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Microstructure and Rheology of Soft Particle Glasses 

 

Lavanya Mohan, Ph.D. 

The University of Texas at Austin, 2013 

 

Supervisor:  Roger T. Bonnecaze 

 

Soft particle glasses like microgels and compressed emulsions are densely 

packed, disordered suspensions of deformable particles. Quantitative relationships among 

the constituent properties and the macroscopic properties of the suspension are 

determined for their customized design as rheological additives. The microscopic origin 

of their macroscopic properties is also determined. Advanced characterization techniques 

like Large Amplitude Oscillatory Shear (LAOS) and microrheology are studied to use 

them efficiently to characterize these materials. Their microstructure and rheology are 

investigated through theory, simulations and experiments.  

Soft particle glasses are used as rheological additives in many applications 

including coatings, solid inks and textured food and cosmetic products but their 

formulation is largely empirical. A quantitative connection between their formulation and 

rheology is critical to enable their rational design. Their microstructure will lead to the 

microscopic origin of some unique properties in common with other soft crowded 

materials like intracellular cytoplasm and clays. These are complex fluids and require 

novel techniques to characterize them. A study of these techniques is essential to 

efficiently interpret the observations in terms of their macroscopic properties and the 

microscopic dynamics involved. 
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Particle scale simulations of steady and oscillatory shear flow are developed to 

predict the nonlinear rheology and microstructure of these glasses. The origin of yielding 

is determined as escape of particles from their cages giving rise to a shear induced 

diffusion. Microrheology is studied by developing simulations of a probe particle being 

pulled at a constant force and the rheological information from microrheology is 

quantitatively connected to that from bulk rheological measurements.  

Soft particle glasses develop internal stresses when quenched to a solid state by 

flow cessation during processing. Experiments are performed to characterize and a priori 

predict these stresses.  Simulations are used to determine the particle scale mechanisms 

involved in the stress relaxation on flow cessation and the microstructural origin of 

internal stresses.   

A pairwise interaction theory is developed for quiescent glasses to quantitatively 

predict their microstructure and elastic properties. The theory is then extended to sheared 

glasses to quantitatively predict their nonlinear rheology. The implementation of the 

pairwise theories is computationally much faster than the full three-dimensional 

simulations. 



 ix 

Table of Contents 

List of Tables ........................................................................................................ xii 

List of Figures ...................................................................................................... xiii 

Chapter 1:  Introduction ...........................................................................................1 

1.1 Why Study Soft Particle Glasses?..........................................................1 

1.2 Background ............................................................................................9 

1.3 Dissertation Outline .............................................................................25 

Chapter 2:  Steady Shear Rheology .......................................................................28 

2.1 Introduction .............................................................................................28 

2.2 Model Description ..................................................................................30 

2.3 Simulation Technique .............................................................................35 

2.4 Macroscopic Properties From Simulations .............................................36 

2.5 Microstructural Analysis .........................................................................41 

2.6 Comparison to Experiments ....................................................................51 

2.7 Summary and Conclusions .....................................................................53 

Supplemental Material 2.A: Sheared Microstructure in x-y plane ...............55 

Supplemental Material 2.B:  Spherical Harmonics.......................................56 

Supplemental Material 2.C: Derivation of Elastic Force at The Point of 

Maximum Accumulation .....................................................................59 

Supplemental Material 2.D: Derivation of Constitutive Equations for       

Normal Stress Differences ...................................................................62 

Supplemental Material 2.E: Experimental Details........................................64 

Supplemental Material 2.F: Simulation Data Tables ....................................68 

Chapter 3:  Oscillatory Shear Rheology ................................................................70 

3.1 Introduction .............................................................................................70 

3.2 Simulation Technique .............................................................................74 

3.3 Particle Scale Dynamics .........................................................................77 

3.4 Microstructure of Suspensions ................................................................84 

3.5 Macroscopic Rheology ...........................................................................92 



 x 

3.6 Interpretation of Physical Events Within Oscillatory Cycles .................98 

3.7 Connecting the Microstructure to Macroscopic Oscillatory Shear    

Rheology ............................................................................................100 

3.8 Summary and Conclusions ...................................................................104 

Supplemental Material 3.A: Experimental Details .....................................107 

Supplemental Material 3.B: Comparison of Diffusivities From Steady            

and Oscillatory Shear .........................................................................111 

Supplemental Material 3.C: Bowditch-Lissajous Plots – Effect of        

Frequency ...........................................................................................112 

Supplemental Material 3.D:  Simulation Data Tables ................................114 

Chapter 4: Stress Relaxation on Flow Cessation .................................................116 

4.1 Introduction ...........................................................................................116 

4.2 Experimental Materials and Methods ...................................................118 

4.3 Simulation Technique ...........................................................................122 

4.4 Trapped Internal Stresses on Flow Cessation .......................................124 

4.5 Microstructural Changes on Flow Cessation ........................................131 

4.6 Nature of Short Time Relaxation on Flow Cessation ...........................139 

4.7 Nature of Relaxation at Long Times After Flow Cessation .................149 

4.8 Summary and Conclusions ...................................................................152 

Supplemental Material 4.A: Consequences of Internal Stresses in Aging 

Experiments .......................................................................................154 

Supplemental Material 4.B:  Simulation Data Tables ................................161 

Chapter 5: Active Microrheology ........................................................................164 

5.1 Introduction ...........................................................................................164 

5.2 Simulation Technique ...........................................................................167 

5.3 Tagged Probe Particle Motion ..............................................................170 

5.4 Microstructural Changes Around Tagged Probe Particle .....................181 

5.5 Correlation of Microrheology to the Bulkrheology ..............................187 

5.6 Summary and Conclusions ...................................................................192 

Supplemental Material 5.A: Long Range Microstructure Around              

Tagged Probe Particle ........................................................................194 



 xi 

Supplemental Material 5.B: Investigation of Box Size Effect ....................195 

Supplemental Material 5.C: Simulation Data Tables .................................196 

Chapter 6:  Pairwise Theory for Quiescent Glasses .............................................202 

6.1 Introduction ...........................................................................................202 

6.2 Pairwise Theory - Description ..............................................................205 

6.3 Particle Scale Simulations .....................................................................211 

6.4 Theoretical Predictions of Radial Pair Distribution Function ...............216 

6.5 Theoretical Predictions of Elastic Properties ........................................222 

6.6 Summary and Conclusions ...................................................................224 

Supplemental Material 6.A: Simulation Data Tables .................................225 

Supplemental Material 6.B: Theory Data Tables .......................................227 

Chapter 7:  Pairwise Theory for Sheared Glasses ................................................229 

7.1 Introduction ...........................................................................................229 

7.2 Pairwise Theory - Description ..............................................................230 

7.3 Theoretical Predictions using Mobility from Microrheology ...............235 

7.4 Theoretical Predictions using a Higher Mobility ..................................237 

7.5 Summary and Conclusions ...................................................................243 

Supplemental Material 7.A: Numerical Convergence Tests.......................245 

Supplemental Material 7.B: Mesh and Solver Setting in Comsol ..............247 

Supplemental Material 7.C: Theory Data Tables .......................................248 

Chapter 8: Concluding Remarks ..........................................................................250 

8.1 Conclusions ...........................................................................................250 

8.2 Suggested Future Work.........................................................................253 

Bibliography ........................................................................................................257 

Vita    ....................................................................................................................272 



 xii 

List of Tables 

Table 4.1: Sample properties ...............................................................................119 

Table 6.1: Pairwise interaction potential used in simulations. .............................212 



 xiii 

List of Figures 

Figure 1.1:   Steady shear rheology of Carbopol from Roberts and Barnes (2001) 

fitted to the Herschel-Bulkley equation of form 
0

nk    . ...................5 

Figure 1.2:   Steady and oscillatory shear rheology of commercial mayonnaise form 

Bower et al. (1999). A slope of -0.5 has been added to the steady shear flow 

curve on top for reference. ...........................................................................6 

Figure 1.3:  Microstructure of soft particle glasses in the food industry. (a) The 

microstructure of full-fat mayonnaise as visualized by CLSM (Confocal Laser 

Scanning Microscopy) from Dickinson and Rodríguez Patino (1999).           

(b) Scanning electron micrograph of whipped cream from Dickinson and 

Royal Society of Chemistry (Great Britain). Food Chemistry Group. (1987). 

The bar corresponds to 10  m. ...................................................................7 

Figure 1.4:   Schematic of various types of soft particles. (a) microgel particle;        

(b) emulsion droplet; (c) solid particle covered with adsorbed or grafted 

polymer chains; (d) star polymer; (e) block copolymer micelle; (f) liposome 

(bilayer);  (g) multi-lamellar vesicle. .........................................................11 

Figure 1.5:   Phase diagram of disordered soft particle suspensions. Top: Confocal 

microscope image of a dilute silicone-oil in water emulsion ( 0.35 ). 

Center: Fluorescent micrograph of a concentrated PMMA (hard) suspension   

( 0.57 ) from Sarangapani and Zhu (2008); Bottom: Confocal microscope 

image of a jammed silicone-oil in water emulsion  0.8 . ...................12 

Figure 1.6:   Microstructure of soft particle glasses: (a) AFM image of a concentrated 

microgel suspension (d  0.2  m) from Cloitre et al. (2003a). (b) Confocal 

microscope image of a concentrated silicone-oil in water emulsion               

(d  2  m) from Meeker et al. (2004b). (c) Optical microscope image of a 

multi-lamellar vesicle gel (d  5  m) from Ramos and Cipelletti (2001).               

(d) Confocal microscope image of aqueous foam (d  50  m) from Seth 

(2008). ........................................................................................................14 

Figure 1.7:   Steady shear flow curves of different soft particle glasses. (a) microgels 

from Cloitre et al. (2003b). (b) concentrated oil-in-water emulsions from    

Seth et al. (2011). (c) multi-lamellar vesicles from Fujii and Richtering 

(2006). ........................................................................................................16 



 xiv 

Figure 1.8:   Stress-strain behavior during oscillatory shear for different soft particle 

glasses. (a) microgels from Mohan et al. (2013). (b) Core-shell particles from 

Le Grand and Petekidis (2008). .................................................................18 

Figure 1.9:   Viscoelastic moduli during strain (left) and frequency (right) sweeps for 

different soft particle glasses. (a) Microgels from Mohan et al. (2013).         

(b) Concentrated emulsions: strain sweep from Mason et al. (1996) and 

frequency sweep from Mason (1999). (c) silica particles with adsorbed 

polyethylene oxide coating from Derec et al. (2003). ...............................19 

Figure 1.10:   Effect of shearing surface in soft particle glasses from Seth (2008). 

Symbols correspond to flow curves obtained with different surfaces:             

(a) repulsive; (b) partially adhering and (c) attractive. The solid                   

line corresponds to the bulk flow curves obtained using rough-rough surfaces.

....................................................................................................................21 

Figure 1.11:   Effect of wall slip in the measurement of viscoelastic moduli in 

concentrated emulsions from Pal (2000). ..................................................22 

Figure 1.12: Aging and memory properties of concentrated microgel glasses from 

Cloitre et al. (2000). (a) Strain recovery on flow cessation from different 

preshearing stresses. (b) Strain response at different waiting times (increasing 

from left to right) to a small step stress......................................................24 

Figure 2.1:   Structure and interactions of a model soft glass. (a) Typical configuration 

of jammed elastic spheres at 0.8  ;   is the applied shear rate.                  

(b) Schematic showing pair-wise interactions between particles   and   

with radii R and R  centered at x and x  and translating with velocities u

and u , r  is the center-to-center distance. h R R r      is the overlap 

distance; the thickness of the lubricating film separating the facets is much 

smaller that the overlap distance. ,u  is the component of the relative 

velocity parallel to the facets. The elastic force 
e

αβf  and the 

elastohydrodynamic drag force 
EHD

αβf  are parallel to the unit vectors normal      

( n ) and parallel ( n ) to the facets, respectively. .....................................32 



 xv 

Figure 2.2:   Computed shear stress of model soft glasses. Each color refers to a 

particular volume fraction:  = 0.70 (grey circle),  = 0.75 (blue circle), 

 = 0.80 (green circle),  = 0.85 (black circle),  = 0.90 (red circle). The 

continuous lines represent the best fits to a Herschel-Bulkley equation; the 

inset shows the variations of the elastic and viscous components of the stress 

for   = 0.70 and   = 0.90; the full line has a slope 2/3. ...........................38 

Figure 2.3:   Simulated shear modulus, yield stress, yield strain, and Herschel Bulkley 

parameter. Graphs (a), (b) and (c) show the variations of the low-frequency 

shear modulus  *

0G E , yield stress  *

y E , yield strain  y  versus the 

reduced volume fraction c   ( c  = 0.64 is the close-packing volume 

fraction) respectively. Black dots are the results from simulations; crosses in 

(c) refer to analytical predictions from the model presented in section 2.5.4. 

Graph (d) shows the parameter k  in the Herschel-Bulkley equation and it 

varies linearly with the low-frequency shear modulus. .............................39 

Figure 2.4:   Computed first and second normal stress differences of model soft 

glasses.  The first normal stress differences data are denoted by full symbols, 

the second normal stress difference by open symbols. Only data for   = 0.70 

(grey) and   = 0.90 (red) are plotted for the sake of clarity; the inset shows 

the variations of the elastic and viscous components of the first normal stress 

difference. ..................................................................................................40 

Figure 2.5:   Microstructure of soft particle glass at rest; the volume fraction is          

  = 0.80. (a) Static radial distribution function. (b) Pair distribution function 

shown in the x-y plane. (c) Pair distribution function shown in the azimuthal 

r   plane with the most probable center-to-center distance indicated by a 

white dash dotted line and a black arrow. ..................................................42 

Figure 2.6:   Microstructure of sheared soft particle glasses (  = 0.80). Azimuthal 

plots of the pair distribution function in the flow-gradient plane at different 

shear rates, which is indicative of the probability of finding a particle centre at 

position ( , )r   from a test particle centered at (0,0). Red color indicates 

highest probability of finding particle centres. The dashed line indicates the 

average centre-to-centre distance between particles at rest. ......................43 

Figure 2.7:   Spherical harmonic coefficients g2,-2(r) at different shear rates (  = 0.80)

....................................................................................................................45 



 xvi 

Figure 2.8:   Dimensionless force at the radius of maximum accumulation versus 

applied shear rate for volume fractions studied in figure 2.3. Each color refers 

to a particular volume fraction:  = 0.70 (grey circle),  = 0.75 (blue circle), 

 = 0.80 (green circle),  = 0.85 (black circle),  = 0.90 (red circle). .......47 

Figure 2.9:  Universal constitutive law (line) for shear stress from simulated data 

(symbols). The dashed line is the best fit to the constitutive equation derived 

in the text and Supplemental Material 2.C (k = 80±3). ..............................49 

Figure 2.10:  Universal constitutive laws (lines) for first (a) and second (b) normal 

stress differences from simulated data (symbols). The dashed lines are the best 

fit to the constitutive equation derived in the Supplemental Material 2.D 

(k’ = 20±2; k” = 26±2). ..............................................................................50 

Figure 2.11:   Universal scaling of shear stress and first normal stress difference from 

experimental data. (a) and (b) show data for concentrated emulsions rescaled 

using y , y  and E
*
 determined independently; solid symbols: oil in water-

glycerol emulsions with s =7.9 mPa.s; open symbols:  oil in water emulsions 

with s  = 1 mPa.s. (c) and (d): data for microgel suspensions (E
*
 = 40 kPa). 

The dotted lines are the best fits to Herschel-Bulkley variations of the shear 

stress data and first normal stress differences obtained from the simulations. 

The raw data are presented in the Supplemental Material figures 2.E.1 and 

2.E.2. ..........................................................................................................52 

Figure 3.1:   (a) Periodic simulation box (b) Imposed oscillatory shear rate. ........76 

Figure 3.2:   Mean square displacements of particles in the x-, y- and z- directions 

versus number of oscillations for different strain amplitudes:  (a) 0 y  = 3.0, 

1.5, 0.3 (top to bottom);  (b) 0 y   = 30, 15, 3.0 (top to bottom). The 

frequency is * 82 10s E    . .................................................................78 

Figure 3.3:   Mean square displacements of particles in the x-, y- and z- directions at 

small and large strain amplitudes versus oscillation number for different 

frequencies. (a) Small strain amplitude ( 0 y  = 0.09) at frequencies of 

8 6 4 3/ * 2 10 ,10 ,10 ,2 10s E         (top to bottom). (b) Large strain 

amplitude ( 0 y  =30) at frequencies 8 7 6/ * 2 10 ,10 ,10s E       (top to 

bottom). ......................................................................................................80 



 xvii 

Figure 3.4:   Shear-induced diffusion coefficients computed from the mean square 

displacements of particles. (a) Variations with the strain amplitude of the 

diffusion coefficients Di (i =x, y, z) computed from 2x  (), 2y  (), 

and 2z (), at non dimensional frequency 8/ * 2 10s E    ; the data for 

0 y  <1 have been estimated from the last computed oscillation where the 

mean square displacements approach their plateau values. (b) Variations with 

frequency of the non-dimensional averaged diffusion coefficient,                     

D = (Dx + Dy + Dz)/3 at 0 y  = 30 () and 0 y  = 3.0 (). (c) Variations of 

the averaged diffusion coefficients D/D0 for 0 y  >1 with the non-

dimensional shear-rate amplitude (same symbols as in (a) and (b)). .........83 

Figure 3.5:   Microstructure of soft particle glass ( = 0.80) subjected to small 

amplitude oscillations ( 0 y  = 0.09; / *s E  = 210
-8

). (a) Variations of the 

strain (- - -) and stress () waveforms over one cycle and positions of the five 

characteristic points where g(r) is presented. (b) Pair distribution functions in 

the azimuthal r-  plane; the most probable center-to-center separation at rest 

is indicated in the maximum and zero stress states by a white dash-dot line 

and a black arrow. (c) g2,-2(r) spherical harmonics. ...................................86 

Figure 3.6:   Microstructure of soft particle glass ( = 0.80) subjected to medium 

amplitude oscillations ( 0 y  = 3.0; / *s E  = 210
-8

). (a) Variations of the 

strain (- - -) and stress () waveforms over one cycle and positions of the six 

characteristic points where g(r) is presented. (b) Pair distribution functions in 

the azimuthal r-  plane; the most probable center-to-center separation at rest 

indicated in the zero stress states by a white dash-dot line and a black arrow. 

(c) g2,-2(r) spherical harmonics...................................................................89 

Figure 3.7:   Microstructure of soft particle glass ( = 0.80) subjected to large 

amplitude oscillations ( 0 y   = 30; / *s E  = 210
-8

 ). (a) Variations of the 

strain (- - -) and stress () waveforms over one cycle and positions of the six 

characteristic points where g(r) is presented. (b) Pair distribution functions in 

the azimuthal r-  plane; the most probable center-to-center separation at rest 

is indicated in the zero stress states by a white dash-dot line and a black 

arrow; (c) g2,-2(r) spherical harmonics. ......................................................91 



 xviii 

Figure 3.8:   Storage modulus G  ( and —) and loss modulus G  ( and ) 

versus reduced frequency from simulations (symbols) and experiments (lines) 

in the low strain amplitude or linear regime at  0 y   = 0.09. A reference 

slope of 0.5 is shown. .................................................................................93 

Figure 3.9:   Storage modulus G  ( and —), loss modulus G  ( and ----) and 

stress amplitude 0 ( and ……) as functions of strain amplitude 0 y   , 

from simulations (symbols) and experiments (lines) at a frequency of 

/ *s E  = 210
-8

. Dotted lines represent power law variations with exponents 

μ and ν respectively, as discussed in the text. ............................................95 

Figure 3.10:   Bowditch-Lissajous plots from simulations and experiments at different 

strain amplitudes. Left to right: linear viscoelastic regime ( 0 y  = 0.09; 

panels (a) and (d)); medium amplitude regime (inner to outer: 0 y  = 0.09, 

1.5, 3.0; panels (b) and (e)); large amplitude regime (inner to outer:          

0 y  = 3.0, 15, 30, 60; panels (c) and (f)). The symbols in panels (a), (b) and 

(c) represent the shear stress values which are predicted from the g2,-2(r) 

spherical harmonics as discussed in the text. .............................................97 

Figure 3.11:   Cage modulus versus strain amplitude at * 82x10s E    from 

simulations ()  and experiments (). For comparison the values of the low 

frequency storage modulus at low strain amplitude are also plotted              

(: simulations; —: experiments). ..........................................................102 

Figure 3.12:   Flowing portions of the BL plots for different strain amplitudes and 

frequencies (symbols) collapsed and superimposed to the flow curve from 

steady shear (symbols). For the sake of comparison between experiments and 

simulations, the data are represented in the set of reduced coordinates 

exemplified in the constitutive equation derived in chapter 2 (equation 2.16).

..................................................................................................................103 

Figure 4.1:   Flow curves (symbols) and Hershel-Bulkley fits (lines) of different 

samples used. ...........................................................................................120 

Figure 4.2:  Viscoelastic moduli G’ (solid lines) and G’’ (dashed lines) of samples 

used. a) Frequency sweep at 0.5% strain amplitude. b) Strain sweep at 1 rad/s 

frequency. Colors correspond to the same definition as in figure 4.1. ....121 

Figure 4.3:   Stress relaxation on flow cessation in concentrated microgels with 

different constituent properties. ...............................................................125 



 xix 

Figure 4.4:   Variation of trapped internal stresses on flow cessation with the microgel 

constituent properties in experiments ......................................................126 

Figure 4.5:    Stress relaxation on flow cessation (a) and variation of trapped internal 

stresses in simulations of soft particle glasses of volume fraction 0.8. The 

instant of flow cessation in (a) has been shifted for better comparison with 

different preshear conditions....................................................................127 

Figure 4.6:   Comparison of stress relaxation on flow cessation in simulations (a) and 

experiments (b) for a volume fraction of 0.8. The experiments correspond to 

the sample presented in figure 4.3c. The data points collected from 

experiments after flow cessation is represented by dots. The instant of flow 

cessation is shifted in (a) and (b) for better comparison ..........................128 

Figure 4.7:   Universal scaling for the effect of preshear stress P  on the internal 

stress I  on flow cessation with the yield stress y . The open symbols 

represent experimental data with microgels of different constituent properties.

..................................................................................................................130 

Figure 4.8:   Mean squared displacement of particles in r- (a), x- (b), y- (c), and z- (c) 

directions for different preshear rates (from top to bottom: *s E  10
-4

, 10
-5

, 

10
-6

, 10
-7

, 10
-8

)..........................................................................................132 

Figure 4.9:   Evolution of the pair correlation function g(r) (a and b) and the spherical 

harmonic g2,-2(r) (c and d) with time during relaxation for two different 

preshear flow conditions. .........................................................................135 

Figure 4.10:   Time evolution of radial distribution of contacts (a and b) and number 

of contacts per particle (c). The black dashed lines in (a) and (b) correspond to 

the static case distribution of particle contacts ........................................136 

Figure 4.11:   Spherical harmonic coefficient g2,-2(r): (a) during preshear at different 

rates (from left to right: *s E  =10
-4

, 10
-5

, 10
-6

, 10
-7

, 10
-8

); (b) at the final 

time of relaxation in simulations (same rates, from top to bottom).  Radial 

distribution of contacts per particle: during preshear (same rates, from left to 

right) (c) and at the final time of relaxation from simulations (d). The black 

dots in (c) and (d) correspond to the static case distribution of particle 

contacts. ...................................................................................................138 



 xx 

Figure 4.12: The rapid relaxation immediately upon flow cessation from simulations 

and experiments. The experiments correspond to the sample with C=2% 

water-glycerol  (36/64) solvent and 1% crosslinker. ...............................140 

Figure 4.13:   (a) Evolution of the depth of minima of g2,-2(r) with time (symbols and 

lines). (b) Initial relaxation path of the angular asymmetry in the soft particle 

glass (symbols) with time on flow cessation for different preshear flow 

conditions and its mapping to the macroscopic stress relaxation (lines). 142 

Figure 4.14:   Unscaled (a) and scaled (b) relaxation path from the preshear stress to 

the internal stress on flow cessation for samples with different constituent 

properties but similar preshear flow condition- ( )P y y   .................143 

Figure 4.15:  Scaled short term relaxation from simulations (a) and experiments (b). 

