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Abstract

This paper develops and validates a power flow behavioral model of a gas tur-

bine engine with a gas generator and free power turbine. “Simple” mathematical

expressions to describe the engine’s power flow are derived from an understand-

ing of basic thermodynamic and mechanical interactions taking place within

the engine. The engine behavioral model presented is suitable for developing a

supervisory level controller of an electrical power system that contains the en-

gine connected to a generator and a large interconnection of many components,

e.g., a naval ship power system powered by gas turbine engines. First principles

engine models do not lend themselves to the preceding control development be-

cause of their high granularity. The basis of the behavioral model development

is the balance of energy flow across engine components; power flow is obtained

by taking the time derivative of the energy flow. The behavioral model of a spe-

cific engine utilizes constants and empirical fits of power conversion efficiencies

obtained from data collected from a high-fidelity engine simulator. Behavioral

models for a GE LM2500 and an engine similar to a GE T700 are constructed;

the 2-norm normalized error between the simulator and behavioral model out-

puts for both engines is 3.5% or less.
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1. Introduction

Power management of interconnected systems, such as the electrical sys-

tem on a ship, have become critically important for several reasons: (i) the

increasingly high cost of energy necessitating efficient on-board power manage-

ment strategies in the presence of ramp rates of loads and limitations of mod-

ern sources [1, 2], (ii) the increasing use of electronics for advanced weapons

systems and a move to more efficient electrical propulsion systems across all

vehicle types thereby requiring coordinated power distribution [3], and (iii) the

increasing use of electrically-powered automated systems to minimize manual

labor also requiring coordinated power management strategies. An impediment

to power management control is the interconnection of highly granular first

principle models making control design and validation numerically untenable.

Recasting first principle subsystem models with reduced order models specific

to energy and power flows allows the design, simulation, and validation of power

management controllers. See for example [4, 5]. Specifically, with the designed

power flow controllers in the loop of the high-order high-granularity model, the

system can be simulated to produce input-output response trajectories. These

input-output trajectory pairs can then be applied to low granularity system

power flow model (with controllers in loop) to retune power flow model parame-

ters allowing for a retuning of the controller parameters. The process is iterated

until the controller design achieves its desired purpose for the high level model.

See for example [6]. Such controllers might oversee a ship’s electrical system in

which a turbine-generator pair might be an integral component among a large

interconnection of many components or subsystems.

This work develops a supervisory level (low granularity) power flow model

(a behavioral model) for a gas turbine engine that drives a generator as part

of a ship board power grid suitable for real time MPC (model predictive con-

trol). In this context, the exact thermodynamic operating conditions of an

engine represent a granularity of secondary priority. Nevertheless, the behav-

ioral model derivation relies on an understanding of the basic thermodynamic
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and mechanical interactions taking place within a turbine engine. It is from this

understanding that we infer “simple” mathematical expressions to describe the

engine’s energy and power flow behavior. At this writing, there does not appear

to be a reliable power management control oriented model in the literature that

is suitable for supervisory MPC design.

To demonstrate the adequacy of this behavioral energy/power flow model, we

compare its responses (in simulation) to those from the Gas Turbine Simulation

Program (GSP) [7, 8] for an engine similar to a GE T700 and a GE LM2500.

The comparisons show that the behavioral model produces minimal response

errors thereby supporting the validity of the developed behavioral model.

2. Past Turbine Modeling

It is recognized that several gas turbine engine (GTE) models are avail-

able [9, 10, 11, 12, 13, 14]. These models are typically thermo-mechanical (first

principle) models of high detail and complexity making their use in control strat-

egy studies highly difficult. An additional snag is the need to have parameter

values which often are proprietary or depend on proprietary data. Nevertheless,

it is important to review some of the past modeling techniques before developing

the behavioral model of this paper.

Walsh and Fletcher in [9] provide an aero-thermal model of a gas turbine

engine. Model development depends on relations between pressures, tempera-

tures, and fluid properties. Although the model presented in [9] can be solved

in “real-time”, it is not readily amenable to real time control, and in particu-

lar to model predictive control (MPC) due to its sheer mathematical size and

internal iterative solution procedure. An alternate approach is found in Hung

in [10] which provides a modeling method that relies on transfer functions. How-

ever, the number of parameters to be determined for the model is very large.

Camporeale et al. in [11] provide another example of gas turbine engine model-

ing. Similar to the other two approaches, the proposed modeling approach uses

thermodynamic variables and uses different differential equations to describe
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the fluid state within the engine. The mathematical size of the technique is

again too large and complex to be amenable to efficient real time control such

as MPC strategies.

Gas turbine engine models have also been developed for control purposes.

Brunell et al. [13] utilizes the aero-engine control model structure from [12] to

develop a GTE control model for MPC application. In [12], an empirical control

model for a 2-spool turbojet employs second-order transfer functions to describe

the low and high pressure spool speeds and algebraic relationships to find the

turbine inlet temperature and high compressor discharge total pressure. The fuel

flow is the only controllable model input. The model relies upon six parameter

curves and ten constants that are fit to output from a more detailed engine

model. Brunell et al. [13] applies the previous model structure to a dual rotor,

aerodynamically coupled machine with a low pressure rotor system (fan and low-

pressure turbine) which feeds a high pressure system (core engine). The model

is expanded to include two controllable inputs, fuel flow and exhaust nozzle

area, and eight outputs: core spool speed, fan speed, engine pressure ratio, core

compressor discharge pressure, core high pressure turbine exit pressure, fan stall

margin, core stall margin, and thrust. The control model output deviates up to

22% during transients and 7% during steady-state from a physics-based based

component level model over an envelope of operation. Brunell et al. use the

control model for a nonlinear model predictive control that tracks a change

in output power demand. The control model structure in [12, 13] relies upon

numerous fits of data from a detailed engine model.

Hannett et al. [14] proposed a control model for a electrical utility plant

gas turbine engine. Steady-state operating maps are used to obtain the gas

generator turbine mechanical power, compressor torque, power turbine torque,

and exhaust temperature. Modeled dynamics include shaft inertial effects and

exhaust temperature lags. Model parameters are determined through engine

operation tests that include steady-state running and dynamic load changes.
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Figure 1: Gas turbine engine diagram with working fluid stations numbered. Ambient air and

fuel inputs with power and exhaust gases outputs.

3. Behavioral Gas Turbine Engine Model Overview

The development of these “simple” models of a turbine engine requires the

identification of compressor and turbine efficiency maps which are extracted

from a high level gas turbine simulation program such as GSP [7, 8] or NPSS [15].

To begin, Fig. 1 illustrates a compartmental view of the gas turbine engine

as a machine that converts energy stored in a fuel into usable mechanical energy.

The engine is comprised of a gas generator and a free running power turbine.

The gas generator itself is composed of three main parts: compressor(s), com-

bustor, and turbine(s); the compressor and turbine may have multiple stages

and the assembly comprised of the compressor rotors, turbine rotors, and the

common compressor/turbine shaft with rotors is the gas generator spool. The

gas generator uses the energy stored in the fuel to create a high temperature,

compressed, fast moving output stream of air mixed with combustion products

that drives the free power turbine. Specifically, (i) gas generator inlet air is

compressed, (ii) the compressed air is mixed with fuel and combusted in the

combustor, (iii) a high energy and high temperature gas stream exits the com-

bustor, (iv) a portion of the energy in the gas stream is converted to mechanical

energy by the gas generator turbine to drive the compressor, (v) the gas stream

is exhausted to the free power turbine, and (vi) a portion of the energy remain-
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ing in the gas stream is used to drive the free power turbine whose shaft is

available for mechanical work, as would be the case if it were to drive a gener-

ator to produce electrical power; the free power turbine’s shaft is seen as the

“output” shaft of the engine. The free power turbine power extraction from the

gas stream depends on its thermodynamic efficiency; the free power turbine is

only coupled aerodynamically to the gas generator.

In the next section we argue that for a behavioral model of a turbine en-

gine, the gas generator operational characteristics are not (significantly) cou-

pled to the power turbine rotational speed, i.e. in lieu of a control system that

would implicitly couple the combined operation. This is validated in sections 8.3

and 10.3.

Under the condition of (very) weak back-coupling, it is possible to treat the

gas generator as an independent “actuator” that drives the free power turbine.

The consequence is that the output gas stream of the gas generator acts as an

independent input to the free power turbine1 simplifying modeling.

3.1. Coupling Between Gas Generator and Power Turbine

To argue the validity of the assumption that reverse coupling from the free

power turbine to the gas generator is very weak, we cite two sources: Hung [10]

and Camporeale et al. [11].

