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BLOW-UP BEHAVIOR OF COLLOCATION SOLUTIONS TO
HAMMERSTEIN-TYPE VOLTERRA INTEGRAL EQUATIONS∗

Z. W. YANG† AND H. BRUNNER‡

Abstract. We analyze the blow-up behavior of one-parameter collocation solutions for Hammer-
stein-type Volterra integral equations (VIEs) whose solutions may blow up in finite time. To approx-
imate such solutions (and the corresponding blow-up time), we will introduce an adaptive stepsize
strategy that guarantees the existence of collocation solutions whose blow-up behavior is the same
as the one for the exact solution. Based on the local convergence of the collocation methods for
VIEs, we present the convergence analysis for the numerical blow-up time. Numerical experiments
illustrate the analysis.

Key words. nonlinear Volterra integral equations, finite-time blow-up, collocation methods,
adaptive stepsize, convergence of numerical blow-up time
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1. Introduction. The mathematical modeling of thermal ignition in solid com-
bustible materials leads typically to nonlinear Volterra integral equations (VIEs) of
Hammerstein-type,

(1.1) u(t) = φ(t) +

∫ t

0

k(t− s)G(s, u(s))ds, t ∈ [0, T ],

where G is a smooth function and where the convolution kernel k may be weakly
singular (see, for example, [14] and [16], as well as the references in the survey paper
[17]). A particular example that arises as a mathematical model for the formation of
shear bands in steel that is subjected to very high strain rates is the VIE

u(t) = γ

∫ t

0

(π(t − s))−1/2(1 + s)q[u(s) + 1]pds

(which can be rewritten in the form (1.1); see (6.3)), where γ > 0 and p � 0, q � 0
are material parameters related to the constitutive law for plastic straining (cf. [16]).

While the theory of blow-up solutions of (1.1) is now well understood (cf. [4]),
the design and analysis of efficient numerical schemes for such problems is not well
developed (we are only aware of the paper [5] and the Ph.D. thesis [19]).

Accordingly, this paper is devoted to a systematic study of the numerical solution
of nonlinear VIEs (1.1) by a class of (one-parameter) collocation methods. One of our
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key results is that these numerical methods can be used to detect finite-time blow-up
(an important aspect since in many practical applications it is not known a priori
whether or not the given model VIE will exhibit finite-time blow-up). For the blow-
up case, we also pay attention to the convergence of the numerical blow-up time to
the exact one in sections 4 and 6.

The VIE (1.1) with unknown solution u(t) will be subject to the following as-
sumptions (see also [4]). The functions φ : R → R+ and G : R × R → R+ are
continuously differentiable, and the kernel k : (0,∞) → (0,∞) is a locally integrable
function. Moreover, we assume that the given functions in (1.1) satisfy

(G1) G(s, 0) ≡ 0 and G(s2, u2) > G(s1, u1) for two positive vectors (s1, u1), (s2, u2)
with (s2, u2) � (s1, u1) (interpreted componentwise) and u2 �= u1,

(G2) limu→∞
G(0,u)

u = ∞;
and

(P) the function φ(t) is positive, nondecreasing,
(K) k(z) = zβ−1k1(z), where β > 0 and k1(z) > 0 is bounded in any finite interval.

It was shown in [4] that the exact solution u(t) of (1.1) is nondecreasing and blows
up in finite time if and only if there exists a t∗ > 0 such that

φ(t∗) + Fmin(t
∗) > 0,(1.2) ∫ ∞

U

(
u

G(t∗, u)

)1/β
du

u
< ∞ for all U > 0,(1.3)

where

(1.4) F (t, u) :=

∫ t

0

k(t− s)G(s, u)ds− u and Fmin(t) := min
u∈[0,∞)

F (t, u) � 0.

Collocation methods for VIEs have been investigated for many years (see [3] and
the references therein). In the context of VIEs with blow-up solutions, the authors of
[5] apply collocation methods with one parameter and uniform mesh to the simulation
of the blow-up time of

u(t) =

∫ t

0

(u(s) + γ)p

(t− s)α
ds,

where p > 1, γ > 1, and α ∈ (0, 1). As in the case of ordinary differential equations
(ODEs) (see [18]), it is also maintained in [5] that “a method with a fixed spacing is
not well suited for blow-up problems” and that “it is not yet clear what would be an ap-
propriate strategy for the automatic (or even a priori) computation of a variable step-
size.” When the inversion formula exists, switching variables is an approach for sim-
ulating blow-up solutions. The advantage is its ability to avoid timestepping past the
blow-up time in the solution and to generate timesteps that become sufficiently small
near the blow-up time. The disadvantage is that this approach depends strongly on
the inversion formula and the monotonicity of solutions (see [14]). Another useful tech-
nique is the so-called Sundman transformation, by which a blow-up solution is trans-
ferred to a global solution in the new variable (see [12, 18] for ODEs, [13] for PDEs,
and [19] for VIEs). Both of these numerical processes employ a certain kind of adap-
tive stepsize strategy (in [18] it is based on time-continuous rescaling). Other stepsize
strategies for computing blow-up solutions of PDEs may be found in [1, 2, 6, 7, 9].

In this paper, we adapt the approach taken in [1] to define an adaptive stepsize
strategy for VIEs (1.1) so that the collocation solutions of implicit methods exist
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2262 Z. W. YANG AND H. BRUNNER

uniquely at each time level. A slightly different, but related, strategy is designed for
the explicit Euler method. In section 2 the monotonicity and the dynamical behav-
ior of the collocation solutions are discussed, and the comparison principle between
collocation solutions with variable c1 ∈ [0, 1] is investigated. In section 3 we show
that the asymptotic behavior of the collocation solutions with adaptive stepsize is the
same as for the exact ones, regardless of whether or not the exact solutions blow up
in finite time. In section 4 we use the local convergence of collocation methods and
the corresponding bounds of the numerical threshold blow-up time to establish the
convergence of the numerical blow-up time. A different numerical approach to the
computation of blow-up solutions, namely, implicitly linear collocation, is described
in section 5. Here, we also discuss its merits when it is applied to VIEs with general
Hammerstein kernels. Finally, section 6 contains numerical experiments to illustrate
our main results.

2. Collocation methods. We approximate the exact solution of (1.1) by using

collocation in the piecewise constant polynomial space S
(−1)
0 (Ih), where the under-

lying (nonuniform) mesh Ih := {0 = t0 < t1 < t2 < · · · }, will be defined during

the numerical process. The collocation solution uh ∈ S
(−1)
0 (Ih) is defined by the

collocation equation

(2.1) uh(t) = φ(t) + Γn(t) +

∫ t

tn

k(t− s)G(s, uh(s))ds, t ∈ Xh,

where hn := tn+1−tn is the stepsize,Xh := {tn+c1hn : 0 � c1 � 1, n = 0, 1, . . . , N−1}
is the set of collocation points determined by Ih and the collocation parameter c1 ∈
[0, 1], and

(2.2) Γn(t) :=

∫ tn

0

k(t− s)G(s, uh(s))ds for t ∈ [tn, tn+1]

is the approximate history (or lag) term.

