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Abstract—GPUs employ a high degree of thread-level paral-
lelism (TLP) to hide the long latency of memory operations.
However, the consequent increase in demand on the memory
system causes pathological effects such as cache thrashing and
bandwidth bottlenecks. As a result, high degrees of TLP can
adversely affect system throughput. In this paper, we present
Poise, a novel approach for balancing TLP and memory system
performance in GPUs. Poise has two major components: a
machine learning framework and a hardware inference engine.
The machine learning framework comprises a regression model
that is trained offline on a set of profiled kernels to learn best
warp scheduling decisions. At runtime, the hardware inference
engine uses the previously learned model to dynamically pre-
dict best warp scheduling decisions for unseen applications.
Therefore, Poise helps in optimizing entirely new applications
without posing any profiling, training or programming burden
on the end-user. Across a set of benchmarks that were unseen
during training, Poise achieves a speedup of up to 2.94× and
a harmonic mean speedup of 46.6%, over the baseline greedy-
then-oldest warp scheduler. Poise is extremely lightweight and
incurs a minimal hardware overhead of around 41 bytes per SM.
It also reduces the overall energy consumption by an average
of 51.6%. Furthermore, Poise outperforms the prior state-of-
the-art warp scheduler by an average of 15.1%. In effect, Poise
solves a complex hardware optimization problem with consider-
able accuracy and efficiency.

Keywords-warp scheduling; caches; machine learning

I. INTRODUCTION

For the better part of this decade, GPUs have been at the
center of major advancements in areas ranging from Artificial
Intelligence to Enterprise Computing. In such emerging
applications, high degrees of thread-level parallelism (via
multithreading) are normally required. However, the conse-
quent increase in demand for memory resources gives rise to
problems such as cache thrashing [22], [23] and bandwidth
bottlenecks [10], [12], adversely affecting system throughput.
Due to this tension between thread-level parallelism (TLP) and
memory system performance, balancing the two properties to
maximize system throughput poses a significant challenge.

To improve memory system performance, several warp
scheduling techniques have been proposed that limit the
degrees of multithreading [40], [41]. Subsequent proposals in-
troduced additional mechanisms to not only improve memory
system performance, but also maximize TLP. For instance, Li
et al. [35] proposed Priority-based Cache Allocation (PCAL),
where they classify warps into two categories, referred in
this paper as follows. 1 Vital warps (N): A subset of
maximum allowable warps that are permitted to participate
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Figure 1. Tuning vital warps and cache-polluting warps

in multithreading, in order to maintain a sufficient degree of
parallelism in the system. 2 Cache-polluting warps (p): A
subset of vital warps that are permitted to make allocations
and evictions in the private L1 data cache, in order to maintain
good cache performance. We refer to this dual category of
warps as a warp-tuple. Therefore, the above categorization,
also illustrated in Fig. 1, provides a set of two knobs that can
be used to tune TLP and memory system performance in order
to maximize system throughput.

The Problem: How to find the best warp-tuples? Finding
the best performing warp-tuples is a complex hardware
optimization problem. This is because of the following two
reasons. Firstly, traditional heuristic-based search techniques
are prone to local optima in presence of multiple performance
peaks, as is the case in GPUs [16], [17], thereby leading to
sub-optimal solutions. Secondly, iterative search techniques
are slow and expensive, particularly in hardware, due to the
time spent in sampling to generate new iteration points. It
is specially detrimental when the starting point is far from
the solution, thereby requiring several iterations to converge.
While PCAL poses an important optimization problem, their
solution employs heuristic-based iterative search and suffers
from the same limitations mentioned above (discussed in
Section III). In our experiments, we observe that statically
optimal solution performs up to 182% better than PCAL
(discussed in Section VII), thereby suggesting considerable
room for further improvement over PCAL. Therefore, the key
goal of this paper is to find good warp-tuples, and to do so
expeditiously in hardware.

Proposal: In this paper, we propose Poise, a novel ap-
proach to balance TLP and memory system performance.
Poise comprises two major components: a machine learning
framework and a hardware inference engine. The machine
learning framework uses a simple regression model, that is
trained offline on a set of profiled kernels using sample input-
output pairs. Each of these input-output pairs comprise the



warp-tuple that resulted in the best performance for a kernel
(as the output), and the corresponding set of architectural
and application features (as the input). The input features are
carefully chosen using a detailed analytical model. Thereafter,
a regression model learns a mapping from the selected
architectural and application features, to the chosen warp-
tuple. The learned mapping is provided to the hardware via
the compiler and can be used to optimize an entirely new
application (as demonstrated in Section VII).

At runtime, the hardware inference engine samples the
same set of input features and uses the previously learned
mapping to dynamically predict best warp-tuples on a new
application. To safeguard against statistical errors in prediction,
the inference engine performs a local search in the vicinity
of the prediction to find a better warp-tuple, if any. This adds
resiliency to Poise against minor statistical errors arising from
the machine learning framework. In our experiments, we
observe that the local search converges at a short distance
from the initial prediction, i.e., at an average offset of around
one vital and one cache-polluting warp from the predicted
warp-tuple (discussed in Section VII-G). This indicates good
prediction accuracy and low overhead of local search. The
final warp-tuple is fed to a modified warp scheduler, thereby
balancing TLP and memory system performance.

Result: Across a set of benchmarks that were unseen during
training, Poise achieves a harmonic mean speedup of 46.6%
(up to 2.94×) over the baseline greedy-then-oldest (GTO)
warp scheduler that employs maximum number of warps.
Poise incurs a minimal hardware overhead of around 41 bytes
per SM and reduces the energy consumption by an average
of 51.6%. It also outperforms the prior state-of-the-art warp
scheduler, PCAL, by an average of 15.1%. It is noteworthy
that training is performed offline by the GPU vendor and done
only once. Therefore, unlike profiling-based techniques, Poise
poses no additional training or profiling burden on the end-
users to run new applications.

II. BACKGROUND
A. GPU Computing

A typical CUDA program consists of multiple kernels.
Kernels are organized into data-parallel blocks of computation
called thread blocks. Each thread block consists of even
smaller group of threads called warps. In hardware, GPUs
consist of multiple execution units organized into a set of
Streaming Multiprocessors or SMs. Each SM consists of
a private L1 data cache and a shared L2 cache. SMs also
comprise several read-only caches such as constant cache.
Constant cache is typically used to perform repeated reads
to the same memory location. In this study, we consider a
baseline modeled on a modern GPU, comprising 32 SMs,
16 KB L1 data cache and 2.25 MB shared L2 cache. Each
SM supports up to 1536 concurrent threads and up to 48
warps. There are 2 warp schedulers per SM, where each warp
scheduler manages a maximum of 24 warps at any given time.
The baseline parameters are summarized later in Table IIIb.

B. Supervised Learning
Supervised learning is a machine learning technique, which

uses a training set that comprises sample input-output pairs,
and constructs a mapping from the input to the output by
analyzing the training data. The learned mapping represents
prior knowledge, and is used to make predictions or inferences
about the output on entirely new input data.

