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Abstract
The chase procedure is one of the most fundamental algorithmic tools in database theory. A key al-
gorithmic task is uniform chase termination, i.e., given a set of tuple-generating dependencies (tgds), is it
the case that the chase under this set of tgds terminates, for every input database? In view of the fact that
this problem is undecidable, no matter which version of the chase we consider, it is natural to ask whether
well-behaved classes of tgds, introduced in different contexts such as ontological reasoning, make our
problem decidable. In this work, we consider a prominent decidability paradigm for tgds, called stick-
iness. We show that for sticky sets of tgds, uniform chase termination is decidable if we focus on the
(semi-)oblivious chase, and we pinpoint its exact complexity: PSPACE-complete in general, and NLOG-
SPACE-complete for predicates of bounded arity. These complexity results are obtained via graph-based
syntactic characterizations of chase termination that are of independent interest.
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1 Introduction

The chase procedure (or simply chase) is a fundamental algorithmic tool that has been successfully
applied to several database problems such as containment of queries under constraints [1], checking
logical implication of constraints [3, 17], computing data exchange solutions [10], and query an-
swering under constraints [5], to name a few. The chase procedure accepts as an input a database
D and a set Σ of constraints and, if it terminates, its result is a finite instance DΣ that is a universal
model of D and Σ, i.e., is a model that can be homomorphically embedded into every other model
of D and Σ. In other words, DΣ acts as a representative of all the other models of D and Σ. This
is the reason for the ubiquity of the chase in database theory, as discussed in [8]. Indeed, many key
database problems can be solved by simply exhibiting a universal model.

A prominent class of constraints that can be naturally treated by the chase procedure is the class
of tuple-generating dependencies (tgds), i.e., sentences of the form ∀x̄∀ȳ (φ(x̄, ȳ)→ ∃z̄ ψ(x̄, z̄)),
where φ and ψ are conjunctions of atoms. Given a database D and a set Σ of tgds, the chase adds
new atoms to D (possibly involving null values that act as witnesses for the existentially quantified
variables) until the final result satisfies Σ. For example, given the database D = {R(c)}, and the
tgd ∀x(R(x) → ∃y P (x, y) ∧ R(y)), the database atom triggers the tgd, and the chase will add in
D the atoms P (c,⊥1) and R(⊥1) in order to satisfy it, where ⊥1 is a (labeled) null representing
some unknown value. However, the new atom R(⊥1) triggers again the tgd, and the chase is forced
to add the atoms P (⊥1,⊥2), R(⊥2), where ⊥2 is a new null. The result of the chase is the instance
{R(c), P (c,⊥1)} ∪

⋃
i>0{R(⊥i), P (⊥i,⊥i+1)}, where ⊥1,⊥2, . . . are nulls.
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XX:2 Oblivious Chase Termination: The Sticky Case

The above example shows that the chase procedure may not terminate, even for very simple
databases and sets of tgds. This fact motivated a long line of research on identifying subclasses
of tgds that ensure the termination of the chase procedure, no matter how the input database looks
like. A prime example is the class of weakly-acyclic tgds [10], which is the standard language
for data exchange purposes, and guarantees the termination of the semi-oblivious and restricted
(a.k.a. standard) chase. Inspired by weak-acyclicity, the notion of rich-acyclicity has been proposed
in [16], which guarantees the termination of the oblivious chase. Many other sufficient conditions
for chase termination can be found in the literature; see, e.g., [8, 9, 13, 15, 18, 19] — this list is by
no means exhaustive, and we refer the reader to [14] for a comprehensive survey.

With so much effort spent on identifying sufficient conditions for the termination of the chase
procedure, the question that immediately comes up is whether a sufficient condition that is also
necessary exists. In other words, given a set Σ of tgds, is it possible to decide whether, for every
database D, the chase on D and Σ terminates? This question has been addressed in [11], and has
been shown that the answer is negative, no matter which version of the chase we consider, namely
the oblivious, semi-oblivious and restricted chase. The problem remains undecidable even if the
database is known; this has been established in [8] for the restricted chase, and it was observed
in [18] that the same proof shows undecidability also for the (semi-)oblivious chase.

The undecidability proof given in [11] constructs a sophisticated set of tgds that goes beyond
existing well-behaved classes of tgds that enjoy certain syntactic properties, which in turn en-
sure useful model-theoretic properties. This has been already observed in [4], where it is shown
that the chase termination problem is decidable if we focus on the (semi-)oblivious version of the
chase, and classes of tgds based on the notion of guardedness. Guardedness is one of the main
decidability paradigms that gives rise to robust tgd-based languages [2, 5, 6] that capture import-
ant database constraints and lightweight description logics. The key model-theoretic property of
guarded-based languages, which explains their robust behaviour, is the tree-likeness of the under-
lying universal models [5]. On the other hand, there are interesting statements that are inherently
non-tree-like, and thus not expressible via guarded-based languages. Such a statement consists of
the tgds ∀x∀y(R(x, y)→ ∃z R(y, z) ∧ P (z)) and ∀x∀y(P (x) ∧ P (y)→ S(x, y)), which compute
the cartesian product of a unary relation that stores infinitely many elements.

The inability of guarded-based tgds to express non-tree-like statements like the one above, has
motivated a long line of research on isolating well-behaved classes of tgds that go beyond tree-like
models and guardedness. The main decidability paradigm obtained from this effort is known as
stickiness [7]. The key idea underlying stickiness can be described as follows: variables that appear
more than once in the left-hand side of a tgd, known as the body of the tgd, should be inductively
propagated (or “stick”) to every atom in the left-hand side of the tgd; more details are given in
Section 2. It is easy to verify that the above non-tree-like statement is trivially sticky since none of
the body variables occurs more than once. The crucial question that comes up is the following: given
a sticky set Σ of tgds, is it possible to decide whether the chase terminates for every input database?

The main goal of this work is to study the chase termination problem for sticky sets of tgds, and
give a definite answer to the above fundamental question. In fact, we focus on the (semi-)oblivious
versions of the chase, and we show that deciding termination for sticky sets of tgds is decidable, and
provide precise complexity results: PSPACE-complete in general, and NLOGSPACE-complete for
predicates of bounded arity. Although the (semi-)oblivious versions of the chase are considered as
non-standard ones, they have certain advantages that classify them as important algorithmic tools,
and thus they deserve our attention. In particular, unlike the restricted chase, the application of a
tgd does not require checking if the head of the tgd is already satisfied by the instance, and this
guarantees technical clarity and efficiency; for a more thorough discussion on the advantages of the
oblivious and semi-oblivious chase see [5, 18].
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Summary of Contributions. Our plan of attack and results can be summarized as follows:

In Section 4, we provide a semantic characterization of non-termination of the (semi-)oblivious
chase under sticky sets of tgds via the existence of path-like infinite chase derivations, which
forms the basis for our decision procedure.
By exploiting the above semantic characterization, we then provide, in Section 5, a syntactic
characterization of chase termination via graph-based conditions. To this end, we extend re-
cent syntactic characterizations from [4] of the termination of the (semi-)oblivious chase under
constant-free linear tgds (tgds with one body atom), to linear tgds with constants. The transition
from constant-free tgds to tgds with constants turned out to be more challenging than expected.
Finally, in Section 6, by exploiting the graph-based syntactic characterization from the previous
section, we establish the precise complexity of our problem: PSPACE-complete in general, and
NLOGSPACE-complete for predicates of bounded arity.

Full proofs are provided in a clearly marked appendix.

2 Preliminaries

We consider the disjoint countably infinite sets C, N, and V of constants, (labeled) nulls, and
(regular) variables (used in dependencies), respectively. A fixed lexicographic order is assumed on
(C ∪ N) such that every null of N follows all constants of C. We refer to constants, nulls and
variables as terms. Let [n] = {1, . . . , n}, for any integer n ≥ 1.

Relational Databases. A schema S is a finite set of relation symbols (or predicates) with associated
arity. We write R/n to denote that R has arity n > 0. A position R[i] in S, where R/n ∈ S and
i ∈ [n], identifies the i-th argument of R. An atom over S is an expression of the form R(t̄), where
R/n ∈ S and t̄ is an n-tuple of terms. We write var(α) for the set of variables occurring in an atom
α; this notation naturally extends to sets of atoms. A fact is an atom whose arguments consist only
of constants. An instance over S is a (possibly infinite) set of atoms over S that contain constants
and nulls, while a database over S is a finite set of facts over S. The active domain of an instance I ,
denoted dom(I), is the set of all terms, i.e., constants and nulls, occurring in I .

Substitutions and Homomorphisms. A substitution from a set of terms T to a set of terms T ′ is
a function h : T → T ′ defined as follows: ∅ is a substitution (empty substitution), and if h is a
substitution, then h ∪ {t 7→ t′}, where t ∈ T and t′ ∈ T ′, is a substitution. The restriction of h to
a subset S of T , denoted h|S , is the substitution {t 7→ h(t) | t ∈ S}. A homomorphism from a set
of atoms A to a set of atoms B is a substitution h from the set of terms in A to the set of terms in B
such that (i) t ∈ C implies h(t) = t, i.e., h is the identity on C, and (ii) R(t1, . . . , tn) ∈ A implies
h(R(t1, . . . , tn)) = R(h(t1), . . . , h(tn)) ∈ B.

Tuple-Generating Dependencies. A tuple-generating dependency σ is a first-order sentence

∀x̄∀ȳ (φ(x̄, ȳ)→ ∃z̄ ψ(x̄, z̄)) ,

where x̄, ȳ, z̄ are tuples of variables of V, while φ(x̄, ȳ) and ψ(x̄, z̄) are conjunctions of atoms
(possibly with constants). For brevity, we write σ as φ(x̄, ȳ) → ∃z̄ ψ(x̄, z̄), and use comma instead
of ∧ for joining atoms. We refer to φ(x̄, ȳ) and ψ(x̄, z̄) as the body and head of σ, denoted body(σ)
and head(σ), respectively. The frontier of the tgd σ, denoted fr(σ), is the set of variables x̄, i.e., the
variables that appear both in the body and the head of σ. The schema of a set Σ of tgds, denoted
sch(Σ), is the set of predicates in Σ. We also write const(Σ) for the set of constants occurring in Σ.
An instance I satisfies a tgd σ as the one above, written I |= σ, if the following holds: whenever
there exists a homomorphism h such that h(φ(x̄, ȳ)) ⊆ I , then there exists h′ ⊇ h|x̄ such that
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h′(ψ(x̄, z̄)) ⊆ I . Note that, by abuse of notation, we sometimes treat a conjunction of atoms as a set
of atoms. The instance I satisfies a set Σ of tgds, written I |= Σ, if I |= σ for each σ ∈ Σ.

One of the main syntactic paradigms for tgds is stickiness [7]. The key property underlying
this condition is as follows: variables that appear more than once in the body of a tgd should be
inductively propagated (or “stick”) to every head atom. This is graphically illustrated as follows

× 
  T(x,y,z)  → ∃w  S(y,w)

    R(x,y), P(y,z) → ∃w  T(x,y,w)

  T(x,y,z)  → ∃w  S(x,w)

    R(x,y), P(y,z) → ∃w  T(x,y,w)

where the first set of tgds is sticky, while the second is not. The formal definition is based on an
inductive procedure that marks the variables that may violate the property described above. Roughly,
during the base step of this procedure, a variable that appears in the body of a tgd but not in every
head atom is marked. Then, the marking is inductively propagated from head to body. Stickiness
requires every marked variable to appear only once in the body of a tgd. The formal definition
follows. Let Σ be a set of tgds; w.l.o.g., we assume that the tgds in Σ do not share variables. Given
an atom R(t̄) and a variable x in t̄, pos(R(t̄), x) is the set of positions in R(t̄) at which x occurs.
Let σ ∈ Σ and x a variable in the body of σ. We inductively define when x is marked in Σ:

If x does not occur in every atom of head(σ), then x is marked in Σ.
Assuming that head(σ) contains an atom of the form R(t̄) and x ∈ t̄, if there exists σ′ ∈ Σ that
has in its body an atom of the formR(t̄′), and each variable inR(t̄′) at a position of pos(R(t̄), x)
is marked in Σ, then x is marked in Σ.

The set Σ is sticky if there is no tgd that contains two occurrences of a variable that is marked in Σ.
We denote by S the class of sticky finite sets of tgds. Let us clarify that we work with finite sets of
tgds only. Thus, in the rest of the paper, a set of tgds is always finite.

The Tgd Chase Procedure. The tgd chase procedure (or simply chase) takes as an input a database
D and a set Σ of tgds, and constructs a (possibly infinite) instance I such that I ⊇ D and I |= Σ. A
crucial notion is that of trigger for a set of tgds on some instance. Consider a set Σ of tgds and an
instance I . A trigger for Σ on I is a pair (σ, h), where σ ∈ Σ and h is a homomorphism such that
h(body(σ)) ⊆ I . An application of (σ, h) to I returns the instance J = I ∪ h′(head(σ)), where
h′ ⊇ h|fr(σ) is such that (i) for each existentially quantified variable z of σ, h′(z) ∈ N does not occur
in I and follows lexicographically all nulls in I , and (ii) for each pair (z, w) of distinct existentially
quantified variables of σ, h′(z) 6= h′(w). Such a trigger application is denoted as I〈σ, h〉J .

The main idea of the chase is, starting from a database D, to exhaustively apply triggers for the
given set Σ of tgds on the instance constructed so far. However, the choice of the type of the next
trigger to be applied is crucial since it gives rise to different variations of the chase procedure. In
this work, we focus on the oblivious [5] and the semi-oblivious [12, 18] chase.

Oblivious. A finite sequence I0, I1, . . . , In of instances, where n ≥ 0, is said to be a terminating
oblivious chase sequence of I0 w.r.t. a set Σ of tgds if: (i) for each 0 ≤ i < n, there exists a trigger
(σ, h) for Σ on Ii such that Ii〈σ, h〉Ii+1; (ii) for each 0 ≤ i < j < n, assuming that Ii〈σi, hi〉Ii+1
and Ij〈σj , hj〉Ij+1, σi = σj implies hi 6= hj , i.e., hi and hj are different homomorphisms; and (iii)
there is no trigger (σ, h) for Σ on In such that (σ, h) 6∈ {(σi, hi)}0≤i<n. In this case, the result of
the chase is the (finite) instance In. An infinite sequence I0, I1, . . . of instances is said to be a non-
terminating oblivious chase sequence of I0 w.r.t. Σ if: (i) for each i ≥ 0, there exists a trigger (σ, h)
for Σ on Ii such that Ii〈σ, h〉Ii+1; (ii) for each i, j > 0 such that i 6= j, assuming that Ii〈σi, hi〉Ii+1
and Ij〈σj , hj〉Ij+1, σi = σj implies hi 6= hj ; and (iii) for each i ≥ 0, and for every trigger (σ, h)
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for Σ on Ii, there exists j ≥ i such that Ij〈σ, h〉Ij+1; this is known as the fairness condition, and
guarantees that all the triggers eventually will be applied. The result of the chase is

⋃
i≥0 Ii.

Semi-oblivious. This is a refined version of the oblivious chase, which avoids the application
of some superfluous triggers. Roughly speaking, given a tgd σ, for the semi-oblivious chase, two
homomorphisms h and g that agree on the frontier of σ, i.e., h|fr(σ) = g|fr(σ), are indistinguishable.
To formalize this, we first define the binary relation ∼σ on the set of all possible substitutions from
the terms in body(σ) to (C ∪N), denoted Sσ , as follows: h ∼σ g iff h|fr(σ) = g|fr(σ). It is easy to
verify that ∼σ is an equivalence relation on the elements of Sσ . A (terminating or non-terminating)
oblivious chase sequence I0, I1, . . . is called semi-oblivious if the following holds: for every i, j ≥ 0
such that i 6= j, assuming that Ii〈σi, hi〉Ii+1 and Ij〈σj , hj〉Ij+1, σi = σj = σ implies hi 66∼σ hj ,
i.e., hi and hj belong to different equivalence classes.

Henceforth, we write o-chase and so-chase for oblivious and semi-oblivious chase, respectively.
A useful notion that we are going to use in our proofs is the so-called chase relation [7], which
essentially describes how the atoms generated during the chase depend on each other. Fix a non-
terminating ?-chase sequence s = (Ii)i≥0, where ? ∈ {o, so}, of a database D w.r.t. a set Σ of tgds,
and assume that for each i ≥ 0, Ii〈σi, hi〉Ii+1, i.e., Ii+1 is obtained from Ii via the application of
the trigger (σi, hi) to Ii. The chase relation of s, denoted ≺s, is a binary relation over

⋃
i≥0 Ii such

that α ≺s β iff there exists i ≥ 0 such that α ∈ hi(body(σi)) and β ∈ Ii+1 \ Ii.

3 Chase Termination Problem

It is well-known that due to the existentially quantified variables, a ?-chase sequence, where ? ∈
{o, so}, may be infinite. This is true even for very simple settings: it is easy to verify that the only ?-
chase sequence of D = {R(a, b)} w.r.t. the set Σ consisting of the single tgd R(x, y)→ ∃z R(y, z)
is non-terminating. The question that comes up is, given a set Σ of tgds, whether we can check that,
for every database D, all or some (semi-)oblivious chase sequences of D w.r.t. Σ are terminating.
Before formalizing the above problem, let us recall the following central classes of tgds:

CT?∀∀ = {Σ | for every database D, every ?-chase sequence of D w.r.t. Σ is terminating}
CT?∀∃ = {Σ | for every database D, there exists a terminating ?-chase sequence of D w.r.t. Σ} .

The main problems tackled in this work are defined as follows, where C is a class of tgds:

PROBLEM : CT?
∀∀(C)

INPUT : A set Σ ∈ C of tgds.
QUESTION : Is Σ ∈ CT?