2.1. The adaptive stepsize strategy. In order to describe our choice of adap-
tive stepsizes we introduce a number of constants that will play a key role. They
are

C1(β) :=

⎧⎪⎨
⎪⎩
1, 0 < β � 1,

1, 1 < β � 2,

2β−2, β > 2,

C2(β) :=

⎧⎪⎨
⎪⎩
0, 0 < β � 1,

1, 1 < β � 2,

2β−2, β > 2,

and
(2.3)

α :=

{
C1(β) + C2(β) + (1 + (C2(β) + 1)k1(0))τ when k1(z) is nonincreasing,
k∗
k∗
(C1(β) + C2(β)) + (1 + (C2(β) + 1)k∗)τ otherwise,

where k∗ := maxs∈[0,T ] k1(s) and k∗ := mins∈[0,T ] k1(s).

2.1.1. The implicit Euler method. Since the collocation uh ∈ S
(−1)
0 (Ih) de-

fined in (2.1) is constant on each subinterval (tn, tn+1], i.e., uh(t) =: un+1, t ∈
(tn, tn+1], the collocation equation (1.1) with collocation parameter c1 = 1 can be
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written as

(2.4)

u0 = φ(0),

un+1 = φ(tn+1) + Γn(tn+1) + hn

∫ 1

0

k((1− x)hn)G(tn + xhn, un+1)dx,

Γn(tn+1) =

n−1∑
i=0

hi

∫ 1

0

k(tn+1 − ti − xhi)G(ti + xhi, ui+1)dx.

In the case of G(s, u) = g(u), (2.4) reduces to

u0 = φ(0),

un+1 = φ(tn+1) + Γn(tn+1) +K(hn)g(un+1), n = 0, 1, . . . ,

Γn(tn+1) =

n−1∑
i=0

(K(tn+1 − ti)−K(tn+1 − ti+1))g(ui+1),

where K(t) :=
∫ t

0 k(z)dz. Assume that the collocation solution uh(t) is well defined in
the interval [0, tn]. Following the idea in [1] on the unique existence of the collocation
solution un+1 of the implicit Euler method, we choose an adaptive stepsize given by

hn � h∗
n := min

{
T − tn, τ,

τφ(tn)

Φ(tn + τ)
,

(
βτ‖uh‖n

G(tn + τ, α‖uh‖n)
) 1

β

,

(
βτ

k∗L(tn + τ, α‖uh‖n)
) 1

β

}
,

(2.5)

where τ ∈ (0, 1) is an arbitrary positive number,

Φ(t) := max
0�s�t

φ′(s), ‖uh‖n := max
t∈[0,tn]

|uh(t)| = max
0�i�n

|ui|,

and L(t,M) is the local Lipschitz constant of G(t, u) with respect to u in (s, u) ∈
[0, t]× [0,M ].

Definition 2.1. A collocation solution uh(t) for (2.1) with adaptive stepsize
satisfying (2.5)

(i) exists in an interval [0, T ], if

tN =

N−1∑
i=0

hi = T for some integer N ;

(ii) exists globally, if it exists in [0, T ] for any given T > 0;
(iii) blows up in finite time, if

Tb(Ih) = lim
n→∞ tn = lim

n→∞

n∑
i=0

hi < ∞.

In this case, Tb(Ih) is called the numerical blow-up time.
Lemma 2.2. Assume that conditions (P), (K), and (G1) hold and that a collo-

cation solution uh(t) exists in the interval t ∈ [0, T ]. Then uh(t) � φ(0) > 0 for all
t ∈ [0, T ].
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Lemma 2.3. Assume that conditions (P), (K), and (G1) hold and that the col-
location solution uh(t) exists in the interval [0, tn] for some tn ∈ (0, T ). Then for
tn � t < tn+1,

Γn(t) �
k∗

k∗
(C1(β) + C2(β))

∫ tn

0

k(tn − s)G(s, uh(s))ds+ C2(β)k
∗ 1
β
hβ
nG(tn, ‖uh‖n).

If, in addition, k1(z) is nonincreasing, then

Γn(t) � (C1(β) + C2(β))

∫ tn

0

k(tn − s)G(s, uh(s))ds+ C2(β)k1(0)
1

β
hβ
nG(tn, ‖uh‖n).

Proof. It follow from [11] that for t ∈ (tn, tn+1] and s ∈ [0, tn],

(t− s)β−1 � C1(β)(tn − s)β−1 + C2(β)(t − tn)
β−1,

which together with conditions (P) and (G1) implies that

Γn(t) � C1(β)

∫ tn

0

(tn − s)β−1k1(t− s)G(s, uh(s))ds

+ C2(β)h
β−1
n

∫ tn

0

k1(t− s)G(s, uh(s))ds

� (C1(β) + C2(β))

∫ tn

0

(tn − s)β−1k1(t− s)G(s, uh(s))ds

+ C2(β)
1

β
hβ
nk

∗G(tn, ‖uh‖n).

In view of

k1(t− s) �
{
k1(tn − s) when k1(z) is nonincreasing,
k∗
k∗ k1(tn − s) otherwise,

the proof is complete.
Theorem 2.4. Let τ ∈ (0, 1) and conditions (P), (K), and (G1) hold. Suppose

that the collocation solution uh(t) of the implicit Euler method exists in the interval
[0, tn] for some tn ∈ (0, T ) and that the stepsize satisfies (2.5). Then the collocation
solution un+1 is uniquely defined by the fixed point of H(v, uh, hn) in [0, α‖uh‖n],
where

H(v, uh, η) := φ(tn + η) + Γn(tn + η) +

∫ tn+η

tn

k(tn + η − s)G(s, v)ds.

Proof. It follows from (2.5) and Lemma 2.3 that
(i) φ(tn + hn) � (1 + τ)φ(tn) � φ(tn) + τ‖uh‖n,
(ii) 1

βh
β
nG(tn + hn, α‖uh‖n) � τ‖uh‖n,

(iii) H(v, uh, hn) � α‖uh‖n for all v ∈ [0, α‖uh‖n].
Hence H(v, uh, hn) is a mapping from [0, α‖uh‖n] to [0, α‖uh‖n]. Moreover, for all
v1, v2 ∈ [0, α‖uh‖n],

|H(v1, uh, hn)−H(v2, uh, hn)| =
∣∣∣∣∣
∫ tn+hn

tn

k(tn + hn − s)(G(s, v1)−G(s, v2))ds

∣∣∣∣∣
� 1

β
hβ
nk

∗L(tn + τ, α‖uh‖n)|v1 − v2| � τ |v1 − v2|.
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Therefore H(v, uh, hn) has a unique fixed point in [0, α‖uh‖n]. The proof is
complete.

Remark 2.5. Let G(t, u) = up and k(z) = zβ−1. Then

βτ‖uh‖n
G(tn + τ, α‖uh‖n) � βτ

αp‖uh‖p−1
n

� βτ

2αp−1‖uh‖p−1
n

,

βτ

L(tn + τ, α‖uh‖n) � βτ

p(α‖uh‖n)p−1
.

Therefore, (
βτ‖uh‖n

G(tn + τ, α‖uh‖n)
) 1

β

�
(

βτ

L(tn + τ, α‖uh‖n)
) 1

β

when 1 < p � 2 and β > 0.
Remark 2.6. Assume that the adaptive stepsize is defined by hn = h∗

n and that
the collocation solution exists in an interval [0, T ]. Then

(i) α < ∞ is a finite number,
(ii) h0 := max0�n�N−1 hn � τ ,

(iii) h1 := min0�n�N−1
τφ(tn)
Φ(tn+τ) �

τφ(0)
Φ(T ) > 0,

(iv) h2 := min0�n�N−1

(
βτ‖uh‖n

G(tn+τ,α‖uh‖n)

) 1
β �

(
βτφ(0)

G(tn+τ,α‖uh‖N )

) 1
β

> 0,

(v) h3 := min0�n�N−1

(
βτ

k∗L(tn+τ,α‖uh‖n)

) 1
β �

(
βτ

k∗L(tn+τ,α‖uh‖N )

) 1
β

> 0.