In Hung [10] a gas turbine engine of the form described in section 3 is

simulated while driving a three-phase electric generator that undergoes a three-

phase fault. During the fault, it is seen that the gas generator speed is smoothly

reduced, while the power turbine speed fluctuates wildly, see Fig. 12 of [10]. If

there were strong back coupling, the speed fluctuations of the power turbine

would have been reflected in a similarly behaved gas generator speed. Since a

correlation was not observed, one argues that the power turbine speed at most

weakly affects the gas generator operation.

1At the thermodynamic level, the independence of the gas generator input is constrained

by mass flow and energy matching conditions with the free power turbine.
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Furthermore, in Camporeale et al. [11], a GE LM2500 engine is simulated

for a varying power load profile. A step load change is simulated and again the

gas generator speed is seen to follow a smooth controlled trajectory, whereas

the power turbine speed dramatically increases its speed before settling down

to a more steady state value as seen in Fig. 12b of [11]. Again if there were

strong coupling, the power turbine would have dragged the gas generator speed

up, but appears to have at most negligible effect.

In sections 8.3 and 10.3 we use GSP to validate this assumption for the two

example engines subject to a square-wave shaped load on the power turbine.

Large changes in the power turbine shaft speed as a result of the varying load

are not accompanied by similar alterations in gas generator speed.

4. Gas Generator Model Development

4.1. Energy Flow in a Gas Generator

To understand the power flow in the gas generator (the derivative of energy

flow), we recognize that all of the energy within the gas generator during normal

operation is sourced from fuel entering the combustor. Fig. 2 summarizes the

gas generator energy flows. Energy flows in the figure with a superscript “c”

can be controlled.

The lower heating value of the fuel, LHVfuel, characterizes the fuel’s poten-

tial energy. Deviations from the nominal LHVfuel are typically lumped into the

combustion efficiency, which is normally estimated to be constant throughout

the operating range of the gas generator [16]. As such, in our behavioral model

we approximate the energy released from the fuel entering the combustor at any

given moment as:

Ec
fuel = LHVfuelm

c
fuel (1)

where mc
fuel is the controlled mass of fuel being combusted at any given moment.

Most of Ec
fuel is transferred to the working fluid within the combustor.

Therefore, in order to describe energy flows, we establish a reference datum

energy for the working fluid of the gas generator: we define the energy of the
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Figure 2: Energy flow diagram for gas generator. Circles indicate energy balance and circles

with arrows indicate control valves.

working fluid at the inlet to the compressor to be zero since we assume the

majority of the working fluid is atmospheric air, i.e., Ewf,1 = 0 and engine inlet

effects are negligible. The notation Ewf,i denotes the amount of energy associ-

ated with the working fluid (relative to the datum) at number ‘i’ in Fig. 1 at

any given moment. Thus, Ewf,2 is the energy of the compressed air entering

the combustor prior to combustion and Ewf,3 is the energy of the working fluid

immediately post combustion. Finally, Ewf,4 is the energy of the working fluid

leaving the gas generator, which is input to the power turbine.

Using this notation, we set down the energy balance equations pertinent to

the gas generator beginning with the combustor:

Ewf,3 − Ewf,2 = Ec
fuel − Ecomb,loss (2)

where Ecomb,loss is the energy lost due to the inefficiencies of the combustor.

To develop our second energy balance equation we define Ecomp,th to be

the amount of thermodynamic energy transferred to the working fluid by the

compression process at any given moment of time. We note that Ecomp,th is
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equal to the mechanical energy used for fluid compression, delivered to the

compressor by the gas generator spool, denoted Ecomp,me, minus any losses from

mechanical-to-thermodynamic conversion such as from windage [16], denoted as

Ecomp,loss. In equation form

Ecomp,me = Ecomp,th + Ecomp,loss (3)

We define Ec
bld as the bleed air energy removed at the compressor exit,

typically used for turbine cooling, compressor stall management, or for other

purposes [16]. Modeling bleed air as being removed only at the compressor exit,

such as in [11, 17], typically results in an adequate representation of engine

dynamics. If greater model fidelity is needed, Camporeale et al. [11, 18] sug-

gest augmenting the model with plenums placed between the compressor stages

where bleed occurs.

Thus at the compressor-combustor interface

Ewf,2 = Ecomp,th − Ec
bld (4)

Moving to the right side of the combustor, we define the thermodynamic

energy extracted from the working fluid by the gas generator turbine to be

Eturb,th. Energy balance across the gas generator turbine then satisfies

Eturb,th = Ewf,3 + Ec
cool,gg − Ewf,4 (5)

where Ec
cool,gg is the energy in cooling air (e.g., bleed air) delivered to the tur-

bine. Here, the cooling air is assumed to be mixed with the combustor outflow

at the turbine entrance as in [17]. In practice, cooling air is introduced at mul-

tiple locations along the gas expansion. In the event that greater model fidelity

is needed, additional cooling air injection locations can be treated similarly to

the addition of compressor air bleed locations via plenums [11, 18].

A portion of Eturb,th will be lost to friction and inefficiencies in the conversion

from thermodynamic-to-mechanical energy, denoted as Eturb,loss. Thus, the

mechanical energy available to the spool for transfer to either inertial energy

storage or to the compressor is

Eturb,me = Eturb,th − Eturb,loss (6)
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The energy transferred by the spool to the compressor can originate from

either the stored energy in the spool or from the turbine or both. Energy balance

requires that

Ecomp,me = Eturb,me − Espool,stored − Espool,loss (7)

where Espool,loss is the mechanical energy losses associated with the rotating

spool and

Espool,stored = 0.5Jspoolω
2
gg (8)

with ωgg denoting the spool rotational velocity and Jspool denoting the mass

moment of inertia of the gas generator spool.

Finally, in reference to Fig. 2 the energy balance between bleed air energy

and turbine cooling energy is

Ec
cool + Ebld,exh = Ec

bld (9)

where Ec
cool is the total amount of energy taken from the bleed air for turbine

cooling and Ebld,exh is the energy in the bleed air used for compressor stall

management or other purposes. The turbine cooling air energy is routed to the

gas generator and free power turbines such that

Ec
cool,gg + Ecool,pt = Ec

cool (10)

where Ecool,pt is any free power turbine cooling air energy.

4.2. Power Flow in a Gas Generator

Time differentiating the energies in Fig. 2, or equivalently Eqs. (1) through (10),

produces the governing power equations for the gas generator illustrated by the

power flow diagram of Fig. 3. However, direct differentiation does not include

efficiency relationships which are common to behavioral models and allow loss

terms to be absorbed into the efficiencies. The goal of this section is to dif-

ferentiate the energy flow equations and incorporate efficiency relationships to
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Figure 3: Power flow diagram for gas generator. Circles indicate conservation of power con-

straints and circles with arrows indicate control valves.

achieve a behavioral power flow model of the gas generator. The set of power

flow equations is set forth below:

P c
fuel =LHVfuel

dmc
fuel

dt
= LHVfuelW

c
fuel (11)

Pwf,3 =ηcombP
c
fuel + (1 − αc

bld)Pcomp,th (12)

Pcomp,th =ηcomp(Pcomp,me, ωgg)Pcomp,me (13)

Pturb,th =ηextract(Pwf,3, P
c
cool,gg, ωgg)[Pwf,3 + P c

cool,gg] (14)

Pwf,4 =(1 − ηextract(Pwf,3, P
c
cool,gg, ωgg))

× [Pwf,3 + P c
cool,gg]

(15)

P c
cool,gg =αc

cool,ggα
c
coolα

c
bldPcomp,th (16)

Pturb,me =ηturb(Pturb,th, ωgg)Pturb,th (17)

Pcomp,me =ηspool(ωgg)Pturb,me − Jspoolωgg

dωgg

dt
(18)

Pcomp,me =fc(Pturb,me, ωgg) (19)
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Differentiating Eq. (1) results in Eq. (11) where P c
fuel is the power available in

the fuel entering the combustor and dmc
fuel/dt = W c

fuel is the instantaneous

mass flow rate of the fuel entering the combustor.

In Eq. (12), Pwf,3 is the net power in the working fluid at the output of the

combustor, ηcomb is the efficiency of combustion, P c
fuel is the power delivered in

the fuel, Pcomp,th is the thermodynamic power in the compressed air input to

the combustor, and αc
bld ∈ [0, 1] is the fraction of compressed air power taken

for bleed. Eq. (12) is obtained by (i) taking the time derivative of Eq. (2),

(ii) substituting in ηcombP
c
fuel for P c

fuel − Pcomb,loss, (iii) replacing Pwf,2 with

Pcomp,th − P c
bld, and (iv) using αc

bldPcomp,th for P c
bld.

Eq. (13) is the mechanical-to-thermodynamic power conversion in the com-

pressor where ηcomp is the power conversion efficiency and Pcomp,me is the com-

pressor mechanical power. Eq. (13) results from (i) taking the time derivative

of Eq. (3) and (ii) rewriting Pcomp,me −Pcomp,loss as an efficiency dependent on

Pcomp,me and ωgg [16].

