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Abstract— This paper explores the use of model free reinforcement 
learning (RL) in the maximum power point tracking (MPPT) 

control of a tidal turbine. Two RL algorithms – Q-learning and 

Neural Fitted Q-iteration – are used in this work to identify the 

optimal power curve of the turbine, which is then used to control 

the turbine in real time. The RL algorithms are setup to maximise 
the energy yield of the turbine and are tested in different tidal flow 

conditions. These algorithms are tested through numerical 

simulations of a tide-to-wire model of a direct drive Permanent 

Magnet Synchronous Generator based tidal turbine. The 

algorithms are found to converge to the optimal power curve 
coefficient for the different tidal current flows tested. Using RL 

allows the turbine control system to adapt to changes in the 

turbine characteristics brought about by causes like biofouling 

and long-term changes to the tidal flow patterns at a deployment 
site. RL requires no prior knowledge of the tidal turbine system, 

which is an advantage of the described approach.  

 
Keywords— Tidal turbine, control, maximum power point 

tracking, reinforcement learning. 

I. INTRODUCTION 

The last few years have seen a significant growth in the tidal 

power industry with arrays of tidal devices being installed and 

planned. Generating tidal power using variable speed 

generators, like in the majority of wind turbines, allows for 

more efficient power extraction. This is because the turbine can 

operate at its maximum power points, on the power-speed curve, 

over all current conditions.  

Different maximum power point tracking (MPPT) 

algorithms have been developed for wind turbines [1]. Since 

tidal turbines, structurally, are similar to wind turbines some of 

these control algorithms have been extended to tidal devices  too 

[2],[3]. This paper explores the use of reinforcement learning  

(RL) based maximum power point tracking (MPPT) algorithms  

for tidal turbines using numerical simulations. RL is an on-line 

learning algorithm in which an agent learns from its own 

experience of interacting with its environment.  

A similar RL based MPPT approach has been developed and 

tested for wind turbines in [4]. Turbulence, wakes in arrays, 

possible wave action and biofouling make the extension of the 

algorithm to tidal devices more challenging. This paper 

proposes an approach by which the optimal power curve of a 

tidal turbine is learnt through RL. The main advantages of this 

approach are that there is no need for prior knowledge of the 

system and that the control system can adapt to changes in the 

turbine characteristics. 

Section II in the paper describes the tide-to-wire model of 

the permanent magnetic synchronous generator (PMSG) based 

turbine and the high level MPPT controller used in this work. 

A general background to reinforcement learning and to the two 

RL algorithms used here are presented in Section III. The 

application of the two RL algorithms in MPPT control of a 

single tidal turbine is reported in Section IV. Results from the 

simulation runs using the two RL variants and for the different  

tidal current flow cases considered are reported in Section V 

and are further discussed in Section VI. Section VII summarises  

the main contributions of this paper in tidal turbine control. 

II. TIDAL TURBINE MODEL AND CONTROL 

A. Physical model of the turbine 

The turbine model used for this project is a three bladed 

horizontal axis machine. The rotor is 1.2 m in diameter and the 

blade profile was designed so that it produces a radial variation 

of thrust similar to that of a full scale generic design described 

in [5]. The model is highly instrumented with sensors 

measuring the streamwise bending moment at the root of each 

blade, the thrust and torque over the whole rotor and the 

absolute angular position of the rotor. Fig. 1 shows the turbine 

model being tested at the FloWave basin of the University of 

Edinburgh. More details on the turbine model and on its design 

and manufacturing can be found in [6]. 

B. BEMT based numerical model of the turbine 

To simulate the turbine model performance, a standard blade 

element momentum theory (BEMT) code was developed. This  

approach relies on estimating flow momentum extraction by the 

rotor. The method used here is one dimensional (in polar 

coordinates) in that the flow energy extraction is considered 

uniform over the annulus elements of the rotor disk. In other 

words, energy extraction is considered to be affected spatially 

only by the radius from the rotor axis and not by azimuthal 
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position over the rotor disk. This method yields estimates of the 

torque and thrust applied to the rotor and of their radial 

variations. The main inputs to the model are the onset flow 

velocity, the rotor rotational velocity and the lift and drag 

coefficients of the different blade elements. The foil sections 

used for the turbine blades are NACA 63-8XX and the lift and 

drag coefficients values used for the model were taken from [7]. 

The BEMT method used here includes Spera high axial 

induction factor correction and is described in detail in chapter 

4 of [8].  

