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Self-organization, Pattern Formation, Cavity Solitons and Rogue Waves

in Singly Resonant Optical Parametric Oscillators

Gian-Luca Oppo,∗ Alison M. Yao, and Domenico Cuozzo
ICS, SUPA and Department of Physics, University of Strathclyde, Glasgow G4 0NG, Scotland, U.K.

Spatio-temporal dynamics of singly resonant optical parametric oscillators with external seeding
displays hexagonal, roll and honeycomb patterns, optical turbulence, rogue waves and cavity solitons.
We derive appropriate mean-field equations with a sinc2 nonlinearity and demonstrate that off-
resonance seeding is necessary and responsible for the formation of complex spatial structures via self-
organization. We compare this model with those derived close to the threshold of signal generation
and find that back-conversion of signal and idler photons is responsible for multiple regions of
spatio-temporal self-organization when increasing the power of the pump field.

PACS numbers: 42.50.Lc, 42.50.Dv, 42.65.Yj

Keywords: pattern formation, cavity soliton, optical parametric oscillator, turbulence, rogue waves

1. INTRODUCTION.

Transverse pattern formation, autosolitons and cavity
solitons have been the subject of intense research in non-
linear optics in the last two decades since their original
predictions [1–5]. Unlike in other fields of science, trans-
verse patterns and dissipative solitons find useful appli-
cations in photonics such as optical memories, delay lines
and optical registers [6]. Cavity solitons counterparts in
the propagation direction have also been shown to gen-
erate passive mode-locking in fiber lasers [7].

Formation of transverse spatial structures in quadratic
nonlinear cavities was predicted first in optical paramet-
ric oscillators (OPOs) [8, 9] and later extended to second
harmonic generation [10, 11]. Early predictions in OPOs
were confined to the degenerate case where signal and
idler fields have the same frequency. Experimental ev-
idence of pattern formation was indeed found in triply
resonant degenerate OPOs close to the confocal cav-
ity configuration [12] and via conical emissions [13, 14].
Confirmation of the predictions of [8] was provided in a
broad-aperture degenerate OPOs in a plane-mirror mini-
cavity [15]. Degenerate OPOs also display phase do-
main dynamics and dark-ring cavity solitons [17]. Fi-
nally, OPO models for non-degenerate Type-II cases in
doubly or triply resonant cavity configurations have also
been shown to display self-organization and pattern for-
mation [16, 18–21].

Transverse instabilities in the case of non-degenerate,
singly resonant OPOs (SROPOs), where the signal field
is the only resonated field in an optical cavity, have been
less discussed in the literature. On the theoretical side
pattern formation in SROPOs is expected to replicate
results of the complex Ginzburg-Landau laser case [18].
On the experimental side cw SROPO configurations are
notoriously difficult to operate because of high oscillation
thresholds (typically several watts) in common birefrin-
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gent crystals [22]. Quasi-phase matching in periodically
poled materials has, however, considerably reduced op-
eration thresholds of cw SROPOs [23] allowing for diode
[24] and fiber [25] laser pumping for spectroscopy appli-
cations. A major advantage of cw SROPOs is that their
wide tunability is monotonic and not affected by mode
jumps typical of doubly or triply resonant configurations.

In this paper we investigate the formation and dynam-
ics of transverse structures in SROPOs. We first derive
a mean-field model in section 2 where the nonlinearity is
of sinc2 form in agreement with early studies of SROPO
steady states emissions [26–28]. The analysis builds on
approaches that describe and integrate the propagation
equations inside the OPO crystal [29, 30] by considering
transverse effects and by carefully separating the mean-
field and close-to-threshold approximations. The final
model equations are capable of describing transverse pat-
tern formation in the presence of pump depletion, signal-
idler recombination and external seeding close to the sig-
nal frequency. External seeding proves to be of funda-
mental importance for transverse structures in SROPOs
since, in its absence, changes of the cavity length are com-
pensated by changes in the signal (and idler) frequency
thus nullifying the common mechanism of Turing pattern
formation in off-resonant optical systems [1, 31].

In section 3 plane-wave steady states and their sta-
bility are analyzed in the SROPO models with external
seeding, close to and far from threshold. These studies
confirm that no pattern formation should be expected
without a detuned external seed. Analytical expressions
for the location in the parameter space of the loss of sta-
bility of homogeneous solutions to spatially modulated
structures are then provided in section 4. The thresh-
olds for pattern formation when changing the seeding
intensity are then compared with those obtained from
numerical integration of the SROPO dynamical equa-
tions with excellent agreement. Section 5 investigates
when spatially periodic spatial structures break down to
either optical turbulence for small seeding intensities or
to cavity solitons for large pump and seeding intensities.
Optical turbulence is demonstrated to be the mechanism
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Figure 1: (Color online) Schematic diagram of a SROPO cav-
ity of length L with a single partially reflecting mirror R and
containing a parametric down-conversion crystal of length L.

which generates rogue waves in the spatio-temporal evo-
lution of the output fields. Finally, bright and dark cav-
ity solitons are found in multistable configurations with
localized hexagonal and honeycomb patterns.

