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a b s t r a c t

Models which fully evaluate the life cycle energy and greenhouse gas (GHG) emissions of national
housing stocks are not reported in literature. Capturing a holistic view of energy and emissions of the
residential sector is an important process that can lead to a more effective policy making. This paper
presents a methodology which evaluates the life cycle energy and GHG emissions of retrofitting housing
stocks considering all life cycle stages and incorporating, to the greatest extent possible, all upstream
inputs.

To achieve this, we developed a hybrid model of the existing Irish housing stock, comprising a process-
based approach supplemented by input e output LCA for installation of materials and fit-outs and
maintenance of appliances. Life cycle analysis (LCA) is a commonly accepted technique for evaluating
cradle-to-grave environmental impacts of a product. Using an assumed 50-year life span in all cases,
representative archetypes were used to estimate the performance along retrofitting, operation, main-
tenance and disassembly phases of the three selected house retrofit scenarios: BaseCase (no interven-
tion), Current Standards (retrofitting to meet current building regulations) and Passive House
(retrofitting to meet Passive House Standards).

Results show that detached houses displayed the highest range of life cycle energy and exhibited the
greatest absolute and percentage reductions compared to other house types, as life cycle energy ranges
from 386 e 614 kWh/m2 yr, 225 e 261 kWh/m2 yr and 126 e 137 kWh/m2 yr for all house scenarios,
respectively. Using these results an assessment is provided for policy makers on a holistic view of the life
cycle performance of existing dwellings.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The residential sector consumes approximately 30% of global
primary energy [1], thus contributing significantly to greenhouse
gas (GHG) emissions and global warming. In the EU, buildings are
responsible for over 40% of energy use and a similar proportion of
GHG emissions [2]. Although high, these figures may disguise the
true global impact of building emissions since they account for
operational activities (e.g. heating, cooling, lighting and small po-
wer) only. It is therefore important to fully account for andmeasure
the energy use and emissions of a building throughout its life cycle
which encompasses all the supply chain processes required for its
production, operation and removal so as to assist policymakers and
designers in understanding the true national, regional and global

impacts of buildings on the environment. This will lead to more
effective decision making.

Life cycle analysis (LCA) is a commonly accepted approach for
evaluating cradle-to-grave environmental impacts. For a building,
life cycle stages include the extraction, refining, processing and
production of raw materials and building materials, their use in
construction, their disassembly and the operation andmaintenance
of the structure over its lifetime. Building-related environmental
aspects and impacts of note include: Carbon dioxide (CO2),
Methane (CH4), Nitrous oxide (N2O), Perfluorocarbons (PFCs),
Hydro-fluorocarbons (HFCs) and Sulphur hexafluoride (SF6)
greenhouse gases as emissions to air, and Nitrogen oxides (NO
[Nitric oxide] and NO2 [Nitrogen dioxide]) (NOx), Sulphur dioxide
(SO2), Carbon monoxide (CO), Non-Metallic Volatile Organic Com-
pounds (NMVOC) and particulate matter.

In many advanced economies, current building standards
ensure that new buildings are highly operationally energy-efficient,
resulting in lowGHG emissions and environmental impacts relative
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to older buildings. The greatest challenge in these countries is to
upgrade older, less efficient dwellings to higher energy efficiency
standards. However, the system boundary in the energy analysis of
these older dwellings is often narrowed or incorrectly expanded.
The function of a building is to shelter and protect the occupants
from inclement weather, resulting in their comfort. In a retrofit
project the selected system boundary should be based on those
processes that are related mainly to the function of the building.
Concerns regarding aesthetic should be considered as being
embedded in the function values of the building. The life cycle of a
house retrofit project can then be categorised into four phases e

operation, retrofit, maintenance and disassembly. The system
boundary of a house retrofit project should be limited to only those
processes that can not be separated from the building. In a different
perception as in the model of Erlandsson and Levin (2004) waste
water treatment was assumed to be part of maintenance. However,
the process should be better accounted for in the study of the
metabolism of urban systems when considering sustainability of
cities.

All of these factors make energy and emission evaluations of
older dwellings challenging. While there is considerable informa-
tion about operational phase energy reduction strategies for ret-
rofitting housing stocks, there is far little knowledge on those
attributable to retrofitting, maintenance and disassembly. A life
cycle approach, however, should be taken to ensure that the level of
refurbishment and system boundary chosen result in net emissions
and energy savings over the projected lifespan of the upgrade.
Moreover, the resulting marginal GHG abatement costs (MAC)
should be economically efficient. However, a separate paper is
proposed to discuss in detail the MAC of the retrofitted scenarios
and the policy implications. Models which fully evaluate the life
cycle energy and GHG emissions of national housing stocks are not
reported in literature. Studies either omit certain life cycle phases
or important upstream inputs; for example, none evaluated either

the contribution of fuel supply chains to energy and emissions
processes (such as exploration, extraction, refining, and transport)
and services (such as the installation of materials and fit-outs and
maintenance of heating appliances including servicing). Several
studies have been carried out on the energy and environmental
impacts attributable to different national housing stocks over
various time periods. The BREHOMES model [3], the model devel-
oped by Johnston et al. (2005) [4] and the UK Domestic Carbon
Model (UKDCM) 40% house project [5] focus on the need to support
the assessment of emissions mitigation policies in the UK resi-
dential sector. The work of Balaras et al. [6] looks at the options to
reduce CO2 emissions of the Hellenic housing stock. In Ireland,
Clinch et al. [7] assessed the Irish housing stock to predict energy
and CO2 savings and Clinch and Healy [8] extended this work to
estimate the cost benefit of building stock interventions required to
reduce CO2, SO2, NOx and PM10 emissions. However, these models
only focus on the use phase of buildings. On the other hand, the
work of Erlandsson and Levin (2004) [9] covers Swedish multi-
dwelling houses built during the period 1940 to 1998 and
beyond. However, the system boundary of the study focuses on the
pre-use, retrofitting and maintenance (installation of urine system
for use as fertilizer on a nearby farm) phases of dwellings. The
actual regular maintenance of the buildings by replacing materials
at the end of their service lives including maintenance of heating
and ventilation appliances) was not included. Similarly, the disas-
sembly phase of the building was omitted.

