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BLOW-UP BEHAVIOR OF COLLOCATION SOLUTIONS TO
HAMMERSTEIN-TYPE VOLTERRA INTEGRAL EQUATIONS*

7Z. W. YANG' AND H. BRUNNER}

Abstract. We analyze the blow-up behavior of one-parameter collocation solutions for Hammer-
stein-type Volterra integral equations (VIEs) whose solutions may blow up in finite time. To approx-
imate such solutions (and the corresponding blow-up time), we will introduce an adaptive stepsize
strategy that guarantees the existence of collocation solutions whose blow-up behavior is the same
as the one for the exact solution. Based on the local convergence of the collocation methods for
VIEs, we present the convergence analysis for the numerical blow-up time. Numerical experiments
illustrate the analysis.
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adaptive stepsize, convergence of numerical blow-up time
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1. Introduction. The mathematical modeling of thermal ignition in solid com-
bustible materials leads typically to nonlinear Volterra integral equations (VIEs) of
Hammerstein-type,

(1.1) u(t) = ¢(t) —|—/0 E(t — s)G(s,u(s))ds, te[0,T],

where GG is a smooth function and where the convolution kernel k& may be weakly
singular (see, for example, [14] and [16], as well as the references in the survey paper
[17]). A particular example that arises as a mathematical model for the formation of
shear bands in steel that is subjected to very high strain rates is the VIE

ut) = / (n(t — 5))"V2(1 + )[u(s) + 1]Pds

(which can be rewritten in the form (1.1); see (6.3)), where v > 0 and p > 0,q > 0
are material parameters related to the constitutive law for plastic straining (cf. [16]).
While the theory of blow-up solutions of (1.1) is now well understood (cf. [4]),
the design and analysis of efficient numerical schemes for such problems is not well
developed (we are only aware of the paper [5] and the Ph.D. thesis [19]).
Accordingly, this paper is devoted to a systematic study of the numerical solution
of nonlinear VIEs (1.1) by a class of (one-parameter) collocation methods. One of our
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key results is that these numerical methods can be used to detect finite-time blow-up
(an important aspect since in many practical applications it is not known a priori
whether or not the given model VIE will exhibit finite-time blow-up). For the blow-
up case, we also pay attention to the convergence of the numerical blow-up time to
the exact one in sections 4 and 6.

The VIE (1.1) with unknown solution w(t) will be subject to the following as-
sumptions (see also [4]). The functions ¢ : R - Ry and G : R x R — Ry are
continuously differentiable, and the kernel & : (0, 00) — (0,00) is a locally integrable
function. Moreover, we assume that the given functions in (1.1) satisfy

(G1) G(s,0) =0 and G(s2,us) > G(s1,u1) for two positive vectors (s1,u1), (s2,u2)
with (s2,us) > (s1,u1) (interpreted componentwise) and us # ug,
(G2) limy, oo @ = o0;
and

(P) the function ¢(t) is positive, nondecreasing,

(K) k(z) = 2%~k (2), where B > 0 and k;(z) > 0 is bounded in any finite interval.
It was shown in [4] that the exact solution u(t) of (1.1) is nondecreasing and blows
up in finite time if and only if there exists a t* > 0 such that

(1.2) O(t*) + Fin (t*) > 0,
oo 1/8
u du
1. —_— — for all
(1.3) /U (G(t*,u)) L <ocfora U >0,
where

t
(1.4) F(t,u) = / kE(t — s)G(s,u)ds — u and Fuyin () := H[lin )F(t,u) <0.
0 u€[0,00
Collocation methods for VIEs have been investigated for many years (see [3] and
the references therein). In the context of VIEs with blow-up solutions, the authors of
[5] apply collocation methods with one parameter and uniform mesh to the simulation
of the blow-up time of

_ [ (s + )"
0= [ S

where p > 1, v > 1, and a € (0,1). As in the case of ordinary differential equations
(ODEs) (see [18]), it is also maintained in [5] that “a method with a fixed spacing is
not well suited for blow-up problems” and that “it is not yet clear what would be an ap-
propriate strategy for the automatic (or even a priori) computation of a variable step-
size.” When the inversion formula exists, switching variables is an approach for sim-
ulating blow-up solutions. The advantage is its ability to avoid timestepping past the
blow-up time in the solution and to generate timesteps that become sufficiently small
near the blow-up time. The disadvantage is that this approach depends strongly on
the inversion formula and the monotonicity of solutions (see [14]). Another useful tech-
nique is the so-called Sundman transformation, by which a blow-up solution is trans-
ferred to a global solution in the new variable (see [12, 18] for ODEs, [13] for PDEs,
and [19] for VIEs). Both of these numerical processes employ a certain kind of adap-
tive stepsize strategy (in [18] it is based on time-continuous rescaling). Other stepsize
strategies for computing blow-up solutions of PDEs may be found in [1, 2, 6, 7, 9].
In this paper, we adapt the approach taken in [1] to define an adaptive stepsize
strategy for VIEs (1.1) so that the collocation solutions of implicit methods exist
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uniquely at each time level. A slightly different, but related, strategy is designed for
the explicit Euler method. In section 2 the monotonicity and the dynamical behav-
ior of the collocation solutions are discussed, and the comparison principle between
collocation solutions with variable ¢; € [0, 1] is investigated. In section 3 we show
that the asymptotic behavior of the collocation solutions with adaptive stepsize is the
same as for the exact ones, regardless of whether or not the exact solutions blow up
in finite time. In section 4 we use the local convergence of collocation methods and
the corresponding bounds of the numerical threshold blow-up time to establish the
convergence of the numerical blow-up time. A different numerical approach to the
computation of blow-up solutions, namely, implicitly linear collocation, is described
in section 5. Here, we also discuss its merits when it is applied to VIEs with general
Hammerstein kernels. Finally, section 6 contains numerical experiments to illustrate
our main results.

2. Collocation methods. We approximate the exact solution of (1.1) by using
collocation in the piecewise constant polynomial space Sé_l)(lh), where the under-
lying (nonuniform) mesh I, := {0 = ¢ty < t1 < t2 < ---}, will be defined during
the numerical process. The collocation solution u, € Séfl)(lh) is defined by the
collocation equation

(2.1) up(t) = dt) +Tn(t) + | Ek(t —s)G(s,up(s))ds, te Xp,

tn

where h,, := t,,41—t, is the stepsize, X}, := {t,+c1h, :0< 1 <1,n=0,1,...,N—1}
is the set of collocation points determined by I, and the collocation parameter ¢; €
[0,1], and

(2.2) L.(t) := " E(t — s)G(s,un(s))ds for t € [tn, tni1]
0

is the approximate history (or lag) term.