 

 

Fig. 1  Turbine model mounted on the floor of the FloWave tank 

 

Fig. 2  Numerical and experimental power coefficients plotted against t ip 

speed ratio. The error bars correspond to the standard deviation of the 
measurements 

The total mechanical power extracted by a tidal turbine can 

be represented by: 

),(
2

1 3  pm CuAP  ,   (1) 

where is the sea water density, A is the rotor swept area, u is 

the onset tidal current velocity and Cp is the power coefficient, 

which is a function of the tip speed ratio  and the blade pitch 

angle . Fig. 2 shows the power coefficients Cp plotted against 

tip speed ratio for pitch angle  = 0°. The graph includes 

coefficients measured experimentally at the IFREMER flow 

recirculating flume of Boulogne-sur-Mer (France) [9] with an 

onset flow of 0.815 m/s and turbulence intensity levels of 3 and 

12%.  It also includes Cp values predicted by the BEMT model. 

It can be seen that the numerical model underestimates slightly 

the experimental measurements. This is believed to be due to 

the fact that the standard BEMT approach implemented here 

does not account for the relatively high blockage factor (14%) 

of the experiment.  

As in wind energy systems, operating the tidal turbine at the 

optimal tip speed ratio opt maximises the power extraction  

from the tidal current flow. At opt the power extracted by the 

turbine is maximum and can be shown to be:  

3
3

max
3

max
2

1
m

opt

pCR
AP 

















  ,   (2) 

where R is the radius of the turbine and m its rotational speed.  

Equation (2) can be re-written as ,3
maxPKoptm  where Kopt is 

an optimal parameter that defines the optimal power curve of 

the turbine. Fig. 3 shows the turbine power as a function of the 

turbine speed over a range of tidal current velocities and also 

the optimal power curve of the turbine. Note that Pmax is not the 

maximum power the turbine can generate but is the maximu m 

power it can generate at a particular tidal current velocity.  

 

 

Fig. 3  Turbine power as a function of the turbine speed for a range of tidal 
current velocities 

A simplified numerical model of the tidal turbine was 

developed based on the Cp- curve, shown in Fig. 2, and was 

used in this work. Fig. 4 shows the schematic of the tidal turbine 

model used in this work.  

 

Fig. 4  Schematic of the tidal turbine model 

C. Numerical model and control of a Permanent Magnet 

Synchronous Generator (PMSG) 

In this work, a dynamic model of a direct-drive, non-salient 

permanent magnet synchronous generator (PMSG) coupled to 
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the tidal turbine was used. The direct drive system allows the 

use of low-speed generators and eliminates the use of the 

gearbox and normally requires a generator with a higher 

number of poles. Direct drive systems are competit ive for 

offshore applications [10].  

The PMSG was modelled using its state equations [10],[11]: 

𝑣𝑠𝑑 = −𝑅𝑠 𝑖𝑠𝑑 +
𝑑

𝑑𝑡
𝜆 𝑠𝑑 − 𝜔𝑚𝑒 𝜆𝑠𝑞,   (3) 

𝑣𝑠𝑞 = −𝑅𝑠 𝑖𝑠𝑞 +
𝑑

𝑑𝑡
𝜆 𝑠𝑞 + 𝜔𝑚𝑒 𝜆 𝑠𝑑,   (4) 

where [k sqd0]T = [k sq k sd k s0] (k  represents current, voltage or 

flux), subscripts d and q refer respectively to the direct and 

quadrature axis components of voltage (v), current (i) and flux 

(), subscript s is used for stator quantities, R is the resistance 

and me is the electrical angular speed of the rotor. The PM 

rotor circuit is modelled as an equivalent current source If.  

The stator d and q winding flux linkages can be expressed as 

[10],[11]: 

𝜆 𝑠𝑑 = −(𝐿𝑙𝑠 + 𝐿𝑚𝑑
)𝑖𝑠𝑑 + 𝜆 𝑟 and   (5) 

𝜆 𝑠𝑞 = −(𝐿𝑙𝑠 + 𝐿𝑚𝑞 )𝑖𝑠𝑞,    (6) 

where Lls is the stator leakage inductance, Lmd and Lmq are the 

magnetising inductance of the d and q axis and r is the rotor 

flux linked to the d winding of the stator, which is equal to Lmd 

If.  