Next, Eq. (14) provides the gas generator power turbine thermodynamic

power extraction from the incoming fluid where Pturb,th is the amount of ther-

modynamic power extracted, ηextract is the efficiency of the extraction, and

P c
cool,gg is the power in cooling air delivered to the turbine. This equation be-

gins with the time derivative of Eq. (5) where Pwf,4 is the power in the turbine

exhaust. In the thermodynamics literature, Pturb,th is expressed as a function

of input mass flow rate and inlet and outlet temperatures. It is the power

in Pturb,th required for self sustained operation that determines the drop in

temperature across the gas generator turbine since one can view Pwf,4 as an

exhaust term. In turn, this load induced by the compressor on Pturb,th can be

approximated using the compressor equilibrium running line with input ωgg [19]

assuming constant compressor inlet conditions; spool/compressor/turbine losses

also depend on ωgg, Pwf,3, and P c
cool,gg. Further, the mass flow rate depends on

that generated by the compressor and the combustion process, which depends

on ωgg and the upstream variables Pwf,3 and P c
cool,gg. Using these variables,

one can approximate the mass flow rate out of the combustion chamber and
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the temperature differential which allows us to approximate the gas turbine

extraction efficiency denoted ηextract as a function of Pwf,3, ωgg, and P c
cool,gg.

The preceding discussion also leads to Eq. (15). Further, Eq. (16), P c
cool,gg as a

function of Pcomp,th and bleed flow controls, αc
cool, α

c
cool,gg ∈ [0, 1], is a result of

the power flows shown in Fig. 3.

Turbine thermodynamic-to-mechanical power transfer is given in Eq. (17)

where Pturb,me is the mechanical power supplied to the spool. Eq. (17) comes

from (i) differentiating Eq. (6) and (ii) replacing Pturb,th−Pturb,loss with ηturb(Pturb,th, ωgg)Pturb,th;

Pturb,loss is the power lost to power conversion inefficiencies such as windage.

The efficiency depends upon Pturb,th and its inlet mass flow rate which depends

on ωgg [16].

Eq. (18) is the spool mechanical power balance where ηspool accounts for

the spool mechanical losses. The equation is obtained from (i) taking the

time derivative of Eq. (7), (ii) recognizing the change in stored spool energy

is the time derivative of Eq. (8) and substituting, and (iii) replacing Pturb,me −
Pspool,loss(ωgg) with ηspool(ωgg)Pturb,me. We note Pspool,loss is the power lost in

the rotation of the spool from mechanical inefficiencies such as bearing friction

and is a function of ωgg [16] and this leads us to ηspool as a function of ωgg.

Finally, Eq. (19) is a result of (i) considering the dynamics of Pcomp,me to

be first-order (dPcomp,me/dt = (−Pcomp,me + f(Pturb,me, ωgg))/τ) with a time

constant an order of magnitude smaller than the spool [20] and (ii) multiplying

the dynamics by τ and applying a singular perturbation.

4.3. Behavioral Dynamics of P c
fuel

The dynamics of P c
fuel stem from the choice of GTE control system. We

desire to avoid potentially damaging conditions such as stall and flame-out and

to accomplish this, employ the common strategy of enforcing rate limits on

P c
fuel [16, 21]. To this end, ∆inc

P,f and ∆dec
P,f are the maximum (absolute) rates at

which P c
fuel may increase and decrease, respectively. Between these two limits,

we assume that the fuel system possesses a first order behavior with a time

constant of τfuel. Furthermore, let us denote P ∗
fuel,ss as the desired steady-
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state value of P c
fuel, assuming that the short-term load requirement is constant.

With these assumptions and definitions, if P c
fuel is moved from one steady-state

operating point to another in the least amount of time, then P c
fuel will have the

following approximate macro-dynamics:

dP c
fuel

dt
=























∆inc
P,f ,

(P∗

fuel,ss−P c
fuel)

τfuel
> ∆inc

P,f

−∆dec
P,f ,

(P∗

fuel,ss−P c
fuel)

τfuel
< −∆dec

P,f

(P∗

fuel,ss−P c
fuel)

τfuel
, otherwise

(20)

However, Eq. (20) is not everywhere differentiable. Typically for optimization

purposes, functions need to be of class C1. Therefore, for optimization we assume

∆inc
P,f = ∆dec

P,f and approximate Eq. (20) using the hyperbolic tangent function.

As such, let us denote ∆P,f as the maximum absolute rate at which P c
fuel may

change. With this definition, we approximate Eq. (20) by:

dP c
fuel

dt
= ∆P,f tanh

(

P ∗
fuel,ss − P c

fuel

τfuel∆P,f

)

(21)

In the case of ∆inc
P,f 6= ∆dec

P,f , hyperbolic tangent functions may be defined on

intervals where P ∗
fuel,ss − P c

fuel > 0 and P ∗
fuel,ss − P c

fuel < 0 and then joined

together with a function defined around P ∗
fuel,ss = P c

fuel that maintains C1

continuity. Subsequent model development is not dependent upon the exact C1

form of dP c
fuel/dt.

5. Free Power Turbine Model Development

5.1. Energy Flow of a Power Turbine

Fig. 4 shows the energy flows for the free power turbine2. The available

energy in the working fluid input is denoted by Ewf,4 as set forth in section 4.1

with Ecool,pt being a portion of the bleed air from the compressor which adds

an additional energy input. The exhaust energy of the power of the free power

2Recall the free power turbine is only aerodynamically coupled to the gas generator.
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turbine is Ewf,5. Finally, Ept,th denotes the thermodynamic energy extracted

from the working fluid by the power turbine available for external work. Thus

Ept,th = Ewf,4 + Ecool,pt − Ewf,5 (22)

A portion of Ept,th is lost to friction and thermodyamic-to-mechanical inefficien-

cies and is designated Ept,loss. It follows that the mechanical energy available

to the shaft for work and/or storage as rotational energy is

Ept,me = Ept,th − Ept,loss (23)

Finally, denoting Eout as the energy transferred to the load through the shaft,

Epts,loss as all shaft mechanical energy losses, and Epts,stored = 0.5Jptω
2
PT the

rotational stored energy, we arrive at the energy balance equation:

Eout = Ept,me − Epts,loss − Epts,stored

= Ept,me − Epts,loss − 0.5Jptω
2
PT

(24)

where Jpt is the combined rotational inertia of the free power turbine and the

load. Note that Epts,loss may be non-zero even when Ept,me = 0 since there are

frictional losses associated with the power turbine spinning.

5.2. Power Flow of a Free Power Turbine

Fig. 5 represents the time derivative of Fig. 4 and summarizes the power

flows for the free power turbine which analytically are the time derivatives of

Eqs. (22)-(24). Similar to section 4.2, the goal here is to produce a behavioral
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Figure 5: Power flow diagram for free power turbine.

model of the free power turbine by differentiating energy flow equations and

then incorporating efficiency relationships. The set of power flow equations are

given below:

Ppt,th =ηextract,pt(Pwf,4, Pcool,pt, ωgg, ωPT )

× [Pwf,4 + Pcool,pt]
(25)

Pwf,5 =(1 − ηextract,pt(Pwf,4, Pcool,pt, ωgg, ωPT ))

× [Pwf,4 + Pcool,pt]
(26)

Pcool,pt =(1 − αc
cool,gg)α

c
coolα

c
bldPcomp,th (27)

Ppt,me =ηpt(Ppt,th, ωgg, ωPT )Ppt,th (28)

Pout =ηpts(ωPT )Ppt,me − JptωPT

dωPT

dt
(29)

Eq. (25) describes the thermodynamic power, Ppt,th, extracted by the turbine.

The equation is obtained by differentiating Eq. (22) and, using reasoning similar

to that in section 4.2, simplifying the result with an extraction efficiency, here

ηextract,pt. The engine exhaust power, Pwf,5, Eq. (26), results from substituting

the expression for Ppt,th in Eq. (25) into the time derivative of Eq. (22) and then

solving for Pwf,5. Eq. (27), the turbine cooling power, Pcool,pt, is a fraction of

the bleed air power from the compressor.

Next, Eq. (28) represents the mechanical power transferred to the shaft,

Ppt,me, which follows from the time derivative of Eq. (23) and the incorporation

of a turbine efficiency relationship. Turbine efficiency here depends on its input

16



power, rotation speed, and inlet mass flow rate, which as before depends on ωgg.

Finally, the power transferred to the load, Pout, from Eq. (29) is obtained by

differentiating Eq. (24) and using an efficiency term, ηpts, to account for shaft

losses, which are a function of its speed [16].

6. Summary of Behavioral Model of Gas Turbine Engine

Equations(11)-(19), (20), (25)-(29) characterize the behavior of a gas tur-

bine engine. Implementation of models, like the behavioral model, in a MPC

structure is greatly improved if the continuous control input to the model is of a

normalized form, that is, u ∈ [0, 1]. In the case of the GTE, the control input is

the desired quantity of fuel flowing into the combustor at steady-state, P ∗
fuel,ss.