∀∀?

PROBLEM : CT?
∀∃(C)

INPUT : A set Σ ∈ C of tgds.
QUESTION : Is Σ ∈ CT?

∀∃?

It is well-known that CTo
∀∀ = CTo

∀∃ ⊂ CTso
∀∀ = CTso

∀∃ [12]. This immediately implies that, after
fixing the version of the chase in consideration, i.e., oblivious or semi-oblivious, the above decision
problems are equivalent. Henceforth, for a class C of tgds, we simply refer to the problem CT?∀(C),
and we write CT?∀ for the classes CT?∀∀ and CT?∀∃, where ? ∈ {o, so}.

We know that our main problem is undecidable if we consider arbitrary tgds. In fact, assuming
that TGD denotes the class of arbitrary tgds, we have that:

I Theorem 1. For ? ∈ {o, so}, CT?∀(TGD) is undecidable, even for binary and ternary predicates.

The above result has been shown in [11]. However, the employed set of tgds for showing this
undecidability result is far from being sticky. This led us to ask whether CT?∀(S) is decidable. This
is a non-trivial problem, and pinpointing its complexity is the main goal of this work.



XX:6 Oblivious Chase Termination: The Sticky Case

Some Useful Results. Before proceeding with the complexity analysis, let us recall a couple of
technical results that would allows us to significantly simplify our later analysis.

It would be useful if a special database exists that gives rise to a non-terminating chase sequence
in case there exists one. Interestingly, such a database exists, which is known as the critical database
for a set of tgds [18]. Formally, given a set Σ of tgds, the critical database for Σ is defined as

cr(Σ) =


{R(c, . . . , c) | R ∈ sch(Σ)},where c ∈ C is a fixed constant if const(Σ) = ∅,

{R(c1, . . . , cn) | R ∈ sch(Σ) and (c1, . . . , cn) ∈ const(Σ)n} if const(Σ) 6= ∅.

In other words, cr(Σ) consists of all the atoms that can be formed using the predicates and the
constants in Σ; if Σ is constant-free, then we consider an arbitrary constant of C. The following
result from [18] shows that cr(Σ) is indeed the desired database:

I Proposition 2. Consider a set Σ of tgds. For ? ∈ {o, so}, Σ 6∈ CT?∀ iff there exists a non-
terminating ?-chase sequence of cr(Σ) w.r.t. Σ.

Even though we can focus on the critical database and check whether it gives rise to a non-
terminating chase sequence s, the main difficulty is to ensure that s enjoys the fairness condition.
Interestingly, as it has been recently shown in [4], we can neglect the fairness condition, which
significantly simplifies the required analysis. To formalize this result, we need to recall the notion of
the infinite chase derivation, which is basically a non-terminating chase sequence without the fairness
condition. Fix ? ∈ {o, so}. We define �?σ as 6=, if ? = o, and 6∼σ , if ? = so. An infinite ?-chase
derivation of a database D w.r.t. a set Σ of tgds is an infinite sequence (Ii)i≥0 of instances, where
I0 = D, such that: (i) for each i ≥ 0, there exists a trigger (σi, hi) for Σ in Ii with Ii〈σi, hi〉Ii+1,
and (ii) for each i 6= j, σi = σj = σ implies hi �?σ hj . The following holds:

I Proposition 3. Consider a database D and a set Σ of tgds. For ? ∈ {o, so}, there is a non-
terminating ?-chase sequence of D w.r.t. Σ iff there is an infinite ?-chase derivation of D w.r.t. Σ.

By combining Propositions 2 and 3, we immediately get the following useful result:

I Corollary 4. Consider a set Σ of tgds. For ? ∈ {o, so}, Σ 6∈ CT?∀ iff there exists an infinite
?-chase derivation of cr(Σ) w.r.t Σ.

4 Semantic Characterization of Chase Non-Termination

We proceed to characterize the non-termination of the (semi-)oblivious chase under sticky sets of
tgds. In particular, we show that if a sticky set Σ of tgds does not belong to CT?∀, for ? ∈ {o, so},
then we can always isolate a linear infinite ?-chase derivation δ` of cr(Σ) w.r.t. Σ. Roughly, linearity
means that there is an infinite simple path α0, α1, α2 . . . in the chase relation of δ` such that α0 ∈
cr(Σ) and αi is constructed during the i-th trigger application, while all the atoms that are needed to
construct this path, and are not already on the path, are atoms of cr(Σ). Notice that the chase relation
of a ?-chase derivation is defined in the same way as the chase relation of a ?-chase sequence.

IDefinition 5. Consider a set Σ of tgds. For ? ∈ {o, so}, an infinite ?-chase derivation δ = (Ii)i≥0
of cr(Σ) w.r.t. Σ, where Ii〈σi, hi〉Ii+1 for i ≥ 0, is called linear if there exists an infinite sequence
of distinct atoms (αi)i≥0 such that the following hold:

α0 ∈ cr(Σ).
For each i ≥ 0, αi+1 ∈ Ii+1 \ Ii, and there exists β ∈ body(σi) such that hi(β) = αi and
hi(body(σi) \ {β}) ⊆ cr(Σ).
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A simple example that illustrates the notion of linear infinite o-chase derivation follows:

I Example 6. Let Σ be the sticky set consisting of the tgd

σ = P (x, y, z), R(y, w)→ ∃v P (z, y, v), R(y, v).

Consider the infinite o-chase derivation δ = (Ii)i≥0 of cr(Σ) w.r.t. Σ, where

I0 = {P (c, c, c), R(c, c)} 〈σ, h0 = {x 7→ c, y 7→ c, z 7→ c, w 7→ c}〉
I1 = I0 ∪ {P (c, c,⊥1), R(c,⊥1)} 〈σ, h1 = {x 7→ c, y 7→ c, z 7→ ⊥1, w 7→ c}〉

I2 = I1 ∪ {P (⊥1, c,⊥2), R(c,⊥2)} 〈σ, h2 = {x 7→ ⊥1, y 7→ c, z 7→ ⊥2, w 7→ c}〉
...

Ii+1 = Ii ∪ {P (⊥i, c,⊥i+1), R(c,⊥i+1)} 〈σ, hi+1 = {x 7→ ⊥i, y 7→ c, z 7→ ⊥i+1, w 7→ c}〉
...

Let α0 = P (c, c, c), α1 = P (c, c,⊥1), and αi = P (⊥i−1, c,⊥i) for i > 1. It is easy to very that
δ is linear due to (αi)i≥0. Indeed, α0 ∈ cr(Σ), and for every i ≥ 0, αi belongs to Ii+1 \ Ii, while
hi(P (x, y, z)) = αi and hi(R(y, w)) = R(c, c) ∈ cr(Σ).

We are now ready to present the main characterization of non-termination of the (semi-)oblivious
chase under sticky sets of tgds via linear infinite ?-chase derivations.

I Theorem 7. Consider a set Σ ∈ S of tgds. For ? ∈ {o, so}, Σ 6∈ CT?∀ iff there exists a linear
infinite ?-chase derivation of cr(Σ) w.r.t. Σ.

By Corollary 4, it suffices to show the following: the existence of an infinite ?-chase derivation
of cr(Σ) w.r.t. Σ implies the existence of a linear infinite ?-chase derivation of cr(Σ) w.r.t. Σ. This
is a rather involved result, which is established in two main steps:

1. We show that the existence of an infinite ?-chase derivation of cr(Σ) w.r.t. Σ implies the existence
of an infinite ?-chase derivation δ of cr(Σ) w.r.t. Σ such that the chase relation of δ contains a
special path rooted at an atom of cr(Σ), called continuous. Intuitively, continuity ensures the
continuous propagation of a new null on the path in question.

2. By exploiting the existence of a continuous path, we construct a linear infinite ?-chase derivation
of cr(Σ) w.r.t. Σ. In fact, due to stickiness, we can convert an infinite suffix P of the continuous
path in ≺δ , together with all the atoms that are needed to generate the atoms on P via a single
trigger application, into a linear infinite ?-chase derivation δ` of cr(Σ) w.r.t. Σ. As we shall see,
stickiness helps us to ensure that δ` is linear, while continuity allows us to show that δ` is infinite.

We proceed to give some more details for the above two steps. Although we keep the following
discussion informal, we give enough evidence for the validity of Theorem 7.

4.1 Existence of a Continuous Path

Let us first make the notion of the path in the chase relation of a derivation more precise. Given an
infinite ?-chase derivation δ = (Ii)i≥0 of cr(Σ) w.r.t. Σ, a finite δ-path is a finite sequence of atoms
(αi)0≤i≤n such that α0 ∈ I0 and αi ≺δ αi+1. Analogously, we can define infinite δ-paths, which
are infinite sequences of atoms rooted at an atom of I0.

The intention underlying continuity is to ensure the continuous propagation of a new null on a
path. Roughly, a δ-path (αi)0≤i≤n is continuous if, assuming that α`0 , . . . , α`m are the atoms on
the path where nulls are invented, with `0 < · · · < `m, then α`m is the last atom of the path, i.e.,
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`m = n, and for every α`i , there exists at least one null invented in α`i that is necessarily propagated
until the atom α`i+1 in case ? = so (resp., the atom before α`i+1 in case ? = o). An infinite δ-path
(αi)i≥0, where α`0 , α`1 , . . . are the atoms on the path where a null is invented, with `0 < `1 < · · · ,
is continuous if every finite δ-path (αi)0≤i≤`j , for j ≥ 0, is continuous. Here is an example.

I Example 8. Consider the sticky set Σ = {σ1, σ2, σ3}, where

σ1 = S(x) → ∃y∃z P (x, y, z), R(y, z)
σ2 = P (x, y, z), R(y, w) → P (w, y, z)

and σ3 is the tgd used in Example 6. It is easy to verify that there exists an infinite o-chase derivation
δ of cr(Σ) w.r.t. Σ such that the following is part of≺δ; a black edge from α to β labeled by σ means
that (α, β) belongs to ≺δ due to a trigger that involves the tgd σ:

S(c)

R(⊥1,⊥2)

P(c,⊥1,⊥2)

R(⊥1,⊥3)

P(⊥2,⊥1,⊥3)

σ1

σ1

σ3

σ3

σ3

σ3

R(⊥1,⊥4)

P(⊥3,⊥1,⊥3)

σ3

σ2

σ2

σ3

R(⊥1,⊥5)

P(⊥4,⊥1,⊥3)

σ3

σ2

σ2

σ3

R(⊥1,⊥6)

P(⊥3,⊥1,⊥6)

σ3

σ3

σ3

σ3

…  

It can be verified that the path with P -atoms in the figure is a continuous infinite δ-path. Let us
explain the reason. The first atom in which a null is invented is P (c,⊥1,⊥2), with ⊥1,⊥2 being the
new nulls, and continuity is satisfied since the next atom invents a null, that is, ⊥3. Now, since the
null ⊥3 is propagated (this is indicated via the red dashed arrows) until the atom before the next null
generator P (⊥3,⊥1,⊥6), continuity is satisfied. In the rest of the path the same pattern is repeated,
and thus continuity is globally satisfied. In fact, the pattern that we can extract is the following

S(c)

R(⊥1,⊥2)

P(c,⊥1,⊥2)

R(⊥1,⊥3)

P(⊥2,⊥1,⊥3)

σ1

σ1

σ3

σ3

σ3

σ3

R(⊥1,⊥4)

P(⊥3,⊥1,⊥3)

σ3

σ2

σ2

σ3

R(⊥1,⊥5)

P(⊥4,⊥1,⊥3)

σ3

σ2

σ2

σ3

R(⊥1,⊥6)

P(⊥3,⊥1,⊥6)

σ3

σ3

σ3

σ3

…  

P(c,⊥1,⊥2) P(⊥2,⊥1,⊥3) P(⊥3,⊥1,⊥3) P(⊥4,⊥1,⊥3)S(c)

P(⊥3,⊥1,⊥6) P(⊥6,⊥1,⊥6) P(⊥7,⊥1,⊥6)

P(⊥6,⊥1,⊥9) P(⊥9,⊥1,⊥9) P(⊥10,⊥1,⊥9) … 

where the continuous propagation of a new null, shown via the red arrows, can be easily observed.

We can show, via a graph-theoretic argument, that the existence of an infinite ?-chase derivation
of cr(Σ) w.r.t. Σ implies the existence of an infinite ?-chase derivation of cr(Σ) w.r.t. Σ that admits
a continuous infinite path. Let us briefly explain the key idea underlying this result. If we know that
an infinite ?-chase derivation δ of cr(Σ) w.r.t. Σ exists, then we can construct an infinite ?-chase
derivation δ′ = (Ii)i≥0 of cr(Σ) w.r.t. Σ (by essentially rearranging the triggers of δ in order to
obtain a derivation of a convenient form) such that the following statement holds:

there exists an infinite directed acyclic rooted graph G = (N ∪ {•}, E, λ) of finite degree, where •
is the root, N ⊆

⋃
i≥0 Ii, every node of N is reachable from •, and λ labels the edges of E with

finite sequences of atoms from
⋃
i≥0 Ii, such that, for every finite path •, v1, . . . , vn, for n ≥ 1,

λ(•, v1), λ(v1, v2), . . . , λ(vn−1, vn) is a continuous finite δ′-path.

By applying König’s lemma1 on G, we get that G contains an infinite simple path P = •, v1, v2, . . ..

1 König’s lemma is a well-known result from graph theory that states the following: for an infinite directed rooted
graph, if every node is reachable from the root, and every node has finite out-degree, then there exists an infinite
directed simple path from the root.
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We claim that P ′ = λ(•, v1), λ(v1, v2), . . . is a continuous δ′-path, which establishes the claim. By
contradiction, assume that P ′ is not a continuous δ′-path. This implies that there exists a finite prefix
•, v1, . . . , vn of P such that λ(•, v1), λ(v1, v2), . . . , λ(vn−1, vn) is not a continuous δ′-path, which
contradicts the fact that the label of every finite path starting from • is a continuous finite δ′-path.

4.2 From Continuous Paths to Linear Infinite Derivations

We now discuss that the existence of an infinite ?-chase derivation δ of cr(Σ) w.r.t. Σ such that a
continuous infinite δ-path exists implies the existence of a linear infinite ?-chase derivation δ` of
cr(Σ) w.r.t. Σ. Starting from δ, we are going to construct a sequence of instances, which eventually
will lead to the desired derivation δ`. The construction proceeds in three main steps:

Useful part of δ. We first isolate a useful part of the ?-chase derivation δ = (Ii)i≥0. Recall that there
exists a continuous infinite δ-path P = (αi)i≥0. By stickiness, there exists j ≥ 0 such that αj is the
last atom on P in which a term t becomes sticky. The latter means that the first time t participates
in a join is during the trigger application that generates αj , and thus t occurs in (or sticks to) every
atom of {αi}i≥j . Let k ≥ j be the integer such that αk is the first atom on P after αj in which a new
null is invented. The useful part of δ that we are going to focus on is the infinite sequence of atoms
(αi)i≥k, which we call the backbone, and the atoms of

⋃
i≥0 Ii, which we call side atoms, that are

needed to generate the atoms on the backbone via a single trigger application. In other words, for a
backbone atom α, if α is obtained via the trigger (σ, h) for Σ on instance Ii, for some i ≥ 0, then
the atoms h(body(σ)), excluding the backbone atoms, are side atoms.

I Example 9. Consider again the set Σ ∈ S from Example 8. As discussed above, there exists an
infinite o-chase derivation δ of cr(Σ) w.r.t. Σ such that a continuous infinite δ-path exists (see the
figures above). The useful part of δ is as shown below

S(c)

R(⊥1,⊥2)

P(c,⊥1,⊥2)

R(⊥1,⊥3)

P(⊥2,⊥1,⊥3)

R(⊥1,⊥4)

P(⊥3,⊥1,⊥3)

R(⊥1,⊥5)

P(⊥4,⊥1,⊥3)

R(⊥1,⊥6)

P(⊥3,⊥1,⊥6)

…  

backbone

side atoms

Observe that the last atom on the continuous path in which a term becomes sticky is P (⊥2,⊥1,⊥3);
in fact, the sticky term is ⊥1, which is the only sticky term on the continuous path. It happened that
P (⊥2,⊥1,⊥3) invents also a new null, that is, ⊥3, and therefore the suffix of the continuous path
that starts at P (⊥2,⊥1,⊥3) is the backbone. It is now easy to verify that all the other atoms, apart
from S(c), indeed contribute in the generation of a backbone atom via a single trigger application.

Renaming step. We proceed to rename some of the nulls that occur in backbone atoms or side atoms.
In particular, for every null⊥ occurring in a side atom α, we apply the following renaming steps; fix a
constant c ∈ dom(cr(Σ)): (i) every occurrence of⊥ inα is replaced by c, and (ii) every occurrence of
⊥ in a backbone atom β that is propagated from α to β is replaced by c. For a backbone or side atom
α, let ρ(α) be the atom obtained from α after globally applying the above renaming steps. We now
define the sequence of instances δ′ = (Ji)i≥0 as follows: J0 = {ρ(α) | α is a side atom } ⊆ cr(Σ)
and Ji = Ji−1 ∪ {ρ(αk+i−1)} ∪ H , where H is the set of atoms that are generated together with
αk+i−1 (since we can have a conjunction of atoms in the head of a tgd) after renaming the nulls that
do not occur in ρ(αk+i−1) to c. Notice that H is empty in case of single-head tgds. It is crucial to
observe that a new null generated in a backbone atom never participates in a join. This is because
the first backbone atom αk comes after the atom αj , which is the last atom on P in which a term
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becomes sticky. This fact allows us to modify triggers from δ in order to construct, for every i ≥ 0,
a trigger (σi, hi) such that Ji〈σi, hi〉Ji+1.