Therefore, the aim of this paper is to develop a methodology
which evaluates the life cycle energy and GHG emissions impacts of
housing stocks considering all life cycle stages and incorporating, to
the greatest extent possible, all upstream inputs. This is then
applied to the Irish housing stock by way of example. The method
adopted involves the use of representative archetypes, each of
which is refurbished to two different levels of energy efficiency:
one whichmeets the energy and emissions requirements (Part L) of
the current Irish building regulations [10]; and the other which
meets the international Passive House standard [11e13]. The reason
for assessing the latter is that the EU and Ireland have stipulated
that all new dwellings should have near zero-emissions starting
from 2020 [14]. The method for choosing thirteen archetypes
which are representative of the Irish housing stock is not detailed
here, but is reported in [15].

The remainder of this paper is presented as follows: Section 2
discusses the methodology and techniques used in the study. The
results and discussion of the life cycle assessment for all house
scenarios are presented in Section 3. Section 4 discusses the vali-
dation of the model used in the study. Conclusions are presented in
Section 5.

2. Methodology

The research is divided into three parts. First, the life cycle im-
pacts of each of the thirteen un-refurbished representative arche-
types were evaluated to give the ‘Base Case’ energy and GHG
emissions for each of the operational, retrofit, maintenance and
disassembly phases. It should be noted that in stock aggregation, an
archetype is a significant class of house, which can be extrapolated
to the total energy consumption by the number houses for that
archetype to represent the entire housing stock. In this study an
archetype house represents a specific class of house (i.e. “As Is”) in
the existing Irish housing stock. The impacts of each archetype
were assessed without intervention (except scheduled ordinary
maintenance) to give a ‘Basecase’.

Second, the detailed materials and labour required to achieve
two levels of refurbishment were identified. The first level chosen
met current building regulations and is referred to the ‘Current

Symbols and units

i Unit archetype
lcp Life cycle phase.
Eprocess-lcp, i Process energy or emissions for each life cycle phase,

for archetype i (kWh or kgCO2-eq)
PEIm Process energy or emissions intensity of material m

for the life cycle phase being analysed (kWh/kg or
kgCO2-eq/kg); and

Qm Quantity of material m used in the life cycle phase (kg).
EI-O-tot, i Total inputeoutput energy/emissions prediction for the

refurbishment services of a unit archetype, i (kWh and
kgCO2-eq respectively).

EIj Sub-sector embodied energy/emissions intensity of the
five Irish construction sub-sectors (j) of Irish
construction (kWh/V)

Cj, i IeO costs of refurbishment services for archetype i,
classified by Irish construction sub-sector j (V).

EI-O-lcp, i Input-output energy requirement/emissions of a
given life cycle phase of the unit archetype, i

Clcp, i Cost of refurbishment services for a given life cycle
phase of a unit archetype, i.

Ctot, i Total cost of refurbishment services of archetype, i.
Ehybrid-tot-lcp, i Hybrid energy requirement/emissions of a given life

cycle phase of a unit archetype
Ehybrid-tot-lc, i Hybrid energy requirement/emissions of a unit

archetype, i.
%Ehybrid-op-rs/bs, i Percentage of reduction in hybrid operational

energy/emissions of a unit archetype, i for a given
retrofit scenario relative to Basecase scenario.

Ehybrid-op-bs, i Hybrid operational energy/emissions requirement
of a unit archetype, i for the Basecase scenario.

Ehybrid-op-rs, i Hybrid operational energy/emissions requirement
of a unit archetype, i for a given retrofit scenario
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Regulations’ scenario. The second level was chosen to meet antic-
ipated future (post 2013) regulations which are assumed to be a
Passive House standard, and are referred to as the ‘Passive House’
scenario. These two levels involved identifying and modelling a
range of interventions which achieved energy ratings equivalent to
the Irish 2011 building regulations and Passive House standards,
respectively. In each case, detailed bills of quantities were drawn
up. In the third part of the research, the refurbished stock models
were then reassessed to estimate their impacts on energy and
emissions including the impacts of services. In all cases energy and
primary energy-related CO2-equivalent emissions were calculated.
Fig. 1 illustrates the overall research methodology used in this
study. Similarly, Table 1 presents the summary of the archetypes
and the refurbishment required to achieve both Current Regula-
tions and Passive House scenarios.

2.1. Developing representative archetypes

The Base Case archetype model defines the characteristics of the
13 individual dwelling archetypes, which together represent 65% of
dwellings in the existing Irish housing stock. The process of
developing the archetypes [15] is summarised here. First, a multi-
linear regression analysis of a detailed housing database was per-
formed to identify the most relevant variables associated with
energy consumption. Second, using a statistical analysis of the
distributions for each key variable, representative parameters were
identified. Third, corresponding construction details were chosen
using knowledge of housing construction details. Fourth, cluster
analysis was then used to identify coincident groups of parameters
and construction details. Fifth and finally, the 13 representative
archetypes were developed using 9 representative construction
details and 9 household variables of energy use.