2. MEAN-FIELD MODELS.

We consider parametric down conversion in a χ(2) crys-
tal of length L at perfect phase matching, a condition
that can also describe the average effect of quasi-phase
matching in periodically poled crystals. In this case the
propagation of the pump, signal and idler fields in the
crystal along the z direction are described by [32]:

∂zE0 +
n0

c
∂tE0 =

i

2k0
∇2E0 − αE1E2

∂zE1 +
n1

c
∂tE1 =

i

2k1
∇2E1 + µαE0E

∗

2 (1)

∂zE2 +
n2

c
∂tE2 =

i

2k2
∇2E2 + ναE0E

∗

1 .

where Ej with j = 0, 1, 2 are the slowly varying am-
plitudes of pump, signal and idler fields, respectively,
with wave-numbers kj = njΩj/c and ∇2 is the trans-
verse Laplacian operator along the x and y directions
perpendicular to the propagation axis z. The frequency
constraint Ω0 = Ω1 + Ω2 is rewritten as µ + ν = 1 where
Ω1 = µΩ0, Ω2 = νΩ0 and the effective coupling parame-
ter α is given by

α =
4πΩ0χ

(2)

nc
(2)

where χ(2) is the second order susceptibility of the crys-
tal, n = n0 = n1 = n2 is the common refractive index of
the three waves that guarantees phase matching and c is
the speed of light in vacuum.

We assume that the parametric down conversion crys-
tal is contained in an optical cavity of length L where the

signal field is the only one to be resonated (see Figure 1).
The steps involved in taking the mean-field approxima-
tion are the same as those reported in [21] although in
the SROPO case there is only one resonated field. The
final equation for the normalized signal field reads as:

τ ∂t′E1 + L ∂zE1 = −γE1 − iδE1 + ia∇2E1

+ µαLE0E
∗

2 +
√

2γEIN . (3)

where we have introduced

t′ = t −
(L − L

c

)

z

L
(4)

and the parameters

τ =
L + (n − 1)L

c
; γ =

1 − R

2
; (5)

δ =
ωc − Ω1

c
L; a =

L
2k1

. (6)

Here, R is the output mirror reflectivity, ωc is the fre-
quency of the longitudinal cavity mode closest to the sig-
nal frequency Ω1 and EIN is a complex input field of
frequency ωIN close to Ω1, normally known as the seed-
ing.

The usual mean-field limit procedure requires high re-
flectivity R and involves an expansion in longitudinal
Fourier modes and the requirement that all terms, in-
cluding the nonlinear one, are independent of the lon-
gitudinal variable z. The z−variation per pass of the
resonated signal field, E1, can be neglected when it is
affected by the average of the propagation of the pump
and idler waves along the crystal [30], i.e.

E1 =
1

L

ˆ L

0

E0(z)E∗

2 (z)dz . (7)

To obtain an explicit dependence of pump and idler fields
along the direction of propagation we consider the first
and third equations of the system (1) and neglect diffrac-
tion in the crystal:

dzE0(z) = −αE1E2(z) (8)

dzE2(z) = ναE0(z)E∗

1 (9)

where the signal amplitude E1 is now independent of z.
By taking the second derivative of (8) and using (9), one
obtains

d2
zE0(z) = −(να2I1)E0(z) (10)

which shows that the pump field oscillates along the prop-
agation direction with a frequency that depends on the
signal intensity I1. Integrating this equation we find

E0(z) = A0 cos
(

α
√

νI1z
)

, (11)

where A0 is the amplitude of the pump field at the en-
trance of the crystal [30]. From (8),

E2(z) = − 1

αE1
dzE0 = A0E

∗

1

√

ν

I1
sin

(

α
√

νI1z
)

(12)
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in agreement again with [30].
We can now calculate the spatial average (7):

1

L

ˆ L

0

E0(z)E∗

2 (z)dz = |A0|2
E1

2αLI1
sin2

(

αL
√

νI1

)

(13)
and insert it into (3):

τ ∂t′E1 + L ∂zE1 = −γE1 − iδE1 + ia∇2E1 (14)

+ µ|A0|2
E1

2I1
sin2

(

αL
√

νI1

)

+
√

2γEIN .

By expanding in longitudinal Fourier modes and retain-
ing only the longitudinal mode closest to Ω1, correspond-
ing to ∂z′E1 = 0, we finally obtain:

∂t′E1 = κ[−(1 + iθ)E1 + iâ∇2E1

+ µ|A0|2
E1

2γI1
sin2

(

αL
√

νI1

)

+ ÊIN ] (15)

where

κ =
γ

τ
=

γc

L + (n − 1)L
; â =

a

γ
=

L
2k1γ

;

θ =
δ

γ
=

(ωc − Ω1)L
cγ

; ÊIN =

√

2

γ
EIN . (16)

Finally, we renormalize the transverse space variables x
and y by dividing them by

√
â, the time variable by mul-

tiplying it by κ and the field amplitudes according to

E = αL
√

ν E1 ; |E0|2 = |A0|2
µνα2L2

2γ

EIN = αL
√

ν ÊIN (17)

to obtain

∂τE = ∂κt′E = EIN − (1 + iθ)E (18)

+ |E0|2
E

I
sin2

(√
I
)

+ i∇2E .

