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ABSTRACT 
The Linear Matching Method (LMM), a direct numerical method for determining shakedown and 

ratchet limits of components, has seen significant development in recent years. Previous verifications of 

these developments against cyclic nonlinear finite element analysis have shown favourable results, and now 

this verification process is being extended to include comparisons with experimental results.  

 This paper presents a comparison of LMM analysis with experimental tests for limit loads and 

shakedown limits available in the literature. The limit load and shakedown limits were determined for pipe 

intersections and nozzle-sphere intersections respectively, thus testing the accuracy of the LMM when 

analysing real plant components. Details of the component geometries, materials and  test procedures used 

in the experiments are given. Following this a description of the LMM analysis is given which includes a 

description of how these features have been interpreted for numerical analysis. A comparison of the results 

shows that the LMM is capable of predicting accurate yet conservative limit loads and shakedown limits.  

NOMENCLATURE 
E  Elastic Modulus 

σ  Stress 

σy  Yield Stress 

ε  Strain 

FEA Finite Element Analysis 

LMM Linear Matching Method 
i
   Current Increment 

i+1
   Subsequent Increment 

1. INTRODUCTION 
 Demonstration of shakedown is an integral part of the design and assessment of pressurised 

components. Several options exist to demonstrate this including the simplified routes based on elastic 

analyses, such as that in [1], and full cyclic non-linear Finite Element Analysis (FEA). The development of 

Direct Methods, based on the shakedown bounding theorems [2,3], has provided a third option to 

demonstrate shakedown. Included among these Direct Methods is the Linear Matching Method (LMM) [4-

6]. 

 These Direct Methods are becoming an increasingly popular method of demonstrating shakedown. 

There are many cases where the conventional simplified approach gives results which are overly 

conservative. The use of full non-linear FEA is not only computationally expensive but can also give 

ambiguous results in terms of the shakedown status of the component. The LMM provides solutions to these 

problems. Firstly, in the case of conservatism of results, both lower and upper bounds to the exact 

shakedown limit are provided and consistently converge to within a very small tolerance of each other [7]. 

The LMM also provides these solutions with less computational expense than a full non-linear solution, and 

the bounding theorem foundations mean that the basis for this solution is more concrete than the judgement 

and estimations often required with the full non-linear option. For these reasons, the LMM has been 

incorporated into the R5 high temperature research program of EDF Energy, with a view to including it 

within the R5 structural integrity assessment procedure [1].  
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 The LMM has been validated against full non-linear FEA on many occasions, and favourable results 

have been seen with all of these comparisons (in [7] for example). These comparisons are needed to verify 

that the method has been implemented correctly within the finite element framework. However, it is also 

important to verify the entire analysis tool. This includes assumptions and simplifications which are external 

to the FEA implementation, such as the use of simplified material models. To achieve this, comparisons 

against experiments are required. 

This paper presents the comparison of experimentally determined limit loads [8] and shakedown limits 

[9] with those predicted by the LMM. The experiments were performed on pipe intersections and nozzle-

sphere intersections respectively, thus reproducing realistic geometries used in plant systems. After giving a 

brief introduction to the LMM, this paper describes limit load and shakedown limit tests alongside the 

strategy used to analyse these using the LMM. A comparison of the experimentally and numerically derived 

limits is given which demonstrates the ability of the LMM to predict accurate yet conservative limit loads 

and shakedown limits. 

2. THE LINEAR MATCHING METHOD 
 The Linear Matching Method (LMM) has been fully described in other publications [4-6], and so only 

a brief outline of the shakedown method, used in this work, is given.  

 The basic premise of the LMM is that a nonlinear material response can be mimicked by a series of 

iterative elastic solutions where the modulus is modified within the volume of the structure to bring the 

stresses equal to the yield stress. Figure 1 demonstrates this pictorially. 

 

 
Figure 1 - Iterative Modulus Adjustment Procedure 
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 Figure 1a shows the initial elastic analysis for the applied loads. At each integration point the modulus 

is modified at a fixed level of strain such that the stress equals the yield stress. This updated modulus is then 

used in the second iteration (Figure 1b), where the modulus is once again adjusted to bring the stress to the 

yield stress. A very similar action is taken at points where the stress is below yield where the modulus is 

increased so that the stress is equal to yield. Repetition of this process allows the stresses to re-distribute in 

the structure in a very similar way to that of a non-linear material and also allows a constant residual stress 

field to form.  