The experiments in b) are C=2% s =14 mPa.s and 1% crosslinker. (c) The 

dispersion in the relaxation path of microgel samples with different 

constituent properties. The color scheme is same as that used in figure 4.1. 

The black lines correspond to simulation data. ........................................144 

Figure 4.16:   Relaxation path from the preshear stress to the internal stress from 

simulations (a) and experiments (b). The experiments in b) are C=2% s =14 

mPa.s and 1% crosslinker. .......................................................................145 

Figure 4.17:   Variation of the non-dimensional ballistic velocity of the particles 

during the rapid initial relaxation. The symbols correspond to the raw data and 

the solid line represents the fit:  
0.71

*

sV E  . ...................................146 

Figure 4.18:  Scaled relaxation path from simulations (a) and experiments (b) using a 

ballistic time scale identified from microscopic dynamics. (c) Universal 

relaxation path for different preshear flow conditions, constituent properties 

and volume fractions. The experiments in (b) correspond to C =2% s =14 

mPa.s and 1% crosslinker. The color scheme in (c) is the same as that used in 

figure 4.1. The black lines correspond to simulation data .......................148 

Figure 4.19:   (a) Long term relaxation of trapped internal stresses in a soft particle 

glass with 2% polymer, water solvent and 1% crosslinker presheared at      

148 Pa. (b) and (c) Effect of preshear flow on the long term relaxation 

demonstrated using a soft particle glass with 2% polymer, water-glycerol 

(36/64) solvent and 1% crosslinker presheared at 62Pa (blue), 148 Pa (green), 

250 Pa (black) and 350 Pa (red). ..............................................................150 



 xxi 

Figure 4.20: Investigation of the effect of constituent properties of soft particle 

glasses on long term relaxation behavior. ................................................151 

Figure 5.1:   Simulation box with a jammed soft particle glass. A tagged particle is 

pulled with a constant force F in the positive x-direction ........................168 

Figure 5.2:   Instantaneous velocity U of the tagged particle in x- (red solid lines), y- 

(blue dashed lines) and z- (green dash dotted lines) direction being pulled 

through the jammed suspension at small: F=0.001 E
*
R

2
 (a) and large:       

F=10
 
E

*
R

2
 (b) force; x- is the direction of pull. .......................................171 

Figure 5.3:   Displacement of the tagged particle in x- (red solid lines), y- (blue 

dashed lines) and z- (green dash dotted lines) directions being pulled through 

the jammed suspension at small: F=0.001 E
*
R

2
 (a) and large: F=10 E

*
R

2
 (b) 

force. x- is the direction of pull. ...............................................................173 

Figure 5.4:   The velocity of the tagged particle in the direction of pull (x-) at different 

force of pull for different volume fractions. Slopes of 1 and 2 are indicated for 

reference. The lines are fits to the model in equation (5.2) based on the 

observed threshold force and slopes. .......................................................175 

Figure 5.5:   Variation of the parameters of the model in equation (5.2). (a) The 

threshold force vs low frequency elastic modulus from bulk rheology. The line 

corresponds to a linear fit: 
2

01.62yF G R . (b)  Variation of k
1
 in the model 

with (G0/E
*
)
0.5

 and the dotted line corresponds to a linear fit of slope 387.      

(c) Efficiency of k1/(G0/E
*
)
0.5

 scaling for different volume fractions and the 

dotted line corresponds the slope from (b)  (d) Variation of k
2
 with volume 

fraction and the dotted line corresponds to the coefficient of the hindered 

stokes drag. ..............................................................................................177 

Figure 5.6:   Scaled force-velocity master curve. The symbols correspond to 

simulation data and the dashed line represents the master curve:  
1/2

2

0 0 0

6
1.62 387

( )

x s x sU UF

G R RG f RG

 



   
     

   
...........................................178 

Figure 5.7:   The ratio of average magnitudes of velocity of the tagged particle 

parallel   (x-) and perpendicular (y- a) and z- b) ) to the direction of pull at 

different force of pull for different volume fractions. ..............................180 



 xxii 

Figure 5.8:   Pair distribution function g(r) in the (a-c) x-y plane and (d-f) y-z plane, x- 

being the direction of pull when the tagged particle is pulled at different forces 

for 0.8  . White lines correspond to the most probable radial separation at 

rest. ...........................................................................................................182 

Figure 5.9:   Evolution of radially averaged g(r) (a) and number of contacts Nc (b) 

when the tagged particle is pulled at different forces in a suspension of volume 

fraction 0.8. Comparison of radius of maximum accumulation (c) and number 

of contacts (d) from micro- (closed symbols) and macro- rheology (open 

symbols). ..................................................................................................184 

Figure 5.10:   (a-c) Map of distribution of speeds around tagged particle when pulled 

at different forces in a suspension of volume fraction 0.8. The color mapping 

uses represents the speed and is in units of *

sRE  . (d) The average speed of 

neighbors at volume fraction 0.8. (e) The average speed of neighbors non-

dimensionalized by the average speed of the tagged particle itself (colors 

correspond to scheme in figure 5.9a). ......................................................186 

Figure 5.11:   (a) The threshold force from microrheology (circles) and yield stress 

from bulk rheology (squares) as a function of volume fraction. (b) Direct 

correlation between yield stress from bulk rheology and the threshold force 

from microrheology. ................................................................................188 

Figure 5.12:   (a) The effective viscosity from microrheology (filled symbols) and 

bulk rheology (open symbols). (b) Direct comparison of effective viscosity 

from microrheology and bulk rheology for different volume fractions and 

shear rates.................................................................................................191 

Figure 6.1:   Schematic of forces acting on a test particle located a distance r  from  

the reference particle. The forces acting on a particle (dark red) a distance r 

from the reference particle (dark red at origin) are the pairwise contact force 

FH and the effective many body force of the concentrated suspension 

surrounding the particle FE. .....................................................................205 

Figure 6.2:   Elastic Repulsion forces for hertz potential (solid lines), compressed 

emulsion potential (dashed) and Mooney-Rivlin material potential (dash-dot)

..................................................................................................................211 

Figure 6.3:   Simulation results (symbols) and corresponding models for cN N  . 

Lines: fits with scaling laws using constants NK =8.67, 8.49, 7.31 for Hertz 

(circles), compressed emulsions (squares) and Mooney Rivlin Materials 

(diamonds), respectively. .........................................................................213 



 xxiii 

Figure 6.4:   Simulation results (symbols) and corresponding models for 2 /mr R .  

Lines: fits with scaling laws using constants rK =0.0091, 0.0105, 0.016 for 

Hertz (circles), compressed emulsions (squares) and Mooney Rivlin Materials 

(diamonds), respectively. .........................................................................214 

Figure 6.5:   Simulation data for comparison of the overlap distance based on the 

radius of maximum pair density to that based on the average pair separation 

for Hertz (circles), compressed emulsions (squares) and Mooney Rivlin 

Materials (diamonds), respectively. .........................................................215 

Figure 6.6:   (a) Comparison of theoretical predictions (lines) of average elastic 

energy with simulation results (symbols). (b) Variation of average energy with 

volume fraction for Hertz (circles), compressed emulsions (squares) and 

Mooney-Rivlin Materials (diamonds)......................................................216 

Figure 6.7:   Comparison of theoretical predictions from equation (6.5) (dashed lines) 

of g(r) with computer simulations (solid lines) for (a) Hertz Potential,           

(b) Compressed emulsions and (c) Mooney-Rivlin Material. Right to left in 

(a), (b) and (c): volume fraction =0.7, 0.8 and 0.9. Insets: Theoretical 

predictions for volume fractions 0.675, 0.7, 0.75, 0.8, 0.85 and 0.9 (right to 

left).  (d) Hertz potential – volume fractions 0.645, 0.65, 0.675, 0.7, 0.725 

(right to left) .............................................................................................218 

Figure 6.8:   Computational (symbol) and analytic (lines) predictions of ( )a   and 

peak 0 ( )g   and width ( )   of g(r) for different volume fractions. 

(circles/solid lines-Hertz potential, square/dashed lines-compressed emulsion 

potential, diamonds/dashed-dotted lines-Mooney-Rivlin potential). .......220 

Figure 6.9:   Theoretical universal curve (black solid line) and scaled simulation data 

(symbols).  Hertz (circles), compressed emulsions (squares) and Mooney-

Rivlin Materials (diamonds). Volume fractions: 0.65 (green), 0.8 (blue) and 

0.9(red). ....................................................................................................221 

Figure 6.10:   Comparison of theoretical predictions (lines) of elastic properties for     

(a) hertz potential, (b) compressed emulsion potential and (c) Mooney-Rivlin 

material potential with computer simulations (circles-osmotic pressure and 

squares-high frequency modulus)  and experiments on osmotic pressure of 

compressed emulsions (diamond) [Mason et al. (1997)] and foams (triangle) 

[Princen and Kiss (1987)]. Upper lines: high frequency elastic modulus and 

lower lines: osmotic pressure. ..................................................................223 



 xxiv 

Figure 7.1:   Schematic of forces acting on a test particle located a distance r from       

the reference particle under a simple shear flow ( )U  r  . The forces acting    

on a particle (dark red) a distance r from the reference particle (dark red at 

origin) are the pairwise contact force FH and the effective many body force 

FE. ............................................................................................................231 

Figure 7.2:   Computational domain (distance in units of R) and boundary     

conditions used to solve the governing equation (7.3) in the PDE-solver 

COMSOL .................................................................................................235 

Figure 7.3:   Theoretical prediction of pair distribution function g(r) for            

sheared glasses of volume fraction 0.8 using particle mobility from 

microrheology ..........................................................................................236 

Figure 7.4:  Theoretical prediction of flow curve using mobility from     

microrheology (circles) and comparison to particle scale simulations from 

chapter 2 (line) .........................................................................................237 

Figure 7.5:   Theoretical prediction of pair distribution function g(r) for sheared 

glasses of volume fraction 0.8 using a higher mobility than that from 

microrheology ..........................................................................................239 

Figure 7.6:   Comparison of predictions of pair distribution function g(r) for sheared 

glasses of volume fraction 0.8 in the flow gradient plane at different shear 

rates from theory (left) and simulations (right)........................................240 

Figure 7.7:  Theoretical prediction of flow curve using higher mobility than from 

microrheology (squares) and comparison to particle scale simulations from 

chapter 2 (line) .........................................................................................241 

Figure 7.8:  Theoretical prediction of flow curve (a) and average elastic energy (b) 

using higher mobility than that from microrheology (circles) and comparison 

to particle scale simulations from chapter 2 (lines). (c) Boundary condition at 

r = 2R. ......................................................................................................242 

  



 1 

Chapter 1:  Introduction 

1.1 WHY STUDY SOFT PARTICLE GLASSES?  

Soft particle glasses are concentrated suspensions of soft and deformable particles 

which are jammed at volume fractions beyond the random close packing limit of hard 

spheres. They behave like weak elastic solids at low stresses but begin to flow at stresses 

exceeding the yield stress. Once they begin to flow, they are shear thinning; that is, their 

effective viscosity decreases with increase in shear rate. These unique features make 

them useful as rheological additives in many important industrial applications including 

processing of high performance coatings, solid inks, ceramic pastes, drilling muds and 

textured food and personal care products [Fernandez-Nieves (2011)].  Despite their wide 

industrial use, their formulation has been largely empirical. A quantitative bridging of the 

constituent properties and their macroscopic properties would enable customized design 

of the material to suit the requirements of its processing, use and storage. The 

microstructure and dynamics of biological materials such as tissues and intracellular 

cytoplasm [Angelini et al. (2011); Bursac et al. (2005); Trepat et al. (2007)], and 

geological materials like clays and slurries [Ancey (2007)] also resemble that of soft 

particle glasses.  

Many interesting rheological aspects of these glasses such as yield stress, shear 

thinning, wall slip and history dependent phenomena like aging have been widely 

observed but the connection between their macroscopic behavior and microstructure is 

still unclear. Thus, understanding the connection between microstructure and rheology of 

these highly concentrated suspensions of soft particles remains an area of high 

importance both in terms of industrial applications and fundamental condensed soft 

matter physics. The purpose of this dissertation is to understand and explain the rheology 



 2 

of these soft particle glasses in terms of their constituent properties and the 

microstructural changes that occur during their deformation and flow.  

1.1.1 Industrial importance of soft particle glasses  

Concentrated microgel suspensions are industrially important soft particle glasses 

in which the constituent soft particles are swollen crosslinked polymeric particles. 

Microgel based additives have been used as rheological modifiers in the cosmetic 

industry for over 50 years. Carbopol® is a range of commercially available rheological 

additives based on polyacrylic microgels and are used in shampoos, hair gels, hand 

sanitizers, body lotions and other cosmetic products [Ketz et al. (1988); Lubrizol; Piau 

(2007)]. The yield stress nature of the soft particle glass presents high suspending ability 

to the product and prevents creaming and sedimentation of particulates over long periods 

of time that is crucial in the storage and transport of these cosmetics. The high viscosity 

at low shear rates allows convenient retrieval from the packaging without the product 

running between fingers and the shear thinning nature allows easy application on skin 

and scalp.  Highly concentrated oil in water emulsions is another type of soft particle 

glass, where the constituent particles are the dispersed and compressed oil droplets. Many 

cosmetics like baby creams and sunscreen lotions are concentrated emulsions and thus 

fall under the category of industrially relevant soft particle glasses [Jager-Lezer et al. 

(1998)]. 

Microgel based soft particle glasses are also used as additives in the automotive 

coating industry [Boggs et al. (1996); Ishikura (1996); NipponPaints; Saatweber and 

Vogt-Birnbrich (1996); Wolfe (1992)]. The coating formulation has to undergo storage, 

pipe flow, spraying, film formation and drying. Organic solvents were initially used as 

the base for suspending the resins and pigments in these coatings. These solvents 

facilitated application of the coating and then evaporated during drying. The large 
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amounts of volatile organic compounds (VOC’s) in these coatings were not 

environmentally favorable and coatings with high solid content became more common 

and this was initially accomplished by altering the polymer molecular weight and 

concentration within the resins. The use of low molecular weight polymers produces 

coatings with low viscosities and made them suitable for spraying uniform films, but the 

viscosity increase at low shear during drying was insufficient and lead to sagging or 

running and dripping of the paint. The use of high molecular weight polymers provided 

high low-shear viscosity and prevented sagging but the viscosity at high shear was not 

low enough and presented difficulties during spraying. On the other hand, concentrated 

microgel glasses exhibit yield stress that improves viscosity immediately after application 

and prevents sagging. They are also shear thinning enough to have low viscosities during 

spraying and present good leveling properties. Microgel additives are also used as 

serigraphic ink thickeners. These inks are used in screen printing and the sharp liquid-

solid transition on flow cessation which comes from the yield stress of these soft glasses 

is useful in maintaining the shape of the ink pattern once it is transferred to the substrate 

[Physical Review Focus (2000)].  

Bio-compatible microgels are used as rheology modifiers in the food industry to 

bring the desired texture and flow behavior to various foods. Starch granules before 

gelatinization behave as hard spheres. They gelatinize with heat and moisture to form 

swollen microgel particulates and retain this nature even on cooling. At high 

concentrations they exhibit viscoelastic behavior [Evans and Haisman (1980); Evans and 

Lips (1992); Steeneken (1989)]. Starch based rheological additives are used extensively 

in foods like salad dressings, sauces, custards and puddings [Abbas et al. (2010)].  These 

particulate microgels can provide a texture in the mouth that mimics fats and so they have 

also been modified and used as additives in low-fat food products like low-fat yoghurt 
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[Alting et al. (2009)]. Concentrated glassy emulsions are abundant in food industry and 

include materials like mayonnaise, ―spoonable‖ salad dressings and margarine [Friberg et 

al. (2004); McClements (2005)]. Whipped cream and ice creams are concentrated foams 

encountered in the food industry where the dispersed particles are essentially air bubbles.  

Drilling muds are complex fluids used in drilling boreholes for oil and natural gas 

wells. Microgel particles are soft and deformable and can penetrate rock pores and they 

are used as fluid loss control agents to prevent the flow of drilling fluids into the rock 

pores [Fernandez-Nieves (2011)]. One of the functions of drilling muds is suspending the 

drill cuttings while drilling is paused and when the drilling assembly is brought in and out 

of the hole. Clays and polymer gels including guar gum are used as rheological additives 

which impart high viscosity to the mud at rest and low shear thinning viscosities when 

drilling begins. Concentrated microgels can be used in place of the clays and polymer 

gels as rheology modifiers but the right choice of constituent polymers and preparation 

conditions in order to make them withstand the temperature, pressure and varying salt 

concentrations under the earth is crucial and is an area of ongoing research.  

The rheology and microstructure of a few of these industrially relevant soft 

particle glasses is presented in Figure 1.1-1.3. Even though soft particle glasses are  

widely used in various industrial applications as rheological additives and many food 

products fall under the category of soft particle glasses, their formulation is largely 

empirical [Paruta-Tuarez et al. (2011)]. A quantitative connection between the 

constituent properties like solvent viscosity and particle properties and their macroscopic 

rheology is lacking. The connection between the microstructure and rheology of these 

materials is also an open question.   
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Figure 1.1:   Steady shear rheology of Carbopol from Roberts and Barnes (2001) fitted to 

the Herschel-Bulkley equation of form 0

nk    .  
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Figure 1.2:   Steady and oscillatory shear rheology of commercial mayonnaise form 

Bower et al. (1999). A slope of -0.5 has been added to the steady shear flow curve on top 

for reference. 
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Figure 1.3:  Microstructure of soft particle glasses in the food industry. (a) The 

microstructure of full-fat mayonnaise as visualized by CLSM (Confocal Laser Scanning 

Microscopy) from Dickinson and Rodríguez Patino (1999). (b) Scanning electron 

micrograph of whipped cream from Dickinson and Royal Society of Chemistry (Great 

Britain). Food Chemistry Group. (1987). The bar corresponds to 10  m.  
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1.1.2 Soft particle glasses as model systems in soft condensed matter physics   

The microstructure and dynamics of many other systems in biology, geology and 

material science resemble that of soft particle glasses. Biological materials such as tissues 

[Angelini et al. (2011); Trepat et al. (2007)] and intracellular cytoplasm [Bursac et al. 

(2005)] resemble crowded assemblies of soft and deformable entities. They display 

glassy characteristics such as aging and slow dynamics.  They also exhibit a combination 

of solid-like and liquid-like behavior to deformation depending on the nature and 

duration of the stimuli. Geologically relevant systems like clays, slurries, debris and lava 

flows can be modeled as highly concentrated suspensions of deformable particles with 

vastly heterogeneous constituents in terms of size, softness and shape [Ancey (2007)].  

Yield stress has been a common characteristic observed in the above mentioned 

concentrated geological materials.  

Soft particle glasses also share some common characteristics with molecular 

glasses. The glass transition in molecular glasses is approached as the temperature of the 

material is reduced and nears the glass transition temperature while the glass transition in 

colloidal glasses (both hard and soft particles) is approached as the concentration (volume 

fraction in particular) is increased and nears the glass transition. The similarities in 

behavior include disorder, non-ergodicity close to glass transition, history dependent 

phenomena including slow dynamics and aging, yield stress and shear/temperature 

melting [Weitz (2011)]. Hard particle glasses also possess these similarities but the 

particle softness in the case of soft particle glasses provides an additional handle to study 

glasses of varying ―fragility‖. In molecular glasses fragility is an indicator of how quickly 

the dynamics freezes as the glass approaches the glass transition temperature. Simple 

liquid structures tend to form more fragile glasses where the viscosity diverges steeply at 

glass transition similar to the case of hard spheres close to the glass transition [Angell et 
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al. (2000)]. On the other hand, molecular glass formers with complex internal structures 

form strong glasses and hence molecular glasses exhibit a range of fragility. The softness 

of particles can be varied to mirror the varying fragilities in molecular glasses and softer 

particles are known to form stronger glasses [Mattsson et al. (2009)].  In terms of 

constituent particles, soft particle glasses combine the deformability of polymer coils and 

the impenetrability of hard spheres and provide a way to tune the interactions of the 

material to generate a wide range of rheological properties and form a class of important 

model systems in statistical and soft condensed matter physics.  

1.2 BACKGROUND   

1.2.1 Description of soft particle glasses  

Soft particle glasses are densely packed, disordered suspensions of soft particles. 

The constituent soft deformable particles include a wide range of materials [Bonnecaze 

and Cloitre (2010)]. Figure 1.4 shows some examples of such soft particles. The size and 

origin of elasticity in these constituents can be widely different. Microgel particles (see 

figure 1.4a) are crosslinked polymeric networks swollen by a solvent. Their size can 

range from tens of nanometers to micrometers. The osmotic pressure difference between 

the gel and the solvent which gives rise to the swelling of the particles is the source of 

elasticity and the particle scale elasticity depends on the degree of crosslinking inside 

[Borrega et al. (1999)].  Emulsion droplets stabilized by surfactants (see figure 1.4b) are 

also soft and deformable yet impenetrable [Lacasse et al. (1996)]. The droplet sizes are 

usually of the order of microns for oil-in-water emulsions. The origin of elasticity here is 

the oil-water surface tension which resists deformation. Particles of core shell nature 

which have a hard interior core with a soft exterior shell form another class of soft 

particles [Vlassopoulos and Fytas (2010)]. They can be hard particles grafted with short 
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polymer chains [Crassous et al. (2006)] (see figure 1.4c) or star polymers which are 

ultrasoft particles where the corona consists of long polymer chains (see figure 1.4d) 

[Likos (2006)]. In both cases, the deformability of the polymer exterior is the source of 

particle elasticity. Block copolymers (see figure 1.4e) form spherical micelles in selective 

solvents where the solvent-phobic ends shield themselves from the solvent by forming 

the core and the solvent-friendly ends form the shell or the corona of the soft particles 

[Buitenhuis and Forster (1997)]. Amphiphilic molecules can arrange themselves to form 

sheet like membranes in solution and they can form different geometries like bi-layers 

(see figure 1.4f) or multi-layers (see figure 1.4g) which can wrap around to form multi 

layered vesicles which are soft and deformable due to the flexibility of the lamellar 

membranes [Ramos and Cipelletti (2001)]. Foams also form soft glassy materials in 

which  the air bubbles are the constituent soft particles and again, the air-water surface 

tension is the source of the elasticity of the ―air particles‖ [Princen and Kiss (1989)].  

