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ABSTRACT 

 

Operation of a perfusive catalytic curved membrane is systematized into different transport-

reaction regimes. The internal viscous permeation improves the catalyst performance, measured 

here by the effectiveness factor and by its enhancement relative to purely diffusive conditions. 

A theoretical analysis is presented for nonlinear kinetic expressions, which are suitable to 

describe the consumption of a reactant in many (bio)catalytic systems. The kinetic and transport 

parameters required to attain maximum enhancement are related by simple design rules, which 

depend on the form of the reaction rate law (namely on the order of reaction and dimensionless 

inhibition constant). For zero-order reactions, these optimum conditions correspond to attaining 

negligible concentration at a position inside the membrane, while generically may be interpreted 

as separating situations of severe mass transfer resistance from cases of high effectiveness. It is 

important to incorporate the correct kinetic expression in the analysis, so that the predictions can 

be used in a quantitative manner. The results for the different regimes are compiled in 

enhancement plots and in Peclet-Thiele diagrams. Moreover, the study also yielded new results 

for the nonlinear reaction-diffusion in a curved membrane with its two surfaces exposed to 

different concentrations, a case of relevance in membrane reactors. 

 

http://ees.elsevier.com/cej/viewRCResults.aspx?pdf=1&docID=23755&rev=1&fileID=764181&msid={0459B41D-36F9-492E-BF2C-4E8A265A829D}
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1. INTRODUCTION 

Owing to the slow nature of diffusion in conventional porous catalysts, permeable catalytic 

materials have proven to be of practical interest since promoting an internal flow field increases 

the mass transport rate. This concept has been investigated both theoretically [1, 2] and 

experimentally [3-5] in a broad range of conditions. It is not only found in reaction engineering 

[6, 7], but also in separation processes (as chromatographic supports [8, 9]), or in the fields of 

biotechnology (as supports for cell culture and biomass growth [10-14]), among others. In some 

sense, it is also related with materials showing a hierarchy of pore sizes [15] including the 

macropore range. 

Reactor designs based on these materials have been presented as monoliths [16, 17], porous 

ceramic mesoreactors (e.g. for multiphase hydrogenations [18-20]), flow-through filters [21, 

22], coated microchannels with carbon nanofiber layers [23] or as hollow fiber bio- and 

enzymatic reactors [12, 24, 25]. They are also frequently classified as non-permselective 

catalytic membrane reactors [26-36]. Higher catalyst activity (and in some cases, higher 

selectivity) were observed due to the intensification in the transport of reactants by convection 

in the selective epoxidation of propene [34], catalytic reduction of nitrite in water and 

dechlorination of chloroform [37], and the catalytic oxidation of propene [38]. The same 

concept was applied to the partial hydrogenation of 1,5-cyclooctadiene [39], Į-methylstyrene 

hydrogenation [40] and nitrate reduction [41] in a similar design. Earlier work on non-selective 

membranes had also the objective of controlling the rates of separate feeding of different 

reactants [42, 43]. More recently, Murru and Gavriilidis [44] studied the catalytic combustion of 

methane with the same configuration in open and dead-end modes. The application of a pressure 

difference, inducing a convective contribution to the radial fluxes, improved the performance by 

decreasing the concentrations of carbon monoxide and hydrogen.  

These materials have also been integrated in microfluidic catalytic reactors [45] and cell 

culture devices [46] to model physiological phenomena. Hsu et al. [47] proposed a microfluidic 

http://www.scopus.com/authid/detail.url?authorId=7003522751&amp;eid=2-s2.0-2442499500
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platform to study mass transport in tissue cultures. In particular, the ratio between the timescales 

for diffusion and convection (compared in the Peclet number) was varied by 5 orders of 

magnitude (values up to 160). They studied the influence of hypoxic conditions in diffusion 

limited systems (Peclet numbers below 0.1) and interstitial flow (significant when Peclet 

number is above 10) on vasculogenesis. Moreover, some microchips are designed to mimic 

bipolar cell environments (surfaces exposed at different conditions) and to study the response of 

cells to diffusive or convective-dominated delivery of certain agents [48]. 

Frequently, the description of these processes involves a nonlinear reaction rate law. First-

order kinetics can provide not only exact solutions, but also convenient approximations [49]. 

However, biocatalytic perfusive reactors usually exhibit non-negligible levels of reactant 

inhibition. This added complexity leads to a major distinction in the theoretical treatment of the 

problem, since solutions valid for all values of the reaction rate cannot be obtained. Therefore, it 

is necessary to break down the analysis into the relevant reaction-transport regimes. Kinetically 

controlled conditions assume that reactant transport (which may be dominated by diffusion, 

convection or both) is much faster than the rate at which it is consumed by reaction. On the 

other hand, if the reaction is fast, two distinct situations are of interest: (i) the diffusive fluxes 

near the surfaces are large, while convective transport is negligible (diffusional regime), or (ii) 

convection is comparably strong throughout the whole membrane thickness (convection 

dominated regime). We will show that considering separate regimes (with solutions of restricted 

validity in each one) aids the understanding and description of the full picture, and kinetic 

normalization is achieved. We also demonstrate how scaling, asymptotic and other approximate 

techniques can be employed in this case. Moreover, new results for purely diffusive catalytic 

membranes are presented, which do not seem to have been sufficiently considered in this 

context. 

In section 2, a simple mass transfer model, which is able to capture the main features in 

perfusive membrane reactors, is presented. Then, several operating regimes are characterized, 

and the transitions between them identified (sections 3 to 5). Finally, the range of validity of 

these limiting behaviors is shown in a parametric map, illustrating the overall picture of the 

system (section 6). 
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2. CONVECTION, DIFFUSION AND NONLINEAR REACTION 

The operation of the catalytic membrane is determined by the rates of reactant transport (by 

convection and diffusion) and consumption, which must vary so that conservation of mass is 

satisfied: 

2 2
2

2 2
( )

1 1 1

CPc c P c c c
c

r r r r r r r r

 
  

    
    

       
R .    (1) 

As shown in Fig. 1, the boundary conditions for Eq.(1) may be those of specified surface 

concentration, ( 0) 1c r    and 
2( 1)c r c   (if the dimensional concentration ĉ  is normalized 

by the value at the inner surface 
1̂c , as 

1
ˆ ˆc c c ), or of no-flux type at the downstream surface, if 

the membrane operates exclusively in radial flow model [50, 51]. The former case may be 

appropriate to describe axial flow through the lumen and/or in the space surrounding the 

membrane, while the latter concerns the case where transmembrane flow dominates. Both 

conditions are important (see Fig. 2), since these membranes can work as contactors between 

different streams carrying the reactant, in the presence or absence of a sweep phase, with 

relatively weaker or stronger radial flow. 

In the left-hand side of Eq.(1), the diffusive term was separated to show the contributions 

from planar diffusion and curvature. The dimensionless parameters that compare the timescale 

for diffusion in a slab-shaped membrane with the effects of convection and curvature are 

respectively: the Peclet number ( ˆ ( )effP V u S D , positive for outward flow) and the ratio of 

length scales (
mt a  , see Fig. 1). Both dimensionless numbers can be combined into 

CP P   , as shown in (1). The average superficial velocity û  can be estimated by Darcy‘s 

law as a function of the membrane permeability and transmembrane pressure difference. Axial 

diffusion is neglected ( mt L  and negligible permeability in this direction). The axial 

dependence of the solution is thus given by the parameter ˆ( )P z  and boundary condition 
2

ˆ( )c z . 

Note that for inward flow (permeate collected in the lumen of the channel), 0P  . 

In general, the empirical laws for the rate of several reactions are nonlinear and may be 

expressed as 
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  1

1

p

mi

i

k
c c

k c

 
   

R ,         (2) 

or   mc cR  for power-law kinetics (
ik  is the inhibition rate constant multiplied by the scale 

for concentration, *

1̂i ik k c  with *

ik  in 3m mol ). Here,  cR  is the dimensionless reaction 

rate, normalized by 
*

1 1 1
ˆ ˆ ˆ ˆ( ) (1 )m p

ic k c k c R  in the Thiele modulus: 

2 2 1
2 1 1

1

ˆ ˆ ˆ( )

ˆ (1 )

m

m m

p

eff eff i

t tc k c

D c D k




 


R
.        (3) 

The Michaelis-Menten kinetics is recovered when setting 1m p  . Even though the detailed 

concentration profile inside the membrane is of interest, more insightful (qualitative and 

quantitative) information is achieved by considering the averaged reaction rate over the whole 

membrane cross-section, i.e. the effectiveness factor, 

     
1

2 2

0 1 0

1 1
1 ( ) 1 ( 0) ( 1)

r r

c c P
r c dr c r c r

r r
  

    
 

  
         

   
 R . (4) 

Note that the ratio between the membrane volume (V ), its thickness (
mt ) and the area of the 

internal surface ( S ) is given by ( )mV t S  , which is equal to 1   or 1 2   , for planar 

or cylindrical membranes, respectively. A substantial part of the analysis presented in this work 

is concerned with the determination of analytical expressions for   under different conditions. 

However, we also find interesting to consider a measure of the increase of   by the existence of 

convective currents forcing the reactant to flow-through the membrane, which is defined as: 

2

2

( , )

( , 0)

P

P

 
 

 


.         (5) 

Exact analytical solutions may be of very complex form for linear reactions (e.g. in a 

cylindrical membrane), and impossible to obtain for nonlinear ones. However, simplified 

analyses can be given in different regimes, namely: 

Regime I: Kinetic control in nearly diffusive systems (section 3.1) 

Regime II:  Kinetic control under strong convective conditions (section 3.2) 

Regime III:  Diffusional control (section 4) 

Regime IV: Convection dominated systems (section 5). 
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The transitions between these regimes occur generically in an intermediate region and will be 

determined by the intersection of asymptotes for the effectiveness ( ) or enhancement ( E ) 

factors. 