Therefore, we express P ∗
fuel,ss as follows:

P ∗
fuel,ss = (Pmax

fuel,ss(ωPT ) − Pmin
fuel,ss(ωPT ))ufuel + Pmin

fuel,ss(ωPT ) (30)

where ufuel ∈ [0, 1] is the control input and Pmax
fuel,ss(ωPT ) and Pmin

fuel,ss(ωPT )

are the respective maximum and minimum allowable fuel powers at the current

ωPT . The fuel powers can be developed from plots like that shown in Fig. 63.

The plots, which are typically provided by manufacturers, have a set of nominal

curves which graphically specify the steady-state functional relationship

Pout,ss = f(Pfuel,ss, ωPT,ss) (31)

Graphs similar to Fig. 6 are included in [22] for the AVCO Lycoming TF-40,

GE LM2500, and Pratt & Whitney FT4A-14 and FT9. A fuel consumption

graph for the Pratt & Whitney FTC-2 is in [23].

The implementation of the developed behavioral model for control of a GTE

requires a number of quantities/parameters and efficiencies:

• LHVfuel;

3Figure 6 was generated using the GSP software TSHAFT example (‘TSHAFT PWinput’

model simulated in steady-state, detailed in section 7) that includes a gas generator and free

power turbine [7].
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Figure 6: GSP TSHAFT example specific fuel consumption contour plot with contour levels

in kg/(kW·hr). 15◦C ambient air temperature.

• Jspool, the inertia of the gas generator spool;

• Jpt, the inertia of the power turbine shaft including connected external

load;

• Pmin
fuel,ss and Pmax

fuel,ss as functions of ωPT,ss (from Pout,ss);

• the maximum absolute change in fuel power, ∆P,f ;

• the fuel system time constant τfuel;

• the respective gas generator combustion, compressor, gas turbine, and gas

turbine extraction efficiencies, i.e., ηcomb, ηcomp, ηturb, and ηextract;

• the spool efficiency, ηspool;

• fc(Pturb,me, ωgg);

• the free power turbine extraction efficiency, ηextract,pt, the thermodynamic-

to-mechanical conversion efficiency, ηpt, and the free power turbine shaft

efficiency, ηpts;
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Many of the above GTE quantities/parameters are proprietary and must be

estimated as scaled versions of values given in the open literature or, in the case

of efficiency maps, obtained from curve fitting data from a high fidelity GTE

simulator such as GSP [7, 8] and NPSS [15]. Behavioral model parameters for

two example engines are developed in subsequent sections.

7. TSHAFT Gas Turbine Engine Behavioral Model Parameter Iden-

tification

The GSP [7, 8] is a graphical capture simulator for gas turbine engines. The

GSP represents the engine using an underlying thermofluid-mechanical dynam-

ical model; specifically, working fluid properties are averaged over the flow cross

sectional areas and thus vary along the axial direction of the engine. There are

two stages to creating a GSP model: (i) assembling a graphical representation

of the system from a library of generic engine components such as compres-

sors, turbines, combusters, etc., and (ii) entering the component parameters

consistent with the engine type.

Several example GSP models are available for download [24]. One such

model is the ‘TSHAFT PWinput’ model (denoted as TSHAFT-GSP here) that

approximates a GE T700 engine which has a configuration consistent with the

Gas Turbine Behavioral Model (GTBM) developed herein. Some of the data

within TSHAFT-GSP is directly applicable to the GTBM. Other GTBM pa-

rameters, including efficiencies, must be extracted from diverse exercises of the

TSHAFT-GSP.

Table 1 shows GTBM parameters available directly from TSHAFT-GSP

and the others that must be inferred from simulation data: fc(Pcomp,me, ωgg),

ηextract(Pwf,3, P
c
cool,gg, ωgg), ηextract,pt(Pwf,4, Pcool,pt, ωgg, ωPT ), Pmax

fuel,ss(ωPT ),

Pmin
fuel,ss(ωPT ), Pout,ss(Pfuel,ss, ωPT,ss),and ∆P,f . These quantities are functions

of Pcomp,me, P c
cool,gg, Pcool,pt, P c

fuel, Pwf,3, Pwf,4, ωgg, and ωPT . The exact

structure of these functions is unknown. This requires that we presume func-

tion structures. It was found that multi-dimensional polynomial forms proved
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Table 1: TSHAFT-GSP GTBM parameters (TBE: to be extracted).

Parameter Value Parameter Value

Jpt 8.08 kg·m2 ηpt 1

Jspool 0.0603 kg·m2 ηpts 0.99

LHVfuel 43.031 MJ/kg τfuel 0.03 s

αc
bld 0.0925 fc TBE, Sec. 7.1

αc
cool 0.76 ηextract TBE, Appendix A.1

αc
cool,gg 1 ηextract,pt TBE, Appendix A.2

ηcomb 0.985 Pmax
fuel,ss TBE, Appendix A.3.1

ηcomp 1 Pmin
fuel,ss TBE, Appendix A.3.2

ηspool 0.99 Pout,ss TBE, Appendix A.3

ηturb 1 ∆P,f TBE, Appendix A.3.3

adequate. Each polynomial form is specified with a set of coefficients, ci. The co-

efficients are determined as least-squares fits to TSHAFT-GSP data. THSAFT-

GSP simulation data included both steady-state and transient responses. The

quality of the fit depends not only on the polynomial structure but also on the

richness of the data. In steady-state, the THSAFT-GSP operational envelope

in ωPT and Pout (described shortly) was gridded and all needed TSHAFT-GSP

power, speed, fuel values, etc. computed in the GSP simulator. In the transient

data collection, responses were computed while fuel was varied and ωPT was

held constant. Appropriate subsets of the combined data were used to execute

the least-squares fits. The worst coefficient of determination, R2, obtained was

0.9992, suggesting excellent fits to the TSHAFT-GSP data.

The TSHAFT-GSP Pout and ωPT operational envelope is shown in Fig. 6:

ωPT ∈ [680.7, 2188.6] rad/s where the maximum value is given in TSHAFT-

GSP and the minimum is approximately equal to 30% of full speed, the lower

limit for a GE T700 in [25]; Pout values at a given ωPT range between the

Pout at the zero surge margin and Pmax
out (ωPT ) = ωPT T max

PT · 10−6 MW where
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Figure 7: TSHAFT-GSP steady-state solution (ωPT,ss, Pout,ss) grid points.

T max
PT = 614 Nm. Further, Fig. 7 shows the (ωPT,ss, Pout,ss)

4 grid points for

TSHAFT-GSP steady-state data collection: the range of ωPT is divided into

eight equal partitions; Pout,ss at each ωPT,ss is the union of Pmax
out (ωPT,ss)

and Pout,ss(ωPT,ss) = {0.15 + 0.1n MW : 0.15 + 0.1n < Pmax
out (ωPT,ss), n ∈

Z≥0, surge margin ≥ 0}. The use of different (ωPT,ss, Pout,ss) points is possible

but the ones used here are sufficient for GTBM development as shown in the

simulations later on.

TSHAFT-GSP transient data was collected at ωPT values of 680.7, 1434.7,

and 2188.6 rad/s using the ωPT specific fuel schedule provided in section 8.1; the

fuel input has two step changes over a 20 s simulation. GTBM development is

possible with different/additional transient data but the transient data collected

appears sufficient as illustrated later.

4The subscript ‘ss’ means steady-state.
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7.1. TSHAFT Compressor Power Relationship

To approximate Eq. (19), we use a modified quadratic surface designated by

f2,1 and specified below:

Pcomp,me = fc(Pturb,me, ωgg) u f2,1(ccomp,me, Pturb,me, ωgg) (32)

where with ccomp,me = [c00, c10, c01, c20, c11]
T ,

f2,1(ccomp,me, x, y) = c00 + c10x + c01y + c20x
2 + c11xy. (33)

A least squares fit found that ccomp,me = [−2.1556 · 10−2,−3.4351, 1.0307 ·
10−4,−0.40722, 1.0784 · 10−3]T . R2, SSE, and RMSE fit quality are respec-

tively 0.9998, 2.2389·10−2, and 5.8420·10−3. These values indicate an excellent

quality of fit. We note here that alternate fit equations with, for example, higher

powers on the variables did not result in significantly improved fit quality.

The other remaining approximations are set forth in Appendix A.

8. TSHAFT Gas Turbine Engine Simulations

Here we compare the transient responses of the TSHAFT-GSP and the

GTBM developed in the previous section. Our purpose here is to validate the

assumptions used in the development of the GTBM and to show that minimal

error results in using the behavioral model, properly parameterized, in typical

responses. Thus making the GTBM useful for controller design.