2.1. The adaptive stepsize strategy. In order to describe our choice of adap-
tive stepsizes we introduce a number of constants that will play a key role. They
are

1, 0<pB<1, 0, 0<pB<1,
Ci(B) =41, 1<pB<2, C2(B) =4 1, 1<pB<2,
26-2 B> 9 272 B> 2,
and
(2.3)

] Ci(B) + Ca(B) + (1 + (C2(B) + 1)k1(0))7  when ki (2) is nonincreasing,
T = (Cu(B) + Ca(B) + (1+ (Ca(B) + 1)k*)T  otherwise,

where k™ := max,e(o, 7] k1(s) and ki := minsepo, ) k1(s).
2.1.1. The implicit Euler method. Since the collocation uj € Séfl)(lh) de-

fined in (2.1) is constant on each subinterval (t,,t,+1], i.e., up(t) =: upy1, t €
(tn,tn+1], the collocation equation (1.1) with collocation parameter ¢; = 1 can be

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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written as
Ug = ¢(0)7

1
o tnit = B(tns1) + To(busr) + b / F((1 = 2)hn) G (tn + o, 11 ),
. 0

n—1 1
Fn(tn+1) = Z hz/ k(tn+1 —t; — $hZ)G(tl + xh;, ui+1)d$.
i=0 0

In the case of G(s,u) = g(u), (2.4) reduces to

Ug = ¢(0)7
Un+1 = ¢(tn+l) + Fn(tn+l) + K(hn)g(un—i-l)an = 07 1a sy
n—1
To(tns1) = O (K (tng1 — ti) = K(tng1 — tiz1))g(uiga),
1=0

where K (t) := fot k(z)dz. Assume that the collocation solution uy(t) is well defined in
the interval [0, ¢,]. Following the idea in [1] on the unique existence of the collocation
solution w1 of the implicit Euler method, we choose an adaptive stepsize given by

%
hy < B i=min{ T — t,, 7, TP(tn) < Br||unlln ) |
Oty +7) \ Gty + 7, allunlln)

2

d(t) := ! = t)| = i
(t) = max ¢'(s), [lunlln tg[loa}gi]IUh()l (max fuil,

—~

(2.5)

@l

(Fresamam)
kE*L(ty, + 7, ol unlln)

where 7 € (0,1) is an arbitrary positive number,

and L(t, M) is the local Lipschitz constant of G(t,u) with respect to u in (s,u) €
[0,¢] x [0, M].

DEFINITION 2.1. A collocation solution up(t) for (2.1) with adaptive stepsize
satisfying (2.5)

(i) ewists in an interval [0,T], if

N-1
tny = Z h; =T for some integer N;
i=0

(i) exists globally, if it exists in [0,T] for any given T > 0;
(iii) blows up in finite time, if

Ty(In) = lim t, = nli_)n;thi < 0.

n— oo ;
=0

In this case, Tp(Iy) is called the numerical blow-up time.
LEMMA 2.2. Assume that conditions (P), (K), and (G1) hold and that a collo-
cation solution up(t) exists in the interval t € [0,T). Then up(t) = ¢(0) > 0 for all
te0,7].
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LEMMA 2.3. Assume that conditions (P), (K), and (G1) hold and that the col-
location solution up(t) exists in the interval [0,t,] for some t, € (0,T). Then for
tn < t < thrl;

Lat) < 1 (CL(B) + Ca(®) [ Ktn = 5)G(s.un(s))ds + Cal B SHG b, ).
0

*

If, in addition, k1(2) is nonincreasing, then

1
_hTBLG(tT“ lunln)-

I (t) < (Cr(B) + Cz(ﬁ))/o " k(t, — $)G(s,un(s))ds + Ca(B)ky (0)5

Proof. 1t follow from [11] that for ¢ € (¢, t,41] and s € [0, t,],
(=)' < CLB)(tn — )" 7! + Ca(B)(t — )"
which together with conditions (P) and (G1) implies that

To(t) < C1(B) /O "t — )Pk (= $)G(s, un(s))ds
+ Cy(B)RE! / ! k1(t — s)G(s,up(s))ds
0

<«nwwubw»A"wfwﬁ*ma—@a@wm@mS

1
+ C2(ﬁ)3h5k*G(tn, llunln)-
In view of
ki(t—s) < 121 (tn —s) when k.1 (z) is nonincreasing,
ik (t, —s) otherwise,
the proof is complete. O

THEOREM 2.4. Let 7 € (0,1) and conditions (P), (K), and (G1) hold. Suppose
that the collocation solution up(t) of the implicit Euler method exists in the interval
[0,t,] for some t, € (0,T) and that the stepsize satisfies (2.5). Then the collocation
solution un41 is uniquely defined by the fixed point of H(v,un,hy) in [0, callunln],
where

tn+n
H(v,up,n) = ¢(tn +n) +Tn(tn +n) + / k(tn +n— s)G(s,v)ds.
tn
Proof. Tt follows from (2.5) and Lemma 2.3 that
() ¢(tn + hn) < (L+7)0(tn) < G(tn) + 7llunlln,
(i) FhRG(tn +hn70¢||uh|| ) < 7llunlln,
(iii) H(v,up,hn) < allup|l, for all v € [0, af|up|n)-
Hence H(v,up, hy,) is a mapping from [0, a||up||»] to [0, aljun|ln]. Moreover, for all
v1,v2 € [0, alluna];

tnthn

|H (v1, up, hn) — H(va, up, )| = kE(tn 4+ hn — 5)(G(s,v1) — G(s,v2))ds

n

1
< Ehﬁk*L(tn + 7, al|uplln)|vr — v2| < Tlvr — val.
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Therefore H(v,up,h,) has a unique fixed point in [0, a||up|ln]. The proof is
complete. a
Remark 2.5. Let G(t,u) = uP and k(z) = 2#~1. Then

B ||unln pr pr
< — < -
Gtn + 7 allunlln) = a?|uplf 20 |un [

pr .
= -1
L(tn + 7, afjupn/n) plal|un||n)?

Therefore,

< B |lunn )E < ( BT )E
Gt +7,allunlln) )~ \L(tn + 7, allunn)

when 1 < p<2and g >0.

Remark 2.6. Assume that the adaptive stepsize is defined by h,, = h}, and that
the collocation solution exists in an interval [0,T]. Then

(i) @ < oo is a finite number,

(ii) ho = MaXo<n<N-1 Nn < T,

) TP(tn) > T9(0 > 0
)

(iii = MiNo<n<N-1 377, 15y 2 30T

1
2. Tlunlln s
(IV h* = m1n0<n<N 1 (G(tn“l’T;aHuh”n)

1
Bré(0) B
(G(tﬁr,anuhnw)) >0,

1
3 mi B B8 s
(v) h* :=minggn<n—1 (k*L(thrTTa”uh”n)) > (k*L(thr-rTozlluhHN)) > 0.
Hence ming<n<ny—1hy, = min{r, k', h? h3} > 0. Thus, under conditions (K) and
(G1), a blow-up collocation solution uy(t) must satisfy

@l WV

lim |Jupll, = oo,
n—oo
which together with condition (G2) implies that for sufficiently large n,

o= (el
" G(tn + 7, allupln

B
)) — 0 asn — oo.