 

3. CHEMICAL REGIMES, 
2 0   

We first consider regimes where reaction is slow and transport is dominated by either 

diffusion (Regime I) or convection (Regime II). A perturbation procedure can be conceived for 

small values of the Thiele modulus, similarly to what was outlined in Lopes et al. [52, 53]. This 

analysis suggests writing the concentration profile inside the membrane, and hence the 

effectiveness factor, as a series of powers of 2 . The leading order term (of (1)O ) in such series 

corresponds to the inert solution (no reaction) and is a function of the radial position, 
0 ( )c r . 

The differential equations that allow the calculation of higher-order corrections to this term, 

make use of 
0 ( )c r  in the subdominant kinetic term of the mass balance. The calculations can be 

considerably simplified if 
0 ( )c r  is replaced by the averaged value over the cylindrical 

membrane thickness in the subproblem of 
2( )O  , given by: 

   
2

2 2
0 1

2 (1 ) 2 ( 1) (2 ) 1

2 3 3(1 ) 1C

C C C

P

C C

c P P Pc
c

P P


   
   

      
 

   
,   (6a) 

for all values of  , 
2c  and 

CP . In the case of a purely diffusive membrane: 

 
2

2 2
0

(1 ) 1 1

2 2 ln(1 )

D c c
c


  
  

 
 

.       (6b) 

As we will see, the accuracy of this approximation increases as both surface concentrations 

become closer, i.e. 
2 1c   (otherwise, the sweep phase conditions need to be strong, as 

negligible consumption of reactant occurs over the membrane). Diffusive conditions also lead to 

less accurate predictions, since convection tends to flatten out the profile, shifting the variation 

to a thin region downstream (hence, less contributing to the volume-averaged reaction rate). 

However, as we will see in the next section, these difficulties do not compromise seriously the 

accuracy of our approximate solutions. 



 

7 

In the cases where the downstream boundary is closed to diffusion (Fig. 2B), 0 0( )c r c  

(exactly) and is either equal to 1 or to 
2c , whether the flow direction is outward or inward, 

respectively. The local conversion observed at the membrane exit is given by: 

1

2 4(1 ) (1 )
(1) ( )

( ) ( )

CP

C

C C

P
X O

P P

   
 

 

   
 

 
R   (outward flow)  (7a) 

1

2 42

2

(1 ) (1 ) ( )
( )

( ) ( )

CP

C

C C

P c
X O

P P c

   
 

 

   
 

 
R

  (inward flow).  (7b) 

 

3.1 Diffusive limit, 0P   (Regime I) 

Even when the convective contribution to the overall mass transfer can be considered small 

(due to low permeability or negligible pressure drop across membrane), few results have been 

reported for the reaction-diffusion problem with asymmetrical boundary conditions. Tan et al. 

[54] present the solution for a diffusive slab with first-order reaction in the context of partially-

wetted catalyst particles in trickle-bed reactors. DeSimone et al. [55] considered the 

unsymmetrical nature of the solution for a diffusive membrane separating two reservoirs at 

different concentrations, while a reaction with order m  occurred in the slab. The effectiveness 

factor was written implicitly in terms of the concentration at a reference plane. Other works 

which also pertain to facilitated transport across planar films have been presented [56], but none 

addresses the problem as considered here, i.e. the approach and results are novel. 

In this section, we derive approximate expressions for the effectiveness and enhancement 

factors which describe more comprehensive conditions than the ones found in previous works: 

(i) nonlinear kinetics; (ii) cylindrical porous wall with any value of the relative thickness,   

(including thick membranes); (iii) concentration at both surfaces kept at any ratio, 
2c ; (iv) small 

convective effects, that will appear in a term of ( )O P .  

 

3.1.1 Effectiveness factor for perfusive membranes (Fig. 2A) 

Using the asymptotic techniques described above, it is possible to show that: 
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     2 2 2 2

0 1 0 0 2 , ,P c c O P        R R' .     (8) 

Concerning the several terms in Eq.(8), it should be noted: 

(a) The leading-order term 
0  concerns 2 0   conditions in a membrane with prescribed 

values of   and 
2c . This can be roughly approximated by  0 0

Dc R , provided that 
2c  is not 

too small. However, for power-law kinetics it is possible to obtain a better estimate by 

considering the exact solution of 
0

Dc . Details are shown in Appendix A and the final form can 

be written as 

 
 

   2

2

1
22

0 1

2 2

1 2 ln 1 2ln 11
1 , 1 ,

2 ln 1 1 1

m
c

m

cc
m m

c c

  


  





        
                    

,  (9a) 

for all values of  , m  and 
2c . In particular for a thin membrane ( 0  ), Eq.(9a) reduces to 

 1
2 2 2 2 22 2

0 2

2 2

2 2 (1 ) (1 )11
( )

1 1 (1 ) ( 1)( 2)

mm c c m m c cc c
O

m c c m m

 
     

  
    

.  (9b) 

The first term is the solution for a slab and, to the best of our knowledge, these results have 

never been reported before. The limit for a first order reaction ( 1m ) is simply 
0 2(1 ) 2c   , 

in agreement with Tan et al. [54], followed by a small contribution for thin membranes of ( )O 

 , equal to 2( 1) 6c  . In Fig. 3, we can see that 
0  is an increasing function of 

2c  for several 

orders of reaction in thin ( 0.1  ) and thick ( 1  ) membranes. This is due to the diffusive 

loss of reactant (for 
2 1c  ) through the surface at 1r  , leading to values of effectiveness 

below 1. In agreement with what is known for catalytic particles with 2 0  , the effectiveness 

when 2 0   also decreases as the order of reaction or membrane thickness increase. Hence, 

the value of 
0  depends on the membrane geometry and on the concentrations that prevail at 

both surfaces, but naturally not on the actual reaction rate. However, it is curious that in the 

limit of a very slow reaction, the effectiveness depends on the form of the reaction rate law 

(namely, on kinetic parameters such as the order of reaction m ), since the first estimate to the 

concentration profile (given by 
0c ) is kinetic-independent. The aforementioned dependency is 

not a consequence of reaction nonlinearity, but of the asymmetry in the boundary conditions of 

the transport-reaction problem. This happens since the first estimate to the effectiveness factor (
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0 ) derives from the 2( )O   correction in the perturbation series, which is calculated writing the 

reactive term in the mass balance as 
0( )cR , which is different from 1. In the case of equal 

conditions at both surfaces ( 
2 1c  ), the effectiveness factor approaches 1 , for any reaction 

rate. 

In a diffusive hollow fibber reactive membrane with the so-called ‗normal kinetics‘ 

(yielding monotone variation of the effectiveness factor with the Thiele modulus), 
0  is the 

maximum effectiveness factor that can be attained. In Appendix A, we also discuss the 

influence of these results in the formulation of criteria to exclude internal mass transfer 

resistance (a fundamental step when using experimental data to evaluate the reaction intrinsic 

kinetics in a membrane reactor setup). 

 

(b) Eq.(9) does not include information on the convective process. The main correction 

accounting for these effects can be given by the ( )O P  term in the expansion of  0cR  for 

small P . This is written as the second parcel in Eq.(8), where: 

  0

1 0

0P

d c
c

d P


 
   

 
R' .        (10a) 

Note that the kinetic-independent expression for 0c  is given in Eq.(6a) and that 

 
0

0 c
c d d cR' R . For generic order of reaction m  and any value of  , 

1
2

2 2 2
1 1 2

(1 ) (1 ) 1 1 1
2 ln(1 )

2 ln(1 ) (2 ) ln(1 )

m

m

c m c c   
     





                      
.  (10b) 

For small  , 
1  becomes: 

 2
1 2 2 22 2

2

1
6(1 ) (1 5 ) 2(1 )

9 2 (1 )m m

cm
c c c m

c
  


      


.    (10c) 

This contribution is positive for 
2 1c   and 0P   as expected. It is zero, whenever the 

concentrations at both surfaces are equal, since the leading-order result for the effectiveness 

factor is 1, regardless of the degree of convective transport. 
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(c) The dependence on the Thiele modulus is captured by considering a higher-order term (of 

4( )O  ) in the perturbation procedure, which uses the averaged values of the initial guess for the 

concentration profile, 0c . This results in the last term of Eq.(8), where the geometric factor is: 

    2

2 2

21 1
2 2 1

8 ln(1 ) 12 60
O

   
 

     
             

.     (11) 

As expected, for ‗normal kinetics‘ the effectiveness decreases with 2 . This asymptotic 

approximation is compared with numerical results in Fig. 4. The same approach can be 

extended for systems with reactant inhibition, provided that the correct value of 
0  is known. 

Then, the behavior for 2 1   is well predicted by the higher-order corrections in Eq.(8). 

 

3.1.2 Enhancement factor for perfusive membranes (Fig. 2A) 

Using the same reasoning, it is possible to calculate E  as 

 
   

0

20
2

0
E 1 1 ( )

2D
c P

c

c
m P O


  

R

R

,      (12a) 

where, 
   

     
0 22

2 2

1 ln 1

1 1 1 ln 1c c

    

    

  
 

      
. 

The last term in (12a) is written for power-law kinetics of order m  and small P . When 0  , 

the geometric factor simplifies to: 

2 22 2

2 2

1 1 5
E 1 1 ( ) ( )

1 6 1 6

c cm P
O O P

c c

 
  

      
.     (12b) 

A higher-order term (of  2O P ) could be considered in (12a) to obtain the dependence on the 

surface reaction rate, but this is generally not required as the variation of E  with 2  is 

negligible for small values of this parameter (say, 2 1  ). We only find this additional term 

useful to distinguish between the cases where the curve 2E( )  is increasing or decreasing. It is 

possible to observe that 2E( )  is a decreasing function for 1m  (i.e. 
2

maxE E( 0)  ), but 

an increasing one for 1m . These conclusions are valid for small values of P . 
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3.1.3 Solutions for catalytic filtration (downstream closed to diffusion, Fig. 2B) 

The previous results can be obtained more easily in the case where the boundary condition on 

the side where the convective flow exits the membrane is replaced by a no-flux requirement 

(Fig. 2B). The results for the effectiveness and enhancement factors are presented in Table 1. 