I Example 10. We consider again our running example. Before renaming the nulls that appear in
side atoms, we first need to understand how nulls are propagated from side atoms to backbone atoms
during the chase. This is depicted in the following figure

S(c)

R(⊥1,⊥2)

P(c,⊥1,⊥2)

R(⊥1,⊥3)

P(⊥2,⊥1,⊥⊥⊥⊥3)

R(⊥1,⊥4)

P(⊥3,⊥1,⊥⊥⊥⊥3)

R(⊥1,⊥5)

P(⊥4,⊥1,⊥⊥⊥⊥3)

R(⊥1,⊥6)

P(⊥⊥⊥⊥3,⊥1,⊥⊥⊥⊥6)

…  

S(c)

R(c,c)

P(c,c,c)

R(c,c)

P(c,c,⊥⊥⊥⊥3)

R(c,c)

P(c,c,⊥⊥⊥⊥3)

R(c,c)

P(c,c,⊥⊥⊥⊥3)

R(c,c)

P(⊥3,c,⊥⊥⊥⊥6)

…  

Notice that the boldfaced occurrences of the nulls ⊥3,⊥6, . . . are not propagated from side atoms,
but generated on the backbone, and thus will not be renamed. Let us recall that the existence of
such nulls is guaranteed by continuity. By applying the renaming step, i.e., by replacing every null
in a side atom with the constant c, and then propagate it to the backbone as indicated above, we get
the sequence of instances J0 = {R(c, c), P (c, c, c)} ⊆ cr(Σ), J1 = J0 ∪ {P (c, c,⊥3), R(c,⊥3)},
J2 = J1 ∪ {P (c, c,⊥3)}, J3 = J2 ∪ {P (c, c,⊥3)}, J4 = J3 ∪ {P (⊥3, c,⊥6), R(c,⊥6)}, . . ..
Observe that, due to stickiness, none of the nulls ⊥3,⊥6, . . . generated on the backbone participates
in a join. This means that the renaming step preserves all the joins, and thus, by adapting triggers
from δ, we can devise a valid trigger for each pair (Ji, Ji+1) of instances.

Pruning step. At this point, one may be tempted to think that δ′ = (Ji)i≥0, with Ji〈σi, hi〉Ji+1
for i ≥ 0, is the desired linear infinite ?-chase derivation of cr(Σ) w.r.t. Σ. It is easy to verify that
we have the infinite sequence of atoms (ρ(αi))i≥k−1 such that ρ(αk−1) ∈ cr(Σ) since αk−1 is a
side atom, and for each i ≥ k − 1, Ji−k+2 ⊇ Ji−k+1 ∪ {ρ(αi+1)}, and there exists β ∈ body(σi)
such that hi(βi) = αi and hi(body(σi) \ {β}) ⊆ cr(Σ). However, we cannot conclude yet that δ′

is the desired derivation for the following two reasons: (i) triggers may repeat, i.e., we may have
i 6= j such that σi = σj = σ and hi �?σ hj , where �?σ is = (resp., ∼σ) if ? = o (resp., ? = so),
and (ii) we may have i 6= j such that ρ(αi) = ρ(αj), i.e., the sequence of atoms (ρ(αi))i≥k−1 does
not consist of distinct atoms. This can be easily fixed by pruning the subderivation between the two
repeated triggers or atoms. But since this pruning step may be applied infinitely many times, the
question that comes up is whether the obtained ?-chase derivation δ′′ is infinite. Interestingly, this is
the case due to continuity. Since the backbone (αi)i≥k is part of a continuous δ-path, we conclude
that two repeated triggers or atoms are necessarily between two atoms α and β in which new nulls
are invented, while no atom between α and β invents a new null. The fact that we have infinitely
many pairs of such atoms on the backbone, we immediately conclude that after the pruning step the
obtained ?-chase derivation is infinite. Thus, δ′′ is a linear infinite ?-chase derivation of J0 w.r.t. Σ.
Since J0 ⊆ cr(Σ), we can easily construct a linear infinite ?-chase derivation δ` of cr(Σ) w.r.t. Σ by
simply adding to J0 the set of atoms cr(Σ) \ J0, and the claim follows.

I Example 11. Coming back to our running example, it can be seen that the sequence of in-
stances devised in Example 10 is not the desired linear derivation due to repeated triggers and atoms.
However, after applying the pruning step, we get the sequence of instances J ′0 = J0, J ′1 = J1,
J ′2 = J ′1 ∪ {P (⊥3, c,⊥6), R(c,⊥6)}, J ′3 = J ′2 ∪ {P (⊥6, c,⊥9), R(c,⊥9)}, . . .. Now, it is easy
to verify that after adding the atom S(c) in J ′0, we get (modulo null renaming) the linear infinite
o-chase derivation of cr(Σ) w.r.t. Σ given in Example 6.
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5 Graph-Based Characterization of Chase Termination

In this section, we characterize the termination of the (semi-)oblivious chase for sticky sets of tgds
via graph-based conditions. More precisely, we show that a set Σ ∈ S belongs to CT?∀ iff a lin-
earized version of it, i.e., a set of linear tgds obtained from Σ, enjoys a condition similar to rich-
acyclicity [16], if ? = o, and weak-acyclicity [10], if ? = so. Recall that linear tgds are tgds with
only one body atom [6]; we write L for the class of linear tgds. The proof of the above result
proceeds in two steps:

1. We first show that the given sticky set Σ of tgds can be rewritten into a set of linear tgds, while
this rewriting preserves chase termination. This heavily relies on Theorem 7, which establishes
that non-termination of the (semi-)oblivious chase coincides with the existence of a linear infinite
chase derivation of cr(Σ) w.r.t. Σ.

2. We then extend recent characterizations from [4], which are based on extensions of rich-acyclicity
and weak-acyclicity, of the termination of the (semi-)oblivious chase under constant-free linear
tgds in order to deal with constants in the tgds. Notice that, although in other contexts, e.g.,
query answering and containment under tgds, the transition from constant-free tgds to tgds with
constants is relatively straightforward, in the context of chase termination the constants in the
tgds cause additional complications that must be carefully treated.

We proceed to give more details for the above two steps.

5.1 Linearization

Before presenting the linearization procedure, we need to introduce some auxiliary notions. Given a
tgd σ and an atom α ∈ body(σ), let Vα,σ = var(body(σ) \ {α}), that is, the set of body variables
of σ that do not occur only in α. Moreover, given a set Σ of tgds, a tgd σ ∈ Σ, and an atom
α ∈ body(σ), let MΣ

α,σ = {h | h : Vα,σ → dom(cr(Σ))}, i.e., the set of all possible mappings from
the variables of Vα,σ to the constants occurring in the critical database for Σ.

I Definition 12. Consider a set Σ of tgds. The linearization of a tgd σ ∈ Σ (w.r.t. Σ) of the form
φ(x̄, ȳ)→ ∃z̄ ψ(x̄, z̄), denoted Lin(σ), is the set of linear tgds⋃

α∈φ(x̄,ȳ)

⋃
h∈MΣ

α,σ

{h(α)→ ∃z̄ h(ψ(x̄, z̄))}.

The linearization of Σ is defined as Lin(Σ) =
⋃
σ∈Σ Lin(σ).

In simple words, the linearization procedure converts a tgd σ into a set of linear tgds by keeping
only one atom α from body(σ), while the variables in body(σ) \ {α} are instantiated with constants
from cr(Σ) in all the possible ways. Theorem 7 allows us to show that the linearization procedure
preserves the termination of the (semi-)oblivious chase whenever the input set of tgds is sticky.

I Theorem 13. Consider a set Σ ∈ S of tgds. For ? ∈ {o, so}, Σ ∈ CT?∀ iff Lin(Σ) ∈ CT?∀.

5.2 Acyclicity Conditions

We proceed to extend the characterizations of the termination of the (semi-)oblivious chase under
constant-free linear tgds established in [4]. The goal is to show that, given a set of tgds Σ ∈ L,
which may contain constants, Σ ∈ CTo

∀ iff Σ is critically-richly-acyclic, and Σ ∈ CTso
∀ iff Σ

critically-weakly-acyclic, where critical-rich- and critical-weak-acyclicity are appropriate extensions
of rich- and weak-acyclicity proposed in [4]. These notions rely on the dependency graph of a set
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of tgds, which we now recall. We assume a fixed order on the head-atoms of tgds. For a tgd σ with
head(σ) = α1, . . . , αk, we write (σ, i) for the single-head tgd, i.e., the tgd with only one atom in its
head, obtained from σ by keeping only the atom αi, and the existentially quantified variables in αi.
Recall that pos(α, x) is the set of positions in α at which x occurs.

IDefinition 14. The dependency graph of a set Σ of tgds is a labeled directed multigraph dg(Σ) =
(N,E, λ), where N = pos(sch(Σ)), λ : E → Σ×N, and E contains only the following edges. For
each σ ∈ Σ with head(σ) = α1, . . . , αk, for each x ∈ fr(σ), and for each π ∈ pos(body(σ), x):

For each i ∈ [k], and for each π′ ∈ pos(αi, x), there is a normal edge e = (π, π′) ∈ E with
λ(e) = (σ, i).
For each existentially quantified variable z in σ, for each i ∈ [k], and for each π′ ∈ pos(αi, z),
there is a special edge e = (π, π′) ∈ E with λ(e) = (σ, i).

A normal edge (π, π′) keeps track of the fact that a term may propagate from π to π′ during the
chase. Moreover, a special edge (π, π′′) keeps track of the fact that the propagation of a value from
π to π′ also creates a null at position π′′. As we shall see, the dependency graph is appropriate when
we consider the semi-oblivious chase. For the oblivious chase, we need an extended version of it.
The extended dependency graph of Σ, denoted edg(Σ), is obtained from dg(Σ) by simply adding
special labeled edges from the positions where non-frontier variables occur to the positions where
existentially quantified variables occur.

Two well-known classes of tgds, introduced in the context of data exchange, that guarantee
the termination of the oblivious and semi-oblivious chase are rich-acyclicity and weak-acyclicity,
respectively. A set Σ is richly-acyclic (resp., weakly-acyclic) if there is no cycle in edg(Σ) (resp.,
dg(Σ)) that contains a special edge. It would be very useful if, whenever we focus on linear tgds,
rich- and weak-acyclicity are also necessary conditions for the termination of the oblivious and semi-
oblivious chase, respectively. Unfortunately, this is not the case. A simple counterexample follows:

I Example 15. Consider the set Σ of linear tgds consisting of R(x, x)→ ∃z R(z, x). It is easy to
verify that in dg(Σ) = edg(Σ) there is a cycle that contains a special edge. However, for ? ∈ {o, so},
there is only one ?-chase sequence of cr(Σ) w.r.t. Σ that is terminating; thus, Σ ∈ CT?∀.

As it has been shown in [4], there is an extension of rich- and weak-acyclicity, called critical-rich-
and critical-weak-acyclicity, that whenever we focus on linear tgds it provides a necessary and suffi-
cient condition for the termination of the oblivious and semi-oblivious chase, respectively. However,
the analysis performed in [4] considers only tgds without constants, while after the linearization of a
sticky set Σ of tgds, even if Σ is constant-free, the obtained set Lin(Σ) contains at least one constant.
Thus, in order to be able to apply critical-rich- and critical-weak-acyclicity on Lin(Σ), we first need
to appropriately extend these notions to linear tgds with constants.

A crucial notion underlying critical-rich- and critical-weak-acyclicity is the notion of compatibil-
ity among two single-head linear tgds. Intuitively, if a single-head linear tgd σ1 is compatible with a
single-head linear tgd σ2, then the atom obtained during the chase by applying σ1 may trigger σ2. It
is clear that the presence of constants in the tgds affects the way that we define compatibility. We as-
sume the reader is familiar with the notion of unification. Given two atoms α, β, we write mgu(α, β)
for their most general unifier. For brevity, we write Πσ

t for the set of positions pos(body(σ), t), i.e.,
the set of positions at which the term t occurs in the body of σ. We also write term(α,Π), where α
is an atom, and Π a set of positions, for the set of terms occurring in α at positions of Π.

I Definition 16. Consider two single-head linear tgds σ1 and σ2. We say that σ1 is compatible
with σ2 if the following hold:

1. head(σ1) and body(σ2) unify.
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2. For each x ∈ var(body(σ2)), either term(head(σ1),Πσ2
x ) = {z} for some existentially quanti-

fied variable z in σ1, or term(head(σ1),Πσ2
x ) ⊆ fr(σ1) ∪ {c} for some constant c.

3. For each c ∈ const(body(σ2)), term(head(σ1),Πσ2
c ) ⊆ fr(σ1) ∪ {c}.

Having the notion of compatibility among two single-head linear tgds in place, we can recall
the resolvent of a sequence σ1, . . . , σn of single-head linear tgds, which is in turn a single-head tgd.
Roughly, such a resolvent mimics the behavior of the sequence σ1, . . . , σn during the chase. Notice
that the existence of such a resolvent is not guaranteed, but if it exists, this implies that we may have
a sequence of trigger applications that involve the tgds σ1, . . . , σn in this order. In such a case, we
call the sequence σ1, . . . , σn active. The formal definitions follow:

I Definition 17. The resolvent of a sequence σ1, . . . , σn of single-head linear tgds, denoted
[σ1, . . . , σn], is inductively defined as follows; for brevity, we write ρ for [σ1, . . . , σn−1]:

1. [σ1] = σ1;
2. [σ1, . . . , σn] = γ(body(ρ)) → γ(head(σn)), where γ = mgu(head(ρ), body(σn)), if ρ 6= ♦

and ρ is compatible with σn; otherwise, [σ1, . . . , σn] = ♦.

The sequence σ1, . . . , σn is called active if [σ1, . . . , σn] 6= ♦.

At this point, one may think that the right extension of rich- and weak-acyclicity, which will
provide a necessary condition for the termination of the oblivious and semi-oblivious chase under
linear tgds, is to allow cycles with special edges in the underlying dependency graph as long as
the corresponding sequence of single-head tgds, which can be extracted from the edge labels, is
not active. Unfortunately, this is not enough. If a cycle with a special edge is labeled with an active
sequence, then we can only conclude that it will be traversed at least once during the chase. However,
it is not guaranteed that it will be traversed infinitely many times.

I Example 18. Consider the set Σ of linear tgds consisting of

σ1 = R(x, y, z) → P (x, y, z) σ2 = P (x, y, x) → ∃z R(y, z, x).

In dg(Σ) = edg(Σ) there is an active cycle that contains a special edge; e.g., C = R[2], P [2], R[2],
which corresponds to the sequence of tgds σ1, σ2. It is easy to see that [σ1, σ2] 6= ♦, and thus C
is active. Despite the existence of an active cycle that contains a special edge, we can show that
Σ ∈ CT?∀, where ? ∈ {o, so}. Indeed, every ?-chase sequence of cr(Σ) w.r.t. Σ is terminating.

A cycle that is labeled with an active sequence σ1, . . . , σn, and contains a special edge, will be
certainly traversed infinitely many times if the resolvent of the sequence ρ, . . . , ρ of length k, where
ρ = [σ1, . . . , σn], exists, for every k > 0. Interestingly, for ensuring the latter condition, it suffices
to consider sequences of length at most (ω + 1), where ω is the arity of the predicate of body(σ1).
This brings us to critical sequences. For brevity, we write σk for the sequence σ, . . . , σ of length k.

IDefinition 19. A sequence σ1, . . . , σn of single-head linear tgds is critical if σ1, . . . , σn is active,
and [σ1, . . . , σn]ω+1 is active, where ω is the arity of the predicate of body(σ1).

We are now ready to recall critical-rich- and critical-weak-acyclicity. They are essentially rich-
and weak-acyclicity, with the difference that a cycle in the underlying graph is considered as “dan-
gerous”, not only if it contains a special edge, but also if it is labeled with a critical sequence.

I Definition 20. Consider a set Σ ∈ L of tgds, and let G = (N,E, λ) be either edg(Σ) or dg(Σ).
A cycle v0, v1, . . . , vn, v0 inG is critical if λ(v0, v1), λ(v1, v2), . . . , λ(vn, v0) is critical. We say that
Σ is critically-richly-acyclic (resp., critically-weakly-acyclic), if no critical cycle in edg(Σ) (resp.,
dg(Σ)) contains a special edge.
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The desired result follows:

I Theorem 21. Consider a set Σ ∈ L of tgds. The following hold:

Σ ∈ CTo
∀ iff Σ is critically-richly-acyclic.

Σ ∈ CTso
∀ iff Σ is critically-weakly-acyclic.

The “if” directions of the above result are shown by giving proofs similar to the ones given
in [16] and [10] for showing that rich-acyclicity and weak-acyclicity guarantees the termination of
the oblivious and restricted chase, respectively. The interesting direction is the “only if” direction.
By Corollary 4, it suffices to show that if Σ is not critically-richly-acyclic (resp., critically-weakly-
acyclic), then there exists an infinite o-chase (resp., so-chase) derivation of cr(Σ) w.r.t. Σ. This is a
non-trivial result that requires a couple of auxiliary lemmas.

The equality type of an atom is a set of equalities among positions, as well as among positions
and constants, that faithfully describes its shape. Formally, for an atom α = R(t1, . . . , tn), the
equality type of α is eqtype(α) = {R[i] = R[j] | ti = tj} ∪ {R[i] = c | c ∈ C and ti = c}.
For a linear tgd σ, we write eqtype(σ) for the equality type of the atom body(σ). The next result
establishes a useful connection between active sequences and equality types:

I Lemma 22. Consider a single-head linear tgd σ such that σi is active, for some i > 1, and
eqtype([σi−1]) = eqtype([σi]). Then, σi+1 is active, and eqtype([σi]) = eqtype([σi+1]).