2.1.2. The explicit Euler method. The explicit Euler method for (1.1) cor-
(

1
responds to ¢; = 0. Thus, for ¢ € [t,, tn+1) the collocation approximation up(t) =
is defined by

up = ¢(0)7

1
(2 6) Un+1 = ¢(tn+l) + Ff(tn—i—l) + hn/ k((l - x)hn)G(tn + ZIIhn, un)dxv
. 0

n+1 Z h / tn+1 —t; — $hl)G(t1 + fhi, uz)dx

If G(s,u) = g(u) then (2.6) reduces to

ug = ¢(0)7
Unp+1 = ¢(tn+l) + Fg(tn+l) + K(tn+l - tn)g(un)a n= 07 1a sy

n—1

DY (tnr1) = Y (K (tnr1 — i) = K(tne1 — tir))g(ui).
=0
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In order to simulate a blow-up solution, we use again an adaptive stepsize, namely,

2.7)  ha <R = min{T—tn,T, 7(tn) (G( Brijunln )>F}.

O(t, +7)’ tn + 7, ||unlln

By Lemma 2.3 we obtain the following estimate.
THEOREM 2.7. Assume that conditions (P), (K), and (G1) hold. Then the collo-
cation solution given by the explicit Fuler method satisfies

Unt+1 < a||lup||ln for alln < N,

where « > 14 7 is defined by (2.3) whenever the adaptive stepsize is such that (2.7)
is satisfied.
Remark 2.8. The solution of the ODE of order g,

uP(t) = G(t, u(t)),
uD(0)=u; >0,i=0,1,...,8—1,

satisfies
u(t) = ¢(t) + /0 k(t — s)G(s,u(s))ds,

where 8 > 1 is an integer, ¢(t) = S0 0 Jut?, and k(z) = et In view of
a=C1(B)+C(B)+(1+ %)T and q:(fj_i)) > 1 for sufficiently large ¢, one obtains
that for 1 < ¢, < T,

h* = min T( Brlunlln >ﬂ .
" "\G(tn + 7, |unlln)

For the first-order ODE with a power function G(t,u) = u?, (2.7) reduces to
h} = min {T, 72)71 } ,
l[unlln

2.2. Monotonicity of collocation solutions. We will now show that the col-
location solution up(t) with adaptive stepsize is nondecreasing whenever it exists.

THEOREM 2.9. Assume that conditions (P), (K), and (G1) hold. Then the col-
location solution up(t) of the explicit Euler method with adaptive stepsize such that
(2.7) holds is nondecreasing.

Proof. For t € [0,t1), up(t) = up = ¢(0),

which was used in [15].

t1
up = ¢(t1) —|—/ k(t1 — s)G(s,up)ds = ug.
0

Using induction, suppose that ug < u; < -+ < uy, for n < N. Then uy(t) is
nondecreasing for ¢ € [0, t,+1) and

tnia
Upt1 = P(tn+1) +/0 k(tns1 — s)G(s,un(s))ds

> () + / " R($)Ctn — 5, un(tn — ))ds = up.

Hence u,, < upy1 and the proof is complete. a
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THEOREM 2.10. Assume that conditions (P), (K), and (G1) hold. Then the
collocation solution up(t) of the implicit Euler method with adaptive stepsize given by
(2.5) is nondecreasing.

Proof. For t € (0, 4],

ho
up(t) = ur = ¢(ho) —|—/ k(ho — s)G(s,u)ds.
0
Hence w1 > ug. Suppose then that u,(t) is nondecreasing for ¢ € [0, ¢,]. Define

0._ 141 . 1 _ Lo Jun(t), te[0,t,],
V= U, v = H@ S up hy) (=0,1,2,..., ), v, (t):=
( " ) ( ) h( ) {Ulv te (tnatn—i-l]'
Then vY(¢) is nondecreasing and

tnt1
o = blt) + [ Kt — )G, o)
0
tn
> o(t,) + E(s)G(tn — 5,00 (t, — 5))ds > u,.
Suppose that v > u, for some ! > 1. Then vh(t) is nondecreasing and

tn+1
L = Btns1) / (b1 — $)G(s, 0} (5))ds
0

> o(tn) —l—/ k()G (tn — 8,0} (tn — 5))ds = up,.

0

It follows from (2.5) and Theorem 2.4 that H(v,up,hy) is a contractive mapping
and u,41 is its fixed point. Hence un,+1 = limye0 vl > u, and the proof is com-
plete. d

Remark 2.11. Theorems 2.9 and 2.10 imply that ||up||, = u,. Hence (2.5) and
(2.7) reduce, respectively, to

(2.8)

* . TP(tn) prun ’ b '
< = -
hy, < hn mln{T tn, T, (I)(tn—’_T)’ (G(tn"‘T, Oéun)) ’ (k*L(tn+Ta O(Un)) } ’

(2.9)

< = - .
hn < by mln{T bns T Q(tn"'_T)’(G(tn—'_Tﬂun)) }

In the remainder of this paper, we always assume that the adaptive stepsize satisfies
(2.8) for implicit methods and (2.9) for the explicit Euler method.

2.3. Comparison principle.

THEOREM 2.12. Assume that conditions (P), (K), and (G1) hold. Then the
collocation solution up(t) corresponding to the explicit Euler method satisfies up(t) <
u(t) whenever u(t) exists.

Proof. Since

up(t) < &(t) —1—/0 k(t — s)G(s,up(s))ds,

one obtains from Lemma 2.4 in [4] that up, (t) < u(t) whenever u(t) exists. This verifies
our assertion. a

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 01/22/14 to 130.159.104.144. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal /ojsa.php

2268 Z. W. YANG AND H. BRUNNER

THEOREM 2.13. Assume that conditions (P), (K), and (G1) hold. Then the
collocation solution up(t) given by the implicit Euler method satisfies up(t) > u(t)
whenever up(t) exists.

Proof. In view of u1 > ¢(0) = u(0), we suppose that u(t) = up () and u(s) < up(s)
for s € [0,¢). This implies that

0 < u(t) —up(t) < /0 kE(t —s)(G(s,u(s)) — G(s,up(s)))ds < 0.

This contradicts our assumption, and thus the proof is complete. a

THEOREM 2.14. Assume that conditions (P), (K), and (G1) hold and that the
collocation solution u}(t) of the implicit Euler method exists on the mesh I,. Then
for any c1 € [0, 1], the collocation solution uy' (t) also exists on the same mesh Iy, and
uy! (t) is increasing with respect to ¢; € [0, 1].

Proof. Since the collocation solution u;' () with ¢; € (0,1) can be regarded as the
component of the implicit Euler method applied on the subinterval U™ ,[t;, t; + ¢1h)
and the explicit Euler method applied on the subinterval U [t; + c1hi,tit1], by
resorting to Lemmas 2.15 and 2.16, the collocation solutions u! (t) exist on the same
mesh I;, and uf) (¢) < up' (t) < uj(t).