 

3.2 Convective limit, P   (Regime II) 

Under appreciable convective conditions, the effectiveness and enhancement factors are 

given by: 

   
2 4

0 0 2
1 '

2 C

c Oc
P P

   
   

    
    

R R .      (13) 

Here, 0 1c   or 
2c , whether the flow is outward or inward, respectively. This expression also 

holds when the downstream surface is closed to diffusion. Note that Thiele and Peclet numbers 

appear grouped in the subdominant correction, a feature of convective-dominated solutions that 

we will reencounter in section 5. Rigorously, the constant in Eq.(13) is 

   

 

2 1

2
1

1 1

1 1

C

C

P

P











 

 
 

   

, 

but 1   fast when 
CP  . This result is valid for any condition specified downstream, 

due to the importance of convective transport in this regime. An estimate of the maximum 

enhancement factor observed in this regime is calculated according to: 

 0

0

E
c



R

,          (14a) 

which simplifies to 

0

1
E


 (in outward flow) or 

 2

0

E
c


R

 (in inward flow).    (14b) 

A correlation merging the limits represented by Eqs.(12) and (14) can be proposed as:  

0

1
E 1 1

1

n
P

P
          

  (outward flow; small  ).   (15) 
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The value of the exponent n  was chosen in order to minimize the sum of the square of the 

deviations between Eq.(15) and numerical results for the worst case scenario (
2 0c  ). A value 

around 3.3n   was found to yield a good agreement in the limit of small  . This correlation is 

plotted in Fig. 5a for 2m , where the maximum relative error of this prediction is around 4%. 

It is particularly useful to describe an intermediate range of Peclet numbers. This is also shown 

in Fig. 5c for kinetics with 1m  and low Thiele modulus ( 2 0.1  ). 

In Eq.(14), only the leading-order terms for   were considered. Higher-order terms do not 

improve the approximation, but are useful to make conclusions regarding the monotonicity of 

the 2E ( )  function. Thus, a maximum in enhancement exists as the reaction rate is increased, if 

the Peclet number is allowed to increase above the following criterion: 

1

0

2

3

4
C

m
DP c





  (outward flow).      (16) 

According to Eq.(16) for 0.1   and 2m , 9 18CP   for 
21 0c  . For the case of 

inward flow, this indicative value can be derived similarly from previous results. Comparing 

this prediction with numerical calculations, an agreement in the order of magnitude of 
CP  is 

observed, as well as in the trends resulting from parameter variation in Eq.(16). For orders of 

reaction greater than 1, the value of 
CP  decreases as 

2c  increases. For 1m , advantage from 

catalyst effectiveness at higher reaction rates is only achieved if 
CP  exceeds this value, which 

for a second-order reaction is around 10, as can be seen in Fig. 5 (curve 2

maxE @ 0  ). The 

restriction that this requirement poses on 
CP  is not too serious if 1m  (since 0 1Dc  ), and it 

is likely that the behavior of 2E ( )  near 2 0   is that of an increasing function (the same was 

understood from the behavior at low Peclet numbers). 

3.3 Onset of significant convective effects in kinetic control (Regimes I ĺ II) 

From the point of view of the membrane reactor, the assessment of the importance of 

convective effects should not be based on the magnitude of P  alone (or permeability values), 

since the observed enhancement is also a function of the reaction rate. Under kinetic control 
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(small  ), the intersection of the asymptotes in the 2E   plot for regimes I and II yields the 

following transition value for the Peclet number ( *P ):  

 
0

2 0 0

12
*

1
P

c m







 
 where 

0

1
E ( *)P


       (17a) 

The E ( *)P  curve is represented in Fig. 5 (a) and (b) as a dashed line separating the two 

regimes. The limit of small   can be employed to further simplify (17a) to: 

0 2

0 2

1 16
*

1

c
P

m c




  
   

.         (17b) 

Some limiting situations are not described by this transition (
2 1c  , 0m , 

0 1  ) since the 

higher-order terms from which (17) was derived, cease to exist in those cases. However, it is 

possible to understand that as the order of reaction decreases, the diffusive regime I becomes 

more appropriate to describe the enhancement factor. This can be inferred from Fig. 5c.  

 

4. DIFFUSIONAL REGIME, 
2   (REGIME III) 

4.1 Effectiveness and enhancement 

 

When reaction kinetics is faster than mass transport, a concentration boundary layer may 

occur near one or both surfaces of the membrane. These regions are described by a reaction-

diffusion leading-order balance [57], followed by a correction accounting for curvature and 

convection [53]. The effectiveness factor calculated from Eq.(4) for arbitrary kinetics and 

specified surface concentrations is given by  

  3

22 2
1 ( )CPK P

K c O 
     


     ,       (18) 

where the following factors were defined (the last term is written for power-law kinetics): 

       
2 1 1

2

0 0

2 2
1 2 ' ' 2 ' ' 1

1 1

c mc
K c d c c d c

m m
 



      
  R R  and  (19a) 

 
   

2 1

2

20 0

' 1
' ' '

1

c
c c

K d c c d c
c m




  

 
R

R
R

.      (19b) 
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Eq.(18) includes contributions from the solutions near 0r   and 1r  . If the exit of the 

membrane reactor is closed to diffusion, then 
2 0c   for outward flow. On the other hand, for 

inward flow:    
2

0

1 2 ' '

c

K c d c   R  and the term 
2( )P    should be subtracted from 

Eq.(18). If the concentration at one of the surfaces is kept at negligible values (e.g. 
2 0c  ), 

then there is also no boundary layer on that side of the membrane (i.e. the dead core extends 

from ˆ ~ ( )mr a O t   up to the outer surface at ˆ
mr a t  ). The effect of convection is to 

slightly increase the fraction of reactant near the surface through which the flow enters the 

membrane, increasing the reactant penetration depth by ( )O P  . The purely diffusive limit of 

Eq.(18) is given by 

3

2
( )

K K
O

 
   

 
    .        (20) 

These results allow the calculation of the asymptote of E  (performance enhancement due to 

convection) as P  : 

221
E 1 ( )

c K P
O

K







 
   .        (21) 

The enhancement factor E  is a decreasing function of  , approaching 1 as diffusion becomes 

more limiting. Note that the order of the correction in the enhancement factor is ( )O P  , which 

can also be written as a Peclet number where the length scale is the thickness of the 

concentration boundary layer (given in this regime by ~ mt  ) instead of the total membrane 

thickness 
mt . 

For estimation purposes, the effectiveness of a diffusive membrane can be approximated by 

an expression taking into consideration the asymptotes given in Eqs.(9) and (20). This 

approximation should be able to reasonably describe   for all values of Thiele modulus. It is 

given by: 

0tanh
n

n n

n


 




 
  

 
.         (22) 
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Eq.(22) and the asymptotes from which it was constructed are plotted in Fig. 6 and compared 

with the numerical results obtained with gPROMS
®
. The exponent n  was set to 0.8 in order to 

describe the lower values of 
2c , but the approximation describes reasonably the whole range of 

the effectiveness factor (including intermediate values) for other values of n  close to 0.8. 

The correlation given in Eq.(22) can be useful even for linear kinetics, since the generic 

solution for a cylindrical thick membrane with unequal surface concentrations is complex to 

obtain by analytical means. For the most unfavorable case ( 1   and 
2 0c  ), using 0.8n   

yields a maximum relative error around 2% (had we used 1n  , the maximum error would be 

5%). 

 

4.2 Reaction-diffusion intermediate region (Regimes I ĺ III) 

We find the intersection defined by Eqs.(12) and (21) to determine the transition between 

chemical and diffusional asymptotes, in the presence of weak to moderate convection. Taking 

these limits, the value of the transition Thiele modulus *  is actually independent of P , and is 

calculated from: 

2

0 2

12
*

(1 )

c K

m c K
 



 


 
,         (23a) 

which is plotted in Fig. 7. Eq.(23a) is not applicable in the cases where higher-order estimates to 

the enhancement factor cancel out (which happens for zero-order kinetics, symmetric boundary 

conditions, etc.). In these cases, the intersection of effectiveness factors may be of interest. In 

the diffusional limit, it writes as 

0

K 
 

  , yielding: 
0

*
K
 

        (23b) 

This is plotted in Fig. 4, where 2( )* 6  . We note that when asymmetry in the boundary 

conditions exists, the expected enhancement of the effectiveness factor in the intermediate range 

of Thiele modulus may not be observed, contrary to what was found for uniform surface 

concentration around a catalytic pellet with ‗large pores‘ (e.g. as predicted in the analysis of 
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[1]). Actually, as seen in Fig. 7, the improvement may decrease continuously with 2 . In these 

cases, maximum advantage is taken from the regimes under kinetic control. 

 

4.3 Intermediate convection-diffusion-reaction region (Regimes II ĺ III) 

Regimes II and III can be considered to be opposite to each other in the 
2( , )P  space. 

While in the former, convection dominates at leading-order across the full membrane length, in 

the latter these effects are restricted to small contributions (of ( )O P  ) in boundary layers near 

the surface. On the other hand, as the Thiele modulus is increased (regime changes from II to 

III), the dominance of the reaction term increases from being negligible, to being unmatched by 

any other mechanism in the ‗dead core‘ region that is established in most of the membrane. The 

transition between the two pictures occurs in the intermediate region where convection, 

diffusion and reaction all play a role. Intersecting the asymptotic expressions for E (making use 

of correlation (15) for Regime II in the intermediate range of P ), the following transition is 

obtained: 

  02

1

0

1 1
*

1

n

n

P c K

P K










   
   

.       (24) 

The numerical coefficient in the right hand side (inside brackets) is (1)O , and a reasonable 

value for n  is around 3 (see section 3.2). The limit of Eq.(24) at moderate to high P  is the 

behavior of interest for *( ) ~P P . This scaling rule will be discussed in section 6, when the 

complete regime mapping is presented. 