Feature selection: The input variables that are used for
training are often referred as the feature vector. The accuracy
of the model depends highly on the selection of the feature
vector. While correlation techniques [5], [18] are often used for
selecting a set of representative features, domain knowledge
can be harnessed by constructing robust theoretical models [4],
[39] to discover a reliable set of features (as shown in
Section V-A). This can help reduce the dimensionality of
the feature vector to truly representative features, thereby
improving prediction accuracy. It also alleviates the black
box nature of the model, thereby improving explainability.

Regression analysis: In this paper, we use Negative Bi-
nomial regression from the family of Generalized Linear
Models [13]. In this regression model, output follows a
negative binomial distribution. The learned mapping from the
input to the output is expressed through a set of feature weights,
one for each corresponding input in the feature vector. The
logarithm of the output is expressed as the weighted sum of the
input features through a link function (shown in Section V-D).

III. MOTIVATION

In this section, we discuss two prior state-of-the-art warp
scheduling techniques and analyze their limitations.

A. Cache-conscious Wavefront Scheduling
Rogers et al. [40] proposed Cache-conscious Wavefront

Scheduling (CCWS), a warp throttling technique to adaptively
limit the number of warps, thereby reducing cache thrashing.
Due to the high hardware overhead of CCWS, the authors also
discuss Static Warp Limiting (SWL), an offline profiling based
technique to determine the appropriate extent of throttling
for each benchmark. They show that static SWL outperforms
dynamic CCWS due to the runtime overheads of the latter.
However, SWL burdens the end-user with the task of profiling
every new application that needs to be run.

B. Priority-based Cache Allocation
While CCWS successfully improves cache performance

by reducing cache thrashing, Li et al. [35] observed that
throttling leads to under-utilization of shared system resources.
Consequently, they proposed Priority-based Cache Allocation
(PCAL) to decouple TLP and cache performance. As discussed
in Section I, they classify warps into two categories, viz., vital
warps (N) and cache-polluting warps (p). PCAL searches for
a balance between TLP and memory system performance by
varying N and p. PCAL starts by employing the CCWS policy
to find the initial level of throttling. Taking the result of CCWS
as the starting point, PCAL performs a heuristic-based iterative
search in the {N, p} solution space to find better values of N
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Figure 2. Static profiling of ii kernel #112

and p. Therefore, first p is varied in parallel across different
SMs to determine the best performing p. This is followed
by an iterative hill climbing by varying the number of vital
warps through N. Similar to CCWS, the authors propose both
static and dynamic flavors of PCAL, and show that static
outperforms dynamic due to the runtime overheads of the
latter, albeit with a higher burden on the end-user to profile
new applications.

C. Pitfalls in Prior Techniques
In Fig. 2 we show the above techniques in action for a

kernel from the ii benchmark and analyze the shortcomings of
PCAL and CCWS. The simulation methodology is illustrated
later in Section VII-C. Firstly, Fig. 2a shows the performance
profile of the kernel across the entire {N, p} solution space,
determined by offline profiling of the kernel. Here, the x-axis
represents the total number of vital warps (N), while the y-
axis represents the number of cache-polluting warps (p, where
p ≤ N). The green and red color of the circles in the graph
represents speedup and slowdown respectively, observed for
a warp-tuple indicated by coordinates (N, p); whereas, the
radius of the circle is proportional to the magnitude of speedup
or slowdown. Additionally, Fig. 2b shows the performance
variation for two specific cases, i.e., p = N and p = 1, derived
from the performance profile of the kernel in the {N, p}
solution space.

As shown in Fig. 2a, CCWS binds p with N, and thereby
takes values only on the diagonal line p = N. Consequently,
CCWS technique results in a speedup of 7% at (2,2), which
is the peak performance point on the diagonal. In contrast,
PCAL decouples p from N, and searches the two-dimensional
solution space. To implement this search, PCAL first uses
CCWS to arrive at (2,2). Thereafter, it performs a parallel
search in p (converging to p = 1) and an iterative hill climbing
in N (converging to N = 2). In effect, PCAL converges to
(2,1), resulting in a speedup of 35%. However, we note that
the maximum achievable speedup is 45% observed at (15,1).

While the inefficiency of CCWS is due to its restrictive
coupling of N and p, the sub-optimality of PCAL can be
explained due to the following reasons. As shown in Fig. 2b,
hill climbing in p = 1 (green line), starting from the CCWS
point at N = 2 (on the x-axis), gets trapped at a local optimum
at N = 2 due to a nearby performance valley at N = 4.
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Figure 3. System-Level Architecture of Poise

Consequently, PCAL does not transition to the global optimum
at N = 15. Therefore, when there are multiple performance
peaks in the {N, p} solution space, as is the case in GPUs [16],
[17], PCAL becomes prone to a local optimum point that is
nearest to the starting point. Furthermore, even by avoiding
local optima through advanced search techniques such as
stochastic search (as discussed in Section VII-J), when the
starting point is far from the global optimum (as is the case
in the above example), it would require multiple iterations
to converge on a solution. This causes the performance of
dynamic hardware policies to detract considerably from the
corresponding static techniques, as was already observed in
prior work for dynamic CCWS and PCAL schemes.
D. Summary

In summary, prior techniques are limited in their ability
to efficiently search the solution space, and there are two
primary reasons for this. Firstly, conventional methods such
as hill climbing are prone to local optima, and therefore lead
to sub-optimal solutions. Secondly, dynamic implementation
of iterative search techniques present considerable time and
sampling overheads due to multiple iterations, leading to
further degradation in the efficiency of these approaches.

IV. POISE: A SYSTEM OVERVIEW

We now present Poise, a novel approach for balancing
TLP and memory system performance, while avoiding the
shortcomings of prior techniques discussed above. Fig. 3
depicts the system-level architecture of Poise. It is comprised
of the following two major components:

1) A machine learning framework, where we use a super-
vised regression model to perform one-time offline training
on a set of profiled kernels in the training set. Through this
training, we learn a mapping from a set of architectural and
application features to the best performing warp-tuple. The
learned mapping is provided to the GPU via the compiler.

2) A hardware inference engine, where we dynamically
compute good optimizations for new applications. This is
done by sampling the attributes of the feature vector at runtime
via hardware performance counters. Thereafter, the sampled
feature vector and the previously learned mapping are used
to make predictions about the best warp-tuples. This strategy
reduces the time and overhead involved in finding a good
initial solution. Later, we perform a local search in the vicinity
of the predicted warp-tuple to find a better warp-tuple, if any,
to offset the statistical errors in prediction.



V. MACHINE LEARNING FRAMEWORK

In this section, we present the machine learning methodol-
ogy used in Poise. First, we develop an analytical model to
reveal the feature vector. Thereafter, we present our methodol-
ogy to perform supervised learning.

A. Analytical Model
The objective of the analytical model is to use domain

knowledge to identify the salient architectural and application
features that influence the choice of good warp-tuples. While
automated techniques are also used in machine learning to
identify the relevant features [5], [18], their abstract nature
makes it difficult to explain and analyze them [29]. Therefore,
we argue for a theoretical exploration of the features to better
reason about the accuracy of the model. To this end, we first
describe the latency tolerance mechanism in GPUs. Thereafter,
we mathematically express the conditions when memory
latencies get exposed and appear in the critical path. Later,
we discuss how such latencies are impacted on varying the
number of vital and cache-polluting warps. Finally, we extract
key observable parameters deduced from the analysis and use
them to train a regression model.