The electromagnetic torque Tem of the synchronous machine 

is given by: 

𝑇𝑒𝑚 =  
3𝑝

2
(𝜆 𝑠𝑑 𝑖𝑠𝑞 − 𝜆 𝑠𝑞𝑖𝑠𝑑 ),    (7) 

where p is the number of pole pairs in the machine. The rotor 

speed can be obtained by solving: 

𝐽
𝑑𝑚

𝑑𝑡
= 𝑇𝑒𝑚 − 𝑇𝑚 ,     (8) 

where J is the moment of inertia of the rotor and Tm is the load 

torque. 

Speed control of the PMSG is introduced by vector control 

of the generator side converter. In this work, the zero d-axis  

current control, as detailed in [10], was used for the generator 

side control. In this control, ids is controlled to be zero, which 

means that the stator current is  equal to the q-axis component. 

The electromagnetic torque Tem, substituting isd = 0 in Equations 

(5) and (7), becomes: 

𝑇𝑒𝑚 =  
3𝑝

2
(𝜆 𝑟 𝑖𝑠𝑞),     (9) 

which indicates that the generator torque is proportional to  the 

stator current. The schematic of the generator side converter 

controller used in this work is shown in Fig. 5 and constitutes 

the low-level controller. For the purposes of this work, the grid 

side converter was not modelled and it was assumed that the 

DC link voltage of the AC/DC/AC converter was constant.  

In this work, a modified form of the Power Signal Feedback 

(PSF) control, as described in [1], was used for MPPT control 

of the tidal turbine (high-level controller). The controller 

requires the optimal power curve of the tidal turbine and uses it 

to provide the speed reference signal to the generator side 

converter. Fig. 6 shows the optimal power curve, plotted in Fig. 

3, used in a closed loop control scheme of the tidal turbine. The 

power generated by the tidal turbine is fed into the high-level 

controller, which then uses the optimal power curve to 

determine the speed reference for the turbine. The implemented  

controller is, in effect, a modified version of the optimal tip 

speed ratio controller, which aims to maintain the optimal tip 

speed ratio opt for all flow conditions. .  

 

 

Fig. 5  Schematic of the zero d-axis generator side converter controller 

 

Fig. 6  Power signal feedback controller based MPPT control of the tidal 
turbine 

III. REINFORCEMENT LEARNING 

RL is a class of unsupervised learning algorithms, which has 

recently been the focus of many studies by the robotics and 

computer science industries  [12]. Within this framework [13], 

an agent (in this case the controller) learns an optimal policy, 

or behaviour, for the maximization of a specified reward from 

direct interactions with its environment.  

As shown in Fig. 7, at each step, the agent, which is in a 

particular state s, interacts with the surrounding environment 

by taking an action a. The agent then moves to a new state, s’, 

and the action is followed by a reward, r, depending on its 

outcome. The action selection process is modelled as a Markov 

decision process based on the value function, which expresses 

the estimate of the future reward. The agent is expected to learn 

an optimal policy over time for the maximization of the total 

reward. 

RL methods can be divided into three main categories: 

dynamic programming, temporal difference and Monte-Carlo  

methods [13]. Of these, temporal difference strategies  will be 

considered here, since they present a real-time implementation . 

Additionally, in order to limit modelling errors and to pick up 

changes in the device behaviour over time, model-free 

techniques are of interest, which use the state-action value 
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function Q(s,a). The state-value function is a measure of the 

expected return following the selection of action a in state s. 

Hence, the aim of the RL agent is to select a policy that 

maximize its value. This is described in Section III-A. 

 

Agent

Environment

Action: 
a

State:
s

Reward: r

New state:
s’

 

Fig. 7  Block diagram of RL (adapted from [13]) 

Temporal-difference methods can be divided into on- and 

off-line schemes depending on how the state-action value 

function is updated [14]. On-line strategies update the Q-value 

at every step, whereas off-line techniques wait for a batch of 

samples in the form (s,a,r,s’). Furthermore, function 

approximation can be used to improve the performance of RL 

algorithms for the treatment of large state and action spaces 

[14]. In Section III-B, an on-line strategy with discrete states is 

described, namely Q-learning. In Section III-C an off-line 

scheme with function approximation for the state space is 

analysed, namely Neural Fitted Q-iteration (NFQ). 

A.  Exploration Strategy 

The action that maximizes the state-action value, and thus 

the expected future reward, is referred to as the greedy action 

[13]. If the agent selects purely the greedy action, i.e. an 

exploitative action, it will never visit states other than the usual 

ones. In fact, other states may result in higher total reward;  

however, the agent cannot learn this unless it visits them. This 

is known as the issue of exploration versus exploitation [13]. 