8.1. TSHAFT-GSP and Gas Turbine Engine Behavioral Model Transient Re-

sponse Simulations

The GTBM is implemented in MATLAB and simulated using the ode23t

solver; initial conditions for a GTBM simulation are made equal to those of

a comparable TSHAFT-GSP simulation. Simulations cover 20 s of opera-

tion. Data is sampled at 10 Hz. During each simulation the power turbine

speed is held constant at the respective values of 6500 (680.7), 10100 (1057.7),

13700 (1434.7), 17300 (1811.7), and 20900 rpm (2188.6 rad/s). On the other

22



hand, the GTBM commanded normalized fuel input, ufuel, has a unit step rise

and one-half step decrease to simulate severe operation associated with slam

acceleration and slam deceleration, respectively [16]:

ufuel(t) =























0, 0 s ≤ t < 1 s

1, 1 s ≤ t < 10 s

0.5, 10 s ≤ t ≤ 20 s

(34)

Unlike the GTBM, the TSHAFT-GSP fuel input is entered as a series of W c
fuel,

denoted W c,GSP
fuel , and time points from which the GSP linearly interpolates

the desired fuel flow at a certain time. The W c,GSP
fuel and time point data are

obtained by (i) performing a continuous-time simulation of Eq. (21) with input

from Eq. (30) and ufuel above to obtain P c
fuel over the simulation time, (ii)

dividing P c
fuel by LHVfuel to obtain W c

fuel, and (iii) sampling W c
fuel at 10 Hz

to get W c,GSP
fuel . Further, to ensure both the TSHAFT-GSP and GTBM use the

same fuel input, GTBM P c
fuel is interpolated from P c,GSP

fuel = W c,GSP
fuel LHVfuel

data.

Figures 8, 9 and 10 compare TSHAFT-GSP and GTBM Pcomp,th, Pturb,th,

and Pout at Npt (ωPT ) values of 6500 (680.7), 13700 (1434.7), and 20900 rpm

(2188.6 rad/s); similar plots are obtained at the other Npt values simulated.

8.2. THAFT-GSP and Gas Turbine Engine Behavioral Model Response Com-

parisons

Figures 8, 9 and 10 show the GTBM is able to very closely reproduce

TSHAFT-GSP results from given initial conditions and fuel commands. This

is further confirmed in Fig. 11 which displays the minimal error in GTBM out-

put power. The adequacy of the GTBM is further evaluated using the 2-norm

normalized error:

E2NN (xGTBM (t), xGSP (t)) = 100
‖xGTBM(t) − xGSP (t)‖2

‖xGSP (t)‖2
(35)

where x(t) denotes the simulation variable time history for comparison. Table 2

summarizes the 2-norm normalized error obtained for the spool speed, Ngg;
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Figure 8: Comparison of TSHAFT-GSP and GTBM simulated power responses at Npt =

6500 rpm (680.7 rad/s): (—) GTBM, (•) GSP.
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Figure 9: Comparison of TSHAFT-GSP and GTBM simulated power responses at Npt =

13700 rpm (1434.7 rad/s): (—) GTBM, (•) GSP.
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Figure 10: Comparison of TSHAFT-GSP and GTBM simulated power responses at Npt =

20900 rpm (2188.6 rad/s): (—) GTBM, (•) GSP.

Table 2: TSHAFT-GSP and GTBM results 2-norm normalized error.

Npt ωPT E
2NN
Ngg

E
2NN
Pcomp,th

E
2NN
Pcomp,th

E
2NN
Pout

6500 680.7 0.23% 0.81% 0.75% 1.75%

10100 1057.7 0.11% 0.40% 0.37% 3.49%

13700 1434.7 0.11% 0.59% 0.66% 0.64%

17300 1811.7 0.21% 0.88% 0.95% 1.22%

20900 2188.6 0.24% 1.17% 1.19% 0.82%

compressor thermodynamic power, Pcomp,th; gas generator turbine thermody-

namic power, Pturb,th; and free power turbine output power, Pout obtained for

the simulations described in the previous section. Next, Table 3 gives the max-

imum percent errors (absolute basis) of the GTBM Ngg, Pcomp,th, Pturb,th, and

Pout values from the corresponding TSHAFT-GSP values over the simulations.

Overall, the 2-norm normalized errors are all below 3.5% and the maximum

absolute transient errors are below 7.2% which shows that the GTBM is ad-

equate for approximating the high-fidelity THSAFT-GSP output for control

design purposes.
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Table 3: TSHAFT-GSP and GTBM results maximum error.

Npt ωPT E
max
Ngg

E
max
Pcomp,th

E
max
Pcomp,th

E
max
Pout

6500 680.7 -1.00% 4.32% -3.48% -6.25%

10100 1057.7 -0.21% 3.28% 1.96% 6.87%

13700 1434.7 0.58% 5.20% 3.36% 7.17%

17300 1811.7 0.81% 6.13% 5.1% 5.94%

20900 2188.6 0.84% 5.01% 5.20% 6.93%

8.3. TSHAFT-GSP Check of Gas Turbine Engine Behavioral Model Assump-

tions

The behavioral model is constructed upon the key assumption of weak back

coupling from the power turbine rotor speed, Npt, to the gas generator speed,

Ngg. To check this assumption, we simulate TSHAFT-GSP over 350 s with

a changing load. At the start of the simulation, the engine is at steady-state

with a 450 Nm load on the power turbine and fuel supplied at 0.067 kg/s.

Then, to test weak back coupling, a square-wave shaped power turbine load

is applied from 10 to 190 s with amplitude of 150 Nm, mean of 450 Nm, and

period of 60 s; the fuel flow rate remains constant. Fig. 12 shows Npt, Ngg,

the power turbine input Pwf,4, and Pout normalized to their values at t = 0:
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Figure 12: TSHAFT-GSP simulation weak-coupling check with normalized shaft speeds

(upper) and normalized power turbine absorbed power and station 4 power (lower): (—)

NPT (upper)/P out (lower), (•) Ngg (upper)/P wf,4 (lower), (– –) superimposed power tur-

bine load

Npt = 14873 rpm (ωPT = 1557.5 rad/s), Ngg = 41646 rpm (ωgg = 4361.2 rad/s),

Pwf,4 = 2.646 MW, and Pout = 0.701 MW. Npt varies 45% over the load

changes while Ngg varies 0.1% and the direction of change is opposite that

of Npt. Moreover, the percentage difference in Pout is 103%, reflecting the

power turbine load and speed changes, but the power supplied to the power

turbine, Pwf,4 is effectively constant with a variation of 0.2%. The results

support the assumption of weak back coupling from Npt to the gas generator

for this test; when the power turbine load and speed noticeably vary, the gas

generator operation is effectively unchanged.

9. Normalized LM2500 Gas Turbine Engine Behavioral Model Pa-

rameter Identification

In this section, we present the behavioral model parameters for a GE LM2500

having normalized values (denoted as the normalized LM2500) in consideration

of proprietary information: maximum engine power is 1 MW, Nmax
gg and Nmax

pt

are 1000 rpm, and the maximum fuel input is 1 kg/s. The GTBM parameters
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were obtained from a GSP model with output that approximates the output of

a GE LM2500 simulator for ωgg ∈ [82.2, 104.7] rad/s (Ngg ∈ [785, 1000] rpm)

and ωPT ∈ [29.1, 104.7] rad/s (Npt ∈ [278, 1000] rpm). Our lack of GE simula-

tor bleed air knowledge prevented us from adequately matching outputs from

the simulators outside of the given speed ranges. Further, a complete GTBM

parameter set was not obtained directly from the GE simulator because its

provided engine specifications and output set are limited.

Table 4 lists the normalized LM2500 GTBM parameters and their source.

We point out (i) the αc
i values were set to zero because GE simulator bleed

air data was not available and (ii) unity values for ηcomp, ηturb, and ηpt are

a consequence of using the GSP, and (iii) ηcomb was taken from TSHAFT-

GSP as a typical value. The values and functional forms of fc(Pcomp,me, ωgg),

ηextract(Pwf,3, P
c
cool,gg, ωgg), ηextract,pt(Pwf,4, Pcool,pt, ωgg, ωPT ), Pmax

fuel,ss(ωPT ),

Pmin
fuel,ss(ωPT ), and ∆P,f are provided in Appendix C; they were determined

using similar reasoning and methods to that provided for the corresponding

TSHAFT GTBM quantities as described in section 7 and Appendix A. The

worst coefficient of determination, R2, obtained was 0.9988, suggesting excellent

fit to the GSP data and usefulness of the data fitting approach introduced with

the TSHAFT example. However we note that, unlike the TSHAFT example,

the data used to obtain Pmax
fuel,ss(ωPT ) and Pmin

fuel,ss(ωPT ) is taken from the GE

simulator and thus Pout,ss(Pfuel,ss, ωPT,ss) is not required in this example.