2.2. Hybrid LCA methodology

A life cycle assessment (LCA) of each archetype was undertaken
for the Base Case, Current Standards and Passive House options. The
assessment was carried out in accordance with: ISO 14040 (2006) -
Environmental Management - life cycle assessment - Principles and
framework [16]; and ISO 14044 (2006) - Environmental Manage-
ment - life cycle assessment - Requirements and Guidelines [17]. A
functional unit of ‘1 m2 total heated floor area’ was chosen as the
most adequate functional unit for the analysis because it relates to a
unit area of living space and allows comparison with the results of
other studies.

Two environmental impact categories were chosen: primary
energy consumption and global warming potential. Both were
chosen since they relate to key drivers of current national and in-
ternational policy making in the built environment. Improving the
energy efficiency of the Irish housing stock is a stated objective of
the Irish government [18]; so too is the reduction of greenhouse gas
emissions. Regarding the characterisation of environmental impact,
global warming potential, an operational guide to the ISO Standards
2001 (CML, 2001) also referred to as the classical impact charac-
terisation method of CML (Centre for Environmental Science, Lei-
den University) is used.

2.2.1. Building system and system boundaries
The building system represents the total system of processes

required for the building [19], jointly with its related material and
energy flows. In this study, the building system comprised four life
cycle stages: operation, retrofitting, maintenance and disassembly.
Each stage is made up of unit processes, each of which indicates one
or numerous activities, such as the extraction or mining of raw
materials, refinement, processing and manufacturing of products,
on-site installation, use, retrofitting, maintenance, all associated
transportation, detaching reusable materials, demolition of the
building and removal of demolition waste. As earlier discussed, the
scope of this workwas limited by omitting all processes that are not
related to the function of the building, and in particular those that
can be separated from the building. The activities, processes and
boundaries for each life cycle phase are described in the following
paragraphs.

2.2.1.1. Operation phase. Operation phase of the building includes
burdens (embodied primary energy and related emissions) from
households’ use of heat energy and electricity for space and water
heating, lighting and appliances. It also includes burdens from
transportation of purchased thermal heat (e.g. oil) from suppliers to
the building site.

2.2.1.2. Retrofit phase. The retrofit phase in the building’s life cycle
encompasses all activities required in the application of energy
savings components to the building. Material production for
retrofit phase includes burdens from material extraction, refine-
ment, processing and manufacture of materials, products and
components including all associated transportation to site and back
to recyclers those items that were replaced. It also includes all
burdens associated with cost of labour required to remove existing
energy savings components, as well as those needed in the instal-
lation of replacements.

2.2.1.3. Maintenance phase. The maintenance phase in the build-
ing’s life cycle encompasses all activities required to produce all
materials, products and components required to replace those that
have expired (i.e. at the end of their service lives). Material pro-
duction for the maintenance phase includes burdens frommaterial
extraction, refinement, processing and manufacture of materials,
products and components including all associated transportation to
site and back to recyclers the expired items. It also includes burdens
from cost of labour for: regular servicing of heating appliances;
installation of material substitutes, including all associated
transportation.

2.2.1.4. Disassembly phase. The disassembly phase in the building’s
life cycle includes all activities required for detaching reusable
materials, demolition of the actual building, loading and disposal of
materials of disassembly. It includes burdens from: drilling,
refinement and processing activities associated with fuels used for
transportation. Other burdens associated with this phase include

(1)
House representative archetype model

(4)
Assess the life cycle impacts of retrofitted scenarios

(5)
Conclusions 

(2)
Assess life cycle impacts

of all archetypes

(3)
Identify suitable retrofit 

measures for the selected
retrofit scenarios and 

for each archetype

A

B

C

D

Fig. 1. Research methodology.
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cost of labour for demolition and transportation of all materials of
disassembly to a recycler, including all associated loading and off-
loading.

2.2.2. Service lives of dwellings
In order to evaluate the life cycle impacts of a building, its ser-

vice life must be known. Assumptions regarding building service
life duration varies across author and study for various reasons,
ranging from differing economic life times of buildings in the
country in question, to non-technical (e.g. rebound effect) and
technical (e.g. material durability) considerations. Other factors
that affect the service live of a building include climate, design, ease
of maintenance, construction type, age, workmanship and

relationship between embodied energy and life cycle energy). A
commonly assumed service life of buildings is a 50-year period [20]
although in some cases, service life is chosen as a 40-year period
[19]. Using both non-technical and technical factors, Nemry et al.,
[21] evaluated the emissions reduction potential in EU buildings
using residual service lives of 40 years for new dwellings and 20
years for older dwellings. Adalberth et al., [22] assumed a service
life of 50 years for four multi-family buildings in Sweden because
the economic life span of a building in Sweden is about 40e50
years. Scheuer et al. [23], assumed a 75 year service life for a mixed
use building in Michigan.

On the basis that approximately 50% of dwellings (including 32%
representing those dwellings that were constructed prior to 1960)

Table 1
Summary of archetypes and the refurbishment required to achieve both Current Regulations and Passive House standards.

