; DLPFC=dorsolateral prefrontal cortex; HbO=oxygenated hemoglobin;
HbR=deoxygenated hemoglobin; C= control; I= inhibition; S= switching; Co= cooperative; Cm=competitive; N= neutral; * = significant after Bonferroni
correction (p < .0025); – no significant pairwise comparisons.
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PFC, further suggesting that lower HbO was associated with greater
accuracy (r-VLPFC3: r = −.399, p= .032; r-DLPFC1: r = −.416, p=
.025) and slower response times (r-VLPFC2: r = −.408, p= .025; r-
DLPFC1: r = −.380, p= .042). Lower HbO in one left PFC channel (l-
DLPFC1) was also associated with greater accuracy (r = −.415, p=
.023), but this correlation did not pass FDR correction. Accuracy was
positively correlated with RTs in older children (r= .406, p= .026).
These results suggest lower HbO in these channels reflected more ma-
ture performance at that age.

4. Discussion

The present study investigated age-related changes in PFC recruit-
ment while children engaged cognitive control in response to varying
control demands and in different social contexts. Children’s

performance decreased with cognitive control demands and older
children responded faster, though slightly less accurately, when com-
peting with an opponent. Prefrontal activation varied more with cog-
nitive control demands over the left than right PFC. It was higher in two
channels over the left PFC with competition relative to cooperation, and
in two channels over the right PFC with cooperative or neutral contexts
relative to competition. Importantly, PFC activation showed less pro-
nounced variations with cognitive control demands in younger than
older children. Finally, in older children, less activation in both right
and left lateral PFC, mostly in channels unaffected by control demands,
was associated with better performance.

Although younger and older children showed similar prefrontal
activation overall, older children showed greater modulation of pre-
frontal activation as a function of control demands, which suggests
more efficient tailoring of cognitive control engagement rather than

Fig. 4. Mean changes in oxygenated (HbO) and deoxygenated (HbR) hemoglobin for each channel as a function of age group, control demands, and social context.
Error bars indicate standard errors. ‘cd’= channels in which HbO significantly increased with cognitive control demands. ‘sc’ = channels in which HbO significantly
varied across social contexts. HbO increased with cognitive control demands, mostly over the left PFC channels and in older children. HbO was lower in the
competitive context in two right PFC channels and in the cooperative contexts in two left PFC channels.

Fig. 5. Correlations between accuracy, log-
transformed response times (RTs), and HbO.
All measures are collapsed across control de-
mands and social contexts. In both panels,
correlations are significant for older children
but not for younger children. Lower HbO in r-
VLPFC2 was associated with greater accuracy
in older children.
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simply more control engagement with age. This neural pattern aligns
well with behavioral evidence for increasing flexibility in cognitive
control engagement during childhood (e.g., Chatham et al., 2009), and
greater differentiation in control engagement between trials with low
and high demands in older than younger children (Chevalier et al.,
2013). It is also consistent with fMRI evidence later in development,
showing that school-age children also show generally less variable PFC
recruitment as a function of cognitive control demands than adults. For
instance, a prior study found that although activation in ventral PFC
increased with interference in adults while inhibiting responses, pri-
mary school-age children showed maximal activation even for lower
interference levels (Durston et al., 2002; see also Davis et al., 2003).
Similarly, when switching between tasks, children recruited pre-SMA/
SMA both when the task switched and when it repeated, whereas pre-
SMA/SMA activation was observed in adults only in task switch trials
(i.e., most demanding trials; Crone et al., 2006).