Assume that u' (t) and uj*(t) are the collocation solutions corresponding to 0 <
c1 < ¢1 < 1, respectively. Then

u$*(t) = vj(t) by Lemma 2.15,
v} (t) = v2(t) by Lemma 2.16,
v7(t) > ujt(t) by Lemma 2.17.

Here, v} (t) is the collocation solution corresponding to the implicit Euler method

applied on the subinterval U} [t;, ¢; + c1hy] and UP_g[t; + c1hs, t; + E1h;], and the
explicit Euler method applied on the subinterval U ,[t; + ¢1hy, tiy1], while v () is
the collocation solution given by the implicit Euler method applied on the subinterval
U o[ti, t; + c1h;], and the explicit Euler method applied on the subinterval U ,[t; +
c1hi, ti + ¢1h;] and Uy [t; + €1 Ry, ti11]. Hence the proof is complete. O

LEMMA 2.15. Assume that ¢; = 1, conditions (P), (K), and (G1) hold, and the
collocation solution up(t) exists on the mesh Ij,. Then the collocation solution also
exists and is decreased by adding a finite number of new grid points in the mesh Iy,
that is to say, un(t) < up(t) if I € I, € [0,T).

Proof. Without loss of generality, assume that only one new mesh point ¢ is added
in the subinterval [t,,t,4+1]. Then by Theorem 2.10, the collocation solutions wup,(t)
and @y (t) are increasing for all ¢ € [0,T] and @p(t) = up(t) for ¢t € [0,¢,]. Define

vo = Up(tn) and vy = H(vj—1,ap,t —t,) for alll =0,1,2,....

Then, similarly to the proof of Theorem 2.10, it can be shown that v; is an increasing
sequence and bounded by wp(t,+1). Hence @ (t) exists on the interval [0,7] and
p(t) < up(tn+1). As a consequence, the proof can be completed by an induction
argument. 0

LEMMA 2.16. Assume that conditions (P), (K), and (G1) hold and the collo-
cation solution up(t) of the implicit Euler method exists on the mesh I,. Then the
collocation solution uy,(t) corresponding to applying the explicit Euler method on some
subintervals of the mesh Iy, also exists and Gy (t) < up(t) for all t € [0,T].
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Proof. Without loss of generality, assume that the explicit Euler method is applied
in only one subinterval [t,, t,41]. Then @y (t) = up(t) < up(tnyr) for t € [0,¢,]. Hence

n(tasn) < Oft) + [ K(tus = )Gs,n (9)ds

tnt1
+/ k(tns1 — s)G(s, un(tns1))ds
t

n

= Uh(tn+1).

Then, similarly to the proof of Lemma 2.15, the proof is completed. d

LEMMA 2.17. Assume that ¢y = 0, conditions (P), (K), and (G1) hold, and the
collocation solution up(t) exists on the mesh I,. Then the collocation solution will be
increased by adding a finite number of new grid points in the mesh Iy, that is to say,
ﬂh(t)Zuh() ZfIhCIh [0 T] -

Proof. Without loss of generality, assume that only one new mesh point ¢ is added
in the subinterval [t,, t,+1]. Then by Theorem 2.9, the collocation solutions u(t) and
ap(t) are increasing for all ¢ € [0,T] and @y (t) = un(t) for t € [0, ¢,41), which implies
that

tn+1
n(tnsn) > Bltnss) + / k()G (bnst — 8, wn(bnsr — ))ds = un(ts)-
0

Hence by an induction argument, the proof is complete. a

2.4. Dynamical behavior.

THEOREM 2.18. Assume that conditions (P), (K), (G1), and (G2) hold and
that the collocation solution up(t) of the explicit Euler method exists globally. Then
limy s oo up(t) = 00, provided that there exists a t* € (0,00) such that (1.2) holds.

Proof. Suppose that up(t) is bounded for all ¢ € [0,00). Then by Theorem 2.12,
limy oo up(t) = U € (P(t*),00) exists. Thus for any given 0 < € < uy with
d(t*) — e+ Fpin(t*) > 0, there exists a T, > t* such that us — € < u, < uso for all
t, > T.. It therefore follows from conditions (K) and (G1) that for all t,, > T, + ¢*,

Uso > Up = @ / k(tn — s)G(s,upn(s ds—l—/ k(t G(8,u00 — €)ds
> o(t,) + / k(s)G(t — 8, Uso — €)ds
0

tn—T.
> P(ty) + / k(s)G(tn —Te — 8, Uoo — €)ds.
0
This implies that
O(tn) — e+ F(tn — Te,uso — €) <0,

which contradicts the hypothesis that ¢(t*) — € + Fin(t*) > 0. The proof is com-
plete. d
THEOREM 2.19. Let 7 € (0,1) and conditions (P), (K), (G1), and (G2) hold.
Suppose that ¢(t) + Fiin(t) <0 for all t € [0,00). Then
(i) the analytic solution u(t) exists globally;
(ii) the collocation solution up(t) of the implicit Euler method with adaptive step-
size given by (2.8) exists globally.
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Proof. In view of Theorems 2.4 and 2.13, we only need to show that u,, < ugp(t,)
for all n > 0, where up(t) := inf{U : F(t,u) > Fupn(t) for u € [U,00)} is defined
in [4]. Suppose that up41 > up(thy1) and u, < up(tpyr) for ¢ = 0,1,...,L < n.
Consider the sequence defined by

Vg 1= ur, v = H(v, up,tner —tr) (1=0,1,2,...).

Then

tr tn41
v < O(tny1) +/ E(tne1 — s)G(s,up(s))ds +/ k(tni1 — 8)G(s,up(tyy1))ds
0

tr,

< UF(thrl)'

Assuming that v; < up(t,41) for some [ > 1, we find that

tr tn41
V141 < O(tni1) +/ E(tn+1 — s)G(s,up(s))ds +/ k(tni1 — 8)G(s,up(tny1))ds
0

tr,

< UF(tn+1).

Therefore v; is an increasing sequence which is bounded by wg(t,41). The limiting
value vy, of the sequence v; satisfies

tr

tnt
Voo = P(tnt1) + E(tni1 — 8)G(s,up(s))ds + / E(tns1 — 8)G(s,v00)ds,

0 tr,

which is the collocation solution at grid point ¢,y with stepsize t,41 — tr. This
contradicts the result of Lemma 2.15, and hence the proof is complete. a

3. Blow-up conditions for collocation solutions.

3.1. Blow-up behavior of the explicit Euler method.

LEMMA 3.1. Let ¢c; = 0 and k(z) = 2#~1, B > 0. Assume that conditions (P),
(G1), and (G2) hold and that the collocation solution up(t) with adaptive stepsize
such that (2.9) holds exists globally. If there is a t* such that (1.2) holds, then for
any given R > 1, there exists a sequence t,, such that up(t,,) € [a"1R', RY) for all

i > max{1, M}, lim; o0 tn, = 00, and t

Tor nip1 — tn; tends to zero as i — oo.
Proof. In fact, it follows from TheQrems 2.7, 2.9, and 2.18 that there exists a
sequence t,, such that uy(t,,) € [0 1 RY, R) and lim,,_yo0 tn, = 00. Then it follows

from conditions (P) and (G1) that

tnipy

Unip = (b(t’l’LH»l) +A h k(th»l - S)G(S, uh(s))ds +/ k(th»l - S)G(S, uh(s))ds

tn.