When these soft particles are suspended in a solvent they form different phases 

depending on the concentration as shown in figure 1.5. Here we focus on the disordered 

phases formed by these particles. At very low concentration or particle volume fraction 

they form dilute suspensions and resemble suspensions of hard particles. As the volume 

fraction is increased to values greater than around 0.58 the constituent particles begin to 

crowd and the material exhibits glassy behavior. Each particle begins to get surrounded 

by a cage of other particles. The elasticity of the cage in this phase is entropic and the 

glasses are thermally activated which gives rise to yield stresses and elastic moduli of 

O(kT). Now these are soft particles and are deformable and hence unlike hard particles 

the volume fraction can be increased beyond random close packing of hard spheres which 

is 0.64. In this regime the cages are tighter and the particles are compressed against each 

other forming flat facets at contact. The cage elasticity in this regime stems from the 
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elastic interactions at the particle-particle contact and based on the extent of jamming this 

can give rise to an elastic moduli of the order of hundreds or even thousands of Pascals. 

The elastic contact forces are much larger than the thermal forces and thus the 

suspensions are athermal. The jammed soft particle suspensions in this regime are termed 

as soft particle glasses.  

 

 

Figure 1.4:   Schematic of various types of soft particles. (a) microgel particle; (b) 

emulsion droplet; (c) solid particle covered with adsorbed or grafted polymer chains; (d) 

star polymer; (e) block copolymer micelle; (f) liposome (bilayer);  (g) multi-lamellar 

vesicle. 
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Figure 1.5:   Phase diagram of disordered soft particle suspensions. Top: Confocal 

microscope image of a dilute silicone-oil in water emulsion ( 0.35 ). Center: 

Fluorescent micrograph of a concentrated PMMA (hard) suspension ( 0.57 ) from 

Sarangapani and Zhu (2008); Bottom: Confocal microscope image of a jammed silicone-

oil in water emulsion  0.8 . 
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1.2.2 Generic microstructure and rheology of soft particle glasses  

Despite the different particle sizes and sources of elasticity, these concentrated 

suspensions of soft particles share many common microstructural and rheological 

properties. Some relevant common properties are discussed below. 

1.2.2.1 Microstructure 

The constituent particles in soft particle glasses are compressed against one 

another due to their high concentration and form flat facets at contact as mentioned 

previously. The average separation between neighboring particles is less than twice the 

particle radius due to their high concentration and deformability, and this gives rise to an 

elastic repulsion at particle-particle contact.  Each particle is trapped in a cage formed by 

its nearest neighbors and these cages are symmetric at rest.  The cage strength depends on 

the elasticity of the particles themselves and the degree of compression. The generic 

nature of the microstructure in different soft particle glasses is shown in figure 1.6.  
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Figure 1.6:   Microstructure of soft particle glasses: (a) AFM image of a concentrated 

microgel suspension (d  0.2  m) from Cloitre et al. (2003a). (b) Confocal microscope 

image of a concentrated silicone-oil in water emulsion (d  2  m) from Meeker et al. 

(2004b). (c) Optical microscope image of a multi-lamellar vesicle gel (d  5  m) from 

Ramos and Cipelletti (2001). (d) Confocal microscope image of aqueous foam             

(d  50  m) from Seth (2008).  
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1.2.2.2 Steady shear rheology 

Soft particle glasses are yield stress fluids and are shear thinning at high shear 

rates/stresses and follow a Herschel-Bulkley type constitutive equation between shear 

stress ( ) and shear rate (  ) : 
m

y k     where y  represents the yield stress. At low 

stresses, the particles are trapped inside their cages and the external stimulus is not 

sufficient to break them out of their cages but the soft nature of the particles allows them 

to compress against one another. This gives rise to local elastic deformation as allowed 

by the elasticity of the paste without exhibiting any macroscopic flow. As a consequence, 

they exhibit the phenomenon of yield stress and exhibit solid-like behavior at low 

stresses. At high stresses, the particles squeeze past the caging particles and break free 

bringing about macroscopic flow or liquid-like behavior and at this point the viscosity of 

the suspending fluid becomes important as well. The suspensions are shear thinning at 

high stress/shear rates and exhibit a universal exponent (m in the Herschel-Bulkley 

model) of around 0.5. Figure 1.7 shows the steady shear flow curves of microgels (a), 

compressed emulsions (b) and multi-lamellar vesicles (c). A reference slope of 0.5 is 

indicated in (a) and (b) and the curves with filled symbols from bottom to top indicate 

increasing concentration. In the case of multi-lamellar vesicles (MLV) in the study of 

Fujii and Richtering (2006), the radius of the MLV depends upon the preshear rate when 

the vesicles are formed and the main figure presents the data for a preshear of 20s
-1

 and 

different gap heights for shearing.  The inset provides the shear thinning exponent (m

0.6) in the Hershel-Bulkley model for different preshear rates (vesicle sizes) and gap 

heights. At small gap heights and low shear rates there could be some aligned phases of 

lamellae forming which could lead to a deviation from the generic behavior. Soft particle 

glasses also exhibit non zero normal stress differences during shear [Seth et al. (2011)]. 
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Figure 1.7:   Steady shear flow curves of different soft particle glasses. (a) microgels 

from Cloitre et al. (2003b). (b) concentrated oil-in-water emulsions from Seth et al. 

(2011). (c) multi-lamellar vesicles from Fujii and Richtering (2006).  
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1.2.2.3 Oscillatory shear rheology 

The transition of the behavior of soft particle glasses from that of an elastic solid 

to an elasto-plastic liquid can also be observed through oscillatory shear tests. While the 

steady shear flow curves present the material behavior at and above yield stress, 

oscillatory shear tests can provide information about the material behavior below and 

above the yield stress and the transition thereof. Figure 1.8 presents the results of stress-

strain behavior during oscillatory shear of two different soft particle glasses: (a) 

microgels and (b) core-shell particles with a polystyrene (PS) core and a soft shell made 

of crosslinked poly(N-isopropylacrylamide) (PNiPAM). They exhibit linear elastic 

behavior at low strain amplitude and then become non-linear at large strain amplitudes 

with a plastic flow segment at large stresses. The viscoelastic moduli as a function of 

strain amplitude and frequency are presented for three different soft particle glasses in 

figure 1.9. The storage modulus G  is a qualitative indicator of the solid-like behavior of 

the material while the loss modulus G  is a qualitative indicator of the liquid-like 

behavior of the material. In the linear regime (at small strain amplitudes) the storage 

modulus is much larger than the loss modulus indicating a solid like behavior and as 

strain amplitude increases the storage modulus begins to decrease and the loss modulus 

increases indicating more liquid like rearrangements. G  decreases at large strain 

amplitudes due to shear thinning. Both storage modulus and loss modulus increase with 

frequency 0.5  at large frequencies in the linear regime.   
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Figure 1.8:   Stress-strain behavior during oscillatory shear for different soft particle 

glasses. (a) microgels from Mohan et al. (2013). (b) Core-shell particles from Le Grand 

and Petekidis (2008). 
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Figure 1.9:   Viscoelastic moduli during strain (left) and frequency (right) sweeps for 

different soft particle glasses. (a) Microgels from Mohan et al. (2013). (b) Concentrated 

emulsions: strain sweep from Mason et al. (1996) and frequency sweep from Mason 

(1999). (c) silica particles with adsorbed polyethylene oxide coating from Derec et al. 

(2003). 
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1.2.2.4 Wall slip and other surface effects 

 Concentrated suspensions of both hard and soft particles are known to slip at 

smooth surfaces usually due to a thin lubricating layer depleted of particles near the 

surface Barnes (1995).  The mechanism and nature of slip depends on the individual 

particle nature and microstructure. In the case of soft particle glasses, 

elastohydrodynamic interactions between the particle and the wall through the lubricating 

layer of solvent in between is attributed as a cause of slip. Wall slip has been observed in 

soft particle glasses like microgels [Meeker et al. (2004b); Seth et al. (2008)], 

concentrated emulsions [Pal (2000)] and foams [Denkov et al. (2005)]. Wall slip can 

affect the rheological characterization of these materials and the nature of wall slip 

depends not only on the smoothness of the flow surface but also on the nature of 

interactions between the wall surface and the constituent particles [Seth et al. (2012)]. 

Figure 1.10 shows the effect of wall slip with different wall-particle interactions for 

concentrated emulsions and microgels from [Seth (2008)]. At low shear rates it gives rise 

to apparent motion below the yield stress. The effect of slip is more predominant at low 

stresses and can affect the measurement of viscoelastic moduli as well. Figure 1.11 shows 

the effect of slip in the measurement of storage modulus for concentrated oil-in-water 

emulsions from [Pal (2000)]. A detailed study of the particle-wall interactions, their 

effect on flow mechanisms and determination of the relevant factors to control or tailor 

slip is an area of active interest and importance. 
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Figure 1.10:   Effect of shearing surface in soft particle glasses from Seth (2008). 

Symbols correspond to flow curves obtained with different surfaces: (a) repulsive;        

(b) partially adhering and (c) attractive. The solid line corresponds to the bulk flow 

curves obtained using rough-rough surfaces. 
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Figure 1.11:   Effect of wall slip in the measurement of viscoelastic moduli in 

concentrated emulsions from Pal (2000). 
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1.2.2.5 Aging and Memory 

Soft particle glasses age with time or their properties continue to evolve with time 

[Cloitre et al. (2000); Cloitre et al. (2003b); Lieleg et al. (2011); Ramos and Cipelletti 

(2001); Weitz (2001)]. At rest the disordered material is still out of equilibrium as the 

particles are kinetically trapped in a metastable, disordered configuration. The constituent 

particles slowly rearrange as the system tries to move towards a more stable state. Hence 

their microstructure and rheological properties change slowly with time and this is termed 

aging. Aging is monitored by tracking the evolution of properties like strain, yield stress 

and elastic moduli. Figure 1.12a shows aging of concentrated microgels through strain 

recovery after the cessation of shear. The strain continues to relax after the shear is 

stopped. These rearrangements also slow down further as the ―stability‖ of the suspension 

increases with time which gives rise to a logarithmic strain recovery. The aging 

phenomenon in soft particle glasses also bears similarities with the aging in polymer 

[Hodge (1995)], metallic [Ruta et al. (2012)] and spin glasses [Jonason et al. (1998)].  

These glasses are also known to possess memory properties. If a material is 

presheared in a particular direction and if a small step stress (much smaller than the yield 

stress) is applied in the opposite direction after aging for a time tw, the material responds 

to the new step stress initially for a time comparable to tw and then continues to trace 

back its old relaxation path exhibiting recollection of its flow history (see figure 1.12b). 

Hence these materials are also known to possess memory.  
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Figure 1.12: Aging and memory properties of concentrated microgel glasses from Cloitre 

et al. (2000). (a) Strain recovery on flow cessation from different preshearing stresses.   

(b) Strain response at different waiting times (increasing from left to right) to a small step 

stress. 
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1.3 DISSERTATION OUTLINE   

Soft particle glasses possess unique rheological properties which make them 

useful as rheological additives in various industrial applications including high 

performance coatings, serigraphic inks and textured food and cosmetic products. But the 

design of these rheological additives is largely empirical. These glasses also serve as 

model systems in soft condensed matter physics by combining the deformability of 

polymers and impenetrability of hard spheres. They also share similarities with the 

rheology of biological materials like tissues and intracellular cytoplasm, and geological 

materials like clays and slurries. Though the unique properties of these materials like 

yield stress, shear thinning, wall slip and aging have been widely observed at a 

macroscopic level, the microscopic changes which give rise to this rheology are 

unknown. For my dissertation, I have investigated the rheology of these materials at a 

microscopic and a macroscopic scale with the goal of connecting both. I have also aimed 

to connect the constituent properties like solvent viscosity and particle properties like 

radius, contact modulus and concentration to the macroscopic properties such as osmotic 

pressure, viscoelastic moduli, shear and normal stresses. This provides a means to tailor 

the formulation of soft particle glasses to have the desired rheological properties suited to 

the requirements of processing, handling and storage. The outline for the rest of my 

dissertation is as follows. 

In Chapter 2, the steady shear rheology of soft particle glasses is studied. The 

model developed earlier [Seth (2008)] is tested for steady shear through particle scale 

simulations and the macroscopic properties are compared with experiments from Dr. 

Clotire’s lab at ESPCI ParisTech to validate the model. A connection is made between 

the solvent viscosity, particle concentration and particle elasticity to the macroscopic 



 26 

shear and normal stresses. A detailed microstructural analysis is developed and the 

microscopic flow mechanisms are determined. Finally, a constitutive equation for these 

soft particle glasses is derived from the microstructural analysis.  

In Chapter 3, the model is extended to study the oscillatory shear rheology of 

these soft particle glasses and the simulation results are again validated with experimental 

results from Dr. Cloitre’s lab. A connection is made between the solvent viscosity, 

particle concentration and particle elasticity to the macroscopic viscoelastic moduli. The 

origin of yielding is determined from three different scales. At the particle scale, the 

origin of yielding corresponds to the onset of cage escape events and the appearance of a 

non-negligible particle scale shear induced diffusivity. At the mesoscopic scale, yielding 

corresponds to the appearance of angular asymmetry in the microstructure and 

macroscopically yielding corresponds to the onset of non-linearity in their stress-strain 

behavior. 

In Chapter 4, the history dependent behavior of these materials and in particular 

the appearance of internal stresses on flow cessation and their dependence on the flow 

effects before cessation are investigated. At a macroscopic scale, the stress relaxation of 

soft particle glasses on flow cessation was experimentally investigated by the author 

during a visit to ESPCI ParisTech using concentrated microgels with different constituent 

properties. Trapped internal stresses were observed whose magnitude depended on the 

shearing history and the constituent properties. Particle scale simulations are developed to 

understand the microscopic mechanisms behind the stress relaxation on flow cessation. A 

universal scaling is presented for the trapped internal stresses as a function of the initial 

flow conditions and the yield stress of the glass based on the insights gained from the 

microstructural study. 
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Novel experimental techniques are being developed to understand the rheology of 

these materials at a microscopic scale. Active microrheology is one such technique in 

which a probe particle is pulled through a suspension at constant force or velocity and the 

response of the particle is tracked to determine the local viscoelasticity of the material. 

This method is particularly useful for materials that are available in small volumes such 

as cell samples. In Chapter 5, simulations are developed to model the constant force 

microrheology of soft particle glasses. Local viscoelastic properties are determined and 

connected to the macroscopic properties computed from bulk rheology. The 

microstructural changes due to the forced motion of the probe particle are investigated 

and the findings are connected to the variation of the local viscoelastic properties. 

The connection between microstructure and rheology is strongly established in 

chapters 2 through 5 which suggest that knowing the microstructure would enable 

prediction of macroscopic properties and also reveal the microscopic flow mechanism. In 

Chapter 6, a pairwise theory is developed to predict the microstructure and properties of 

quiescent soft particle glasses and the theory is tested with simulation results using three 

different inter-particle potentials. In Chapter 7, the theory is extended to sheared soft 

particle glasses and the predictions are compared with simulation results in chapter 2 and 

experiments from Dr. Cloitre’s lab at ESPCI ParisTech. 

Finally, in Chapter 8, important conclusions from different chapters and 

recommendations for future work are presented. 

  



 28 

Chapter 2:  Steady Shear Rheology* 

2.1 INTRODUCTION 

Soft particle glasses are yield stress fluids that behave like weak elastic solids at 

low stresses and begin to flow at large stresses exceeding the yield stress. Unlike hard 

sphere glasses that have a yield stress of the order of kT, these materials can possess  

yield stresses of 10’s or even 100’s of Pascals because the constituent particles are 

packed beyond the random close packing limit and interact through elastic contacts.   

This unique feature of theirs makes them useful as soft rheological additives to process 

high performance coatings, solid inks, ceramics pastes, textured food and personal care 

products. Steady shear rheology of concentrated hard sphere suspensions has been 

investigated thoroughly [Brady (1996); Morris (2009); Stickel and Powell (2005)] 

through experiments [Cheng et al. (2002); Marshall and Zukoski (1990)], simulations  

[Brady and Bossis (1985); Foss and Brady (2000); Sierou and Brady (2002)] and theory 

[Fuchs and Cates (2002); Fuchs and Ballauff (2005)], but much of the understanding of 

soft particle suspensions at these volume fractions relevant in applications is empirical, 

and a theory connecting macroscopic flow behaviour to microstructure and particle 

properties remains a formidable challenge for statistical and condensed matter physics.  

Mode Coupling Theory (MCT) [Fuchs and Cates (2003); Hebraud and Lequeux 

(1998)] and Soft Glassy Rheology (SGR) [Sollich et al. (1997); Sollich (1998)] are 

theoretical frameworks that are available in literature to explain the flow curves of these 

complex fluids. MCT predicts the flow curves of soft materials by modeling the cage 

effect as a feedback mechanism storing memory of pair densities and the advection effect 

as disruption. MCT has many adjustable parameters that are not universal and have to be 

                                                 
* Much of this chapter has appeared in Seth J. R., L. Mohan, C. Locatelli-Champagne, M. Cloitre and R. T. Bonnecaze, 

"A micromechanical model to predict the flow of soft particle glasses," Nat Mater 10, 838-843 (2011). 



 29 

determined from the static structure factor. It also requires a time scale parameter to be fit 

with experimental data in order to make specific predictions. The SGR model predicts the 

yield stress nature associated with these complex fluids and the dynamics are 

characterized as hops from one cage to another with the interactions coupled through an 

average noise temperature. This model has two adjustable parameters, the frequency of 

attempted hops and the background noise temperature and the directed relationship of 

these parameters to experimental systems is not straightforward. Other theories that have 

been developed in the past to explain the rheology of soft glassy materials include 

structural network models [Yziquel et al. (1999)], single stress relaxation for low 

frequency regime [Derec et al. (2001)] and activated hopping process theories [Kobelev 

and Schweizer (2005); Miyazaki et al. (2006)]. Though the models predict the flow 

dynamics of soft particle glasses like yielding and aging, they contain many adjustable 

parameters which are not directly related to the microscopic constituent properties and 

need to be tuned to directly match experimental data. 

Here, a micromechanical 3-D model is proposed and implemented through 

particle scale simulations that quantitatively predicts the non-linear rheology of soft 

particle glasses. The microstructural changes during flow are also determined and 

connected to their macroscopic rheology. The shear stress and the normal stress 

differences depend on both the dynamic pair distribution function and the solvent-

mediated elastohydrodynamic interactions among the deformed particles. The 

predictions, which have no adjustable parameters, are successfully validated with 

experiments on concentrated emulsions and polyelectrolyte microgel pastes, highlighting 

the universality of the flow properties of soft glasses. The results connect the 

macroscopic stress and shear thinning viscosity to the microscopic constituent properties 
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like particle concentration, modulus and solvent viscosity and thus provide a framework 

for designing new soft additives with a desired rheological response. 

The rest of the chapter is organized as follows. The model including the elastic 

and elastohydrodynamic interactions between particles is described in section 2.2 and the 

simulation technique is described in section 2.3. Steady shear rheology obtained from the 

particle scale simulations based on the model is presented in section 2.4. The pair 

distribution function and relevant spherical harmonics that describe the microstructure are 

calculated from particle position data and are analyzed in detail and connected to the 

macroscopic rheology in section 2.5. The validation of simulation results by comparison 

to experimental data for rheology of microgels and emulsions from Dr. Michel Cloitre’s 

lab at ESPCI ParisTech is presented in section 2.6.  

2.2 MODEL DESCRIPTION 

Soft particle glasses share common features with hard-sphere glasses such as non-

ergodicity and caged dynamics. However, while hard sphere colloids experience only 

forces due to excluded volume, soft particles at high volume fraction are compressed 

against each other by bulk osmotic forces and form flat facets at contact, with the average 

deformation depending on particle elasticity and volume fraction. The solvent forming 

the continuous phase is localized in thin films separating the particles.  

Soft particle glasses are modeled as three dimensional packings of N periodically 

replicated non-Brownian elastic spheres (see figure 2.1a) dispersed in a solvent with 

viscosity s  at volume fractions exceeding the random close-packing of hard spheres 

[Lacasse et al. (1996); Seth et al. (2006)]. The particles form flat facets at contact 

resulting in the relative deformation αβ α β αβ( ) /ε R R r R    where r   is the center-to-

center distance between particles   and   and c α β α β/ ( )R R R R R   is the contact 
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radius as shown in figure 2.1b. The suspension is subject to an imposed shear flow in the 

(x-y) plane with shear rate  . The resulting velocity is in the x-direction with y axis being 

the gradient direction. As two compressed particles move past one another, a flow of 

solvent develops inside the liquid films separating the facets. This generates a net positive 

pressure causing an additional elastic deformation of the particles, which self-consistently 

maintains the lubricating films and makes particle motion possible. This mechanism 

shares strong similarities with the elastohydrodynamic slippage of soft particles 

compressed against solid surfaces [Meeker et al. (2004a)]. The interaction between   

and   is composed of a central repulsive force 
e

αβf  associated with the elastic contact 

between the two particles, coupled to an elastohydrodynamic (EHD) drag force 
EHD

αβf , due 

to the motion of   relative to  . 
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Figure 2.1:   Structure and interactions of a model soft glass. (a) Typical configuration of 

jammed elastic spheres at 0.8  ;   is the applied shear rate. (b) Schematic showing 

pair-wise interactions between particles   and   with radii R and R  centered at x and 

x  and translating with velocities u and u , r  is the center-to-center distance. 

h R R r      is the overlap distance; the thickness of the lubricating film separating 

the facets is much smaller that the overlap distance. ,u  is the component of the relative 

velocity parallel to the facets. The elastic force 
e

αβf  and the elastohydrodynamic drag 

force 
EHD

αβf  are parallel to the unit vectors normal ( n ) and parallel ( n ) to the facets, 

respectively. 
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The elastic force 
e

αβf  between soft particles such as elastomeric particles [Liu et al. 

(1998)], microgels [Seth et al. (2006); Zhang et al. (2009)], and emulsion droplets [Seth 

et al. (2006)] can be modelled using Hertzian-like potentials. The classical Hertz theory 

applies at rest and near-equilibrium [Liu et al. (1998)], where is less than 0.1. When 

the glass flows at high shear-rates,  can be much larger and Hertz theory 

underestimates the contact force.  A modified approximate expression† [Liu et al. (1998)] 

is used, which is valid up to   0.6:  

 
* 24

3
e nCE R
αβ αβ c




f n ,  (2.1) 

where )1(2/ 2 EE* is the contact modulus (E : Young modulus;  = 0.5 : Poisson’s 

ratio for incompressible spheres) and n  is the direction perpendicular to the particle-

particle facet at contact. The values of n and C vary with the degree of compression: n = 

1.5 and C = 1 for εαβ < 0.1; n = 3 and C = 32 for 0.1 ≤ εαβ < 0.2; n = 5 and C = 790 for 

0.2 ≤ εαβ < 0.6. It is interesting to note that the elastic energy associated with the elastic 

contact forces is generally much larger than kT (see Supplemental Material 2.E), 

indicating that the origin of the dynamics resides in the elastic properties of the particles 

themselves [Ikeda et al. (2012)].  

The elastohydrodynamic drag force EHD
αβf is coupled to the repulsive elastic force 

e
αβf  because the hydrodynamic pressure in the lubricating film supports the Hertzian 

pressure due to e
αβf . The following expression based on the solution for a single particle 

dragged along a smooth surface is used [Meeker et al. (2004a); Seth (2008)]:   

                                                 
† The coefficient presented in Seth et al. 2008 has been corrected and the version used in the simulations has been 

presented here. 
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 

f n , (2.2) 

where ,u  and n  are the relative velocity and the direction parallel to the flat facet 

developed at particle-particle contact, respectively. 