Furthermore, activation generally varied more with cognitive con-
trol demands over the left than right PFC (when both age groups were
considered together). However, this is not because HbO over the right
PFC was low across all phases, but instead because it was relatively high
over the right PFC even in the control phase, as shown by greater ac-
tivation than in the channels over the left PFC. In older children, lower
activation in three channels over the right lateral PFC (r- VLPFC2, r-
VLPFC3, r-DLPFC1) was associated with better behavioural perfor-
mance, although only the correlation with r-VLPFC2 held after FDR
correction. Lower activation over the right hemisphere, which showed
less sensitivity to variations in control demands than left PFC, may have
supported more efficient control engagement. This interpretation would
be consistent with increasingly efficient cognitive control being asso-
ciated with a shift from diffuse to focal activation, that is, activation
decrease in most prefrontal regions but increase in prefrontal regions
that show growing specialization with age and correlate with beha-
vioral performance (Durston et al., 2006; Marsh et al., 2006; Tamm
et al., 2002; Tsujii et al., 2009). Interestingly, in the present study,
greater performance was not associated with greater left prefrontal
activation, suggesting that more efficient control engagement may rely
more on decrease in (less relevant) right PFC activation than increase in
(more relevant) left PFC activation with age.

Greater differentiation of PFC recruitment as a function of control
demands with age speaks against the idea that cognitive control pro-
gresses only through engagement of more cognitive control. Instead it
points out more flexible and efficient engagement of cognitive control
with age. In older children, who showed more differentiated PFC re-
cruitment as a function of variations in control demands, less prefrontal
activation in some channels, mostly over the right PFC, was associated
with better performance. Less reliance on PFC, especially when task
demands are low, may come with greater reliance on posterior regions,
reflecting more automatized processing with age, and hence reduced
need for cognitive control engagement. Conversely, greater PFC en-
gagement in younger children may compensate for less posterior ac-
tivity (Luna et al., 2010). Such a shifting pattern of activation could, in
turn, be driven by greater structural and functional connectivity be-
tween frontal and posterior regions, leading to greater communication
both within and across neural networks (e.g. Grayson and Fair, 2017;
Marek et al., 2015). Consistently, frontoposterior connectivity supports
cognitive control performance in young children (Buss and Spencer,
2017).

An important question is how cognitive control engagement be-
comes increasingly flexible and efficient with age. The dorsal anterior
cingulate cortex (dACC) may play a key role here, as it has been argued
to integrate information about task demands and internal states (pre-
dicting expected reward and effort associated with tasks) in order to
signal to lateral PFC the need to adjust control engagement (Shenhav
et al., 2013). As the cingulo- opercular network (which includes dACC)
shows an increasing number of links with other networks with age
(Kelly et al., 2009; Marek et al., 2015), dACC may better signal control

adjustment needs to lateral PFC as children grow older. Consistently,
dACC volume correlates with cognitive control performance in children
(Fjell et al., 2012). Unlike adults, who strategically use variations in
task demands to avoid unnecessary cognitive effort (Kool et al., 2010),
younger children seem oblivious to such variations (Niebaum et al.,
2019), potentially because of immature signals from dACC to lateral
PFC.

Furthermore, in the present study, prefrontal activation was sensi-
tive to social contexts. Activation in two channels over the right PFC
was greater in the neutral (r-FP1, r-DLPFC4) and/or cooperative con-
texts (r-DLPFC4) relative to competition. Thus, competition may have
contributed to a pattern of activation more focally restricted to the left
PFC, perhaps through enhanced motivation (Decety et al., 2004), which
in turn led to greater engagement of cognitive control. However, this
pattern, which is associated with better performance in older children,
was accompanied by both slightly lower accuracy and faster RTs in
older children, suggesting the possibility of a speed-accuracy tradeoff.
Greater motivation to beat the opponent may have resulted in less
cognitive control engagement. If so, however, competition should also
have been associated with lower activation in the left PFC channels,
which was not observed. To further explore this possibility, we com-
puted an speed-accuracy tradeoff index (by adding percent decreases in
accuracy and RTs from the cooperative and neutral to the competitive
contexts) but observed no correlation with HbO drop in the competitive
context (ps> .36). Nevertheless, the exact role of competition on con-
trol engagement will need to be clarified in future research.