The analysis of Eq. (18) is the main focus of the research
presented here. It will be referred to as the sinc

2
model

since sin2(
√

I)/I = sinc2(
√

I).
We note that in SROPO configurations the frequency

of the signal field, Ω1, is tuneable by corresponding
changes of the idler frequency, Ω2, while maintaining the
energy conservation condition Ω0 = Ω1+Ω2. This means
that with no external seeding (EIN = 0) the detuning θ
is also zero since the SROPO tunes its signal frequency to
the closest longitudinal cavity mode ωc. With an exter-
nal seeding different from zero and detuned with respect
to the cavity, it is advantageous to consider the external
frequency ωIN as reference and introduce

θ =
(ωIN − Ω1)L

cγ
. (19)

Under these conditions EIN should be considered to be
real and equation (18) remains unchanged.

It is interesting to investigate the behavior of the pump
and idler fields inside the OPO crystal as provided by
Eqs. (11) and (12). Figure 2 shows the pump and idler
intensities during propagation for three sample values of
|E0|2, namely 1.2, 2.0 and 8.0. While at |E0|2 = 1.2
(black lines) the changes of pump and idler per pass
are limited, for |E0|2 = 2.0 (red lines) and |E0|2 = 8.0
(blue lines) they are substantial. In particular, full pump
depletion and substantial back-conversion of signal and
idler fields into the pump are clearly visible in Figure 2
for |E0|2 = 8.0. In the SROPO case these phenomena are
not incompatible with the mean field approximation and
are at the base of the sinc2 nonlinearity of model (18).
The mean field approximation implies that the signal in-
tensity remains almost constant with respect to its input
value during propagation in the χ(2) medium with large
changes taking place over several cavity round-trips. No
such constrains apply to pump and idler fields as shown
in Fig. 2.
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Figure 2: (Color online) Pump intensity (solid lines) and idler
intensity (dashed lines) in the SROPO crystal for |E0|

2 = 1.2
(black lines), |E0|

2 = 2.0 (red lines) and |E0|
2 = 8.0 (blue

lines). The intensities are normalized to the input pump val-
ues |E0|

2. The propagation distance is normalized to the crys-
tal length.

Note that the cos2 and sin2 nature of the pump and
idler intensities, respectively, guarantees conservation of
the energy density in every point along the SROPO crys-
tal. Energy conservation in turn guarantees the validity
of the Manley-Rowe relations about the variations of the
energy densities Ni per field along the crystal:

dN0

dz
= −dN1

dz
− dN2

dz
(20)

since dN1/dz = 0. These facts are a-posteriori confirma-
tions that the physical processes described in Eqs. (1) are
compatible with the application of the mean-field limit
to the signal field even for large values of the pump and
seeding intensities.
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2.1. The close-to-threshold approximation.

Close to the signal generation threshold it is possible
to obtain partial differential equations in the mean-field
limit where the nonlinear terms are in a polynomial form
and thus easier to analyze. The scaling of the mean field
limit requires that the nonlinear coefficient per pass, αL,
has to be of the order of the mirror transmittivity, 1−R.
This implies that the argument of the sin2 term in equa-
tion (13) may become large for large signal intensities
without breaking the mean-field conditions. Close to
threshold, however, the signal intensity satisfies I1 < 1
and the sin2 term can be approximated by a power expan-
sion. In this case pump and idler display small changes
per pass across the crystal meaning that pump depletion
and back-conversion do not take place in a single pass.
Equations (11) and (12), however, tell us that while the
pump can be approximated to first order to a constant
value A0, the idler has to grow along z from its initial
value. This is in agreement with previous analysis below
threshold where the important noise term is associated
with the idler fluctuations at the entrance of the crystal
[33]. In the case of SROPOs close to threshold, we can
approximate E0 and E2 in (11) and (12) with

E0(z) ≈ A0

(

1 − νI1α
2z2

2

)

(21)

E2(z) ≈ A0E
∗

1

(

ναz − ν2I1α
3z3

6

)

. (22)

By using these expressions to evaluate the average (7)
one obtains:

1

L

ˆ L

0

E0(z
′)E∗

2 (z′)dz′

≈ ναL|A0|2E1

2

(

1 − να2L2I1

3

)

. (23)

By repeating the same steps of the mean-field limit as
described in the previous subsection we obtain:

∂τE = EIN −(1+ iθ)E + |E0|2
(

E − EI

3

)

+ i∇2E (24)

which describes the spatio-temporal behaviour of the
SROPO close to threshold in the presence of an external
seeding EIN and will be referred to as the cubic model.