Despite the fact that the above lemma has been already shown in [4] for constant-free tgds, it
turned out that the proof from [4] cannot be easily extended to tgds with constants. Thus, we had
to devise a completely new proof that exploits further properties of the resolvent of a sequence
σ, . . . , σ. In fact, we show via an inductive argument that [σi] = [[σi−1], σ] is the same (modulo
variable renaming) with [σ, [σi−1]], which in turn allows us to easily establish Lemma 22. Having
the connection between active sequences and equality types provided by Lemma 22, we show the
next lemma, which states that critical cycles can be traversed infinitely many times during the chase.

I Lemma 23. Consider a critical sequence σ1, . . . , σn of single-head linear tgds. For every k > 0,
[σ1, . . . , σn]k is active.

As for Lemma 22, even though the above result has been shown in [4] for constant-free tgds, we
had to devise a completely new proof in order to deal with the constants that are present in the tgds.
Let us briefly explain how Lemma 23 is shown. For brevity, let ρ = [σ1, . . . , σn]. Since σ1, . . . , σn
is critical, by definition we get that ρω+1 is active, where ω is the arity of the predicate of body(σ1).
The crucial step is to also show that eqtype([ρω]) = eqtype([ρω+1]). Then, by iteratively applying
Lemma 22, we obtain that ρk is active for every k > ω + 1. Since ρω+1 is active, we can conclude
that ρk is active for every 1 ≤ k ≤ ω + 1, and Lemma 23 follows.

We can show via an inductive argument that an active sequence σ1, . . . , σn of single-head linear
tgds mimics the sequence of trigger applications that involve the tgds σ1, . . . , σn (in this order),
starting from an atom in the critical instance; in particular, the ground version of body([ρω+1]).
This fact, together with Lemma 23, allow us to show that a critical cycle of minimal length in the
extended dependency graph (resp., dependency graph) that contains a special edge, gives rise to an
infinite o-chase (resp., so-chase) derivation cr(Σ) w.r.t. Σ, and Theorem 21 follows.

It is now easy to see that Theorems 13 and 21 establish the main result of this section:

I Corollary 24. Consider a set Σ ∈ S of tgds. The following hold:

Σ ∈ CTo
∀ iff Lin(Σ) is critically-richly-acyclic.

Σ ∈ CTso
∀ iff Lin(Σ) is critically-weakly-acyclic.
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6 Complexity of Chase Termination

In this final section, we pinpoint the complexity of the ?-chase termination problem under sticky sets
of tgds. In particular, we establish the following complexity result:

I Theorem 25. For ? ∈ {o, so}, CT?∀(S) is PSPACE-complete, and NLOGSPACE-complete for
predicates of bounded arity. The lower bounds hold even for tgds without constants.

Upper Bounds. The problem CT?∀ under constant-free linear tgds is PSPACE-complete, in general,
and NLOGSPACE-complete for predicates of bounded arity [4]. However, despite the fact that, by
Corollary 24, we can reduce CT?∀(S) to CT?∀(L), we cannot directly exploit the complexity results
from [4] for two reasons: (i) the linearized version of Σ contains at least one constant, while the res-
ults from [4] apply only to constant-free tgds, and (ii) the linearization procedure takes exponential
time, in general, and polynomial time in the case of bounded-arity predicates; thus, we cannot afford
to explicitly compute the set Lin(Σ), and then check for critical-rich- and critical-weak-acyclicity.
Therefore, a more refined procedure is needed.

We focus on the complement of our problem, i.e., given a set Σ ∈ S of tgds, we want to check
whether Σ 6∈ CT?∀. By Corollary 24, it suffices to show that Lin(Σ) is not critically-richly-acyclic,
if ? = o, and not critically-weakly-acyclic, if ? = so. The latter problems can be seen as a general-
ization of the standard graph reachability problem. Indeed, we need to check whether there exists a
node v in the (extended) dependency graph of Lin(Σ) that is reachable from itself via a critical cycle
that contains a special edge. However, as discussed above, we cannot explicitly construct Lin(Σ) and
its (extended) dependency graph G. Instead, the above reachability check should be performed on
a compact representation of G, which is the set Σ itself. We show that this check can be performed
via a non-deterministic procedure that uses O(ω log(ω · |sch(Σ)|) +ω log(ω ·m · |Σ|)) space, where
ω is the maximum arity over all predicates in Σ, and m is the maximum number of atoms occurring
in a tgd of Σ, and the desired upper bounds follow.

Lower Bounds. The PSPACE-hardness is shown by providing a polynomial time reduction from the
acceptance problem of a deterministic polynomial space Turing machine M . Such a reduction can
be easily devised if we are allowed to join a variable in the body of a tgd and then lose it, or if we
can use constants in the body of a tgd. In this case, a configuration of M can be straightforwardly
encoded in a single predicate Config of polynomial arity. However, if we want the set of tgds to
be sticky and constant-free, then we need a more clever encoding for a configuration of M , which
increases the arity of Config, but only polynomially.

The NLOGSPACE-hardness is immediately inherited from [4], where it is shown that CT?∀(L) is
NLOGSPACE-hard, even for linear tgds that are constant-free, each body variable occurs only once
(and thus, stickiness is trivially satisfied), and only unary and binary predicates are used.

7 Conclusions

We have shown that the uniform (semi-)oblivious chase termination problem for sticky sets of tgds
is decidable, and obtained precise complexity results. This is done by first characterizing the ter-
mination of the (semi-)oblivious chase for sticky sets of tgds via graph-based conditions that are
of independent interest. In particular, to check whether the oblivious (resp., semi-oblivious) chase
terminates for a sticky set Σ of tgds, we simply need to linearize it, i.e., convert it, via an easy pro-
cedure, into a set Lin(Σ) of linear tgds, and then check whether Lin(Σ) enjoys an acyclicity condition
in the spirit of rich-acyclicity (resp., weak-acyclicity). The next natural step is to concentrate on the
restricted (a.k.a. standard) version of the chase, which makes the problem even more challenging
due to its non-deterministic behaviour that cannot be captured via static graph-based conditions.
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A Appendix

B Proof of Theorem 7

Before we proceed with the proof of the theorem, we point out that by Corollary 4, the (⇐) direction
of the claim is easily shown. Furthermore, by exploiting once again Corollary 4, proving the (⇒)
direction boils down to prove the following: if there exists an infinite ?-chase derivation of cr(Σ)
w.r.t. Σ, then there exists a linear infinite ?-chase derivation of cr(Σ) w.r.t. Σ.

We accomplish the above in two main steps. We first show that if an infinite ?-chase derivation
of cr(Σ) w.r.t. Σ exists, then we can construct an infinite ?-chase derivation δ of cr(Σ) w.r.t. Σ whose
chase relation ≺δ admits a special infinite path, which we call continuous. Then, we show that the
existence of such a continuous path implies the existence of a linear infinite ?-chase derivation, and
the claim will follow. To this end, in order to simplify the proofs, in this section we assume w.l.o.g.
that Σ is in normal form [7]. That is, for each σ ∈ Σ, head(σ) contains only one atom. We further
assume that no two atoms in body(σ) share the same relation symbol. This last assumption will
allow us to simplify the definition of a continuous path. It is not difficult to see that rewriting a set
of tgds Σ′ into a set Σ′′ satisfying the above conditions preserves chase termination, i.e. Σ′ ∈ CT?∀
iff Σ′′ ∈ CT?∀, for ? ∈ {o, so}.

B.1 Finding an infinite continuous path

We proceed with the first part of the proof. We start by defining the notion of δ-path for some infinite
?-chase derivation δ, and then we introduce the notion of continuous path.

I Definition 26. Consider an infinite ?-chase derivation δ = (Ii)i≥0 of cr(Σ) w.r.t. Σ, with
Ii〈σi, hi〉Ii+1, for i ≥ 0. A δ-path is a (possibly infinite) sequence of atoms (αi)i≥0 such that
α0 ∈ I0 and αi ≺δ αi+1, for i ≥ 0. Furthermore, for an atom α ∈ {αi}i≥0, let fδ(α) = (Ii, σi, hi),
where α ∈ Ii+1 \ Ii, for some i ≥ 0.

In what follows, let Σ∃ and Σ∀ be the sets of tgds in Σ with and without existential quantifiers,
respectively. Furthermore, in order to provide uniform definitions for both the oblivious and the
semi-oblivious chase, we refer to the graphs edg(Σ) and dg(Σ) with o-dependency graph and so-
dependency graph respectively.

I Definition 27. Consider an infinite ?-chase derivation δ of cr(Σ) w.r.t. Σ and a finite δ-path
(αi)0≤i≤n, with fδ(αi) = (Ii, σi, hi) for i > 0, and where {i | σi ∈ Σ∃} = {`0, . . . , `m} and
`0 < . . . < `m. The δ-path (αi)i≥0 is continuous if `m = n and there exists a sequence of nulls
(⊥i)0≤i≤m such that⊥i∈ dom(α`i)\dom(I`i) and for every 0 ≤ i < m, there is a path π0, . . . , πni ,
where ni = `i+1 − `i, in the ?-dependency graph (N,E, λ) of Σ such that for every 0 ≤ j < ni,
λ(πj , πj+1) = σ`i+j+1 and πj ∈ pos(α`i+j ,⊥i).

Intuitively, a continuous δ-path (αi)i≥0, is a path where all the atoms α`0 , α`1 , . . . , α`m where
a null is generated, are such that at least one null generated in α`i must be propagated via the
application of some triggers in δ, involving the atoms α`i , α`i+1, . . . , α`i+1 . Here, the assumption
that no two atoms share a relation symbol in the body of a tgd is crucial, as for every atom α in
(αi)i≥0, the body atom of some tgd in Σ to which α is mapped is uniquely determined.

We now extend the above definition to infinite paths as follows. An infinite δ-path (αi)i≥0, with
fδ(αi) = (Ii, σi, hi) for i > 0, where {i | σi ∈ Σ∃} = {`i}i≥0 and `0 < `1 < . . ., is continuous if
for j ≥ 0, (αj)0≤i≤`j is continuous.

With the notion of continuous path in place, we are finally ready to prove our first main result.
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I Proposition 28. If there exists an infinite ?-chase derivation of cr(Σ) w.r.t. Σ, then there exists
a continuous infinite δ-path, where δ is an infinite ?-chase derivation of cr(Σ) w.r.t. Σ.

Proof. The proof of this proposition is further divided in two main parts. We first show that the
existence of an infinite ?-chase derivation implies the existence of another infinite ?-chase derivation
which we call local. Then, we prove that from a local infinite ?-chase derivation δ, it is possible to
construct an infinite, rooted, directed acyclic graph (DAG) G. Such a graph enjoys some properties
that allow us to conclude that G admits an infinite path which encodes a continuous infinite δ-path.
The last claim is proved by exploiting the well-known König’s lemma.

Local infinite ?-chase derivations. We start by defining local ?-chase derivations, that is derivations
in which the application of a trigger (σ, h) is performed “as close as possible” to the first instance
containing the atoms h(body(σ)).

I Definition 29. Consider an infinite ?-chase derivation δ = (Ii)i≥0, where Ii〈σi, hi〉Ii+1, for
i ≥ 0. We say that δ is local if there exists a sequence of indices 0 = n0 ≤ n1 ≤ . . . such that,
for every i ≥ 0, if i is even, then the tgds σni , . . . , σni+1−1 are in Σ∀, otherwise they are in Σ∃.
Moreover, for every i ≥ 0 and ni ≤ j ≤ ni+1 − 1, hj(body(σj)) ⊆ Ini .

We can easily show that whenever there exists an infinite ?-chase derivation δ of cr(Σ) w.r.t. Σ,
local infinite ?-chase derivation of cr(Σ) w.r.t. Σ exists.

I Lemma 30. If there exists an infinite ?-chase derivation of cr(Σ) w.r.t. Σ, then there exists an
infinite local ?-chase derivation of cr(Σ) w.r.t. Σ.

Proof. Let δ be an infinite ?-chase derivation of cr(Σ) w.r.t. Σ. We can easily construct a local
infinite ?-chase derivation η = (Ii)i≥0 of cr(Σ) w.r.t. Σ, starting from δ, as follows. We inductively
define a sequence of indices n0 ≤ n1 ≤ . . . and a sequence of instances η = (Ii)i≥0 such that
(i) n0 = 0 and In0 = cr(Σ); (ii) for every i > 0, ni is such that (σ0, h0), . . . , (σm−1, hm−1),
with m = ni − ni−1, are all the triggers of δ such that hj(body(σj)) ⊆ Ini−1 , for 0 ≤ j ≤
m − 1. It is clear that we can apply all such triggers in any order, starting from Ini−1 , obtaining a
sequence of instances Ini−1 , . . . , Ini , where for every 0 ≤ j ≤ m − 1, Ini−1+j〈σj , hj〉Ini−1+j+1
and hj(body(σj)) ⊆ Ini−1 . Clearly, η is a local infinite ?-chase derivation of cr(Σ) w.r.t. Σ.

Infinite rooted DAG. We now proceed by proving that from a local infinite ?-chase derivation
δ of cr(Σ) w.r.t. Σ, it is possible to extract an infinite, rooted, DAG G = (N,E, λ), with labeling
function λ. As we will see later, such a graph enjoys some properties that allow us to conclude that
G admits an infinite (simple) path such that the concatenation of the labels of its edges coincides
with a continuous infinite δ-path.

I Lemma 31. If δ = (Ii)i≥0 is a local infinite ?-chase derivation of cr(Σ) w.r.t. Σ, then there exists
an infinite, rooted DAG of finite degreeG = (N ∪{•}, E, λ), where • is the root ofG,N ⊆

⋃
i≥0 Ii,

every node in N is reachable from • and λ maps edges to sequences of atoms in
⋃
i≥0 Ii such that,

for every path •, v1, . . . , vn in G, with n ≥ 1, λ(•, v1), λ(v1, v2), . . . , λ(vn−1, vn) is a continuous
δ-path.

Proof. Let Σ = Σ∀ ∪ Σ∃. We represent the local ?-chase derivation δ as follows:

J0
Σ0
∀→ J∀0

Σ0
∃→ J1

Σ1
∀→ J∀1

Σ1
∃→ J2, . . .

where J0 = cr(Σ) and for every i ≥ 0, Σi∃ ⊆ Σ∃, Σi∀ ⊆ Σ∀, and Ji
Σi∀→ J∀i and J∀i

Σi∃→ Ji+1 denote
the ?-chase derivations in δ whose triggers use only tgds in Σi∀ and atoms in Ji and only tgds in Σi∃
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and atoms in J∀i , respectively. Please note that in general, it can be the case that Ji \ J∀i−1 = ∅, for
i > 0. For the sake of clarity, we assume that for every i > 0, Ji \ J∀i−1 6= ∅. The proof given
below can be easily adapted to the more general case. We now inductively construct the infinite
DAG G = (N ∪ {•}, E, λ). In particular, we show that at each inductive step i > 0, for every atom
β ∈ Ji \ J∀i−1, there exists a path •, v1, . . . , vi in G, such that λ(•, v1), λ(v1, v2), . . . , λ(vi−1, vi) =
(βi)0≤i≤n, with n ≥ i, is a continuous δ-path, with βn = β.

Base Step. Let i = 1 and consider an atom β ∈ Ji \ J∀i−1. Then, β ∈ N . By definition of J∀i−1
Σi−1
∃→

Ji, there exist two instances I ′ and J ′ in J∀i−1
Σi−1
∃→ Ji such that I ′〈σ, h〉J ′, for some σ ∈ Σi−1

∃ and
homomorphism h, and such that J ′ \ I ′ = {β}. Then, α ∈ N , for every atom α ∈ h(body(σ)).
Furthermore, we let (•, α) ∈ E and (α, β) ∈ E, whereas λ(•, α) = α and λ(α, β) = β. Since
σ ∈ Σ∃, there exists a null ⊥∈ dom(β) \ dom(I ′) and since h(body(σ)) ⊆ cr(Σ), we conclude that
λ(•, α), λ(α, β) = α, β is indeed a continuous δ-path.

Inductive Step. Let i > 1 and let γ ∈ Ji \ J∀i−1. By definition of J∀i−1
Σi∃→ Ji there exist two

instances I ′ and J ′ in J∀i−1
Σi∃→ Ji such that I ′〈σ, h〉J ′, for some σ ∈ Σi∃ and homomorphism h

and such that J ′ \ I ′ = {γ}. Since σ ∈ Σ∃, there exists a null ⊥∈ dom(γ) \ dom(I ′). Since
i > 1 and since δ is local, h(body(σ)) ⊆ J∀i−1 and there must be an atom b ∈ body(σ) such
that, letting α = h(b), α ∈ J∀i−1 \ J∀i−2. In particular, there is a null ⊥′∈ dom(α) ∩ dom(Ji−1)

generated at the previous step, by the derivation J∀i−2
Σi−2
∃→ Ji−1. This comes from the fact that

every trigger in Ji−1
Σi−1
∀→ J∀i−1 does not introduce new nulls and from the fact that triggers using

only atoms in J∀i−2 have been already applied in J∀i−2
Σ∃→ Ji−1. Furthermore, if ? = so, the fact

that triggers using only atoms in J∀i−2 have been already applied, implies that such an atom α is
also such that pos(α,⊥′) ∩ frpos(σ) 6= ∅, where frpos(σ) denotes the set of positions in head(σ) in
which a frontier variable occurs. Then, in the ?-dependency graph of Σ there is an edge π1 → π2,
labeled with σ, where π1 ∈ pos(α,⊥′) and π2 ∈ pos(γ,⊥). Now, let β ∈ Ji−1 \ J∀i−2 be the

atom in which the null ⊥′ has been generated in the derivation J∀i−2
Σi−2
∃→ Ji−1. That is, there

are two instances I ′′ and J ′′ in J∀i−2
Σi−2
∃→ Ji−1, where I ′′〈σ′, h′〉J ′′ such that J ′′ \ I ′′ = {β}.