 Each particle experiences a net elastic repulsion and an EHD drag due to all the 

particles in contact with it and these forces are assumed to be pairwise additive. 

EHDand α
e
α FF  is the sum of the contributions from all facets. The particles also 

experience an effective drag force due to relative motion with the solvent. Neglecting 

particle and fluid inertia, the sum of all forces on each particle is zero and the motion is 

then described by the equation: / [ ]
e EHD

d dt M
α α α α α


   u x u F F  where 


αu  is the 

velocity field due to the applied shear rate, and 
α

( ) / 6π
r s α

M f R   is the mobility 

coefficient which is that of a particle corrected by a factor )(rf  that accounts for its 

reduction at high volume fraction. The resulting equation of motion can be made 

dimensionless by scaling lengths, time and velocity by R, *

s E and *

s
RE  , 

respectively. It has the form: 

  α

α

1/ 2d ( ) 4 (2 1) / 42 3

d 6π 3

r

α

f nn
C ε R Cu R ε

αβ c αβ, c αβt R β β

 
   



 
 
  

x
u n n  (2.3) 

where the tilde quantities are dimensionless. The non-dimensionalized applied velocity 

field  *

α s xE y u e  and the form of this equation shows that the dynamics is 

characterized solely by the dimensionless shear rate 
*/s E  , which represents the 

ratio of viscous to elastic forces, and the overlap deformation , which depends on the 

volume fraction.  The N coupled equations of motion were integrated numerically to 

determine the evolution of the spatial position and velocity of each particle. 
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2.3 SIMULATION TECHNIQUE 

A periodically replicated random close packed configuration of hard spheres in a 

cubic simulation box is first generated using the compression algorithm introduced by 

[Lubachevsky and Stillinger (1990)]. After forming the random close-packed 

microstructure, the spheres are treated as deformable particles and compressed by 

decreasing the box size in small decrements until the desired concentration is achieved. 

After each decrement, the system is allowed to relax using a conjugate gradient algorithm 

to minimize the system energy and ensure the net contact forces and torques on each 

particle vanishes. The model is then implemented using a molecular dynamics-like 

simulation on the random packings of N elastic spheres created in the above manner. 

N = 10
3
 in the simulations reported here but the results with a much larger number of 

spheres (N = 10
4
) were not significantly different. The particles have a Gaussian size 

distribution with an average radius R and a standard deviation of 10% in order to avoid 

crystallization. Constant shear rate simulations were performed using the open source 

LAMMPS code [Plimpton (1995)] assuming Lees-Edwards boundary conditions 

[Rapaport (2004); Seth (2008)]. The position and the velocity of each particle were 

obtained by solving the N equations of motion above using the Verlet integration 

algorithm [Rapaport (2004)]. The mobility coefficient correction factor ( )rf  was equal 

to 0.01 for these simulations but the results did not vary significantly for values of ( )rf   

less than 0.1.  

The viscous, elastic and total stress tensors were computed from the Kirkwood 

formula [Larson (1999)]: 

 
1

( )
N N

EHDv
αβ α βV β α β

   



σ f x x , (2.4) 
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 v e σ σ σ , (2.6) 

where V is the box volume. The shear stress yx  σ , the first, and second normal stress 

differences, 1 xx yyN  σ σ and 2 yy zzN  σ σ , respectively were computed from the 

appropriate components of the stress tensor. The simulations were performed at non-

dimensional shear rates 
*

s E  between 10
-9

 and 10
-4

.  For every  ,  combination, 

 , N1 and N2 were calculated at regular time intervals until steady state was reached. 

Steady-state values were then determined by averaging over several strain units. The 

results reported here were obtained by averaging over five different initial configurations 

of particles for each volume fraction and shear rate.  

 2.4 MACROSCOPIC PROPERTIES FROM SIMULATIONS 

Figure 2.2 shows the simulated flow curves for volume fractions between   = 0.7 

and 0.9. The results are well described by the Herschel-Bulkley equation: 

 * */ / m

y σE E k    , (2.7) 

with m = 0.50  0.02; *

0k G E  , where 0G  is the low-frequency storage modulus, 

which has been determined independently [Seth et al. (2006)]; 0y yG   is the yield 

stress, where the yield strain y  ranges from 0.02 to 0.04 (see figure 2.3). The shear 

thinning exponent m = ½  has been observed for soft particle suspensions very close to 

the jamming transition [Nordstrom et al. (2010); Tighe et al. (2010)], in compressed 

emulsions [Princen and Kiss (1989)], and in microgels [Cloitre et al. (2003b)]. Figure 2.4 
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shows the variations of the non-dimensional normal stress differences. They are roughly 

equal but opposite in magnitude  2 1N N   indicative of a so-called film fluid [Larson 

(1997)]. At low shear rates, they tend to a constant value while at high shear rates they 

grow proportionately to 1 2 . In the inset of figure 2.2, we present the elastic component 

of the stress, 
e

σ , which arises from the distortion of particles during rearrangements and 

the viscous component, 
v

σ , due to the elastohydrodynamic drag force. The latter 

increases like 2 3v σ , which differs from the variation 1 2v σ predicted for a 2-D 

array of emulsion droplets [Denkov et al. (2008); Meeker et al. (2004a)]. Most 

importantly the magnitude of 
e

σ  is at least two orders of magnitude larger than 
v

σ . The 

inset of figure 2.4b shows similar results for normal stresses. The important result here is 

that the rheology of soft glasses is dominated by the elastic component of the stress 

associated with the alteration of the structure under flow.  
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Figure 2.2:   Computed shear stress of model soft glasses. Each color refers to a particular 

volume fraction:  = 0.70 (grey circle),  = 0.75 (blue circle),  = 0.80 (green circle),  = 

0.85 (black circle),  = 0.90 (red circle). The continuous lines represent the best fits to a 

Herschel-Bulkley equation; the inset shows the variations of the elastic and viscous 

components of the stress for   = 0.70 and   = 0.90; the full line has a slope 2/3.  
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Figure 2.3:   Simulated shear modulus, yield stress, yield strain, and Herschel Bulkley 

parameter. Graphs (a), (b) and (c) show the variations of the low-frequency shear 

modulus  *

0G E , yield stress  *

y E , yield strain  y  versus the reduced volume 

fraction c   ( c  = 0.64 is the close-packing volume fraction) respectively. Black dots 

are the results from simulations; crosses in (c) refer to analytical predictions from the 

model presented in section 2.5.4. Graph (d) shows the parameter k  in the Herschel-

Bulkley equation and it varies linearly with the low-frequency shear modulus. 
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Figure 2.4:   Computed first and second normal stress differences of model soft glasses.  

The first normal stress differences data are denoted by full symbols, the second normal 

stress difference by open symbols. Only data for   = 0.70 (grey) and   = 0.90 (red) are 

plotted for the sake of clarity; the inset shows the variations of the elastic and viscous 

components of the first normal stress difference. 
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2.5 MICROSTRUCTURAL ANALYSIS 

2.5.1 Pair correlation function: g(r) 

The elastic stress 
e

σ  can be calculated from the dynamic pair correlation function 

g(r) using the pairwise elastic force ( )ef r from 

 
2

( ) ( )
2

ef r g d

σ = - r r r

e , (2.8) 

where   is the particle number density. The integration domain includes only radial 

distances smaller than the particle radius since the elastic force vanishes otherwise. The 

dynamic pair correlation function characterizes the distortion of the microstructure during 

shearing and is defined as:   

 
1 1,

1
( ) ( )

N N

ij

i j j i

g
V


   

 


 
r

r r r ,  (2.9) 

where V r
 is the bin volume.  

A brief review of the microstructure of the suspension at rest is first discussed 

[Seth et al. (2006)].  Figure 2.5a shows the radial pair distribution function computed at 

rest at a volume fraction   = 0.8. The constituent particles are soft, and therefore at 

concentrations greater than the hard sphere random close packing limit ( = 0.64), they 

are pressed against one another and the radial separation at which the pair probability is 

maximum is less than twice the particle radius. This contrasts with the case of hard 

spheres where the radial pair distribution function shows a sharp rise at the hard sphere 

diameter. Figure 2.5b shows the two-dimensional pair distribution function at rest in the 

x-y plane. Since the range of compression between particles is small compared to the 

particle radius, it is beneficial to represent the microstructure in the r-  or azimuthal 
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plane, so that the focus can be on the range of separations where particle contacts occur 

and the angular distortion can be studied more closely. In figure 2.5c we clearly see that 

the microstructure at rest is radially symmetric without any preferential orientation or 

angular distortion. As a reference, the particle separation where the pair distribution 

function is maximum is indicated by a white line. In the following, we will use the 

azimuthal representation to present the two-dimensional pair distribution functions 

computed during steady state at different rates of steady shear. 

 

 

Figure 2.5:   Microstructure of soft particle glass at rest; the volume fraction is   = 0.80. 

(a) Static radial distribution function. (b) Pair distribution function shown in the x-y 

plane. (c) Pair distribution function shown in the azimuthal r   plane with the most 

probable center-to-center distance indicated by a white dash dotted line and a black 

arrow. 
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Figure 2.6 shows azimuthal plots of g(r) in the flow-gradient planes at different 

shear rates for volume fraction of 0.8. During shear, neighbouring particles tend to 

accumulate in the upstream compressive quadrant ( 2 )    , where they are more 

compressed, and deplete along the extensional axis ( 4)  , where they are less 

distorted. The particles also get more compressed with increasing shear rate. The white 

line represents the average radial separation when the soft particle glass is at rest. See 

Supplemental Material 2.A for representation in the x-y plane. 

 

 

Figure 2.6:   Microstructure of sheared soft particle glasses (  = 0.80). Azimuthal plots 

of the pair distribution function in the flow-gradient plane at different shear rates, which 

is indicative of the probability of finding a particle centre at position ( , )r   from a test 

particle centered at (0,0). Red color indicates highest probability of finding particle 

centres. The dashed line indicates the average centre-to-centre distance between particles 

at rest.  
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2.5.2 Analysis of pair distribution using spherical harmonics 

To quantify the distortion and asymmetry observed in the dynamic pair 

distribution function, g(r) is decomposed into an orthogonal series of spherical harmonic 

functions ( , )lmY   [Hanley et al. (1987); Morris and Katyal (2002)]: 

 
1

( ) ( ) ( ) ( , )
l

lm lm

l m l

g g r g r Y  


 

 r , (2.10) 

where r is the pair distance scaled by a mean pair radius,   is the polar angle in the x-y 

plane measured counter clockwise from the positive x-axis and   is the azimuthal angle 

measured from the positive z-axis (see Supplemental Material 2.B). The functions 

( , )lmY    are a set of orthogonal basis functions obtained from solutions of the angular 

portion of the Laplace equation in spherical coordinates. Every function Ylm (where 0l   

and l m l   ), incorporates l and m symmetries in the latitude and longitude direction, 

respectively. The expressions for ( , )lmY   are: 
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( )lmg r  are weighting functions which can be computed as: 
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




r
. (2.12) 

Since g(r) must be independent of the choice of probe particle i.e., g(r) = g(-r), and of the 

shear direction, odd values of l and m can be omitted. 

The coefficient 2, 2 ( )g r  of the expansion, which measures the asymmetry of the 

pair distribution between the compression and extension axes, is shown in figure 2.7. The 

negative minimum at the radial distance rm is due to the accumulation of particles in the 

compressive region. The larger is the shear rate, the smaller rm, indicating that particles 

are pushed closer. The depth of the minimum indicates more particles are on average in 

the compressive region; conversely the height of the maximum indicates fewer particles 

are on average in the extensional region.   

 

 

Figure 2.7:   Spherical harmonic coefficients g2,-2(r) at different shear rates (  = 0.80) 
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2.5.3 Calculation of stress tensor using spherical harmonics 

Spherical harmonic dissociation of g(r) into dominant modes is useful because the 

coefficients are related to the shear and normal stresses. Using the spherical harmonic 

expansion for g(r) in equation (2.10) in equation (2.8) and by integrating over the angular 

portions, following expressions for the shear and normal stresses are obtained:  
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2 3
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π
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f(r) here is the pairwise elastic repulsive force. The 4
th

 order spherical harmonics also 

contribute to these stresses but their contributions were insignificant compared to those 

from the second order spherical harmonic modes.  The fourth order harmonics and their 

connection to the stresses are presented in Supplemental Material 2.B. 

2.5.4 Derivation of constitutive equation for shear stress from microstructure  

The elastic component of the shear stress e  can be computed from g2,-2(r) 

[Hanley et al. (1987)] through equation (2.13). The integral in the expression of e  is 

dominated by the force at the point of maximum accumulation where the particles are 

highly compressed. Thus, the stress can be accurately estimated by m mf Σ   where mf  

is the magnitude of the elastic force at r = rm and mΣ   is the integral of g2,-2(r) over the 

domain where g2,-2(r) <0: 

2, 2

2 3

m 2, 2

( ) 0

π
( )

15
g r

r g r dr







    . m  represents the surface 
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density of contacts over a particle that significantly contributes to the stress. When the 

shear rate varies, m is approximately constant (see Supplemental Material 2.C), 

indicating that the contacts are redistributed but their surface density remains the same. 

The elastic force mf  represents the force barrier that particles overcome to roll on top of 

one another. It is derived analytically using simple scaling arguments in Supplemental 

Material 2.C: 1 2

m y ff f k   , where * 2

( ) ( )m y m yf f E R . The term in the right-hand 

side, *

0yf G E , represents the elastic force associated with a caged particle at the yield 

strain. The second term is an additional contribution due to the elastohydrodynamic 

deformation of the particles under flow; kf is a dimensionless coefficient that is 

proportional to the reduced low shear modulus G0/E
*
. To verify this prediction, mf  was 

computed numerically from rm and the interparticle force law. Figure 2.8 shows the 

results for the five volume fractions investigated. The curves are well represented by a 

Herschel-Bulkley expression with a shear thinning exponent m = 0.50±0.02. 

 

Figure 2.8:   Dimensionless force at the radius of maximum accumulation versus applied 
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shear rate for volume fractions studied in figure 2.3. Each color refers to a particular 

volume fraction:  = 0.70 (grey circle),  = 0.75 (blue circle),  = 0.80 (green circle),  = 

0.85 (black circle),  = 0.90 (red circle). 

The following constitutive equation is then predicted using m

m y ff f k    and 

e

m mf Σ  :   

  
1/2

2 */ 1 /y S yk E     , (2.16) 

where k a numerical coefficient and y  is the yield strain given by:   

 2 * 1

m 0( / )y yΣ f R G E  . (2.17) 

This result is successfully tested in figure 2.9, which shows that the flow curves 

calculated for different volume fractions collapse onto a universal flow curve which is 

close to the prediction. The calculated yield strains also agree with the values determined 

directly from the simulated flow curves (see figure 2.3). A similar analysis based on 

coefficients g2,2(r) and g2,0(r) of the expansion (see Supplemental Material 2.D) yields 

similar relationships for the normal stress differences N1 and N2 (see figures 2.10a and 

2.10b). 
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Figure 2.9:  Universal constitutive law (line) for shear stress from simulated data 

(symbols). The dashed line is the best fit to the constitutive equation derived in the text 

and Supplemental Material 2.C (k = 80±3). 
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Figure 2.10:  Universal constitutive laws (lines) for first (a) and second (b) normal stress 

differences from simulated data (symbols). The dashed lines are the best fit to the 

constitutive equation derived in the Supplemental Material 2.D (k’ = 20±2; k” = 26±2). 
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2.6 COMPARISON TO EXPERIMENTS 

The model predictions are tested by comparing them with the rheological 

properties of concentrated emulsions and suspensions of polyelectrolyte microgels with 

different volume fractions and solvent viscosities from Dr. Cloitre’s lab. The 

experimental procedure for preparing these suspensions and the rheological measurement 

is described in Supplemental Material 2.E.  Measurements of the shear stress and first 

normal stress differences produce sets of data resembling those obtained from 

simulations (see Supplemental Material 2.E). The data for emulsions are rescaled in 

figures 2.11a and 2.11b using the values of E
*
 and y  determined experimentally. Both 

the shear stress and the normal stress differences collapse onto universal curves that are 

in good agreement with the theoretical predictions. For microgels, the contact modulus is 

unknown and cannot be measured easily. To circumvent this difficulty, E
* 

is determined 

in figure 2.11c by adjusting the experimental shear stress variations to the predicted flow 

curve. Figure 2.11d, shows that the resulting value also collapses the experimental first 

normal stress differences onto a universal curve that agrees with the prediction from the 

simulations. As an interesting application, the deduced effective shear modulus of 

individual microgels, GP  20 kPa, is in qualitative agreement with independent estimates 

(Supplemental Material 2.E), and with values measured in macroscopic polyelectrolyte 

gels with similar composition [Meeker et al. (2004a); Schosseler et al. (1991)].  
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Figure 2.11:   Universal scaling of shear stress and first normal stress difference from 

experimental data. (a) and (b) show data for concentrated emulsions rescaled using y , 

y  and E
*
 determined independently; solid symbols: oil in water-glycerol emulsions with 

s =7.9 mPa.s; open symbols:  oil in water emulsions with s  = 1 mPa.s. (c) and (d): data 

for microgel suspensions (E
*
 = 40 kPa). The dotted lines are the best fits to Herschel-

Bulkley variations of the shear stress data and first normal stress differences obtained 

from the simulations. The raw data are presented in the Supplemental Material figures 

2.E.1 and 2.E.2. 
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2.7 SUMMARY AND CONCLUSIONS 

Experiments indicate that soft particle glasses exhibit yield stress and shear 

thinning behavior. Here a micromechanical model is developed based on elastic repulsion 

between particles and an elastohydrodynamic (EHD) drag force due to the solvent flow in 

the thin solvent layer at particle-particle facet. The model is implemented for steady shear 

flow using a particle based periodic box simulator. The microstructural changes during 

flow are studied by analyzing the pair distribution function g(r). A detailed 

microstructural analysis using spherical harmonics is used to derive the constitutive 

equation for the shear stress and normal stress differences in these soft particle glasses. 

The particle scale simulation results and the predictions of the model from the 

microstructural analysis, which have no adjustable parameters, are successfully validated 

with experiments on concentrated emulsions and polyelectrolyte microgel pastes. The 

derived constitutive equation connects the microscopic constituent parameters of the soft 

particle glass like solvent viscosity, particle concentration and particle elasticity to the 

macroscopic rheological properties of the material like yield stress, shear thinning and 

normal stress differences. 

The constitutive equations established here demonstrate the universality of the 

flow behaviour of soft glasses as a result of a subtle interplay between elastic interactions 

and structural rearrangements. This distinguishes our approach from other models of 

glassy dynamics which do not include contact forces and hydrodynamic contributions 

[Fuchs and Cates (2002); Sollich et al. (1997)]. The importance of EHD lubrication 

between deformed particles is reflected by the key role played by the characteristic time

*

s E , which can be tuned by changing the viscosity of the continuous phase and/or the 

local elasticity through the particle architecture and composition. The alteration of the 

pair distribution function under flow together with the elastic contact forces accounts for 
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the generic shear rate dependence of the shear and normal stress differences. At high 

shear rates, concentrated hard sphere suspensions also exhibit an accumulation and 

depletion of particle density along the compression and extension axes but the stress is 

linearly proportional to the shear rate [Brady and Morris (1997); Crassous et al. (2008)]. 

These results indicate that the soft particle glasses considered here form a class of 

materials singularly distinct from non-Brownian ideal hard sphere suspensions. 

The theory and the experimental data presented here are not very sensitive to the 

exact form of the interacting potential so that the generic properties reported here will be 

found in many other systems [Erwin et al. (2010)]. These results open new strategies to 

estimate particle properties from macroscopic rheology and conversely provide rational 

tools for manufacturing and processing soft materials in industrial applications. 
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SUPPLEMENTAL MATERIAL 2.A: SHEARED MICROSTRUCTURE IN X-Y PLANE 

 

Figure 2.A.1:   Pair distribution function g(r) in the x-y plane during bulk shear flow at 

 0.8 for comparison. White lines correspond to the most probable radial separation at 

rest 
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SUPPLEMENTAL MATERIAL 2.B:  SPHERICAL HARMONICS 

The polar and azimuthal angles with respect to the flow and gradient directions 

are presented below in figure 2.B.1. 

 

Figure 2.B.1:   Co-ordinate system indicating flow direction and the polar and azimuthal 

angles. 

The dynamic pair distribution function, g(r) can be decomposed into an 

orthogonal series of spherical harmonic functions ( , )lmY   [Hanley et al. (1987); Morris 

and Katyal (2002)]: 

 
1

( ) ( ) ( ) ( , )
l

lm lm

l m l

g g r g r Y  


 

 r  (2.B.1) 

The functions ( , )lmY    are a set of orthogonal basis functions obtained from 

solutions of the angular portion of the Laplace equation in spherical coordinates. Every 

function Ylm (where 0l   and l m l   ), incorporates l and m symmetries in the latitude 

and longitude direction, respectively.  
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The expressions for ( , )lmY   are: 
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The corresponding spherical harmonic coefficients ( )lmg r  can be computed using:  
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Since g(r) must be independent of the choice of probe particle i.e., g(r) = g(-r), and of the 

shear direction, odd values of l and m can be omitted. 
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The spherical harmonic coefficients can be used to compute the shear and normal 

stress differences in conjunction with the pairwise elastic repulsion force f(r) as follows:  
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The 4
th

 order spherical harmonics also contribute to these stresses but in practice 

their contributions when convoluted with the elastic force f(r) were insignificant 

compared to those from the second order spherical harmonic modes.    
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SUPPLEMENTAL MATERIAL 2.C: DERIVATION OF ELASTIC FORCE AT THE POINT OF 

MAXIMUM ACCUMULATION 

Starting from scaling arguments, it is shown here that the dimensionless elastic 

force at the radius of maximum accumulation ( )m mr r R  follows the expression 

1 2

m y ff f k    where 
*

0fk G E . Consider a Taylor series expansion for the 

dimensionless elastic force about the point of closest contact at the yield strain between a 

particle and the test particle, yr :   

  m m ...

y

y y

r

f
f f r r

r

 
    
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 (2.C.1) 

The force mf  is balanced by that exerted by the particle sliding over the test 

particle due to the osmotic pressure or effectively low frequency shear modulus (

G0/E
*
) [Meeker et al. (2004a)] and the perpendicular component of the 

elastohydrodynamic force acting along the line of the centres of the particles, 
EHDf , so 

that  

   EHD0
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y y
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Gf
f r r f

r E
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 
    

 
 (2.C.2) 

The normal component of the elastohydrodynamic force is coupled to the drag 

force through 
EHD EHD ( / )cf f h R 

   [Meeker et al. (2004a)], h being the overlap distance 

between the particles. The power of   for h/Rc accounts for the perpendicular 

component of the elastohydrodynamic force acting along the line of the centres of the 

particles. For low shear, a particle sliding over the test sphere takes a practically circular 

path with no perpendicular component of the elastohydrodynamic force.  For higher shear 

rates, the sliding particle takes a straighter path diagonally across the test sphere 
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generating the additional elastohydrodynamic compression force on the test particle.  

Thus,   
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The first terms on the left and the right of equation (2.C.3) balance since   

0~y G
 
implies that the force at yield, yf ,  is proportional to G0/E

*
. Then, 
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Recognizing that  
2/3

*

0~
c

h R G E   [Meeker et al. (2004a); Seth et al. (2006)], it 

can be shown that:    
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The exponent   is unknown but is expected to be about unity. Then 

 
(2 1) 3

*

0G E
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 is a weak function of volume fraction [Meeker et al. (2004a); Seth et al. 