3. PLANE WAVE STEADY-STATES

As mentioned in section 2, when there is no external
seeding, EIN = 0, the detuning is zero since the SROPO
automatically adjusts its frequency to the closest cavity
resonance. The plane wave steady-state intensities, Is,
are implicit for the sinc2 model (see [26–28]) and explicit
for the cubic model:

Is = |E0|2 sin2
(

√

Is

)

(25)

Is = 3(|E0|2 − 1)/|E0|2
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Figure 3: Intensity of the SROPO steady-state for the sinc2

model (solid line) and the cubic approximation (dashed line)
with increasing pump intensities for EIN = 0 and θ = 0. All
variables are dimensionless.

The steady-state signal intensity of the SROPO as a func-
tion of the pump intensity, |E0|2, is shown in Figure 3
for the sinc2 model (solid line) and the cubic approxi-
mation (dashed line). These are trivially complemented
by the zero-intensity state that is stable below threshold,
|E0|2 < 1, and unstable above. In the cubic case the
stationary intensity above threshold asymptotes to the
value 3 for large pump intensities and is always stable.
The steady-state curve for the sinc2 model, on the other
hand, becomes multivalued at large values of the input
pump intensity (|E0|2 > 20, not shown here) [27, 28].
Here, however, we are interested in values of the pump
intensity below 10, as these are more realistic with re-
spect to present state-of-the-art of broad area SROPO
realisations. In this regime it is possible to prove that,
above threshold, the non-zero steady-state intensities in
the sinc2 model are also stable [28]. Note that when com-
paring the sinc2 and the cubic models, there is a substan-
tial difference between their steady-state intensities even
below |E0|2 = 2. At twice above threshold this difference
becomes considerable and the close to threshold (cubic)
model has to be discarded.

Analogously to lasers, the field phase is decoupled from
the steady-state equations and is affected by fluctua-
tions and drift processes. When there is external seeding,
EIN > 0, the phase of the SROPO locks to that of the
external beam, depending on the magnitude of the de-
tuning θ and the input intensity. Such behavior strongly
differs from that of EIN = 0. In the case of EIN 6= 0 the
steady-state intensities are given by

E2
IN = Is

[

(

1 − |E0|2f(Is)
)2

+ θ2
]

(26)
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where

f(Is) = sinc2(
√

Is) (27)

f(Is) = 1 − Is/3 (28)

for the sinc2 and cubic models, respectively. The steady-
state curves of the SROPO intensity versus the input
intensity become S-shaped, a behavior typical of injected
optical systems, as shown in section 4.

For the cubic model without diffraction it is possible to
obtain analytical results. For example, for |θ| < (|E0|2 −
1)/

√
3 the plane-wave steady-state curves are S-shaped,

and the positions of the turning points [(E2
IN )−, I−s ] and

[(E2
IN )+, I+

s ] can be determined by finding the maxima
and minima of (26):

I±s =
2(|E0|2 − 1) ±

(

(|E0|2 − 1)2 − 3θ2
)1/2

|E0|2
(29)

and then using these values in (26). At resonance, θ = 0,
the turning points are located at:

[

(E2
IN )+, I+

s

]

=
[

0, 3(|E0|2 − 1)/|E0|2
]

(30)
[

(E2
IN )−, I−s

]

=
[

4(|E0|2 − 1)3/(9|E0|2),
(|E0|2 − 1)/(3|E0|2)

]

.

Note that the + turning point at resonance corresponds
to the zero seeding case of SROPO intensity given by Eq.
(25).

3.1. Linear stability analysis of the SROPO with

seeding.

The linear stability analysis of the steady-states given
in the previous section produces two stability eigenvalues:

λ± = ξ ±
√

β2 − θ2 (31)

where for the sinc2 model

ξ = |E0|2sinc(2
√

Is) − 1 (32)

β = |E0|2
cos(2

√
Is) +

√
Is sin(2

√
Is) − 1

2Is

(33)

and for the cubic model

ξ = |E0|2 − 1 − 2|E0|2Is/3 (34)

β = −|E0|2Is/3 .

For the sinc2 model, the stability eigenvalues are implicit
functions of the steady-state intensity, Is. It is, how-
ever, easy to display the stability of the stationary states
graphically along the S-shaped curves by picking increas-
ing values of Is, evaluating λ± and reporting the stability
result on the diagram, as displayed in Figures 4 and 5.

Here black solid lines correspond to two negative real
eigenvalues (sinks), turquoise solid lines to stable com-
plex eigenvalues (foci), dot-dashed blue lines to at least
one positive real eigenvalue (saddles or sources) and red
dashed lines to complex eigenvalues with positive real
part (unstable foci). In terms of bifurcations, the inter-
section of a black solid line and a blue dot-dashed line
signals a saddle-node bifurcation, while the transition of
a turquoise solid line into a red dashed line signals a Hopf
bifurcation.

We find that the turning points of the S-shaped
curves always correspond to either saddle-node (the
[(E2

IN )+, I+
s ] points) or saddle-source (the [(E2

IN )−, I−s ]
points) bifurcations corresponding to a change of sign of
one real eigenvalue. For the cubic model this fact can be
demonstrated analytically. In the lowest branch of the
S-curve, the two real eigenvalues turn complex (see the
red dashed line in Figures 4 and 5). This means that the
lowermost part of the S-curve is Hopf unstable.