Hence min0�n�N−1 hn � min{τ, h1, h2, h3} > 0. Thus, under conditions (K) and
(G1), a blow-up collocation solution uh(t) must satisfy

lim
n→∞ ‖uh‖n = ∞,

which together with condition (G2) implies that for sufficiently large n,

hn =

(
βτ‖uh‖n

G(tn + τ, α‖uh‖n)
) 1

β

→ 0 as n → ∞.

2.1.2. The explicit Euler method. The explicit Euler method for (1.1) cor-
responds to c1 = 0. Thus, for t ∈ [tn, tn+1) the collocation approximation uh(t) = un

is defined by

(2.6)

u0 = φ(0),

un+1 = φ(tn+1) + ΓE
n (tn+1) + hn

∫ 1

0

k((1− x)hn)G(tn + xhn, un)dx,

ΓE
n (tn+1) =

n−1∑
i=0

hi

∫ 1

0

k(tn+1 − ti − xhi)G(ti + xhi, ui)dx.

If G(s, u) = g(u) then (2.6) reduces to

u0 = φ(0),

un+1 = φ(tn+1) + ΓE
n (tn+1) +K(tn+1 − tn)g(un), n = 0, 1, . . . ,

ΓE
n (tn+1) =

n−1∑
i=0

(K(tn+1 − ti)−K(tn+1 − ti+1))g(ui).
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In order to simulate a blow-up solution, we use again an adaptive stepsize, namely,

(2.7) hn � h∗
n := min

{
T − tn, τ,

τφ(tn)

Φ(tn + τ)
,

(
βτ‖uh‖n

G(tn + τ, ‖uh‖n)
) 1

β

}
.

By Lemma 2.3 we obtain the following estimate.
Theorem 2.7. Assume that conditions (P), (K), and (G1) hold. Then the collo-

cation solution given by the explicit Euler method satisfies

un+1 � α‖uh‖n for all n < N,

where α � 1 + τ is defined by (2.3) whenever the adaptive stepsize is such that (2.7)
is satisfied.

Remark 2.8. The solution of the ODE of order β,

u(β)(t) = G(t, u(t)),

u(i)(0) = ui > 0, i = 0, 1, . . . , β − 1,

satisfies

u(t) = φ(t) +

∫ t

0

k(t− s)G(s, u(s))ds,

where β � 1 is an integer, φ(t) =
∑β−1

i=0
1
i!uit

i, and k(z) = 1
(β−1)!z

β−1. In view of

α = C1(β)+C2(β)+(1+ C2(β)+1
(β−1)! )τ and τφ(t)

Φ(t+τ) � 1 for sufficiently large t, one obtains

that for 1 � tn < T ,

h∗
n = min

{
τ,

(
βτ‖uh‖n

G(tn + τ, ‖uh‖n)
) 1

β

}
.

For the first-order ODE with a power function G(t, u) = up, (2.7) reduces to

h∗
n = min

{
τ,

τ

‖uh‖p−1
n

}
,

which was used in [15].

2.2. Monotonicity of collocation solutions. We will now show that the col-
location solution uh(t) with adaptive stepsize is nondecreasing whenever it exists.

Theorem 2.9. Assume that conditions (P), (K), and (G1) hold. Then the col-
location solution uh(t) of the explicit Euler method with adaptive stepsize such that
(2.7) holds is nondecreasing.

Proof. For t ∈ [0, t1), uh(t) = u0 = φ(0),

u1 = φ(t1) +

∫ t1

0

k(t1 − s)G(s, u0)ds � u0.

Using induction, suppose that u0 � u1 � · · · � un for n < N . Then uh(t) is
nondecreasing for t ∈ [0, tn+1) and

un+1 = φ(tn+1) +

∫ tn+1

0

k(tn+1 − s)G(s, uh(s))ds

� φ(tn) +

∫ tn

0

k(s)G(tn − s, uh(tn − s))ds = un.

Hence un � un+1 and the proof is complete.
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Theorem 2.10. Assume that conditions (P), (K), and (G1) hold. Then the
collocation solution uh(t) of the implicit Euler method with adaptive stepsize given by
(2.5) is nondecreasing.

Proof. For t ∈ (0, t1],

uh(t) ≡ u1 = φ(h0) +

∫ h0

0

k(h0 − s)G(s, u1)ds.

Hence u1 � u0. Suppose then that uh(t) is nondecreasing for t ∈ [0, tn]. Define

v0 := un, vl+1 := H(vl, uh, hn) (l = 0, 1, 2, . . . , ), vlh(t) :=

{
uh(t), t ∈ [0, tn],

vl, t ∈ (tn, tn+1].

Then v0h(t) is nondecreasing and

v1 = φ(tn+1) +

∫ tn+1

0

k(tn+1 − s)G(s, v0h(s))ds

� φ(tn) +

∫ tn

0

k(s)G(tn − s, v0h(tn − s))ds � un.

Suppose that vl � un for some l � 1. Then vlh(t) is nondecreasing and

vl+1 = φ(tn+1) +

∫ tn+1

0

k(tn+1 − s)G(s, vlh(s))ds

� φ(tn) +

∫ tn

0

k(s)G(tn − s, vlh(tn − s))ds � un.

It follows from (2.5) and Theorem 2.4 that H(v, uh, hn) is a contractive mapping
and un+1 is its fixed point. Hence un+1 = liml→∞ vl � un and the proof is com-
plete.

Remark 2.11. Theorems 2.9 and 2.10 imply that ‖uh‖n = un. Hence (2.5) and
(2.7) reduce, respectively, to

(2.8)

hn � h∗
n = min

{
T − tn, τ,

τφ(tn)

Φ(tn + τ)
,

(
βτun

G(tn + τ, αun)

) 1
β

,

(
βτ

k∗L(tn + τ, αun)

) 1
β

}
,

(2.9)

hn � h∗
n = min

{
T − tn, τ,

τφ(tn)

Φ(tn + τ)
,

(
βτun

G(tn + τ, un)

) 1
β

}
.

In the remainder of this paper, we always assume that the adaptive stepsize satisfies
(2.8) for implicit methods and (2.9) for the explicit Euler method.

2.3. Comparison principle.
Theorem 2.12. Assume that conditions (P), (K), and (G1) hold. Then the

collocation solution uh(t) corresponding to the explicit Euler method satisfies uh(t) �
u(t) whenever u(t) exists.

Proof. Since

uh(t) � φ(t) +

∫ t

0

k(t− s)G(s, uh(s))ds,

one obtains from Lemma 2.4 in [4] that uh(t) � u(t) whenever u(t) exists. This verifies
our assertion.
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Theorem 2.13. Assume that conditions (P), (K), and (G1) hold. Then the
collocation solution uh(t) given by the implicit Euler method satisfies uh(t) � u(t)
whenever uh(t) exists.

Proof. In view of u1 > φ(0) = u(0), we suppose that u(t) = uh(t) and u(s) < uh(s)
for s ∈ [0, t). This implies that

0 < u(t)− uh(t) �
∫ t

0

k(t− s)(G(s, u(s)) −G(s, uh(s)))ds < 0.

This contradicts our assumption, and thus the proof is complete.
Theorem 2.14. Assume that conditions (P), (K), and (G1) hold and that the

collocation solution u1
h(t) of the implicit Euler method exists on the mesh Ih. Then

for any c1 ∈ [0, 1], the collocation solution uc1
h (t) also exists on the same mesh Ih and

uc1
h (t) is increasing with respect to c1 ∈ [0, 1].