Hence, it is still beneficial to adopt an approach that ensures 

some exploration at the expense of exploitation, particularly for 

the initial stages. Once the simulation has been initialized, the 

balance may be shifted towards exploitation. This is achieved 

here with the adoption of an ε-greedy exploration strategy. At 

each step, with an ε-greedy policy the agent in state s selects 

the following action [13]: 

𝑎 = {
arg max

a′∈𝐴
 𝑄(𝑠, 𝑎′) with probability 1 − 𝜖,

random action with probability 𝜖,
   (10) 

where ε is the exploration rate and A the action space (i.e. all 

possible actions). The exploration rate is obtained as  

𝜖 = {
𝜖0 if 𝑁 ≤ 0,

𝜖0/√𝑁 otherwise,
                       (11) 

where 𝑁 = ∑ 𝑵(𝑠, 𝑎𝑖
) − 𝑁𝑠

𝑛𝑎
𝑖=1 , with N(s,a) indicating the total 

number of visits to the state-action pair (s,a), na the number of 

actions, Nε the minimum number of visits to a state for random 

exploration and ε0 the initial exploration rate. Equation (11) 

ensures a sufficient level of exploration at the start of RL 

control, with the focus being shifted to the exploitative action  

as learning progresses. 

The learning rate determines the proportion of new and old 

knowledge that is retained during learning and is calculated as 

𝛼 = {
𝛼0 if 𝑵(𝑠, 𝑎) ≤ 𝑁𝛼 ,

𝛼0/𝑵(𝑠,𝑎) otherwise,
                 (12) 

where Nα is a predefined parameter. Equation (12) ensures 

sufficient learning when each state-action pair is visited for the 

first few times. As learning progresses, older knowledge is 

given greater importance to limit the impact of sensor noise. 

B.  Q-learning with discrete states 

Q-learning is an on-line temporal difference scheme that is 

very popular with the robotics industry [12]. Originally  

proposed by Watkins [15], [16], Q-learning updates the value 

function using the optimal known policy, which may not be the 

policy being followed due to exploration. For this  reason, it is 

labelled as an off-policy strategy [13]. Using discrete states and 

actions, the state-action value update is expressed as [13]: 

𝑄(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎) + 𝛼 [𝑟 + 𝛾 max
a′∈𝐴

𝑄(𝑠 ′,𝑎′ ) − 𝑄(𝑠, 𝑎)], (13) 

where γ is the discount factor, which is used to discount future 

rewards , and α is the learning rate, which regulates how much  

of the previous learning is retained in the update of the action-

value table.  

Q-learning is guaranteed to converge for discrete actions and 

states, a bounded reward variance, the use of a discount factor 

and a properly decaying learning rate [17]. 

Fig. 8 shows the algorithm of discrete Q-learning that was 

used in the learning process.  

C.  Neural Fitted Q-Iteration 

Function approximation can be used to treat the state-action 

value as a continuum and improve the performance of RL 

algorithms [14]. A large number of discrete states can result in 

an excessive learning time, since the agent may have to 

experience each state before convergence. Function 

approximation can significantly decrease learning time by 

presenting a smaller number of features instead, which allow 

the controller to generalize for unseen states [14]. Although 

linear features have resulted in the development of successful 

RL algorithms [13],[14], neural networks (NNs) represent a 

more powerful, non-linear tool that allows global 

approximation also for non-linear problems [18]. Their main  

advantage is the capacity to generalize for unseen situations 

[19]. 

 

 
Fig. 8  Algorithm of discrete Q-learning adapted from [13] 
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NNs are machine learning algorithms that can be used to 

learn the non-linear mapping between specified input and 

output data [20]. They are inspired from biological brains and 

are thus composed of neurons arranged in layers. Here, a 

feedforward multi-layer perceptron with a single hidden layer 

with m neurons is considered, as shown in Fig. 9. Additionally, 

the input and hidden layer present a bias term, which is required 

to find the intercept of the function fitted by the NN. Each layer 
l has input and output variables, denoted as xl and yl 

respectively. The input to the NN corresponds to y1, while the 

output to y3. The weight matrices between each two layers are 

defined as Wj, with j=1,2, and the bias matrices as bi. Using 

forward propagation [20], the NN returns an estimate for the 

output value given input data by propagating the signal forward  

in the network. The input and output vectors for each layer 

l=2,3 are thus computed as [20]: 

𝑥 𝑙 = 𝑾𝑙−1𝒚𝑙−1 + 𝒃𝑙−1,                    (14) 

𝒚𝑙 = 𝑒𝑙
(𝒙𝑙

). 𝑠                            (15) 

In Equation (14), el denotes the activation function for the 

neurons in layer l. As shown in Fig. 9, the hidden layer uses the 

tanh activation function, which is the preferred choice for a 

small number of layers [21], while the output layer uses a linear 

activation function.  

y1,1

y1,2

+1

tanh

tanh

tanh

tanh

.