(2006)]. Thus, it is demonstrated that   1/2
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this explains the form of equation (2.C.1). Finally, recognizing that 0
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[Seth et al. (2006)],   1/2

myr r   is also predicted. The results from the simulations 

plotted in figure 2.C.1 are in agreement with this form.  
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Figure 2.C.1:   Variation of radius of maximum accumulation with shear rate. mr  is 

obtained from the dynamic pair distribution functions for different volume fractions. The 

solid lines are fits to the equation m

m y rr r k    where 0.5 0.02m   and coefficient kr is 

constant within the experimental accuracy. 
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SUPPLEMENTAL MATERIAL 2.D: DERIVATION OF CONSTITUTIVE EQUATIONS FOR 

NORMAL STRESS DIFFERENCES 

Figures 2.D.1a and 2.D.1b below show the variations of the coefficients g2,2(r) 

and g2,0(r) of the expansion of the pair distribution function into spherical harmonics. 

These coefficients contribute to the first and second normal stress differences. They have 

the same characteristic shape as the coefficient g2,-2(r) contributing to the stress 

expression; the negative minimum at a center-to-center distance rm is due to the 

accumulation of particles in the compressive region. The integrals in the expressions of 

yx , and  are dominated by the contributions from the domain where g2,-2(r)<0 (i.e. 

*0 r r  ), where the particles are the most compressed and the elastic forces the largest. 

Thus, 1N  and 2N  can be expressed as: 1 m

'

mN f Σ  and '

2 m

'

mN f Σ  where fm is the 

magnitude of the compressive elastic force at r=rm, and,  
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The latter quantities vary very slowly with the shear rate so that they will be 

considered as constant (see figure 2.D.1c). Using the Herschel-Bulkley form standing for 

the maximum compression force fm, we end up with the constitutive equations: 
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 (2.D.2) 

where  N1,y ( 0.04), N2,y (  0.09), 'k (  20) and  "k (  26) are numerical coefficients 

and m = 1/2. 
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Figure 2.D.1:   Variation of the coefficients g2,2(r) (a) and g2,0(r) (b) of the pair 

distribution function into spherical harmonics and surface densities of contacts (c) that 

contribute to 1, N  and 2N : ,m m
   and m

  respectively. The volume fraction here is 

0.8.   
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SUPPLEMENTAL MATERIAL 2.E: EXPERIMENTAL DETAILS 

This section describes the experimental protocol for preparing the microgels and 

emulsions used in the comparison section. Their raw unscaled flow curves have also been 

presented. 

2.E.1 Preparation of emulsions 

The emulsions are dispersions of silicon oil (viscosity: 0.5 mPa.s) in aqueous 

solvents stabilized by the non-ionic surfactant Triton X. They were prepared according to 

the well established protocol previously described [Meeker et al. (2004a)]. To ensure 

purely repulsive interactions, the emulsions were washed up after preparation to eliminate 

the excess surfactant and avoid depletion interactions between droplets. The droplet size 

distribution and the structure of the emulsions were determined from confocal 

microscopy observations. The mean particle radius is 1.25R m  with a polydispersity 

of about 20%. The structure of the emulsions remains disordered at all volume fractions. 

The contact elastic modulus E
*
 was determined from the radius R and the interfacial 

tension i  using the relation [Seth et al. (2006)]: * 9.92 iE R . The latter was 

measured using the pendant drop method. The solvents are water ( s  = 1 mPa.s, i 5 

mJ/m
2
, E

*
40 kPa) and a water-glycerol mixture ( s  = 7.9 mPa.s, i 4 mJ/m

2
, E

*
32 

kPa). The volume fraction was set by centrifugation and was measured both by 

gravimetry and by image processing. With these values of R and E* and   = 0.1, the 

ratio  * 5 2 3E R kT   is much larger than 1 ( 510 ). The flow curves of these emulsions are 

shown in figure 2.E.1. 
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Figure 2.E.1:   Nonlinear rheology data for concentrated emulsions. (a) and (b) show the 

flow curves of concentrated oil-water/glycerol and oil-water emulsions respectively at 

different volume fractions. (c) variations of the first normal stress differences. The table 

gives the volume fraction, the solvent viscosity, the storage modulus and the yield strain 

of the different emulsions. 
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2.E.2 Preparation of microgels 

Polyelectrolyte microgels consisting of a cross-linked copolymer network of ethyl 

acrylate and methacrylic acid were used. The microgels were collapsed at low pH and 

swell when they are ionized by NaOH. At low concentrations, the collapsed and swollen 

microgels are spherical particles with a hydrodynamic radius R = 50 nm and R = 230 nm, 

respectively. They form glasses above close-packing. The particles tend to shrink when 

the concentration is increased so that the actual volume fraction cannot be determined 

accurately [Borrega et al. (1999)]. The polymer concentration C is used as the control 

parameter. At swelling equilibrium, the shear modulus of the particle, GP, and the 

osmotic pressure of the counterions inside the particles are expected to be equal 

[Rubinstein et al. (1996)], which provides an order of magnitude [Borrega et al. (1999)] 

of GP  50 kPa. With the values of E* and R for microgels and 0.1  , the ratio 

* 5/2 3E R kT  is also much larger than 1 ( 10
3
). The flow curves of these microgels are 

shown in figure 2.E.2. 

2.E.3 Rheological measurements 

Measurements were made using an Anton-Paar MCR 501 rheometer mounted 

with a cone and Peltier plate geometry and a solvent trap (diameter: 50mm; angle: 2°; 

truncation: 48 m ; temperature: 20 °C). The shearing surfaces are coated with 

waterproof sandpaper providing a surface roughness of 20 m  which prevents the 

occurrence of slip [Meeker et al. (2004a)].  
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Figure 2.E.2:   Nonlinear rheology data for concentrated microgel suspensions. (a) and 

(b) show the flow curves of concentrated microgel suspensions at C=0.03g/g and C=0.03 

g/g respectively at different solvent viscosities. (c) shows the variations of the first 

normal stress difference with shear rate; the symbols are the same as in (a) and (b). The 

table gives the polymer concentration, the solvent viscosity, the storage modulus and the 

yield strain of the different suspensions.  
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SUPPLEMENTAL MATERIAL 2.F: SIMULATION DATA TABLES 

Table 2.F.1: Shear and Normal Stress differences 

  
s

    
  *

1
N Ε  

2

*N Ε  

Average Std. Dev. Average Std. Dev. Average Std. Dev. 

0.7 

10
-4 0.011644 0.000287 0.002186 0.000495 -0.00455 0.000341 

10
-5 0.003181 0.000161 0.000561 8.45E-05 -0.00128 0.000119 

10
-6 0.00115 3.79E-05 0.000133 8.01E-06 -0.00034 2.20E-05 

10
-7 0.000493 2.12E-05 6.02E-05 2.40E-06 -0.00011 1.19E-05 

10
-8 0.000268 9.44E-06 2.75E-05 8.44E-06 -4.34E-05 9.80E-06 

10
-9 0.000179 7.45E-06 2.11E-05 7.69E-06 -2.69E-05 2.95E-06 

        

0.75 

10
-4 0.016919 0.000363 0.004212 0.000739 -0.00625 0.000692 

10
-5 0.00529 9.37E-05 0.000645 0.000106 -0.00143 2.41E-05 

10
-6 0.002066 4.36E-05 0.000106 4.04E-05 -0.00041 3.10E-05 

10
-7 0.00099 2.74E-05 6.10E-05 2.27E-05 -0.00015 1.01E-05 

10
-8 0.000595 1.44E-05 3.06E-05 2.06E-05 -6.78E-05 2.17E-05 

10
-9 0.000429 1.53E-05 8.93E-05 9.82E-06 -0.0001 7.48E-06 

        

0.8 

10
-4 0.024851 0.000676 0.00296 0.000306 -0.00843 0.00033 

10
-5 0.008313 0.000206 0.001029 5.88E-05 -0.00253 0.000124 

10
-6 0.003468 8.37E-05 0.000365 3.37E-05 -0.00066 8.33E-05 

10
-7 0.001819 5.57E-05 0.00031 2.18E-05 -0.00028 1.94E-05 

10
-8 0.0012 3.07E-05 6.84E-05 3.01E-05 -0.00021 2.03E-05 

10
-9 0.000943 2.53E-05 1.57E-05 4.87E-05 -1.19E-05 1.47E-05 

        

0.85 

10
-4 0.034951 0.000538 0.005407 0.000343 -0.01023 0.000609 

10
-5 0.013234 0.000321 0.001925 0.000366 -0.00369 0.000353 

10
-6 0.005752 0.000191 0.000506 6.73E-05 -0.00077 5.61E-05 

10
-7 0.003155 9.61E-05 0.000509 3.58E-05 -0.0004 0.00019 

10
-8 0.00223 9.32E-05 8.95E-05 7.57E-05 -0.00024 0.000169 

10
-9 0.001883 5.89E-05 0.000307 2.02E-05 -0.00028 8.85E-05 

        

0.9 

10
-4 0.049512 0.00109 0.008832 0.001084 -0.01579 0.001743 

10
-5 0.020712 0.000515 0.003721 0.000693 -0.00589 0.00045 

10
-6 0.009898 0.000241 0.001625 0.000141 -0.00199 0.000173 

10
-7 0.005804 0.00016 0.000553 0.00016 -0.00074 0.000285 

10
-8 0.004235 0.000172 0.000425 0.000115 -0.00038 9.01E-05 

10
-9 0.003824 0.00025 0.000201 0.000126 -0.00035 9.10E-05 
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Table 2.F.2: Low Frequency Elastic Moduli 

  
0G

  

0.7 0.00466 

0.75 0.00995 

0.8 0.0281 

0.85 0.0459 

0.9 0.08 
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Chapter 3:  Oscillatory Shear Rheology‡ 

3.1 INTRODUCTION 

Oscillatory shear rheology is widely used to characterize the rheological behavior 

of materials as diverse as colloidal suspensions, polymer melts and solutions, surfactant 

mesophases, liquid crystals, and soft glassy materials [Hyun et al. (2011)]. A typical 

dynamic oscillatory test is performed by subjecting the material to a periodic strain or 

stress of sinusoidal shape at angular frequency ω and measuring its mechanical response 

as a function of time. The linear viscoelastic regime (LVE) of the material is probed 

when small amplitude oscillatory strains (SAOS) are applied. The linear viscoelastic 

properties are characterized by the (elastic) storage modulus G  and (viscous) loss 

modulus G . Materials can be probed at a large range of frequencies or time scales, often 

inaccessible by steady shear experiments, which yield the characteristic relaxation times 

and moduli. ( )G   and ( )G   fully describe the material response near equilibrium and 

provide insights into the relation between microstructure and rheology. Predictions of 

moduli based on molecular or microscopic theories are now available for a wide range of 

materials. Unlike steady shear at constant shear rate where the material is always above 

the yield stress, oscillatory shear is a technique which allows the material to move across 

the yield stress and can be used to additionally probe the signatures of yielding at 

different scales. 

During large amplitude oscillatory shear (LAOS), the equilibrium structure is 

distorted far from equilibrium and the response is no longer proportional to the excitation. 

The analysis used for small strain amplitudes is no longer meaningful and is insufficient 

to characterize the nonlinear rheology of materials. The complexity and richness of 

                                                 
‡ Much of this chapter has appeared in Mohan L., C. Pellet, M. Cloitre and R. Bonnecaze, "Local mobility and 

microstructure in periodically sheared soft particle glasses and their connection to macroscopic rheology," J Rheol 57, 

1023-1046 (2013).  
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LAOS tests reside in two main features. First, the amplitude and the frequency can be 

varied independently. Secondly, LAOS tests are usually non-equilibrium processes in that 

the material periodically returns to the same state of deformation without necessarily 

having time to reach steady state during the cycle. This makes LAOS experiments useful 

for studying highly nonlinear situations where materials are subjected to large 

deformations for a short period of time, as in fatigue tests. 

The analysis of LAOS measurements constitutes a very active area of research 

[Hyun et al. (2011)]. The oscillatory stress responses are often visualized in the form of 

closed curves in the strain and stress versus shear rate planes, and are generally referred 

to as elastic and viscous Lissajous-Bowditch plots, respectively, [Dealy and Wissbrun 

(1990); Philippoff (1966)] or as 3-D space with stress, strain and strain rate coordinates 

[Cho et al. (2005)]. General methods of analyzing non-linearities consist of decomposing 

the response waveforms into various basis functions, yielding a series expansion with an 

arbitrary number of terms. Fourier-transform rheology uses trigonometric functions to 

represent the response into a series of harmonics in the frequency domain [Wilhelm et al. 

(1998); Wilhelm (2002)]. Cho et al. (2005) decompose the response into a sum of so-

called elastic and viscous contributions. The idea was later generalized by Ewoldt et al. 

(2008) who used a set of orthogonal Chebyshev polynomials. Another method of 

decomposition uses combinations of characteristic basis functions which are associated 

with specific physical events [Klein et al. (2007)].  

Despite these important achievements, the interpretation of LAOS experiments in 

terms of physical mechanisms remains challenging. The question of how data extracted 

from LAOS experiments correlate to constitutive models has motivated investigations of 

various materials such as polymer solutions and melts with various molecular 

architectures [Hyun and Wilhelm (2009); Pearson and Rochefort (1982); Wagner et al. 
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(2011)], wormlike micelles [Gurnon and Wagner (2012)], and yield stress fluids [Ewoldt 

et al. (2010)]. A conceptually useful framework analyzes the response waveforms as 

temporal sequences of physical processes that repeat over time [Rogers et al. (2011a); 

Rogers et al. (2011b); Rogers (2012); Rogers and Lettinga (2012)]. With this technique it 

is possible to acquire multiple parameters that would otherwise require several 

independent rheological tests. In some instances, it has been possible to relate the LAOS 

response to the structural changes occurring during cycles [Gurnon and Wagner (2012); 

Lopez-Barron et al. (2012); Rogers et al. (2012)]. Nonetheless, fundamental descriptions 

where the non-linear shear response is derived explicitly from microscopic theories are 

absent. Here, the microstructural changes that occur during LAOS experiments for soft 

particle glasses are determined from particle scale simulations and used to establish the 

microscopic events that occur during the strain cycle. These microscopic events are then 

connected to the macroscopic behavior of soft particle glasses during oscillatory shear. 

As discussed earlier, the structure of soft particle glasses which is amorphous, 

shares common features with hard sphere glasses. Each particle is trapped in a ―cage‖ 

formed by its neighbors, which restrict and even arrest macroscopic motion. However, 

where hard sphere colloids only experience excluded volume interactions, soft particles at 

high volume fractions are compressed against each other by bulk osmotic forces and 

particles that are in contact interact via soft elastic repulsions. The rheological properties 

of soft jammed materials are dominated by the existence of the so-called yield stress 

below which they behave like weak elastic solids whereas they yield and flow like 

viscous liquids above it.  

In the previous chapter it was shown that the steady-shear properties of soft 

particle glasses result from a subtle interplay between elastic interactions and structural 

rearrangements between interlocked particles. A micromechanical model was proposed 
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that provides physical insights into yielding and flow mechanisms and lead to 

quantitative predictions of the shear stress and the normal stress differences without any 

adjustable parameters [Seth et al. (2011)]. Here this approach is extended to soft particle 

glasses subjected to oscillatory shear flow. The signatures of yielding at different scales 

are captured and the microstructural changes during an oscillatory shear cycle are 

determined.  

The remainder of the chapter is organized as follows. The simulation technique is 

described in section 3.2. The simulation results at small and large amplitudes for the 

dynamics at the particle scale are presented in section 3.3. Section 3.4 contains the 

microstructure at the mesoscopic scale and section 3.5 contains the macroscopic 

rheology. The viscoelastic moduli at low strain amplitudes, the strain sweeps and the 

Bowditch-Lissajous plots are found in good agreement with real experiments on 

microgels from Dr. Cloitre’s lab at ESPCI ParisTech, which validates the technique. A 

discussion connecting the evolution of the particle mobility and the microstructure to the 

macroscopic rheology is presented in section 3.6 and 3.7 and it is demonstrated that a 

large amplitude cycle can be decomposed into a sequence of physical processes that 

repeat periodically.  
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3.2 SIMULATION TECHNIQUE 

Soft particle glasses are modeled as three dimensional packings of N periodically 

replicated non-Brownian elastic spheres dispersed in a solvent with viscosity s  at 

volume fractions exceeding the random close-packing of hard spheres. The 3D packings 

are built as described in section 2.3 with a 10% polydispersity. The suspension is 

subjected in the x-direction to an oscillatory shear strain of amplitude and frequency, 0   

and  , respectively: 0 sin( )t   . The resulting velocity is in the x-direction with y 

axis being the gradient direction (see figure 3.1). The dynamics of the suspension is 

modeled using the micromechanical model described in section 2.2.  The governing 

equation including the elastic and elasto-hydrodynamic interactions at particle-particle 

contact presented earlier in section 2.2 is given below for easy reference.  

 α
α

1/ 2d ( ) 4 (2 1) / 42 3

d 6π 3

r

α

f nnC ε R Cu R ε
αβ c αβ, c αβt R β β


 

         
 

x
u n n  (3.1) 

 

The symbols here have the same meaning as before. α x*

s y
E

 u e  represents the velocity 

field due to applied strain, but here the shear rate is time varying due to the oscillatory 

nature of the shear with )cos(0 ωtωγγ   being the instantaneous shear rate and ex the unit 

vector in the x-direction.  

These N coupled equations of motion were integrated numerically to determine 

the evolution of the spatial position and velocity of each particle. Periodic boundary 

conditions were applied in the x- and z- directions and Lee-Edwards boundary condition 

was implemented in y- direction. At each step, the positions of particles leaving the box 

were shifted by a cumulative strain 
t

dτγγ
0

 . The open source code LAMMPS [Plimpton 
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(1995)] was used to perform the simulations. Packings of 1,000 and 10,000 particles of 

volume fraction 0.8 were generated. Configurations with 1 000 particles were used for 

the large amplitude simulations, 0  = 2.0, 1.0, 0.5 and 0.1. Each simulation was run up to 

50 cycles and averaged over five different initial configurations. Configurations with 

10000 particles were used for the small amplitude simulations, 0 = 0.05, 0.01 and 0.003. 

These simulations were run for up to 20 cycles and averaged over five different initial 

particle configurations. The cycles for averaging were chosen after reaching steady state. 

The approach to steady state was defined as the cycle beyond which all other cycles were 

the same, i.e. the stress-strain data for all cycles overlapped on top of each other. 

The average stress   at different points during the cycle was computed from the 

Kirkwood formula as described in section 2.3 (see equations 2.4-2.6). The viscoelastic 

moduli were computed by taking the Fourier transform of the stress-strain data computed 

over a cycle with period Tcycle. 

 

0
0

0
0

2
' sin( )

2
cos( )

cycle

cycle

T

cycle

T

cycle

G t dt
T

G t dt
T

 


 




 





 (3.2) 

The microstructure of suspensions was characterized through the dynamic pair 

distribution function g(r) which is defined in the previous chapter in section 2.5.1 [Brady 

and Morris (1997); Morris and Katyal (2002); Seth et al. (2011); Sierou and Brady 

(2002)]. The dynamic pair distribution function g(r) was computed at different points in 

the cycle. It can be decomposed into a series of orthogonal spherical harmonic functions 

and g2,-2(r) which is the most relevant harmonic to the shear stress was calculated as 

described earlier in section 2.5.2.   
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Figure 3.1:   (a) Periodic simulation box (b) Imposed oscillatory shear rate.  
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3.3 PARTICLE SCALE DYNAMICS 

In this section, the particle dynamics in 3D jammed packings of soft particles 

subjected to oscillatory shear flow is presented. The individual particle motions are 

tracked in the simulations and the mean square displacements of the particles are 

analyzed.  

3.3.1 Particle mean square displacements: Effect of Strain Amplitude 

Figure 3.2 represents the variations of the mean square displacements in the x-, y- 

and z- directions versus the number of oscillations nosc (=ωt/2π) for a fixed frequency and 

various strain amplitudes. In the x- direction, the mean square displacement is modulated 

by oscillations due to the periodic forcing unlike along y- and z- directions. The top panel 

shows data computed at low strain amplitudes 0  close or smaller than the macroscopic 

yield strain, y ; in the bottom panel 0  is much larger than y . At the smallest strain 

amplitudes investigated 0( 1.5)y   , the mean square displacements 2x , 2y , and 

2z  slowly increase in time before reaching a plateau value which is much less than a 

particle diameter. This indicates that the particles explore restricted regions of space 

around their mean positions. In other words they can be seen as trapped in cages formed 

by their neighbors. At larger strain amplitudes 0( 3)y   , the particles move over 

distances larger than their diameter, i.e., they escape their local environments and jump to 

other cages where they experience different neighbors. These rearrangements give rise to 

large mean square displacements of individual particles even though the macroscopic 

strain is purely oscillatory. 
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Figure 3.2:   Mean square displacements of particles in the x-, y- and z- directions versus 

number of oscillations for different strain amplitudes:  (a) 0 y  = 3.0, 1.5, 0.3 (top to 

bottom);  (b) 0 y   = 30, 15, 3.0 (top to bottom). The frequency is * 82 10s E    . 
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3.3.2 Particle mean square displacements: Effect of frequency 

Figure 3.3 presents the mean square displacements in the x-, y- and z- directions at 

small and large strain amplitudes when the frequency is varied. In the top panel, the strain 

amplitude is smaller than the yield strain 0( 0.09)y    and the non-dimensional 

frequency *

s E   varies between 82 10  to 10
-3

. In the low strain amplitude regime, 

the particles get trapped at all frequencies after a few oscillations. The steady state, where 

the mean square displacements reach their plateau values, occurs at longer times for 

lower frequencies. It is interesting to note that the plateau values of 2x , 2y , and 

2z  are similar, as already noted in figure 3.2. The bottom panel shows data computed 

for large strain amplitude 0( 30)y    and non-dimensional frequencies varying again 

between 82 10  to 10
-6

. The mean square displacements steadily increase at all 

frequencies showing that the particles are not permanently trapped at these large 

amplitudes. It is interesting to note that the mean square displacement per cycle remains 

of the same order even though the time taken for completing one oscillation is orders of 

magnitude different for the different frequencies. 
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Figure 3.3:   Mean square displacements of particles in the x-, y- and z- directions at small 

and large strain amplitudes versus oscillation number for different frequencies. (a) Small 

strain amplitude ( 0 y  = 0.09) at frequencies of 8 6 4 3/ * 2 10 ,10 ,10 ,2 10s E         

(top to bottom). (b) Large strain amplitude ( 0 y  =30) at frequencies 

8 7 6/ * 2 10 ,10 ,10s E       (top to bottom). 
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3.3.3 Shear induced diffusivity  

For strain amplitudes larger than the yield strain, the particle mean square 

displacements 2x , 2y , and 2z  increases with time. After steady state is 

reached, the variations are linear with periodic modulations in the oscillatory flow 

direction (see figure 3.2 and 3.3). This allows us to define effective diffusion coefficients 

of the particles in the x-, y- and z- directions (the oscillatory shear is in the x- direction) 

by fitting the mean square displacement curves as follows,                                       

 

2

x

2

y

2

z

x 2D t

y 2D t

z 2D t

 

 

 

 (3.3) 

In practice, the mean square displacements were computed over the last four 

cycles. The variations of the non-dimensional effective diffusion coefficients Dx, Dy, and 

Dz normalized by the scaling factor 2 *

0 sD R E   for different strain amplitudes at 

8/ * 2 10s E     is presented in figure 3.4a. Again, the amplitude of the maximum 

strain 0  is normalized by y . All three diffusion coefficients are equal, except at the 

largest strain amplitude where the diffusion coefficient in the x- direction is slightly 

larger. This indicates that the shear induced diffusivity associated with particle 

rearrangements is isotropic under these conditions, even though the shearing motion is 

applied along the x- axis.  Only the averaged diffusion coefficient, D = (Dx + Dy + Dz)/3 

will be considered in the following. The diffusion coefficients increase linearly with 

strain amplitude beyond 0 y  ~1. This further confirms that the large scale 

rearrangements responsible for the increase of the shear induced diffusivity start taking 

over around the yield strain.  
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The effect of frequency on the particle scale diffusivity at large amplitudes was 

also determined. The variations of the averaged diffusion coefficient D with the 

dimensionless frequency 8/ * 2 10s E     for two values of 0 y  > 1 are plotted in 

figure 3.4b. D increases linearly with the applied frequency. In figure 3.4c the averaged 

diffusion coefficients for different strain amplitudes greater than the yield strain and 

frequencies are plotted against the non-dimensional shear-rate amplitude *

0 s E   where 

0 0   . The data obtained for different strain amplitudes and frequencies collapse onto 

a single master curve. They are well described by a linear variation. It is interesting to 

note the similarities between the non-dimensional variable *

0 s E   and that involved in 

the constitutive equation  
1/2

* 21y s yk E      derived in section 2.5.4. The 

diffusivities computed from steady shear simulations also agree with those computed 

from oscillatory shear measurements here (see Supplemental Material 3.B). This suggests 

that the same underlying mechanisms, i.e. disorder and elastohydrodynamic interactions 

lay at the heart of the behavior of soft particle glasses at the local and macroscopic scale.  