 

5. CONVECTIVE REGIME, P   (REGIME IV) 

The structure of the concentration profile in a strong convective regime consists on the same 

two domains found in Lopes et al. [52]. Briefly, convection is balanced by reaction in most of 

the membrane (starting at the inlet surface), with the latter conceding its place to diffusion near 

the membrane exit. For arbitrary kinetics, it is important to remark the following features of the 

perturbation solutions: 
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(i) the solution in the global (outer) scale reaction-dominated region, which extends from the 

inlet surface up to a radial position  ˆ ~ mr O t , has different forms depending on the 

reaction rate law, and 

(ii) at leading order, the general solution at the diffusive boundary layer near the downstream 

surface (with thickness ˆ ~ effD u ) does not include information on the reaction. 

Naturally, in a high Peclet number regime, ˆ
mt   and convection is important in the 

whole spatial domain. According to Prandtl‘s principle [58], the generic composite profile 

between the two surfaces kept at specified concentrations is: 

     1

2 1
( ) ( ) exp 1

1

C
out out Cr

P
c r c r c c r O P






     



 (outward flow, 

CP  ) (25a) 

     1

0
( ) ( ) 1 expout out C Cr

c r c r c P r O P


      (inward flow, 
CP  ). (25b) 

In Eqs.(25), the value of the concentration profile at the global scale (
outc ) is required. This will 

be determined in the following section. 

 

5.1 Concentration distribution at the global scale, ( )outc r  

The solution for this region of the membrane is given implicitly in terms of the incomplete 

beta function , )(zB a b  for kinetic expressions as in Eq.(2), or using the Lambert W  function for 

the special case of Michaelis-Menten kinetics. However, for our purposes it is more convenient 

to consider different degrees of reactant inhibition in the reaction rate law. Moreover, as we 

shall see, the relevant quantity for the calculation of the effectiveness and enhancement factors 

is outc  evaluated at the downstream surface (given in Table 2). Apart from the kinetic 

parameters, outc  is also a function of  , a ―flow-through membrane Damköhler number‖, which 

is given by: 

2

(1 ) p

i

C

k
P

    .         (26) 
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In some cases, expressions for the concentration distribution in most of the membrane (except in 

the boundary layer) can be obtained in a straightforward manner (e.g. in the absence of 

inhibition, for orders of reaction 1m ).(27(28(29(30(31(32 

5.2 Effectiveness and Enhancement factors for perfusive membrane (Fig. 2A) 

The effectiveness factor can be calculated using Eqs.(4) and (25). However, the 

contribution from the boundary layer to the flux at the inlet surface is a transcendentally small 

term of  CP
O e


, and can be ignored. Thus, for outward flow ( P  ): 

         221

2 1

1 1 1
1 1

(1 )
C

out Pr
outp r

i C

c c
c O e

k P


 

   


 

         
R R ,  (33a) 

while for inward flow ( P  ):  

         22 20
22 0

1 1
1

(1 )
C

out Pr
outp r

i C

c c c
c c O e

k P


 

   


 

          
R R .  (33b) 

The last term in Eq.(33) is  1

CO P 
 and therefore subdominant in this regime. These results 

may indicate, for example, how effective the consumption of oxygen by cells growing in a 

radial-flow perfusive bioreactor is for Michaelis-Menten kinetic law. Fig. 8 shows the variation 

of the effectiveness factor with the dimensionless reaction rate in the regimes found under 

strong convective conditions. Different levels of substrate inhibition (from weak to moderate) 

are considered. Highly inhibited kinetics presents a more complex behavior, including the 

appearance of multiple steady states and values of effectiveness above 1 (hence 2( )   is a non-

monotonic function). However, the chemical and diffusional limits are still approached, since 

the ‗abnormal‘ effects are usually in the intermediate range of 2 . Therefore, it is expected that 

the results in this section (including the ones below, defining maximum enhancement) also 

apply to this situation. 

The enhancement factor follows from Eq.(5), using the previously derived solutions: ( )P  

from Eqs.(33) and ( 0)P   from Eqs.(22) or (18) for strongly inhibited systems. When ~1  

(balance between the timescales for reaction and convection), the Thiele modulus will also be 

large and 
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E
(1 )

in out exit

p

i

c c

K k

 







,         (34) 

which means that, at leading-order, 
( )

E ~ ~ 1C

O
P

  


 . The result for E  derived from 

Eqs.(33) and (22) (with 1n  ) is represented along with the predictions for the other high Peclet 

number regimes in Figs. 9 and 10.  

 

5.3 Maximum enhancement 

As we have seen in section 3.2, the analysis of Regime II (
2 1CP  ) suggests that when 

the Peclet number exceeds the value given by Eq.(16), maximum enhancement is observed at 

nonzero Thiele modulus. Since E  behaves as a decreasing function of 
2  in Regime III 

( 1CP  ), a maximum in the 
2E( )  curve appears in a region of finite 

2

CP . At 

sufficiently high values of 
CP , this region is characterized by the scaling rule for Regime IV: 

2 ~ (1)CP O . This scaling relationship indicates that under these conditions, the Thiele 

modulus will not be much higher than the Peclet number, i.e. they are at most comparable. The 

nonlinearity of the reaction rate law suggests a different treatment than the one strictly required 

for first-order reactions. Furthermore, we note that: (i) as seen in Eqs.(27), the integral of 

concentration when solving the convective-dominated mass balance writes differently whether 

1m  or 1m ; (ii) due to the approximate nature of the analysis, results derived originally for 

linear kinetics may not be reproduced exactly by taking the 1m  limit for arbitrary kinetics; 

(iii) solutions for nonlinear kinetics will require the use of a different asymptotic expansion. 

Nevertheless, in the cases where it is possible to establish a direct comparison, good agreement 

is observed, as shown below.  
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5.3.1 Power-law kinetics 

It is possible to understand that the maximum of E  with respect to   is calculated from a 

highly nonlinear algebraic equation (obtained by setting the derivative of the enhancement 

factor with respect to 
2  to zero) in the dimensionless group 

2

CP   : 

2 0
d

d

 


  .         (35) 

At leading-order (see Eq.(33)), this expression is given by 

2
out exit

out inexit

d c
c c

d



  ,        (36) 

where 
inc  is the inlet concentration ( 1  or 

2c ) and out exit
c  is the value of the outer profile at the 

exit surface (given in Table 2), both normalized by the concentration at 0r  . An additional 

term of  1

CO P 
 should be added to Eq.(36), which in general yields more complex expressions, 

without improving the estimates significantly. It will be considered only for simpler cases 

(power law kinetics) as described below. 

In order to explicitly understand the effect of the kinetic parameters in the optimum value 

of  , instead of solving this expression numerically, we seek an approximate solution using the 

scaling rule as initial guess. When enhancement is maximum, it is reasonable to expect that the 

relationship ~1  will remain valid, regardless of the form of the reaction rate law (without 

significant inhibition). Thus, we assume that the solution can be written as: 

1
01

CP

   ,         (37) 

where 
0  and 

1  depend on m , p  and 
ik . Also, 

0 1   and 
CP   (i.e. the two last terms 

are subdominant). Introducing Eq.(37) into the nonlinear equation (36) and expanding for small 

0  and 1

CP  , it is possible to calculate both coefficients in the expression for  . Table 3 

includes these results for some kinetics. The leading-order estimate 
0  does not include 

information on the downstream concentration, due to the assumed convective dominance. For 

power-law kinetics, these predictions are used to indicate the optimum enhancement points in 

Figs. 9 and 10. Note that the limit of Eq.(46) for a first-order reaction is given by: 
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2

2

2.121 (1 )
1.220 1 (1 )

2.7183C

c
P

  


 
    

 
.      (38) 

Comparing this limit with the result derived specifically for a first-order reaction (given in 

Eq.(45 )), the deviation in the leading-order term is only of 3%, while the subdominant term of 

1( )CO P
 is underestimated. The respective value of the enhancement for 1m  should, however, 

be calculated as detailed elsewhere [49]. 

 

5.3.2 Maximum enhancement line 

It is also possible to estimate the maximum enhancement at high Peclet number (
maxE ), 

that is observed for the optimum values of opt  derived above. The leading-order term of E , 

given by Eq.(34), describes reasonably well the loci of maxima in the enhancement factor 

curves. This is plotted in Fig.9 as the 2

maxE ( )  line. The value of E which is the coordinate of 

the optimum enhancement points is more accurately calculated using the estimate for regime IV, 

given by E ( )opt opt D   , where ( )opt   is the effectiveness factor evaluated at opt  

(according to Eq.(33)) and 
D  is the diffusive solution (for 0P  , given e.g. by the correlation 

presented in Eq.(22) with 1n  ). For high 
CP , it is enough to consider the leading-order term in 

Eq.(33), as shown in Fig. 10. A very good agreement with numerical results is obtained for 

values of 
2c  and   covering the whole range of interest. 

 

5.3.3 Maximum enhancement window 

The region around the maximum in the enhancement curves extends from the intersection 

of 2

maxE ( )  with the chemical convective-dominated regime (Regime II), up to the one with 

the diffusion controlled regime (Regime III), i.e.   
   . For power-law kinetics (outward 

flow), significant consumption of reactant in a convection-dominated regime occurs for   , 

where 



 

22 

 
 

0

1 (1 )

0 1 1 1

opt

m

opt

c K

m




 


 
    

R
.       (39a)  

On the other hand, the convection changes from being important at the global scale to being 

restricted to boundary layers when   : 

 
 

2

1 (1 )

2 1

2 1 1 1

opt C

m

opt

K P c P

m




 




 


    
.       (39b) 

The window of values of the Thiele modulus is identified in Fig. 9 for a second order reaction. 