4. TURING INSTABILITIES AND PATTERN

FORMATION

In this section we describe instabilities of the station-
ary states of the SROPO to transverse perturbations due
to diffraction with and without external seeding. By
moving to the spatial Fourier space of the transverse
wave-vector k and repeating the linear stability steps of
the previous section, we obtain the two stability eigen-
values of (31) but with the detuning θ replaced by

θk = θ + k2 (35)

which introduces an explicit dependence on the trans-
verse spatial scale.

We start with the analysis of possible Turing instabil-
ities without external seeding (EIN = 0) and with zero
detuning θ = 0. In this case, the evaluation of the stabil-
ity eigenvalues with the appropriate factor (35) is done
only at the values of Is given by (25). In the cubic case
the eigenvalues reduce to:

λ± = −(|E0|2 − 1) ±
√

(|E0|2 − 1)2 − k4 . (36)

The largest eigenvalue has a zero value for the plane-wave
case, k = 0, corresponding to the uncoupled phase of the
SROPO models without seeding as studied in the previ-
ous section. For large wave-vectors the eigenvalues can
become complex, i.e. one may observe damped oscilla-
tions. However, the presence of diffraction cannot make
the real part of the eigenvalues positive which means that,
for the SROPO alone, there are no spatio-temporal insta-
bilities and hence no pattern formation. We obtain the
same result for the sinc2 model within the pump inten-
sity ranges studied here although the implicit nature of
the steady-state (25) requires straightforward numerical
evaluations of the stability eigenvalues for given wave-
vectors k.
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Figure 4: (Color online) Plane wave steady-state stability and
pattern formation for (a) the sinc2 model (18) of a SROPO
and (b) the cubic model (24) of a SROPO close to threshold.
The solid (black), dot-dashed (blue) and dashed (red) lines
correspond to stable, unstable and Hopf unstable plane wave
steady states, respectively. The black dotted (black dashed)
lines correspond to the minimum and maximum of the in-
tensity of stationary hexagonal (roll) patterns. The vertical
dotted line corresponds to the instability of hexagons leading
to optical turbulence. Parameters are |E0|

2 = 2 and θ = −0.3.
All variables are dimensionless.

We now consider the case of external seeding where the
detuning, θ, can be non-zero. By using the expressions
(31) with θ replaced by θk (35) one observes that the
transverse wave-vector can destabilise the system only
when it counterbalances the detuning and that this is
most effective when

k2 = −θ (37)

i.e. the off-resonance mechanism for pattern formation
typical of optical systems [1, 8]. We refer to the off-
resonance mechanism as Turing pattern formation since
it has been demonstrated that all the requirements of
Turing instabilities are fully satisfied [31].

The condition (37) provides us with the value along
the steady-state curves at which we expect pattern for-
mation to occur, Ic

s . This value simply corresponds to
the steady-state value of the plane wave solution at zero
detuning (25) since for θk = 0 the stability eigenvalues
(31) reduce to λ± = ξ ± β, where ξ and β are given by
(32) for the sinc2 model and (34) for the cubic model.
By tracing a horizontal line at the Ic

s value on the dia-
grams of Figures 4 and 5 one obtains the corresponding
value of |Ec

in|2 of the seeding intensity where the Turing
instability takes place. The bifurcation from the homo-
geneous states to steady transverse patterns is obtained
when decreasing the seeded amplitude EIN so that the
locked plane wave state progressively approaches the up-
per turning point of the S-shaped steady-state curve (the
[(E2

IN )+, I+
s ] point). Before reaching it, the stationary

plane wave intensity reaches the value Ic
s and a station-

ary roll pattern is formed supercritically while a hexago-
nal pattern is formed subcritically in agreement with [35].
This bifurcation scenario is in agreement with early anal-
ysis of complex Ginzburg-Landau models in the presence
of injection [36, 37]) although our cubic model does not
contain diffusion or purely imaginary nonlinearities. It is
also in remarkable agreement with numerical simulations,
as demonstrated in section 4.1.
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Figure 5: (Color online) Same as Fig. 4 but for parameter
values |E0|

2 = 8 and θ = −1 (all variables are dimension-
less). The solid turquoise lines correspond to stable plane
wave steady states with complex stability eigenvalues. For
seed intensities above 20, minima and maxima of the inten-
sity of stable hexagonal patterns H+ (dotted lines), of stable
roll patterns R (solid lines) and of stable honeycomb patterns
H− (dashed lines) are displayed.

We have also investigated instabilities of the plane
wave to pattern structures for large values of both the
input pump and the seeding intensity as shown in Fig.
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Figure 6: (Color online) Stability eigenvalue λ+ versus the
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4 (lowermost dashed-dotted blue line), |E0|

2 = 4.5 (solid black
line), |E0|

2 = 5 (dashed black line), |E0|
2 = 6 (dotted black

line), |E0|
2 = 7 (uppermost dashed-dotted black line) and

|E0|
2 = 8 (uppermost solid red line). All variables are dimen-

sionless.