In conjunction with the modulus adjustment procedure the applied loads are scaled using an upper 

bound load multiplier, which is calculated based on Koiters Theorem [2]. The combined effect of the 

modulus adjustment and load scaling allows the LMM to converge towards the exact shakedown limit. 

Lower bounds to the shakedown limit are calculated by using Melan's Theorem [3] which ensures that the 

stresses from the applied loads satisfy the yield stress at all points in the model and at all points in the load 

cycle. 

3. LIMIT LOAD COMPARISONS 
The limit load tests used for comparison in this work are those performed by for the Welding Research 

Council, specifically the tests reported in WRC Bulletin 219 [8]. The limit loads of pipe intersections 

subject to internal pressure and in-plane bending moments were determined. A brief description of the 

manufacture and testing of the pipe intersections is given before a description of the LMM calculations and 

a results comparison. 

3.1 Experimental Tests 
The pipe intersections were machined from a single billet of hot-rolled steel plate of ASTM A-36 grade 

steel. The machining contained three steps: A rough cut to approximate dimensions, an anneal to remove the 

residual stresses both inherent in the parent plate and caused by machining, and a final finishing cut to bring 

the component to the final dimensions.  

 

 
Figure 2 - Pipe Intersection Schematic and Dimensions 

 

For continuity the naming of the intersections used in [8] will also be used here, and Figure 2 shows the 

final dimensions of the two intersections, A and B1, as quoted in [8].  

The internal pressure testing of intersection A was achieved by welding plates to the open ends of the 

pipes and then using a pressure fitting in one of these ends to supply pressurised fluid. The moment loading 

of intersection B1 was applied to the intersecting pipe by two hydraulic rams acting in opposite directions. 

These, in turn, were connected via pin joints to a loading arm which was fixed to the free end of the 

intersecting pipe (as shown schematically in Figure 3a). This arrangement applied a pure moment couple to 

the pipe. Multiple dial gauges and strain gauges were fitted to the intersections for testing and were used to 

define the limit load of the components, see section 3.3. 
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Figure 3 - Nozzle-Sphere Moment Application Schematic in a) Experiment and b) LMM Analysis 

 

The material properties of the steel were obtained by machining tensile and compressive test specimens 

from the same billet as the intersections were manufactured from. (i.e. an individual yield stress was 

determined for each nozzle). These specimens were also subject to the same annealing treatment. Figure 4 

shows a typical stress-strain response of the material tests and Table 1 shows the yield stresses (0.2% offset 

strain) reported for each intersection. The reported yield stresses are the average of six tests, where a 

deviation of no more than 2% from the mean was observed in any test. 

 

 
Figure 4 - Typical Stress-Strain Response of Intersection Material as reported in [8] 

3.2 Assessment Using the LMM 
Using the information given in [8], the pipe intersections were modelled in Abaqus [10] for assessment 

with the LMM. The dimensions of both intersections is reported with great accuracy, which allowed an 
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exact geometry to be created and meshed in Abaqus CAE using symmetry where appropriate. Model A was 

modelled using a one-quarter model due to the uniform loading. Model B1 used one-half symmetry due to 

the symmetry of the applied moment loading along the axis of the main pipe (shown in Figure 5).  

 

 
 

 
Figure 5 - Nozzle-Sphere FEA Models for a) Model A and b) Model B1 

 

A perfectly plastic material model was used for both limit pressure and limit moment analyses using the 

yield stress quoted in Table 1. Looking at Figure 4 it can be seen that for the range of strains shown in the 

tensile and compressive tests that a perfectly plastic material, despite being a very simple model, is a 

reasonable approximation to this material response. 

 

Table 1 - Yield Stresses of Intersections A and B1 

Test Yield Stress (MPa) 

A 198 

B1 167 

 

The loading and boundary conditions were chosen to most accurately represent the conditions of each 

test. In model A internal pressure loading was applied to all internal surfaces, and due to the closure of the 

ends in the tests, the closed end condition was applied in the model. To achieve this the equivalent axial 

tension was applied to the free ends of the pipes. Free radial expansion of the pipes was allowed, as per the 

tests, and the free ends of the pipes were constrained to remain in-plane during longitudinal expansion. In 

model B1, the ends of the main pipe were fully fixed. The bending moment was applied to the intersecting 

pipe using the DLOAD subroutine [10], which allowed a pure couple to be applied in the form of a linear 

pressure distribution across the free end, as shown in Figure 3b. 

