

Edinburgh Research Explorer

Reinforcement Learning Based Maximum Power Point Tracking
Control of Tidal Turbines

Citation for published version:
Nambiar, A, Anderlini, E, Payne, G, Forehand, D, Kiprakis, A & Wallace, A 2017, Reinforcement Learning
Based Maximum Power Point Tracking Control of Tidal Turbines. in Proceedings of the European Wave and
Tidal Energy Conference 2017.

Link:
Link to publication record in Edinburgh Research Explorer

Published In:
Proceedings of the European Wave and Tidal Energy Conference 2017

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 23. Oct. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/196140615?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.research.ed.ac.uk/portal/en/publications/reinforcement-learning-based-maximum-power-point-tracking-control-of-tidal-turbines(f07c3971-ded2-4b49-b977-b01705b83e03).html

1

Reinforcement Learning Based Maximum Power

Point Tracking Control of Tidal Turbines
Anup Nambiar#1, Enrico Anderlini#2, Grégory S. Payne#3, David Forehand#4, Aristides Kiprakis#5, Robin Wallace#6

#Institute for Energy Systems, School of Engineering

The University of Edinburgh, Edinburgh, UK
1A.Nambiar@ed.ac.uk
2E.Anderlini@ed.ac.uk

3Gregory.Payne@ed.ac.uk

4D.Forehand@ed.ac.uk
5Aristides.Kiprakis@ed.ac.uk

6Robin.Wallace@ed.ac.uk

Abstract— This paper explores the use of model free reinforcement
learning (RL) in the maximum power point tracking (MPPT)

control of a tidal turbine. Two RL algorithms – Q-learning and

Neural Fitted Q-iteration – are used in this work to identify the

optimal power curve of the turbine, which is then used to control

the turbine in real time. The RL algorithms are setup to maximise
the energy yield of the turbine and are tested in different tidal flow

conditions. These algorithms are tested through numerical

simulations of a tide-to-wire model of a direct drive Permanent

Magnet Synchronous Generator based tidal turbine. The

algorithms are found to converge to the optimal power curve
coefficient for the different tidal current flows tested. Using RL

allows the turbine control system to adapt to changes in the

turbine characteristics brought about by causes like biofouling

and long-term changes to the tidal flow patterns at a deployment
site. RL requires no prior knowledge of the tidal turbine system,

which is an advantage of the described approach.

Keywords— Tidal turbine, control, maximum power point

tracking, reinforcement learning.

I. INTRODUCTION

The last few years have seen a significant growth in the tidal

power industry with arrays of tidal devices being installed and

planned. Generating tidal power using variable speed

generators, like in the majority of wind turbines, allows for

more efficient power extraction. This is because the turbine can

operate at its maximum power points, on the power-speed curve,

over all current conditions.

Different maximum power point tracking (MPPT)

algorithms have been developed for wind turbines [1]. Since

tidal turbines, structurally, are similar to wind turbines some of

these control algorithms have been extended to tidal devices too

[2],[3]. This paper explores the use of reinforcement learning

(RL) based maximum power point tracking (MPPT) algorithms

for tidal turbines using numerical simulations. RL is an on-line

learning algorithm in which an agent learns from its own

experience of interacting with its environment.

A similar RL based MPPT approach has been developed and

tested for wind turbines in [4]. Turbulence, wakes in arrays,

possible wave action and biofouling make the extension of the

algorithm to tidal devices more challenging. This paper

proposes an approach by which the optimal power curve of a

tidal turbine is learnt through RL. The main advantages of this

approach are that there is no need for prior knowledge of the

system and that the control system can adapt to changes in the

turbine characteristics.

Section II in the paper describes the tide-to-wire model of

the permanent magnetic synchronous generator (PMSG) based

turbine and the high level MPPT controller used in this work.

A general background to reinforcement learning and to the two

RL algorithms used here are presented in Section III. The

application of the two RL algorithms in MPPT control of a

single tidal turbine is reported in Section IV. Results from the

simulation runs using the two RL variants and for the different

tidal current flow cases considered are reported in Section V

and are further discussed in Section VI. Section VII summarises

the main contributions of this paper in tidal turbine control.

II. TIDAL TURBINE MODEL AND CONTROL

A. Physical model of the turbine

The turbine model used for this project is a three bladed

horizontal axis machine. The rotor is 1.2 m in diameter and the

blade profile was designed so that it produces a radial variation

of thrust similar to that of a full scale generic design described

in [5]. The model is highly instrumented with sensors

measuring the streamwise bending moment at the root of each

blade, the thrust and torque over the whole rotor and the

absolute angular position of the rotor. Fig. 1 shows the turbine

model being tested at the FloWave basin of the University of

Edinburgh. More details on the turbine model and on its design

and manufacturing can be found in [6].