.

.

y3,1

s

a

+1

Bias

Bias

Input Layer 

– L1

Hidden Layer 

– L2

Output Layer 

– L3

y1 x2

y2,1

y2,m

x2,1

x2,m

x3y2 y3

W1 W2

Qtarget

x3,1

b1 b2

 

Fig. 9  Schematic diagram of the feedforward NN used in NFQ  

In a NN, learning occurs by tuning the weight matrices so 

that the network provides an accurate mapping between the 

provided input and output data. To simplify the notation, here 

we denote the mapping provided by the NN between input i and 

output o as 

𝒐 = 𝑓(𝒊).                               (16) 

Training occurs through a process known as backward  

propagation, where the error signal is propagated backwards 

from the output to the input layer. The reader is referred to [20] 

for more information. Additionally, much more efficient  

techniques have been developed to train NNs using batch of 

samples rather than an individual sample. Here, we use the 

efficient Levenberg-Marquardt algorithm for training of the 

NN in batch mode [22], even though the Rprop algorithm was 

originally proposed for use with NFQ [23]. 

NNs present a major disadvantage when used to fit the state-

action value in RL, in addition to their much greater 

computational cost as compared with linear features. If the 

weights of the NNs are adjusted for a particular state-action pair, 

then unpredictable changes also occur at other places in the 

state-action space according to (11) and (12). These problems  

have been alleviated through the use of off-line, batch learning  

in NFQ, originally developed by [18]. As shown in Fig. 10, 

with this procedure, the algorithm is run with an ε–greedy 

policy using the estimate of the state-action value provided by 

the NN. At each step, the current state, action, reward and new 

state are stored as samples of the form (s,a,r,s’). After a 

predefined number of samples is collected, the NN weights are 

updated using the complete set of transition experiences (i.e. all 

past samples) and the Levenberg-Marquardt algorithm. In 

particular, this procedure is repeated for a specified number of 

epochs, kmax. This approach has been found to work well, and 

is more computationally efficient than setting a limit for the 
error [19]. In Fig. 10, the notation S(:,j) indicates the jth column 

vector of list S. 

 

Fig. 10  Algorithm of Neural Fitted Q-iteration, adapted from [18] 

IV. REINFORCEMENT LEARNING IN MPPT CONTROL OF TIDAL 

TURBINES 

In this work, the two variants of RL, described in the 

previous section, are used to determine the optimal coefficient  

Kopt of the optimal power curve for the tidal turbine. According 

to Fig. 7, at every RL time step, the RL controller (the agent), 

observes the current power curve coefficient Kopt (the state s) of 

the environment and chooses a change in the Kopt value (the 

action a) with the aim of maximising the reward r accrued over 

time. Fig. 11 shows the schematic of the RL implementation . 

The high-level controller, as seen in Fig. 6, learns the optimal 



6 

 

power curve coefficient through interacting with its 

environment and learning from the observations made. To 

account for possible wave action and turbulence in tidal flows, 

the instantaneous power generated needs to be averaged over a 

time period T before it can be used to calculate the reward r. 

During this time period T the state s and the action a are kept 

constant. The state space, the action space and the reward 

function used in this work are described in detail in this section.  

A.  State Space 

As mentioned earlier, the coefficient of the power curve used 

in the high-level controller Kopt was considered to be the state 

variable in this work. The RL state space thus becomes:  

 ]},...,2,1[),(| NkKssS optk  .   (17) 

N in Equation (17) is the number of equally divided segments 

in the entire range of Kopt considered in this work. The value of 

N significantly affects the learning process, with a larger N 

increasing the learning period, while smaller N reducing the 

learning accuracy. Thus, N needs to be appropriately chosen to 

balance these two opposing requirements.  

 

Fig. 11  Reinforcement learning applied in MPPT control of tidal turbine 

B.  Action Space 

From the current state s, the action taken by the agent 

involves changing the value Kopt by a small value Kopt. The 

action space for the RL controller thus becomes: 

},0,|{ optopt KKaA     (18) 

The states corresponding to the maximum and the min imu m 

value of Kopt have limits on the actions that can be taken to 

ensure Kopt remains within the state space boundary. 