> G(07 uni)K(tni+1 - tni) > G(O, un'i)K(tn'i+1 - tni)’
which together with Condition (G2) implies that ¢
the proof is complete. O
LEMMA 3.2. Assume that c1 = 0 and conditions (P), (G1), and (G2) hold. If
(i) k(z) = 2P~ with 8 > 0,
(i) there exists a t* > 0 such that (1.2) and (1.3) hold,
then the collocation solution uy,(t) with adaptive stepsize given by (2.9) blows up in
finite time for any T € (0,1).

—t,, — 0 as i — oo. Hence

Mi41 7
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Proof. Suppose, otherwise, there exists a sequence t,, such that up(t,,) €
[ LptBHL P81 for r > v and t,,, tends to co as i — co. Therefore H; :=t,,, | —ty,
tends to zero as ¢ — oo and t,, > t* for sufficiently large ¢, which together with
conditions (P) and (G1) implies that w,,,, > G(t*, uy,)K(H;i). Thus

14 P(i+1)B+1

—H’ < ——,
Bt T G(tr,rP)
leading to
ip

Hi < (5)° ri—pitt A8 . r2t/p (ﬁ)l/ﬁ/r ( u )l/ﬂd_“'
(G, rp) /P L =r=t = (r=1)8 ri-vs \G(t*,u) u

As a result, (1.3) implies that for all ¢ > 0,

i—1

o0
tn, <0+ Y H; <y0+ Y Hj < 0.
§=0 7=0

This is a contradiction and the proof is complete. ad
THEOREM 3.3. Assume that ¢1 = 0 and conditions (P), (K), (G1), and (G2)
hold. If there exists a t* > 0 such that (1.2) and (1.3) hold, then
(i) the analytic solution u(t) blows up in finite time;
(ii) the collocation solution un(t) with adaptive stepsize such that (2.9) blows up
in finite time for any 7 € (0,1).

3.2. Blow-up behavior of the implicit Euler method.

LEMMA 3.4. Assume that ¢; = 1 and conditions (P), (G1l) and (G2) hold, and
that there exists a t* € (0,00) such that (1.2) holds. If

() k(z) = 51, B> 0,

(i) there exists a U > 0 such that

oo 1/8
U du
. -~ — = =0,
(3.1) /U (G(t,u)) L = forallt >0

then the collocation solution up(t) with adaptive stepsize given by (2.8) does not blow
up in finite time.

Proof. Suppose, otherwise, it follows from Theorem 2.4 that there exists a se-
quence t,, such that uy(t,,) € [~ 1r"# %] for some r > max{a, o}, where

o [easemmne, o<p<t,
"+ om))E, B

Hence, H; = t,,., — t,, — 0 as i — o0, and there exists an N > 0 such that
H; < min{l,t,,} for all i > N. We claim that for i > N,

(3.2) pE+1B-1 < <2,6’_|_ %) HiﬁG(Tb(T),T(iJrl)'B),
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Let 8 > 1. Then condition (G1) implies that for n > N,

tn,;

uh(tm-u) < ¢(tni+1) + k(tm-H - S)G(Sv uh(s))ds
0

2P
+/ " kltn,,, — 5)G(s, un(s))ds
t

i

< 0lt) + 27 [ bt = )Gl ()
#2777 G () ds 4 KUT)GT (7). unt10)

H;
< G(Ty(7)) + 2%un(tn,) + 2671Hiﬁ_1/ G(s,un(s))ds
0

+ K(Hi)G(Ty(7), un(tni11))
1

< gunltn) + (274 3 ) HEGE0) (b )

This yields (3.2).
If 0 < B < 1, then condition (G1) implies that for n > N,

tn;
wn(tms) < Oltnss) + / Kty — $)G(s, un(s))ds

tnity
" / " kltn,,, — $)G(s, un(s))ds
t

i

N

(tni) + /0 N k(tn, — 5)G(s,un(s))ds + K(H;)G(To(7), un(tn,+1))
(T (7)) + un(tn,) + K(H; ) G(To(7), un(tn,+1))

wn(ta,) + (2‘“ n %) HEG(Ty(7), un(tns1)).

<

o= S S

N

which also yields (3.2).

Therefore, one obtains that
Fitl
(G(Ty(r), rH1E))1/5

1 s [T 1
z -1 0¥ /+ (T (r), )77

where C(8) := 2°r + % Combining this with (3.1) we find

H; > (C(8)) V*

n
nhﬁn;o tn =tn, + llgrolo Z; H; = oco.
i

This is a contradiction and the proof is complete. a
THEOREM 3.5. Assume that ¢1 = 1 and conditions (P), (K), (G1), and (G2)
hold. If there exists a t* > 0 such that (1.2) and (1.3) hold, then
(i) the analytic solution u(t) blows up in finite time;
(i) the collocation solution uy(t) with adaptive stepsize such that (2.8) holds blows
up in finite time for any T € (0,1).
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THEOREM 3.6. Assume that ¢1 = 1 and conditions (P), (K), (G1), and (G2)
hold. If there exists a U > 0 such that (3.1) holds, then
(i) the analytic solution u(t) does not blow up in finite time;
(ii) the collocation solution up(t) with adaptive stepsize given by (2.8) does not
blow up in finite time for any 7 € (0,1).
Proof. Suppose that the collocation solution up(t) blows up at a finite time T3 (7).
Then the collocation solution @ (t) of

at) = o(t) + A / (t - 8P G(Th (7). a(s))ds,

also blows up in finite time, where A := sup_¢(o 1, (ry) k1(2) + Tp(7). This contradicts
the result in Lemma 3.4, and thus the proof is complete. d

3.3. Numerical blow-up implies exact blow-up. We now state our first
key result which links the blow-up behavior of the collocation solution with that of
the exact solution. In particular, we can use the blow-up behavior of the collocation
solution to establish finite-time blow-up for the given VIE.

THEOREM 3.7. Assume that

(i) conditions (P), (K), (G1), and (G2) hold,

(i) wun(t) is the collocation solution according to c; € [0, 1] and to adaptive stepsize
such that (2.8) holds for ¢; € (0,1] (or (2.9) holds for the explicit Euler
method).

Then the following two statements are equivalent:

(i) for all T € (0,1), the collocation solution up(t) blows up in finite time;

(ii) the exact solution u(t) blows up in finite time.

Proof. Using somewhat intricate notations and following the proofs of Lemma 3.2
and Lemma 3.4, one may obtain these results. Indeed, in view of Theorem 2.14, a
simple proof is given in the following.

Assume that the exact solution blows up in finite time and the collocation solution
up(t) does not blow up. Then it follows from Theorem 2.14 that the collocation
solution of the explicit Euler method on the same grid mesh I, does not blow up,
which is a contradiction to Theorem 3.3.