Archetype description Scenario

Archetype referencea Variable Material BaseCase Current regulations Passive house

1e5, 7e12 Partial fill cavity wall Mineral wool (slab) 0.5 W/m2 K 0.21 W/m2 K 0.12 W/m2 K
6 Full fill cavity wall 0.375 W/m2 K
13 Un-insulated cavity wall 1.625 W/m2 K
4, 7, 9 Single-leaf wall 0.5 W/m2 K
1, 6e8, 10e11 Ceiling insulation

(i.e. insulation
between joists)

Mineral wool (quilt) 0.33 W/m2 K 0.16 W/m2 K 0.1 W/m2 K
2e3 0.46 W/m2 K

4e5, 9, 12e13 Rafter insulation 0.33 W/m2 K
2e3, 13 0.46 W/m2 K
1, 6e12 Insulated solid floor Rigid foam (mm) 0.5 W/m2 K 0.21 W/m2 K
2e5, 13 Un-insulated suspended

timber ground floor
0.58 W/m2 K

7e8, 10, 13 Air change rate Sealant 0.94 ac/h 0.35 0.25
1, 4, 9, 11e12 0.87 ac/h
2, 5 0.74 ac/h
6 0.67 ac/h
1e2, 4e5, 8e10 Windows UPVC and glass Double-glazed UPVC Triple-glazing

(1 low-emissivity
coating, 2 gaps with
air to achieve a
U-value of 1.6.)

Triple-glazing
(1 low-emissivity
coating, 2 gaps
with argon gas,
and integral
draught proofing
to achieve a U-value
of 0.8 W/m2 K
(Gustavsson, 2010)

6 Low-e UPVC
3,13 Single-glazed timber
7, 11e12 Double-glazed timber

1e3, 9, 11e12 DHW cylinder Factory-applied
coating of
polyurethane foam

30b 50 mm 75 mm
5, 7, 10, 13 35c

4, 6 37c

8 50b

1e2, 4e6 Heating system
and Controls/
Low emissions
technologies

Not available Conventional oil boiler
(80% efficiency)

Condensing/boiler,
Solar hot water - 4 m2

solar flat plate system

Ground source
heat pump,
Solar hot water - 4 m2

solar flat plate system,
Mechanical ventilation
plus heat recovery
(MVHR) and PV system

3 Conventional oil boiler
(70% efficiency)

7e13 Conventional gas boiler
(80% efficiency)

Air source heat pump,
Solar hot water - 4 m2

solar flat plate system,
Mechanical ventilation
plus heat recovery
(MVHR) and PV system

1e13 Standard controls
(e.g. single room
thermostat plus timer;
thermostatic
radiator valve control,
or Full time and
temperature zone control)

Advanced controls Advanced controls

1e13 Lights Incandescent light bulbs CFL lighting CFL lighting

a Archetypes 1e6 are detached houses, archetypes 7e10 are semi-detached houses, and archetypes 11e13 are mid-terraced houses/apartments.
b DHW cylinder lagging jacket.
c Factory-applied coating of polyurethane foam (mm).
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of the existing Irish housing stock are well over 45 years old [24] as
at 2005 (baseline year of study), a common service life of 50 years
for all the buildings within the population has been assumed for
this study. The selected period will allow: 1) approximately 1
replacement for a majority of energy savings components (e.g. 20
or 25 years economic lifetime for a PV system ([25]), 20 years on
average for a solar water heating system [26] and 20e40 years for
windows [27]; and 2) No replacement for foundations and super-
structures (i.e. 60 þ years) [27] and roof coverings (40e60 þ years)
[27]. It is assumed that such a selection will lead to striking a bal-
ance between embodied energy and operational energy. As more
materials and components are replaced at the end of their service
lives and of regular/scheduled maintenance embodied energy be-
comes increasing significant. At a point as the age of the building
increases embodied energy may overtake and even dominate
operational energy. At this point the building has outlived its eco-
nomic lifetime. The cost of replacing roof coverings, foundations
and even superstructures, including materials and components of
regular/scheduled maintenance will exceed the economic and
environmental implications of a corresponding new building.
Limiting the lifetime of the building to 50 years as the economic
lifetime so as to avoid the replacement of these fundamental
components is therefore crucial.

2.2.3. Sources of data
The methodology described in this paper involves a combina-

tion of methods and databases. The Energy Performance Survey of
Irish Housing (EPSIH) [28] provided the life cycle inventories of
construction materials and quantities and energy types. The EPSIH
involved a detailed physical, occupancy and energy survey of 150
Irish dwellings which were representative of the Irish housing
stock. It was undertaken in 2005.

The Housing Energy Model (HEM) energy software was
selected to evaluate the annual operation energy for the different
retrofit options because of its regional representativeness,
together with the inclusion of the relevant demand-related inputs.
The annual operational energy calculation was based on the pa-
rameters of the characteristics (including fabric determinants,
heating system determinants and context determinants) of the
archetypes. HEM has been designed for use at local and national
levels by different categories of stakeholders, such as policy
makers involved in building regulations and building stock owners
in the appraisal of energy efficiency measures [29]. GaBi 4.4 was
selected to evaluate the operational energy-related environmental
impacts of the representative archetype dwellings, given the

operational energy requirements obtained from HEM, and in
particular as GaBi 4.4 software can not be used to evaluate house
annual energy use based on those characteristics earlier
mentioned.