C.  Reward 

After an action a is taken from state s, the agent receives a 

reward r. The aim of the RL algorithm is to maximise the total 

future rewards instead of the just the immediate reward r. In the 

case of MPPT control of tidal turbines, the main objective of 

the controller is to maximise the average power output of the 

turbine by selecting the optimal power curve coefficient. 

Considering that the average power generated by the tidal 

turbine depends on the tidal current velocity and the presence 

of any turbulence and wave action, offline simulations were run 

with different current velocities, turbulence intensities and 

wave actions, to determine the maximum average power 

max(Pgen avg) seen over the averaging horizon Tavg. The average 

power over the period Tavg, normalised with respect to the 

maximum Pgen avg (from the offline simulations) was used as the 

reward function. Additionally, the magnitude of Kopt selected 

can mean that the difference in the average power between two 

neighbouring states may not be very high. To magnify the 

effects of a change in Kopt and for the algorithm to converge 

faster, the reward function was then raised to a power value m. 

The reward function used thus became: 





















m

avggen

avggen

P

P
r

)max(
.    (19) 

E.  Learning Process 

Applying RL in tidal turbine MPPT control consists of two 

distinct parts. The first one is the learning process itself, 

through which the agent learns what best action to take at every 

state. This process involves updating the Q-table or Q-function 

based on the learning experience.  

Fig. 8 and Fig. 10 show the algorithms of discrete Q-learning  

and NFQ that were used in the learning process.  

The learning process is stopped after a specified number of 

iterations are complete. 

F.  Application Process 

Once the optimal power curve coefficient Kopt has been 

identified by the RL algorithm, the learning process is stopped 

and the high-level controller works independently with the 

power curve as shown in Fig. 6. This constitutes the application 

process and is continued until another learning process is 

required. This could be necessitated by changes in turbine 

characteristics caused by changes in the long term flow 

conditions and/or other causes like biofouling.  

V. SIMULATION RESULTS 

Simulations using both the RL variants were completed for two 

different tidal current velocities , without any turbulence and 

wave action. Three other cases were then assessed to study the 

performance of the algorithms in the presence of turbulence and 

wave action. Since only a single tidal turbine has been 

considered here, the RL algorithms would converge to the same 

Kopt value for all the cases considered. The performance of the 

two RL algorithms tested will then be compared for the 

simulated cases. 

A.  RL parameters and simulation setup 

The state space, or the range of Kopt, used in this work was 

between 1 and 3 with Kopt = 0.1 (ns = 21). The state space was 

decided from prior experience of the Kopt of the tidal turbine 

obtained through tank tests and offline simulations. Tank tests 

of a physical model of the turbine showed that the turbine stalls 

at a tip speed ratio of around 3.53 (or turbine rotational speed 

of around 45 rpm) for a current velocity of 0.8 m/s. The range 
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of Kopt was chosen keeping this in mind, such that even at the 

lowest Kopt value, the turbine would not stall.  

The number of actions na was set to 3, as explained in  

Section IV B. The Q-table, thus, has a dimension of 21x3. For 

NFQ, a neural network with one hidden layer having 5 nodes  

was chosen. The simulation, for every RL iteration, was run for 

15 s (Tavg), out of which the power generated by the turbine over 

the last 10 s was used to calculate Pgen avg. If any action a 

(change in Kopt) was required in the current iteration, the change 

was made 1 s after the simulation starts. The simulation time of 

15 s, per RL iteration, was chosen because waves with period 

between 1 s and 3 s were tested with the scaled turbine model.  

For the RL algorithms, the initial learning rate, exploration  

rate, and discount factor were set to 0.5, 0.6 and 0.95 

respectively. The number of RL iterations was set to 1000 for 

both the discrete Q-learning and the neural-fitted Q-iteration  

algorithms. The elements of the Q-table were initialised to zero  

and the algorithms were set to start at the 1st state every time.  

B.  Learning with constant current velocity 

As the first test, the tidal turbine was exposed to a constant 

tidal current velocity over the duration of the learning process. 

Two current velocities of 0.6 m/s and 0.8 m/s were used and 

both the RL algorithms were tested.  

Fig. 12 shows the Q-learning algorithm converging towards 

the optimum Kopt over the 1000 time steps simulated. It takes 

the algorithm around 350 time steps to converge. Note that even 

after converging, the algorithm explores  the neighbouring Kopt 

values in the time steps after 350. This would identify any 

significant change in the turbine characteristics or flow 

conditions and update the RL learning process accordingly. Fig. 