Steady-state response GSP data for parameter fitting was generated using

the grid of (ωPT,ss, Pout,ss, Wfuel,ss) input values listed in Appendix B. GSP

transient response data was collected at ωPT values of 29.1, 66.9, and 104.7 rad/s

using the ωPT specific fuel schedule provided in section 10.1; the fuel input has

two step changes over a 20 s simulation. GTBM parameter development is

possible with different/additional steady-state and transient data but the data

collected is sufficient for GTBM development as shown in the simulations later

on.
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Table 4: Normalized LM2500 GTBM parameters ([G]: GE simulator, [T]: TSHAFT-GSP,

TBE: to be extracted).

Parameter Value Parameter Value

Jpt 49.445 kg·m2 [G] ηpt 1

Jspool 39.405 kg·m2 [G] ηpts 0.99 [17]

LHVfuel 2.7045 MJ/kg [17] τfuel 0.2 s [26]

αc
bld 0 fc TBE, Appendix C

αc
cool 0 ηextract TBE, Appendix C

αc
cool,gg 0 ηextract,pt TBE, Appendix C

ηcomb 0.985 [T] Pmax
fuel,ss TBE, Appendix C

ηcomp 1 Pmin
fuel,ss TBE, Appendix C

ηspool 0.99 [17] ∆P,f TBE, Appendix C

ηturb 1

10. Normalized LM2500 Gas Turbine Engine Simulations

Here we compare the transient responses of the normalized LM2500 GSP

model and the developed GTBM. As with the TSHAFT example, our purpose

here is to validate the assumptions used in the development of the GTEBM

and to show that minimal error results in using the behavioral model, properly

parameterized, in typical responses. Thus showing again that the GTBM is

useful for controller design.

10.1. Normalized LM2500 Gas Turbine Engine Behavioral Model and GSP Tran-

sient Response Simulation

The GTBM is implemented in MATLAB and simulated using the ode23t

solver; initial conditions for a GTBM simulation are set equal to those of

a comparable GSP simulation. Simulations cover 20 s of operation during

which data is sampled at 10 Hz. During each simulation power turbine speed

is held constant at the respective values of 278 (29.1), 639 (66.9), and 1000

(104.7) rpm (rad/s). However the commanded fuel power has approximately a
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Figure 13: Comparison of normalized LM2500 GSP and GTBM simulated power responses

at 278 rpm (29.1 rad/s): (—) gas turbine engine behavioral model, (•) GSP.

step rise and one-half step decrease to simulate severe operation associated with

slam acceleration and slam deceleration, respectively [16]:

P c
fuel(t) =























































Pmin
fuel,ss(ωPT ), 0 s ≤ t < 1 s

Pmin
fuel,ss(ωPT ) +

∆Pfuel,ss

0.1 (t − 1), 1 s ≤ t < 1.1 s

Pmax
fuel,ss(ωPT ), 1.1 s ≤ t < 10 s

Pmax
fuel,ss(ωPT ) − ∆Pfuel,ss

0.2 (t − 10), 10 s ≤ t ≤ 10.1 s

P min
fuel,ss(ωP T )+P max

fuel,ss(ωPT )

2 , 10.1 s ≤ t ≤ 20 s

(36)

where ∆Pfuel,ss
= Pmax

fuel,ss(ωPT ) − Pmin
fuel,ss(ωPT ). In this example, we bypassed

ufuel and utilized P c
fuel(t) directly to simplify the manual entry of the desired

fuel input into the GSP. The normalized LM2500 GSP model fuel input is

entered as a series of W c
fuel, denoted W c,GSP

fuel , and time points. The W c,GSP
fuel

and time point data consist of the values of P c
fuel(t) divided by LHVfuel at

t ∈ {0, 1, 1.1, 10, 10.1, 20} s.

Figures 13, 14 and 15 show differences in the Pcomp,th, Pturb,th, and Pout

for Npt (ωPT ) values of 278 (29.1), 639 (66.9), and 1000 (104.7) rpm (rad/s),

respectively.
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Figure 14: Comparison of normalized LM2500 GSP and GTBM simulated power responses

at 639 rpm (66.9 rad/s): (—) gas turbine engine behavioral model, (•) GSP.
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Figure 15: Comparison of normalized LM2500 GSP and GTBM simulated power responses

at 1000 rpm (104.7 rad/s): (—) gas turbine engine behavioral model, (•) GSP.
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Figure 16: Error between normalized LM2500 GTBM and GSP Pout(t) for Npt of 278 rpm

(29.1 rad/s), 639 rpm (66.9 rad/s), and 1000 rpm (104.7 rad/s).

10.2. Normalized LM2500 Gas Turbine Engine Behavioral Model and GSP Re-

sponse Comparisons

Figures 13, 14 and 15 show that the GTBM is able to very closely mimic

GSP results from given initial conditions and fuel commands. This is further

confirmed in Fig. 16 which displays the overall minimal error in GTBM output

power. The adequacy of the GTBM is further evaluated using the 2-norm

normalized error calculated using Eq. (35). Table 5 summarizes the 2-norm

normalized error obtained for the spool speed, Ngg; compressor thermodynamic

power, Pcomp,th; gas generator turbine thermodynamic power, Pturb,th; and free

power turbine output power, Pout obtained for the simulations described in the

previous section. Next, Table 6 shows the maximum percent error difference

(absolute basis) of the GTBM Ngg, Pcomp,th, Pturb,th, and Pout values from the

GSP values over the simulations. Overall, the 2-norm normalized errors are

all below 2.7% and the maximum absolute errors are below 7.6% which shows

again that the BM is adequate for approximating the high-fidelity GSP model

output for control design purposes.
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Table 5: Normalized LM2500 behavioral model and GSP results 2-norm normalized error.

Npt ωPT E
2NN
Ngg

E
2NN
Pcomp,th

E
2NN
Pturb,th

E
2NN
Pout

278 29.1 0.55% 2.66% 2.65% 1.71%

639 66.9 0.19% 0.73% 0.53% 0.68%

1000 104.7 0.57% 2.47% 2.50% 0.95%

Table 6: Normalized LM2500 behavioral model and GSP results maximum absolute error.

Npt ωPT E
max
Ngg

E
max
Pcomp,th

E
max
Pturb,th

E
max
Pout

278 29.1 -2.36% -7.58% -6.61% -5.15%

639 66.9 -1.50% -6.53% -2.39% -6.71%

1000 104.7 1.69% 6.13% 6.83% -4.09%

10.3. Normalized LM2500 GSP Model Check of Gas Turbine Engine Behavioral

Model Assumptions

We again check the assumption of weak back coupling from the power turbine

rotor speed, Npt, to the gas generator speed, Ngg. The form of the test is

the same as for the TSHAFT-GSP in section 8.3 where a square-wave shaped

power turbine load of period 60 s is applied. For the normalized LM2500 GSP

model test, the load has a mean of mean of 4.9761·103 Nm and amplitude of

1.2440·103 Nm and the fuel is supplied at a constant rate of 0.44441 kg/s. Fig. 17

shows Npt, Ngg, the power turbine input Pwf,4, and Pout normalized to their

values at t = 0: Npt = 641 rpm (ωPT = 67.1 rad/s), Ngg = 869 rpm (ωgg =

91.0 rad/s), Pwf,4 = 1.1471 MW, and Pout = 0.33390 MW. Npt varies 64% over

the load changes while Ngg varies 0.9% and the direction of change is opposite

that of Npt. Moreover, the percentage difference in Pout is 101%, reflecting the

power turbine load and speed changes, but the power supplied to the power

turbine, Pwf,4 is effectively constant with a difference of 0.4%. The results

support the assumption of weak back coupling from Npt to the gas generator

for this test; when the power turbine load and speed noticeably vary, the gas

generator operation is effectively unchanged.

33



N
P

T
,
N

g
g

P
o
u

t
,
P

w
f
,4

Time (s)

0 50 100 150 200 250 300 350

0 50 100 150 200 250 300 350

0.5

1

1.5

0.8

1

1.2

1.4

Figure 17: Normalized LM2500 GSP model simulation weak-coupling check with normalized

shaft speeds (upper) and normalized power turbine absorbed power and station 4 power
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power turbine load

11. Conclusions

A gas turbine engine behavioral model for power management control design

is derived wherein the engine is composed of a gas generator and free running

power turbine. The behavioral model presented has three advantages. First,

it is structurally simpler than a detailed first principles engine model and is

suitable for control purposes. Second, it requires a low number of surface fits

for operational characteristics, reducing the amount of data (particularly pro-

prietary) needed to model the engine compared to other control models. The

behavioral models here require three surface fits (compressor power, gas gener-

ator turbine extraction efficiency, and free power turbine extraction efficiency).