Proof. Since the collocation solution uc1
h (t) with c1 ∈ (0, 1) can be regarded as the

component of the implicit Euler method applied on the subinterval ∪n
i=0[ti, ti + c1hi]

and the explicit Euler method applied on the subinterval ∪n
i=0[ti + c1hi, ti+1], by

resorting to Lemmas 2.15 and 2.16, the collocation solutions uc1
h (t) exist on the same

mesh Ih and u0
h(t) � uc1

h (t) � u1
h(t).

Assume that uc1
h (t) and uc̄1

h (t) are the collocation solutions corresponding to 0 <
c1 < c̄1 < 1, respectively. Then

uc̄1
h (t) � v1h(t) by Lemma 2.15,

v1h(t) � v2h(t) by Lemma 2.16,

v2h(t) � uc1
h (t) by Lemma 2.17.

Here, v1h(t) is the collocation solution corresponding to the implicit Euler method
applied on the subinterval ∪n

i=0[ti, ti + c1hi] and ∪n
i=0[ti + c1hi, ti + c̄1hi], and the

explicit Euler method applied on the subinterval ∪n
i=0[ti + c̄1hi, ti+1], while v2h(t) is

the collocation solution given by the implicit Euler method applied on the subinterval
∪n
i=0[ti, ti + c1hi], and the explicit Euler method applied on the subinterval ∪n

i=0[ti +
c1hi, ti + c̄1hi] and ∪n

i=0[ti + c̄1hi, ti+1]. Hence the proof is complete.
Lemma 2.15. Assume that c1 = 1, conditions (P), (K), and (G1) hold, and the

collocation solution uh(t) exists on the mesh Ih. Then the collocation solution also
exists and is decreased by adding a finite number of new grid points in the mesh Ih,
that is to say, ūh(t) � uh(t) if Ih ⊆ Īh ⊆ [0, T ].

Proof. Without loss of generality, assume that only one new mesh point t̄ is added
in the subinterval [tn, tn+1]. Then by Theorem 2.10, the collocation solutions uh(t)
and ūh(t) are increasing for all t ∈ [0, T ] and ūh(t) = uh(t) for t ∈ [0, tn]. Define

v0 = ūh(tn) and vl = H(vl−1, ūh, t̄− tn) for all l = 0, 1, 2, . . . .

Then, similarly to the proof of Theorem 2.10, it can be shown that vl is an increasing
sequence and bounded by uh(tn+1). Hence ūh(t) exists on the interval [0, t̄] and
ūh(t̄) � uh(tn+1). As a consequence, the proof can be completed by an induction
argument.

Lemma 2.16. Assume that conditions (P), (K), and (G1) hold and the collo-
cation solution uh(t) of the implicit Euler method exists on the mesh Ih. Then the
collocation solution ūh(t) corresponding to applying the explicit Euler method on some
subintervals of the mesh Ih also exists and ūh(t) � uh(t) for all t ∈ [0, T ].
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Proof. Without loss of generality, assume that the explicit Euler method is applied
in only one subinterval [tn, tn+1]. Then ūh(t) = uh(t) � uh(tn+1) for t ∈ [0, tn]. Hence

ūh(tn+1) � φ(tn+1) +

∫ tn

0

k(tn+1 − s)G(s, ūh(s))ds

+

∫ tn+1

tn

k(tn+1 − s)G(s, uh(tn+1))ds

= uh(tn+1).

Then, similarly to the proof of Lemma 2.15, the proof is completed.
Lemma 2.17. Assume that c1 = 0, conditions (P), (K), and (G1) hold, and the

collocation solution uh(t) exists on the mesh Ih. Then the collocation solution will be
increased by adding a finite number of new grid points in the mesh Ih, that is to say,
ūh(t) � uh(t) if Ih ⊆ Īh ⊆ [0, T ].

Proof. Without loss of generality, assume that only one new mesh point t̄ is added
in the subinterval [tn, tn+1]. Then by Theorem 2.9, the collocation solutions uh(t) and
ūh(t) are increasing for all t ∈ [0, T ] and ūh(t) � uh(t) for t ∈ [0, tn+1), which implies
that

ūh(tn+1) � φ(tn+1) +

∫ tn+1

0

k(s)G(tn+1 − s, uh(tn+1 − s))ds = uh(tn+1).

Hence by an induction argument, the proof is complete.

2.4. Dynamical behavior.
Theorem 2.18. Assume that conditions (P), (K), (G1), and (G2) hold and

that the collocation solution uh(t) of the explicit Euler method exists globally. Then
limt→∞ uh(t) = ∞, provided that there exists a t∗ ∈ (0,∞) such that (1.2) holds.

Proof. Suppose that uh(t) is bounded for all t ∈ [0,∞). Then by Theorem 2.12,
limt→∞ uh(t) = u∞ ∈ (φ(t∗),∞) exists. Thus for any given 0 < ε < u∞ with
φ(t∗) − ε + Fmin(t

∗) > 0, there exists a Tε > t∗ such that u∞ − ε < un � u∞ for all
tn > Tε. It therefore follows from conditions (K) and (G1) that for all tn > Tε + t∗,

u∞ > un � φ(tn) +

∫ Tε

0

k(tn − s)G(s, uh(s))ds+

∫ tn

Tε

k(tn − s)G(s, u∞ − ε)ds

� φ(tn) +

∫ tn−Tε

0

k(s)G(tn − s, u∞ − ε)ds

� φ(tn) +

∫ tn−Tε

0

k(s)G(tn − Tε − s, u∞ − ε)ds.

This implies that

φ(tn)− ε + F (tn − Tε, u∞ − ε) < 0,

which contradicts the hypothesis that φ(t∗) − ε + Fmin(t
∗) > 0. The proof is com-

plete.
Theorem 2.19. Let τ ∈ (0, 1) and conditions (P), (K), (G1), and (G2) hold.

Suppose that φ(t) + Fmin(t) � 0 for all t ∈ [0,∞). Then
(i) the analytic solution u(t) exists globally;
(ii) the collocation solution uh(t) of the implicit Euler method with adaptive step-

size given by (2.8) exists globally.
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Proof. In view of Theorems 2.4 and 2.13, we only need to show that un � uF (tn)
for all n � 0, where uF (t) := inf{U : F (t, u) > Fmin(t) for u ∈ [U,∞)} is defined
in [4]. Suppose that un+1 > uF (tn+1) and uι � uF (tn+1) for ι = 0, 1, . . . , L � n.
Consider the sequence defined by

v0 := uL, vl+1 := H(vl, uh, tn+1 − tL) (l = 0, 1, 2, . . . ).

Then

v1 � φ(tn+1) +

∫ tL

0

k(tn+1 − s)G(s, uh(s))ds+

∫ tn+1

tL

k(tn+1 − s)G(s, uF (tn+1))ds

< uF (tn+1).

Assuming that vl < uF (tn+1) for some l � 1, we find that

v1+1 � φ(tn+1) +

∫ tL

0

k(tn+1 − s)G(s, uh(s))ds+

∫ tn+1

tL

k(tn+1 − s)G(s, uF (tn+1))ds

< uF (tn+1).