On the other hand, assume that the exact solution does not blow up in finite
time. Then it follows from Theorem 3.6 that the collocation solution of the implicit
FEuler method does not blow up, which implies by Theorem 2.14 that the collocation
solution uy, () also exists on the same mesh. O

4. Blow-up times. In this section we assume that the exact solution blows up
at a finite time T, < T and the collocation solutions also blow up at a finite time
Ty(I,) < T. In actual applications, when the exact blow-up time 7} is unknown, we
work with a threshold blow-up time T := inf{t € [0,T) : u(t) > M} associated with
a given threshold M > 1.

DEFINITION 4.1. For a given threshold M > 1,

TbM(Ih) = inf{t, € I, s up, > M}

is called the numerical threshold blow-up time.

In the following we denote by I, the adaptive chosen mesh underlying the collo-
cation solution corresponding to the collocation parameter c;.

Remark 4.2. Assume that T,(I))) and T,(I}) are the blow-up times of the explicit
Euler method and the implicit Euler method, respectively. Then it follows from
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Theorems 2.12 and 2.13 that
(4.1) Ty(I}) < Ty, < Ty(ID).

Similarly, it follows from Theorem 2.14 that the numerical threshold blow-up time
TM(I;*) is decreasing with respect to ¢; in the sense that

TbM(I}?) < TbM(I;?)

provided 0 < & < ¢; < 1 and I;* C I,

For convenience, the numerical blow-up time is denoted by T3 (7) when the adap-
tive stepsize is such that h,, = h} given by (2.8) or (2.9). Similarly, we can obtain
the numerical threshold blow-up time T (7).

DEFINITION 4.3. The numerical blow-up time Ty(T) is said to converge to the
exact blow-up time Ty, if

lim Tb(T) = Tb.
T—0

Based on the local convergence of the collocation solution for (1.1), we first derive
upper and lower bounds of the numerical threshold blow-up time T} (7). In order to
do so we shall need the following result from [3].

LEMMA 4.4. Let B > 0, ¢(t) and G(t,u) be C*-smooth functions, and k(z) =
2Pk (2) € C1((0,00)). Then the collocation solutions uy(t) converge to the exact
solution u(t) with at least order 1, that is, there exist constants C(M) > 0 and 7*(M)
such that

lup(tn) — u(tn)| < C(M)T for 7 < 7" (M)

whenever |up(t,)| and |u(t,)| are bounded by M.
THEOREM 4.5. Assume that the conditions in Lemma 4.4 hold. Then for any
giwen M > 0,

“(aM
TM=L <TM (1) < TEM for all 0 < 7 < min {T;M — M %} ,
o

where « is defined by (2.3).
Proof. Suppose that TM (1) > TeM for some 7 < min{TgM — 7M1 E((zﬁ))}.
Then one obtains that

aM for t € [TMH 1M,
M for t,, € I N [TM T, 1M,

|u(t)
un(tn)
On the other hand, Lemma 4.4 states that

| <
| <

1< Jup(ty) —ulty,)| < ClaM)r < 1 for t, € I, N [TMTE, M.

This is a contradiction. In a similar way, it can be shown that T, ~* < T (7) and
the proof is complete. O
LEMMA 4.6. Assume that the conditions (P), (K), and (G1) hold. Then

1/8
Blu(T <r>>7u<T<M7r>>|) for B> 1,

TM(7) — T(M,7)| < %.G(0,6(0))
T =TALTS | et () wir oo Be(01
k*TbB_lG(O,gb(O)) for B € ( , ]7

where T(M, 1) := inf{t : u(t) > up,(TM (7))}
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Proof. Without loss of generality, assume that T'(M, 1) < TM (7). Then
w(TM (1)) = ¢(T(M, 1)) —|—/ k(s)G(T(M, 1) — s,u(T(M,T) — s))ds
0

T, (1)
+ / E(s)G(TM (1) — s,u(TM (1) — 5))ds

T(M,T)
T ()
> u(T(M, 7)) + k.G(0, ¢(0))/ sP~1ds.
T(M,T)

Hence the proof is complete. d
LEMMA 4.7. Let ¢y € [0,1] and 7 € (0,1). Assume that the conditions (P), (K),
(G1), and (1.3) hold. Then for any given € > 0 there exists an My > 0 such that

|Ty, — TM| < e for all M > My,
|Ty(7) — TM ()| < € for all M > My and 7 > 0.

Proof. Similarly to the proof of Lemma 3.2, we can show that for sufficiently large

M,
w4 B\YP u du
T =T 'gé(k_) /M (G(t u>> W

92+1/8 1//3 %
min -0l < - (1) [ (Ges) o

B
The desired results are now verified by recalling (1.3). a

Using the local convergence of the collocation solutions and the upper bound of
the numerical threshold blow-up time, we are ready to show the convergence of the
numerical blow-up time.

THEOREM 4.8. Under the conditions in Lemmas 4.4 and 4.7, numerical blow-up
times converge to the exact one.

Proof. For any given ¢ > 0, let My = My(e) be as in Lemma 4.7 and 7 <

ZLMot D) Then Theorem 4.5 yields

Mo (1), T(My, 7) < TPt
which together with the result of Lemma 4.4 implies that
(T (Mo, 7)) — ul(T (7))] = [un (T (7)) — u(T(7))] < ClaMo + 1)r.
Thus it follows from Lemma 4.6 that there exists a 19(e, Mp) > 0 such that
|T(Mo,7) — T (1)] < e for 0 <7< 70.
Hence, by Lemma 4.7,
|Ty(7) — Tp| < 3e for 0 < 7 < 79,

and the proof is complete. O

5. Different numerical approaches. In some application models such as ther-
mal ignition in a diffusive medium, G(s,u) is dependent on s (see [16]). Hence, it is
computationally more convenient to apply the implicitly linear collocation methods or
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the fully discretized collocation methods to Hammerstein-type VIEs (1.1) (see detailed
discussion in [3]).

5.1. Implicitly linear collocation methods. In (1.1), let z(¢) := G(¢, u(?)).
Then

(5.1) z2(t) =G (t,¢(t) —l—/o k(t — s)z(s)ds) ,
(5.2) u(t) = o(t) + / k(t — s)2(s)ds.
0

The collocation solution zp,(t) € Sy (I1) of (5.1) is defined by

(5.3) zn(t) =G (t, o(t) —l—/o k(t — s)zh(s)ds> b€ Xy,

and the corresponding implicitly linear collocation solution ulZ(t) of (1.1) is given by

(5.4) ull(t) = o(t) + /t k(t — s)zp(s)ds,t € I.
0

Remark 5.1. Since, in general, z,(t) is a piecewise polynomial, the exact inte-
grals in (5.3) comparing with (2.1) are available even for a general nonlinear function
G(s,u). Moreover, in Examples 5.2, 5.3, and Example 6.3, z;,(t) is piecewise constant,
so the integrals in (5.3) are only concerned with the kernel.