B. BEMT based numerical model of the turbine

To simulate the turbine model performance, a standard blade

element momentum theory (BEMT) code was developed. This

approach relies on estimating flow momentum extraction by the

rotor. The method used here is one dimensional (in polar

coordinates) in that the flow energy extraction is considered

uniform over the annulus elements of the rotor disk. In other

words, energy extraction is considered to be affected spatially

only by the radius from the rotor axis and not by azimuthal

mailto:1A.Nambiar@ed.ac.uk
mailto:2E.Anderlini@ed.ac.uk
mailto:3Gregory.Payne@ed.ac.uk
mailto:D.Forehand@ed.ac.u
mailto:5Aristides.Kiprakis@ed.ac.uk

2

position over the rotor disk. This method yields estimates of the

torque and thrust applied to the rotor and of their radial

variations. The main inputs to the model are the onset flow

velocity, the rotor rotational velocity and the lift and drag

coefficients of the different blade elements. The foil sections

used for the turbine blades are NACA 63-8XX and the lift and

drag coefficients values used for the model were taken from [7].

The BEMT method used here includes Spera high axial

induction factor correction and is described in detail in chapter

4 of [8].

Fig. 1 Turbine model mounted on the floor of the FloWave tank

Fig. 2 Numerical and experimental power coefficients plotted against t ip

speed ratio. The error bars correspond to the standard deviation of the
measurements

The total mechanical power extracted by a tidal turbine can

be represented by:

),(
2

1 3 pm CuAP , (1)

where is the sea water density, A is the rotor swept area, u is

the onset tidal current velocity and Cp is the power coefficient,

which is a function of the tip speed ratio and the blade pitch

angle . Fig. 2 shows the power coefficients Cp plotted against

tip speed ratio for pitch angle = 0°. The graph includes

coefficients measured experimentally at the IFREMER flow

recirculating flume of Boulogne-sur-Mer (France) [9] with an

onset flow of 0.815 m/s and turbulence intensity levels of 3 and

12%. It also includes Cp values predicted by the BEMT model.

It can be seen that the numerical model underestimates slightly

the experimental measurements. This is believed to be due to

the fact that the standard BEMT approach implemented here

does not account for the relatively high blockage factor (14%)

of the experiment.

As in wind energy systems, operating the tidal turbine at the

optimal tip speed ratio opt maximises the power extraction

from the tidal current flow. At opt the power extracted by the

turbine is maximum and can be shown to be:

3
3

max
3

max
2

1
m

opt

pCR
AP

 , (2)

where R is the radius of the turbine and m its rotational speed.

Equation (2) can be re-written as ,3
maxPKoptm where Kopt is

an optimal parameter that defines the optimal power curve of

the turbine. Fig. 3 shows the turbine power as a function of the

turbine speed over a range of tidal current velocities and also

the optimal power curve of the turbine. Note that Pmax is not the

maximum power the turbine can generate but is the maximu m

power it can generate at a particular tidal current velocity.

Fig. 3 Turbine power as a function of the turbine speed for a range of tidal
current velocities

A simplified numerical model of the tidal turbine was

developed based on the Cp- curve, shown in Fig. 2, and was

used in this work. Fig. 4 shows the schematic of the tidal turbine

model used in this work.

Fig. 4 Schematic of the tidal turbine model

C. Numerical model and control of a Permanent Magnet

Synchronous Generator (PMSG)

In this work, a dynamic model of a direct-drive, non-salient

permanent magnet synchronous generator (PMSG) coupled to

3

the tidal turbine was used. The direct drive system allows the

use of low-speed generators and eliminates the use of the

gearbox and normally requires a generator with a higher

number of poles. Direct drive systems are competit ive for

offshore applications [10].

The PMSG was modelled using its state equations [10],[11]:

𝑣𝑠𝑑 = −𝑅𝑠 𝑖𝑠𝑑 +
𝑑

𝑑𝑡
𝜆 𝑠𝑑 − 𝜔𝑚𝑒 𝜆𝑠𝑞, (3)

𝑣𝑠𝑞 = −𝑅𝑠 𝑖𝑠𝑞 +
𝑑

𝑑𝑡
𝜆 𝑠𝑞 + 𝜔𝑚𝑒 𝜆 𝑠𝑑, (4)

where [k sqd0]T = [k sq k sd k s0] (k represents current, voltage or

flux), subscripts d and q refer respectively to the direct and

quadrature axis components of voltage (v), current (i) and flux

(), subscript s is used for stator quantities, R is the resistance

and me is the electrical angular speed of the rotor. The PM

rotor circuit is modelled as an equivalent current source If.

The stator d and q winding flux linkages can be expressed as

[10],[11]:

𝜆 𝑠𝑑 = −(𝐿𝑙𝑠 + 𝐿𝑚𝑑
)𝑖𝑠𝑑 + 𝜆 𝑟 and (5)

𝜆 𝑠𝑞 = −(𝐿𝑙𝑠 + 𝐿𝑚𝑞)𝑖𝑠𝑞, (6)

where Lls is the stator leakage inductance, Lmd and Lmq are the

magnetising inductance of the d and q axis and r is the rotor

flux linked to the d winding of the stator, which is equal to Lmd

If.