The minimum and maximum fuel power fits provided are not counted since they

were created out of convenience and not necessity. In contrast, other control

models require between four [14] and six fits [12, 13]. Third, the behavioral

model is able to produce sufficiently accurate output using less detailed engine

information than a high-fidelity first principles model. The maximum error (ab-

solute basis) at steady-state between the behavioral model and GSP outputs for
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the TSHAFT engine is no greater than 7.2% over a wide range of power turbine

operation speeds. Similarly, for the normalized LM2500, the maximum error

(absolute basis) between the behavioral model and GSP outputs is no greater

than 7.6%. The 2-norm normalized errors between GTBM and GSP responses

for the TSHAFT and normalized LM2500 were all 3.5% or less. These low error

values validate the GTBM as being suitable for control design purposes. Fur-

ther, the key assumption that the gas generator can be treated as the power

turbine actuator was investigated and verified using the GSP TSHAFT and

normalized LM2500 examples.
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Appendix A. TSHAFT GTBM Parameter Functional Fits

Appendix A.1. Gas Generator Turbine Extraction Efficiency

The efficiency, ηextract, in Eq. (14) is the ratio of gas generator turbine ther-

modynamic output power to thermodynamic input power. The output power is

approximated by a modified quadratic equation, labeled f2,1. The fit, specified

by Eq. (A.1), requires TSHAFT-GSP values for P c
cool,gg, Pwf,3, and ωgg. ωgg

is a TSHAFT-GSP native output as are Pcomp,th and W c
fuel. Thus P c

cool,gg is

computed from Eq. (16) using the fractional values in Table 1 and Pcomp,th.

Pwf,3 is from Eq. (12), Table 1, Pcomp,th, and P c
fuel where P c

fuel is calculated

with Eq. (11), W c
fuel, and Table 1. As such,

ηextract(Pwf,3, P
c
cool,gg, ωgg) u

f2,1(cextract, Pwf,3 + P c
cool,gg, ωgg)

Pwf,3 + P c
cool,gg

(A.1)

where cextract = [c00, c10, c01, c20, c11]
T and

f2,1(cextract, x, y) = c00 + c10x + c01y + c20x
2 + c11xy. (A.2)

Using least squares to fit f2,1 to TSHAFT-GSP Pturb,th data, cextract = [−1.2496,−8.9507·
10−2, 3.9566·10−4,−9.8035·10−3, 8.1537·10−5]T with R2=0.9997, SSE=2.9499·10−2,

and RMSE=6.7058·10−3. It was observed that fits with higher order surface fits

showed no noticeably better quality.

Appendix A.2. Free Power Turbine Extraction Efficiency

The efficiency ηextract,pt(ωgg, Pwf,4, ωPT )5 in Eq. (25) is the fraction of the

thermodynamic input power to the free power turbine that is extracted for

conversion to mechanical output power. The thermodynamic power extracted

by the free power turbine is approximated by a three-dimensional quadratic

5Pcool,pt is not considered in TSHAFT-GSP and not included in the listed dependencies.
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function, denoted f2,2,2. The fit set forth in Eq. (A.3) requires TSHAFT-GSP

data for ωgg, ωPT , and Pwf,4 = Pwf,3 + P c
cool,gg − Pturb,th (from Eqs. (14)

and (15)); using Appendix A.1 to obtain Pwf,3 and P c
cool,gg and the native

GSP outputs ωgg, ωPT , and Pturb,th, the fit is

ηextract,pt(Pwf,4, ωgg, ωPT ) u
f2,2,2(cextract,pt, ωgg, Pwf,4, ωPT )

Pwf,4
(A.3)

where cextract,pt = [c000, c100, c010, c001, c110, c101, c011, c111, c200, c020, c002]
T and

f2,2,2(cextract,pt, x, y, z) =c000 + c100x + c010y + c001z + c110xy

+ c101xz + c011yz + c111xyz

+ c200x
2 + c020y

2 + c002z
2

(A.4)

The least squares fit of f2,2,2 to TSHAFT-GSP Ppt,th data results in c000 =

−0.98485, c100 = 4.7740 · 10−4, c010 = −0.53370, c001 = 7.4699 · 10−6, c110 =

1.7980 · 10−4, c101 = 4.8897 · 10−9, c011 = 1.0773 · 10−5, c111 = 1.8968 · 10−8,

c200 = −5.9701 · 10−8, c020 = −3.7386 · 10−2, c002 = −4.7685 · 10−8 and a

fit quality of R2=0.9998, SSE=1.8703·10−2, and RMSE=5.3193·10−3, which as

before is adequate for our needs.

Appendix A.3. TSHAFT Fuel Power Relationships

From steady-state TSHAFT-GSP data, Pout,ss = f(Pfuel,ss, ωPT,ss) is ap-

proximated by f2,2:

Pout,ss = f(Pfuel,ss, ωPT )

u f2,2(cPout,ss
, Pfuel,ss, ωPT,ss, ω

min
PT,ss, ω

max
PT,ss, ω

0
PT,ss)

(A.5)
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with cPout,ss
= [c1, c2, c3, c4, c5, c6, c7, c8, c9, c10]

T and for arbitrary x,

f2,2(cPout,ss
, x, y, ymin, ymax, y0) =







































f1
2,2(cPout,ss

, x, y, ymin, ymax, y0),

ymin ≤ y < y0

f2
2,2(cPout,ss

, x, y, ymin, ymax, y0),

y0 ≤ y ≤ ymax

f1
2,2(cPout,ss

, x, y, ymin, ymax, y0) =(c1 + c2x + c3x
2)y

+ (c4x + c5x
2)y2

f2
2,2(cPout,ss

, x, y, ymin, ymax, y0) =(c6 + c7x + c8x
2)y

+ (c9x + c10x
2)y2

(A.6)

and f1
2,2 = f2

2,2 at y = y0 for arbitrary x to prevent jump discontinuities in

the approximation. The forms of f1
2,2 and f2

2,2 are the same as the fit developed

in [26] for the AVCO Lycoming TF-40, and the Pratt & Whitney FT4A-14, FT9,

and FT4C-2 engines which resulted in R2 ≥ 0.9997. Our use of the same general

fit surface here as in [26] and continuity of the surfaces at (x, y0) allows us to

develop the minimum and maximum fuel power curves called for in section 6 in

essentially the same way as in [26].

To obtain a least squares fit, we first set ωmin
PT,ss = 680.7 rad/s and ωmax

PT,ss =

2188.6 rad/s as specified in section 7. The value of ω0
PT,ss = 1057.7 rad/s

was chosen via iteration to obtain an adequate R2=0.9992, SSE=4.4694·10−3,

and RMSE=8.1674·10−3. The resulting least squares coefficients are cPout,ss
=

[−1.8946·10−4, 4.0396·10−4, 3.4151·10−5,−1.0229·10−7,−4.5277·10−8,−1.8946·
10−4, 3.8882 · 10−4,−2.3113 · 10−5,−8.7985 · 10−8, 8.8648 · 10−9]T . Higher order

approximations showed no significant improvement.

Appendix A.3.1. Maximum Fuel Power Function

The maximum steady-state fuel power curve, Pmax
fuel,ss(ωPT,ss), is required in

Eq. (30). We approximate Pmax
fuel,ss(ωPT,ss) with a third-order polynomial:

Pmax
fuel,ss u f3(cP max

fuel,ss
, ωPT,ss) (A.7)
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where cP max
fuel,ss

= [c11, c12, c13, c14]
T and f3(cP max

fuel,ss
, x) = c11 + c12x + c13x

2 +

c14x
3. The fit is similar to what was done in [26].

Values of Pmax
fuel,ss for the ωPT,ss were obtained by (i) recalling from section 7

that the maximum Pout,ss at each ωPT,ss is equal to ωPT,ssT
max
PT ·10−6 MW and

(ii) solving Eq. (A.5) for Pfuel,ss in terms of (ωPT,ss, Pout,ss) with the quadratic

formula resulting in

Pfuel,ss(cPout,ss
,Pout,ss, ωPT,ss) = −

−c2ωPT,ss − c4ω
2
PT,ss +

√
∆

2c3ωPT,ss + 2c5ω2
PT,ss

∆ =(c2ωPT,ss + c4ω
2
PT,ss)

2

− 4(c3ωPT,ss + c5ω
2
PT,ss)(c1ωPT,ss − Pout,ss)

(A.8)

where c1, . . . , c5 values are from Appendix A.3, valid for ωPT,ss ∈ [ωmin
PT,ss, wptss0),

and [c1, . . . , c5]
T are replaced with [c6, . . . , c10]

T , respectively, when ωPT,ss ∈
[ω0

PT,ss, ω
min
PT,ss]. The positive square root is chosen so that the results of Eq. (A.8)

are consistent with the output of Eq. (A.5).