 

5.3.4 Zero-order reaction 

The special case of a zero-order reaction is of relevance as the high substrate concentration 

asymptote in Michaelis-Menten rate law. The effect of intraparticular flow in systems where the 

rate of reactant consumption is nearly independent of its concentration was considered by 

several authors. Rodrigues et al. [59] studied analytically the isothermal problem in a slab with 

both surfaces exposed to the same concentration, while Stephanopoulos et al. [60] presented 

numerical results for spherical geometry. Lopes et al. [52] also considered the planar shape 

under non-isothermal conditions. Moreover, they plotted the analytical solutions for the 

isothermal problem [59] in a 
2P   map, showing several iso-effectiveness factor lines, as well 

as the curve which delimits the situations where concentration annulment inside the slab occurs 

or not (the iso-effectiveness factor curve for 1  ). Here, we just consider some aspects of the 

analysis for asymmetrical boundary conditions, which will help to understand the nature of the 

optimum solutions found for other reaction rate laws. 

We start by considering the case where no reactant starvation occurs, to show that the 

position in the slab where concentration reaches its minimum value is given by: 

2

min 2

2

1 1
ln

(1 )

Pe
r

P P c P




 
    

.       (40) 
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Eq.(40) shows that a dependence of 
minr  on 

2  is introduced if 
2 1c  , otherwise the result from 

[59] is recovered. The critical value of the Thiele modulus (above which 
min( ) 0c r  ) can be 

calculated in the diffusive and convective limits as: 

 2
2

22 1C c   ,     when 0P      (41a) 

 
2 2(1 )

ln ( ) 1
ln 1 ln ( ) 1

C P

P c
P P P

e P
  

  
  

, when P  .    (41b) 

Note that Eq.(41b) can be written as 
2 1 1C C P P    when P  , which is the same 

structure predicted for the value of   which maximizes E  for any kinetic expression (see 

Eq.(37)). Therefore, we may say that the conditions for maximum enhancement of the catalyst 

effectiveness correspond to those where (near) concentration annulment occurs for the first time 

inside the membrane (as 
2  is increased). For 

2 2

C  , no exhaustion occurs and the 

effectiveness is always equal to 1 (independent of 
2c  as expected for zero-order kinetics). When 

concentration annulment inside the membrane occurs, the following results for effectiveness 

(with and without convective effects) are obtained, which do not seem to have been reported 

before (
2 1c  ): 

2 2

2 2

22 1

2

2 2 2 1
2

1 1 2
1 ln 1

1

P

P

c PP e

P c P P e






 





    
       

  
 (strong convective flow) (42a) 

 2

2
1 c


       (diffusive conditions).  (42b) 

The enhancement factor as a function of 
2  presents three distinct regions: (a) for values below 

that in (41a), E 1 ; (b) for 
2  between the values in Eqs.(41a) and (41b), E  is the reciprocal of 

Eq.(42b), hence an increasing function of  ; and (c) for C   (given by Eq.(41 b)), the ratio 

between Eqs.(42), yields a decreasing function of  . The maximum enhancement should occur 

at the maximum value of 
2  which is still under chemical control through the action of 

convection (given in Eq.(41b)), while the corresponding diffusive system is severely mass 

transfer limited (Thiele modulus above that given in Eq.(41a)): 
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 max

22

1 ln ( ) 1
E

212 1

C P P

cc

  
 


,      (43) 

which has the same dependence found in Eq.(34): maxE ~ ~ P . 

 

5.3.5 Cases with reactant inhibition 

The approximate analytical procedure outlined above is also able to handle the more 

complex situation where reactant inhibition is present. Considering kinetics with Michaelis-

Menten type, it is possible to show that in the limit of weak inhibition ( 0ik  ): 

2

0 ~ 3 1.5 ( )i ie k O k    . This was obtained for outward flow using Eqs.(29) and (36) with 

01  , since at high Peclet number 
1  can be ignored (it would only lead to cumbersome 

algebraic manipulations). For inward flow, the result in the same limit is given by 

2

0 2~ 3 1.5 ( )i ie k c O k    , and it should be introduced in an expression for   (which now 

takes negative values owing to the fact that 0CP  ), such as: 
01    . Therefore, these 

results are made independent of the flow direction if written as: 

01   ,   with 2

0 ~ 3 1.5 ( )i in ie k c O k      as 0ik  .  (44a) 

However, if significant inhibition is present it is no longer reasonable to assume that 

0 1  . Introducing Eq.(30a) into (36) and considering only the more important terms as 

ik  , it is possible to show that (1)ik O   , or generalizing with respect to the flow 

direction:  

(1)i ink c O         as 
ik  .  (44b) 

Note that since for inhibited kinetics,   writes as in Eq.(26), then Eq.(44b) actually means that 

2 1CP   , which is the leading term in the critical condition for concentration annulment 

from a zero-order reaction, as shown in Eq.(41b). 

To describe the complete range of values of the inhibition constant 
ik , both asymptotes in 

Eq.(44) can be combined in a correlation, resulting in Eq.(48). This is compared with the 

numerical solution of Eq.(36) using the exact solution in terms of Lambert‘s function in Fig. 11. 
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This correlation was used to predict the location of the optimum enhancement points in Figs. 8, 

12 and 13. In general, the same procedure could be applied to kinetics of the form presented in 

Eq.(2), but it is reasonable to believe that the behavior of ( )ik  will change between the results 

for reactions of order m  (as 0ik  ) and order m p  (as 
ik  ). Therefore, a description 

based on these asymptotes seems to be simpler, and thus more valuable. 

An interpretation of the two regions divided by the line in Fig. 11 can be given, taking into 

account the results for zero-order kinetics. Thus, for   above that given by Eq.(48) it is 

possible to anticipate that concentration will attain low values in an appreciable fraction of the 

membrane volume (which increases with  ). Below this line, kinetically controlled conditions 

are approached. This expression delimits hypoxic and non-hypoxic conditions in bioreactors 

with any degree of reactant inhibition. 

The maximum enhancement can be calculated by Eq.(34), using the approximations for the 

effectiveness factor given previously. Figs. 12 and 13 show the enhancement in the reaction rate 

with Michaelis-Menten kinetics and different degrees of inhibition. The prediction of 
maxE  by 

Eq.(48) is very reasonable, improving when 
2 0c   and 0  . Better estimates would require 

the knowledge of the higher order term represented by 
1 , but for practical purposes the derived 

approximations are reasonable. The enhancement increases as   increases, but this corresponds 

to lower effectiveness factors (Fig. 8). The optimum locus for 10P   practically coincides with 

the one for 50P  , for the same   and 
2c .(45(46(47(48 

5.3.6 Practical example 

Nakajima et al. [61] studied sucrose inversion in forced-flow through ceramic membranes. 

Complete conversion was observed in a membrane with a support with pore size of 0.5 ȝm . 

The timescales for the processes that occur were estimated by the authors, resulting in the 

following values for the dimensionless numbers: 265.3P   (shortest residence time), 

2 961.5   (with the reaction timescale written for a zero-order reaction), and 0.25   (the 

membrane is cylindrical with 1mmmt  ). They also estimate the timescale for radial pore 
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diffusion, which when compared with the one for reaction yields 46 10poreDa   , justifying the 

pseudo-homogeneous approach in which Eq.(1) is based. The operation is characterized by a 

―flow-through Damköhler number‖ equal to 4.1  . The critical value of Thiele modulus for 

this value of P  can be calculated according to Eq.(41b). Thus, maximum enhancement occurs 

at 1.2  , and from Eq.(43), maxE 11.7 . The enhancement observed at the operating 

conditions would be lower, which means that the objective of complete conversion is privileged, 

according to the results in section 5.3.4 (zero-order reactions).  

 However, the same authors had previously presented [62] a kinetic model accounting for 

substrate inhibition for the same reaction and enzyme in membranes with different loading. It 

was written as: 

2

ˆˆ ˆ( )
ˆ ˆ

m

m s

V c
c

K c c K


 
R . 

We will assume that the same values of mK  and sK  can be used in the conditions of Nakajima 

et al. [61], who report 
3237 mol (m s)mV  . For an inlet concentration of sucrose equal to 

3

1̂ 300 mol mc  , ˆ ˆ( )cR  can be written in dimensionless form as 

2

2

2

(1 )
( )

1

i i

i i

k k c
c

k c k c

 


 
R ,         (49) 

where 7.5ik   and 2 3.2ik   (55ºC and pH 4.7). Using this kinetic expression, the Thiele 

modulus given in Eq.(3) is calculated as 
2 182.2  . We adapt the membrane Damköhler 

number for this case, which calculates as: 

2

2(1 ) 9.1i i

C

k k
P

      .        

Comparing with the prediction from Eq.(48) (which, nevertheless, ignores the contribution of 

2ik ), 8.9  , it is reasonable to claim that the experimental design and operating conditions 

that were found by the authors as more advantageous are very close to the theoretical 

predictions for maximum enhancement. 
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5.3.7 Inward flow 

When 0CP  , the problem is formulated in similar terms, if   is replaced by 
2  for 

power-law kinetics: 

2 2
12 1

2 2 0

2

ˆ( ) ˆ 1
ˆ

mm m

C eff C eff C

t tc
c

P D c P D P

      
  

R
,     (50) 

where 
0  and 

1  are given in Eqs.(47) (Table 3). The result for Michaelis-Menten kinetics 

(given in Eq.(48)) is generalized regarding the flow direction. The conditions for maximum 

enhancement are predicted in Fig. 14 for both types of reaction rate laws. The values of 
maxE  

given by Eq.(34) are in very good agreement with the ones obtained numerically. For the 

second-order reaction, the asymptotic solution in Regime IV for E is calculated from Eqs.(22) 

and (33b). It is possible to observe that in inward flow, the enhancement decreases as   

increases, contrary to the behavior in Figs. 10 and 13. In the case of moderate inhibition ( 1ik 

 ), Eq.(29b) was replaced into Eq.(34). 