The electromagnetic torque Tem of the synchronous machine

is given by:

𝑇𝑒𝑚 =
3𝑝

2
(𝜆 𝑠𝑑 𝑖𝑠𝑞 − 𝜆 𝑠𝑞𝑖𝑠𝑑), (7)

where p is the number of pole pairs in the machine. The rotor

speed can be obtained by solving:

𝐽
𝑑𝑚

𝑑𝑡
= 𝑇𝑒𝑚 − 𝑇𝑚 , (8)

where J is the moment of inertia of the rotor and Tm is the load

torque.

Speed control of the PMSG is introduced by vector control

of the generator side converter. In this work, the zero d-axis

current control, as detailed in [10], was used for the generator

side control. In this control, ids is controlled to be zero, which

means that the stator current is equal to the q-axis component.

The electromagnetic torque Tem, substituting isd = 0 in Equations

(5) and (7), becomes:

𝑇𝑒𝑚 =
3𝑝

2
(𝜆 𝑟 𝑖𝑠𝑞), (9)

which indicates that the generator torque is proportional to the

stator current. The schematic of the generator side converter

controller used in this work is shown in Fig. 5 and constitutes

the low-level controller. For the purposes of this work, the grid

side converter was not modelled and it was assumed that the

DC link voltage of the AC/DC/AC converter was constant.

In this work, a modified form of the Power Signal Feedback

(PSF) control, as described in [1], was used for MPPT control

of the tidal turbine (high-level controller). The controller

requires the optimal power curve of the tidal turbine and uses it

to provide the speed reference signal to the generator side

converter. Fig. 6 shows the optimal power curve, plotted in Fig.

3, used in a closed loop control scheme of the tidal turbine. The

power generated by the tidal turbine is fed into the high-level

controller, which then uses the optimal power curve to

determine the speed reference for the turbine. The implemented

controller is, in effect, a modified version of the optimal tip

speed ratio controller, which aims to maintain the optimal tip

speed ratio opt for all flow conditions. .

Fig. 5 Schematic of the zero d-axis generator side converter controller

Fig. 6 Power signal feedback controller based MPPT control of the tidal
turbine

III. REINFORCEMENT LEARNING

RL is a class of unsupervised learning algorithms, which has

recently been the focus of many studies by the robotics and

computer science industries [12]. Within this framework [13],

an agent (in this case the controller) learns an optimal policy,

or behaviour, for the maximization of a specified reward from

direct interactions with its environment.

As shown in Fig. 7, at each step, the agent, which is in a

particular state s, interacts with the surrounding environment

by taking an action a. The agent then moves to a new state, s’,

and the action is followed by a reward, r, depending on its

outcome. The action selection process is modelled as a Markov

decision process based on the value function, which expresses

the estimate of the future reward. The agent is expected to learn

an optimal policy over time for the maximization of the total

reward.

RL methods can be divided into three main categories:

dynamic programming, temporal difference and Monte-Carlo

methods [13]. Of these, temporal difference strategies will be

considered here, since they present a real-time implementation .

Additionally, in order to limit modelling errors and to pick up

changes in the device behaviour over time, model-free

techniques are of interest, which use the state-action value

4

function Q(s,a). The state-value function is a measure of the

expected return following the selection of action a in state s.

Hence, the aim of the RL agent is to select a policy that

maximize its value. This is described in Section III-A.

Agent

Environment

Action:
a

State:
s

Reward: r

New state:
s’

Fig. 7 Block diagram of RL (adapted from [13])

Temporal-difference methods can be divided into on- and

off-line schemes depending on how the state-action value

function is updated [14]. On-line strategies update the Q-value

at every step, whereas off-line techniques wait for a batch of

samples in the form (s,a,r,s’). Furthermore, function

approximation can be used to improve the performance of RL

algorithms for the treatment of large state and action spaces

[14]. In Section III-B, an on-line strategy with discrete states is

described, namely Q-learning. In Section III-C an off-line

scheme with function approximation for the state space is

analysed, namely Neural Fitted Q-iteration (NFQ).

A. Exploration Strategy

The action that maximizes the state-action value, and thus

the expected future reward, is referred to as the greedy action

[13]. If the agent selects purely the greedy action, i.e. an

exploitative action, it will never visit states other than the usual

ones. In fact, other states may result in higher total reward;

however, the agent cannot learn this unless it visits them. This

is known as the issue of exploration versus exploitation [13].

Hence, it is still beneficial to adopt an approach that ensures

some exploration at the expense of exploitation, particularly for

the initial stages. Once the simulation has been initialized, the

balance may be shifted towards exploitation. This is achieved

here with the adoption of an ε-greedy exploration strategy. At

each step, with an ε-greedy policy the agent in state s selects

the following action [13]:

𝑎 = {
arg max

a′∈𝐴
 𝑄(𝑠, 𝑎′) with probability 1 − 𝜖,

random action with probability 𝜖,
 (10)

where ε is the exploration rate and A the action space (i.e. all

possible actions). The exploration rate is obtained as

𝜖 = {
𝜖0 if 𝑁 ≤ 0,

𝜖0/√𝑁 otherwise,
 (11)

where 𝑁 = ∑ 𝑵(𝑠, 𝑎𝑖
) − 𝑁𝑠

𝑛𝑎
𝑖=1 , with N(s,a) indicating the total

number of visits to the state-action pair (s,a), na the number of

actions, Nε the minimum number of visits to a state for random

exploration and ε0 the initial exploration rate. Equation (11)

ensures a sufficient level of exploration at the start of RL

control, with the focus being shifted to the exploitative action

as learning progresses.