Latency tolerance. Fundamentally, GPUs employ the fol-
lowing two types of concurrencies to hide the long latency
of memory accesses. Firstly, via instruction concurrency,
which is attained by the execution of independent instructions
between a memory load and its usage within a warp. Secondly,
via warp concurrency, which is attained by the execution of
independent instructions from other warps, i.e., thread-level
parallelism. More specifically, when a warp encounters an
instruction that is dependent on a pending load, it is replaced
with another warp that has a stream of independent instructions.
Thus, these two mechanisms help in keeping the functional
units busy when there is sufficient independent work within or
across warps [27], [38], [48].

In an application, if a typical load and its use are not
separated by sufficient independent instructions from the
same warp (low instruction concurrency), then higher TLP
is required in order to hide memory latencies (high warp
concurrency). However, owing to practical limits on number
of warps, each warp would quickly arrive at the dependent
instruction and wait for pending memory loads to complete.
Therefore, in such applications, memory latencies determine
when the dependencies within a warp can be resolved and
appear in the critical path. Such applications are known as
memory-sensitive applications, where improving the memory
system performance is more useful than simply increasing
the number of warps, as the latter has limited benefit due
to a lack of independent instructions. Therefore, instead of
operating at the maximum number of warps, memory-sensitive
applications require a sophisticated balance between TLP and
memory system performance.

Modeling maximum warps. We now model the miss
latencies in a baseline system with maximum warps N. Let

mo be the average L1 miss rate on an SM and Lo be the
average memory latency for an individual L1 miss request.
Then, upon executing a load instruction concurrently across
N warps on an SM, the effective memory latency for the load
miss can be expressed by Tmem through Equation 1. Here,
Kmshr is the number of MSHR entries in the L1 cache and
accounts for memory-level parallelism. Note that we assume
each warp instruction generates a single, highly coalesced
memory request. Also, the ceil function indicates that the
effective latency grows as integer multiples of Lo.

Tmem = Lo×
⌈

N×mo

Kmshr

⌉
(1)

Tbusy = N×ho× Id×Tpipe (2)
Tstall = max {Tmem−Tbusy, 0} (3)

Next, we model the available slack on an SM to hide the
effective memory latency. Let ho (= 1−mo) be the average
L1 hit rate for an SM. These L1 hits enable the warps to make
forward progress on dependent instructions (due to resolved
data dependencies), thereby contributing to busy cycles on
the SM. Let Id be the number of additional instructions in a
warp that are now eligible for execution due to a cache hit,
until it encounters the next dependency hazard and stalls the
warp again. Then the cycles for which the functional units
on an SM are kept busy can be expressed by Tbusy through
Equation 2. Here, Tpipe is the average number of cycles for
pipelined execution of a warp instruction on the corresponding
functional units. Finally, the number of stall cycles on an
SM when the high latency of memory operations get exposed
and appear in the critical path, can be expressed by Tstall in
Equation 3.

Modeling reduced warps. We now consider a scenario
when only a subset of warps, p (≤ N), can pollute the L1
cache, while the remaining (N − p) warps can only reuse
the cache lines allocated by the p cache-polluting warps.
In a general case, p warps experience an improved L1 hit
rate of hp while the remaining (N− p) non-polluting warps
experience a reduced hit rate of hnp. Then the effective memory
latency for concurrent misses across N warps, for a load
instruction, can be expressed by T ′mem through Equation 4,
where mp = 1− hp and mnp = 1− hnp. Note that L′ denotes
the new average memory latency due to a different level of
congestion in the memory system, emerging from the change
in the overall L1 miss rate. Similarly, the number of cycles
when the functional units on the SM are busy doing useful
work, can be expressed by T ′busy through Equation 5. Therefore,
the number of stall cycles in this case can be expressed by
T ′stall through Equation 6.

T ′mem = L′×
⌈

mnp (N− p)+ mp p
Kmshr

⌉
(4)

T ′busy = { p hp + (N− p) hnp } Id Tpipe (5)

T ′stall = max {T ′mem−T ′busy,0} (6)



Table I
VARIABLES IN THE ANALYTICAL MODEL

(a) Objective Function Variables
Variable Description

Tpipe Cycles for pipelined execution of a warp instruction
Kmshr No. of MSHR entries per L1 cache

ho Net L1 hit rate for the baseline system (= 1 – mo)
hp L1 hit rate for p warps for {N, p} tuple (= 1 – mp)
hnp L1 hit rate for N− p warps for {N, p} tuple (= 1 – mnp)
h′ Net L1 hit rate for {N, p} tuple (= 1 – m′)

∆hp/o Improvement in hit rate for p warps (= hp – ho)
Lo Average memory latency for the baseline system
L′ Average memory latency for {N, p} tuple
Id Average instructions in a warp between adjacent data hazards

(b) Proportionality derived from the Objective Function
Variable Description

R Reuse Distance
ηo Intra-warp hit rate for the baseline system
η ′ Intra-warp hit rate for {N, p} tuple

η ′−ηo Intra-warp hits that could not be captured initially due to cache
thrashing in the baseline system with maximum warps

∆hp/o Proportional to η ′−ηo
ho−ηo Inter-warp hit rate for baseline system

In Average instructions in a warp between adjacent global loads

Speedup criteria. For a warp-tuple {N, p} to result in
speedup, the resultant stall cycles must be lower than the
baseline scheme. Therefore, using the above equations, the
criteria for speedup can be expressed through Equation 7.

T ′stall < Tstall =⇒ ∆Tbusy
∆Tmem

> 1
}

Criteria for speedup

where, ∆Tbusy = T ′busy−Tbusy

∆Tmem = T ′mem−Tmem

(7)

At this point, we define µ as the coefficient of goodness of
a warp-tuple {N, p} in reducing the stalls cycles compared
to the baseline. A higher µ leads to lower stalls, in turn
leading to better performance. Using Equation 7, µ can be
mathematically defined through Equation 8.

µ =
∆Tbusy

∆Tmem
=⇒ For speedup, µ > 1 (8)

µ =
∆T p

busy +∆T np
busy

∆T np
mem +∆T p

mem
where,
∆T x

busy = y (hx−ho) Id Tpipe

∆T x
mem = 1

Kmshr
y (mx L′−mo Lo)

}
x ∈ { p, np}

y =

{
p if x= p
N− p if x=np

(9)

On simplification, µ can be expressed through Equation 9
using Equations 1–6. Note that we drop the ceil function in
∆T x

mem for simplicity, without significant loss in accuracy. To
ensure performance improvement for a warp-tuple {N, p}, the
criteria for speedup, given by µ > 1, can be met conservatively
if both conditions in Equation 10 are met.

µp/np =
∆T p

busy

∆T np
mem

> 1 µnp/p =
∆T np

busy

∆T p
mem

> 1 (10)

On simplifying, we can represent µp/np through Equation 11
where ∆hp/o is (hp−ho). Due to symmetrical nature of µnp/p,
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Figure 4. L1 hit rate for N = 24 and p = 1.

it is expected to yield similar proportionality as µp/np and is
therefore omitted for brevity. Therefore, we define µp/np as
the objective function that we wish to maximize for a bivariate
warp-tuple {N, p}.