12 also shows the mean power generated by the turbine at each 

RL time step, which finally converges to its maximum value. 

The convergence of Q-learning with the 0.6 m/s tidal current 

velocity is shown in Fig. 13. With the new tidal current velocity, 

the algorithm takes almost the same number of steps to 

converge. Since it is the same single turbine being considered, 

the Q-learning algorithm converges to the same Kopt value. The 

convergence of the NFQ algorithm is shown in Fig. 14 for the 

tidal current velocity of 0.8 m/s . The algorithm converges to the 

optimal Kopt in about 90 RL time steps. 

C.  Learning with constant current velocity and turbulence 

As the next test, the two RL algorithms were employed with  

turbulence added to the constant tidal current velocity. The 

effect of turbulence was modelled using random noise 

superimposed on the constant tidal current velocity. Fig. 15 and 

Fig. 16 show the convergence of the two RL variants over the 

RL time steps simulated. Discrete Q-learning still takes 

approximately 350 time steps to converge, while NFQ takes 

approximately 90. The optimal power curve coefficient Kopt 

output by the learning process is still the same as seen in the 

case without any turbulence. This is as expected and proves that 

the RL algorithms are identifying the correct Kopt. 

 

 

Fig. 12  Q-learning results with the tidal turbine simulated in a constant tidal 
current  velocity of 0.8 m/s 

 
Fig. 13  Q-learning results with the tidal turbine simulated in a constant tidal 

current velocity of 0.6 m/s 

 
Fig. 14  NFQ results with the tidal turbine simulated in a constant tidal current 

velocity of 0.8 m/s 
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Fig. 15  Q-learning results with the tidal turbine simulated in a constant tidal 
current velocity of 0.8 m/s with turbulence 

 

 

Fig. 16  NFQ-iteration results with the tidal turbine simulated in a constant 
tidal current velocity of 0.8 m/s with turbulence 

D.  Learning with constant current velocity and wave action  

This section examines the learning process when sinusoidal 

waves of different amplitudes and frequencies are 

superimposed on the tidal current velocity. Wave action on the 

turbine was modelled by adding a sinusoidal velocity signal to 

the constant tidal current velocity. Two wave induced velocity 

amplitudes were tested – 0.1 m/s amplitude, 2 s period and 0.15 

m/s amplitude, 3 s period. Fig. 17 and Fig. 18 show the two RL 

algorithms’ converge to the optimal Kopt value for the second 

wave tested. As has been seen with the earlier results, the two 

algorithms converge to Kopt = 1.5. Q-learning took around 400 

time steps to converge, while NFQ took around 80 time steps.  

E.  Learning with constant current velocity, wave action and 

turbulence 

This test was arranged to make the learning process most 

challenging, with both turbulence and wave action, as setup in 

the previous simulation runs, superimposed on the constant 

tidal current velocity. Even in this learning environment, both 

the RL algorithms converged to the optimal Kopt value in 

approximately 400 (for Q-learning) and 90 (for NFQ) time 

steps. The convergence of these two algorithms to the optimal 

Kopt value are shown in Fig. 19 and Fig. 20.  

 

 

Fig. 17  Q-learning results with the tidal turbine simulated in a constant tidal 
current velocity of 0.8 m/s with a 0.15 m/s amplitude, 3 s sinusoidal velocity 

superimposed 

 

Fig. 18  NFQ results with the tidal turbine simulated in a constant tidal current 
velocity of 0.8 m/s with a 0.15 m/s amplitude, 3 s sinusoidal velocity 

superimposed 

 

 

Fig. 19  Q-learning results with the tidal turbine simulated in a constant tidal 
current velocity of 0.8 m/s with a 0.1 m/s amplitude, 2 s sinusoidal velocity 

and turbulence superimposed 
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Fig. 20  NFQ results with the tidal turbine simulated in a constant tidal current 
velocity of 0.8 m/s with a 0.1 m/s amplitude, 2 s sinusoidal velocity and 

turbulence superimposed 

F.  Adaptive learning with RL 

In this section, the RL algorithms ’ performance in the 

identification of Kopt when the turbine characteristics change is 

examined. As was mentioned earlier, one of the advantages of 

the RL approach is that the algorithm can respond to changes 

in the turbine characteristics brought about by modifications in 

the long term flow conditions or by biofouling.  