 

5.4 Catalytic ‘dead end’ filtration (Fig. 2B) 

When the concentration leaving the membrane does not change by the action of 

significant axial sweep flow on the permeate side, the ‗no flux‘ boundary condition at the 

downstream surface is appropriate. We have noted in a previous work [49] that in this case, the 

concentration profile cannot present the structure described in section 5.1. However, as we have 

also suggested, this regime has special significance, as the same results not only predict the 

maximum enhancement of the effectiveness factor, but also provide an interesting answer to the 

effectiveness-conversion trade-off that appears in these membrane radial flow reactors. 

 Numerical results for the enhancement factor in an outward radial flow membrane with 

nonlinear kinetics are shown in Fig. 15 for moderate and high values of the Peclet number. The 

asymptotic predictions in each regime were calculated as follows: (i) when 1P   the solution in 

Table 1 for Regime I was used; (ii) the effectiveness factor under strong convective conditions 

given by Eq.(13) can be compared with the diffusive limit of the solution in Table 1 to yield 
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enhancement in Regime II; (iii) the diffusional asymptote of these plots is well represented by 

Eq.(21) with 
2 0c  ; (iv) results for Regime IV are obtained as in Eq.(34), but the value of the 

effectiveness factor under diffusive conditions ( ( )K   ) can be replaced by a correlation such 

as the one in Eq.(22); (v) the condition for maximum enhancement ( opt ) is predicted from 

Eqs.(46) in Table 3 and maxE ( )opt  follows directly from Eq.(34). It can be seen that the 

optimum conditions (derived for specified surface concentration downstream) describe very 

accurately the behavior of these systems, even at moderate values of the Peclet number. 

 

6. THIELE-PECLET OPERATING DIAGRAM 

Each regime characterized in previous sections corresponds to a limited area in a map with 

the dimensionless parameters governing the system behavior as axes. We consider that the 

overall picture containing the several operating possibilities for the catalytic membrane can be 

mapped onto a 
2P   diagram, since the other parameters are either fixed for a given geometry 

(   or  ), reactional system (e.g. m ), or determined in association with the external problems 

in channel and shell sides (e.g. fixed surface concentrations 
1̂c  and 

2ĉ ). Thus, we will restrict 

ourselves to this representation (comparing diffusion, viscous permeation and reaction 

phenomena), noting that the previous analytical results easily allow for other diagrams 

(including effects from curvature, surface concentration asymmetry or order of reaction) to be 

plotted, if desired. 

Fig. 16 shows the distribution of the effectiveness factor in a flow-through membrane for all 

combinations of Peclet and Thiele numbers, while Fig. 17 refers to the enhancement factor. In 

these representations, the transitions between the regimes are given by Eqs.(17), (23), (24) and 

(39). Apart from numerical factors, the 
2P   dependence in these expressions is summarized 

by: 

3

2

(1), 0

(1 )
* , ~ 1

,

O P

P
P

P

P P




  




.        (51) 
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The effect of the reaction rate law, membrane curvature and concentration downstream is 

introduced when considering the full expressions, given previously. The scaling laws in Eq.(51) 

separate regions where significant mass transfer resistance (concentration decay) inside the 

membrane exists ( *  ) or not ( *  ). Regimes I and III (convection controlled) present 

low enhancement, with the effectiveness factor decreasing from its kinetically controlled 

diffusive value (
0 ) to zero, according to the high Thiele modulus asymptote, Eq.(20). 

Convective dominance in the mass transport yields the maximum effectiveness regime (Regime 

II), for * (1)P O . Though Regime IV is associated with an intermediate region of  , 

maximum enhancement conditions are observed, as predicted by the analysis. Note that 
maxE  is 

described analytically assuming that 
2 ~1P  (Regime IV, ~1 1P   ), which is in good 

agreement with the coordinates of the minima in the iso-E curves in Fig. 17. On the other hand, 

the subdominant term in Regime III (e.g. see Eq.(18)) is of order P  , which must be small 

comparing with the leading-order term, of (1)O . Thus, the scaling in Eq.(51) at moderate to 

high Peclet number ( ~1P ) is confirmed, separating Regime III ( 1P  ) from Regime IV 

( 1P  ). 

 

7. CONCLUSIONS 

We considered the improvement of mass transfer by promotion of an additional transport 

mechanism (internal forced convection) in permeable flat or curved catalytic membranes. Using 

perturbation methods for small and large values of the governing parameters (the Peclet number 

P , and the Thiele modulus 
2 ), we are able to analytically cover the whole spectrum of 

regimes. These techniques are appropriate since we consider nonlinear reaction rate laws, which 

make exact solutions unattainable. In particular, we focused on the calculation of the 

effectiveness factor (   ) and of the enhancement of   which is caused by convection, or 

perfusion (measured by the factor E ). Expressions for   and E  are given for four different 

regimes (I: chemical control under diffusive conditions; II: chemical control under convective 
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conditions; III: diffusional control; IV: convective dominated systems) for different modes of 

operation (‗open‘ or ‗dead-end‘ configurations) and flow directions (outward or inward). 

We were also interested in the identification of the conditions which maximize E. It is 

known from previous work, that the effectiveness factor (or equivalently, the average reaction 

rate) in a membrane (bio)reactor will always increase with perfusion, but this improvement is 

only appreciable if the reaction rate is tuned in a very specific manner. In fact, under certain 

conditions the enhancement may be only residual. Here, we have also derived analytically the 

relationship that must hold between governing parameters (comparing reaction, diffusion and 

permeation), so as to take maximum advantage from the catalytic membrane. These conditions 

are a function of the reaction rate law (e.g. of the order of reaction m ) and determine the 

location and magnitude of the maximum enhancement in the effectiveness factor. These 

expressions are in excellent agreement with the numerical solution of the reaction-transport 

differential equation and provide a simple basis for the design of these reactors. Moreover, we 

have also considered the effect of reactant inhibition on these conditions, which is essential to 

analyze the increasing number of biotechnological applications. The main observations are that: 

(i) the optimum Thiele and Peclet numbers should be related by 
2

0(1 ) P  , where 
0  is a 

given function of the order of reaction; (ii) the optimum value of 
2 P  as a function of the 

dimensionless inhibition constant separates two regions, one where appreciable reactant 

exhaustion occurs (i.e. hypoxic conditions in bioreactors), from another where kinetically 

controlled conditions are attained; (iii) the previous observation is found to be exact for a zero-

order reaction, where a critical value of the Thiele modulus (
2 ln( ) 1C P P    for strong 

convective conditions) separates the two asymptotes of the effectiveness factor ( 1   for 

2 2

C   and 
2P   for 

2 2

C  ); (iv) the maximum enhancement to be expected is 

proportional to the conversion that would be observed in a pseudo-homogeneous plug-flow 

reactor without diffusion, operated at the optimum values of Thiele (which replaces Damköhler) 

and Peclet numbers; (v) the generic dependence already found by the authors for maxE  (written 

as maxE ~ ~ P ) is verified, but the numerical coefficient which makes the rule quantitative is 



 

31 

a non-negligible function of the form of the reaction rate law (given here explicitly); (vi) the 

situation of inward flow is described by minor modifications, and in some cases the results can 

be normalized with respect to the flow direction; (viii) surprisingly, even though the structure of 

the concentration profile in ‗optimum conditions‘ is not consistent in the case of ‗dead-end‘ 

operation, the enhancement E is very well described by the solutions derived; (ix) for values of 

P  below a given limit (of order (1)O ) and when a concentration difference exists between both 

surfaces, the maximum enhancement may be observed at 
2 0  , which is however lower than 

the one observed at high Thiele and Peclet numbers. 

We emphasize that this regime of maximum enhancement may be highly interesting (even 

though moderate values of the effectiveness factor can prevail): (i) when maximum   is 

obtained under kinetically controlled conditions, which may be undesirable in practice, since 

this will require longer membranes to attain a given conversion (with higher investment cost, 

reactor volume, and axial pressure drop associated); (ii) when   is already relatively high or 

intermediate, the conditions under which these reactors are competitive with other technologies 

must be well identified; (iii) in bioreactors where strong perfusion can be the only strategy to 

achieve conditions of homogeneous growth, avoiding the presence of ‗dead cores‘. Actually, in 

this latter context, the factor E could be thought of as the fractional increase in the ‗active‘ 

length of the bioreactor, compared with the one that develops when nutrients are supplied by 

diffusion alone. 

The consideration of asymmetrical boundary conditions also led to the appearance of 

several interesting results, which have not been identified in previous literature, even in the case 

of the diffusion-reaction problem. This analysis has several implications in hollow fiber 

bioreactors, catalysts exposed at non-uniform conditions, etc. It is particularly relevant to occur 

in the operation of a membrane reactor. The following results in the diffusive limit were 

obtained: (i) the maximum effectiveness factor 
0  (observed in the chemical regime) decreases 

when the concentration established at the reference surface increases compared to the one at the 

other surface, (ii) this decay of 
0  is more pronounced for order of reaction above 1 and for 

thicker membranes, (iii) 
0  depends on the form of the reaction rate law (noting that for 
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symmetric boundary conditions, it always equals 1), (iv) the asymptotic behavior of the 

effectiveness factor at high Thiele modulus includes contributions from two non-symmetrical 

boundary layers, which generalizes our previous approximation [53], and (v) a correlation 

including kinetic and diffusional limits is provided, describing reasonably well the intermediate 

range of 
2 . 