µp/np = TpipeKmshr

(
p

N− p

)(
Id ∆hp/o

mnp L′−mo Lo

)
(11)

B. Deriving the Feature Vector
To construct a reliable feature vector, we harness domain

knowledge through the above analytical model. To do so,
we make a few observations about the variables present
in Equation 11 and listed in Table Ia. We note that the
objective function increases with higher hp over the baseline
ho (represented by ∆hp/o). Conducive conditions for a high hp
arise when warps can utilize the cache better in the absence of
thrashing. Therefore, there must be enough locality within the
warp itself (indicated by intra-warp locality) and the footprint
of warps must fit in the cache in the absence of thrashing
(indicated by reuse distance).

We illustrate the above criteria through an example in Fig. 4
where p = 1 and N = 24. The hit rate for p warps (hp) is
indicated by the green bar; the hit rate for (N − p) warps
(hnp) is indicated by the red bar; and the hit rate for all warps
in baseline system (ho) is indicated by the blue line. In this
figure, we also highlight the different reuse characteristics
such as inter-warp hits and intra-warp hits (as a percentage
of total L1 hits in the baseline), and reuse distance (R). We
observe that ii and syr2k show a high ∆hp/o. This is explained
by the presence of high intra-warp locality (97% and 40%
intra-warp hits respectively) and low reuse distance (R≤ 240),
presenting enough opportunity to better utilize the cache in the
absence of thrashing. However, b f s and c f d have high reuse
distance (R = 1136 and 3161 respectively), and therefore
we observe low ∆hp/o due to continued thrashing caused
by the large cache footprint of the warp. Note that if all
intra-warp hits are captured in baseline (ho), then there is no
remaining opportunity to capture more intra-warp hits, despite



Table II
FEATURE VECTOR (X) AND WEIGHTS (α ; β )

Features: X Formulation α (for output N) β (for output p)
x1 ho 0.517687 3.786126
x2 h′ -0.000261 0.483576
x3 ηo 7.209138 -6.386444
x4 η ′ -5.977480 10.320107
x5 (η ′−ηo)

2 -8.906397 -6.533500
x6 In(η

′−ηo)
2 1.976725 -0.900944

x7 (L′m′−moLo)
2/104 0.004668 0.079856

x8 1 (constant intercept) 1.667111 -2.189887

favorable reuse characteristics. Therefore, a good proxy for
the remaining opportunity to capture intra-warp locality is the
difference between intra-warp hits recorded at p = 1 (lowest
thrashing) and p = 24 (highest thrashing). A higher remaining
opportunity will yield a higher ∆hp/o. Table Ib summarizes
the proportionality between ∆hp/o and reuse characteristics.

Next, we observe in Equation 11 that the objective function
increases with lower degradation in hit rate for (N− p) warps
(indicated by the denominator term). Such a condition arises
when the (N − p) warps continue to utilize the cache lines
allocated by p warps, despite losing their own ability to
allocate and evict cache lines. Therefore, there must be enough
locality across warps (indicated by inter-warp locality). In
Fig. 4, we observe that syr2k and c f d have high inter-warp hits
(60% and 98% respectively), and therefore (N− p) warps show
minimal reduction in hit rate. However, ii and b f s have lower
inter-warp hits (3% and 23% respectively), thereby resulting in
a considerable drop in hit rate for (N− p) warps. Notably, the
most favorable conditions for speedup are present for syr2k,
i.e., high change in hit rate for p warps and low change in hit
rate for (N− p) warps.

We also note that Id can be difficult to compute due
to complex data dependency chains. However, in memory-
sensitive benchmarks, a dependent instruction is expected to
be adjacent to its preceding load instruction due to a scarcity of
intermediate independent instructions. Therefore, the number
of instructions between two dependent instructions (Id) can
be approximated by the number of instructions between two
global loads, represented by In in Table Ib. Finally, we note
that parameters such as memory coalescing and memory
divergence are critical to memory system performance. How-
ever, these terms are jointly represented by AML terms (Lo
and L′) due to their interrelation. For instance, high memory
divergence leads to higher congestion, in turn increasing AML.
Therefore, instead of using multiple and redundant parameters,
we use AML as a combined proxy for these terms, keeping
the model simple with fewer and unique parameters.

Summary: The above analysis revealed several factors
that influence the objective function. We summarize the final
feature vector X in Table II. The feature weights in the table
will be discussed in Section V-D. Note that the polynomial
degree for each feature is chosen after sensitivity analysis, in
line with general practice in machine learning. Additionally,
the variables that depend on the choice of p and N (such as
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Figure 5. Scoring performance peaks to avoid performance cliffs

h′, η ′, L′ and mnp) are measured at a fixed reference point
in the two-dimensional {N, p} solution space, i.e., (1, 1);
the rest are measured at baseline, i.e., (24, 24). In summary,
the above feature vector X, constructed by sampling at two
fixed reference points in the {N, p} solution space, provides
sufficient substrate to learn about the values of N and p that
would lead to good performance.

C. Training Methodology

Training is performed to learn a mapping from the feature
vector X to the target warp-tuple {N, p} on a set of profiled
kernels. To select the target warp-tuple for training, an obvious
candidate would be the warp-tuple that leads to highest
performance. However, when the highest performance point
lies in the vicinity of performance cliffs, a small prediction
error could result in performance degradation. Instead, training
for a warp-tuple that lies in a good neighborhood, even with
slightly lower speedup than the global optimum, is expected
to yield better results. Therefore, we propose a scoring system
in which each point in the solution space is assigned a
score. This score is the weighted sum of performance at
the point itself as well as the performance at neighboring
points. Therefore, the score of point (a, b) in the solution space
can be expressed by Equation 12, where Sx,y represents the
speedup at a coordinate (x, y), and ωk is the weight assigned
to the speedup at a neighboring point which is at an offset
of k units from (a, b). These scores are normalized to the
number of neighbors to account for boundary points with
missing neighbors. Thereafter, the point with the highest score
is chosen as the target warp-tuple for training.

score(a, b) = ∑
i∈{−1,0,1}

∑
j∈{−1,0,1}

ω|i|+| j| Sa+i,b+ j (12)

In Fig. 5, we illustrate the utility of the proposed scoring
system by analyzing two kernels from the ii benchmark
profiled across the {N, p} solution space. In Fig. 5a, the best
performance peak is at (6, 5) resulting in a speedup of 8%.
However, it gets a lower score due to nearby performance
cliffs. Instead, the best score is computed at (8, 8) which
presents a safer zone for prediction, even though the target
speedup is revised to a lower value of 6%. Similarly, in
Fig. 5b, the performance peak occurs at (11, 4) with a speedup



of 15%. However, due to nearby performance cliffs, the
best score is instead computed at (7, 6), which presents a
slightly lower speedup of 14%. Therefore, such scoring of
performance peaks reduces the likelihood of our target being
around performance cliffs, so that even with prediction errors
we maintain satisfactory level of performance.

Scaling. We also note that different kernels may have differ-
ent number of warps available to the scheduler, depending on
the occupancy constraints and resource usage on the SM [1].
Therefore, after obtaining the warp-tuple with best score, we
scale the target N and p to the maximum number of warps
that are supported per scheduler. This ensures uniform bounds
for the target warp-tuples in the training data. Later, in the
prediction stage, we perform appropriate reverse scaling for
the predicted warp-tuple.