In calculating hybrid energy and emissions, process analysis was
used for material quantities to which process emissions intensities
can be applied. Overall, process analysis data covers the physical
flows of all processes that are related to the production, con-
sumption, retrofitting, maintenance and disassembly phases of the
house in question. Background datasets are provided within the
GaBi 4.4 software tool developed by the PE International of Ger-
many [30]. Background datasets refer to ‘Professional’- standard
database used in industry, including ELCD database, as well as data
from APME/PlasticsEurope, and ‘Extensions databases’ (e.g. steel,
aluminium, electronics, renewable raw materials, manufacturing
processes, intermediate [organic and inorganic], textile finishings,
construction, etc. GaBi 4.4 contains construction database or
datasets which encompass the mainly relevant construction ma-
terials, including additional specialised materials used in the con-
struction of buildings. The construction database is categorised into
mineral products (including concrete, concrete products, bricks and
natural stones); ready-to-use building materials (including
different types of windows and frame types). The technologies of
the transportation datasets are representative Europe wide. These
technologies can be adapted in different countries to suit country
specific background datasets (e.g. transportation distance and
weight of materials to be transported) [30]. Other sources of pro-
cess data include the energy and emissions intensities of Irish
construction sub-sectors from a previous Irish study by [31]. Fig. 2
illustrates the combination of methods and databases used in the
study.

Since the materials and processes within the building systems
are similar for all archetypes, a generic parameterised model was
developed in GaBi 4.4 in order to adapt the model to each of the
representative archetypes. The generic parameterised building
model allows the simplification of the handling of the extended
quantity of data and maintains consistency and transparency of
results during the assessment of each archetype [21]. The devel-
oped parameterised model can be adjusted with parameter varia-
tions to allow its adaptation without the need to developing a
whole new model for each of the archetypes [30].

Given the uncertainty regarding future energy mixes, it is
assumed that the energy supply systemwill be constant during the
entire lifetime of the building when calculating emissions. Irish
current electricity grid mix has been used to evaluate the envi-
ronmental impact induced by electricity production for all build-
ings. Similarly, environmental impacts from heat production were
calculated using Irish fuel parameters for natural gas and oil using
GaBi energy and emissions conversion factors.

Input output (IeO) analysis [32] was used for assessing energy
and emissions where no materials quantities and/or process
emissions intensities could be obtained. Monetary flow data was
obtained from a combination of sources. Retrofit upgrades were
designed based on the physical parameters reported in the EPSIH
database as well as the requirements of existing building regula-
tions and the Passive House standards. Data on the costs of mate-
rials, products, labour costs, profits and overheads were obtained
from Spon’s Irish construction price book [33] and Spon’s Me-
chanical and Electrical Price Book [34],. Thesewere then adjusted to
a 2005 base year. The price books also provide additional infor-
mation on plant hire and other services. IeO data was obtained
from a previous Irish study, Acquaye [31] and included construction
energy (kWh/V) and emissions intensities (kgCO2-eq/V) broken
down by subsector: ‘Ground Works’, ‘Structural Work’, ‘Services’,
‘Finishes’ and ‘Plant Operation’.

Life Cycle Assessment (LCA)

Retrofit 
phase

Maintenance 
phase

Hybrid method
(process and input-output)

Process 
analysis

Disassembly
phase

Input-output
analysis

Operation 
phase  

Fig. 2. Combination of methods and databases.
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2.2.4. Life cycle inventories
Using the various sources of data discussed in the previous

section, life cycle inventories (LCIs) for all retrofitting materials,
energy sources and costs of services (installation of materials and
fit-outs) were generated. The LCI comprises an inventory of all in-
puts and outputs over the life cycle of the building. The building
service live and the life expectancy of the products and materials
were also used in this process. The rate of replacement results in
the number of replacements of products (e.g. replacing a PV system
every 20 or 25 years) and number of upgrade actions (e.g. internal
and external redecorations every 7 and 10 years, respectively) for
each construction detail over the service life of the building.

For the disassembly phase, the study assumes there is a recycler
near the building at approximately 50 km. The transport dataset
from GaBi 4.4 already accounts for the transportation of fuels from
the point of extraction ormining to themanufacturing centre of the
required finished products. However, transportation burdens from
the mainstream and downstream sectors are also based on the
transportation dataset from GaBi 4.4 and are modelled based on an
assumed distance of 50 km from suppliers to the building site, and
of waste from building site to recyclers.

Inventories of some processes and features were excluded from
the house system boundary either due to their overall insignifi-
cance or because they fell outside the study boundary. It would be
recalled that the system boundary of the study is limited to only
those processes that can not be separated from the building. This
study was therefore limited to building elements, heating systems,
and electrical systems.

2.2.5. Calculation of process-based hybrid energy/emissions
The calculation of hybrid energy and emissions can be split into

two sections: an estimation of process analysis energy and emis-
sions; and IeO analysis energy and emissions. The hybrid energy
and emissions are obtained as the sum of the process and IeO LCA
figures. Fig. 3 illustrates how the input-output and process tech-
niques were combined for this project (the bolded figures represent
the three steps followed in the calculation). The process energy and
emissions acrossoperational,maintenance, retrofit anddisassembly
phases were calculated using GaBi and the bill of quantities pre-
pared for the refurbishment works. The residual values of materials
and services notused in theprocess analysis (omittedeither because

they could not be measured by mass or because no relevant emis-
sions intensities were available) were classified into their relevant
Irish construction sub-sector and multiplied by the corresponding
energy and emissions intensities. Thesewere summed and added to
the process values to give the total hybrid LCA emissions for the Base
Case, Current Regulations and Passive House scenarios.

The process energy and emissions for each life cycle phase is
given by:

Eprocess�lcp;i ¼
X
m

PEIm � Qm (1)

Where: lcp ¼ life cycle phase

Eprocess-lcp, i is the process energy or emissions for each life cycle
phase (lcp) for archetype, i (kWh or kgCO2-eq);
PEIm is the process energy or emissions intensity of material m
for the life cycle phase being analysed (kWh/kg or kgCO2-eq/
kg); and
Qm is the quantity of materialm used in the life cycle phase (kg).