The learning rate determines the proportion of new and old

knowledge that is retained during learning and is calculated as

𝛼 = {
𝛼0 if 𝑵(𝑠, 𝑎) ≤ 𝑁𝛼 ,

𝛼0/𝑵(𝑠,𝑎) otherwise,
 (12)

where Nα is a predefined parameter. Equation (12) ensures

sufficient learning when each state-action pair is visited for the

first few times. As learning progresses, older knowledge is

given greater importance to limit the impact of sensor noise.

B. Q-learning with discrete states

Q-learning is an on-line temporal difference scheme that is

very popular with the robotics industry [12]. Originally

proposed by Watkins [15], [16], Q-learning updates the value

function using the optimal known policy, which may not be the

policy being followed due to exploration. For this reason, it is

labelled as an off-policy strategy [13]. Using discrete states and

actions, the state-action value update is expressed as [13]:

𝑄(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎) + 𝛼 [𝑟 + 𝛾 max
a′∈𝐴

𝑄(𝑠 ′,𝑎′) − 𝑄(𝑠, 𝑎)], (13)

where γ is the discount factor, which is used to discount future

rewards , and α is the learning rate, which regulates how much

of the previous learning is retained in the update of the action-

value table.

Q-learning is guaranteed to converge for discrete actions and

states, a bounded reward variance, the use of a discount factor

and a properly decaying learning rate [17].

Fig. 8 shows the algorithm of discrete Q-learning that was

used in the learning process.

C. Neural Fitted Q-Iteration

Function approximation can be used to treat the state-action

value as a continuum and improve the performance of RL

algorithms [14]. A large number of discrete states can result in

an excessive learning time, since the agent may have to

experience each state before convergence. Function

approximation can significantly decrease learning time by

presenting a smaller number of features instead, which allow

the controller to generalize for unseen states [14]. Although

linear features have resulted in the development of successful

RL algorithms [13],[14], neural networks (NNs) represent a

more powerful, non-linear tool that allows global

approximation also for non-linear problems [18]. Their main

advantage is the capacity to generalize for unseen situations

[19].

Fig. 8 Algorithm of discrete Q-learning adapted from [13]

5

NNs are machine learning algorithms that can be used to

learn the non-linear mapping between specified input and

output data [20]. They are inspired from biological brains and

are thus composed of neurons arranged in layers. Here, a

feedforward multi-layer perceptron with a single hidden layer

with m neurons is considered, as shown in Fig. 9. Additionally,

the input and hidden layer present a bias term, which is required

to find the intercept of the function fitted by the NN. Each layer
l has input and output variables, denoted as xl and yl

respectively. The input to the NN corresponds to y1, while the

output to y3. The weight matrices between each two layers are

defined as Wj, with j=1,2, and the bias matrices as bi. Using

forward propagation [20], the NN returns an estimate for the

output value given input data by propagating the signal forward

in the network. The input and output vectors for each layer

l=2,3 are thus computed as [20]:

𝑥 𝑙 = 𝑾𝑙−1𝒚𝑙−1 + 𝒃𝑙−1, (14)

𝒚𝑙 = 𝑒𝑙
(𝒙𝑙

). 𝑠 (15)

In Equation (14), el denotes the activation function for the

neurons in layer l. As shown in Fig. 9, the hidden layer uses the

tanh activation function, which is the preferred choice for a

small number of layers [21], while the output layer uses a linear

activation function.

y1,1

y1,2

+1

tanh

tanh

tanh

tanh

.

.

.

y3,1

s

a

+1

Bias

Bias

Input Layer

– L1

Hidden Layer

– L2

Output Layer

– L3

y1 x2

y2,1

y2,m

x2,1

x2,m

x3y2 y3

W1 W2

Qtarget

x3,1

b1 b2

Fig. 9 Schematic diagram of the feedforward NN used in NFQ

In a NN, learning occurs by tuning the weight matrices so

that the network provides an accurate mapping between the

provided input and output data. To simplify the notation, here

we denote the mapping provided by the NN between input i and

output o as

𝒐 = 𝑓(𝒊). (16)

Training occurs through a process known as backward

propagation, where the error signal is propagated backwards

from the output to the input layer. The reader is referred to [20]

for more information. Additionally, much more efficient

techniques have been developed to train NNs using batch of

samples rather than an individual sample. Here, we use the

efficient Levenberg-Marquardt algorithm for training of the

NN in batch mode [22], even though the Rprop algorithm was

originally proposed for use with NFQ [23].