D. Regression Model
For regression analysis, we use Negative Binomial regres-

sion from the family of Generalized Linear Models (GLM).
The rationale for using Negative Binomial regression is three
fold. Firstly, it is used to predict discrete, non-negative target
variables, aligning with our requirement for predicting N and
p. Secondly, it allows for overdispersion, i.e., the variance can
exceed the mean of the predicted outcome. This allows more
flexibility than the alternate Poisson regression, where the
mean is always equal to the variance. Thirdly, it is lightweight
due to modest training time and dataset needed to converge
to a solution. In contrast, larger models such as Deep Neural
Networks are much more computationally intensive, require
greater training time and dataset to converge, and are more
prone to overfitting [30], [45], [47].

ln(N) =
8

∑
i=1

αixi ln(p) =
8

∑
i=1

βixi (13)

Negative Binomial regression uses a log-linear link function
to map from the feature vector, X, to the target N and p. The
link functions can be expressed through Equation 13 where
xi belongs to the feature vector X; whereas αi and βi are the
weights for feature xi, learned using the regression for N and
p, respectively. The learned weights for each feature obtained
after regression are summarized in Table II. Note that training
needs to be performed only once by the GPU vendor and it
does not pose any burden on the end-user.

VI. HARDWARE INFERENCE ENGINE

In this section, we present the architecture for Poise’s
Hardware Inference Engine (HIE). It performs two primary
functions at runtime: online prediction to find the best warp-
tuples, and local search to offset any predictions errors.

A. Prediction Stage

In this stage, HIE dynamically predicts the values of N
and p that constitute the best warp-tuple. To perform such
predictions, it requires the feature weights (α and β ) that
were learned offline during training, and the feature vector

(X) that needs to be composed at runtime. Before execution,
the feature weights are transferred to HIE by the compiler via
constant memory. Subsequently, predictions are performed
at a periodicity of Tperiod cycles; this duration is referred
as an inference epoch. At the beginning of each inference
epoch, HIE reconstructs the feature vector dynamically using
hardware performance counters. This is done by collecting
the features listed in Table II at two locations in the {N,
p} solution space, i.e., (24, 24) and (1, 1), as was done
during training. A modified warp scheduler (discussed in
Section VI-C) steers the system to each of these warp-tuples
for feature collection.

At each of the above two points, HIE performs the following
tasks. Firstly, the kernel is executed for Twarmup cycles to
minimize the crossover effects of changing N and p. There-
after, performance counters sample the required features for a
duration of Tf eature cycles. Finally, after sampling at both (1,
1) and (24, 24), the link functions described in Equation 13
are used to compute a prediction for N and p. This is done by
taking the dot product of the sampled features and the feature
weights, followed by an inverse log operation. To compute
the link function, we use existing arithmetic units during
idle execution slots (discussed in Section VII-I). Once the
prediction is made, it is appropriately reverse scaled to counter
the prior scaling done during training. The final predicted
warp-tuple is fed to the warp scheduler, before performing the
local search. Predictions are reset at the end of each inference
epoch or at the end of the kernel, whichever comes first.

Detecting compute-intensive kernels. Compute-intensive
kernels have very few loads (high In) and are insensitive
to cache performance. As a result, they are best run with
maximum number of warps at a warp-tuple (24, 24). Therefore,
as an optimization in Poise, if In is found to be greater than
a cut-off Imax, then HIE prematurely terminates the inference
(and the subsequent local search) after sampling at (24, 24).
This prevents Poise from slowing down such kernels. We
evaluate compute-intensive applications in Section VII-J.

B. Local Search
As with any machine learning algorithm, Negative Binomial

regression has an inherent error distribution in the prediction
outcome. At runtime, we have an opportunity to offset this
statistical error and improve the effectiveness of the prediction.
Therefore, in this stage, HIE scans the vicinity of the predicted
warp-tuple by performing a local search through gradient
ascent. This is done by sampling for Tsearch cycles, after
warmup, on either side of the current point at a variable
stride (or offset). If the performance at the current location is
found to be higher than either neighbors, the stride length is
reduced by half. Therefore, as the confidence in the current
location increases, the search stride reduces. We terminate the
search once the stride length reaches 0. Alternatively, if either
neighbor is found to be a higher performance point, the current
location is changed to that of the best performing neighbor, and
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Figure 6. Poise’s Warp Scheduler Architecture

the search is repeated with same stride by searching neighbors
around the new location.

In summary, HIE starts by searching for a better N with
an initial stride length of εN , while keeping p same as the
initial prediction. This is followed by searching for a better
p with an initial stride of εp, while keeping N same as the
most recently converged value. After converging for both N
and p, the kernel executes at that warp-tuple for the remainder
of the current inference epoch. It is worth noting that the
initial predicted value from the inference stage is likely to be
in the near-neighborhood of the best warp-tuple. Therefore,
compared to prior techniques, Poise is less likely to get trapped
at a local optimum. In addition, the increased likelihood of
being in close proximity to higher performing points reduces
the overall search time to arrive at the final solution.

C. Warp Scheduler
In order to use a warp-tuple {N, p} to change the number

of vital and cache-polluting warps, we modify the existing
GTO warp scheduler. The scheduler has a queue to track the
order in which new warps become active to participate in
multithreading. As shown in Fig. 6, we add an additional vital
bit to each entry in the warp scheduler queue, which is set as
1 for N oldest warps. The modified warp scheduler arbitrates
only these N warps in a greedy-then-oldest fashion, instead of
arbitrating all warps as done in baseline. Furthermore, we add
a pollute bit, which is set as 1 for p oldest warps. Thereafter,
each load request is appended with the pollute bit of the
corresponding warp before sending the memory request to the
cache hierarchy. On a load miss, the L1 cache-controller uses
the pollute bit in the memory request to determine whether to
reserve a cache line for the load request or not. Loads without
polluting privileges can still access the L1 and incur a cache
hit; however, in case of a miss, the corresponding request is
forwarded to the L2 without reserving a cache line in the L1.

D. Summary
As shown in Fig. 6, the compiler provides the trained

feature weights to the HIE via constant memory. During each
inference epoch, HIE constructs the feature vector to make
a prediction by sampling the relevant performance counters.
This requires the warp scheduler to alter the number of vital
and cache-polluting warps, based on the output from the HIE at
different times. The modified warp scheduler uses the desired

N and p values to set the vital bits and pollute bits in the warp
scheduler queue. While the vital bit determines whether a warp
participates in scheduling or not, the pollute bit determines the
privilege of the corresponding load request to reserve cache
lines in L1 cache.

VII. EVALUATION

We now evaluate Poise and present the results.
A. Workloads

For this study, we use memory-sensitive applications from
four major general-purpose benchmark suites, viz., Graph
suite [51], Rodinia [6], MapReduce [19] and Polybench [15].
We consider an application as memory-sensitive if the speedup
with a 64× larger L1 cache (Pbest) is greater than 40%. Such
benchmarks are listed in Table IIIa, sorted by normalized
Pbest . We run all benchmarks either to completion or until they
execute 4 billion instructions, whichever comes first. In this
study, we adhere to strict machine learning rules, i.e., keep-
ing training and evaluation benchmarks totally independent.
Therefore, as shown in Table IIIa, the benchmarks are split into
completely disjoint sets for training (277 kernels from 3 bench-
marks) and evaluation (346 kernels from 11 benchmarks).
As a result, all evaluation workloads were unseen during
training. In addition, we reasonably partition the benchmark
suites as well. For instance, training is done on Graph Suite
(gco, ccl) and MapReduce (pvr), while evaluation is done
on Rodinia, Polybench and the remaining MapReduce suite.
These measures are sufficient to ensure reliable evaluation
results. Notably, training benchmarks exhibit a spectrum of
memory sensitivity, with Pbest speedup ranging from 49% to
243%—a reasonable representation of different behaviors.