Since ⊥′∈ dom(α) ∩ dom(Ji−1), there must be some atom b′ ∈ body(σ′) such that β = h′(b′),
and there must also be an edge π0 → π1, labeled with σ′, in the ?-dependency graph of Σ, such
that π0 ∈ pos(β,⊥′). By inductive hypothesis, there exists a path •, v1, . . . , vi−1 in G, such that
λ(•, v1), λ(v1, v2), . . . , λ(vi−2, vi−1) = (βi)0≤i≤n, where n ≥ i − 1, is a continuous δ-path and
βn = β. But this and discussion above implies that the sequence β0, . . . , βn−1, β, α, γ is a η-
continuous path. Thus, we let γ ∈ N and (β, γ) ∈ E. Furthermore, we let λ(β, γ) = α, γ.

As shown above, for every i > 0 and every atom β ∈ Ji − J∀i−1, there exists a (finite) η-
continuous path (βi)0≤i≤n, where βn = β.

Clearly, the constructed graph G is infinite, as at each step i > 0, at least a new node is added
to N . The graph is of finite degree, as for every i > 0, and every atom β ∈ Ji \ J∀i−1, all the edges
from β to some other node in N are only introduced in step i + 1, and all such edges are finitely
many. This ends our proof.

With Lemma 30 and Lemma 31 in place, we are finally ready to prove our proposition. In-
deed, combining the above two lemmas, the existence of an infinite ?-chase derivation of cr(Σ)
w.r.t. Σ implies the existence of an infinite, rooted DAG of finite degree G = (N ∪ {•}, E, λ)
such that, for some infinite ?-chase derivation δ = (Ii)i≥0 of cr(Σ) w.r.t. Σ, • is the root,
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N ⊆
⋃
i≥0 Ii, every node in N is reachable from • and for every path •, v1, . . . , vn, for n ≥ 1,

λ(•, v1), λ(v1, v2), . . . , λ(vn−1, vn) is a continuous δ-path. We now exploit the well-known König’s
lemma for infinite, rooted, directed acyclic graphs with finite degree. We recall that König’s lemma
states that for every infinite, rooted DAG G = (N ∪ {•}, E) of finite degree, with root •, such that
every node in N is reachable from •, there exists an infinite (simple) path •, v1, v2, . . . in G. Let
•, v1, v2, . . . be such an infinite simple path in G and let (αi)i≥0 = λ(•, v1), λ(v1, v2), . . .. Note
that (αi)i≥0 is a δ-path, as for every i > 0, λ(•, v1), λ(v1, v2), . . . λ(vi−1, vi) is a δ-path. Thus,
for every i > 0, let fδ(αi) = (Ji, σi, hi). Assume, towards a contradiction, that (αi)i≥0 is not
continuous. Then, there must exists ` ∈ {i | σi ∈ Σ∃} such that (αi)0≤i≤` is not continuous. By
definition of G, there must also exist j > ` and k > 0, such that αj = vk. Then, by definition of
finite continuous δ-path, λ(•, v1), λ(v1, v2), . . . , λ(vk−1, vk) = (αi)0≤i≤j is not continuous, which
contradicts our hypothesis, thus a continuous infinite δ-path exists. This concludes our proof.

B.2 Finding a linear infinite ?-chase derivation

With Proposition 28 in place, we can proceed with the second part of our proof. The main goal
of this section is to show that if there exists an infinite ?-chase derivation δ of cr(Σ) w.r.t. Σ and a
continuous infinite δ-path P , then a linear infinite ?-chase derivation δ` of cr(Σ) w.r.t. Σ exists. As
already described in the main body of the paper, the proof below proceeds in three main steps. We
first isolate a suffix P ′ of P (the backbone) where all the terms participating in a join are coming
from the side atoms of P ′. Furthermore, by stickiness of Σ all such terms are finitely many. Then,
we identify all the side atoms needed to generate the atoms in P ′, and we apply a careful renaming
of nulls occurring in them, by modifying the homomorphisms used to generate the atoms in P ′.
Finally, we apply a pruning step in order to remove eventually repeated triggers and atoms.

I Proposition 32. Consider an infinite ?-chase derivation δ = (Ji)i≥0 of cr(Σ) w.r.t. Σ, where
Ji〈ρi, gi〉Ji+1, for each i ≥ 0 and such that a continuous infinite δ-path exists. Then, there exists a
linear infinite ?-chase derivation δ` = (Ii)i≥0 of cr(Σ) w.r.t. Σ.

Proof. Let (γi)i≥0 be such an infinite continuous δ-path, where for each i > 0, let fδ(γi) =
(Γi, κi, fi). In order to prove the claim, we need to introduce some useful notions. From stickiness
of Σ, for every i > 0 and every variable x occurring more than once in body(κi), fi(x) ∈ dom(γj),
∀j ≥ i [7]. That is, if a term participates in a join during the chase in some atom, this term will
“stick” to all the next atoms in the path. In such a case, we say that the term fi(x) becomes sticky at
position i. The above and the fact that the maximum arity of an atom is finite imply that there exists
i > 0 and ∃S ⊆ dom(γi) such that for every term t ∈ S, there exists j < i such that t becomes
sticky at position j, and for every j ≥ i, no other term, except for the ones in S, becomes sticky at
position j. We say that such an i is a saturated position with sticky terms S.

Finding the backbone. From the definition of infinite continuous δ-path, if {i | κi ∈ Σ∃} =
{`i}i≥0, with `0 < `1 < . . ., then, for j ≥ 0, (γi)0≤i≤`j is continuous. We can restate the above
definition as follows. (γi)i≥0 is an infinite continuous δ-path if, given {i | κi ∈ Σ∃} = {`i}i≥0,
with `0 < `1 < . . ., there exists a sequence of nulls (⊥i)i≥0 such that ⊥i∈ dom(γ`i) \ dom(Γ`i)
and for every i ≥ 0, there is a path π0, . . . , πni , where ni = `i+1 − `i, in the ?-dependency graph
(N,E, λ) of Σ such that for every 0 ≤ j < ni, λ(πj , πj+1) = κ`i+j+1 and πj ∈ pos(γ`i+j ,⊥i).
Furthermore, recalling that we assume Σ is in normal form and thus no predicate symbol occurs
more than once in the body of tgds in Σ, for every i > 0, let βi be the only atom in body(κi) such
that fi(βi) = γi−1.

Note that if for some i > 0, i is saturated with some sticky terms S, then for every j > i, also
j is saturated with sticky terms S. Thus, there must exists i ≥ 0 and an index `i such that `i (and
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every other index `i+1, `i+2, . . .) is saturated with some sticky terms S.
In order to simplify the notation, assume that `1 − 1 is saturated with some sticky terms

S. We now want to construct a sequence of instances, based on the sequence of atoms
γ
`1−1 , γ`1 , γ`1+1 . . . , γ`2 , . . ., where γ

`1−1 will become (after the proper renaming) the starting atom
in the initial instance, whereas each atom in the sequence γ

`1
, γ

`1+1 . . . , γ`2 , . . ., which we call
backbone, will be part (after the renaming) of each of the next instances.

Side atoms of the backbone and renaming step. For the construction of the sequence of instances
discussed above, we need first to identify the side atoms used to generate the atoms in the backbone.
To this end, we inspect the homomorphisms used to generate the atoms in the backbone and identify
the variables occurring in the side atoms that might inject null values in the backbone itself. We then
modify these homomorphisms on such variables.

In what follows, fix an arbitrary constant c ∈ dom(cr(Σ)) and let N = dom(γ
`1−1) ∩ N be

the nulls occurring in γ
`1−1 . For every i > 0 and every 0 ≤ j ≤ ni − 1, we define the following

substitution:

f ij = {u 7→ c | u 7→ t ∈ f
`i+j

and t ∈ N} ∪
{u 7→ c | u 7→ t ∈ f

`i+j
and u ∈ var(body(κ

`i+j
) \ {β

`i+j
}) and t ∈ N \N} ∪

{u 7→ t | u 7→ t ∈ f
`i+j

and either t ∈ C or
u 6∈ var(body(κ

`i+j
) \ {β

`i+j
}) and t 6∈ N hold}

Roughly speaking, each substitution f ij is obtained from the original substitution f
`i+j

, where 1)
variables that were mapped to nulls in N are now mapped to the constant c; 2) variables in the “side
atoms” of β

`i+j
are now forcedly mapped to the constant c; 3) all the other mappings satisfying

none of the two properties above, are kept untouched. Thus, for every i and j, β
`i+j

is the only
atom in body(κ

`i+j
) such that the application of f ij to it can give rise to an atom containing nulls.

All other atoms β ∈ body(κ
`i+j

) \ {β
`i+j
} are such that f ij(β) ∈ cr(Σ). Since every mapping of

the form t 7→ t in f
`i+j

, where t ∈ C, does not satisfy any of the two first properties, they are
left untouched in f ij , and thus f ij is still a homomorphism. Finally, we consider the homomorphism

f̂ ij = f ij ∪(f ′
`i+j
\f

`i+j
), where f ′

`i+j
is the extension of f

`i+j
such that f ′

`i+j
(head(κ

`i+j
)) = γ

`i+j
.

We now construct the following sequence of instances:

I1
−1, I

1
0 , . . . , I

1
n1−1 = I2

−1, I
2
0 , . . . , I

2
n2−1 = I3

−1, I
3
0 , . . .

where I1
−1 = cr(Σ) and for each i > 0 and each 0 ≤ j ≤ ni−1, Iij = Iij−1∪{f̂ ij(head(κ

`i+j
))}.

Note that f1
0 (β

`1
) ∈ I1

−1 and that f1
0 (β

`1
) coincides with γ

`1−1 , where all nulls occurring in it are
replaced with the constant c.

In what follows, let i > 0 and 0 ≤ j ≤ ni − 1. We start by showing that
f̂ ij(head(κ

`i+j
)) = f ij+1(β

`i+j+1). Recall that δ is an infinite ?-chase derivation of cr(Σ) w.r.t.
Σ, thus f ′

`i+j
(head(κ

`i+j
)) = f

`i+j+1(β
`i+j+1), where f ′

`i+j
is the extension of f

`i+j
such that

f ′
`i+j

(head(κ
`i+j

)) = γ
li+j

. Let head(κ
`i+j

) = R(u1, . . . , un) and let β
`i+j+1 = R(t1, . . . , tn).

We show that for every 1 ≤ k ≤ n, f̂ ij(uk) = f ij+1(tk). This will immediately imply that
f̂ ij(head(κ

`i+j
)) = f ij(β`i+j+1). Let k ∈ {1, . . . , n}. We know that f ′

`i+j
(uk) = f

`i+j+1(tk).
We distinguish three only possible cases:

Case 1: t = f ′
`i+j

(uk) = f
`i+j+1(tk) is a constant. Thus, from the definition of f ij+1, f ij and f̂ ij ,

f ′
`i+j

(uk) = f̂ ij(uk) and f
`i+j+1(tk) = f ij+1(tk). Thus, f̂ ij(uk) = f ij+1(tk) = t.

Case 2: t = f ′
`i+j

(uk) = f
`i+j+1(tk) is a null inN , i.e. a null among the ones occurring in γ

`1−1 .

In this case, according to the definition of f ij+1, f ij and f̂ ij , we obtain that f̂ ij(uk) = f ij+1(tk) = c.
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Case 3: t = f ′
`i+j

(uk) = f
`i+j+1(tk) is a null in N \ N . Note that then tk is a variable and

tk 6∈ var(body(κ
`i+j+1) \ {β

`i+j+1}), because otherwise it means that tk occurs more than once
in body(κ

`i+j+1) (recall that tk also occurs in β
`i+j+1 ) and it is mapped to a term not in S, which

is not possible, since `i + j + 1 is a saturated position with terms S. Then, from the definition of
f ij+1, we obtain that f ij+1(tk) = f

`i+j+1(tk). It now remains to show that f̂ ij(uk) = f ′
`i+j

(uk).

Assume towards a contradiction that f̂ ij(uk) 6= f ′
`i+j

(uk). Note that by definition of f̂ ij and f ′
`i+j

,

f̂ ij = f ij ∪ g and f ′
`i+j

= f
`i+j
∪ g, where g = f ′

`i+j
\ f

`i+j
. So, if f̂ ij(uk) 6= f ′

`i+j
(uk), it means

that f ij(uk) 6= f
`i+j

(uk). However, recall that also `i + j is a saturated position with sticky terms
S, and thus, since f

`i+j
(uk) ∈ N \ N , uk 6∈ var(body(κ

`i+j
) \ {β

`i+j
}). But then, by definition

of f ij , f
i
j(uk) = f

`i+j
(uk). This and the fact that f̂ ij = f ij ∪ g and f ′

`i+j
= f

`i+j
∪ g imply that

indeed f̂ ij(uk) = f ′
`i+j

(uk). With this last case, we have finally shown that f̂ ij(head(κ
`i+j

)) =
f ij+1(β

`i+j+1).

We now proceed by recalling that, as discussed before, f ij(β`i+j ) is the only atom in
f ij(body(κ

`i+j
)) that might contain nulls, all other atoms belong to cr(Σ), thus since Iij =

Iij−1 ∪ {f̂ ij(head(κ
`i+j

))} and I1
−1 = cr(Σ) and since we have shown that f̂ ij(head(κ

`i+j
)) =

f ij+1(β
`i+j+1), we obtain that f ij(body(κ

`i+j
)) ⊆ Iij−1. Finally, since f̂ ij is an extension of f ij such

that Iij = Iij−1 ∪ {f̂ ij(head(κ
`i+j

))}, it holds that Iij−1〈κ`i+j , f
i
j〉Iij .

Pruning step. Note that even though we have shown that Iij−1〈κ`i+j ,fij 〉I
i
j , for every i > 0 and

0 ≤ j ≤ ni − 1, this does not imply that I1
−1, I

1
0 , . . . is a valid infinite ?-chase derivation of cr(Σ)

w.r.t. Σ. We still need to argue about the triggers (κ
`i+j

, f ij). It is possible that there exist two such
triggers that are repeated (according to equality if ? = o or according to the relation ∼ if ? = so).
However, remember that γ

`1−1 , γ`1 , . . . , γ`1+n1−1 , γ`2 , . . . is part of an infinite continuous δ-path.
Thus, for every i ≥ 0, a fresh new null generated in γ

`i
is propagated to all atoms γ

`i+k
, with

0 < k < ni, via the rule κ
`i+k

, furthermore, if ? = so, such a null is also propagated to the atom
γ
`i+1

, via the rule κ
`i+ni

. So, if two triggers are the same, they must be triggers used to construct
some of the instances in Ii1, . . . , I

i
ni−1, I

i+1
0 . Then, there might exist two pairs of instances Iij , I

i
j+1

and Iik, I
i
k+1, where Iij〈κli+j+1 , f

i
j+1〉Iij+1 and Iik〈κli+k+1 , f

i
k+1〉Iik+1, with 0 ≤ j < k ≤ ni − 1,

such that κ = κ
`i+j+1 = κ

`i+k+1 but f ij+1 = f ik+1, if ? = o or f ij+1 ∼κ f ik+1, if ? = so. It is easy
to see that it is enough to discard all the instances Iil where j < l ≤ k. Thus all triggers in this new
sequence will be distinct (according to equality or ∼, depending on ?). Note however that the fact
that all the remaining triggers are distinct does not necessarily imply that Iij+1\Iij 6= ∅, for every 0 ≤
j ≤ ni − 1. Consider then, for every 0 ≤ j ≤ ni − 1, the instances Iij+1 such that Iij+1 = Iij . Then,
there must be another instance Iik+1, with 0 < k < j such that Iik+1 \ Iik = {f̂ ik+1(head(κ

`i+k+1))},
where f̂ ik+1(head(κ

`i+k+1) = f̂ ij+1(head(κ
`i+j+1)). In other words, the atom generated in Iij+1 has

already been generated in a previous step, in Iik+1. Thus, we can remove all the instances Iil , where
k + 1 < l ≤ j + 1. Note that the obtained sequence is still infinite, because, for every i > 0, a fresh
new null is generated in Ii0. Thus the obtained sequence, let it be δ` = (Ii)i≥0, is an infinite ?-chase
derivation of cr(Σ) w.r.t. Σ, where I0 = cr(Σ) and Ii〈σi, hi〉Ii+1 with Ii+1 = Ii ∪ {αi+1}, for
i ≥ 0. From the whole construction above, every atom α0 ∈ h0(body(σ0)) is such that α0 ≺δ` α1
and αi ≺δ` αi+1. Finally, all such atoms are distinct and there exists an atom βi ∈ body(σi) such
that αi = hi(βi) and hi(var(body(σi) \ {βi})) ⊆ cr(Σ). This ends the proof.