The input-output energy requirement/emissions of a given life
cycle phase for the refurbishment services of a unit archetype, iwas
calculated by first calculating the total input-output energy
requirement/emissions of a unit archetype, i. The total input-output
energy/emissions prediction for the refurbishment services of a
unit archetype, i can be represented by equation (2).

EI�O�tot;i ¼
X5

j¼1

�
EIj*Cj;i

�
(2)

EI-O-tot, i ¼ Total inputeoutput energy/emissions prediction for
the refurbishment services of a unit archetype, i.

EIj¼ sub-sector embodied energy/emissions intensity of the five
Irish construction sub-sectors (j) of Irish construction (kWh/V).

Cj, i ¼ IeO costs of refurbishment services for archetype i, clas-
sified by Irish construction sub-sector j (V).

Then the input-output energy requirement/emissions of a given
life cycle phase of the unit archetype, i can be represented by
equation (3):

EI�O�lcp;i ¼ EI�O�tot;i�
Clcp;i
Ctot;i

(3)

Characteristics of the developed archetypes

Hybrid energy/emissions due to operation, 
retrofit, maintenance and disassembly phases (unit archetype)

Construction material 
quantities (process) [2]

Cost of services (installations and fit-outs 
and maintenance [including servicing] 

of heating appliances  (I-O) [3]

Sub-sector  energy/ emission 
intensities of Irish construction

Energy/emission 
intensities from GaBi tool  

Embodied 
energy/emissions 

House annual operation  
energy from HEM (process) [1]

Bill of quantities of materials and costs

Operational 
energy/emissions 

Embodied energy/emissions
attributable to services

Fig. 3. Combination of inputeoutput and process techniques used in evaluating the hybrid LCA energy/emissions.
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Clcp, i ¼ cost of refurbishment services for a given life cycle phase
of a unit archetype, i.

Ctot, i ¼ total cost of refurbishment services of archetype, i.
EI-o-lcp, i ¼ input-output energy requirement/emissions of a

given life cycle phase of the unit archetype, i.
The hybrid result is some combinations of the process and IeO

results. Thus, the hybrid energy requirement/emissions of a given
life cycle phase of a unit archetype, i is the sum of its process and
input-output energy/emissions.

Ehybrid�tot�lcp;i ¼ Eprocess�lcp;i þ EI�O�lcp;i (4)

Where, Ehybrid-tot-lcp, i ¼ hybrid energy requirement/emissions of a
given life cycle phase of a unit archetype, i.

Similarly, the hybrid life cycle energy requirement/emissions of
a unit archetype, i is the sum of the process energy/emissions
across use, retrofit, maintenance and disassembly phases, and the
corresponding input-output energy requirement/emissions.

Ehybrid�tot�lc;i ¼
X4

lcp¼1

Eprocess�lcp;i þ
X3

lcp¼1

EI�O�lcp;i (5)

Ehybrid-tot-lc, i ¼ hybrid energy requirement/emissions of a unit
archetype, i.

Eprocess-lcp,i ¼ process energy/emissions across operation,
retrofit, maintenance and disassembly phases.

EIeo-lcp,i ¼ input-output energy requirement/emissions across
retrofit, maintenance and disassembly phases.

The scale of reduction in operational energy consumption of all
archetypes was also calculated for all retrofit scenarios. This was
considered necessary since the phase is the most important life
cycle phase. This was calculated as a percentage for the respective
unit archetype, i across all retrofit scenarios relative to BaseCase
energy/emission. The percentage of reduction in operational en-
ergy/emission of a unit archetype, i for a given retrofit scenario is
represented by:

%Ehybrid�op�rs=bs;i ¼
�
Ehybrid�op�bs;i � Ehybrid�op�rs;i

�

Ehybrid�op�bs;i
*100 (6)

Where, %Ehybrid-op-rs/bs, i ¼ percentage of reduction in hybrid oper-
ational energy/emissions of a unit archetype, i for a given retrofit
scenario relative to Basecase scenario.

Ehybrid-op-bs, i ¼ hybrid operational energy/emissions require-
ment of a unit archetype, i for the Basecase scenario.
Ehybrid-op-rs, i ¼ hybrid operational energy/emissions require-
ment of a unit archetype, i for a given retrofit scenario

2.2.6. Energy/emissions of retrofitted scenarios
For each of the 13 archetypes indicated in Table 1 and the

refurbishment required, the generic parameterised model initially
developed in GaBi 4.4 tool was altered based on the corresponding
life cycle input data to evaluate the new energy and emissions. The
new energy and emissions of the retrofitted scenarios were then
compared to the BaseCase scenario.

3. Results and discussion

The following subsections present the results and discussion at
archetype and life cycle phase levels.