Biofouling affects the roughness of the turbine blades and 

modifies its Cp- curve. Based on the work reported in [24] the 

modified Cp- curve of the turbine was assumed to be the one 

shown in Fig. 21. As shown in [24] through scaled physical 

testing and modelling work, the value of Cp, decreased for the 

whole range of  with the peak of the curve shifting towards a 

smaller . This new Cp- curve of the turbine modified the 

optimal power curve and the corresponding Kopt, which was 

found, from offline simulations, to be 1.36.  

The Q-learning simulation with the modified turbine was 

initialised with the final Q-matrix and state obtained from the 

simulation described in Section V C done with the original 

turbine. This simulates the RL process working continuously 

over the two periods between which the turbine Cp- curve had 

changed. The turbine was simulated in a tidal current flow of 

0.8 m/s with turbulence. The learning rate and the exploration  

rate for the algorithm were increased to 0.75 and 0.75 

respectively to make the learning and update process faster. Fig. 

22 shows the Q-learning algorithm converge to the optimal Kopt 

value in approximately 410 time steps. The excursions beyond 

this time step is because of the higher exploration rate used.  

Fig. 23 shows the NFQ algorithm, initialised with the same 

neural network weights as from the simulation described in 

Section V C, converging to the new optimal Kopt value in 82 

time steps. This demonstrates how the algorithm can deal with  

changes in the turbine characteristics.  

 

 

Fig. 21  The original and the modified Cp- curve of the turbine. 

 
Fig. 22  Q-learning results with the tidal turbine, with the modified Cp- 

curve, simulated in a constant tidal current velocity of 0.8 m/s and turbulence 
superimposed 

VI. DISCUSSION 

The results presented and discussed in the preceding section 

showed the learning process with the two RL variants. In all the 

cases discussed, for the single turbine, the Kopt value was 

identical, as was expected, which proves  the applicability of the 

methods used. In this work, it was assumed that the flow was 

uniform over the rotor. With non-uniform flow, the RL 

algorithms will take longer to converge.  

During the learning process, the controller moves through 

various Kopt values before converging on the optimal one. Since 

the learning process only occurs for an extremely short period 

of time relative to the life time of a tidal turbine, the higher 

loads that may be encountered during the learning process will 

not impact the fatigue life of the turbine significantly. 
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Fig. 23  NFQ results with the tidal turbine, with the modified Cp- curve, 
simulated in a constant tidal current velocity of 0.8 m/s and turbulence 

superimposed 

The real interest in the presented algorithms is in learning the 

optimal power curve coefficients within arrays of tidal devices. 

In arrays with rows of tidal devices, the optimal power curves 

for the individual generators may need to be different to 

maximise the energy yield across the array. Through on-line 

learning algorithms, like the ones presented in this paper, the 

best optimal power curves for each tidal device can be 

determined. In theory, identifying the optimal power curves 

using RL in the arrays will take longer to converge when 

compared to the single turbine case.  

Here, two distinct reinforcement learning algorithms have 

been investigated. In all cases, NFQ has been shown to have 

superior convergence properties. This is mainly due to its 

reliance on function approximation, with the NNs helping the 

controller generalize for unseen situations. Additionally, the 

greater the number of states and actions, the greater the benefits 

of function approximation are expected to be [14]. 

The presented learning algorithms can also be used to 

optimise turbine performance due to changes in the device 

characteristics due to biofouling or due to long term changes in 

the flow patterns. In such situations  when the operator feels a 

change in the optimal power curve is required, the application 

process is stopped after which another learning process is 

initiated. An example of such a situation and how the two RL 

algorithms responded to a change in the turbine’s Cp- curve 

was also shown in the paper.  

VII. CONCLUSIONS 

This paper discussed two, model-free RL algorithms – Q-

learning and NFQ - to identify the optimal power curve for 

single tidal turbines. The performance of the algorithms in 

MPPT control of the single turbine was assessed in different  

tidal current flow conditions. The two algorithms converged to 

the optimal power curve coefficient even for the cases with  

wave action and turbulence added to the different constant tidal 

current velocities, which proves its applicability to the control 

of tidal turbines. The proposed algorithms were tested on a tide-

to-wire model of a single turbine, which was also described in 

the paper. The advantages of the RL based approach are that 

there is no need for any prior knowledge of the system and that 

the control system can adapt to changes  in the turbine 

characteristics brought about by biofouling, non-critical 

failures, or long term changes in the flow characteristics. 

Whether these algorithms can be efficiently extended to learn  

the optimal power curves of tidal turbines in arrays will be 

studied in further work. 
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