5. These instabilities have no counterpart in the close-to-
threshold regime and can be estimated analytically by us-
ing the stability eigenvalues (31) with (32) and θk = 0 for
the most unstable wave-vector (37). Figure 6 shows the
instability eigenvalue λ+ versus the stationary SROPO
intensity for different values of the input pump |E0|2.
Above a threshold value of |E0|2 ∼ 4.37 (corresponding
to a critical value of Is = 14.5), there is a range of values
of the SROPO intensity where the plane wave solution
is unstable to spatial patterns. The limit values of the
SROPO intensity are the zeroes of the λ+ curve shown
in Figure 6 with the lower (upper) intersection corre-
sponding to an instability when increasing (decreasing)
the seeding intensity. In Figure 7 we show the plane-wave
instability range in the parameter space of the SROPO
intensity versus the seed intensity for different values of
the pump intensity. In section 4.1 we show that the bi-
furcations at the boundaries of the instability ranges are
subcritical in nature and that there are extended regions
of bistability between patterns and stable plane waves to
support cavity solitons. The ranges displayed in Fig. 7
provide a minimum size of the parameter region where
pattern formation is expected. For example, the plane-
wave instability range for |E0|2 = 8 evaluated analyti-
cally from the stability eigenvalues is approximately be-
tween |EIN |2 = 22 and |EIN |2 = 26 (see Fig. 7) while
the numerical simulations find stable patterns between
|EIN |2 = 20 and |EIN |2 = 28 because of subcriticality
(see Fig. 5).

21 22 23 24 25 26 27 28
11

12

13

14

15

16

17

18

19

Seed Intensity, |E  | 

S
R

O
P

O
 I

n
te

n
si

ty
, 

I 

IN

2

S

Figure 7: (Color online) Plane wave instability regions to spa-
tial patterns in the (seed intensity, SROPO intensity) param-
eter space. Parameters are θ = −1, |E0|

2 = 4.5 (solid black
line), |E0|

2 = 5 (dashed black line), |E0|
2 = 6 (dotted black

line), |E0|
2 = 7 (uppermost dashed-dotted black line) and

|E0|
2 = 8 (uppermost solid red line). All variables are dimen-

sionless.

4.1. Numerical patterns

We have first numerically integrated the sinc2 (18) and
cubic (24) models for |E0|2 = 2 and θ = −0.3. We have
started with relatively large values of the seeding am-
plitude, EIN = 0.45, where the stable plane-wave so-
lution has been recovered. By progressively decreasing
EIN , a supercritical roll pattern is observed to appear at
around EIN = 0.424, Ic

s = 1.9 for the sinc2 model and
EIN = 0.374, Ic

s = 1.5 for the cubic model, in excellent
agreement with the theoretical predictions given in sec-
tion 4. By further decreasing the seeding intensity, the
amplitude of the roll pattern increases (see black dashed
lines in Fig. 4 until it merges into a hexagonal struc-
ture. Having located the hexagonal pattern (see Fig. 8
(a) for its transverse intensity structure), we have traced
it with increasing and decreasing values of the external
seeding intensity. For small seeding intensities, Figures
4 and 5 show the maximum and minimum intensity of
the hexagonal pattern (dotted lines) and show that these
change linearly with decreasing seeding intensity. The
bifurcation back to the steady plane-wave solution is sub-
critical although the regime of sub-critical bistability is
very small and difficult to detect on the scales of the di-
agrams. When further decreasing the external seeding,
one observes a sudden destabilisation of the hexagonal
pattern into a region of optical turbulence. The abrupt
transition from stable patterns to turbulence is clearly
displayed in Figures 4 and 5 by the almost vertical line
on the right hand side of these diagrams that corresponds
to a sudden jump in the values of the minima and max-
ima intensities observed in the transverse section during
the turbulent evolution.
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Figure 8: (Color online) Intensity of transverse patterns in
a SROPO. (a) Hexagons for |EIN |2 = 3. (b) Hexagons for
|EIN |2 = 22. (c) Rolls for |EIN |2 = 24. (d) Honeycombs for
|EIN |2 = 27. Parameters are |E0|

2 = 8 and θ = −1. All
variables are dimensionless.