Ezample 5.2. For implicitly linear collocation methods with ¢1 € (0,1], z,(¢t) =
Znt1 for t € (tn, tn41] satisfies the implicit nonlinear algebraical equation

1 =G (tn + c1hn, (b(tn + Clhn) + F,I’L(tn + Clhn) + K(Clhn)zn+1) R
and ulL(t) for t € (t,, tn41] is defined by
up’ (8) = $(t) + T (t) + K(t = tn)zni1,

where

n—1

Th(t) =Y (K(t—t) — K(t — tis1))zis1.
1=0

Ezxample 5.3. The implicitly linear collocation method with ¢; = 0 reads
Zn41 = G (thrla ¢(tn+1) + FE (thrl) + K(hn)zn) »
up”(t) = ¢(t) + T () + K (t — tn)2n,
where, in analogy to section 2.1.2,

n—1

TH(t) =Y (K(t—t;) — K(t—ti1))z.

=0

5.2. Fully discretized collocation methods. In the collocation equation (2.1),
the integrals cannot, in general, be found exactly but have to be approximated by
some numerical quadrature formulas. The fully discretized version of (2.1) has the
form

n(tn+c1hn) = O(tn+cihn)+Dn (bn4c1hn) + 1 hnk(hn )Gty + 1, G (tn+c1ha)),
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and its iteration collocation solution is

W (b 4 vhy) = Gtn + vhn) + Do (tn + vhy)
+ vhpk(verhy)G(ty + c1hn, Up(tn + c1hy)), v € [0, 1],

where I',,(t) is the approximation history term

n

Doty 4+ vhn) = Y hiki(tn + vhy — t; — c1hi)G(t; + crhi, n(ti + c1hs)).
=0

Remark 5.4. The integrals of the kernel and G(s,u) are replaced by a numerical
quadrature formula and the fully discretized collocation solution 4y, (t) also belongs
to Sy ' (I1,), but in general, 4y, (t) # up(t) even when the nonlinear function G(s,u) is
independent of s.

Remark 5.5. In applications, if the integrals of the kernel can be found analyti-
cally, then the fully discretized collocation methods can be alternated by

Gn(t) = o) + Tp(t) + K(t — tn)G(t, an(t)), t € X,
and its iteration collocation solution is
() = ¢(t) + Dp(t) + K(t — t)G(tn + c1hn, (), t € 1,

where I',, (t) is the approximation history term

n

f‘n(t) = Z(K(f — ti) — K(t — ti+1))G(ti + Clhi, fbh(ti + Clhi)).
1=0

In this case, the iterated collocation solution @i (t) is just same as the implicitly linear
collocation solutions u!Z(t) (see [3]).

Similarly to the discussions in sections 2.1.1, 2.2, and 2.3, one may obtain the
following results.

THEOREM 5.6. Assume that ¢; € (0,1] and the adaptive stepsize is defined
similarly to (2.5). Then there exists a unique solution of both the implicitly linear
collocation method and the fully discretized collocation method.

THEOREM 5.7. Let 7 € (0,1], ¢1 € [0,1], and conditions (P), (K), and (G1) hold.
Then iy (t) and ull(t) are nondecreasing.

Remark 5.8. With the adaptive stepsize similar to (2.8) for the case of ¢1 € (0, 1],
the results in Theorems 2.12, 2.13, and 2.14 are also true for 4y (¢) and ulZ(t).

Remark 5.9. Different from the collocation solution wup,(t) with exact integrals,
the dynamical behavior of 4y, (t) will be influenced by

F(tn + clhn,u) = Z hlk(tn + ’Uhn - ti - Clhi)G(ti + clhi,u)
i=0
+ clhnk(c%hn)G(tn + c1hp,u) — u,

(recall (1.4)), while the dynamical behavior of uf%(t) is determined by

IL u) = t — S S.Uu S—Uu
FIL(t, ) /Ow )G (5, u)ds — u,
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where G (t,u) = G(t; + c1hs,u) for t € [t;,ti41]. Therefore, the results in Theorems
2.18 and 2.19 are true for iy, (t) (or u'(t)), if we replace F' by F' (or FE).

Since F(t,u), F'V(t,u), and F(t,u) may be different, for example FTX(t,u) >
F(t,u) when ¢; = 1, the blow-up behaviors of 4y (t), ulE(t), and uy(t) may also
differ. But, in any case, under the condition lim;_, ¢(t) = 0o, the blow-up behaviors
of u(t), un(t), tn(t), and ull(t) are same.

6. Numerical experiments. We now present some numerical experiments to
illustrate the blow-up behavior of collocation solutions.
Example 6.1. As a special case, consider first an ODE of order § > 1,

ul? () = u(t)?,

6.1 ;
(6.1) u®(0) =u; > 0,i=0,1,....8 - 1.

This initial-value problem is equivalent to the VIE
t
u(t) = ¢(t) —|—/ k(t — s)u(s)Pds,
0

where ¢(t) = Z?:_ol Lu;t" and k(z) = ﬁzﬁfl. In Table 6.1, the errors, [T (1) —
T(M,T)|, are listed for 8 = 1,p = 1.5,1.8,2.0,2.5,3.0, and ¢; = 0,0.5,1. In Table
6.2, ug = 1,u; = Tﬁ,ﬁ =2,p = 2.0, and ¢; = 0,0.5,1, and the numerical threshold
blow-up times for M = 1E8 are listed (the exact threshold blow-up time is 2.4495; cf.
[10]). The numerical results suggest that for (6.1) with 8 = 1, the numerical threshold

TABLE 6.1
The errors between TM (1) and T(M,7) of (6.1) when 8= 1.

7=0.1 7 =0.05

M =1FE5 M =1FE6 M =1E8 M =1FE5 M =1FE6 M =1E8

0 1.4834FE —1 1.4866FE —1 1.4879FE — 1 | 7.4459F —2 T7.4622F —2 T7.4688FE — 2
1.5 0.5 | 3.4813FE —4 3.8692FE —4 4.0305FE —4 | 7.1087TE —5 9.0524FE —5 9.8517FE —5
1.0 | 5.4008E — 2 5.4126E —2 5.4174F —2 | 2.6712FE —2 2.6770FE —2 2.6794F — 2
0 1.1213E —1 1.1214E—1 1.1214E —1 | 5.61563E —2 5.6158E —2 5.6159F — 2
1.8 | 0.5 | 2.2535F —4 2.2656FE —4 2.2678FE —4 | 5.4667TFE —5 5.5271E —5 5.5383FE —5
1.0 | 3.3118E — 2 3.3120E —2 3.3121E —2 | 1.6350F — 2 1.6352F —2 1.6352FE — 2
0 | 99999F —2 1.0000FE —1 1.0000FE —1 | 5.0000FE —2 5.0000E —2 5.0000FE — 2
2.0 105 | 1.6424F —4 1.6436E —4 1.6437TE —4 | 3.9994F —5 4.0051E —5 4.0058E — 5
1.0 | 2.5658FE —2 2.5658FE —2 2.5658F — 2 | 1.2660F — 2 1.2660F —2 1.2660F — 2
0 | 83995F —2 8.3995F —2 8.3995FE —2 | 4.1836F —2 4.1836F —2 4.1836F — 2
2.5 105 | 80149F —5 8.0149F —5 8.0149F —5 | 1.9502FE —5 1.9502E —5 1.9502FE — 5
1.0 | 1.5119E — 2 1.5119E — 2 1.5119FE — 2 | 7.4602F — 3 7.4602F —3 7.4602FE — 3
0 | 76190E —2 7.6190FE —2 7.6190FE —2 | 3.7805F —2 3.7805FE —2 3.7805FE — 2
3.0 05| 4.1091EFE -5 4.1091E—5 4.1091F —5 | 1.0014FE —5 1.0014FE —5 1.0014FE —5
1.0 | 9.5995FE —3 9.5995FE —3 9.5995F — 3 | 4.7424F — 3 4.7424F — 3 4.7424F — 3