NNs present a major disadvantage when used to fit the state-

action value in RL, in addition to their much greater

computational cost as compared with linear features. If the

weights of the NNs are adjusted for a particular state-action pair,

then unpredictable changes also occur at other places in the

state-action space according to (11) and (12). These problems

have been alleviated through the use of off-line, batch learning

in NFQ, originally developed by [18]. As shown in Fig. 10,

with this procedure, the algorithm is run with an ε–greedy

policy using the estimate of the state-action value provided by

the NN. At each step, the current state, action, reward and new

state are stored as samples of the form (s,a,r,s’). After a

predefined number of samples is collected, the NN weights are

updated using the complete set of transition experiences (i.e. all

past samples) and the Levenberg-Marquardt algorithm. In

particular, this procedure is repeated for a specified number of

epochs, kmax. This approach has been found to work well, and

is more computationally efficient than setting a limit for the
error [19]. In Fig. 10, the notation S(:,j) indicates the jth column

vector of list S.

Fig. 10 Algorithm of Neural Fitted Q-iteration, adapted from [18]

IV. REINFORCEMENT LEARNING IN MPPT CONTROL OF TIDAL

TURBINES

In this work, the two variants of RL, described in the

previous section, are used to determine the optimal coefficient

Kopt of the optimal power curve for the tidal turbine. According

to Fig. 7, at every RL time step, the RL controller (the agent),

observes the current power curve coefficient Kopt (the state s) of

the environment and chooses a change in the Kopt value (the

action a) with the aim of maximising the reward r accrued over

time. Fig. 11 shows the schematic of the RL implementation .

The high-level controller, as seen in Fig. 6, learns the optimal

6

power curve coefficient through interacting with its

environment and learning from the observations made. To

account for possible wave action and turbulence in tidal flows,

the instantaneous power generated needs to be averaged over a

time period T before it can be used to calculate the reward r.

During this time period T the state s and the action a are kept

constant. The state space, the action space and the reward

function used in this work are described in detail in this section.

A. State Space

As mentioned earlier, the coefficient of the power curve used

in the high-level controller Kopt was considered to be the state

variable in this work. The RL state space thus becomes:

]},...,2,1[),(| NkKssS optk . (17)

N in Equation (17) is the number of equally divided segments

in the entire range of Kopt considered in this work. The value of

N significantly affects the learning process, with a larger N

increasing the learning period, while smaller N reducing the

learning accuracy. Thus, N needs to be appropriately chosen to

balance these two opposing requirements.

Fig. 11 Reinforcement learning applied in MPPT control of tidal turbine

B. Action Space

From the current state s, the action taken by the agent

involves changing the value Kopt by a small value Kopt. The

action space for the RL controller thus becomes:

},0,|{ optopt KKaA (18)

The states corresponding to the maximum and the min imu m

value of Kopt have limits on the actions that can be taken to

ensure Kopt remains within the state space boundary.

C. Reward

After an action a is taken from state s, the agent receives a

reward r. The aim of the RL algorithm is to maximise the total

future rewards instead of the just the immediate reward r. In the

case of MPPT control of tidal turbines, the main objective of

the controller is to maximise the average power output of the

turbine by selecting the optimal power curve coefficient.

Considering that the average power generated by the tidal

turbine depends on the tidal current velocity and the presence

of any turbulence and wave action, offline simulations were run

with different current velocities, turbulence intensities and

wave actions, to determine the maximum average power

max(Pgen avg) seen over the averaging horizon Tavg. The average

power over the period Tavg, normalised with respect to the

maximum Pgen avg (from the offline simulations) was used as the

reward function. Additionally, the magnitude of Kopt selected

can mean that the difference in the average power between two

neighbouring states may not be very high. To magnify the

effects of a change in Kopt and for the algorithm to converge

faster, the reward function was then raised to a power value m.

The reward function used thus became:

m

avggen

avggen

P

P
r

)max(
. (19)

E. Learning Process

Applying RL in tidal turbine MPPT control consists of two

distinct parts. The first one is the learning process itself,

through which the agent learns what best action to take at every

state. This process involves updating the Q-table or Q-function

based on the learning experience.

Fig. 8 and Fig. 10 show the algorithms of discrete Q-learning

and NFQ that were used in the learning process.

The learning process is stopped after a specified number of

iterations are complete.

F. Application Process

Once the optimal power curve coefficient Kopt has been

identified by the RL algorithm, the learning process is stopped

and the high-level controller works independently with the

power curve as shown in Fig. 6. This constitutes the application

process and is continued until another learning process is

required. This could be necessitated by changes in turbine

characteristics caused by changes in the long term flow

conditions and/or other causes like biofouling.

V. SIMULATION RESULTS

Simulations using both the RL variants were completed for two

different tidal current velocities , without any turbulence and

wave action. Three other cases were then assessed to study the

performance of the algorithms in the presence of turbulence and

wave action. Since only a single tidal turbine has been

considered here, the RL algorithms would converge to the same

Kopt value for all the cases considered. The performance of the

two RL algorithms tested will then be compared for the

simulated cases.

A. RL parameters and simulation setup

The state space, or the range of Kopt, used in this work was

between 1 and 3 with Kopt = 0.1 (ns = 21). The state space was

decided from prior experience of the Kopt of the tidal turbine

obtained through tank tests and offline simulations. Tank tests

of a physical model of the turbine showed that the turbine stalls

at a tip speed ratio of around 3.53 (or turbine rotational speed

of around 45 rpm) for a current velocity of 0.8 m/s. The range

7

of Kopt was chosen keeping this in mind, such that even at the

lowest Kopt value, the turbine would not stall.