Finally, the transition between the different limiting cases is superimposed with the 

distribution of effectiveness and enhancement factors in Peclet-Thiele maps. Therefore, the 

overall picture as well as extensive characterization of all relevant operating regimes is attained. 
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NOTATION 

 

a  characteristic distance for diffusion in the membrane lumen, m  

ĉ  concentration of reactant in the membrane, 
3mol/m

 

c  dimensionless concentration of reactant in the membrane, 
1

ˆ ˆc c
 

c  radially-averaged reactant concentration in the membrane 

0c  leading-order radially-averaged reactant concentration in the membrane in Eq.(6a) 

0

Dc  leading-order radially-averaged reactant concentration in the diffusive membrane in Eq.(6b) 

1̂c  dimensional surface concentration at 0r  , 
3mol/m  

2ĉ  dimensional surface concentration at 1r  , 3mol/m  

2c  dimensionless ratio between concentrations at the surfaces, 
2 1

ˆ ˆc c  

inc  dimensionless concentration at the surface through which flow enters the membrane 

effD  effective diffusivity in the membrane (transverse), 
2m /s  

poreDa  Damköhler number at the pore scale (with pore diffusion timescale) 
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  enhancement factor given by Eq.(5) 

k  reaction kinetic constant, 1/ s  

ik  dimensionless inhibition constant 

*

ik  inhibition constant, 
3m /mol  

K , K kinetic factors in the diffusional regime 

L  length of the channel, m  

LHS left hand side 

m  order of reaction 

p  kinetic parameter in Eq.(2) 

P  internal (radial) Peclet number, ˆ ( )effP V u S D  

CP  internal Peclet number including curvature effects, P     
 

ˆ
inp  pressure on the lumen side, Pa  

ˆ
outp  pressure on the extracapillary side, Pa  

r   dimensionless transverse coordinate 

R̂  reaction rate per membrane volume, 
3mol/(m .s)  

R  dimensionless reaction rate, Eq.(2) 

RHS right hand side 

S  area of the membrane-lumen interface, 
2m  

mt  thickness of the catalytic coating, m  

û  fluid (radial) superficial velocity, m/s  

u  dimensionless fluid (radial) superficial velocity 

û  radially averaged superficial fluid velocity, m/s  

V  membrane volume, 
3m  

X  reactant conversion 

( )W x  Lambert-W function or product logarithm function 

z  dimensionless axial coordinate, ˆ /z L  
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Greek letters 

 

  aspect ratio of the membrane 

  ratio of the characteristic distances for diffusion in the membrane and in the lumen 

2  Thiele modulus 

2

C  critical value of the Thiele modulus for a zero-order reaction 

̂  thickness of the boundary layer 

( , )a b  incomplete Gamma function 

  effectiveness factor 

0  effectiveness factor in the chemical regime under diffusive conditions 

  effectiveness factor in the diffusional regime under diffusive conditions 

  flow-through membrane Damköhler number, 2(1 ) p

i Ck P    

2  flow-through membrane Damköhler number referred to the outer surface conditions for inward 

flow 

  dynamic viscosity, Pa.s  

  volume to surface ratio, divided by characteristic dimension for diffusion 

  shape factors 

 

Superscripts 

^ dimensional quantities 

D diffusive conditions (absent viscous flow) 

 

Subscripts 

in inner region (boundary layer) in the convection-reaction dominated regime 

max maximum 

min minimum 

opt optimum 

out outer region in the convection-reaction dominated regime 

wall lumen-membrane interface 
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APPENDIX A 

CHEMICAL REGIME IN A DIFFUSIVE CATALYTIC MEMBRANE 

 

I. Maximum effectiveness factor for a diffusive membrane with arbitrary kinetics and 

asymmetrical boundary conditions (derivation of Eq.(9)) 

 

The maximum effectiveness factor attainable in an isothermal membrane with ‗normal‘ kinetics 

( 2 0d d   ) and where transport between the two surfaces (kept at distinct concentrations) 

occurs solely by diffusion does not seem to have been reported previously. In this appendix, we 

derive this result, previously presented as Eq.(9).  

 

The solution for the effectiveness factor of a cylindrical membrane, with inner and outer walls 

exposed at specified surface concentrations ( 1c   and 
2c , respectively), can be obtained for 

generic kinetics in the limit of a slow reaction. The inert concentration profile is given by 
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The next term in the series expansion for concentration at small Thiele modulus 

(       2

0 1 ...D D Dc r c r c r    ) is given by 
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where, A and B  are integration constants that must be chosen to satisfy the specified 

concentrations at the surface, and 
1u  and 

2u  are functions which can be calculated for arbitrary 

kinetics  cR  from: 
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From these results, the value of the chemical regime branch of the effectiveness factor (
0 ) can 

be calculated from Eq.(4) (for 0P  ). For power-law kinetics, solving these equations yields 

the result in Eq.(9). This corresponds to the value of effectiveness in the chemical regime (noted 

by 
0 , since it is observed as 2 0  ). As discussed previously, it is a function of the kinetic 

parameters (namely, the order of reaction m ). 

 

II. Criterion for internal mass transfer limitation 

 

For thick curved membranes and nonlinear kinetics with 1m , 
0  is lower than the value for a 

first-order reaction in a planar membrane with the same ratio between surface concentrations. It 

may be important to use the correct value of the effectiveness factor in the cases where this 

quantity is used as a criterion to ensure the absence of internal mass transfer effects (e.g. when 

measuring intrinsic kinetics). In the chemical reaction engineering literature (see e.g. [63]), 

observable quantities, such as the Weisz-Prater criterion, are used for this purpose: 

2
2

1

ˆ

ˆ
m obs

eff

t

D c
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R
.          (A.5) 

Then it is reasoned that at low 2 , 2 1   , since for a catalyst with uniform surface 

concentration ( 1 ). In the case of a membrane exposed at two different values of 

concentration, 
0  may be actually one-order of magnitude lower (see Fig. 3). So, care must be 

taken if the criterion in Eq.(A.5) is only barely fulfilled. 

Another criterion is commonly obtained by allowing a small deviation of the effectiveness 

factor from 1, e.g. 1 0.05  , and then taking advantage of the perturbation expansion for 

small Thiele modulus [64, 65]. In this case, this criterion must obviously be rewritten as 

0 0.05   . Then, the perturbation series in Eq.(8) for 0P   allow us to write: 

    2

0 0 0 2 00.05D Dc c      R R' ,      (A.6) 

where 0

Dc  and 2  where given in Eqs.(6b) and (11), respectively. Note that the value of 2  

when 0   (slab limit) is 1/12 , which differs from the geometric factor that appears in the 
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analysis for a slab catalyst exposed at uniform surface concentration (1/ 3 ). This is obviously 

due to the change in the characteristic dimension for diffusion (
mt  vs. / 2mt ) in the definition of 

the Thiele modulus. In terms of observables, Eq.(A.6) is given by: 

 
2 0

0 2

0.05

Dc


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R'

.         (A.7) 

The case where 
0 1   is of particular importance in membrane reactors, since the concentration 

difference at both surfaces is the only effect causing the chemical regime asymptote to deviate 

from 1 (intraparticular convection, nonlinear kinetics, and nonisothermal effects, all lead to 

1  , as long as 
2 1c  ). Eq.(A.7) is plotted in Fig. A.1. 
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FIGURE CAPTIONS 

 

Fig. 1: Schematic representation of a cylindrical flow-through membrane with outward flow. 

Radial flow through the porous media occurs with a velocity field, ( )u r , due to the existence of a 

transmembrane pressure gradient ( ˆ ˆ
in outp p ). Mass transfer proceeds also by diffusion between surface 

concentrations at 0r   and 1r   (
1̂c  and 

2ĉ , respectively). 

 

Fig. 2: Operating modes of the flow-through (bio) reactor. Configurations differ on the main 

direction of the feed stream relative to the orientation of the membrane surface. (A) Axially dominated 

flow (perfusive membrane). (B) Radially dominated flow (catalytic dead-end filtration). 

 

Fig. 3: Effectiveness of a diffusive membrane in kinetically controlled conditions as a function 

of the ratio between the concentration at the two surfaces. Values for 3 orders of reaction m  and 2 

values of relative thickness   are considered.  

 

Fig. 4: Effectiveness factor for systems with weak to moderate convection (Regimes I and III) 

and nonlinear kinetics ( 2m ) in a thin ( 0.1  ) membrane. Negligible reactant concentration on 

the permeate-membrane interface (
2 0c  ). Asymptotic behavior described by Eq.(8) in Regime I and by 

Eq.(18) in Regime III. 

 

Fig. 5: Enhancement ( E ) as a function of internal Peclet number for low Thiele modulus. Plots 

for 2m  with two values of 
2c : (a) 0.1   and (b) 1  . (c) Kinetics with 1m , 0.1   and 

2 0c  . Asymptotic expressions given by Eq.(12) for Regime I and by Eq.(14) for Regime II. Correlation 

(15) is also shown. Further increase of E  with 2  occurs only when (16) is satisfied. The delimitation of 

the two regimes is based on Eq.(17). 
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Fig. 6: Effectiveness factor for a diffusive membrane with nonlinear kinetics and asymmetric 

boundary conditions. Correlation: Eq.(22) with 0.8n  . Asymptotic behaviors: Eqs.(9) and (20). 

 

Fig. 7: Enhancement factor in the slow to moderately intense convection regime for nonlinear 

kinetics (non-negligible diffusive contribution to the overall transport). In the kinetic regime, the 

asymptotic behavior of the low Peclet range ( P  0.1 and 0.5) is given by Eq.(12), while in the 

intermediate range ( P  1 and 5) are calculated by the correlation in (15). Asymptotic behavior in regime 

III given by (21). The regime transition is predicted by Eq.(23). Parameters: 2m ; 0.1  ; and 
2 0c 

 . 

 

Fig. 8: Effectiveness factor for a membrane with Michaelis-Menten kinetics: (a) weak 

inhibition, and (b) moderate inhibition. Numerical calculations compared with asymptotic results 

given by Eqs.(33) (after substitution with Eq.(29)) for Regime IV and (13) for Regime II. Optimum 

enhancement predicted by (48). 

 

Fig. 9: Enhancement in the effectiveness of a membrane with 0.1  , 
2 0c   and a second-

order reaction, for high values of the Peclet number. Numerical solutions (full lines) are compared 

with the asymptotic predictions for each regime (dashed lines). The conditions for maximum 

enhancement are identified (optimum   from Eqs.(46) in Table 3). 

 

Fig. 10: Effectiveness enhancement ( E ) in a catalytic membrane where a second-order reaction 

occurs, at high Peclet number ( 100P  ). Numerical and asymptotic results for E  and 
maxE  are 

compared for two values of   and 
2c . 