3.1. Life cycle energy at archetype level

3.1.1. Base Case
Fig. 4 shows the life cycle primary energy use results of all ar-

chetypes for all scenarios according to archetype dwelling type.
Overall, the life cycle primary energy of all archetypes for the Base
Case scenario ranges between 259 and 614 kWh/m2 yr. When
considered according to dwelling type the range of primary energy
requirements are: 386e614 kWh/m2 yr for detached house arche-
types; 272 kWh/m2 yr for semi-detached house/end-terraced
house archetypes; and 259e501 kWh/m2 yr for mid-terraced
house/apartment archetypes. The energy use in detached house
archetypes reflects their higher wall, roof, floor and window areas
and the use of oil-fired boilers when compared to other archetypes.
It should be noted that the high value for archetype 3 relative to
other detached houses is due to its low level of envelope insulation
(single-glazed wooden windows and little roof insulation). Semi-
detached house archetypes exhibit little variation due of their
similar U-values and geometries. Among the mid-terraced houses/
apartments, archetype 13 is the greatest energy user due to its
relatively poor envelope insulation (un-insulated cavity wall,
single-glazed wooden windows, un-insulated suspended timber
ground floor and a low level of roof insulation). The life cycle pri-
mary energy consumption for archetype 3 was so odd because of its
poor envelope insulation (including draught-proofed single-glazed
windows), low heating system efficiency (including an oil boiler)
and the incorporation of DHW cylinder lagging jacket. Similarly, the
performance of archetype 13 is equally odd due to its poor envelope
insulation, but much better than that of archetype 3 because of its
higher heating system efficiency and the incorporation of DHW
cylinder foam.

3.1.2. Current regulation
All retrofit scenarios yield significant life cycle primary energy

improvements compared to the Base Case scenario. Overall, the
Current Regulations life cycle primary energy consumption ranges
between 151 and 261 kWh/m2 yr for all archetypes. Life cycle pri-
mary energy use decreases by at least 41% for the Current Regula-
tions option for all archetypes when compared to the Base Case
scenario. For this option, detached house archetypes display the
highest life cycle primary energy use, ranging from 225 to
261 kWh/m2 yr. Corresponding values for mid-terraced houses/
apartments range from 151 to 201 kWh/m2 yr while semi-detached
houses/end-terraced houses record the lowest life cycle primary
energy use of approximately160 kWh/m2 yr.

It is worth noting that the energy reduction for archetype 3
compared with archetype 6 was so dramatic because of its greater
potential for energy reduction (see section on Basecase scenario).
Moreover, the stunning nature of the life cycle energy reduction
between these two archetypes is also related to the difference in
their number of storeys while having the same floor area e

archetype 3 is a bungalowwhilst archetype 6 is a two storey house.
The higher life cycle energy reduction by archetype 3 therefore,
reflects the greater area of exposed floor and roof, fromwhich heat
loss can be minimised. The above theory is also true for the dra-
matic energy reductions recorded for archetypes 11 or 12 vs.
archetype 13. Archetypes 11 and 12 are both 2-storey buildings
with similar U-values and characteristics, but with different roof
construction details (e.g. ceiling/rafter insulation) and much better
envelope insulation compared to archetype 13. Archetype 13 is 3-
storey building.

3.1.3. Passive house
For the Passive House retrofit scenario, detached houses show

the highest range of life cycle primary energy use, ranging from 126
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to 137 kWh/m2 yr. The corresponding values for mid-terraced
houses/apartments and semi-detached houses/end-terraced
houses are 90e120 kWh/m2 yr and 90 kWh/m2 yr, respectively.
This represents a decrease of at least 65% when compared to the
Base Case scenario.

3.1.4. Current regulation versus passive house
A comparison between Current Regulations and Passive House

scenarios indicates that life cycle primary energy reductions range
between 61 and 135 kWh/m2 yr for all archetypes. Detached house
archetypes display the highest life cycle primary energy use,
ranging from 88 to 135 kWh/m2 yr. Corresponding values for semi-
detached houses/end-terraced houses range from 61 to 82 kWh/
m2 yr while mid-terraced houses/apartments houses record the
lowest life cycle primary energy use reductions of approximately
69 kWh/m2 yr. The low range of energy reductions for this com-
parison can be explained as the building becomes increasingly
more energy efficient.

3.1.5. Emissions
Fig. 5 indicates global warming potential (kgCO2-eq/m2.yr) for

all archetypes across life cycle phases for the different house sce-
narios. The linear correlation between resource uses and GHG
emissions is emphasized as this table directly reflects that of the
primary energy shown in Fig. 5.

3.2. Primary energy use across life cycle phases

Table 2 shows the proportion of primary energy used for each
life cycle phase for each archetype and scenario. It can be seen that
the operational phase dominates primary energy use; although not
shown here, this result is repeated for emissions. This proportion,
however, decreases as the standard of retrofit increases. For the
Base Case scenario almost all life cycle energy use is accounted for
by the operational phase. This reflects the high heating energy
demand and electricity use during the operational phase, especially
as the existing Irish housing stock has been described as one of the

Fig. 4. Life cycle primary energy use (kWh/m2.yr) of all archetypes for all scenarios.
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least energy efficient in Northern Europe [35]. The high heating
energy demand results in proportionately low contributions from
the maintenance and disassembly phases. When upgraded to meet
current building regulations, the proportion of operational energy
decreases approximately 93e95%; the proportion falls further to
85e90% for dwellings meeting the Passive House standard. These
proportions are similar for all archetypes although they are slightly
lower for semi-detached houses.

Table 3 shows the energy use for each archetype and retrofit
scenario for the operational phase. The results of the operational
energy use in Table 3 were calculated using equations (1)e(5).
Similarly, the percentage of reduction in operational energy use
was calculated using equation (6) (see Section 2.2.5). Overall the
operational primary energy decreases by between 44% and 82% for
the Current Regulations and Passive House standard scenarios
respectively compared to the Base Case scenario. It can be seen that
operational energy use decreases for all archetypes as the standard
of retrofit increases. Operational energy use decreases by 44e64%

for the Current Standards scenario, the largest reductions being
evident for detached dwellings with poor insulation standards.
Archetype 13 also exhibits high reductions due to the low Base Case
construction standards for this dwelling type. Energy use re-
ductions range from 69 to 82% for the Passive House option; again
the highest reductions are seen for detached houses for the same
reasons.