For larger values of the input pump, |E0|2, new regions
of pattern formation arise in the SROPO with seeding in
a way similar to what has been described for nascent
optical bistability [4]. These new regions can only be
observed in the sinc2 model since the cubic model can
only display stable plane wave solutions for large |E0|2
and large E2

IN . Moreover, the cubic model is not accu-
rate away from threshold. For the numerical simulations
presented here we have selected the value of |E0|2 = 8
where the minimum size of the pattern region is more
than 15% of the maximum value of the seed intensity
in order to guarantee relevance to possible experimental
realizations. In Fig. 5 we present the intensities of the
observed patterns together with the steady-state plane
wave curves for the selected value of |E0|2 = 8. At low
seed intensities the phenomenology is similar to that de-
scribed for |E0|2 = 2 above. However, at larger seeding
intensities the upper branch of the S-shaped plane-wave
steady-state curve suddenly increases. The steady-state
first develops damped oscillations and then becomes un-
stable to a Hopf bifurcation (see dashed red lines around
the seed intensity of 23 in Figure 5). Around such bifur-
cation, a new region of stationary patterns develops. We
have identified rolls R (solid lines), hexagons H+ (dotted
lines) and honeycombs H− (dashed lines). The intensi-
ties of the different transverse patterns are displayed in
Figure 8. We note that none of the patterns observed at
large input pumps and seeding intensities are present in
the cubic model. Finally, pattern bistability is observed

between rolls and hexagons and rolls and honeycombs.

5. OPTICAL TURBULENCE, ROGUE WAVES

AND CAVITY SOLITONS.

When the seeding is small, the input energy is not suf-
ficient to lock the SROPO to the external laser. These
unlocked regimes are typical of lasers with injected sig-
nals [38]. The larger the detuning, θ, between the ex-
ternal laser and the SROPO cavity, the larger the seed
intensity necessary for locking. Since the lower branch of
the S-shaped steady-state curves is always Hopf unsta-
ble for small seeding, one expects to observe dynamical
regimes where locking and unlocking alternate in space
and time. In comparison with purely temporal systems,
the presence of transverse degrees of freedom elongates
the locking region to lower values of the seeding intensity,
as displayed in Figures 4 and 5 where stable hexagons are
observed well into the region where plane wave solutions
are unstable. As the seeding intensity is decreased, un-
locking eventually takes place and stable patterns develop
defects [37, 39] that induce first phase and then ampli-
tude instabilities. The resulting regime corresponds to
optical turbulence since one observes a sudden (exponen-
tial) decrease of the spatio-temporal correlation function
[40]

C(ρ) =
Re [〈E(r, t)E∗(r′, t)〉 − 〈E(r, t)〉〈E∗(r, t)〉]
Re [〈E(r, t)E∗(r, t)〉 − 〈E(r, t)〉〈E∗(r, t)〉] (38)

where r and r
′ identify separate positions on the trans-

verse plane, ρ = |r − r
′|, Re denotes the real part and

〈·〉 corresponds to temporal averages. Such behavior is
demonstrated in Figure 9 where the correlation func-
tion C(ρ) is calculated for the hexagonal pattern (dashed
line), the turbulent regimes for |E0|2 = 2 (solid line) and
|E0|2 = 8 (dot-dashed line). Fitting exponentials to the
correlation functions shows that in the turbulent regimes
the correlation length is reduced by at least a factor of
six. In the regime of optical turbulence, large variations
of the SROPO intensity are observed in both space and
time. In Figures 4 and 5 we display the range of variation
of the SROPO intensity at a given time t at the onset of
optical turbulence. The wide increase in the maximum
SROPO intensity when changing the seed strength below
the hexagon instability is clearly visible.

To characterize the regime of optical turbulence we
have considered the temporal evolutions of the maximum
SROPO intensity, the spatial average of the SROPO in-
tensity and its standard deviation. As displayed in Fig-
ure 10, the spatial statistics is large enough to guarantee
probability distributions of well defined averages and de-
viations. Larger values of the pump power increase the
size of the probability distribution of the SROPO inten-
sity and that of the fluctuations of its maximum value
(compare Figures 10(a) and (b)). Such increase results
in the occurrence and propagation of transverse rogue
waves.
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Figure 9: (Color online) Spatial correlation function C(ρ) as
in (38) for the hexagonal pattern (red dashed line, |E0|

2 = 2,
θ = −0.3, |EIN |2 = 0.09), optical turbulence close to thresh-
old (black solid line, |E0|

2 = 2, θ = −0.3, |EIN |2 = 0.04)
and away from threshold (blue dot-dashed line, |E0|

2 = 8,
θ = −1.0, |EIN |2 = 2.19). All variables are dimensionless.

Following the generally accepted definition of rogue
waves in systems with injection [41], we plot the tem-
poral evolution of

q(τ) = IMax
x,y (τ) − 〈〈I〉x,y〉τ − 8〈〈σ〉x,y〉τ (39)

corresponding to transverse pulse maxima, IMax
x,y , above

or below a threshold given by the average value of the
intensity, 〈I〉x,y, plus eight times the standard deviation,
στ,x,y, of the SROPO intensity for the sinc2 model in the
dashed-dotted red lines of Figures 10(a) and (b). The
presence of peaks of a rogue wave is signalled by pos-
itive values of q(τ) [41]. With pump intensities a few
times above threshold (Figure 10(a)), the rogue wave
test fails (q(τ) remains negative) and the optical turbu-
lence generated by the unlocking of the seed laser and
the SROPO is relatively mild. With larger values of the
pump power, however, rogue waves are commonplace and
affect the spatio-temporal evolution of the SROPO field
for long durations of the temporal evolution (see Figure
10(b)). When comparing these results with those related
to lasers with injections [41], we note that our simulations
are fully spatio-temporal and show that the material dy-
namics, typical of semiconductor media, is not essential
in the generation and maintenance of rogue waves dur-
ing optical turbulence. The main mechanism underlying
rogue waves in SROPOs is the absence of locking be-
tween master and slave devices leading to intermittent
phase jumps. Full investigations of optical turbulence in
injected (seeded) optical devices will be presented else-
where.