From figure 3.4c one may also conclude that the diffusivity 20.1D R .  

Remarkably, this is practically the same scaling for shear induced hydrodynamic 

diffusion for hard spheres in suspensions with volume fractions greater than 30% [Nott 

and Brady (1994)], despite the fact the physics driving the behavior (long-ranged 

hydrodynamic interactions versus near-field elastohydrodynamics) are quite different. 
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Figure 3.4:   Shear-induced diffusion coefficients computed from the mean square 

displacements of particles. (a) Variations with the strain amplitude of the diffusion 

coefficients Di (i =x, y, z) computed from 2x  (), 2y  (), and 2z (), at non 

dimensional frequency 8/ * 2 10s E    ; the data for 0 y  <1 have been estimated 

from the last computed oscillation where the mean square displacements approach their 

plateau values. (b) Variations with frequency of the non-dimensional averaged diffusion 

coefficient, D = (Dx + Dy + Dz)/3 at 0 y  = 30 () and 0 y  = 3.0 (). (c) Variations 

of the averaged diffusion coefficients D/D0 for 0 y  >1 with the non-dimensional shear-

rate amplitude (same symbols as in (a) and (b)). 
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3.4 MICROSTRUCTURE OF SUSPENSIONS  

In this section the pair distribution function g(r) is presented at different points in 

the cycle for small, medium and large strain amplitude oscillatory shear. For reference, 

the radially symmetric microstructure at rest and the distorted microstructure at steady 

shear were presented in section 2.5.1.  

 

3.4.1 Microstructure at small amplitude oscillatory shear 

First, the evolution of the microstructure within a cycle when the strain amplitude 

0  is smaller than the yield strain ( 0 y  < 1) was studied. Figure 3.5a shows the 

variations of the applied strain  and of the resulting stress  .   and   are nearly in 

phase and linearly proportional, which corresponds to the linear viscoelastic regime. The 

pair correlation function was computed at five particular locations of the cycle, denoted 

by ti (i = 1,5). t1 and t5 are the points where the stress amplitude has positive and negative 

extrema, respectively; t3 is where the stress is zero; at t2 and t4, the stress takes 

intermediate values of opposite signs. Note that in this small strain limit where  and   

are nearly in phase, the strain has also its positive and negative extrema approximately at 

t1 and t5 and is zero in t3. The five pair distribution functions which are computed are 

shown in figure 3.5b. At all times, the pair distribution function appears to be essentially 

uniform. The white line represents the most probable centre-centre separation at rest. The 

particle separation r/R at which the pair correlation function is maximum is about the 

same as at rest. In order to better analyze the three-dimensional pair correlation function, 

the spherical harmonics g2,-2(r) was calculated at t1, t3 and t5, which are plotted in figure 
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3.5c. At t3 where the stress is zero, g2,-2(r) vanishes within the statistical fluctuations. At 

t1 and t5 where the stress has its extrema, g2,-2(r) exhibits a small negative minimum at 

small center-to-center distances r/R and a small positive maximum at large distances 

during the positive part of the cycle (t1) and vice versa during the negative part (t5). This 

means that there is a small accumulation of particles along the compression axis or in the 

upstream quadrant and depletion along the extension axis or in the downstream quadrant. 

In conclusion, a small amplitude oscillatory shear flow induces only very slight 

distortions of the pair distribution function with respect to the static situation. 
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Figure 3.5:   Microstructure of soft particle glass ( = 0.80) subjected to small amplitude 

oscillations ( 0 y  = 0.09; / *s E  = 210
-8

). (a) Variations of the strain (- - -) and stress 

() waveforms over one cycle and positions of the five characteristic points where g(r) 

is presented. (b) Pair distribution functions in the azimuthal r-  plane; the most probable 

center-to-center separation at rest is indicated in the maximum and zero stress states by a 

white dash-dot line and a black arrow. (c) g2,-2(r) spherical harmonics. 
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3.4.2 Microstructure at medium amplitude oscillatory shear 

Figure 3.6 analyzes the change of microstructure when the strain amplitude is 

slightly larger than the yield strain (0/y ~ 1), the maximum stress being of the order of 

the yield stress. This situation is referred to as the medium amplitude case. Figure 3.6a 

shows the variations of the applied strain and resulting stress within a cycle. The stress 

waveform is no longer sinusoidal indicating that we are outside the linear viscoelastic 

regime. The two-dimensional pair correlation function was computed at six characteristic 

intracycle positions: t1 and t4 where the stress has its positive and negative extrema, 

respectively, t3 and t6 where it is zero, and t2 and t5 where the strain has its positive and 

negative extrema. The corresponding azimuthal plots are presented in figure 3.6b. The 

pair distribution functions are no longer radially symmetric and reveal significant 

distortions of the microstructure. These distortions are the most visible at the positions in 

the cycle where the stress is the largest (t1 and t4, t2 and t5). The positions of the maxima 

of the particle pair distribution functions vary with the angle and the distribution of 

particles centers along the radial direction is no longer symmetric. In particular, there are 

particles at smaller separations than found at rest or in the linear viscoelastic regime. This 

indicates that neighboring particles tend to accumulate in the upstream quadrant 

(/2< <, where they are more compressed, and to deplete along the extensional axis 

(< <, where they are less distorted. It is interesting to note that the angular position 

of the accumulation and depletion effects in the negative part of the cycle are shifted by 

 radians with respect to their positions in the positive part due the reversal of the flow. 

At t3 and t6, where the stress vanishes, the accumulation-depletion effect is significantly 

reduced, the particle distribution becomes more uniform and resembles that in the static 

state.  
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The accumulation-depletion mechanism that has been identified here is also 

supported by the variations of the spherical harmonics shown in figure 3.6c. g2,-2(r) has a 

negative peak at low separations (r/R  1.83), i.e. large degrees of compression, which 

corresponds to an accumulation of particles along the compression axis. There is a 

positive peak of smaller amplitude at large separations (r/R  1.9), i.e. low degrees of 

compression, which corresponds to the depletion of particles around the downstream 

extension axis of the flow. From the depth of the minimum and the height of the 

maximum, it is deduced that there are fewer particles in the extensional region. The 

asymmetry between the peaks associated with upstream accumulation and downstream 

depletion is more pronounced when the stress is large (t1 and t4, t2 and t5). On the 

contrary, at t3 and t6, where the stress vanishes, the asymmetry is weak and g2,-2(r) 

approaches that computed for the low amplitude case. The spherical harmonics g2,-2(r) 

computed at locations where the stress takes opposite values (t1 and t2, t3 and t6) are equal 

but with opposite signs, which again express the fact that the particle distribution simply 

reverses upon flow reversal.  
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Figure 3.6:   Microstructure of soft particle glass ( = 0.80) subjected to medium 

amplitude oscillations ( 0 y  = 3.0; / *s E  = 210
-8

). (a) Variations of the strain (- - -) 

and stress () waveforms over one cycle and positions of the six characteristic points 

where g(r) is presented. (b) Pair distribution functions in the azimuthal r-  plane; the 

most probable center-to-center separation at rest indicated in the zero stress states by a 

white dash-dot line and a black arrow. (c) g2,-2(r) spherical harmonics. 
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3.4.3 Microstructure at large amplitude oscillatory shear  

Figure 3.7 shows the evolution of the microstructure during strain amplitudes that 

are large relative to the yield strain ( 0 y  >>1); here, the maximum stress exceeds the 

yield stress. In figure 3.7a the stress waveform is considerably distorted with respect to 

the strain, indicating that the response is highly non linear. In figure

b the pair distribution functions are shown for the same characteristic times as in the 

medium amplitude case. The evolution of the microstructure within the cycles is 

somewhat similar to that for the medium amplitude case but the amplitudes of the 

distortions are much larger. At times t1 and t4, where the stress reaches its maximum 

positive and negative values, which largely exceeds the yield stress, important 

asymmetries are observed in the pair distribution function both along the azimuthal and 

radial directions. There is a significant accumulation of particles upstream and depletion 

downstream indicating an important redistribution of particles. At t2 and t5, where the 

strain reaches its positive and negative values, the stress has significantly decreased and 

the accumulation and depletion regions are much less pronounced. Finally, at t3 and t6, 

where the stress goes to zero, the particle distribution is nearly isotropic, the maximum 

compression and the average separation between the particles being comparable to that 

observed at rest or at small strain amplitudes.  

The spherical harmonics g2,-2(r) computed at the characteristic times ti are 

presented in figure 3.7c. As already discussed for the medium amplitude case, the 

negative minimum and positive maximum during the positive part of the strain cycle are 

associated with the accumulation of particles in the compressive quadrant and the 

depletion in the extension quadrant. The peak heights are the largest at t1 and t4, when the 

stress is the largest. They decrease rapidly at t2 and t5, when the stress amplitude drops 
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and finally they nearly vanish at t3 and t6, when the stress goes to zero. Again we observe 

symmetry between upstream and downstream upon flow reversal. 

 

 

Figure 3.7:   Microstructure of soft particle glass ( = 0.80) subjected to large amplitude 

oscillations ( 0 y   = 30; / *s E  = 210
-8

 ). (a) Variations of the strain (- - -) and stress 

() waveforms over one cycle and positions of the six characteristic points where g(r) is 

presented. (b) Pair distribution functions in the azimuthal r-  plane; the most probable 

center-to-center separation at rest is indicated in the zero stress states by a white dash-dot 

line and a black arrow; (c) g2,-2(r) spherical harmonics. 
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3.5 MACROSCOPIC RHEOLOGY 

3.5.1 Viscoelastic moduli at low strain amplitude 

Oscillatory experiments at low strain amplitudes probe the linear viscoelastic 

response of the unperturbed microstructure. Systematic simulations were performed in 

this regime, varying the frequency of oscillations over several decades, and compared to 

the results with experimental observations from Dr. Cloitre’s lab. The materials used and 

the experimental protocol are described in Supplemental Material 3.A. The variations of 

the storage and loss moduli with frequency are shown in figure 3.8. At low frequencies, 

the elasticity and dissipation associated with the deformation of the particles through their 

contacting facets is probed. The storage modulus exhibits a plateau that is much larger 

than the loss modulus. The value of the plateau modulus, G0, is in good agreement with 

independent calculations based on uniaxial deformation of small amplitude [Seth et al. 

(2006)]. For convenience, all the storage and loss moduli presented are scaled by the 

plateau modulus G0. At high frequencies both the storage and loss moduli increase. The 

power law variation which is often followed by the loss modulus in experiments on 

compressed emulsions and foams (G ~ 1/2
) is shown for reference [Cohen-Addad et al. 

(1998); Liu et al. (1996)]. Although more simulations at higher frequencies would be 

necessary to draw a definite conclusion, the data calculated in the simulations fit 

reasonably well to this expectation. The storage and loss moduli which were measured 

for the microgel suspension described in Supplemental Material 3.A, using a 

conventional rheometer is also plotted in figure 3.8 for comparison. For the sake of 

comparison, the experimental moduli are normalized to the plateau modulus measured 

experimentally and the reduced frequency is calculated using the value of the contact 

modulus which was determined experimentally and the solvent viscosity. The 
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correspondence between the simulation and experimental data validates the ability of the 

3D elastohydrodynamic model to reproduce quantitatively the linear viscoelastic 

behavior of real soft particle glasses.  

 

 

Figure 3.8:   Storage modulus G  ( and —) and loss modulus G  ( and ) versus 

reduced frequency from simulations (symbols) and experiments (lines) in the low strain 

amplitude or linear regime at  0 y   = 0.09. A reference slope of 0.5 is shown. 
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3.5.2 Effective viscoelastic moduli during large amplitude oscillation 

The effective storage and loss moduli as well as the stress amplitude for any strain 

of arbitrary amplitude were calculated to construct simulated strain sweep plots. The 

results are presented in figure 3.9 together with the corresponding experimental data 

measured for the 0.8   microgel suspension. The moduli are again normalized by the 

plateau modulus G0, the stress by the yield stress, and the strain amplitude by the yield 

strain. Both sets of data agree quantitatively, which further confirms the capacity of the 

3D model and the simulations to reproduce non linear responses in oscillatory shear 

rheology. Figure 3.9 gives evidence for a change of mechanical behavior around

0 1y   , where the maximum stress exceeds the yield stress. The small strain amplitude 

regime where 0 y  < 1, intermediate strain amplitude regime where 0 1y   , and large 

strain amplitude regime where 0 y  >1, can be mapped on the regimes defined in the 

analysis of the microstructure in section 3.4. In the low strain amplitude regime, where 

the microstructure is essentially non disturbed by the mechanical excitation, both moduli 

are constant with "' GG   indicating linear elastic behavior. The intermediate strain 

amplitude regime, where large scale rearrangements start to occur, is associated with a 

break in the stress curve, a decrease of the storage modulus and a bump in the loss 

modulus. At large amplitudes, where particles continuously rearrange and move over 

long distances, both G  and G vary as power laws according to 
-μ
γG 0'  and -νγG 0'' 

with   1.45 and   0.80 (/  1.8). Similar variations are ubiquitous in soft glassy 

materials [Erwin et al. (2010); Hyun et al. (2002); Miyazaki et al. (2006)]. One major 

drawback of this analysis, however, is that these effective moduli which are calculated or 

measured experimentally in the nonlinear regime provide only qualitative information 

about the actual rheological properties of the materials. In the next section, the analysis is 
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furthered by presenting a full non-linear analysis of the rheological response using 

Bowditch-Lissajous plots.  

 

  

 

Figure 3.9:   Storage modulus G  ( and —), loss modulus G  ( and ----) and stress 

amplitude 0 ( and ……) as functions of strain amplitude 0 y   , from simulations 

(symbols) and experiments (lines) at a frequency of / *s E  = 210
-8

. Dotted lines 

represent power law variations with exponents μ and ν respectively, as discussed in the 

text. 
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3.5.3 Bowditch-Lissajous plots for arbitrary strain amplitudes 

Stress-strain plots or elastic Bowditch-Lissajous (BL) for different strain 

amplitudes are shown in figure 3.10. Simulation results are presented in figures 3.10a-c. 

In figure 3.10a, the strain amplitude is smaller than the yield strain ( 0 y    0.09). The 

elastic BL plot is an ellipse, which is the typical response expected for a linear 

viscoelastic material. The slope of the long axis is the storage modulus while the short 

axis, which characterizes the openness of the ellipse, depends on the loss modulus. The 

elongated shape of the ellipse indicates that G G  , which is in agreement with the 

previous results shown in figure 3.8. Ellipses with similar features are obtained for 

different strain amplitudes as long as 0 y   <1, since we remain in the linear viscoelastic 

regime. Data at intermediate strain amplitudes is presented in figure 3.10b. The BL curve 

for 0 y  =1 is still an ellipse but that for 0 3.0y    it begins to deform. The distortions 

are the largest when the strain becomes of the order of the yield strain and the stress 

comparable to the yield stress. The BL plot is then stretched along the strain axis. Data 

for large strain amplitudes is presented in figure 3.10c. The BL plots then adopt a 

parallelogram shape. The lateral sides of the parallelogram correspond to the regime 

where the stress is smaller than the yield stress. The top and bottom horizontal sides of 

the BL curves correspond to the portion of the cycles where the stress is larger than the 

yield stress. It is interesting to note that the point where yielding starts is signaled by a 

small overshot of the stress, which is reminiscent of the static yield stress. Experimental 

data for the concentrated microgel suspensions are presented in figures 3.10d-f. They 

agree reasonably well with the simulated data both in shape and in amplitude. There is a 

small difference near the yield point around   y, which is less apparent for the 

microgel suspension. Note however that a well-defined static yield stress has been 

observed star polymer glasses [Rogers et al. (2011b)]. The importance of frequency was 
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also investigated both in simulations and experiments and the results are presented in 

Supplemental Material 3.C. The BL plots essentially keep the same characteristic shapes 

in the low, intermediate and large amplitude regimes. In the large amplitude regime, the 

slope of the lateral sides of the BL plots increases with frequency, in accordance with the 

increase of the linear storage modulus; the absolute value of the stress in the top and 

bottom section of the BL plots, which corresponds to macroscopic flow, increase. 

 

Figure 3.10:   Bowditch-Lissajous plots from simulations and experiments at different 

strain amplitudes. Left to right: linear viscoelastic regime ( 0 y  = 0.09; panels (a) and 

(d)); medium amplitude regime (inner to outer: 0 y  = 0.09, 1.5, 3.0; panels (b) and (e)); 

large amplitude regime (inner to outer: 0 y  = 3.0, 15, 30, 60; panels (c) and (f)). The 

symbols in panels (a), (b) and (c) represent the shear stress values which are predicted 

from the g2,-2(r) spherical harmonics as discussed in the text. 
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 3.6 INTERPRETATION OF PHYSICAL EVENTS WITHIN OSCILLATORY CYCLES 

The particle scale simulations and experiments described in the previous section 

provide a deep understanding of the microstructural changes occurring during the 

oscillatory shear of soft particle glasses. At small strain amplitudes, the particles remain 

trapped in the cages formed by their neighbors as they periodically move back and forth 

to follow the applied strain. Interestingly, the particles execute some in-cage motion of 

small amplitude around the mean position. The mean square displacement of the particles 

slowly increases in time and tend to a constant plateau after many cycles. The spherical 

harmonic g2,-2(r) reveal that there is a small accumulation of particles in the compressed 

quadrant and a depletion in the extension quadrant, the effect reversing upon flow 

reversal. Since the particles remain caged, this change of microstructure simply 

corresponds to a local redistribution of contacts and a mild distortion of the static cages, 

the overall microstructure being unchanged and reversible after a few oscillations. 

At strain amplitudes larger than the yield strain, the particles can escape their 

position and rearrange over large distances. The cages are continuously advected and 

renewed by the oscillatory shear flow. The mean-square displacements of the particles in 

the three x-, y-, and z- directions increase linearly in time, which indicates that the 

shearing oscillatory motion along the x- direction induces a spatially isotropic shear-

induced diffusive motion of the particles. The evolution of the microstructure along a 

cycle is controlled by the value of the shear stress relative to the yield stress y. Along 

the portions of the cycle where <y, i.e. where the instantaneous shear rate is small, 

both the pair correlation function g(r) and the associated harmonic g2,-2(r) exhibit little 

changes with respect to the low amplitude case or the static situation. This suggests that 

the particles are locally trapped in their cages so that the material instantaneously 
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responds like an elastic solid. However, contrary to what happens to the low amplitude 

case, the particles start to yield and rearrange once the yield stress is exceeded. The 

evolution of the microstructure is then characterized by an accumulation-depletion 

mechanism where particles accumulate in the compressive directions of the flow, where 

they are more compressed, and deplete in the extension directions where they are less 

compressed. To slide on top of one another and rearrange, particles have to overcome the 

barrier force at the point of maximum accumulation, where the particles are highly 

compressed. This mechanism is quite similar to that previously described and discussed 

in chapter 2 for steady shear flows. This analogies indicates that the portions of the cycles 

where >y, i.e. where the instantaneous shear rate is large, correspond to macroscopic 

shear flow. 

 In conclusion, it is demonstrated that soft jammed suspensions sheared 

periodically at large amplitudes undergo a sequence of well-defined physical events: 

elastic caging in the low stress portions of the cycle, cage breaking near the yield stress, 

and flow rearrangements in the portions of the cycle where the stress exceeds the yield 

stress. This approach was recently proposed from the perspective of rheology by Rogers 

et al. (2011b). Here it is shows that this framework is also relevant with respect to the 

evolution of the microstructure. To finish, it is interesting to discuss the respective 

significance of the strain and stress amplitudes. The ratio of the strain amplitude to the 

yield strain, 0 y  , discriminates the low and medium/large amplitude regimes. For 

0 y  <1, particle diffusivity is very low, the microstructure is similar to that at rest, and 

the mechanical response is in the linear regime. For 0 y   >1, particles diffuse through 

the suspension, the microstructure is distorted with respect to quiescent states, and the 

mechanical response is the non linear regime. It is worth noting that a single quantity, 

0 y  , thus suffices to characterize the onset of yielding at the particle scale (local 
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mobility), mesoscopic scale (microstructure), and macroscopic scale (rheology). Now 

when 0 y  >1, the instantaneous value of the stress relative to the yield stress 

characterizes the state of the material, i.e. caged (/y <1), yielding (/y ~1) or flowing 

(/y >1), along the cycle.  

3.7 CONNECTING THE MICROSTRUCTURE TO MACROSCOPIC OSCILLATORY SHEAR 

RHEOLOGY 

The elastic component of the shear stress can be computed from the g2,-2(r) 

spherical harmonic of the pair correlation function as described in section 2.5.3. The 

results are plotted in figure 3.10, where we observe the data fall onto the BL plots 

obtained numerically. This result is interesting since it shows that the total stress is 

dominated by the elastic contribution coming from the microstructure and the elastic 

repulsive potential, the viscous contribution being negligible. A similar conclusion was 

drawn previously for steady shear flows. 