Therefore vl is an increasing sequence which is bounded by uF (tn+1). The limiting
value v∞ of the sequence vl satisfies

v∞ = φ(tn+1) +

∫ tL

0

k(tn+1 − s)G(s, uh(s))ds +

∫ tn+1

tL

k(tn+1 − s)G(s, v∞)ds,

which is the collocation solution at grid point tn+1 with stepsize tn+1 − tL. This
contradicts the result of Lemma 2.15, and hence the proof is complete.

3. Blow-up conditions for collocation solutions.

3.1. Blow-up behavior of the explicit Euler method.
Lemma 3.1. Let c1 = 0 and k(z) = zβ−1, β > 0. Assume that conditions (P),

(G1), and (G2) hold and that the collocation solution uh(t) with adaptive stepsize
such that (2.9) holds exists globally. If there is a t∗ such that (1.2) holds, then for
any given R > 1, there exists a sequence tni such that uh(tni) ∈ [α−1Ri, Ri) for all

i � max{1, log(φ(0))logR }, limi→∞ tni = ∞, and tni+1 − tni tends to zero as i → ∞.
Proof. In fact, it follows from Theorems 2.7, 2.9, and 2.18 that there exists a

sequence tni such that uh(tni) ∈ [α−1Ri, Ri) and limn→∞ tni = ∞. Then it follows
from conditions (P) and (G1) that

uni+1 = φ(tni+1 ) +

∫ tni

0

k(tni+1 − s)G(s, uh(s))ds+

∫ tni+1

tni

k(tni+1 − s)G(s, uh(s))ds

� G(0, uni)K(tni+1 − tni) � G(0, uni)K(tni+1 − tni),

which together with Condition (G2) implies that tni+1 − tni → 0 as i → ∞. Hence
the proof is complete.

Lemma 3.2. Assume that c1 = 0 and conditions (P), (G1), and (G2) hold. If
(i) k(z) = zβ−1 with β > 0,
(ii) there exists a t∗ > 0 such that (1.2) and (1.3) hold,

then the collocation solution uh(t) with adaptive stepsize given by (2.9) blows up in
finite time for any τ ∈ (0, 1).
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Proof. Suppose, otherwise, there exists a sequence tni such that uh(tni) ∈
[α−1riβ+1, riβ+1) for r > α and tni tends to ∞ as i → ∞. Therefore Hi := tni+1 − tni

tends to zero as i → ∞ and tni � t∗ for sufficiently large i, which together with
conditions (P) and (G1) implies that uni+1 � G(t∗, uni)K(Hii). Thus

1

β
Hβ

i � r(i+1)β+1

G(t∗, riβ)
,

leading to

Hi � (β)
1/β ri − ri−1

(G(t∗, riβ))1/β
r1+1/β

1− r−1
� r2+1/β

(r − 1)β
(β)

1/β
∫ riβ

r(i−1)β

(
u

G(t∗, u)

)1/β
du

u
.

As a result, (1.3) implies that for all i > 0,

tni � γ0 +

i−1∑
j=0

Hj � γ0 +

∞∑
j=0

Hj < ∞.

This is a contradiction and the proof is complete.
Theorem 3.3. Assume that c1 = 0 and conditions (P), (K), (G1), and (G2)

hold. If there exists a t∗ > 0 such that (1.2) and (1.3) hold, then
(i) the analytic solution u(t) blows up in finite time;
(ii) the collocation solution uh(t) with adaptive stepsize such that (2.9) blows up

in finite time for any τ ∈ (0, 1).

3.2. Blow-up behavior of the implicit Euler method.
Lemma 3.4. Assume that c1 = 1 and conditions (P), (G1) and (G2) hold, and

that there exists a t∗ ∈ (0,∞) such that (1.2) holds. If
(i) k(z) = zβ−1, β > 0,
(ii) there exists a U > 0 such that

(3.1)

∫ ∞

U

(
u

G(t, u)

)1/β
du

u
= ∞ for all t � 0,

then the collocation solution uh(t) with adaptive stepsize given by (2.8) does not blow
up in finite time.

Proof. Suppose, otherwise, it follows from Theorem 2.4 that there exists a se-
quence tni such that uh(tni) ∈ [α−1riβ , riβ ] for some r > max{α, r0}, where

r0 :=

{
(2(1 + φ(Tb(τ))))

1/β , 0 < β < 1,

(2(2β + φ(Tb(τ))))
1/β , β � 1.

Hence, Hi = tni+1 − tni → 0 as i → ∞, and there exists an N > 0 such that
Hi < min{1, tni} for all i � N . We claim that for i � N ,

(3.2) r(i+1)β−1 �
(
2β +

2

β

)
Hβ

i G(Tb(τ), r
(i+1)β).
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Let β � 1. Then condition (G1) implies that for n � N ,

uh(tni+1) � φ(tni+1) +

∫ tni

0

k(tni+1 − s)G(s, uh(s))ds

+

∫ tni+1

tni

k(tni+1 − s)G(s, uh(s))ds

� φ(tni+1) + 2β−1

∫ tni

0

k(tni − s)G(s, uh(s))ds

+ 2β−1Hβ−1
i

∫ tni

0

G(s, uh(s))ds+K(Hi)G(Tb(τ), uh(tni+1))

� φ(Tb(τ)) + 2βuh(tni) + 2β−1Hβ−1
i

∫ Hi

0

G(s, uh(s))ds

+K(Hi)G(Tb(τ), uh(tni+1))

� 1

2
uh(tni+1) +

(
2β−1 +

1

β

)
Hβ

i G(Tb(τ), uh(tni+1)).

This yields (3.2).
If 0 < β < 1, then condition (G1) implies that for n � N ,

uh(tni+1) � φ(tni+1) +

∫ tni

0

k(tni+1 − s)G(s, uh(s))ds

+

∫ tni+1

tni

k(tni+1 − s)G(s, uh(s))ds

� φ(tni+1) +

∫ tni

0

k(tni − s)G(s, uh(s))ds +K(Hi)G(Tb(τ), uh(tni+1))

� φ(Tb(τ)) + uh(tni) +K(Hi)G(Tb(τ), uh(tni+1))

� 1

2
uh(tni+1) +

(
2β−1 +

1

β

)
Hβ

i G(Tb(τ), uh(tni+1)),

which also yields (3.2).
Therefore, one obtains that

Hi � (C(β))
−1/β ri+1

(G(Tb(τ), r(i+1)β))1/β

� 1

r − 1
(C(β))−1/β

∫ ri+2

ri+1

1

(G(Tb(τ), sβ))1/β
ds,

where C(β) := 2βr + 2r
β . Combining this with (3.1) we find

lim
n→∞ tn = tn0 + lim

i→∞

n∑
i=1

Hi = ∞.

This is a contradiction and the proof is complete.
Theorem 3.5. Assume that c1 = 1 and conditions (P), (K), (G1), and (G2)

hold. If there exists a t∗ > 0 such that (1.2) and (1.3) hold, then
(i) the analytic solution u(t) blows up in finite time;
(ii) the collocation solution uh(t) with adaptive stepsize such that (2.8) holds blows

up in finite time for any τ ∈ (0, 1).
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Theorem 3.6. Assume that c1 = 1 and conditions (P), (K), (G1), and (G2)
hold. If there exists a U > 0 such that (3.1) holds, then

(i) the analytic solution u(t) does not blow up in finite time;
(ii) the collocation solution uh(t) with adaptive stepsize given by (2.8) does not

blow up in finite time for any τ ∈ (0, 1).
Proof. Suppose that the collocation solution uh(t) blows up at a finite time Tb(τ).