B. Regression Model Evaluation
We perform the regression analysis using Statsmodels [42],

a python-based statistical modeling tool. For the regression,
we select only those kernels from the training set that meet
a certain threshold criterion. This is to ensure that training
is done on statistically significant data points. The various
timing and threshold parameters for Poise are derived after
detailed sensitivity analysis, and are summarized in Table IV.
We measure the offline prediction accuracy of the model
against unseen profiled kernels from the evaluation set. We
observe a mean prediction error of 16% and 26% for N and
p, respectively. At runtime, Poise’s HIE allows for improving
the prediction accuracy through a local search.

C. Experimental Methodology
We model a modern GPU on a cycle-accurate simulator,

GPGPU-Sim (v3.2.2) [3], based on the architectural parame-
ters listed in Table IIIb. We use GPUWattch [33] for area and
energy estimation. We compare Poise with different techniques
that are summarized below:

GTO: It represents the baseline greedy-then-oldest warp
scheduler, with maximum allowable warps enabled per SM.

SWL: It represents the Static Warp Limiting policy from
the CCWS scheduler [40]. SWL is a static scheme and does



Table III
EVALUATION SETUP

(a) Training and Evaluation Workloads
# Suite Benchmark Abbrv. # Kernels Pbest

Training Set
1 Graph Graph Coloring gco 12 3.43×
2 MapReduce Page View Rank pvr 248 2.07×
3 Graph Component Label ccl 17 1.49×

Evaluation Set
1 Polybench Symmetric rank-2k operations syr2k 1 14.13×
2 Polybench Symmetric rank-k operations syrk 1 9.03×
3 MapReduce Matrix Mult. mm 23 6.20×
4 MapReduce Inverted Index ii 118 5.94×
5 Polybench Scalar and Vector Mult. gsmv 2 3.23×
6 Polybench Matrix Vector Product mvt 1 2.97×
7 Polybench BiCGStab Linear Solver bicg 2 2.93×
8 MapReduce Similarity Score ss 164 2.85×
9 Polybench Matrix Transpose atax 2 2.73×

10 Rodinia Breadth-First Search b f s 24 1.55×
11 Rodinia K-Means kmeans 8 1.42×

(b) Baseline architecture parameters for GPGPU-Sim
Parameter Value

SMs 32
Clock frequency Core @ 1.4 GHz; Crossbar/L2 @ 700 MHz

Schedulers per SM 2, greedy-then-oldest (GTO) scheduler
Max warps per SM 48 (24 per scheduler)

Max threads per SM 1536
SIMD width 32

Registers per SM 32768
Shared Memory 48 KB
L1 Data Cache 16KB, 32 sets, 4-way, 128B line, LRU, Hash Set-indexed, 32 MSHRs

Interconnect 32×24 Crossbar, Fly-topology, 32B flit
L2 Cache 2.25 MB, 24 banks, 96 sets, 8-way, 128B line, LRU
DRAM GDDR5 DRAM @ 924 MHz, 6 Memory Partitions, 384 bits buswidth

not incur any runtime overheads. Therefore, our comparison
with SWL is conservative in favor of SWL.

PCAL-SWL: It represents the dynamic PCAL policy [35].
To determine the initial starting point, SWL (static scheme) is
chosen instead of CCWS (dynamic scheme), eliminating the
initial runtime overhead in favor of PCAL.

Static-Best: It represents the configuration when each
kernel in the application is run at the best performing warp-
tuple, determined by offline profiling of individual kernels.

D. Performance
In Fig. 7, we demonstrate the performance of Poise nor-

malized to the baseline GTO scheduler for evaluation set
workloads. We show that Poise achieves a harmonic mean
speedup of 46.6% (and up to 2.94× for mm). In contrast, we
observe a speedup of 31.5% with PCAL-SWL and 21.8% with
SWL. Therefore, on average, Poise outperforms PCAL-SWL
by 15.1% (up to 141.1% for mm), and SWL by 24.8% (up to
49.4% for syrk). We also observe that Static-Best achieves a
harmonic mean speedup of 52.8%, surpassing PCAL-SWL
by 21.3% on average (up to 182% for mm). On the other
hand, Static-Best surpasses Poise by only 6.2% on average.
This performance gap between Poise and Static-Best can be
attributed to the prediction errors in the regression model, and
the slight search overhead to offset such errors at runtime.
Notably, for some benchmarks, such as syrk, gsmv, mvt and
atax, Poise even surpasses the performance of Static-Best. We
observe that these applications have monolithic kernels instead
of several smaller kernels (as shown in Table IIIa). As a result,
Poise is able to capture the dynamic phase changes within the
large monolithic kernels by performing predictions at regular
intervals. However, these phases go undetected in Static-Best,
where profiling is done offline at coarse kernel granularity.

Table IV
POISE PARAMETERS

Parameter Description Value
ω0,ω1,ω2 Performance scoring weights 1, 0.50, 0.25
Tperiod Inference periodicity 200,000 cycles
Twarmup Warmup duration 2,000 cycles
Tf eature Sampling duration for feature collection 10,000 cycles
Tsearch Sampling duration for local search 4,000 cycles
Imax Cut-off for instructions between global loads 49
εN Search stride for N 2
εp Search stride for p 4
Threshold speedup Speedup of a training kernel at best warp-tuple ≥ 1.5%
Threshold cycles Execution cycles of a training kernel at baseline ≥ 10,000 cycles
Threshold hit rate L1 hit rate for a training kernel at N = 1, p = 1 > 0 %

We also note that for a few scenarios such as syr2k and bicg,
SWL or PCAL-SWL perform better than Poise. This happens
when the global optimum lies within (or close to) the narrow
reach of the SWL, i.e., the N = p region in the solution space.
As both of these schemes use static SWL profiler, they get a
head start by finding (or getting close to) the global optimum
without incurring any runtime overheads.

E. L1 Cache Hit Rate
In Fig. 8, we compare the absolute L1 hit rate for different

techniques. We observe that Poise achieves an average L1 hit
rate of 40.1%, in contrast to 27.1% with PCAL-SWL, 37.7%
with SWL, and 20.6% with baseline GTO. Therefore, Poise
outperforms PCAL-SWL by 13%, SWL by 2.4%, and GTO
by 19.5% in cache performance. Notably, SWL comes close
to Poise in L1 hit rate, however, at the cost of significant
reduction in system performance. Lastly, Poise comes close to
the L1 hit rate of 43.6% achieved with Static-Best, indicating
effective reduction of cache thrashing with Poise.
F. Average Memory Latency

To evaluate the performance of the shared memory system,
we measure the average memory latencies (AML) incurred by
L1 misses. In Fig. 9, we observe that Poise increases the AML
by only 1.1% over the baseline GTO scheduler. In contrast,
PCAL-SWL increases the AML by 32.4%. This is because
of the lower L1 hit rate in PCAL-SWL compared to Poise,
which increases the memory traffic and aggravates congestion,
thereby leading to high memory latencies. On the other
hand, SWL decreases the AML by 10.7% but significantly
underestimates the number of vital warps, indicated by the
low speedup. Interestingly, AML with Static-Best increases
by 14.1%, indicating that with optimal warp-tuples, SMs can
tolerate a higher AML than baseline.