Finally, we have studied the presence and stability of
cavity solitons (CS) in SROPOs with a particular focus
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Figure 10: (Color online) Temporal evolution of the maxi-
mum SROPO intensity (solid black line), the spatially aver-
aged SROPO intensity (dashed black line), its standard de-
viation (dotted black line) and q(τ ) for the sinc2 model (18).
Parameters are (a) |E0|

2 = 2, θ = −0.3, |EIN |2 = 0.04 and
(b) |E0|

2 = 8, θ = −1, |EIN |2 = 2.19. All variables are
dimensionless.

on localised structures induced by the sinc2 nonlinearity,
i.e. away from threshold and with large seeding from
an external laser. CS have been described in a variety of
OPO devices without seeding from degenerate [17, 42–44]
to non-degenerate triply resonant configurations [20, 45,
46]. CS in degenerate OPOs have also been numerically
extended to include the presence of seeding [47]. In the
case of the non-degenerate SROPOs investigated here,
the resonance condition of SROPO operation rules out
any CS in the absence of seeding. It is then important to
stress that all CS solutions described in this section are
due to the external seeding field and have no counterpart
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in the case of EIN = 0.
Since we have introduced the sinc2 nonlinearity in

spatio-temporal models of SROPOs to describe self-
organization when pump depletion and back–conversion
take place, we focus here on CS in the limit of large
pump powers. From Figures 5 and 7 we see that there
are broad ranges of the parameter space where bistability
between the plane wave solution and pattern structures
is observed. For example, we find coexistent hexagons
and homogeneous solutions for |EIN |2 between 19.98 and
21.90 and coexistent honeycombs and homogeneous solu-
tions for |EIN |2 between 26.00 and 28.09. Note that we
even observe tri-stability among plane waves, hexagons
and rolls for |EIN |2 between 21.25 and 21.90 and among
plane waves, honeycombs and rolls for |EIN |2 between
26.00 and 26.52. In the two wide regions of homogeneous-
pattern bistability we have been able to locate single peak
(bright) and single trough (dark) CS as shown for exam-
ple in Figure 11 (a) and (d), respectively. The onset
and nature of these CS are again similar to those ob-
served in nascent optical bistability [4]. Together with
the single unit bright and dark CS we have also found
many multi-peak [48] and multi-trough localized struc-
tures that correspond to clusters of CS (also referred to
as localized patterns [49]). A few examples of these bright
and dark clusters are displayed in Figure 11. The range
of existence of single unit CS and CS clusters is displayed
in Figure 12. Snaking of both bright and dark CS is ob-
served with stability branches of larger and larger clusters
approaching the pattern stability lines in the parameter
space (see Figure 12). The details of the bifurcations
and of the number of branches of bright and dark CS for
changing |E0|2 are too long to be described here and will
be the subject of a future publication.

6. CONCLUSIONS.

Self-organization and pattern formation in OPOs has
been known for a number of years in degenerate [8] or
doubly or triply resonant non-degenerate configurations
[19–21]. The case of a widely non-degenerate SROPO
has, however, been overlooked because of experimen-
tal limitations, now overcome, and the fact that off-
resonance operation is inhibited because of its intrinsic
tuneability. Here we have shown that under the action of
a detuned injection close to the signal frequency, one can
find an extremely rich variety of self-organized structures,
from regular co-existing patterns to clusters of CS and
even optical turbulence. In particular, we have derived
mean field models for SROPOs with external seeding and
shown that, away from threshold, cubic nonlinearities
should be replaced by sinc2 terms. The sinc2 nonlin-
earity is capable of describing regimes of pump depletion
and back-conversion. In these regimes, the external seed-
ing generates hexagonal, roll and honeycomb patterns as
well as bright and dark CS. Note that CS in SROPOs

offer positional control associated to the generation of
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Figure 11: (Color online) Stable bright (a)-(c) and dark (d)-
(f) CS configurations of the SROPO model (18). Parameters
are |E0|

2 = 8, θ = −1, |EIN |2 = 20.8 for (a)-(c), |EIN |2 =
26.5 for (d) and |EIN |2 = 27.1 for (e)-(f). All variables are
dimensionless.

entangled photons with vastly different frequencies.
In contrast to laser systems, the fast material dynam-

ics of χ(2) media makes a SROPO with external seeding
an ideal candidate for comparisons between theory and
experiments of optical self-organization. The fast ma-
terial dynamics is also beneficial to the investigation of
spatio-temporal structures in the regime of short pulse
generation where many of the results presented here can
find useful extensions. These investigations together with
the full characterization of the turbulent regimes will be
the subject of future communications.
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