TABLE 6.2
The numerical threshold blow-up time of (6.1) when M = 1E8 and = 2.

c1=0 ¢1=05 c1=1
2.6481 2.4492 2.4055
2.5652 2.4493 2.4186
2.4801 2.4494 2.4369

= gl

o
[=}
[=}

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 01/22/14 to 130.159.104.144. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal /ojsa.php

BLOW-UP BEHAVIOR OF COLLOCATION SOLUTIONS 2279

“The collocation solution

0.1018]
aaaaa

01016
0.1014]
aaaaa

0.1012)
- 1 e 7 d o
= o101
0.1008]
0.1008]
0.1004]

0.1002]

o

o 2 4 6 8 10

(a) ¢(t) =0.1and 1 =0 (b) ¢(t) =0.1 and ¢ = 0.5 () p(t)=0.1and c1 =1

(d) p(t) =1, c1 =0, (e) p(t) =1, c1 = 0.5, ) () =1, c1 =1,
TM(r) =0.1667 TM(r) =0.1655 TM(r) =0.1650

F1G. 6.1. The collocation solutions of (6.2) when 7 =0.1 and M = 1FE10.

blow-up times not only converge to T'(M, 7), but also converge with the local order of
the collocation methods. The numerical threshold blow-up times of (6.1) with 8 = 2
also converge to the exact one, but the convergence order is not the same as the order
of the corresponding methods. This also happens for wave equations (see [§]). In
any case, the upper bound of TM(7) given by Theorem 4.5 also encourages us to
investigate the convergence order of T (1) by the local convergence and convergence
order of a numerical method.
Example 6.2. Consider a VIE with smooth memory kernel,

(6.2) u(t) = o(t) + /0 (t —s) exp(—(t — 5))u(s)(log(1 + u(s)))"ds,

where ¢(t) > 0. In Figure 6.1, we exhibit the collocation solutions with p = 2.5,
c1 = 0,0.5,1, and 7 = 0.1. It follows from Figure 6.1 that the collocation solutions
blow up in finite time for ¢(¢) = 1 but do not blow up in finite time for ¢(¢t) = 0.1. It
detects from Theorem 3.7 that the exact solutions blow up in finite time for ¢(t) =1
and do not blow up in finite time for ¢(¢) = 0.1. On the other hand, since

t
I(t) = / zexp(—2)dz=1—(1+t)e " = 1ast— oo,
0

the exact solution in the case of p = 2.5 blows up in finite time if and only if
@(t*) + Finin > 0 for some t* > 0,

where Fnin = miny,e[o,o0) (u(log(1 + u))*5 — u) ~ —0.60399.
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TABLE 6.3
The numerical threshold times TM (1) of (6.3) when M = 1E5 and 7 = 0.1.

¥ 1.1 1.2 1.3 1.4 1.5
p
1.1 1.1635 1.1408 1.1203 1.1016 1.0844
1.2 | 0.55051 0.53143 0.51446 0.49922  0.48544
1.3 | 0.32108 0.30472 0.29041 0.27776  0.26648
1.4 | 0.21159 0.19736  0.18511 0.17446  0.16509
1.5 | 0.15028 0.13776 0.12716 0.11808 0.11021

Blow-up Time with variable p Blow-up Time with variable p
10° S Theta=0 |1 N Theta=0
RV PEERE Theta=0.5 100 b o +=-= Theta=1
N, |- Theta=1 o) Blow-up Time in [5]]
- == Upper bound )
— — — Lower bound N\
\"\, 1072k
g g
[ [
S ok E\'L 04
I ~ L 10
=3 Se o
o ~ o~ 03]
<
-
el 107°°
10* B L :
1001 1002 1003 10005 10008 10011 10014 10017
p
(a) the numerical threshold (b) the numerical threshold
blow-up times and the blow-up times and the
upper and lower bounds simulating blow-up time in [5]

F1G. 6.2. Numerical threshold blow-up times of (6.3) with M = 1E8 and 7 = 0.1.

Ezample 6.3. The shear band model arising in the formation of steel (cf. [16]) is
described by the nonlinear VIE

(6.3) u(t) =1+ 7/0 %\/j_“:(s)ds,

where v > 0,q > 0, and p > 1 are constants.
For the special case of ¢ = 0, it follows from [16] that the exact solution blows up
at a finite time T} satisfying

(6.4) T, € [(1 —p )Y ! ] .

492 (p—1)27 42 (p — 1)2

In Table 6.3, we list the numerical threshold blow-up time with variable p and v when
M =1FE5, 7 = 0.1. In Figure 6.2, we plot the numerical threshold blow-up times with
M = 1E8 and 7 = 0.1, the simulated blow-up time in [5], and the upper and lower
bounds with fixed v = 1.1 and various p. Figure 6.2(a) shows that the numerical
threshold blow-up times also satisfy (6.4). The numerical threshold blow-up times
of collocation methods with adaptive stepsize are more precise than the simulating
blow-up time in [5] (see Figure 6.2(b)), since the exact blow-up time must be larger
than the threshold blow-up times of the implicit Euler method.

Consider the case of ¢ = 1, i.e., the nonlinear function G(s,u) = (1 + s)uP
depends on s. In addition to the collocation method, we also employ the implicitly
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(a) e1 = 0.5 and TM (1) = 0.1513  (b) c1 = 1 and TM () = 0.1487

F1G. 6.3. The collocation solutions of (6.3) with q=1,p=2,v=1, and M = 1E6.

(a) 1 = 0.5 and THM () = 0.1513  (b) c1 = 1 and TM (1) = 0.1498

Fic. 6.4. The implicitly linear collocation solutions of (6.3) with ¢ = 1,p = 2,y = 1, and

M = 1E6.

linear collocation method. We draw both uy,(t) and ull () with p =2,y =1, 7 = 0.1,
and ¢; = 0.5,1 in Figures 6.3 and 6.4, respectively. These figures corresponding to
M = 1E6 show that the solutions uy(t) and u}”(¢) blow up in finite time, which is in
agreement with the exact solution.
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