In summary, we observe that Poise provides a good balance
between TLP and cache performance (indicated by speedup
and L1 hit rate), without under-utilizing or over-utilizing
shared memory resources (indicated by AML).
G. Local Search Overhead

To analyze the search overhead, we measure the absolute
displacement across N and p axes between the predicted and
subsequently searched warp-tuples in the {N, p} solution
space. We also measure the net euclidean distance between
the two points. In Fig. 10, we observe that on average, the
final warp-tuple found after a local search is at an offset of
1.02 and 0.87 warps from the initial prediction in N and p axis,



 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

syr2k

syrk
m

m
ii gsm

v

m
vt

bicg
ss atax

bfs
km

eans

H
-M

ean

IP
C

 (
n
o
rm

a
liz

e
d
 t
o
 G

T
O

)

GTO SWL PCAL-SWL Poise Static-Best

3.0 2.94 3.362.47 2.47

Figure 7. Performance improvement

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

syr2k

syrk
m

m
ii gsm

v

m
vt

bicg
ss atax

bfs
km

eans

A-M
ean

L
1
 H

it
 R

a
te

 (
%

)

GTO SWL PCAL-SWL Poise Static-Best
93.43

Figure 8. L1 Hit Rate

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

syr2k

syrk
m

m
ii gsm

v

m
vt

bicg
ss atax

bfs
km

eans

A-M
ean

A
M

L
 (

n
o
rm

a
liz

e
d
 t
o
 G

T
O

)

GTO SWL PCAL-SWL Poise Static-Best

Figure 9. Average Memory Latency (AML)

respectively. This suggests that on average, local search in
Poise converges to an adjacent N and p (at an offset of around
one warp each), thereby posing minimal overhead due to local
search iterations. The overall euclidean distance between the
predicted and locally searched warp-tuples is 1.59 on average.
In the next subsection, we discuss the speedup observed with
and without the local search in Poise (shown in Fig.11).

H. Sensitivity Study
Search stride: In Fig. 11, we vary the stride lengths for N

and p, represented by (εN , εp), which are used to perform a
local search around the predicted warp-tuples. We note that
without performing any local search around the predicted
warp-tuple, i.e., stride of (0, 0), Poise achieves a harmonic
mean speedup of 23% (up to 3.1× for mm). Therefore, relying
purely on predictions, with no local search, Poise still achieves
a higher speedup than SWL, while remaining only 8.5% short
of PCAL-SWL performance, on average.

On increasing the search stride to (1, 1) and (2, 2), we
observe the harmonic mean speedup of 43.6% and 45.7%
respectively, which settles at 45% for a search stride of (4, 4).
Therefore, we note that for most benchmarks, such as syr2k
and ii, increasing the stride length results in improvement
at first, but it saturates or wears off with longer strides. On
average, a stride of (2, 4) shows best speedup of 46.6%.
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Figure 10. Displacement between predicted and converged warp-tuples
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Figure 12. Sensitivity to L1 cache size

L1 cache size: In this work, Poise is trained on a GPU with
16 KB L1 cache, alongside a hash set-indexing function for L1.
We now alter the architectural parameters of the evaluation
platform, while using the previously trained regression model.
For evaluation, we now employ a linear set-indexing function
for L1 and vary the L1 cache size. In Fig. 12, we observe
that with a 16 KB L1 cache, Poise maintains a considerable
harmonic mean speedup of 48%. Even on increasing the L1
cache size significantly by up to 4× (64 KB), we observe a
harmonic mean speedup of 36.7%. Therefore, Poise continues
to deliver performance improvements even with considerably
larger caches. This also highlights the severity of the cache
thrashing problem in GPUs. In summary, we observe that Poise
remains effective even with changes to critical architectural
features, such as L1 cache capacity and indexing, despite being
trained on a different baseline.

Training features: We now examine the effect of removing
a feature xi from the feature vector X, and retraining the
regression model with one less attribute in the feature vector.
The resultant speedup with such a model is shown in Fig. 13,
normalized to the case when all features are used for training.
In each of these cases, no local search is done around the
initial predictions, so as to measure the change in the actual
prediction accuracy. Also, we omit x1 and x2 from analysis as
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Figure 13. Sensitivity to removing a feature xi from X
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Figure 14. Energy consumption

they are represented in x7 and show a similar trend. We observe
that on removing a feature, the harmonic mean slowdown
(compared to the case when all features are used for training)
varies from 1.5% on removing x7 to 21.7% on removing x6.
We note that highly memory-sensitive applications are most
adversely impacted by the removal of a feature. Thus, best
performance is shown when all features are used for training.
I. Hardware Costs

Area: Poise requires seven 32-bit performance counters per
SM to collect the parameters listed in Table II. Next, Poise
requires arithmetic resources to compute the link function.
We note that computing the link function is not in the critical
path and done rarely (once in every hundreds of thousands of
cycles). In addition, prior work [12] has shown that in memory-
sensitive applications, existing arithmetic units are idle for
about 60% of the total execution time due to structural and
data dependencies. Therefore, instead of introducing dedicated
hardware to compute the link function, we time-multiplex the
existing arithmetic units between SIMD instruction execution
and link function computation. The link function is computed
only during idle execution slots, and therefore it does not cause
any performance penalty on original instruction throughput.
Poise also requires one finite-state machine (FSM) per SM to
manage the state transition in HIE, requiring 7 states as per our
implementation, i.e., two 3-bit state registers. Finally, Poise
adds one vital and cache-polluting bit for each warp in the
warp scheduler queue, amounting to 96 bits per SM. In total,
Poise poses a minimal storage overhead of 40.75 bytes per
SM and 1,304 bytes in total, i.e., less than 0.01% of chip area,
estimated using the existing parameters in GPUWattch [33]. In
contrast, dynamic PCAL and CCWS implementations require
CCWS-like hardware, including victim tag arrays, presenting
greater storage overhead and lower performance. In summary,
Poise is extremely lightweight in terms of storage.
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Figure 16. Poise on memory-insensitive applications

Energy: We now evaluate the energy consumption with
Poise. As shown in Fig. 14, we observe a reduction in overall
energy consumption by 51.6% on average and up to 79.4%
for mm. This is partly because faster execution leads to lower
leakage power dissipation. Additionally, better cache perfor-
mance reduces off-chip memory accesses, thereby saving
considerable data movement energy. Furthermore, the energy
overhead due to the added hardware of Poise is negligible as it
only requires few registers and an infrequent computation of
the link function (once in hundreds of thousands of cycles).
J. Discussion

In this subsection, we discuss other topics related to Poise.
Cache bypassing: Cache bypassing schemes also aim to

improve memory system performance in GPUs. Therefore,
we evaluate Poise against APCM [28], state-of-the-art scheme
to bypass and protect cache lines on the basis of instruction
locality. APCM achieves this by filtering streaming accesses
from high locality accesses. In Fig. 15, we observe that Poise
outperforms APCM by 39.5% on average. This is because
Poise not only improves memory system performance, but
also exercises greater control on the degree of multithreading,
which is lacking in most bypassing schemes.