The number of actions na was set to 3, as explained in

Section IV B. The Q-table, thus, has a dimension of 21x3. For

NFQ, a neural network with one hidden layer having 5 nodes

was chosen. The simulation, for every RL iteration, was run for

15 s (Tavg), out of which the power generated by the turbine over

the last 10 s was used to calculate Pgen avg. If any action a

(change in Kopt) was required in the current iteration, the change

was made 1 s after the simulation starts. The simulation time of

15 s, per RL iteration, was chosen because waves with period

between 1 s and 3 s were tested with the scaled turbine model.

For the RL algorithms, the initial learning rate, exploration

rate, and discount factor were set to 0.5, 0.6 and 0.95

respectively. The number of RL iterations was set to 1000 for

both the discrete Q-learning and the neural-fitted Q-iteration

algorithms. The elements of the Q-table were initialised to zero

and the algorithms were set to start at the 1st state every time.

B. Learning with constant current velocity

As the first test, the tidal turbine was exposed to a constant

tidal current velocity over the duration of the learning process.

Two current velocities of 0.6 m/s and 0.8 m/s were used and

both the RL algorithms were tested.

Fig. 12 shows the Q-learning algorithm converging towards

the optimum Kopt over the 1000 time steps simulated. It takes

the algorithm around 350 time steps to converge. Note that even

after converging, the algorithm explores the neighbouring Kopt

values in the time steps after 350. This would identify any

significant change in the turbine characteristics or flow

conditions and update the RL learning process accordingly. Fig.

12 also shows the mean power generated by the turbine at each

RL time step, which finally converges to its maximum value.

The convergence of Q-learning with the 0.6 m/s tidal current

velocity is shown in Fig. 13. With the new tidal current velocity,

the algorithm takes almost the same number of steps to

converge. Since it is the same single turbine being considered,

the Q-learning algorithm converges to the same Kopt value. The

convergence of the NFQ algorithm is shown in Fig. 14 for the

tidal current velocity of 0.8 m/s . The algorithm converges to the

optimal Kopt in about 90 RL time steps.

C. Learning with constant current velocity and turbulence

As the next test, the two RL algorithms were employed with

turbulence added to the constant tidal current velocity. The

effect of turbulence was modelled using random noise

superimposed on the constant tidal current velocity. Fig. 15 and

Fig. 16 show the convergence of the two RL variants over the

RL time steps simulated. Discrete Q-learning still takes

approximately 350 time steps to converge, while NFQ takes

approximately 90. The optimal power curve coefficient Kopt

output by the learning process is still the same as seen in the

case without any turbulence. This is as expected and proves that

the RL algorithms are identifying the correct Kopt.

Fig. 12 Q-learning results with the tidal turbine simulated in a constant tidal
current velocity of 0.8 m/s

Fig. 13 Q-learning results with the tidal turbine simulated in a constant tidal

current velocity of 0.6 m/s

Fig. 14 NFQ results with the tidal turbine simulated in a constant tidal current

velocity of 0.8 m/s

8

Fig. 15 Q-learning results with the tidal turbine simulated in a constant tidal
current velocity of 0.8 m/s with turbulence

Fig. 16 NFQ-iteration results with the tidal turbine simulated in a constant
tidal current velocity of 0.8 m/s with turbulence

D. Learning with constant current velocity and wave action

This section examines the learning process when sinusoidal

waves of different amplitudes and frequencies are

superimposed on the tidal current velocity. Wave action on the

turbine was modelled by adding a sinusoidal velocity signal to

the constant tidal current velocity. Two wave induced velocity

amplitudes were tested – 0.1 m/s amplitude, 2 s period and 0.15

m/s amplitude, 3 s period. Fig. 17 and Fig. 18 show the two RL

algorithms’ converge to the optimal Kopt value for the second

wave tested. As has been seen with the earlier results, the two

algorithms converge to Kopt = 1.5. Q-learning took around 400

time steps to converge, while NFQ took around 80 time steps.

E. Learning with constant current velocity, wave action and

turbulence

This test was arranged to make the learning process most

challenging, with both turbulence and wave action, as setup in

the previous simulation runs, superimposed on the constant

tidal current velocity. Even in this learning environment, both

the RL algorithms converged to the optimal Kopt value in

approximately 400 (for Q-learning) and 90 (for NFQ) time

steps. The convergence of these two algorithms to the optimal

Kopt value are shown in Fig. 19 and Fig. 20.