An alternative technique is now proposed based on the previous result that the 

material behavior along cycles can be decomposed in a sequence of processes, namely 

caging, yielding and flow. Starting from the regions of the LAOS cycle where the strain 

amplitude is near its extrema or the shear rate is zero, from section 3.6 above, it is known 

that the particles are instantaneously trapped in cages, the cages being only mildly 

distorted from their static configuration, so that the suspensions essentially respond 

elastically. Following Rogers et al. (2011b), we define the cage modulus as the local 

slope of the Bowditch-Lissajous plots at  = 0: 

 
σ 0

dσ
G

dγ
c



  (3.4) 

The results are plotted in figure 3.11 both for the simulations and the experiments. Again, 

good agreement is observed between the two sets of data. The other interesting result is 
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that the cage modulus for increasing strain amplitudes remains constant and comparable 

to the storage modulus at low strain amplitudes. For comparison, the effective storage 

modulus G calculated over one cycle decreases when 0 y  >1. The data in figure 3.11 

are obtained for a frequency of * 82x10s E   . Similar results are obtained at higher 

frequencies, the cage modulus being the low strain amplitude storage modulus for that 

frequency. This means that the lateral segments of the BL plots are the signatures of the 

cage elasticity and they can be used to determine the magnitude of the linear storage 

modulus in LAOS experiments.  

Next, the portions of the cycles associated with post-yielding behavior ( > y) 

are analyzed. From section 3.6 above, it is known that the material flows in a way similar 

to that in steady shear flows. Thus the relationship between the shear rate and the stress 

can be used as an indicator of the flow curve. The data obtained for LAOS simulations 

and experiments at different strain amplitudes and frequencies altogether with the 

macroscopic flow curves computed and measured independently for steady shear flows 

(from Chapter 2) are plotted in figure 3.12. The data obtained from LAOS rheology are in 

good agreement with the steady shear flow curve as shown in figure 3.12. Thus, in the 

large stress region of the cycle the flow mechanism is similar to that in steady shear 

where the material exhibits a shear thinning viscoelastic behavior. The unifying effect of 

the shear rate amplitude on the particle scale diffusivities exemplified in figure 3.4 must 

lie at the root of this collapse of LAOS cycles onto to the flow curve. Figure 3.12 also 

shows that the experimental and simulation data are in good agreement which supports 

the validity of the micromechanical model.   
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Figure 3.11:   Cage modulus versus strain amplitude at * 82x10s E    from 

simulations ()  and experiments (). For comparison the values of the low frequency 

storage modulus at low strain amplitude are also plotted (: simulations; —: 

experiments). 
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Figure 3.12:   Flowing portions of the BL plots for different strain amplitudes and 

frequencies (symbols) collapsed and superimposed to the flow curve from steady shear 

(symbols). For the sake of comparison between experiments and simulations, the data are 

represented in the set of reduced coordinates exemplified in the constitutive equation 

derived in chapter 2 (equation 2.16). 
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3.8 SUMMARY AND CONCLUSIONS 

Particle scale simulations at small, intermediate and large strain amplitudes are 

built using the micromechanical model proposed in the previous chapter to determine the 

microstructure, particle scale mobility and macroscopic rheology of soft particle glasses. 

The macroscopic properties computed from simulations quantitatively agree with 

experimental measurements on well-characterized microgel suspensions, which validate 

the model. At the mesoscopic scale, the evolution of the particle pair distribution during a 

cycle reveal the physical mechanisms responsible for yielding and flow and also leads to 

quantitative prediction of shear stress. At the local scale, the particles remain trapped 

inside their surrounding cage below the yield strain and yielding is associated with the 

onset of large scale rearrangements and shear-induced diffusion. This multiscale analysis 

thus highlights the distinct microscopic events that make these glasses exhibit a 

combination of solid like and liquid like behavior and also accounts for the generic linear 

and non-linear behavior of many materials made of soft particles [Ewoldt et al. (2010); 

Hyun et al. (2011)]. The study also elucidates the signature of yielding in the micro (cage 

breaking), meso (asymmetry in g(r)) and macro scales (appearance of non-linear stress-

strain behavior).  

The results concerning the local dynamics of particles echo a former investigation 

of yielding in concentrated emulsions [Hebraud et al. (1997)]. Using diffusive wave 

spectroscopy to measure the motion of droplets in concentrated emulsions subjected to 

oscillatory shear, they found that the particles reversibly retrace their trajectories at low 

strain amplitudes but undergo irreversible rearrangements above the yield strain. In these 

simulations, the plateauing of the mean square displacements at low strain amplitudes 

indeed indicate that particles don’t undergo large scale rearrangements, while the linear 

increase at large scale amplitudes shows that irreversible rearrangements take place. 
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Hebraud et al. were also able to detect that a finite fraction droplets systematically exhibit 

chaotic motion while the rest of the sample follows reversible trajectories over many 

periods. This surprising feature would deserve more attention in the simulations 

presented here, which will help to understand further the physical mechanisms associated 

with yielding.  

The findings concerning the particle scale dynamics, also exhibit interesting 

analogies with the behavior of non-Brownian hard sphere suspensions in a viscous fluid, 

which are subjected to oscillatory shear motion [Corte et al. (2008); Pine et al. (2005)]. 

The physical origin of interparticle interactions is a priori significantly different in both 

systems: in non-Brownian suspensions, particles interact through long-range 

hydrodynamic interactions; in dense suspensions of soft particles, particles experience 

short-range elastohydrodynamic forces at particle contacts. It was found that 

irreversibility in non-Brownian viscous suspensions occurs above a well-defined critical 

strain amplitude above which particles diffuse over long distances and below which they 

organize after a few cycles into a configurations that remain undisturbed. This critical 

strain in non-Brownian hydrodynamic suspensions thus plays the role of the yield strain 

in the dense suspensions considered here. This analogy suggests some common 

underlying physics originating from the existence of many contact interactions, 

independently of the detailed nature of interparticle forces. In addition, the threshold 

between the reversible and irreversible states in hydrodynamic suspensions was recently 

described as a phase transition. It would be interesting to analyze and push forward this 

concept in dense suspensions of soft particles, where it may provide a new description of 

yielding as the onset of irreversibility and unpredictability. The micromechanical model 

and the simulations presented here can give access to crucial dynamical quantities like 

the fraction of active particles at any time, the equilibration time, and spatial correlations 
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between particles and help to analyse our conjecture in more detail. Preliminary results 

show that the fraction of active particles, i.e., those that move irreversibly, is indeed zero 

at small strain amplitudes and goes to unity beyond the yield strain.  

At the mesoscopic level the statistical properties of the particle distribution 

provide unambiguous signatures of the onset of yielding. At very low strain amplitudes, 

the mesoscopic structure adjusts itself to the periodic shearing motion through localized 

relaxation of contacts, expressing that the deformation of soft particle suspensions is 

essentially non affine [Lacasse et al. (1996)]. At larger strain amplitudes, the occurrence 

of rearrangements is associated with a periodic modification of the pair distribution 

function, where particles accumulate upstream where they are more compressed and 

deplete downstream where they are less compressed. At high shear rates, concentrated 

hard sphere suspensions also exhibit an accumulation and depletion of particle density 

along the compression and extension axes, but the stress is linearly proportional to the 

shear rate and not quadratic as described here [Brady and Morris (1997); Crassous et al. 

(2008)]. These results indicate that the soft elastohydrodynamic interactions are central to 

the rheology of deformable particles. The accumulation-depletion mechanism is 

dominant along the portions of the oscillatory cycles where the stress exceeds the yield 

stress but negligible elsewhere. In particular the pair distribution function when the stress 

is zero resembles that at rest, indicating that particles are instantaneously trapped in 

cages. This shows that the behaviour of the material along one oscillation can be 

analyzed in terms of a sequence of microstructural events that repeat periodically. 

At the macroscopic level the interpretation in terms of a succession of physical 

processes provide a way of mapping the information obtained from LAOS onto the 

results of several independent rheological tests like linear viscoelasticity measurements, 

strain sweep tests and steady shear flow both for simulations and experiments.   
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SUPPLEMENTAL MATERIAL 3.A: EXPERIMENTAL DETAILS 

3.A.1 Microgel description and sample preparation 

The suspensions used in the experimental study in Dr. Cloitre’s lab were prepared 

from polyelectrolyte microgels in water. The microgels were synthesized by standard 

emulsion polymerization at low pH ( 2) using the two monomers ethyl acrylate 

(64 wt.%) and methacrylic acid (35 wt.%), and dicyclopentenyloxyethyl methacrylate 

(1 wt.%) as a crosslinker. In order to remove unreacted monomers, surfactants and other 

impurities present in the final emulsion, the polymer latexes obtained from the synthesis 

were cleaned by ultrafiltration. The solid content of the stock suspension was determined 

by thermogravimetry and samples were subsequently prepared by dilution with ultrapure 

water (s = 9.810
-4 

Pa.s). At low pH, the microgels are insoluble in water, and hence 

they are essentially hard particles. When sodium hydroxide (1M) is added to the microgel 

suspensions, the acidic units become ionized and the osmotic pressure of the counter ions 

provokes the swelling of the microgels. In a previous study they have shown that most of 

the counter-ions are trapped in the polymer network, so that the net charge carried by the 

particle is extremely low and electrostatic interactions are negligible [Cloitre et al. 

(2003a)]. In dilute suspensions, the swollen particles have a spherical shape with a 

hydrodynamic radius R ( 295 nm). Above Cm = 1.5  10
-2 

g/g, the suspensions exhibit 

solid-like properties with a yield stress. The concentration can be increased much further 

because microgels are able to deform and deswell osmotically. The concentration of the 

suspension investigated in the following is C = 210
-2

 g/g.  

3.A.2 Rheological Measurements 

Rheological measurements were carried out using an Anton Paar MCR 501 

rheometer mounted with a cone and Peltier plate geometry with a diameter of 50 mm, a 



 108 

2° angle, and a truncation of 48 m. The shearing surfaces were sandblasted to provide a 

surface roughness of 2-4 m, which prevented the occurrence of slip. A solvent trap was 

placed around the sample to minimize water evaporation, the interior atmosphere of the 

trap being saturated using a few droplets of distilled water. All measurements were made 

at 20.0 +- 0.1°C. Prior to any measurement, the suspensions were presheared at a shear 

rate 500 s
-1

 for about 30 s in order to erase their mechanical history. Then they were kept 

at rest for a waiting time of about 4 hours, which is sufficiently long to make aging 

effects negligible. 

Several types of rheological tests were performed by them. Steady shear 

experiments, where the stress  was measured as a function of the applied shear rate γ , 

were performed by applying constant shear rates varying from 10
3
 to 10

-4
 s

-1
 and 

recording the stress until steady state was reached. Oscillatory frequency sweeps were 

used to measure the storage modulus G' and loss modulus G'' as function of the angular 

frequency 10
-2 

< 

 rad/s) at small strain amplitudes in the linear viscoelastic 

regime (= 6  10
-3

). The storage and loss moduli show the characteristic variations 

exhibited by many soft materials, i.e., a nearly constant plateau in G'() and a much 

lower G'' () with a small minimum around a frequency m. The elastic modulus of the 

suspension G0 was defined as the value of G'() at m. Large amplitude oscillatory shear 

measurements were performed in strain-controlled mode using the expert mode package 

provided by the Anton Paar rheometer software. The strain and stress signals were 

recorded at a sampling rate of 256 data points per oscillation cycle. The strain amplitude 

was varied from 310
-3 

to 10 and the frequency was in the range between 0.3 rad/s and 15 

rad/s.  

  



 109 

3.A.3 Material Properties 

In order to compare simulations and experimental results, the material properties 

of their suspensions had to be characterized. The storage modulus G0 was determined 

from oscillatory frequency sweep tests as explained in the previous section. The yield 

stress y was obtained from the variations of the stress in strain amplitude sweep tests at 

low frequencies. The yield strain y was obtained from the relation y = G0 y.  An 

important parameter involved in the micromechanical model presented above is the 

particle contact modulus E
*
, which is unknown a priori and cannot be easily measured for 

submicron particles. To circumvent this difficulty, the following method proposed in 

Chapter 2, section 2.6 is used. Steady shear experiments were performed to measure the 

flow curve )(γσ   of the suspension. It reaches a constant value at low shear rates, which 

corresponds to the yield stress measured in oscillatory tests. To determine E
*
, the 

experimental flow curve was fitted to the theoretical expression predicted in section 

2.5.4:  
1/2

2 *σ 1 k γη γ Ey s y   , where k  80 is a numerical coefficient deduced from 

simulations. Since y, y, and are known independently, E
*
 is the only free parameter. 

The experimental and fitted flow curves are shown in figure 3.A.1 and the resulting value 

of E
*
 is reported in Table 3.A.1. In the inset of figure 3.A.1, by comparing the 

experimental value of G0/E
*
 to the theoretical variations of G0/E

*
 with volume fraction 

[Seth et al. (2006)], they estimate the effective volume fraction which is of the order 

of 0.80. This justifies that the simulations reported in the flowing were performed at 

 = 0.80 The values of the elastic modulus, yield strain and yield stresses measured 

experimentally and obtained from simulations are summarized in Table 3.A.1. 
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Figure 3.A.1:   Theoretical flow curve () given by  
1/2

2 *σ 1 k γη γ Ey s y    and 

experimental flow curve () in the same set of coordinates for the microgel suspension at 

c = 2 wt% with E* = 18 kPa ( y  = 35 Pa, y  = 0.067, G0 = 510 Pa, and 49.8 10s
    

mPa.s). The inset shows the variations of G0/E* versus   computed from simulations 

from which the effective volume fraction of the experimental suspension is determined. 

 

Table 3.A.1:   Material properties of the experimental and simulated suspensions. 

 E* y  *

y
E  

*
E0G  

c = 2 wt. % 18 1 kPa 0.067 1.94   10
-3

 0.028 

0.80    0.03355 9.43   10
-4

 0.0281 

 

The storage modulus and yield stress of the experimental microgel suspensions are G0 = 

510 Pa and y =35 Pa. 
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SUPPLEMENTAL MATERIAL 3.B: COMPARISON OF DIFFUSIVITIES FROM STEADY AND 

OSCILLATORY SHEAR  

 

 

Figure 3.B.1:  Comparison of diffusivity data from steady () and oscillatory shear () 

simulation data. Note that the average D was computed for steady shear from the y- and 

z- direction diffusivities only. 
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SUPPLEMENTAL MATERIAL 3.C: BOWDITCH-LISSAJOUS PLOTS – EFFECT OF 

FREQUENCY 

3.C.1 Frequency effect at small strain amplitudes  

 

 

Figure 3.C.1:   Effect of frequency in the linear regime from simulations at 0 y  =0.09.   

* 82x10s E   (red), 10
-4

 (green), 32x10 (blue) . 
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3.C.2 Frequency effect at large strain amplitudes  

 

 

Figure 3.C.2:   Effect of frequency in the flow regime at 0 y  =30. From inside to 

outside:  * 8 7 62x10 ,10 ,10s E     . 
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SUPPLEMENTAL MATERIAL 3.D:  SIMULATION DATA TABLES 

Table 3.D.1: Particle scale diffusivity for different strain amplitudes at * 82x10s E    

y   Dx/D0 Dy/D0 Dz/D0 D/D0 

59.6 7.32E-08 1.10E-08 9.66E-09 3.13E-08 

29.8 8.09E-09 5.93E-09 4.87E-09 6.30E-09 

14.9 3.31E-09 2.83E-09 2.58E-09 2.91E-09 

2.98 2.57E-10 2.39E-10 2.28E-10 2.41E-10 

1.49 9.16E-11 7.17E-11 7.05E-11 7.79E-11 

0.298 3.87E-11 3.68E-11 3.83E-11 3.80E-11 

0.0894 3.94E-11 3.99E-11 4.00E-11 3.98E-11 

 

Table 3.D.2: Particle scale diffusivity for different frequencies 

y     s  D/D0 

29.80626 2.00E-08 6.30E-09 

29.80626 1.00E-07 3.45E-08 

29.80626 1.00E-06 1.64E-07 

29.80626 1.00E-04 9.99E-06 

29.80626 0.002 1.84E-04 

   

2.98 2.00E-08 2.41E-10 

2.98 1.00E-07 1.08E-09 

2.98 1.00E-06 3.45E-09 
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Table 3.D.3: Viscoelastic moduli at 0 y  = 0.09 - Frequency sweep 

  s
 

0G G  
0G G  

2.00E-08 1 0.01861 

1.00E-06 1.11385 0.11833 

1.00E-05 1.3103 0.37771 

1.00E-04 2.02622 0.81774 

0.002 4.22174 1.53754 

 

Table 3.D.4: Viscoelastic moduli, cage modulus and maximum stress at 
* 82x10s E   - Strain sweep 

y   
0G G  

0G G  y   

59.61293 0.00344 0.03089 1.61843 

29.80646 0.00642 0.05462 1.43707 

14.90323 0.02183 0.09571 1.2918 

2.98065 0.32454 0.24622 1.1624 

1.49032 0.66756 0.11288 1.01037 

0.29806 0.97107 0.03536 0.25438 

0.08942 1 0.01861 0.09353 
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Chapter 4: Stress Relaxation on Flow Cessation 

4.1 INTRODUCTION 

Many materials with countless applications in science and industry are processed 

in the liquid state where they can be easily manipulated and shaped and are subsequently 

quenched to solid state. Solidification can be achieved through a temperature drop in 

thermoplastic polymers and metals, interruption of flow when shaping ceramic pastes and 

latex coatings, or chemical reactions in the case of gels or thermosets. As they solidify, 

such materials generally do not relax to their structural and mechanical equilibrium 

instantaneously and some of the stress created during the initial flow remains trapped for 

long periods of time, giving rise to a net internal or residual stress. The presence of 

internal stresses has been observed in materials as diverse as polymers films [Damman et 

al. (2007)], bulk polymers [Freidin and Sholokhova (1966)], metallic glasses [Zhang et 

al. (2006)], supercooled liquids [Abraham and Harrowell (2012)], hard sphere glasses 

[Ballauff et al. (2013)], laponite suspensions [Negi and Osuji (2010)], colloidal gels 

[Negi and Osuji (2009)], vesicle suspensions [Ramos and Cipelletti (2001)] and 

cytoskeletal networks [Lieleg et al. (2011)]. 

The control of internal stresses has stimulated significant research in the field of 

inorganic and metallic glasses as a way to design unique materials with improved 

mechanical properties [Green et al. (1999); Zhang et al. (2006)]. In disordered soft 

materials, local stress relaxations have been invoked to explain the unusual dynamics 

observed during aging [Lieleg et al. (2011); Negi and Osuji (2009); Negi and Osuji 

(2010); Ramos and Cipelletti (2001)] or the spontaneous motion that sometimes occurs 

without forced flow [Chung et al. (2006); Cipelletti et al. (2000); Cloitre et al. (2000); 

Ramos and Cipelletti (2001); Ramos and Cipelletti (2005); Wang et al. (2006)].  Little 

is known about the physical origin of these internal stresses and the relation between their 
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amplitude and the preparation conditions. Part of the difficulty comes from the fact that 

the microstructural origin of the frozen-in internal stresses and its relaxation is quite 

elusive; most attempts to correlate the macroscopic internal stress to microscopic 

mechanisms in colloidal glasses having been relatively unsuccessful in the past [Cianci et 

al. (2006)]. A recent investigation has identified the volume fraction and the shear rate 

during the initial flow as the key parameters that control internal stress in hard sphere 

glasses [Ballauff et al. (2013)]. Nonetheless, important questions concerning the 

generality of this description and the connection between internal stress and particle scale 

mechanisms remain open.  

Soft particle glasses are highly concentrated suspensions of soft and deformable 

particles which exhibit solid-like properties at low stresses and begin to flow at high 

stresses. The constituent particles interact through elastic contacts, which make these 

materials different from hard sphere glasses. Their use as rheological additives in many 

applications including processing of food, cosmetics, drilling muds, paints and solid inks 

require the materials to be quenched to a solid state by flow cessation during processing 

during which they are known to develop internal stresses. The rheological properties may 

be different depending on the quenching conditions that determine the internal stresses. 

Here, particle scale simulations and well defined rheological experiments on microgel 

glasses where the constituent properties are systematically varied are combined to 

understand the stress relaxation behavior on flow cessation in soft particle glasses. 

Rheological experiments are performed to investigate the fate of the shear stresses inside 

the glass after flow cessation. The existence of trapped internal stresses was observed and 

their long time fate was investigated. The microstructural changes and mechanisms 

associated with internal stress accumulation and relaxation were determined through 

particle scale simulations.  
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The rest of this chapter is organized as follows. The materials used in the 

experiments and the experimental methodology are presented in section 4.2. The 

simulation technique used in the particle scale simulations is presented in section 4.3. The 

trapped internal stresses observed on flow cessation for concentrated microgel samples 

with systematically varied constituent properties and particle scale simulations is 

presented in section 4.4. The microstructural changes during the quick initial relaxation 

and the microscopic mechanisms associated with the internal stress accumulation is 

determined from particle scale simulations and is presented in section 4.5. The two 

regimes of relaxation, a rapid initial relaxation leading to the trapped internal stress and 

another slow long term relaxation are discussed in section 4.6 and 4.7, respectively. 

4.2 EXPERIMENTAL MATERIALS AND METHODS 

4.2.1 Microgel Description and Sample Preparation 

The microgels were synthesized by standard emulsion polymerization at low pH 

using the two monomers ethyl acrylate (EA) and methacrylic acid (MAA), and 

dicyclopentenyloxyethyl methacrylate as a crosslinker. The concentration of crosslinker 

(Cclink) determines the crosslink density of particles. Stock suspensions synthesized with 1 

and 2% crosslinker were used to obtain microgel particles with two different particle 

contact moduli (E
*
). The stock suspension with 1% crosslinker contained the monomers 

EA and MAA in the ratio 65/35 and that with 2% crosslinker in the ratio 64.5/34.5. In 

order to remove unreacted monomers, surfactants and other impurities present in the final 

emulsion, the polymer latexes obtained from the synthesis were cleaned by ultrafiltration. 

The solid content of the stock suspension was determined by thermogravimetry and 

samples were subsequently prepared by dilution with ultrapure water. The microgels 

were swollen with water or water-glycerol mixtures. The viscosity of the suspending 
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medium s  was varied systematically by varying the ratio of water and glycerol in the 

water glycerol mixtures. The volume fraction   of the suspension was varied by varying 

the concentration of polymer (C) in the sample. The flow curves, frequency sweeps (at 

0.5% strain amplitude) and strain sweeps (at 1 rad/s) are presented in figures 4.1 and 4.2. 

The flow curves are fitted to the Herschel Bulkley form: 
n

y k    . The properties of 

the samples used in this study are presented in table 4.1. E
* 

and   of the samples were 

determined using a procedure previously described in Chapter 2 and 3. 

Table 4.1: Sample properties 

C 

(%) 

  Cclink 

(%) 

E
*
 

(kPa) 

        

Solvent  

(ratio) 
s  

(mPa.s) 
y  

(Pa) 
k n 

G0 

(Pa) 

2 0.82 1 18 water 1 44.98 12.92 0.44 651 

2.6 0.94 1 18 water 1 89.31 17.51 0.47 1037 

2 0.81 1 18 
water-glycerol 

(53/47) 
5 43.24 20.06 0.49 621 

2 0.8 1 18 
water-glycerol 

(36/64) 
14 38.88 27.13 0.51 541 

2 0.77 1 18 
water-glycerol 

(23/77) 
40 27.70 38.07 0.52 389 

3 0.73 2 42 water 1 39.21 9.53 0.43 656 

3.8 0.84 2 42 water 1 109.78 19.33 0.43 1649 

4 0.88 2 42 water 1 124.15 25.24 0.40 1965 
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 Figure 4.1:   Flow curves (symbols) and Hershel-Bulkley fits (lines) of different 

samples used.  
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Figure 4.2:  Viscoelastic moduli G’ (solid lines) and G’’ (dashed lines) of samples used. 

a) Frequency sweep at 0.5% strain amplitude. b) Strain sweep at 1 rad/s frequency. 