Then the collocation solution ūh(t) of

ū(t) = φ(t) + λ

∫ t

0

(t− s)β−1G(Tb(τ), ū(s))ds,

also blows up in finite time, where λ := supz∈[0,Tb(τ)]
k1(z) + Tb(τ). This contradicts

the result in Lemma 3.4, and thus the proof is complete.

3.3. Numerical blow-up implies exact blow-up. We now state our first
key result which links the blow-up behavior of the collocation solution with that of
the exact solution. In particular, we can use the blow-up behavior of the collocation
solution to establish finite-time blow-up for the given VIE.

Theorem 3.7. Assume that
(i) conditions (P), (K), (G1), and (G2) hold,
(ii) uh(t) is the collocation solution according to c1 ∈ [0, 1] and to adaptive stepsize

such that (2.8) holds for c1 ∈ (0, 1] (or (2.9) holds for the explicit Euler
method).

Then the following two statements are equivalent:
(i) for all τ ∈ (0, 1), the collocation solution uh(t) blows up in finite time;
(ii) the exact solution u(t) blows up in finite time.
Proof. Using somewhat intricate notations and following the proofs of Lemma 3.2

and Lemma 3.4, one may obtain these results. Indeed, in view of Theorem 2.14, a
simple proof is given in the following.

Assume that the exact solution blows up in finite time and the collocation solution
uh(t) does not blow up. Then it follows from Theorem 2.14 that the collocation
solution of the explicit Euler method on the same grid mesh Ih does not blow up,
which is a contradiction to Theorem 3.3.

On the other hand, assume that the exact solution does not blow up in finite
time. Then it follows from Theorem 3.6 that the collocation solution of the implicit
Euler method does not blow up, which implies by Theorem 2.14 that the collocation
solution uh(t) also exists on the same mesh.

4. Blow-up times. In this section we assume that the exact solution blows up
at a finite time Tb < T and the collocation solutions also blow up at a finite time
Tb(Ih) < T . In actual applications, when the exact blow-up time Tb is unknown, we
work with a threshold blow-up time TM

b := inf{t ∈ [0, T ) : u(t) � M} associated with
a given threshold M � 1.

Definition 4.1. For a given threshold M � 1,

TM
b (Ih) := inf{tn ∈ Ih : un � M}

is called the numerical threshold blow-up time.
In the following we denote by Ic1h the adaptive chosen mesh underlying the collo-

cation solution corresponding to the collocation parameter c1.
Remark 4.2. Assume that Tb(I

0
h) and Tb(I

1
h) are the blow-up times of the explicit

Euler method and the implicit Euler method, respectively. Then it follows from
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Theorems 2.12 and 2.13 that

(4.1) Tb(I
1
h) < Tb < Tb(I

0
h).

Similarly, it follows from Theorem 2.14 that the numerical threshold blow-up time
TM
b (Ic1h ) is decreasing with respect to c1 in the sense that

TM
b (Ic1h ) < TM

b (I c̄1h )

provided 0 � c̄1 < c1 � 1 and Ic1h ⊆ I c̄1h .
For convenience, the numerical blow-up time is denoted by Tb(τ) when the adap-

tive stepsize is such that hn = h∗
n given by (2.8) or (2.9). Similarly, we can obtain

the numerical threshold blow-up time TM
b (τ).

Definition 4.3. The numerical blow-up time Tb(τ) is said to converge to the
exact blow-up time Tb if

lim
τ→0

Tb(τ) = Tb.

Based on the local convergence of the collocation solution for (1.1), we first derive
upper and lower bounds of the numerical threshold blow-up time TM

b (τ). In order to
do so we shall need the following result from [3].

Lemma 4.4. Let β > 0, φ(t) and G(t, u) be C1-smooth functions, and k(z) =
zβ−1k1(z) ∈ C1((0,∞)). Then the collocation solutions uh(t) converge to the exact
solution u(t) with at least order 1, that is, there exist constants C(M) > 0 and τ∗(M)
such that

|uh(tn)− u(tn)| � C(M)τ for τ < τ∗(M)

whenever |uh(tn)| and |u(tn)| are bounded by M .
Theorem 4.5. Assume that the conditions in Lemma 4.4 hold. Then for any

given M > 0,

TM−1
b � TM

b (τ) � TαM
b for all 0 < τ < min

{
TαM
b − TM+1

b ,
τ∗(αM)

C(αM)

}
,

where α is defined by (2.3).

Proof. Suppose that TM
b (τ) > TαM

b for some τ < min{TαM
b − TM+1

b , τ∗(αM)
C(αM) }.

Then one obtains that

|u(t)| � αM for t ∈ [TM+1
b , TαM

b ],

|uh(tn)| � M for tn ∈ Ih ∩ [TM+1
b , TαM

b ].

On the other hand, Lemma 4.4 states that

1 � |uh(tn)− u(tn)| � C(αM)τ < 1 for tn ∈ Ih ∩ [TM+1
b , TαM

b ].

This is a contradiction. In a similar way, it can be shown that TM−1
b � TM

b (τ) and
the proof is complete.

Lemma 4.6. Assume that the conditions (P), (K), and (G1) hold. Then

|TM
b (τ) − T (M, τ)| �

⎧⎨
⎩
(

β|u(TM
b (τ))−u(T (M,τ))|
k∗G(0,φ(0))

)1/β

for β > 1,

|u(TM
b (τ))−u(T (M,τ))|

k∗Tβ−1
b G(0,φ(0))

for β ∈ (0, 1],

where T (M, τ) := inf{t : u(t) � uh(T
M
b (τ))}.
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Proof. Without loss of generality, assume that T (M, τ) < TM
b (τ). Then

u(TM
b (τ)) � φ(T (M, τ)) +

∫ T (M,τ)

0

k(s)G(T (M, τ)− s, u(T (M, τ)− s))ds

+

∫ TM
b (τ)

T (M,τ)

k(s)G(TM
b (τ)− s, u(TM

b (τ)− s))ds

� u(T (M, τ)) + k∗G(0, φ(0))

∫ TM
b (τ)

T (M,τ)

sβ−1ds.

Hence the proof is complete.
Lemma 4.7. Let c1 ∈ [0, 1] and τ ∈ (0, 1). Assume that the conditions (P), (K),

(G1), and (1.3) hold. Then for any given ε > 0 there exists an M0 > 0 such that

|Tb − TM
b | � ε for all M � M0,

|Tb(τ)− TM
b (τ)| � ε for all M � M0 and τ > 0.

Proof. Similarly to the proof of Lemma 3.2, we can show that for sufficiently large
M ,

|Tb − TM
b | � 4

β

(
β

k∗

)1/β ∫ ∞

M

(
u

G(t∗, u)

) 1
β du

u
,

|Tb(τ) − TM
b (τ)| � 22+1/β

β

(
β

k∗

)1/β ∫ ∞

M

(
u

G(t∗, u)

) 1
β du

u
.

The desired results are now verified by recalling (1.3).
Using the local convergence of the collocation solutions and the upper bound of

the numerical threshold blow-up time, we are ready to show the convergence of the
numerical blow-up time.

Theorem 4.8. Under the conditions in Lemmas 4.4 and 4.7, numerical blow-up
times converge to the exact one.

Proof. For any given ε > 0, let M0 = M0(ε) be as in Lemma 4.7 and τ <
τ∗(αM0+1)
C(αM0+1) . Then Theorem 4.5 yields

TM0

b (τ), T (M0, τ) � TαM0+1
b ,

which together with the result of Lemma 4.4 implies that

|u(T (M0, τ))− u(TM0

b (τ))| = |uh(T
M0

b (τ)) − u(TM0

b (τ))| � C(αM0 + 1)τ.