Stochastic search: Several stochastic search techniques
have been proposed to overcome the problem of local optima
in hill climbing [26], [44]. We evaluate Poise against one such
technique, i.e., random-restart with local search [37], [43].
In this scheme, we first choose a random warp-tuple as the
starting point. This is followed by a local search (via gradient
ascent) around the starting point, similar to the one used in
Poise. This process is repeated multiple times throughout
the execution with randomly selected starting points. The
resultant performance is averaged over 20 executions of each
benchmark to ensure statistically significant data. As shown
in Fig. 15, we observe that Poise outperforms random-restart
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Figure 17. Observing correlation between static profile and Poise’s runtime
execution for an unseen application.

search by 22.4% on average. This is because despite avoiding
local optima, stochastic search techniques offer no guarantee
of fast convergence to solution, often requiring high number
of search iterations to converge due to a randomly selected
starting point. By contrast, Poise begins the search from a
good initial starting point, which is expected to be close to the
best warp-tuple (as shown in Fig. 10).

Compute-intensive applications: In Fig. 16, we demon-
strate the impact of Poise on compute-intensive applications
that are insensitive to memory (Pbest < 20%). We observe
a minor performance overhead of 1.6% on average, and a
maximum of 3.5% for sradv2. Thus, Poise is fairly benign to
such applications. This is because Poise resorts to baseline
behavior by employing maximum warps upon detecting
compute-intensive behavior (as discussed in Section VI-A).

K. Case Study
We now present a case study for b f s, chosen from the

evaluation set. Through this study, we qualitatively illustrate
the accuracy of Poise in predicting good performing warp-
tuples on a previously unseen benchmark. In Fig. 17a, we
show the static performance profile for b f s. It indicates a
general trend suggesting that the speedup improves with lower
values of N and p (green circles), with the best performing
warp-tuple at (5, 5). It also indicates that there is an aversion
to higher N and moderate-to-high p (red circles). Next,
in Fig. 17b we show the different warp-tuples chosen by
Poise at runtime, during the multiple prediction and local
search phases throughout the execution. The predicted warp-
tuples are indicated by ‘+’ sign, whereas the warp-tuples
generated after local search are indicated through the shaded
coordinates. Therefore, we observe that most predictions are
in the high performance zone, i.e., in close proximity of
the best performing warp-tuple at (5, 5). Furthermore, Poise
successfully steers the system away from the low performance
zones (red circles in Fig. 17a), thereby correctly detecting the
general affinities in an entirely new benchmark.

VIII. RELATED WORK

Cache Management: In addition to the state-of-the-art warp
scheduling techniques discussed in Section III, several cache
management schemes have been proposed to improve caching

efficiency. Improved cache performance helps in relieving the
pressure on off-chip and on-chip memory bandwidth, which
are critical resources in GPU [8], [9]. Li et al. [34] used reuse
frequency and reuse distance to bypass the L1 cache for low
locality accesses, using decoupled L1 data and tag arrays. Xie
et al. [50] proposed locality-driven cache bypassing at the
granularity of thread blocks. In contrast to bypassing schemes,
we not only improve cache performance, but also alter the
levels of multithreading. Furthermore, Chen et al. [7] proposed
a coordinated cache bypassing and warp throttling scheme.
However, similar to PCAL, they iteratively alter the number of
warps by hill climbing to optimize NoC latencies. Therefore, it
suffers from the same limitations as PCAL that were discussed
previously in Section III-C. More recently, Lee and Wu [32]
proposed an instruction-based scheme to bypass requests from
low reuse memory instructions. Similarly, Koo et al. [28]
proposed APCM, an instruction-based scheme to not only
bypass, but also to protect cache lines using instruction locality
characteristics (discussed in SectionVII-J). Furthermore, Jia
et al. [24] presented a taxonomy for memory access locality
and proposed a compile-time algorithm to selectively utilize
the L1 caches for different locality types. Dublish et al. [11]
proposed a cooperative caching mechanism to improve the
aggregate caching efficiency by sharing reusable data among
the L1 caches.

Machine Learning for Systems: There has been some prior
use of machine learning in computer architecture. Jiménez
and Lin [25] proposed a dynamic branch predictor based on
the perceptron—the simplest neural network. İpek et al. [21]
applied reinforcement learning to adaptively change DRAM
scheduling decisions, instead of employing rigid policies. Liao
et al. [36] used machine learning to optimize memory prefetch
decisions in data centers by detecting the varying application
needs. Machine learning has also been employed extensively
to predict performance and power trends to avoid running full
system simulations. İpek et al. [20] and Lee and Brooks [31]
built design space models to predict the performance impact of
architectural changes, saving simulation time. Similarly, Wu
et al. [49] used clustering algorithms and machine learning
in GPGPUs to estimate power and performance trends, using
previously observed scaling behaviors.

In the realm of compilers, machine learning based tech-
niques have proven to be extremely useful in finding good
compiler optimizations. Stephenson et al. [46] used genetic
algorithms to find optimizations by selecting and combining
expressions of the cost functions based on their fitness to
generate well performing code. Agakov et al. [2] used machine
learning to correlate a new program with previously observed
classes of programs. Using this prior knowledge, they propose
a predictive model to focus the search on profitable areas of
the solution space, speeding up iterative optimizations. Fursin
et al. [14] proposed MILEPOST GCC, a self-optimizing
compiler based on machine learning to optimize programs
for evolving systems, such as reconfigurable processors.



IX. CONCLUSION
In the computer architecture community, the use of machine

learning to solve architectural problems has been oddly limited,
compared to other fields. One possible reason for this limited
use is the bulky nature of sophisticated models such as Deep
Neural Networks, that generate prohibitively large feature
weight matrices with high storage needs. Such models also
present high computational demands for training and inference.
These factors make them difficult to use and adopt in archi-
tectures where on-chip resources are often severely limited.
Moreover, the black box nature of complex models and lack
of mathematical insights to explain their performance makes it
difficult for architects to argue about their effectiveness across
different architectures and applications.

In this paper, we demonstrate a mechanism to achieve
considerable accuracy with a lightweight regression model.
To arrive at a small, yet effective model, we apply domain
knowledge through analytical reasoning, thereby considerably
shrinking the feature vector to truly representative features.
The resulting learned model has low computational and storage
requirements, making it suitable as an architectural mechanism
for balancing TLP and memory system performance. In effect,
Poise searches for the best warp-tuples by avoiding local
optima and converging fast to the solution. Poise also fares
better than several alternative techniques such as stochastic
search, cache bypassing and state-of-the-art warp scheduling
mechanisms. To address future adaptability, Poise allows GPU
vendors to easily change the feature weights by deploying it
through the compiler, thereby retaining the flexibility to retrain
the model, if needed, without burdening the end-user. Through
the above considerations, Poise demonstrates an effective way
of applying machine learning to solve a complex optimization
problem in GPUs.
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