 

Fig. 11: Optimum value of the Damköhler number for a flow-through membrane as a function 

of the Michaelis-Menten inhibition constant. The numerical solution of the nonlinear equation 

defined by (36) is compared with the approximate analytical estimate given by Eq.(48). Representation 

for 0.1   and 
2 0c   in the high 

CP  limit of outward flow. 
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Fig. 12: Enhancement plot for a thin membrane ( 0.1  ) at high Peclet number, with weakly 

inhibited Michaelis-Menten kinetics ( 0.1ik  ). Maximum enhancement predicted by Eq.(48). 

 

Fig. 13: Enhancement plot at high Peclet number for Michaelis-Menten kinetics with moderate 

inhibition ( 1ik  ). Maximum enhancement lines as a function of Thiele modulus, and optimal 

enhancement points are predicted by Eq.(48). 

 

Fig. 14: Maximum enhancement in inward flow (
2 2c   and 50P   ) for power-law and 

Michaelis-Menten kinetics with moderate inhibition ( 1ik  ). 

 

Fig. 15: Enhancement in catalytic ‗dead-end‘ filtration in membrane reactors with (a) weak to 

moderate convective effects and (b) strong convective effects. Numerical results shown for 

1.5m , 0.1   and outward flow. Asymptotic predictions in each regime and conditions of maximum 

enhancement from Eq.(34) are also represented. 

 

Fig. 16: Contours of membrane effectiveness in a Peclet-Thiele diagram. The transitions between 

the 4 regimes are shown as well as several iso-  curves for 2m ; 0   and 
2 0c  . 

 

Fig. 17: Enhancement of the membrane effectiveness in a Peclet-Thiele diagram. Contours and 

iso-E curves are plotted and the parametric areas of the 4 regimes studied are delimitated. Conditions: 

second-order reaction; thin membrane ( 0  ), low concentration downstream ( 2 0c  ). 

 

Fig. A.1: Variation of the observable Weisz-Prater criterion for excluding internal mass transfer 

effects with the concentration ratio, according to Eq.(A.7). 

 

TABLES 
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Table 1: Catalytic dead-end filtration in Regime I (Diffusive kinetically controlled limit). 

 

Table 2: Convection-reaction dominated exit concentration for several kinetics.  

 

Table 3: Conditions for maximum effectiveness enhancement in Regime IV.  
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Table 2: Convection-reaction dominated exit concentration for several kinetics. 
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(1 ) p

i

C

k
P

     

Flow 

direction 
Eq. 

mc  — 

 1/(1 )
1 ( 1)

m
m   

 
outward (27a) 

1/(1 )
1

2 (1 )
m

mc m 
     inward (27b) 

(1 )

1

i

i

k c

k c




 

any 

 1
ik

i

i

W k e
k

  outward (28a) 

 2

2

1
ic k

i

i

W c k e
k

  inward (28b) 

 * ( )W x  is the Lambert-W  function   

0ik   

 1i ik k

ie k e
    outward (29a) 

 2 2

2 21i ik c k c

ic e k c e
    inward (29b) 

ik   

1
1 ln 1

i i ik k k

  
   

 
 outward (30a) 

2 2
2 2

ln ln1
ln

i i i i i

c c
c c

k k k k k

  
     

 
 inward (30b) 

 
(1 )

1

p m

i

p

i

k c

k c




 

0ik   

 

 

1/(1 )

11
1

1 ( 1)

1
1 ( 1) 1

1

m

mm
m mm

i m

m

k m
p m

m m










  

             

 outward (31a) 

1/(1 )
1

2

2
2 1 1
2 2

1

2

( 1)

( 1)
1

( 1) 2

m
m

m
m m m

i

m

c m

c c m p k

c m m










  



    
 

       
   

 

 inward (31b) 

ik   

1/( 1)

1
1

p m

p

i

p m

k


 
  
 

 
 outward (32a) 

2 2

m p

p

i

c c
k

   inward (32b) 
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Table 3: Conditions for maximum effectiveness enhancement in Regime IV. 

 cR  Optimum flow-through membrane Damköhler number 
2

(1 ) p

i

C

k
P

     Eq. 

c  

Outward flow from [44]:  

2 24.739
1.256 (1 ) 0.119 2 1

4C

c

P
   


             

(45a) 

Inward flow from [44]:  

2

1.161 1
1.256 2 3.513 3.595

CP c
  


  

      
    

(45b) 

mc  

Outward flow: 1
01

CP

    (46a) 

( 1)

0 ( 1)

2

3

m m

m m

m m

m m






 


 
 

(46b) 

2 (1 )

2

(11 )

1 (1 ) (1 )

(3 )

m m

m m

m c

m m

  









  





  (46c) 

Inward flow: 
2

1 1
2 2 0

ˆ 1mm

C eff C

t
c

P D P

    
 

 

(47a) 

1 ( 1)

0 1 ( 1)

(2 )

(5 2 ) 2

m

m

m m m

m m m






 


 
 

(47b) 

(1 )

2

(11 )

(3 )1 1

(5 2 ) 2

m m

m m

m c

m m


 













 

(47c) 

(1 )

1

i

i

k c

k c




 
2

0.5
4 1

1
i in

i

e k c
k


 

     
 (48) 
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Fig. 15 (b) 

 

Fig. 16 

 

1

2

3

4

5

6

7

0.01 0.1 1 10 100 1000

numerical

asymptotic behavior

Maximum enhancement

E

maxE

100P 

50P 

Regime II

Regime IV

III

IV

Regime

0.95

0.90
0.80 0.70 0.60

0.50

0.40 0.30 0.0500.20 0.10

0.95

0.90
0.80 0.70 0.60

0.50

0.40 0.30 0.0500.20 0.10

0.95

0.90
0.80 0.70 0.60

0.50

0.40 0.30 0.0500.20 0.10

0.95

0.90
0.80 0.70 0.60

0.50

0.40 0.30 0.0500.20 0.10

0.95

0.90
0.80 0.70 0.60

0.50

0.40 0.30 0.0500.20 0.10

0.95

0.90
0.80 0.70 0.60

0.50

0.40 0.30 0.0500.20 0.10

0.95

0.90
0.80 0.70 0.60

0.50

0.40 0.30 0.0500.20 0.10

0.95

0.90
0.80 0.70 0.60

0.50

0.40 0.30 0.0500.20 0.10

0.95

0.90
0.80 0.70 0.60

0.50

0.40 0.30 0.0500.20 0.10

0.95

0.90
0.80 0.70 0.60

0.50

0.40 0.30 0.0500.20 0.10

0.95

0.90
0.80 0.70 0.60

0.50

0.40 0.30 0.0500.20 0.10

0.95

0.90
0.80 0.70 0.60

0.50

0.40 0.30 0.0500.20 0.10

0.95

0.90
0.80 0.70 0.60

0.50

0.40 0.30 0.0500.20 0.10

0.95

0.90
0.80 0.70 0.60

0.50

0.40 0.30 0.0500.20 0.10

0.95

0.90
0.80 0.70 0.60

0.50

0.40 0.30 0.0500.20 0.10

0.95

0.90
0.80 0.70 0.60

0.50

0.40 0.30 0.0500.20 0.10

0.95

0.90
0.80 0.70 0.60

0.50

0.40 0.30 0.0500.20 0.10

0.95

0.90
0.80 0.70 0.60

0.50

0.40 0.30 0.0500.20 0.10

0.95

0.90
0.80 0.70 0.60

0.50

0.40 0.30 0.0500.20 0.10

0.95

0.90
0.80 0.70 0.60

0.50

0.40 0.30 0.0500.20 0.10

0.95

0.90
0.80 0.70 0.60

0.50

0.40 0.30 0.0500.20 0.10

0.95

0.90
0.80 0.70 0.60

0.50

0.40 0.30 0.0500.20 0.10

0.95

0.90
0.80 0.70 0.60

0.50

0.40 0.30 0.0500.20 0.10

0.95

0.90
0.80 0.70 0.60

0.50

0.40 0.30 0.0500.20 0.10

0.95

0.90
0.80 0.70 0.60

0.50

0.40 0.30 0.0500.20 0.10

0.95

0.90
0.80 0.70 0.60

0.50

0.40 0.30 0.0500.20 0.10

0.95

0.90
0.80 0.70 0.60

0.50

0.40 0.30 0.0500.20 0.10

0.95

0.90
0.80 0.70 0.60

0.50

0.40 0.30 0.0500.20 0.10

0.95

0.90
0.80 0.70 0.60

0.50

0.40 0.30 0.0500.20 0.10

0.95

0.90
0.80 0.70 0.60

0.50

0.40 0.30 0.0500.20 0.10

0.95

0.90
0.80 0.70 0.60

0.50

0.40 0.30 0.0500.20 0.10

0.95

0.90
0.80 0.70 0.60

0.50

0.40 0.30 0.0500.20 0.10

0.95

0.90
0.80 0.70 0.60

0.50

0.40 0.30 0.0500.20 0.10

0.95

0.90
0.80 0.70 0.60

0.50

0.40 0.30 0.0500.20 0.10

0.95

0.90
0.80 0.70 0.60

0.50

0.40 0.30 0.0500.20 0.10

0.95

0.90
0.80 0.70 0.60

0.50

0.40 0.30 0.0500.20 0.10

0.95

0.90
0.80 0.70 0.60

0.50

0.40 0.30 0.0500.20 0.10

0.95

0.90
0.80 0.70 0.60

0.50

0.40 0.30 0.0500.20 0.10

0.95

0.90
0.80 0.70 0.60

0.50

0.40 0.30 0.0500.20 0.10

0.1 1 10 100 1000

0.1

1

10

100

Dominant diffusion

Regime I

Dominant reaction

Regime III

Dominant convection & reaction

                Regime IV

P
e

c
le

t 
n

u
m

b
e

r,
 P

Thiele modulus, 2

0

0.050

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.0

Dominant convection

         Regime II 



 

11 

 

Fig. 17 
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Fig. A.1 
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