As already discussed at the beginning of the main section, the theorem immediately follows from
Proposition 28, Proposition 32 and Corollary 4.
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C Proof of Theorem 13

As already did for the previous section, we assume w.l.o.g. that our set of tgds Σ contains only one
atom in the head.
(⇐) Assume that Lin(Σ) 6∈ CT?∀. From Corollary 4, there exists an infinite ?-chase derivation
of cr(Lin(Σ)) w.r.t. Lin(Σ), (Ii)i≥0, where Ii〈σi, hi〉Ii+1, for each i ≥ 0. We now construct an
infinite ?-chase derivation of cr(Σ) w.r.t. Σ. For each i ≥ 0, there is a tgd σ′i in Σ such that
σi ∈ Lin(σ′i), that is, σi is obtained from the linearization of σi. Furthermore, let Vi be the set
of variables in body(σ′i) not occurring in hi. That is, Vi = var(hi(body(σ′i))). By definition of
Lin(σ′i), Vi = Vα,σ′

i
, for some atom α ∈ body(σ′i). Then, by definition of Lin(σ′i), there must

be a homomorphism gi ∈ MΣ
α,σ′

i
such that body(σi) = gi(α) and head(σi) = gi(head(σ′i)). Let

h′i = hi ∪ gi. Since Ii〈σi, hi〉Ii+1 and body(σi) = gi(α) hold and since gi maps variables to
constants in cr(Σ), h′i is a homomorphism from body(σ′i) to Ii, i.e. h′i(body(σ′i)) ⊆ Ii. Thus,
(σ′i, h′i) is a trigger for Σ on Ii. Furthermore, since head(σi) = gi(head(σ′i)), by construction
of h′i, hi(head(σi)) = hi(gi(head(σ′i))) = h′i(head(σ′i)). This implies that Ii〈σ′i, h′i〉Ii+1 holds.
Finally, to show that (Ii)i≥0 is indeed a valid ?-chase derivation of cr(Σ) w.r.t. Σ, note that I0 =
cr(Σ) = cr(Lin(Σ)) and also note that h′i ⊇ hi and var(body(σ′i)) ⊇ var(body(σi)). The last two
expressions imply that whenever two triggers (σ, hj) and (σ, hk), for some j, k ≥ 0, are such that
hj �?σ hk, where �o

σ is 6= and �so
σ is 6∼σ , also the two triggers (σ′, h′j) and (σ′, h′k) are such that

h′j �?σ′ h′k. Thus, (Ii)i≥0 is also an infinite ?-chase derivation of cr(Σ) w.r.t. Σ.
(⇒) Assume that Σ 6∈ CT?∀. From Theorem 7, there exists an infinite ?-chase derivation δ = (Ii)i≥0
of cr(Σ) w.r.t. Σ, where Ii〈σi, hi〉Ii+1, for i ≥ 0 and an infinite sequence of distinct atoms (αi)i≥0,
such that α0 ∈ cr(Σ), for each i ≥ 0, αi ≺δ αi+1 and for each i ≥ 0, αi+1 ∈ Ii+1\Ii and there is an
atom βi ∈ body(σi) such that αi = hi(βi) and hi(body(σi)\{βi}) ⊆ cr(Σ). Let us define, for every
i ≥ 0, Xi = var(body(σi) \ {βi}). That is, the variables occurring in the atoms of body(σi) \ {βi}.
Then, let gi = hi|Xi , we define the following set of linear tgds Σ′ = {gi(βi) → gi(head(σi))}i≥0.
Note that by construction of gi and from the fact that hi(body(σi) \ {βi}) ⊆ cr(Σ), Σ′ ⊆ Lin(Σ).
Since Σ′ ⊆ Lin(Σ), Σ′ 6∈ CT?∀ implies Lin(Σ) 6∈ CT?∀. Hence, it is sufficient to show that there
exists an infinite ?-chase derivation δ′ of cr(Σ′) ⊆ cr(Σ) w.r.t. Σ′. To this end, for every i ≥ 0,
let σ′i = gi(βi) → gi(head(σi)), and let fi = hi \ gi, i.e. the restriction of hi on the variables in
var(βi) \ var(body(σi) \ {βi}). By construction of fi, we immediately show that fi(body(σ′i)) =
fi(gi(βi)) = hi(βi). This, and the fact that hi(βi) ∈ Ii, implies that fi(body(σ′i) ∈ Ii. Furthermore,
let h′i be the extension of hi such that h′i(head(σi)) = αi+1 ∈ Ii+1 \ Ii. Then, since fi ∪ gi = hi,
f ′i = fi ∪ (h′i \ hi) is also an extension of f ′i , and by construction it is such that f ′i(head(σ′i)) =
f ′i(gi(head(σi))) = αi+1. Thus, Ii〈σ′i, fi〉Ii+1. What it remains to show is that for every i 6= j,
σ′i = σ′j = σ implies fi �?σ fj . Towards a contradiction, assume that there exist i 6= j such that
σ′i = σ′j = σ, but fi �?σ fj does not hold. This implies that αi+1 = αj+1. But this contradicts the
fact that the atoms (αi)i≥0 are distinct.

D Proof of Theorem 21

As already discussed in the main body of the paper, the proof of the (⇐) direction is along the lines
of the proofs given in [16] and [10] for showing that rich-cyclicity and weak-acyclicity guarantee the
termination of the oblivious and the restricted chase, respectively. Considering the (⇒) direction,
we prove that if there is a critical cycle in edg(Σ), then Σ 6∈ CTo

∀. The same proof can be used for
showing the claim for the semi-oblivious chase, where the dependency graph is used instead.

Before we proceed further, let us first introduce some useful notions. In what follows, fix a
constant c ∈ cr(Σ). Let σ0, . . . , σn−1 be a critical sequence of (single-head linear) tgds. Re-



XX:24 Oblivious Chase Termination: The Sticky Case

call that from criticality of σ0, . . . , σn−1, the resolvent ρ = [σ0, . . . , σn−1] exists and also the
resolvent [ρωσ0+1] exists, where ωσ0 is the arity of the predicate of body(σ0). We denote by
can(σ0, . . . , σn−1), the canonical version of the atom body([ρωσ0+1]). That is, can(σ0, . . . , σn−1)
is the atom obtained from body([ρωσ0+1]) by replacing every variable in it with c. Note that trivi-
ally, there exists an homomorphism from body([ρωσ0+1]) to can(σ0, . . . , σn−1). Furthermore, from
Lemma 22 and from the definition of resolvent, every sequence ρ0, . . . , ρm−1, where for k ∈ N0,
k · n ≤ i < (k + 1) · n implies ρi = σi−k·n is such that eqtype(body([ρ0, . . . , ρm−1])) ⊆
eqtype(body([ρωσ0+1])). Since there is also an homomorphism to can(σ0, . . . , σn−1) from every
atom α such that eqtype(α) ⊆ eqtype(body([ρωσ0+1])), there exists an homomorphism from
body([ρ0, . . . , ρm−1]) to can(σ0, . . . , σn−1) as well. We are now ready to show the following aux-
iliary lemma.

I Lemma 33. Let σ0, . . . , σn−1 be a critical sequence of (single-head linear) tgds and let
I0, I1, . . . , Im be the sequence of instances such that I0 = {can(σ0, . . . , σn−1)} and Ii〈ρi, hi〉Ii+1,
for 0 ≤ i < m, where for k ∈ N0, k · n ≤ i < (k + 1) · n implies ρi = σi−k·n. Moreover,
assume that, for every 1 6 i < m, hi(body(ρi)) ∈ (Ii \ Ii−1)2. Then, the atom obtained by
applying (ρm−1, hm−1) to Im−1 coincides (modulo null renaming) with the atom obtained by ap-
plying (ρ, µ) to I0, where ρ = [ρ0, . . . , ρm−1] and µ is the homomorphism mapping body(ρ) to
can(σ0, . . . , σn−1).

Proof. The proof is by induction on n > 0.

Base Step. The claim holds trivially, since σ0 = [σ0] = ρ.

Inductive Step. By induction hypothesis, the atom obtained by applying (ρm−2, hm−2) to
Im−2 coincides, modulo null renaming, with the atom obtained by applying (ρ̂, g) to I0, where
ρ̂ = [ρ0, . . . , ρm−2] and g is the homomorphism mapping body(ρ̂) to can(σ0, . . . , σn−1). There-
fore, hm−1(body(ρm−1)) = g′(head(ρ̂)), where g′ ⊇ g maps each existential variable x of ρ̂
to a “fresh” null. By construction, ρ is the tgd θ(body(ρ̂)) → θ(head(ρm−1)), where θ =
mgu(head(ρ̂), body(ρm−1)). Assuming that h′m−1(head(ρm−1)), where h′m−1 ⊇ hm−1, is the
atom obtained by applying (ρm−1, hm−1) to Im−1, it is clear that (g′ ∪ h′m−1) is a unifier for
head(ρ̂) and body(ρm−1). By definition of the most general unifier, there exists a substitution λ
such that (λ ◦ θ) = (g′ ∪ h′m−1). Observe that

λ(body(ρ)) = λ(θ(body(ρ̂))) = (g′∪h′m−1)(body(ρ̂)) = g(body(ρ̂)) = can(σ0, . . . , σn−1),

and

λ(head(ρ)) = λ(θ(head(ρm−1))) = (g′ ∪ h′m−1)(head(ρm−1)) = h′m−1(head(ρm−1)).

Since λ|fr(ρ) = µ, the claim follows.

We are now ready to prove that if Σ is not critically-richly-acyclic, than Σ 6∈ CTo
∀. By hypothesis,

there exists a critical cycle in edg(Σ) that contains a special edge; let v0, v1, . . . , vn be such a cycle
(v0 = vn) with λ(vi, vi+1) = (σi, ki), for each 0 6 i < n. Assuming that the above cycle
is one of the shortest cycles in edg(Σ) that contains a special edge, we can show that there exist
sequences I0 = {can((σ0, k0), . . . , (σn−1, kn−1))}, I1, . . . and (ρ0, h0), (ρ1, h1), . . ., where, for
k ∈ N0, k · n 6 i < (k + 1) · n implies ρi = σi−k·n, such that:

2 This additional assumption simply says that the tgd ρi is triggered by the atom obtained after applying ρi−1.
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1. for each i > 0, Ii〈ρi, hi〉Ii+1; and
2. for each i 6= j > 0, ρi = ρj implies hi 6= hj .

This immediately implies that Σ admits an infinite o-chase derivation, as needed. The proof for the
existence of the above sequences is by induction on i > 0.

Base Step. Let I0 = {can((σ0, k0), . . . , (σn−1, kn−1))}. Clearly, there is an homomorphism h0
such that h0(body(σ0)) ∈ I0, as discussed above. Since ρ0 = σ0, we conclude that (ρ0, h0) is a
trigger for Σ on I0, and claim (1) follows. Since I0〈ρ0, h0〉I1 involves only one trigger, claim (2)
holds trivially.

Inductive Step. By induction hypothesis, I0 = {can((σ0, k0), . . . , (σn−1, kn−1))}, . . . , Ii+1 is a
sequence such that for 0 ≤ j ≤ i, Ij〈ρj , hj〉Ij+1 and for each 0 ≤ j 6= k ≤ i, ρj = ρk implies hj 6=
hk. In order to show claim (1), by Lemma 33, it suffices to show that there exists a homomorphism
that maps body(ρi+1) to the atom obtained by applying (τ, g) to {can((σ0, k0), . . . , (σn−1, kn−1))},
where τ = [(ρ0, j0), (ρ1, j1), . . . , (ρi, ji)] whereas g is the homomorphism mapping body(τ) to
can((σ0, k0), . . . , (σn−1, kn−1)); the j′is refer to the head-atoms of ρ′is that appear on the critical
cycle. Let θ be the most general unifier of head(τ) and body(ρi+1) (it exists from Lemma 23). Fur-
thermore, let µ be the substitution that maps the variables of var(θ(body(ρi+1))) occurring at pos-
itions in Π to the constant c, where Π are the frontier positions of τ such that term(θ(head(τ)),Π)
are variables, and µ also maps all the other variables of var(θ(body(ρi+1))) to nulls, according to
the atom obtained after the application of (τ, g) to {can(σ0, . . . , σn−1)}. From the fact that τ is
compatible with ρi+1 and from the definition of can((σ0, k0), . . . , (σn−1, kn−1)), we obtain that µ
is well-defined and µ ◦ θ is a homomorphism from body(ρi+1) to the atom obtained by applying
(τ, g) to {can(σ0, . . . , σn−1)} and the claim follows.

We proceed to establish claim (2). By induction hypothesis, it suffices to show that, for each
0 6 j 6 i, ρj = ρi+1 implies hj 6= hi+1. Assuming that ρi+1 = σ(i+1)−k·n, for some k ∈ N0, we
consider the cases where 0 6 j 6 k · n and k · n < j 6 i.

Case 1. Assume first that 0 6 j 6 k · n. For each 0 6 j 6 k · n such that ρj 6= ρi+1, the claim
follows immediately. Consider now an arbitrary j ∈ {0, . . . , k · n} such that ρj = ρi+1. Observe
that in π there exists an edge (u,w) such that λ(u,w) = (ρi+1, k

′), for some k′ > 0. Thus, due
to the occurrence of a special edge in π — w.l.o.g., we assume that is the first edge of π — we can
conclude that hi+1 maps the variables in var(body(ρi+1)) occurring in u to a null ⊥∈ N that was
invented during or after the trigger application Ik·n〈ρk·n, hk·n〉Ik·n+1. Therefore, ⊥ does not occur
in Ij , which in turn implies that hj maps the variables in var(body(ρj)) occurring in u to a term
other than ⊥. Thus, hj 6= hi+1, and the claim follows.

Case 2. Towards a contradiction, assume that there exists j ∈ {k · n + 1, . . . , i} such that
ρj = ρi+1 and hj = hi+1, i.e., (ρj , hj) = (ρi+1, hi+1). Thus, the application of the trigger
(ρi+1, hi+1) can be avoided, and obtain a shorter chase sequence. This implies that in edg(Σ) there
exists a cycle that contains a special edge with length less that n. But this contradicts the fact that
v0, v1, . . . , vn is one of the shortest cycles that contains a special edge, and the claim follows.

E Proof of Lemma 22

In order to show the claim, we first need to show an auxiliary lemma. The lemma below essentially
states that the resolvent of σk, with k ≥ 2, can be computed as the resolvent of σ and [σk−1].

I Lemma 34. If σ is a single-head linear tgd, then for every k ≥ 2, [σk] = [σ, [σk−1]] (modulo
variable renaming).
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Proof. We will prove the statement by induction on k. The proof below relies on Lemma 35, which
we prove later on in this proof, stating that for every single-head linear tgd σ̄, [σ, σ̄, σ] = [σ, [σ̄, σ]],
up to variable renaming.

Base Step. If k = 2, then [σ, σ] = [σ, [σ]] holds trivially. If k = 3, then [σ, σ, σ] = [σ, [σ, σ]] holds
by Lemma 35.

Inductive Step. Assume that k ≥ 4. From the definition of resolvent of σk, [σk] = [[σk−1], σ].
By inductive hypothesis, [[σk−1], σ] = [[σ, [σk−2]], σ]. Furthermore, if we let σ̄ = [σk−2], from
the definition of resolvent, [[σ, σ̄], σ] = [σ, σ̄, σ]. Finally, by inductive hypothesis again, [σ, σ̄, σ] =
[σ, [σ̄, σ]]. Since [σ̄, σ] = [σk−1], by definition of resolvent, we conclude that [σk] = [σ, [σk−1]] and
the claim follows.

It now remains to show that the following lemma holds.

I Lemma 35. Given a single-head linear tgd σ̄, it holds that [σ, σ̄, σ] = [σ, [σ̄, σ]] (modulo vari-
able renaming).

Proof. Before proceeding with the proof, we establish some simple, yet useful properties of equal-
ity types and compatible tgds. First of all, note that by definition of equality type, for every two
atoms α and α′, it holds that eqtype(α) = eqtype(α′) iff α and α′ are the same, up to variable re-
naming. The above property allows us to establish the following. Let α, α′, β and β′ be atoms such
that eqtype(α) = eqtype(α′) and eqtype(β) = eqtype(β′). Then, α and β unify iff α′ and β′ unify.
Furthermore, θ = mgu(α, β) and θ′ = mgu(α′, β′) are the same, up to variable renaming. The
above property on equality types allows us to establish the following property on compatible tgds as
well. Let σ1, σ2 and σ′2 be single-head linear tgds, where eqtype(σ2) = eqtype(σ′2). Then, σ1 is
compatible with σ′2 iff σ1 is compatible with σ2, i.e., [σ1, σ

′
2] 6= ♦ iff [σ1, σ2] 6= ♦. By inspecting

the definition of compatibility, we can show that if we assume the weaker eqtype(σ2) ⊆ eqtype(σ′2),
then [σ1, σ

′
2] 6= ♦⇒ [σ1, σ2] 6= ♦. Finally, let σ1 and σ2 be two tgds such that σ1 is compatible with

σ2. From the definition of resolvent of σ1 and σ2, [σ1, σ2] = θ(body(σ1)) → θ(head(σ2)), where
θ = mgu(head(σ1), body(σ2)). Since θ is a function mapping variables to other variables/constants,
it follows that eqtype(body(σ1)) ⊆ eqtype(θ(body(σ1))) = eqtype(body([σ1, σ2])).

We now proceed with the proof. We first show that [σ, σ̄, σ] 6= ♦ iff [σ, [σ̄, σ]] 6= ♦.

(⇒) Assume that [σ, σ̄, σ] exists. We start by showing that [σ̄, σ] exists. By definition of resolvent,
[[σ, σ̄], σ] exists. This implies that [σ, σ̄] and σ are compatible. Furthermore, recall that [σ, σ̄] =
θ(body(σ))→ θ(head(σ̄)), where θ = mgu(head(σ), body(σ̄)). Since θ is a function mapping vari-
ables to either other variables or constants, we obtain that eqtype(head(σ̄)) ⊆ eqtype(θ(head(σ̄))).
Then, by definition of compatibility, the tgd σ̄ is compatible with σ as well, which in turn implies
that [σ̄, σ] exists.

We now show that [σ, [σ̄, σ]] exists. Note that the existence of [σ, σ̄, σ] implies that the body
and the head of both σ and σ̄ must have the same relation symbol R. Let [σ̄, σ] = θ(body(σ̄)) →
θ(head(σ)), where θ = mgu(head(σ̄), body(σ)). Towards a contradiction, assume that [σ, [σ̄, σ]]
does not exist, i.e. σ is not compatible with [σ̄, σ]. Thus, at least one of the three conditions of
Definition 16 is not satisfied.