In addition, activation in two channels over the left PFC (l-VLPFC2,
l-DLPFC4) was greater with competition than cooperation. As activa-
tion in these channels, which varied with control demands, seemed
critical to efficient control engagement, this pattern may explain why
competition but not cooperation yielded faster responses. The distinct
patterns of prefrontal activation with competition and cooperation
suggest that these two social contexts differently affected cognitive
control engagement. Unlike competition, which may influence cogni-
tive control through motivation, cooperation may make socially shared
goals more salient and thus easier to maintain. In adults, cooperation
and competition also yield distinct patterns of activation, including
lower right inferior cortex activation in competition (Liu et al., 2015)
and lower left superior frontal gyrus activation in cooperation (Decety
et al., 2004). However, as the present study differed from prior studies
in adults in both paradigms and social context manipulation, further
research is needed to examine how social contexts may differentially
affect PFC recruitment and cognitive control in children and adults.

Surprisingly, neither competition nor cooperation influenced
younger children’s behavioural performance. Although it further sug-
gests that younger children engage cognitive control in a manner that is
more rigid and less sensitive to contextual factors than older children,
this finding is discrepant with prior studies showing that cooperation
and competition can influence children’s performance in early child-
hood (e.g., Conti et al., 2001; Fischer et al., 2018; Qu, 2011). As prior
studies involved a real (adult or child) partner/opponent, one possibi-
lity is that the virtual partner/opponent not physically present in the
same room as the participant did not elicit a strong enough social
context to influence younger children’s performance in the present
study. This is, however, speculative at this point and should be further
investigated in future research.

There are several limitations to this work. First, because of the study
design, it was not possible to examine how HbO may have differed
between correct and incorrect trials, and between congruent and in-
congruent trials. Second, as hair, skull thickness, and cerebrospinal
fluid change during childhood, it may be argued that age-related dif-
ferences could reflect differences in these factors rather than HbO. Yet,
if anything, these factors should contribute to greater impedance in
older children and thus cannot satisfactorily account for smaller HbO
variations in younger than older children, and their potential impact on
the findings is minimized by using distinct differential pathlength
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factors for each age group. Third, as activation was measured in PFC
only, no conclusion can be drawn about whether increasingly differ-
entiated PFC recruitment is accompanied by rising activation in pos-
terior regions. Similarly, due to the inherent limitations of fNIRS, which
can only probe cerebral activity up to 3 cm below the scalp, dACC ac-
tivation could not be examined. Thus, its potential role in PFC re-
cruitment differentiation during childhood remains speculative. Fourth,
the unbalanced gender distribution in the older children prevented us
from examining gender-related changes in PFC recruitment and could
constitute a potential confound with age effects. Yet, this is unlikely as
(1) gender was controlled for in the statistical analyses, and (2) the
same pattern was observed when including male participants only (i.e.,
HbO varied with control demands in older children, p < .001, but not
in younger children, p= .342). Fifth, the lack of short-separation
channels prevented us from separating changes in HbO related to
evoked brain activity from systematic physiological interference in the
superficial layers of the head (Gagnon et al., 2011). However, the fact
that task-related activation was observed in a subset of channels only
and varied across phases and conditions, with all other variables (in-
cluding motoric response demands) being equal, strongly speaks to the
robustness of the findings.

5. Conclusions

In conclusion, progress in cognitive control during childhood is
associated with more differentiated prefrontal activation as a function
of cognitive demands. In other words, cognitive control development
reflects more flexible and efficient engagement of control, and cannot
be reduced to engagement of more control with age. These results have
important implications as they suggest that, rather than attempt to train
control as a muscle, efforts to support children’s cognitive control
should emphasize flexible control engagement. Just like motor learning
involves efficient activation of the right muscles rather than greater
overall muscle activation, cognitive control development involves in-
creasingly efficient and differentiated PFC recruitment2 .
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