3.3 Results Comparison 
In [8], values of limit load are quoted for each test, each of which is determined using a different 

interpretation of the load-strain and load-deflection data obtained during the test. In this work, the lowest of 

the three reported values is used for comparison to maintain a level of conservatism. 

The LMM produces lower and upper bounds to the limit load, and both values are included here to 

demonstrate the level of convergence possible between the two values. In addition to the LMM values, the 

limit load calculated in a conventional Abaqus limit analysis (using the same mesh as the LMM analysis) is 

presented as an additional comparison. All of these results are shown in Table 2. 

Table 2 - Limit Load Comparison 

  LMM   

Test 
Abaqus 

Limit 

Upper 

Bound 

Lower 

Bound 
Experiment 

 

A 7.19 7.19 7.12 8.0 (MPa) 

B1 2970 2968 2939 3184 (Nm) 

 

a) b) 
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Comparison of the limit load values in Table 2 reveals that a slightly conservative limit pressure and 

moment is predicted which also compares favourably to that predicted by the Abaqus limit analysis using 

the Riks method. Two conclusions can be drawn from these results. The first is that the implementation of 

the lower and upper bounding theorems in the LMM is correct, given that the LMM and Abaqus limit 

results match almost exactly. These three FEA results are all based on a different theoretical foundation, and 

so the uniformity of the results gives confidence in their individual ability to predict limit loads. This gives 

confidence that the LMM can be used in situations which cannot be directly compared to conventional FEA 

(assessment of the shakedown boundary for example) because the implementation of the bounding theorems 

has been verified. The second conclusion is that the LMM performs as well as conventional non-linear FEA 

methods for predicting limit loads with the same modeling approximations, such as simplified material 

models.  

4. SHAKEDOWN LIMIT COMPARISONS 
The ability to predict limit loads is a useful first verification as it serves to validate the implementation 

of the bounding theorems used in the LMM. The capabilities of LMM, however, extend beyond those of 

conventional FEA to the calculation of the shakedown limit, and so this functionality of the method must 

also be verified. To achieve this, the shakedown tests performed by the C.E.G.B. [9] are used. 

4.1 Experimental Tests 
The experiments performed in [9] investigated the shakedown  pressure of nozzles in spherical shells. 

Two of these tests are discussed here, both of which made use of oblique nozzles in the shell. Once again 

the naming convention in the original report has been adopted in order to maintain consistency, and Nozzles 

5 and 6 are considered in this work.  

Table 3 - Material Properties of Nozzle and Shell Materials 

Material Yield Stress 

(MPa) 

Ultimate Tensile 

Strength (MPa) 

Nozzle 265 493 

Shell 273 485 

 

The vessels were manufactured from boiler plate (shell material) and forged bar (nozzle material) 

which were chosen to have closely matched mechanical properties. The yield stresses and ultimate tensile 

stresses of the two materials given in [9] are shown in Table 3 and Figure 6 shows the dimensions of the two 

geometries.  

The tests were performed to find the shakedown pressure of these nozzles. Many strain gauges were 

attached to the nozzles prior to testing and these strain readings were used to determine the shakedown 

status of the vessel. 

Beginning at ambient pressure, the vessel was pressurized to the current test pressure and then back to 

ambient conditions. The initial pressure cycle began at ambient, pressurized to 400psi and then returned to 

ambient. If shakedown was observed with this level of pressure cycling, then the maximum pressure in the 

cycle was increased by 50psi and the cycling was repeated. In these tests shakedown was said to occur when 

identical strains were recorded in three consecutive cycles. If this shakedown criterion was not met within 8 

pressure cycles, it was concluded that the vessel would not attain shakedown. 

4.2 Assessment Using the LMM 
The geometry of the nozzles was modeled in Abaqus CAE where the dimensions of the welds (not fully 

documented in the published results) were estimated based on likely leg lengths for the thickness of the 

shell and nozzle. The symmetry of both nozzles is used by creating one-half models with the appropriate 

symmetry boundary condition. The full spherical shell was reduced to a small section through the use of a 

spherical coordinate system and boundary conditions at the edge which permitted radial expansion but fixed 

motion in the theta and phi dimensions. The FEA models are shown in Figure 7. 
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Figure 6 - Nozzle-Sphere Intersection Schematic and Dimensions 

A perfectly plastic material model was adopted for the analysis using the yield stresses given in Table 3. 