(Unification) Assume first that head(σ) and body([σ̄, σ]) do not unify, i.e. head(σ) and
θ(body(σ̄)) do not unify. Recall that if two atoms α, β unify, then every atom γ such that
eqtype(γ) = eqtype(α) unifies with β as well. Recall also that head(σ) and body(σ̄) unify (indeed
σ is compatible with σ̄), so let λ = mgu(head(σ), body(σ̄)), and recall that eqtype(body(σ̄)) ⊆
eqtype(θ(body(σ̄))). Then, eqtype(body(σ̄)) ( eqtype(θ(body(σ̄))). This, roughly speaking,
means that one element in eqtype(θ(body(σ̄))) \ eqtype(body(σ̄)) is the “reason” why head(σ)
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and θ(body(σ̄)) do not unify. We now formalize the above statement, by considering the two only
possible reasons why such atoms do not unify.

The first reason of why head(σ) and θ(body(σ̄)) do not unify is the existence of an equality of
the form R[i] = c ∈ eqtype(θ(body(σ̄))) \ eqtype(body(σ̄)), where c is a constant, satisfying the
following: if x is the variable such that {R[i]} = pos(body(σ̄), x). i.e. the variable occuring in R[i]
in body(σ̄), then x 7→ d ∈ λ, where d is a constant different than c. That is, the variable x in R[i]
must unify with d, when head(σ) and body(σ̄) unify, but the application of θ to body(σ̄) replaces
x with the constant c. Recall however that θ = mgu(head(σ̄), body(σ)), thus x must also occur
in head(σ̄). But by hypothesis [σ, σ̄] and σ are compatible, implying that λ(head(σ̄)) and body(σ)
unify. But since x 7→ d ∈ λ, and x is forced to unify with c, we get a contradiction.

The second reason of why head(σ) and θ(body(σ̄)) do not unify is the existence of an equality
of the formR[i] = R[j] ∈ eqtype(θ(body(σ̄)))\eqtype(body(σ̄)) satisfying the following: if x and
y are the two variables such that {R[i]} = pos(body(σ̄), x) and {R[j]} = pos(body(σ̄), y), i.e. the
variables occurring inR[i] andR[j] in body(σ̄) respectively, then x 7→ c ∈ λ and y 7→ d ∈ λ, where
c 6= d are constants. In other words, the two variables x and y must unify with c and d respectively,
when head(σ) and body(σ̄) unify, but the application of θ to body(σ̄) replaces x and y with the same
variable, say z. Recall however that θ = mgu(head(σ̄), body(σ)), thus x and y must also occur in
head(σ̄). But by hypothesis [σ, σ̄] and σ are compatible, implying that λ(head(σ̄)) and body(σ)
unify. But since x 7→ c ∈ λ, y 7→ d ∈ λ and x, y are both mapped to z we get a contradiction.

(Variable compatibility) Assume that there exists a variable x ∈ var(θ(body(σ̄))) such that
there are at least two distinct terms t, u ∈ term(head(σ),Π[σ̄,σ]

x ), where either at least one of them
is an existential variable in σ or both t and u are constants. Since σ is compatible with σ̄ and
since body([σ̄, σ]) = θ(body(σ̄)), there must exist two positions R[i], R[j] ∈ Π[σ̄,σ]

x such that
R[i] = R[j] ∈ eqtype(θ(body(σ̄))) \ eqtype(body(σ̄)). That is, the variables occurring in R[i] and
R[j] in body(σ̄) are unified by θ. Let x and y be the two variables in R[i] and R[j] respectively, in
body(σ̄), that is x and y are such that {R[i]} = pos(body(σ̄), x) and {R[j]} = pos(body(σ̄), y).
Since λ = mgu(head(σ), body(σ̄)), x 7→ t ∈ λ and y 7→ u ∈ λ. That is, x and y are unified
with t and u respectively. However, recall that θ = mgu(head(σ̄), body(σ)), thus x and y must
also occur in head(σ̄). By hypothesis [σ, σ̄] and σ are compatible, implying that λ(head(σ̄)) and
body(σ) unify. But since x 7→ t ∈ λ, y 7→ u ∈ λ and x, y are both mapped to the same variable by
θ, [σ, σ̄] cannot be compatible with σ, and we obtain a contradiction.

(Constant compatibility) Assume there exists a constant c ∈ const(θ(body(σ̄))) such that it holds
that term(head(σ),Π[σ̄,σ]

c ) 6⊆ fr(σ) ∪ {c}. That is, there exists a term t ∈ term(head(σ),Π[σ̄,σ]
c )

which is either an existential variable of σ or a constant different than c. Since σ is compatible with
σ̄ and since body([σ̄, σ]) = θ(body(σ̄)), there must exist a position R[i] ∈ Π[σ̄,σ]

c such that R[i] =
c ∈ eqtype(θ(body(σ̄))) \ eqtype(body(σ̄)). That is, the variable occurring in R[i] in body(σ̄) is
unified with c by θ. Let x be such a variable, then x 7→ c ∈ θ. Since θ = mgu(head(σ̄), body(σ)),
the variable x must also occur in head(σ̄). Furthermore, since σ is compatible with σ̄, there is a
most general unifier λ = mgu(head(σ), body(σ̄)) which unifies the term t with x. This implies that
t will appear in head([σ, σ̄]) = λ(head(σ̄)) at the same position as x either as an existential variable
of [σ̄, σ] (if t is an existential variable of σ) or as a constant different than c (if t is a constant in
head(σ)). However, x is mapped to c by θ, hence [σ, σ̄] is not compatible with σ, and we obtain a
contradiction. This ends the proof of the existence of [σ, [σ̄, σ]].

(⇐) The other direction of the implication requires a proof which is analogous to the one given
above, and thus it is omitted.

It now remains to show that when [σ, σ̄, σ] 6= ♦ and [σ, [σ̄, σ]] 6= ♦, then [σ, σ̄, σ] and [σ, [σ̄, σ]]
are the same, up to variable renaming. We start by proving that the following equalities hold:
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1. eqtype(body([σ, σ̄, σ])) = eqtype(body([σ, [σ̄, σ]]));
2. eqtype(head([σ, σ̄, σ])) = eqtype(head([σ, [σ̄, σ]])).

In what follows, let

λ = mgu(head(σ), body(σ̄)),
λ′ = mgu(λ(head(σ̄)), body(σ)),
θ = mgu(head(σ̄), body(σ)),
θ′ = mgu(head(σ), θ(body(σ̄))).

Furthermore, recall that

eqtype(body([σ, σ̄, σ])) = eqtype(λ′(λ(body(σ)))),
eqtype(body([σ, [σ̄, σ]])) = eqtype(θ′(body(σ))),
eqtype(head([σ, σ̄, σ])) = eqtype(λ′(head(σ))),
eqtype(head([σ, [σ̄, σ]])) = eqtype(θ′(θ(head(σ)))).

(Item 1) We first show that eqtype(body([σ, σ̄, σ])) ⊇ eqtype(body([σ, [σ̄, σ]])), which is equi-
valent to show that eqtype(λ′(λ(body(σ)))) ⊇ eqtype(θ′(body(σ))). We show that for every
equality e, e ∈ eqtype(λ′(λ(body(σ)))) implies e ∈ eqtype(θ′(body(σ))). Note that the previ-
ous implication is equivalent to say that for every equality e, e ∈ eqtype(λ′(λ(body(σ)))) and e 6∈
eqtype(θ′(body(σ))) implies e ∈ eqtype(θ′(body(σ))). Assume then that there exists an element in
eqtype(θ′(body(σ))) which is not in eqtype(λ′(λ(body(σ)))). For the sake of presentation, assume
that such an element is of the form R[i] = R[j] and that R[i] = R[j] 6∈ eqtype(λ′(λ(body(σ))))
because two different variables appear in R[i] and R[j] in λ′(λ(body(σ))). We can provide a
similar argument to the one given below for the case where only the term occurring in R[i] is a
variable and the case where such an element is of the form R[i] = c, where c is a constant. If
R[i] = R[j] 6∈ eqtype(λ′(λ(body(σ)))), it means that also R[i] = R[j] 6∈ eqtype(body(σ)) (since
eqtype(body(σ)) ⊆ eqtype(λ′(λ(body(σ))))). Thus, let R[k] and R[l] be the positions in head(σ)
in which occur the variables also occurring in R[i] and R[j] in body(σ). In other words, {R[k]} =
pos(head(σ), x), where x is the variable such that {R[i]} = pos(body(σ), x), and {R[l]} =
pos(head(σ), y), where y is the variable such that {R[j]} = pos(body(σ), y). Note that by construc-
tion, R[k] = R[l] 6∈ eqtype(head(σ)). Also note that sinceR[i] = R[j] 6∈ eqtype(λ′(λ(body(σ)))),
it means that R[k] = R[l] 6∈ eqtype(λ(head(σ))). Thus, from the fact that λ is the most general
unifier of head(σ) and body(σ̄), the fact that R[k] = R[l] 6∈ eqtype(λ(head(σ))) and the fact that
R[k] = R[l] 6∈ eqtype(head(σ)), it must be the case thatR[k] = R[l] 6∈ eqtype(body(σ̄)). Note that
R[k] = R[l] 6∈ eqtype(body(σ̄)) implies that R[m] = R[n] 6∈ eqtype(head(σ̄)), where R[m] is the
position in head(σ̄) containing the variable occurring in R[k] in body(σ̄) and R[n] is the position in
head(σ̄) containing the variable occurring in R[l] in body(σ̄). This and the fact that by assumption,
R[i] = R[j] ∈ eqtype(θ′(body(σ))), the fact that R[k] = R[l] 6∈ eqtype(head(σ)), and the fact
that R[k] = R[l] 6∈ body(σ̄) allow us to conclude that R[m] = R[n] ∈ eqtype(θ(head(σ̄))). Fur-
thermore, since R[m] = R[n] ∈ eqtype(θ(head(σ̄))), where θ = mgu(head(σ̄), body(σ)), since λ′

is the most general unifier of λ(head(σ̄)) and body(σ), and from the fact that eqtype(head(σ̄)) ⊆
eqtype(λ(head(σ̄))), we obtain that R[m] = R[n] ∈ eqtype(λ′(λ(head(σ̄)))). This, by definition
of R[n] and R[m], finally implies that R[i] = R[j] ∈ eqtype(λ′(λ(body(σ)))).

The proof for showing that eqtype(body([σ, σ̄, σ])) ⊆ eqtype(body([σ, [σ̄, σ]])) proceeds in
exactly the same way as the one given above, and for this reason it is omitted.

(Item 2) This item can be proved with a discussion which is symmetric to the one proposed for
Item 1, where the equality types of the head atoms of [σ, σ̄, σ] and [σ, [σ̄, σ]] are considered instead.
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We now show that indeed [σ, σ̄, σ] = [σ, [σ̄, σ]], up to variable renaming. To this end, given
a tgd σ′, we define the following binary relation among positions of body(σ′) and positions of
head(σ′). In particular, if σ′ = P (t1, . . . , tn) → ∃z̄S(u1, . . . , um), for every 1 ≤ i ≤ n and
1 ≤ j ≤ m, we say that P [i] →σ′ S[j] holds, if there is a variable x such that {P [i]} =
pos(body(σ′), x) and {S[j]} = pos(head(σ′), x). In other words, x occurs in both P [i] and S[j], in
body(σ′) and head(σ′), respectively. Since we have already shown that eqtype(body([σ, σ̄, σ])) =
eqtype(body([σ, [σ̄, σ]])) and eqtype(head([σ, σ̄, σ])) = eqtype(head([σ, [σ̄, σ]])), if we are able
to show also that for every two positions R[i] and R[j] in body(σ) and head(σ) respectively,
R[i]→[σ,σ̄,σ] R[j] iff R[i]→[σ,[σ̄,σ]] R[j], the claim will immediately follow.

From the definition of resolvent of two tgds, it is not difficult to see that for every two linear,
single-head tgds σ1, σ2, such that the resolvent [σ1, σ2] exists, for every position P [i] of body(σ1),
and position T [k] of head(σ2), P [i] →[σ1,σ2] T [k] iff there exists a position S[j] of head(σ1) and
body(σ2) such that P [i] →σ1 S[j] and S[j] →σ2 T [k]. In other words, the variable occurring in
P [i] in body(σ1) is propagated to T [k] during the resolving process. Now, we start by showing that
R[i] →[σ,σ̄,σ] R[j] implies R[i] →[σ,[σ̄,σ]] R[j]. Assume R[i] →[σ,σ̄,σ] R[j]. From the definition
of resolvent, [σ, σ̄, σ] = [[σ, σ̄], σ]. Furthermore, since R[i] →[σ,σ̄,σ] R[j], then there must exist a
position R[k] in head([σ, σ̄]) and body(σ) such that R[i]→[σ,σ̄] R[k] and R[k]→σ R[j]. Similarly,
there must be a position R[l] in head(σ) and body(σ̄) such that R[i] →σ R[l] and R[l] →σ̄ R[k].
So, we have obtained that R[i]→σ R[l], R[l]→σ̄ R[k], R[k]→σ R[j]. But then, from the last two
expressions, we conclude that R[l]→[σ̄,σ] R[j]. Then, from R[i]→σ R[l] and R[l]→[σ̄,σ] R[j], we
finally conclude thatR[i]→[σ,[σ̄,σ]] R[j]. With a similar reasoning, we can prove thatR[i]→[σ,[σ̄,σ]]
R[j] implies R[i]→[σ,σ̄,σ] R[j], and the claim follows.

This ends the proof of Lemma 34.

We now proceed with the proof of Lemma 22. Recall that for every two atoms α and β,
eqtype(α) = eqtype(β) iff α and β are the same, modulo variable renaming. Thus, for every
two tgds σ1 and σ2, [σ1, σ2] 6= ♦ implies [σ1, σ

′
2] 6= ♦, for every tgd σ′2 with eqtype(body(σ′2)) =

eqtype(body(σ2)). Let σ be a single-head linear tgd such that σi is active, for some i > 1, and
eqtype([σi−1]) = eqtype([σi]). Note that [σi] = [σ, [σi−1]], from Lemma 34, which means that σ
is compatible with [σi−1]. Furthermore, eqtype([σi−1]) = eqtype([σi]). Thus, σ is compatible with
[σi], i.e. [σ, [σi]] exists. From Lemma 34, [σ, [σi]] = [σi+1] and the claim follows. What is remain-
ing to show is that indeed eqtype([σi+1]) = eqtype([σi]). Since eqtype([σi−1]) = eqtype([σi]), the
two most general unifiers θ = mgu(head(σ), body([σi−1])) and γ = mgu(head(σ), body([σi])) are
the same, up to variable renaming. In particular, their restriction to the variables X = var(head(σ)),
i.e., θ|X and γ|X are the same, up to variable renaming. From the definition of resolvent and from
Lemma 34, we know that body([σi+1]) = γ(body(σ)) and body([σi]) = θ(body(σ)). Since
θ|X and γ|X are the same, up to variable renaming, we conclude that eqtype(body([σi+1])) =
eqtype(body([σi])). This ends our proof.

F Proof of Lemma 23

Let σ1, . . . , σn be a critical sequence of linear, single-head tgds. That is, the resolvent ρ =
[σ1, . . . , σn] exists and the sequence ρω+1 is active, where ω is the arity of the predicate of body(σ1).
Note that since ρω+1 is active, for each 1 ≤ i ≤ ω + 1, ρi is active, i.e. the resolvent [ρi] exists.
We start by showing that for every 1 < i ≤ ω + 1, eqtype(body([ρi−1])) ⊆ eqtype(body([ρi])).
By definition of resolvent, [ρi] = [[ρi−1], ρ] = γ(body([ρi−1])) → γ(head(ρ)), where γ is the
most general unifier γ = mgu(head([ρi−1]), body(ρ)). Since γ is a function, mapping variables
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to either other variables or constants, two occurrences of the same variable in body([ρi−1]) can-
not be mapped to distinct terms, by γ. Thus, eqtype(body([ρi−1])) ⊆ eqtype(γ(body([ρi−1]))) =
eqtype(body([ρi])). We now show that there exists 1 < i ≤ ω+1 such that eqtype(body([ρi−1])) =
eqtype(body([ρi])). We distinguish two cases: either exactly ω distinct variables occur in body(ρ),
which also means that no constants appear in body(ρ), or the number of distinct variables occurring
in body(ρ) is strictly less than ω. In the latter case, constants may or may not appear in body(ρ).
Assume first that |var(body(ρ))| = ω. Trivially, eqtype(body([ρi−1])) = eqtype(body([ρi])), for
1 < i ≤ ω + 1, as no constants appear in body(ρ). Assume instead that |var(body(ρ))| < ω. Then,
let us consider all the indices 1 < j ≤ ω+1 such that eqtype(body([ρj−1])) 6= eqtype(body([ρj ])).
As discussed before, eqtype(body([ρj−1])) ⊆ eqtype(body([ρj ])), thus eqtype(body([ρj−1])) (
eqtype(body([ρj ])). This means that at least one variable x, occurring in some position of
body([ρj−1]) changed. Furthermore, since the equality type changed, only one of following
two cases must hold: either x becomes equal to some other variable in body([ρi−1]), or x be-
comes a constant. Each variable can change in only one of the aforementioned ways. Further-
more, there are at most ω − 1 distinct variables in body(ρ) thus the equality type can change
at most ω − 1 times. Thus, it holds that eqtype(body([ρi−1])) ( eqtype(body([ρi])) only if
1 < i ≤ ω. Since ρω+1 is active, we obtain that eqtype(body([ρω])) = eqtype(body([ρω+1])).
From Lemma 22, eqtype(body([ρω])) = eqtype(body([ρω+1])) implies that ρω+2 is active and
eqtype(body([ρω+1])) = eqtype(body([ρω+2])). By recursively applying Lemma 22, we conclude
that for every k > 0, [ρk] exists, i.e. ρk is active, ending our proof.