Thus it follows from Lemma 4.6 that there exists a τ0(ε,M0) > 0 such that

|T (M0, τ)− TM0

b (τ)| � ε for 0 < τ < τ0.

Hence, by Lemma 4.7,

|Tb(τ)− Tb| � 3ε for 0 < τ < τ0,

and the proof is complete.

5. Different numerical approaches. In some application models such as ther-
mal ignition in a diffusive medium, G(s, u) is dependent on s (see [16]). Hence, it is
computationally more convenient to apply the implicitly linear collocation methods or
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the fully discretized collocation methods to Hammerstein-type VIEs (1.1) (see detailed
discussion in [3]).

5.1. Implicitly linear collocation methods. In (1.1), let z(t) := G(t, u(t)).
Then

z(t) = G

(
t, φ(t) +

∫ t

0

k(t− s)z(s)ds

)
,(5.1)

u(t) = φ(t) +

∫ t

0

k(t− s)z(s)ds.(5.2)

The collocation solution zh(t) ∈ S−1
0 (Ih) of (5.1) is defined by

(5.3) zh(t) = G

(
t, φ(t) +

∫ t

0

k(t− s)zh(s)ds

)
, t ∈ Xh,

and the corresponding implicitly linear collocation solution uIL
h (t) of (1.1) is given by

(5.4) uIL
h (t) = φ(t) +

∫ t

0

k(t− s)zh(s)ds, t ∈ I.

Remark 5.1. Since, in general, zh(t) is a piecewise polynomial, the exact inte-
grals in (5.3) comparing with (2.1) are available even for a general nonlinear function
G(s, u). Moreover, in Examples 5.2, 5.3, and Example 6.3, zh(t) is piecewise constant,
so the integrals in (5.3) are only concerned with the kernel.

Example 5.2. For implicitly linear collocation methods with c1 ∈ (0, 1], zh(t) ≡
zn+1 for t ∈ (tn, tn+1] satisfies the implicit nonlinear algebraical equation

zn+1 = G
(
tn + c1hn, φ(tn + c1hn) + ΓI

n(tn + c1hn) +K(c1hn)zn+1

)
,

and uIL
h (t) for t ∈ (tn, tn+1] is defined by

uIL
h (t) = φ(t) + ΓI

n(t) +K(t− tn)zn+1,

where

ΓI
n(t) =

n−1∑
i=0

(K(t− ti)−K(t− ti+1))zi+1.

Example 5.3. The implicitly linear collocation method with c1 = 0 reads

zn+1 = G
(
tn+1, φ(tn+1) + ΓE

n (tn+1) +K(hn)zn
)
,

uIL
h (t) = φ(t) + ΓE

n (t) +K(t− tn)zn,

where, in analogy to section 2.1.2,

ΓE
n (t) =

n−1∑
i=0

(K(t− ti)−K(t− ti+1))zi.

5.2. Fully discretized collocation methods. In the collocation equation (2.1),
the integrals cannot, in general, be found exactly but have to be approximated by
some numerical quadrature formulas. The fully discretized version of (2.1) has the
form

ûh(tn+c1hn) = φ(tn+c1hn)+Γ̂n(tn+c1hn)+c1hnk(c
2
1hn)G(tn+c1hn, ûh(tn+c1hn)),
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and its iteration collocation solution is

ûit
h (tn + vhn) = φ(tn + vhn) + Γ̂n(tn + vhn)

+ vhnk(vc1hn)G(tn + c1hn, ûh(tn + c1hn)), v ∈ [0, 1],

where Γ̂n(t) is the approximation history term

Γ̂n(tn + vhn) =

n∑
i=0

hik(tn + vhn − ti − c1hi)G(ti + c1hi, ûh(ti + c1hi)).

Remark 5.4. The integrals of the kernel and G(s, u) are replaced by a numerical
quadrature formula and the fully discretized collocation solution ûh(t) also belongs
to S−1

0 (Ih), but in general, ûh(t) �= uh(t) even when the nonlinear function G(s, u) is
independent of s.

Remark 5.5. In applications, if the integrals of the kernel can be found analyti-
cally, then the fully discretized collocation methods can be alternated by

ûh(t) = φ(t) + Γ̂n(t) +K(t− tn)G(t, ûh(t)), t ∈ Xh,

and its iteration collocation solution is

ûit
h (t) = φ(t) + Γ̂n(t) +K(t− tn)G(tn + c1hn, ûh(t)), t ∈ I,

where Γ̂n(t) is the approximation history term

Γ̂n(t) =

n∑
i=0

(K(t− ti)−K(t− ti+1))G(ti + c1hi, ûh(ti + c1hi)).

In this case, the iterated collocation solution ûit
h (t) is just same as the implicitly linear

collocation solutions uIL
h (t) (see [3]).

Similarly to the discussions in sections 2.1.1, 2.2, and 2.3, one may obtain the
following results.

Theorem 5.6. Assume that c1 ∈ (0, 1] and the adaptive stepsize is defined
similarly to (2.5). Then there exists a unique solution of both the implicitly linear
collocation method and the fully discretized collocation method.

Theorem 5.7. Let τ ∈ (0, 1], c1 ∈ [0, 1], and conditions (P), (K), and (G1) hold.
Then ûh(t) and uIL

h (t) are nondecreasing.
Remark 5.8. With the adaptive stepsize similar to (2.8) for the case of c1 ∈ (0, 1],

the results in Theorems 2.12, 2.13, and 2.14 are also true for ûh(t) and uIL
h (t).

Remark 5.9. Different from the collocation solution uh(t) with exact integrals,
the dynamical behavior of ûh(t) will be influenced by

F̂ (tn + c1hn, u) =
n∑

i=0

hik(tn + vhn − ti − c1hi)G(ti + c1hi, u)

+ c1hnk(c
2
1hn)G(tn + c1hn, u)− u,

(recall (1.4)), while the dynamical behavior of uIL
h (t) is determined by

F IL(t, u) =

∫ t

0

k(t− s)Gh(s, u)ds− u,
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where Gh(t, u) ≡ G(ti + c1hi, u) for t ∈ [ti, ti+1]. Therefore, the results in Theorems
2.18 and 2.19 are true for ûh(t) (or u

IL(t)), if we replace F by F̂ (or F IL).
Since F (t, u), F IL(t, u), and F̂ (t, u) may be different, for example F IL(t, u) >

F (t, u) when c1 = 1, the blow-up behaviors of ûh(t), uIL
h (t), and uh(t) may also

differ. But, in any case, under the condition limt→∞ φ(t) = ∞, the blow-up behaviors
of u(t), uh(t), ûh(t), and uIL

h (t) are same.

6. Numerical experiments. We now present some numerical experiments to
illustrate the blow-up behavior of collocation solutions.

Example 6.1. As a special case, consider first an ODE of order β ≥ 1,

(6.1)
u(β)(t) = u(t)p,

u(i)(0) = ui > 0, i = 0, 1, . . . , β − 1.