Fig. 17 Q-learning results with the tidal turbine simulated in a constant tidal
current velocity of 0.8 m/s with a 0.15 m/s amplitude, 3 s sinusoidal velocity

superimposed

Fig. 18 NFQ results with the tidal turbine simulated in a constant tidal current
velocity of 0.8 m/s with a 0.15 m/s amplitude, 3 s sinusoidal velocity

superimposed

Fig. 19 Q-learning results with the tidal turbine simulated in a constant tidal
current velocity of 0.8 m/s with a 0.1 m/s amplitude, 2 s sinusoidal velocity

and turbulence superimposed

9

Fig. 20 NFQ results with the tidal turbine simulated in a constant tidal current
velocity of 0.8 m/s with a 0.1 m/s amplitude, 2 s sinusoidal velocity and

turbulence superimposed

F. Adaptive learning with RL

In this section, the RL algorithms ’ performance in the

identification of Kopt when the turbine characteristics change is

examined. As was mentioned earlier, one of the advantages of

the RL approach is that the algorithm can respond to changes

in the turbine characteristics brought about by modifications in

the long term flow conditions or by biofouling.

Biofouling affects the roughness of the turbine blades and

modifies its Cp- curve. Based on the work reported in [24] the

modified Cp- curve of the turbine was assumed to be the one

shown in Fig. 21. As shown in [24] through scaled physical

testing and modelling work, the value of Cp, decreased for the

whole range of with the peak of the curve shifting towards a

smaller . This new Cp- curve of the turbine modified the

optimal power curve and the corresponding Kopt, which was

found, from offline simulations, to be 1.36.

The Q-learning simulation with the modified turbine was

initialised with the final Q-matrix and state obtained from the

simulation described in Section V C done with the original

turbine. This simulates the RL process working continuously

over the two periods between which the turbine Cp- curve had

changed. The turbine was simulated in a tidal current flow of

0.8 m/s with turbulence. The learning rate and the exploration

rate for the algorithm were increased to 0.75 and 0.75

respectively to make the learning and update process faster. Fig.

22 shows the Q-learning algorithm converge to the optimal Kopt

value in approximately 410 time steps. The excursions beyond

this time step is because of the higher exploration rate used.

Fig. 23 shows the NFQ algorithm, initialised with the same

neural network weights as from the simulation described in

Section V C, converging to the new optimal Kopt value in 82

time steps. This demonstrates how the algorithm can deal with

changes in the turbine characteristics.

Fig. 21 The original and the modified Cp- curve of the turbine.

Fig. 22 Q-learning results with the tidal turbine, with the modified Cp-

curve, simulated in a constant tidal current velocity of 0.8 m/s and turbulence
superimposed

VI. DISCUSSION

The results presented and discussed in the preceding section

showed the learning process with the two RL variants. In all the

cases discussed, for the single turbine, the Kopt value was

identical, as was expected, which proves the applicability of the

methods used. In this work, it was assumed that the flow was

uniform over the rotor. With non-uniform flow, the RL

algorithms will take longer to converge.

During the learning process, the controller moves through

various Kopt values before converging on the optimal one. Since

the learning process only occurs for an extremely short period

of time relative to the life time of a tidal turbine, the higher

loads that may be encountered during the learning process will

not impact the fatigue life of the turbine significantly.

10

Fig. 23 NFQ results with the tidal turbine, with the modified Cp- curve,
simulated in a constant tidal current velocity of 0.8 m/s and turbulence

superimposed

The real interest in the presented algorithms is in learning the

optimal power curve coefficients within arrays of tidal devices.

In arrays with rows of tidal devices, the optimal power curves

for the individual generators may need to be different to

maximise the energy yield across the array. Through on-line

learning algorithms, like the ones presented in this paper, the

best optimal power curves for each tidal device can be

determined. In theory, identifying the optimal power curves

using RL in the arrays will take longer to converge when

compared to the single turbine case.

Here, two distinct reinforcement learning algorithms have

been investigated. In all cases, NFQ has been shown to have

superior convergence properties. This is mainly due to its

reliance on function approximation, with the NNs helping the

controller generalize for unseen situations. Additionally, the

greater the number of states and actions, the greater the benefits

of function approximation are expected to be [14].

The presented learning algorithms can also be used to

optimise turbine performance due to changes in the device

characteristics due to biofouling or due to long term changes in

the flow patterns. In such situations when the operator feels a

change in the optimal power curve is required, the application

process is stopped after which another learning process is

initiated. An example of such a situation and how the two RL

algorithms responded to a change in the turbine’s Cp- curve

was also shown in the paper.

VII. CONCLUSIONS

This paper discussed two, model-free RL algorithms – Q-

learning and NFQ - to identify the optimal power curve for

single tidal turbines. The performance of the algorithms in

MPPT control of the single turbine was assessed in different

tidal current flow conditions. The two algorithms converged to

the optimal power curve coefficient even for the cases with

wave action and turbulence added to the different constant tidal

current velocities, which proves its applicability to the control

of tidal turbines. The proposed algorithms were tested on a tide-

to-wire model of a single turbine, which was also described in

the paper. The advantages of the RL based approach are that

there is no need for any prior knowledge of the system and that

the control system can adapt to changes in the turbine

characteristics brought about by biofouling, non-critical

failures, or long term changes in the flow characteristics.

Whether these algorithms can be efficiently extended to learn

the optimal power curves of tidal turbines in arrays will be

studied in further work.