G Proof of Theorem 25

We prove the upper-bounds first. In particular, we focus on the complement of our problem. That is,
given a set of sticky tgds Σ, check whether Σ 6∈ CT?∀, for ? ∈ {o, so}.

G.1 CT?
∀(S) is in PSPACE and in NLOGSPACE for predicates of

bounded arity

Consider a set of tgds Σ ∈ S. We show that checking whether Σ 6∈ CT?∀ is in NSPACE(ω log(ω ·
|sch(Σ)|) + ω log(ω · m · |Σ|)), where ω is the maximum arity of predicates in Σ and m is the
maximum number of atoms occuring in a tgd in Σ. This allows us to uniformly prove the claim for
both the general case and the bounded arity case. To this end, by Theorem 13 and by definition of
critical-rich-acyclicity (resp., critical-weak-acyclicity), we need to show that the problem of deciding
whether a critical cycle in edg(Lin(Σ)) (resp., dg(Lin(Σ))) that contains a special edge exists is in
NSPACE(ω log(ω · |sch(Σ)|) + ω log(ω ·m · |Σ|)). In what follows, let G = (N,E, λ) be either
edg(Lin(Σ)) or dg(Lin(Σ)).

The problem under consideration can be conceived as an extended version of graph reachability.
More precisely, we need to decide whether there exists a node v ∈ N that is reachable from itself
via a cycle π = v, v1, v2, . . . , vn−1, v, and the following hold: (i) π is critical, or, equivalently,
λ(v, v1), λ(v1, v2), . . . , λ(vn−1, v) is critical; and (ii) (v, v1) is special, or (vn−1, v) is special, or
(vi, vi+1) is special, for some i ∈ [n − 2]. This can be achieved by applying the following non-
deterministic procedure:

1. Guess an edge e1 = (v1, v2) ∈ E.
2. If e1 is special, then flag := 1; otherwise, flag := 0.
3. σ1 := λ(e1) and origin := v1.
4. Repeat
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a. If there is no edge (u,w) ∈ E such that u = v2, then reject; otherwise, guess an edge
e2 = (v2, v3) ∈ E.

b. If e2 is special, then flag := 1.
c. σ2 := λ(e2).
d. If σ1 is not compatible with σ2, then reject; otherwise, e1 = (v1, v2) := e2 = (v2, v3) and

σ1 := [σ1, σ2].

Until (v3 = origin).
5. If flag = 0, then reject.
6. If [σ1, . . . , σ1︸ ︷︷ ︸

k

] 6= ⊥, for each k ∈ [ω + 1], then accept; otherwise, reject.

It is not difficult to verify that the above procedure is correct. In fact, the repeat-until statement
seeks for an active cycle π in G, and if it exists, the resolvent of the tgds that label the edges of π is
stored in σ1. If such an active cycle does not exist, then the algorithm rejects. Finally, the algorithm
returns accept iff π contains a special edge (i.e., if flag = 1), and π is critical (i.e., the resolvent of
the sequence σ1, . . . , σ1 of length k, for each k ∈ [ω+ 1], exists). The rest of the proof is devoted to
show that the above nondeterministic procedure runs in spaceO(ω log(ω ·|sch(Σ)|)+ω log(ω ·|Σ|)).

First, observe that encoding a position of sch(Σ) requires log (ω · |sch(Σ)|) space, encoding a
predicate of sch(Σ) requires log (|sch(Σ)|) space, and encoding a variable/constant occurring in Σ
requires O(log(ω ·m · |Σ|)) space – we assume that the tgds of Σ do not share variables, and thus
O(ω · m · |Σ|) variables may occur in Σ. Finally, encoding an atom, requires O(log(|sch(Σ)|) +
ω log(ω · m · |Σ|)) space. We now proceed by discussing the space needed by each step of the
procedure above. In particular, we provide the space needed by the initialization steps 1,2 and 3, and
the space needed by a single iteration of the Repeat-Until loop, as the space used at one iteration can
be reused for the next one.

Step 1.. We now show what is the space required to guess the edge e1 = (v1, v2) ∈ E (actually, any
edge in E). In particular, we point out that constructing the set Lin(Σ) explicitly, in order to later
construct G, might require exponential space. We then show how to guess an edge of E without
explicitly constructing Lin(Σ) and G. First guess a tgd σ ∈ Σ, which means storing a pointer to σ in
O(log(|Σ|)) space. Then, guess an atom α and an atom β, from the body and head of σ, respectively.
The latter requires to store two atoms in O(log(|sch(Σ)|) + ω log(ω ·m · |Σ|)) space. We now need
to guess an homomorphism h ∈ MΣ

α,σ . In general, each homomorphism in MΣ
α,σ contains at most

ω ·m pairs of the form x 7→ t, where x is a variable in σ and t is a constant in dom(cr(Σ)). However,
for the purpose of the algorithm, we need to focus only on the restriction of such h’s to the variables
in Xα,β = var(α) ∪ var(β), which are at most 2ω. Thus, we guess an homomorphism h′ such that
∃h ∈ MΣ

α,σ , where h′ = h|Xα,β . As discussed, there are at most 2ω pairs of the form x 7→ t in h′.
Furthermore, each variable x and constant t can be stored inO(log(ω·m·|Σ|)) space. Thus, guessing
h′ requires O(ω log(ω ·m · |Σ|)) space. Then, we apply h′ on α and β in place, without using any
additional space. The above procedure implies that h′(α) → h′(β) is the label of some edge in E
and that if there exists an edge in E labeled with a single-head linear tgd, the above procedure is
able to guess such a tgd, if needed. Now, the procedure is ready to guess one of the edges labeled by
h′(α) → h′(β), by guessing one position v1 in h′(α) and one position v2 in h′(β). Both positions
can be stored in O(log(ω · |sch(Σ)|)) space. Then, we need to check whether (v1, v2) ∈ E, which
means checking whether v1 contains a variable x in h′(α) and v2 contains a variable y in h′(β).
In case x 6= y, check whether y is existential (if G = dg(Lin(Σ)), we also need to check that x
occurs in h′(β)). Clearly, the above check is feasible in constant space. Therefore, we can guess and
maintain an edge of G in O(log(ω · |sch(Σ)|) + ω log(ω ·m · |Σ|)) space.
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Step 2. Given an edge (v1, v2) ∈ E, from the construction above, checking whether an edge is
special, requires checking whether the variable occurring in v2 is existential, which is feasible in
constant space.

Step 3. Constructing σ1 = λ(e1) does not require any space, as the tgd h′(α)→ h′(β) constructed
at step 1 is indeed λ(e1). Storing origin := v1 just requires copying v1, which requires O(log(ω ·
|sch(Σ)|)) space.

Steps 4.a, 4.b, 4.c. Checking whether there is no edge (u, v) ∈ E such that u = v2 requires the
guessing of (u, v) which, as already discussed, is feasible inO(log(ω · |sch(Σ)|)+ω log(ω ·m · |Σ|))
space. The same applies for e2 = (v2, v3) ∈ E, which will ovewrite (u, v). As discussed above,
checking whether e2 is special is feasible in constant space and constructing σ2 is also constant
space, as it’s been already constructed at step 4.a.

Step 4.d. To check whether σ1 is compatible with σ2, we need to check first that
head(σ1) and body(σ2) unify, and if this is the case, compute the most general unifier θ =
mgu(head(σ1), body(σ2)). To this end, we provide a simplified version of Robinson’s unification
algorithm. The main difference with the original algorithm is in the fact that the algorithm below
does not consider function symbols and nested terms. Assuming that head(σ1) = R(t1, . . . , tn)
and body(σ2) = R(u1, . . . , un), the unification algorithm constructs the most general unifier θ as
follows:

1. θ :=
(
{ti → ti}i∈[n] ∪ {ui → ui}i∈[n]

)
.

2. ctr := 1.
3. Repeat

a. t := θ(tctr) and u := θ(uctr).
b. If t is a variable, then θ := {t 7→ u} ◦ θ.
c. Else if u is a variable, then θ := {u 7→ t} ◦ θ.
d. Else If t 6= u, then fail.
e. ctr := ctr + 1.

Until (ctr = n+ 1).
4. Return θ.

The above algorithm runs in O(ω log(ω ·m · |Σ|)) space, i.e., the space needed to maintain θ, t
and u. Consequently, we can check whether head(σ1) and body(σ2) unify in O(ω log(ω ·m · |Σ|))
space, in which case the unifier is constructed, needing O(ω log(ω · m · |Σ|)) space. Check-
ing whether condition 2 of Definition 16 of compatibility holds, requires iterating over each vari-
able x ∈ var(body(σ2)), store Πσ2

x in O(ω log(ω · |sch(Σ)|)) space and check whether either
term(head(σ1),Πσ2

x ) = {z}, for some existential variable z of σ1, or term(head(σ1),Πσ2
x ) ⊆

fr(σ1) ∪ {c}, for some constant c. The aforementoned two checks do not require any additional
space. Similarly, we can check condition 3 of Definition 16 in space O(ω log(ω · sch(|Σ|))). Stor-
ing the edges e1 and e2 does not require any additional space, as the space for e1 and e2 has been
already allocated. Constructing [σ1, σ2] simply requires the application of the most general unifier θ
to body(σ1) and head(σ2). Overall, this step requires O(ω log(ω · |sch(Σ)|) + ω log(ω ·m · |Σ|))
space.

Steps 5 and 6. Step 5 requires constant space. By providing a similar analysis to the one given
for step 4.d, we can show that the criticality check can be done using O(ω log(ω · |sch(Σ)|) +
ω log(ω ·m · |Σ|)) space. Summing up, we get that the above nondeterministic procedure runs in
O(ω log(ω · |sch(Σ)|) + ω log(ω ·m · |Σ|)) space, as needed. This completes our proof.
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G.2 CT?
∀(S) is PSPACE-hard

To show that CT?∀(S) is PSPACE-hard, it suffices to show that the complement of our problem is
PSPACE-hard. The proof is by reduction from the acceptance problem of a deterministic polynomial
space Turing machine M on an input I = a1 . . . am. Let M = (S,Λ, δ, s1), where S is a finite set
of states, Λ = {0, 1,t} is the tape alphabet with t be the blank symbol, δ : S ×Λ→ (S ×Λ×{←
,−,→}) is the transition function, and s1 ∈ S is the initial state. We assume thatM is well-behaved
and never tries to read beyond its tape boundaries, always halts, and uses exactly n = mk tape
cells, where k > 0. We represent configurations using a subset of the strings in S (Λ {↑, \})+, i.e.,
the state of the configuration is placed at the beginning of the string and the tape of the machine is
encoded by a sequence of the form b1, cur1, b2, cur2, . . . , bn, curn, where each bi is the value at the
i-th cell and curi ∈ {↑, \} denotes whether the cursor is on the i-th cell (↑) or not (\). In this notation,
the initial configuration is s1, a1, ↑, a2, \, . . . am, \, (t, \)n−m. We assume that S = {s1, . . . , s|S|}
and that the machine accepts its input if it reaches a configuration with state s2.

Our goal is to construct a set of constant-free sticky tgds Σ such that the machine M accepts on
input I iff Σ 6∈ CT?∀, with ? ∈ {o, so}. We first show how we encode each state and tape symbol
together with the cursor state in our set of tgds. In what follows, let y and z be two variables which
intuitively represent a null and a constant respectively. The encoding of each symbol 0, 1,t in Λ is
a tuple of 3 variables defined as follows: 000 = z, y, y; 111 = y, z, y and ttt = y, y, z. The encoding
of a state si ∈ S is defined as the tuple of |S| variables sisisi = yi−1, z, y|S|−i. Finally, we define the
encoding of the symbol ↑ as ↑↑↑= z, y and the encoding of the symbol \ as \\\ = y, z. Intuitively, each
symbol will be encoded inside the chase as a tuple of terms, where all terms are nulls, except for
the one in the position identifying the encoded symbol. During the construction of our set of sticky
tgds, we will need to consider a variation of the encodings defined above, where for every symbol
a ∈ Λ∪S ∪ {↑, \}, each occurrence of the variable y in aaa in some position i is replaced with a fresh
new variable yia, We denote such an encoding with âaa.

In our construction we use the (|S|+5·n+2)-ary predicate Config to represent the configurations
of M . The first |S| positions will contain the encoding of the state of the configuration. The next
5 · n positions will contain the encoding of the tape where each cell is encoded with 5 positions: 3
positions for the cell value and 2 positions for the cursor state. The last two positions will carry our
two variables y and z, respectively. We are now ready to present the set Σ of sticky tgds. We will
use a ternary predicate R to generate our initial configuration as follows:

R(x, y, z)→ Config(s1s1s1, a1a1a1,↑↑↑, a2a2a2, \\\, . . . , amamam, \\\,ttt, \\\, . . . ,ttt, \\\︸ ︷︷ ︸
2·(n−m)

, y, z)

We now simulate the transition function of M . We consider the three different cases where the
cursor moves left, right, or stays at the same position. In what follows, we use x̄i to denote the tuple
of 3 variables x0

i , x
1
i , x
t
i , denoting the i-th cell in the tape. We also use x̄ci to denote the tuple of 2

variables x↑i , x
\
i to denote the cursor state of the i-th cell.

Left: For each transition rule δ(si, a) = (sj , b,←), we introduce, for each 1 ≤ ` ≤ n, the tgd:

Conf (ŝisisi, x̄1, x̄
c
1, . . . , x̄`−1, x̄

c
`−1, âaa, ↑̂↑↑, x̄`+1, x̄

c
`+1, . . . , x̄n, x̄

c
n, y, z) →

Conf (sjsjsj , x̄1, x̄
c
1, . . . , x̄`−1,↑↑↑, bbb, \\\, x̄`+1, x̄

c
`+1, . . . , x̄n, x̄

c
n, y, z).

Right: For each transition rule δ(si, a) = (sj , b,→), we introduce, for each 1 ≤ ` ≤ n, the tgd:

Conf (ŝisisi, x̄1, x̄
c
1, . . . , x̄`−1, x̄

c
`−1, âaa, ↑̂↑↑, x̄`+1, x̄

c
`+1, . . . , x̄n, x̄

c
n, y, z) →

Conf (sjsjsj , x̄1, x̄
c
1, . . . , x̄`−1, x̄

c
`−1, bbb, \\\, x̄`+1,↑↑↑, x̄`+2, x̄

c
`+2, . . . , x̄n, x̄

c
n, y, z).
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Stay: For each transition rule δ(si, a) = (sj , b,−), we introduce, for each 1 ≤ ` ≤ n, the tgd:

Conf (ŝisisi, x̄1, x̄
c
1, . . . , x̄`−1, x̄

c
`−1, âaa, ↑̂↑↑, x̄`+1, x̄

c
`+1, . . . , x̄n, x̄

c
n, y, z) →

Conf (sjsjsj , x̄1, x̄
c
1, . . . , x̄`−1, x̄

c
`−1, bbb,↑↑↑, x̄`+1, x̄

c
`+1, . . . , x̄n, x̄

c
n, y, z).

Finally, once the accepting configuration is reached, an atom of relation symbol R is generated,
and a fresh new null is generated in position R[2].

Conf (ŝ2s2s2, x̄1, x̄
c
1, . . . , x̄n, x̄

c
n, y, z)→ ∃wR(y, w, z).

Our construction is now complete. It is not difficult to show that M accepts on input I iff
Σ 6∈ CT?∀, with ? ∈ {o, so}. What is critical to show is that Σ is indeed a set of sticky tgds.

By definition of stickiness, Σ is sticky if after the marking process, there is no tgd that contains
two occurrences of a variable which is marked in Σ. Note that the only variable occurring more
than once in the body of each tgd of Σ is z. Thus, we need to show that z is not marked in each tgd.
We show the claim by induction on the number of applications of the marking procedure. To this
end, we say that a variable x is marked at step 0, if there is a tgd σ ∈ Σ such that x ∈ var(body(σ))
but x 6∈ var(head(σ)). We also say that x is marked at step i > 0, if there is a tgd σ ∈ Σ such that
x ∈ var(body(σ))∩var(head(σ)), and there is a tgd σ′ ∈ Σ where body(σ′) and head(σ) are atoms
of the same relation symbol and all variables in var(body(σ′)) at a position of pos(head(σ), x) are
marked at step i − 1. Clearly, if one is able to show that for every i ≥ 0, z is not marked at step i,
the claim will follow immediately. We prove such a claim by induction on i ≥ 0.

Base Step. Since z occurs in both the body and the head of every tgd of Σ, z is not marked at step 0.

Inductive Step. Assume i > 0. The variable z is marked at the current step i if there exists a
tgd σ ∈ Σ with z ∈ var(body(σ)) ∩ var(head(σ)) and there is another tgd σ′ ∈ Σ such that
each variable in var(body(σ′)) at a position pos(head(σ), z) is marked at step i − 1. Note that for
every tgd σ ∈ Σ, z occurs in the last position of both body(σ) and head(σ). Consider now a tgd
σ ∈ Σ, where z ∈ var(head(σ)). By inductive hypothesis, z is not marked at any step j < i, which
means that for every tgd σ′ ∈ Σ, where body(σ′) and head(σ) have the same relation symbol, the
occurrence of z in the last position of body(σ′) is not marked at step i− 1. Thus, since z also occurs
in head(σ) in the last position, z is not marked at step i. This ends our proof.

G.3 CT?
∀(S) is NLOGSPACE-hard for predicates of bounded arity

Let SL be the class of all sets of simple linear tgds. A tgd σ is simple linear if it is linear and no
variable in body(σ) occurs more than once in body(σ). It has been shown in [4] that CT?∀(SL) is
NLOGSPACE-hard even for constant-free tgds with unary and binary predicates. This and the fact
that SL ⊂ S imply that CT?∀(S) is NLOGSPACE-hard for predicates of bounded arity.
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