Given the Pmax
fuel,ss and ωPT,ss data, a least squares fit with Eq. (A.7) gave

cP max
fuel,ss

= [−0.43201, 5.7345 · 10−3,−2.9075 · 10−6, 5.9909 · 10−10]T with good

fit quality of R2=0.9953, SSE=1.8441·10−2, and RMSE=6.0730·10−2. Higher

order polynomials may be used for the function approximation but f3 proved

acceptable. Further, Eq. (A.7) can be used with ωPT input instead of ωPT,ss as

in Eq. (30) during transient operation.

Appendix A.3.2. Minimum Fuel Power Function

Eq. (30) requires Pmin
fuel,ss(ωPT,ss) which we approximate (as in [26]) with a

cubic polynomial:

Pmin
fuel,ss u f3(cP min

fuel,ss
, ωPT,ss) (A.9)

where cP min
fuel,ss

= [c15, c16, c17, c18]
T , f3(cP min

fuel,ss
, x) = c15 + c16x + c17x

2 +

c18x
3. The values of Pmin

fuel,ss(ωPT,ss) were obtained from Eq. (A.8) with Pout,ss

set equal to the output power on the zero surge margin curve at ωPT,ss (see

Fig. 6); the values used in this approximation were obtained from interpolation

of TSHAFT-GSP surge margin data in section 7. This resulted in cP min
fuel,ss

=
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[0.64373, 1.1950·10−3,−6.5999·10−7, 1.6020·10−10]T with R2=0.9984, SSE=3.8511·10−3,

and RMSE=6.3337·10−3. Clearly, a cubic fit was sufficient for our purposes.

Again, Eq. (A.9) can be used (approximately) with ωPT input instead of ωPT,ss

as in Eq. (30) during transient operation.

Appendix A.3.3. TSHAFT Maximum Absolute Change in Fuel Power

TSHAFT ∆P,f=3.288 MW/s. It is obtained from

∆P,f =
maxωP T∈[ωmin

PT
,ωmax

PT
] P

max
fuel,ss − minωPT ∈[ωmin

PT
,ωmax

P T
] P

min
fuel,ss

∆t
(A.10)

where the numerator is calculated from the expressions for Pmax
fuel,ss (Eq. (A.7))

and Pmin
fuel,ss (Eq. (A.9)). The value of ∆t is chosen as 1 s. This is an average

value in [26], since ∆t is not available from TSHAFT-GSP data. Estimates of

the fuel power rates for the engines listed in Appendix A.3 are set forth in [26].

Appendix B. Normalized LM2500 Model GSP Inputs

The GSP inputs for normalized LM2500 steady-state response were ob-

tained from the GE simulator using inputs of ωPT and ωgg where each ωPT ∈
{29.1, 34.9, 58.2, 81.5, 104.7} rad/s value was paired with ωgg values of 82.2, 90.5,

98.6, and 104.7 rad/s6 Thus, the normalized LM2500 GSP model (ωPT,ss, Pout,ss, Wfuel,ss)

inputs for steady-state operation were (104.7,1,1), (81.5,0.91540,0.96677), (58.2,0.67721,0.82251),

(104.7,0.82402,0.83687), (81.5,0.75813,0.80952), (58.2,0.64234,0.78354), (34.9,0.40557,0.68098),

(29.1,0.33757,0.65295), (104.7,0.36652,0.468343), (81.5,0.35459,0.45535), (58.2,0.31376,0.43689),

(34.9,0.22994,0.41570), (29.1,0.20060,0.41160), (104.7,6.2735·10−2,0.22426), (81.5,0.10149,0.23041),

(58.2,0.10706,0.22631), (34.9,8.3906·10−2,0.21332), and (29.1,7.3536·10−2,0.20785).

Appendix C. Normalized LM2500 Parameter Functional Fits

The normalized LM2500 parameter functional fits were performed using sim-

ilar reasoning and methods to that provided for the corresponding TSHAFT

6GE simulator output for the (ωPT , ωgg) pairs of (29.1, 104.7) rad/s and (34.9, 104.7) rad/s

indicated these were not valid operating points.

42



GTBM quantities as described in section 7 and Appendix A.

The approximation of the normalized LM2500 compressor power relation-

ship, Eq. (19), is

Pcomp,me = fc(Pturb,me, ωgg) u f4,2(ccomp,me, Pturb,me, ωgg) (C.1)

where

f4,2(c4,2, x, y) =c00 + c10x + c01y + c20x
2 + c11xy

+ c02y
2 + c30x

3 + c21x
2y + c12xy2

+ c40x
4 + c31x

3y + c22x
2y2

(C.2)

and c4,2 = [c00, c10, c01, c20, c11, c02, c30, c21, c12, c40, c31, c22]
T . The data fit re-

sults in ccomp,me = c4,2 with c00 = −2.8920, c10 = 18.966, c01 = 4.7536 · 10−2,

c20 = −22.001, c11 = −0.25368, c02 = −1.8980 · 10−4, c30 = 15.960, c21 =

0.16012, c12 = 6.1996 · 10−4, c40 = 2.2229, c31 = −0.22689, c22 = 1.1867 · 10−3

and fit quality of R2=0.9996, SSE=3.6792·10−3,and RMSE=5.8367·10−3.

The approximation of ηextract in Eq. (14) for the normalized LM2500 is

ηextract(Pwf,3, ωgg) u
f4,2(cextract, Pwf,3, ωgg)

Pwf,3
(C.3)

where Eq. (C.2) describes f4,2. The data fit results in cextract = c4,2 with

c00 = −10.881, c10 = 10.129, c01 = 0.13831, c20 = −2.9768, c11 = −0.13290,

c30 = 0.19673, c21 = 4.5707 · 10−2, c40 = 2.1652 · 10−2, c31 = −5.1020 · 10−3,

c02 = c12 = c22 = 0 and fit quality of R2=0.9988, SSE=1.2516·10−2, and

RMSE=1.0619·10−2.

The approximation of ηextract,pt in Eq. (25) for the normalized LM2500 is

ηextract,pt(Pwf,4, ωgg, ωPT ) u
f2,4,2(cextract,pt, ωgg, Pwf,4, ωPT )

Pwf,4
(C.4)

where cextract,pt = [c000, c100, c010, c001, c110, c101, c011, c111, c200, c020, c002, c210,
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c201, c120, c021, c102, c012, c220, c202, c022, c030, c130, c031, c040]
T and

f2,4,2(cextract,pt, x, y, z) = c000 + c100x + c010y + c001z + c110xy

+ c101xz + c011yz + c111xyz + c200x
2 + c020y

2 + c002z
2

+ c210x
2y + c201x

2z + c120xy2 + c021y
2z + c102xz2 + c012yz2

+ c220x
2y2 + c202x

2z2 + c022y
2z2 + c030y

3 + c130xy3

+ c031y
3z + c040y

4

(C.5)

The data fit results in c000 = 0, c100 = 3.2715 · 10−3, c010 = 5.0458, c001 =

−0.19454, c110 = −0.10516, c101 = 4.4157 · 10−3, c011 = −4.0134 · 10−2, c111 =

4.9516·10−4, c200 = −5.3809·10−5, c020 = −0.95824, c002 = 1.1073·10−3, c210 =

5.6633 · 10−4, c201 = −2.4498 · 10−5, c120 = 8.7022 · 10−3, c021 = −2.9192 · 10−3,

c102 = −2.1999 · 10−5, c012 = 9.0303 · 10−5, c220 = 3.3365 · 10−5, c202 = 9.4515 ·
10−8, c022 = −2.6554·10−5, c030 = 0.67210, c130 = −9.0936·10−3, c031 = 6.9531·
10−4, c040 = 4.8106 · 10−2 and a fit quality of R2=0.9999, SSE=7.5565·10−4,

and RMSE=2.5094·10−3.

The normalized LM2500 Pmax
fuel,ss(ωPT,ss) and Pmin

fuel,ss(ωPT,ss) functions have

the same third order polynomial form as given for the TSHAFT in Appendix

A.3. However we note that, unlike the TSHAFT example, the data used

to obtain Pmax
fuel,ss(ωPT ) and Pmin

fuel,ss(ωPT ) is taken from the GE simulator

and thus Pout,ss(Pfuel,ss, ωPT,ss) is not required in this example. The data

fit for Pmax
fuel,ss(ωPT,ss) results in cP max

fuel,ss
= [1.7467,−1.1810 · 10−2, 5.1735 ·

10−4,−2.9689·10−6]T with R2=0.9999, SSE=1.9468·10−5, and RMSE=4.4113·10−3.

The data fit for cP min
fuel,ss

= [0.46995, 3.9101 ·10−3,−2.5088 ·10−5, 1.3044 ·10−9]T

with R2=0.9998, SSE=1.3289·10−7, and RMSE=3.6454·10−4. Next, ∆P,f is

1.7691 MW/s using Eq. (A.10) with the preceding fuel power functions and

∆t = 1.25 s for an LM2500 [26].
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