ACKNOWLEDGMENT

The authors gratefully acknowledge that this research was

supported by the Engineering and Physical Sciences Research

Council (EPSRC) through the SuperGen UK Centre for Marine

Energy Research (grant EP/M014738/1). Mr Anderlini’s

project was funded by the Energy Technologies Institute, the

EPSRC (grant EP/J500847/) and Wave Energy Scotland.

REFERENCES

[1] M. A. Abdullah, A. H. M. Yatim, C. W. Tan, and

R. Saidur, “A review of maximum power point tracking

algorithms for wind energy systems,” Renewable and

Sustainable Energy Reviews, vol. 16, pp. 3220–3227, 2012.

[2] E. Muljadi, A. Wright, V. Gevorgian, J. Donegan,

C. Marnagh, and J. McEntee, “Turbine control of a tidal and

river power generator,” in Proc. of the IEEE North American

Power Symposium, Colorado, 2016.

[3] S. Benelghali, M. Benbouzid, and J. F. Charpentier,

“Modeling and control of a marine current turbine driven

doubly-fed induction generator,” IET Renewable Power

Generation, vol. 4, pp. 1–11, 2010.

[4] C. Wei, Z. Zhang, W. Qiao, and L. Qu,

“Reinforcement-learning-based intelligent maximum power

point tracking control for wind energy conversion systems,”

IEEE Transactions on Industrial Electronics, vol. 62, p. 6360-

6370, 2015.

[5] T. Stallard, T. Feng, and P. K. Stansby, “Experimental

study of the mean wake of a tidal stream rotor in a shallow

turbulent flow,” J. Fluids Struct., vol. 54, pp. 235–246, 2015.

[6] G. S. Payne, T. Stallard, and R. Martinez, “Design and

manufacture of a bed supported tidal turbine model for blade

and shaft load measurement in turbulent flow and waves,”

Renew. Energy, vol. 107, pp. 312–326, 2017.

[7] A. S. Bahaj, W. M. J. Batten, and G. McCann,

“Experimental verifications of numerical predictions for the

hydrodynamic performance of horizontal axis marine current

turbines,” Renew. Energy, vol. 32, no. 15, pp. 2479–2490, 2007.

[8] M. O. L. Hansen, Aerodynamics of Wind Turbines.

Earthscan, 2008.

[9] G. Germain, “Marine current energy converter tank

testing practices,” in Proc. of the 2nd International Conference

on Ocean Energy, Brest, 2008.

[10] B. Wu, Y. Lang, N. Zargari, and S. Kouro, Power

Conversion and Control of Wind Energy Systems. Wiley-IEEE

Press, 2011.

[11] N. Mohan, Advanced Electric Drives: Analysis,

Control, and Modeling Using MATLAB/Simulink . Wiley, 2014.

11

[12] S. G. Khan, G. Herrmann, F. L. Lewis, T. Pipe, and

C. Melhuish, “Reinforcement learning and optimal adaptive

control: An overview and implementation examples,” Annu.

Rev. Control, vol. 36, no. 1, pp. 42–59, 2012.

[13] R. S. Sutton and A. G. Barto, Reinforcement Learning.

MIT Press, 1998.

[14] L. Busoniu, R. Babuska, B. D. Schutter, and D. Ernst,

Reinforcement learning and dynamic programming using

function approximators. CRC Press, 2010.

[15] C. J.Watkins, “Models of delayed reinforcement

learning,” Ph.D. dissertation, Cambridge University, 1989.

[16] C. J. C. H. Watkins and P. Dayan, “Technical note: Q-

learning,” vol. 8, no. 3, p. 279-292, 1992.

[17] T. Jaakkola, M. I. Jordan, and S. P. Singh, “On the

convergence of stochastic iterative dynamic programming

algorithms,” Neural Comput, vol. 6, no. 6, 1994.

[18] M. Riedmiller, Lect. Notes Comput. Sci., 2005, vol.

3720LNAI, ch. Neural fitted Q iteration - First experiences with

a data efficient neural Reinforcement Learning method, pp.

317–328.

[19] ——, Lect. Notes Comput. Sci., 2012, vol. 7700

LECTU, ch. 10 Steps and some tricks to set up neural

reinforcement controllers, pp. 735–757.

[20] M. T. Hagan, H. B. Demuth, M. H. Beale, and O. D.

Jesus, Neural Network Design. PWS Publishing, 1996.

[21] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,”

Nature, vol. 521, no. 7553, pp. 436–444, 2015.

[22] M. T. Hagan and M. B. Menhaj, “Training

feedforward networks with the Marquardt algorithm,” IEEE

Trans. Neural Networks, vol. 5, no. 6, pp. 989–993, 1994.

[23] M. Riedmiller and H. Braun, “A direct adaptive

method for faster backpropagation learning: The rprop

algorithm,” in Proc. of IEEE Int. Conf. Neural Networks, vol.

1993-Janua, 1993, pp. 586–591.

[24] J. M. Walker, K. A. Flack, E. E. Lust, M. P. Schultz,

and L. Luznik, “Experimental and numerical studies of blade

roughness and fouling on marine current turbine performance,”

Renewable Energy, vol. 66, pp. 257 – 267, 2014.