This initial-value problem is equivalent to the VIE

u(t) = φ(t) +

∫ t

0

k(t− s)u(s)pds,

where φ(t) =
∑β−1

i=0
1
i!uit

i and k(z) = 1
(β−1)!z

β−1. In Table 6.1, the errors, |TM
b (τ) −

T (M, τ)|, are listed for β = 1, p = 1.5, 1.8, 2.0, 2.5, 3.0, and c1 = 0, 0.5, 1. In Table

6.2, u0 = 1, u1 =
√
6
3 , β = 2, p = 2.0, and c1 = 0, 0.5, 1, and the numerical threshold

blow-up times for M = 1E8 are listed (the exact threshold blow-up time is 2.4495; cf.
[10]). The numerical results suggest that for (6.1) with β = 1, the numerical threshold

Table 6.1

The errors between TM
b (τ) and T (M, τ) of (6.1) when β = 1.

p c1
τ = 0.1 τ = 0.05

M = 1E5 M = 1E6 M = 1E8 M = 1E5 M = 1E6 M = 1E8
0 1.4834E − 1 1.4866E − 1 1.4879E − 1 7.4459E − 2 7.4622E − 2 7.4688E − 2

1.5 0.5 3.4813E − 4 3.8692E − 4 4.0305E − 4 7.1087E − 5 9.0524E − 5 9.8517E − 5
1.0 5.4008E − 2 5.4126E − 2 5.4174E − 2 2.6712E − 2 2.6770E − 2 2.6794E − 2
0 1.1213E − 1 1.1214E − 1 1.1214E − 1 5.6153E − 2 5.6158E − 2 5.6159E − 2

1.8 0.5 2.2535E − 4 2.2656E − 4 2.2678E − 4 5.4667E − 5 5.5271E − 5 5.5383E − 5
1.0 3.3118E − 2 3.3120E − 2 3.3121E − 2 1.6350E − 2 1.6352E − 2 1.6352E − 2
0 9.9999E − 2 1.0000E − 1 1.0000E − 1 5.0000E − 2 5.0000E − 2 5.0000E − 2

2.0 0.5 1.6424E − 4 1.6436E − 4 1.6437E − 4 3.9994E − 5 4.0051E − 5 4.0058E − 5
1.0 2.5658E − 2 2.5658E − 2 2.5658E − 2 1.2660E − 2 1.2660E − 2 1.2660E − 2
0 8.3995E − 2 8.3995E − 2 8.3995E − 2 4.1836E − 2 4.1836E − 2 4.1836E − 2

2.5 0.5 8.0149E − 5 8.0149E − 5 8.0149E − 5 1.9502E − 5 1.9502E − 5 1.9502E − 5
1.0 1.5119E − 2 1.5119E − 2 1.5119E − 2 7.4602E − 3 7.4602E − 3 7.4602E − 3
0 7.6190E − 2 7.6190E − 2 7.6190E − 2 3.7805E − 2 3.7805E − 2 3.7805E − 2

3.0 0.5 4.1091E − 5 4.1091E − 5 4.1091E − 5 1.0014E − 5 1.0014E − 5 1.0014E − 5
1.0 9.5995E − 3 9.5995E − 3 9.5995E − 3 4.7424E − 3 4.7424E − 3 4.7424E − 3

Table 6.2

The numerical threshold blow-up time of (6.1) when M = 1E8 and β = 2.

τ c1 = 0 c1 = 0.5 c1 = 1
1
10

2.6481 2.4492 2.4055
1
20

2.5652 2.4493 2.4186
1

100
2.4801 2.4494 2.4369
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Fig. 6.1. The collocation solutions of (6.2) when τ = 0.1 and M = 1E10.

blow-up times not only converge to T (M, τ), but also converge with the local order of
the collocation methods. The numerical threshold blow-up times of (6.1) with β = 2
also converge to the exact one, but the convergence order is not the same as the order
of the corresponding methods. This also happens for wave equations (see [8]). In
any case, the upper bound of TM

b (τ) given by Theorem 4.5 also encourages us to
investigate the convergence order of TM

b (τ) by the local convergence and convergence
order of a numerical method.

Example 6.2. Consider a VIE with smooth memory kernel,

(6.2) u(t) = φ(t) +

∫ t

0

(t− s) exp(−(t− s))u(s)(log(1 + u(s)))pds,

where φ(t) > 0. In Figure 6.1, we exhibit the collocation solutions with p = 2.5,
c1 = 0, 0.5, 1, and τ = 0.1. It follows from Figure 6.1 that the collocation solutions
blow up in finite time for φ(t) ≡ 1 but do not blow up in finite time for φ(t) ≡ 0.1. It
detects from Theorem 3.7 that the exact solutions blow up in finite time for φ(t) ≡ 1
and do not blow up in finite time for φ(t) ≡ 0.1. On the other hand, since

I(t) =

∫ t

0

z exp(−z)dz = 1− (1 + t)e−t → 1 as t → ∞,

the exact solution in the case of p = 2.5 blows up in finite time if and only if

φ(t∗) + Fmin > 0 for some t∗ > 0,

where Fmin = minu∈[0,∞)(u(log(1 + u))2.5 − u) ≈ −0.60399.
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Table 6.3

The numerical threshold times TM
b (τ) of (6.3) when M = 1E5 and τ = 0.1.

γ 1.1 1.2 1.3 1.4 1.5
p
1.1 1.1635 1.1408 1.1203 1.1016 1.0844
1.2 0.55051 0.53143 0.51446 0.49922 0.48544
1.3 0.32108 0.30472 0.29041 0.27776 0.26648
1.4 0.21159 0.19736 0.18511 0.17446 0.16509
1.5 0.15028 0.13776 0.12716 0.11808 0.11021
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(a) the numerical threshold (b) the numerical threshold
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upper and lower bounds simulating blow-up time in [5]

Fig. 6.2. Numerical threshold blow-up times of (6.3) with M = 1E8 and τ = 0.1.

Example 6.3. The shear band model arising in the formation of steel (cf. [16]) is
described by the nonlinear VIE

(6.3) u(t) = 1 + γ

∫ t

0

(1 + s)qup(s)√
t− s

ds,

where γ > 0, q � 0, and p > 1 are constants.
For the special case of q = 0, it follows from [16] that the exact solution blows up

at a finite time Tb satisfying

(6.4) Tb ∈
[
(1− p−1)2p

4γ2(p− 1)2
,

1

4γ2(p− 1)2

]
.

In Table 6.3, we list the numerical threshold blow-up time with variable p and γ when
M = 1E5, τ = 0.1. In Figure 6.2, we plot the numerical threshold blow-up times with
M = 1E8 and τ = 0.1, the simulated blow-up time in [5], and the upper and lower
bounds with fixed γ = 1.1 and various p. Figure 6.2(a) shows that the numerical
threshold blow-up times also satisfy (6.4). The numerical threshold blow-up times
of collocation methods with adaptive stepsize are more precise than the simulating
blow-up time in [5] (see Figure 6.2(b)), since the exact blow-up time must be larger
than the threshold blow-up times of the implicit Euler method.

Consider the case of q = 1, i.e., the nonlinear function G(s, u) = (1 + s)up

depends on s. In addition to the collocation method, we also employ the implicitly
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(a) c1 = 0.5 and TM
b (τ) = 0.1513 (b) c1 = 1 and TM

b (τ) = 0.1487

Fig. 6.3. The collocation solutions of (6.3) with q = 1, p = 2, γ = 1, and M = 1E6.
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Fig. 6.4. The implicitly linear collocation solutions of (6.3) with q = 1, p = 2, γ = 1, and
M = 1E6.

linear collocation method. We draw both uh(t) and uIL
h (t) with p = 2, γ = 1, τ = 0.1,

and c1 = 0.5, 1 in Figures 6.3 and 6.4, respectively. These figures corresponding to
M = 1E6 show that the solutions uh(t) and uIL

h (t) blow up in finite time, which is in
agreement with the exact solution.
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