The ultimate tensile strength quoted shows that the material work hardens, but the absence of any further 

data prevents the use of hardening material models. Welded regions and heat affected zones very often have 

a higher yield stress than the surrounding parent material, but in this situation no information regarding this 

was provided. Therefore the material properties of the weld 

 

 

 
Figure 7 - Nozzle-Sphere Intersection FEA Models of a) Nozzle 5 and b) Nozzle 6 

 

were assumed to be the same as those for the nozzle material which, being the lower of the two yield 

stresses, introduces a small conservatism into the analysis.  

a) 

b) 
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An internal pressure was applied to all inner surfaces of the model. This pressure was established 

within a load cycle in the LMM analysis so that it would cycle from zero to a maximum pressure and then to 

zero once again. This load cycle is scaled by the LMM to find the shakedown limit, which in turn results in 

the shakedown pressure for the nozzle.  

4.3 Results Comparison 
Table 4 shows a comparison of the shakedown limit pressures found by experiment and through LMM 

calculation. The experimental lower bound corresponds to the highest level of cyclic pressure where 

shakedown was achieved. The experimental upper bound corresponds to the first cyclic pressure level 

where shakedown was not achieved. 

Table 4 - Shakedown Pressure Comparison 

 LMM Experiment  

Nozzle 
Lower 

Bound 

Upper 

Bound 

Lower 

Bound 

Upper 

Bound 
 

5 4.53 4.58 4.82 5.17 (MPa) 

6 4.12 4.16 4.48 4.82 (MPa) 

 

The shakedown pressures predicted by the LMM show reasonable agreement with the experiments 

whilst retaining a level of conservatism.  

Figure 8 shows the location of the plastic strains in Nozzle 5, which are located at the nozzle-shell join, 

highlighting the reverse plasticity mechanism which would be observed when the cyclic pressure exceeds 

the shakedown pressure. This location was also highlighted in the C.E.G.B. report, which provides further 

verification of the LMM analysis. A similar correlation was also observed with Nozzle 6. 

 

 
 

Figure 8 - Location of Reverse Plasticity in Nozzle 5 

 

The conservatism seen in the predicted shakedown pressures is most likely to be due to the material 

model adopted in the LMM assessments. The perfectly plastic material does not capture any of the work 

hardening characteristics which may occur when the material is loaded beyond the elastic limit. The 

ultimate tensile strength of both materials shown in Table 3 is significantly higher than the yield stress, 

indicating that both materials show significant work hardening. In addition, with the repeated cycles of 

pressure, the material may also exhibit cyclic hardening which deviates further from the perfectly plastic 

assumption. Despite the very conservative material model the results obtained are still within 11%, giving 

not only a conservative shakedown pressure but also the critical location in the structure in terms of plastic 

strains. 
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5. CONCLUSIONS AND FUTURE WORK 
This paper has presented comparisons of the LMM with experimental tests. Limit loads of pipe 

intersections subject to internal pressure and in-plane moment were considered first and two conclusions 

can be drawn from the results. Firstly, comparison of LMM and Abaqus limit analysis confirms the correct 

implementation of the bounding theorems. The second conclusion is that the LMM is capable of giving 

suitably conservative predictions of the limit load, which are effectively identical to those predicted by 

conventional non-linear FEA methods with the same modeling approximations. The ability to predict 

suitably conservative solutions was also found when the LMM was used beyond the capabilities of 

conventional FEA to predict the shakedown limit. The shakedown pressures of oblique nozzles in spherical 

shells were predicted with a reasonable yet conservative accuracy, despite the use of simplified material 

models. Furthermore, the location of the reverse plasticity mechanism predicted by the LMM correlated to 

that in the experiment, giving further confidence in the result. 

The verifications presented here were deemed to be successful in verifying the LMM shakedown 

method as a tool for use in industry. In the immediate future it is important to consider more examples so 

that the method is verified using wide range of geometries and load histories. One specific example of this 

would be a thermally loaded example so that the temperature dependent material properties function of the 

LMM is used. 

In addition to the shakedown analysis method, the LMM framework contains calculations for the 

ratchet limit for components operating beyond shakedown (i.e. where a reverse plasticity mechanism is 

involved) and for calculation of the stabilised response of the structure where the cycle contains a creep 

dwell. These methods contribute towards making the LMM a complete structural integrity tool for 

components operating at high temperatures. If this tool is to be adopted by industry in the future then the 

ratchet limit and creep calculation methods will also require validation with experimental results. 
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