Overall, the above reductions in operational energy and emis-
sions resulted from the incorporation of good thermal insulation of
the envelope, substitution of the existing oil-fired boiler with
condensing instantaneous gas-fired water heating boiler (Current
Regulations scenario), avoidance of fossil fuel-fired heating systems
(Passive House scenario), reduced thermal bridging, improved air
tightness; and low-energy glazing.

The aim of this paper is to develop a methodology which evalu-
ates the life cycle energy and GHG emissions impacts of retrofitting
housing stocks considering all life cycle stages and incorporating, to
the greatest extent possible, all upstream inputs. This aim has been

Fig. 5. Global warming potential (kgCO2-eq/m2.yr) of all archetypes for all scenarios.
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realized within the hybrid LCA that was performed. Studies earlier
mentioned in the literature review section were mainly based on a
bottom-up process analysis technique, while that of Clinch et al.
(2001), in addition inferred parameters from national statistics in
cases where household-level data were lacking. Moreover, all these
studies used a weighted average dwelling approach and incomplete
system boundaries to perform energy analyses.

However, this paper proposes a new hybrid LCA model for ret-
rofitting residential building stocks. The model combines both
process analysis and inputeoutput analysis and comprises: an
archetype model that was previously developed based on modal
values of representative parameters to achieve a more accurate
representation of the whole building stock, an energy modelling
tool, and an LCA software tool. The expanded boundary system
used in this paper considers the proportion of energy/emissions
associated with the installation of energy savings components and
the ordinary scheduled maintenance (including servicing of heat-
ing appliances) over the service life of the building. Results in
Table 2 also show that focussing solely on the reduction of energy
consumption during the operation of a building ignores the fact
that as the building becomes more energy efficient the proportion
of embodied energy attributable to retrofitting, maintenance and
disassembly becomes increasingly significant. Such information
can have an impact on the residential sector’s overall performance.
The models of Clinch et al. (2001), Erlandsson and Levin (2004) and
other cited studies in Section one ignore this aspect.

4. Validation

The house annual operational energy was generated based on
the characteristics of the house archetypes. A validation performed
by a previous study [36], shows that using the well validated HEM
energy model and GaBi 4 LCA model generated energy consump-
tion of the existing Irish housing stock across life cycle phases. The
prediction from the combination of these models shows that the
weighted mean annual operational primary energy requirement
per m2 was generally consistent with both national statistics and
literature. It should be noted that this study is a piece of the cited
previous study.

5. Conclusions

In conclusion, the hybrid LCA model as presented in this paper
was shown to be an adaptable tool for assessing the life cycle
energy and GHG emissions impacts of retrofitting housing stocks.
The model considered all life cycle stages and incorporating, to
the greatest extent possible, all upstream inputs so as to assist
policy makers and designers in understanding the true national,
regional, and global impact of buildings on the environment. It
should be noted that the incorporation of all upstream activities
in this study is crucial as electricity and heating energy re-
quirements of Ireland like many advanced economies are mainly
based on imported fossil fuels. The methodology can be applied
in other countries using the respective national data and sub-
sector energy/emissions intensities for services. The use of more
holistic approaches and increased system boundaries to include
all relevant processes and activities for the evaluation of a holistic
view of energy and emissions attributable to retrofitting housing
stocks is therefore crucial. The results of the analysis show that
life cycle energy for the Base Case archetypes were highest,
ranging from 259 to 614 kWh/m2 yr with successively lower
emissions for the Current Standards and Passive House retrofit
options which were 151e261 kWh/m2 yr and 90e137 kWh/m2 yr
respectively. Overall the operational primary energy decreased by
between 44% and 82% for the Current Regulations and PassiveTa
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House standard scenarios, respectively compared to the Base Case
scenario. Detached dwellings had the highest primary energy use
for all options and exhibited the greatest absolute and percentage
reductions compared to other house types. Emissions findings
were similar to those for energy.

With regard to the policy implications of this work, it would
be recalled that the energy efficient upgrade of detached dwell-
ings results in the greatest energy and emissions savings of all
archetypes studied. These dwellings therefore deserve further
study to establish whether they offer best value-for-money to the
taxpayer. The current policy focus on minimising operational
energy and emissions is justified given its dominance for all the
options studied. However, adequate attention should also be
given to reducing the proportion of embodied energy. This is
particularly crucial since the proportion of embodied energy will
increase significantly in the future as the energy performance of
both existing and new dwellings (including operational phase
zero/energy-plus dwellings) increases through the tightening of
associated building regulations.
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Table 3
Operational primary energy of all archetypes for retrofitted scenarios compared to the BaseCase scenario.

Dwelling type Archetype
reference

BaseCase
scenario
kWh/m2.yr

Current
regulations
scenario
kWh/m2.yr

% Reduction
relative to
BaseCase

Passive
house
scenario
kWh/m2.yr

% Reduction
relative to
BaseCase

Detached house archetypes 1 428 211 51 120 72
2 509 248 51 111 78
3 613 220 64 111 82
4 449 211 53 111 75
5 448 211 53 110 75
6 384 211 45 110 71

Semi-detached
house/end-terraced
house archetypes

7 271 151 44 79 71
8 271 151 44 79 71
9 271 151 44 79 71

10 271 151 44 79 71
Mid-terraced house/apartment

archetypes
11 271 151 44 79 71
12 258 144 44 81 69
13 500 191 62 107 78
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