Colors correspond to the same definition as in figure 4.1.  
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4.2.2 Rheological Measurements 

Rheological measurements were carried out using an Anton Paar MCR 501 

rheometer mounted with a cone and Peltier plate geometry with a diameter of 50 mm, a 

2° angle, and a truncation of 48 m . The shearing surfaces were sandblasted to provide a 

surface roughness of 2-4 m , which prevented the occurrence of slip. In the experimental 

conditions used here, microgel suspensions flow homogeneously without any kind of 

strain localization including slip, shear-banding or fracture [Seth et al. (2012)]. A solvent 

trap was placed around the sample to minimize water evaporation, the interior 

atmosphere of the trap being saturated using a few droplets of distilled water. The gap 

was sealed with silicone oil one minute after flow cessation for the long term relaxation 

experiments (10
5
 s) to further reduce evaporation losses. All measurements were made at 

20.0 +- 0.1°C. The yield stress y  of each sample is first determined using different well 

established protocols – creep measurements, oscillatory strain sweeps, and steady shear 

experiments – all determinations agreeing within the experimental accuracy. Relaxation 

experiments are performed by preshearing the sample at a constant stress greater than the 

yield stress for 30 s, setting the shear rate to zero at the end of preshear, and recording the 

shear stress. 

4.3 SIMULATION TECHNIQUE 

Three dimensional packings of 10,000 periodically replicated non-Brownian 

elastic spheres (contact modulus: E
*
) at a volume fraction of 0.8 in a solvent of viscosity 

s  was built as described in section 2.3 with a 10% polydispersity. The particles are 

subjected to pairwise interactions of two types: repulsive elastic forces described by 

generalized Hertzian potentials and solvent mediated elastohydrodynamic forces as 

described in the micromechanical model in section 2.2. The governing equation is given 

below for easy reference. 
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 α
α

1/ 2d ( ) 4 (2 1) / 42 3

d 6π 3

r

α

f nnC ε R Cu R ε
αβ c αβ, c αβt R β β


 

         
 

x
u n n  (4.1) 

The symbols here have the same meaning as before. The suspension was first 

subjected to a steady shear in the x-direction during the preshear step for five shear strain 

units to ensure that steady state was reached.   *

α xs E y u e  represents the velocity 

field due to applied preshear. The packings were then allowed to relax at zero shear rates 

where α 0 u . Periodic boundary conditions were applied in the x- and z- directions and 

Lee-Edwards boundary condition was implemented in y- direction. During the relaxation 

step the Lee-Edwards boundary condition in the y- direction also reduces to a simple 

periodic boundary condition. These coupled equations of motion were integrated 

numerically to determine the evolution of the spatial position and velocity of each 

particle. The open source code LAMMPS [Plimpton (1995)] was used to perform the 

simulations as before. The results were averaged over five different initial configurations. 

The microstructure of suspensions was characterized through the dynamic pair 

distribution function g(r). The angular distortion of the microstructure was quantified by 

expanding the pair distribution function using spherical harmonics: 

1

( ) ( ) ( ) ( , )
l

lm lm

l m l

g g r g r Y  


 

 r . g2,-2(r) is the coefficient of the harmonic 

 2

2, 2

1 15
( , ) sin 2 sin

4 π
Y       and represents the angular asymmetry due to 

accumulation-depletion of particles between the compression and extension axes during 

flow.  
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4.4 TRAPPED INTERNAL STRESSES ON FLOW CESSATION 

4.4.1 Experimental results  

 Figure 4.3 shows typical variations of the stress on flow cessation in concentrated 

microgel samples made with different constituent properties. In all cases the stress is 

constant during preshear and drops rapidly but does not vanish on flow cessation, 

indicating that stresses remain trapped in the material. The stress relaxation thus occurs in 

two steps, a rapid initial decay after which there are trapped internal stresses which then 

decay slowly with time. It is important to note that the internal stress is larger for smaller 

preshear stress as previously found in other materials [Ballauff et al. (2013); Negi and 

Osuji (2010)]. The ability of the material to relax its stresses decreases when the preshear 

stress is close to the yield stress. For a given preshear stress the internal stress that gets 

trapped on flow cessation depends on the constituent properties of the sample as 

illustrated in figure 4.4a. The internal stress sensitively depends on volume fraction and 

particle modulus for a given preshear stress; increasing the particle elasticity and/or 

volume fraction results in a significantly larger internal stress on flow cessation, while 

changing the viscosity has little effect. Also note that the steady state shear stress for a 

given shear rate will depend on all the above parameters. The internal stress is 

determined from these data by linear extrapolation of the stress measured over a short 

time interval (< 50 s) to the instant of flow cessation. The experiment was then conducted 

with samples made of varying polymer concentration, solvent viscosity and particle 

crosslinking to characterize the internal stresses trapped on flow cessation. The internal 

stress in different samples is plotted as a function of preshear stress in figure 4.4b.    
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Figure 4.3:   Stress relaxation on flow cessation in concentrated microgels with different 

constituent properties.  
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Figure 4.4:   Variation of trapped internal stresses on flow cessation with the microgel 

constituent properties in experiments. Data, varying the concentration: C = 1.3% (), 

2 wt% (), 2.6 wt% () with s =1 mPa.s and E* = 18 kPa; the solvent viscosity  s = 5 

(), 14 () and 40 mPa.s () with C = 2 wt% and E* = 18 kPa; the particle softness: 

E* = 42 kPa with C = 3 (), 3.8 () and 4 () wt% and s = 1 mPa.s. 

 

4.4.2 Simulation results and comparison with experiments 

In order to elucidate the microstructural origin of the internal stress, numerical 

simulations were performed based on the three-dimensional micromechanical particle 

scale model described before. Figure 4.5a shows results of simulations for five 

preshearing conditions. Stress is scaled by the particle contact modulus E* and time by 

the microscopic time *

0 s E  . For the parameters relevant to the experiments ( s  

 10
-3

 Pa.s; E
*
  10

4
 Pa), 0  is of the order of 10

-7
 s. The simulations capture the initial 

preshear, the rapid short time relaxation of the stress and the beginnings of the long time 

relaxation. In the following the internal stress is taken to be the value of the stress at the 

last instant computed and is presented in figure 4.5b as a function of the preshear stress.  

The computational time required to simulate out to the longest times accessible in 

experiments is prohibitive. Nevertheless the simulations successfully capture the 
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important trends already described for experiments: upon flow cessation, the stress drops 

and the closer is the preshear stress to the yield stress, the lesser the stress relaxes.  A 

direct comparison of simulations and experiments is presented in figure 4.6.  

 

 

Figure 4.5:    Stress relaxation on flow cessation (a) and variation of trapped internal 

stresses in simulations of soft particle glasses of volume fraction 0.8. The instant of flow 

cessation in (a) has been shifted for better comparison with different preshear conditions 
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Figure 4.6:   Comparison of stress relaxation on flow cessation in simulations (a) and 

experiments (b) for a volume fraction of 0.8. The experiments correspond to the sample 

presented in figure 4.3c. The data points collected from experiments after flow cessation 

is represented by dots. The instant of flow cessation is shifted in (a) and (b) for better 

comparison 
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4.4.3 Generalized scaling for the trapped internal stresses 

A universal scaling for the internal stress I  with the preshear stress P  in soft 

particle glasses with results from experiments on different samples is presented in figure 

4.7. The internal stress here is scaled by the yield stress y . The simulation results are 

shown using filled stars () and they agree reasonably well with the experimental data. 

The flow curve for soft particle glasses follows the constitutive equation 

 
1/2

* 21y s yK E       [Seth et al. (2011)], where 
y  is the yield strain and E

*
 is the 

particle contact modulus.  From the flow curve,  y y   =  
1/2

* 2

s yK E    is the 

stress accumulated in the material due to an imposed shear rate  .  The trapped internal 

stress in soft glasses with different constituent properties collapses to a single universal 

curve when the mechanical history is represented by the elastic stress accumulated in the 

material due to the flow. A comparison of this scaled data to the raw data in figure 4.4b 

further supports the efficiency of the scaling but the microscopic origins of the two step 

relaxation, internal stresses and their scaling remained an open question. The 

microstructural changes during stress relaxation on flow cessation were probed using the 

particle scale simulations to further answer these questions. 
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Figure 4.7:   Universal scaling for the effect of preshear stress P  on the internal stress 

I  on flow cessation with the yield stress y . The open symbols represent experimental 

data with microgels of different constituent properties. Data, varying the 

concentration: C = 1.3% (), 2 wt% (), 2.6 wt% () with s =1 mPa.s and E
*
 = 18 

kPa; the solvent viscosity  s = 5 (), 14 () and 40 mPa.s () with C = 2 wt% and 

E
*
 = 18 kPa; the particle softness: E

* 
= 42 kPa with C = 3 (), 3.8 () and 4 () wt% 

and s = 1 mPa.s. Simulation data (). 
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4.5 MICROSTRUCTURAL CHANGES ON FLOW CESSATION 

4.5.1 Microscopic mechanism of relaxation on flow cessation 

Figure 4.8a shows the time variation of the particle mean square displacements 

after preshear (t > t0). There are three important observations to note here. Firstly, the 

mean square displacements are quadratic in time, identifying ballistic motion as the 

particle scale mechanism associated with the initial stress relaxation that takes place on 

flow cessation. The characteristic velocity of ballistic motion, i.e. the intercepts of the 

curves with the vertical axis, is the largest for the largest preshear, where stress relaxation 

is the fastest and internal stress the smallest. Experimentally, ballistic motion has been 

observed in the relaxation of depletion gels [Chung et al. (2006)] and multilamellar 

vesicle assemblies [Ramos and Cipelletti (2005)]. Secondly, after the initial ballistic 

motion all the curves tend to a nearly constant plateau, the value of which is less than one 

particle radius for all preshearing stresses, indicating that the particles are instantaneously 

trapped in cages and that rearrangements associated with stress relaxation are local 

contact rearrangements. These two observations indicate that there are two distinct 

microscopic mechanisms at work which gives rise to the two step macroscopic stress 

relaxation on flow cessation: an initial rapid relaxation driven by ballistic particle motion 

and a slow decay at long times due to slow local particle facet rearrangements. Thirdly 

the mean squared displacements are isotropic in x-, y- and z- directions as shown by 

figures 4.8c-d. This might be due to isotropic nature of shear induced diffusivities 

identified earlier during the study of oscillatory shear rheology of these soft particle 

glasses in chapter 3.   
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Figure 4.8:   Mean squared displacement of particles in r- (a), x- (b), y- (c), and z- (c) 

directions for different preshear rates (from top to bottom: *s E  10
-4

, 10
-5

, 10
-6

, 10
-7

, 

10
-8

).   
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4.5.2 Evolution of microstructure with time 

Figure 4.9a and b show the evolution of the pair distribution functions computed 

in the flow-velocity gradient plane at three different times: during preshear (t0), at an 

intermediate time during relaxation (t1), and at the beginning of the internal stress plateau 

(t2), for two different preshear flow conditions. t0, t1 and t2 are indicated in figure 4.5. The 

pair distribution functions are presented in polar coordinates (r, ) where   is measured 

from the positive flow direction. The mean particle center-to-center separation in a 

packing which was fully equilibrated using the conjugate gradient method is shown with 

a white line. During preshear (t = t0), we observe a clear angular distortion of the 

microstructure revealing accumulation of neighboring particles in the compressive 

upstream quadrant ( 2 )    , and depletion in the extensional quadrant 

(0 2)   . Most particles are more compressed than at equilibrium. The asymmetry 

of the pair distribution function and the increased compression of particles persist at 

intermediate times (t = t1), albeit quite reduced. At the end of the simulation (t = t2), the 

mean center-to-center distance has relaxed to its equilibrated value but some degree of 

angular asymmetry seems to persist. These two processes constitute the microstructural 

signature of stress relaxation following flow cessation and are discussed in detail below 

to quantitatively describe the spatial rearrangements associated with stress relaxation. 

The angular distortion of the microstructure can be quantified by expanding the 

pair distribution function using spherical harmonics: 
1

( ) ( ) ( ) ( , )
l

lm lm

l m l

g g r g r Y  


 

 r .  

g2,-2(r) is the coefficient of the harmonic  2

2, 2

1 15
( , ) sin 2 sin

4 π
Y       and represents 

the angular asymmetry due to accumulation-depletion of particles between the 

compression and extension axes during flow [Mohan et al. (2013); Seth et al. (2011)]. 

The evolution of g2,-2(r) on flow cessation is shown in figure 4.9 c and d. The depth of the 
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minimum of g2,-2(r) indicates that more particles are on average in the compressive 

region. This minima depth decreases with time during the relaxation process indicating 

that the asymmetry of the pair distribution function is decreasing.  The position of the 

minima (rmin) shifts towards that of the static case compression and its depth decreases 

during the relaxation process. Thus, the stress relaxation occurs through a redistribution 

of particle-particle contacts towards a more symmetric unsheared distribution. The case 

shown in figure 4.9c is for the maximum preshear stress investigated where most of the 

preshear stress relaxes and microscopically the g2,-2(r) is almost flat. On the other hand in 

4.9d where the preshear stress is smaller, there is more asymmetry remaining at the end 

of the simulation. 

The radial distortion of the microstructure is quantified by the radial distribution 

of particle-particle contacts. The number of elastic contacts and the radial distribution of 

contacts equilibrate to the static case scenario during the rapid initial relaxation on flow 

cessation as shown in figure 4.10.  The histograms in figure 4.10 represent the radial 

distribution of particle contacts at different times shown in figure 4.5 and the black 

dashed line represents the static case distribution. 

This suggests that the remaining angular asymmetry in the pair distribution 

function is the microscopic origin of the internal stress trapped on flow cessation in these 

soft particle glasses. 
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Figure 4.9:   Evolution of the pair correlation function g(r) (a and b) and the spherical 

harmonic g2,-2(r) (c and d) with time during relaxation for two different preshear flow 

conditions.  
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Figure 4.10:   Time evolution of radial distribution of contacts (a and b) and number of 

contacts per particle (c). The black dashed lines in (a) and (b) correspond to the static 

case distribution of particle contacts 
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4.5.3 Microscopic origin of internal stresses 

 The radial and angular distribution of particle-particle contacts during preshear 

(t0) and at the beginning of the internal stress plateau after the rapid initial stress 

relaxation (t2) for different preshear rates (or stresses) is presented in figure 4.11. Figures 

4.11a and 4.11b show the spherical harmonic coefficients g2,-2(r) which represent the 

angular asymmetry computed for different preshear rates during preshear (t < t0) and at 

the beginning of the stress plateau (t = t2). The asymmetry in the pair distribution 

function due to the accumulation-depletion mechanism appears clearly at t < t0 and 

persists at t = t2. A deeper minimum of g2,-2(r) indicates that more particles have 

accumulated along the axis of compression of the preshear flow, yielding a higher stress. 

Interestingly, the variations of the depth of minima inverts from figure 4.11a to figure 

4.11b. In figure 4.11a, the largest preshear rate and stress is associated with the largest 

asymmetry, i.e. the largest shear stress, resulting in figure 4.11b with the smallest 

asymmetry, i.e. the smallest internal stress. Also, note that the position of minima in 

figure 4.11b does not depend on the preshear stress. Figures 4.11c and 4.11d show the 

radial distribution of contacts computed for different preshear rates during preshear (t < 

t0) and at the beginning of the stress plateau (t = t2). During shear flow, the particles are 

more compressed and the mean particle-particle separation is the smallest for the largest 

preshear rate but this radial distortion relaxes quickly on flow cessation and the 

distribution returns to that of the static case for all preshear flow conditions. This clearly 

demonstrates that the distortion of the angular distribution of particle contacts does not 

relax completely on flow cessation and is the microscopic origin of internal stresses. In 

Chapter 3 on oscillatory shear rheology of these soft particle glasses it was shown that the 

appearance of significant distortions (asymmetry) of the microstructure and the g2,-2(r) 
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arise only beyond the yield stress of the material due to flow induced rearrangements and 

this explains the scaling of the internal stresses with the flow induced stresses ( )P y  . 

 

 

Figure 4.11:   Spherical harmonic coefficient g2,-2(r): (a) during preshear at different rates 

(from left to right: *s E  =10
-4

, 10
-5

, 10
-6

, 10
-7

, 10
-8

); (b) at the final time of relaxation 

in simulations (same rates, from top to bottom).  Radial distribution of contacts per 

particle: during preshear (same rates, from left to right) (c) and at the final time of 

relaxation from simulations (d). The black dots in (c) and (d) correspond to the static case 

distribution of particle contacts. 
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4.6 NATURE OF SHORT TIME RELAXATION ON FLOW CESSATION 

4.6.1 Macroscopic short time stress relaxation 

The soft particle glass accumulates stress during the preshear flow and on flow 

cessation (at t0) this stress decays through a rapid initial relaxation after which there 

remain trapped internal stresses which relax slowly with time. It was shown earlier that 

the internal stresses are larger for smaller preshear stresses thus the rate of short time 

stress relaxation on flow cessation depends on the flow conditions during preshear and 

this can be clearly seen in Figure 4.12 (a and b). The larger the preshear rate (or stress) 

the faster the material relaxes immediately on flow cessation and the stress relaxation 

curves cross over at very short times. The first data point in experiments is collected at 

0.1s which is larger than the time at which the crossover occurs and thus cannot be 

observed in experiments. In figure 4.12c (and d) the stress relaxation is presented by 

scaling the stress by the preshear flow stress and the systematic trend with the preshear 

flow conditions where the material which undergoes a larger preshear rate relaxes faster 

is clearly observed.  
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Figure 4.12: The rapid relaxation immediately upon flow cessation from simulations and 

experiments. The experiments correspond to the sample with C=2% water-glycerol  

(36/64) solvent and 1% crosslinker.  
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4.6.2 Mapping the evolution of microstructure to the macroscopic stress relaxation 

The evolution of the asymmetric or angular distortion of the pair distribution 

function as the material relaxes is further quantified by studying the variation of the depth 

of the minima of g2,-2(r) with time. Figure 4.13a shows the evolution of the minima with 

time for different shear rates. The distortion relaxes but does not vanish as discussed 

before and here it can be clearly seen that the evolution of the asymmetry in 

microstructure also slows down and reaches a non-zero plateau after the rapid initial 

relaxation. The trends in the evolution of microstructure in figures 4.13a resemble that of 

the macroscopic stress relaxation in figures 4.12a. And this relaxation is mapped on to the 

macroscopic stress relaxation from figure 4.12c and is shown in figure 4.13c which 

shows good qualitative and quantitative agreement. The stress relaxation and variation of 

the minima of g2,-2(r) for the largest preshear flow condition considered do not overlap at 

short times. The minima is shifted to large compressions during large preshear rates and 

since the stress depends on both the elastic force at the minima of g2,-2(r) and the depth of 

the minima, there is some deviation at short times when the minima is heavily shifted.  
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Figure 4.13:   (a) Evolution of the depth of minima of g2,-2(r) with time (symbols and 

lines). (b) Initial relaxation path of the angular asymmetry in the soft particle glass 

(symbols) with time on flow cessation for different preshear flow conditions and its 

mapping to the macroscopic stress relaxation (lines).  
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4.6.3 Generalized short time relaxation path on flow cessation 

Figure 4.14a shows the rapid initial relaxation on flow cessation for samples with 

different constituent properties and similar flow conditions, namely similar ( )P y y  

which was determined to be the important parameter characterizing the preshear flow in 

the previous section. Though the trapped internal stress is the same for different samples 

due to their similar ( )P y y   , the rate at which the material reaches the internal 

stress plateau is different for different samples. The intrinsic timescale that comes from 

the simulations is *

0 s E  and figure 4.14b shows the efficiency of this in scaling the 

relaxation path of samples with different constituents on flow cessation when the 

preshear flow conditions are the same. 

 

 

Figure 4.14:   Unscaled (a) and scaled (b) relaxation path from the preshear stress to the 

internal stress on flow cessation for samples with different constituent properties but 

similar preshear flow condition- ( )P y y   . 
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The relaxation path during the rapid initial relaxation on flow cessation is a 

function of the preshear flow conditions for a given sample as shown in section 4.4. 

Scaling the time with the preshear rate and the stress with the preshear stress is known to 

collapse the relaxation paths for different flow conditions [Ballauff et al. (2013)] as 

shown in figure 4.15 a and b. But the relaxation path is not universal and soft particle 

glasses with different constituent properties exhibit different short time relaxation paths 

as shown in figure 4.15c.   

  

 

Figure 4.15:  Scaled short term relaxation from simulations (a) and experiments (b). The 

experiments in b) are C=2% s =14 mPa.s and 1% crosslinker. (c) The dispersion in the 

relaxation path of microgel samples with different constituent properties. The color 

scheme is same as that used in figure 4.1. The black lines correspond to simulation data.  
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Figure 4.15 shows that even though the relaxation path for different preshear flow 

condition collapses, the relaxation path of the smaller preshear flow conditions break off 

the path very quickly and get trapped with an internal stress that relaxes slowly and thus 

does not follow the entire generalized relaxation path. Thus to generalize the short term 

relaxation path a new measure of relaxation is defined as    /I P I     . Figures 

4.16 a and b show the relaxation as a function of time scaled by the intrinsic time scale 

0  and again the relaxation is faster when the preshear is larger.  

 

 

 

Figure 4.16:   Relaxation path from the preshear stress to the internal stress from 

simulations (a) and experiments (b). The experiments in b) are C=2% s =14 mPa.s and 

1% crosslinker. 
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A microscopic time scale was further identified from the microstructural 

information from simulations to capture the preshear flow effect.  It was shown in section 

4.5.1 that the microscopic mechanism of the short time relaxation is through ballistic 

motion of the constituent particles. The mean squared displacement of the particles 

followed  2 2 2

0

p
r R V t  where p = 1.89  0.9. The non-dimensional velocity V 

was larger for larger shear rates. Figure 4.17c shows the variation of this velocity and 

 
0.71

*

sV E  when fit with a power law. So the dimensional ballistic velocity 
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is suggested. 

 

 

Figure 4.17:   Variation of the non-dimensional ballistic velocity of the particles during 

the rapid initial relaxation. The symbols correspond to the raw data and the solid line 

represents the fit:  
0.71

*

sV E  . 



 147 

Figure 4.18 a and b show the relaxation path scaled by s  and curves with 

different flow histories collapse. This scaled relaxation path for samples with different 

constituent properties and the simulations is presented in figure 4.18c. The curves for 

different constituent properties collapse and this presents a universal short time relaxation 

path on flow cessation for soft particle glasses of varying properties with varying 

preshear flow conditions. The relaxation path from simulations are slightly faster and this 

can be because the simulations just capture the beginning of the internal stress plateau 

and the term    /I P I     is sensitive to the actual value of the internal stress.  
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Figure 4.18:  Scaled relaxation path from simulations (a) and experiments (b) using a 

ballistic time scale identified from microscopic dynamics. (c) Universal relaxation path 

for different preshear flow conditions, constituent properties and volume fractions. The 

experiments in (b) correspond to C =2% s =14 mPa.s and 1% crosslinker. The color 

scheme in (c) is the same as that used in figure 4.1. The black lines correspond to 

simulation data 
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4.7 NATURE OF RELAXATION AT LONG TIMES AFTER FLOW CESSATION 

 Long term relaxation experiments were performed for times up to 100,000s after 

flow cessation to investigate the fate of the internal stresses at long times. Figure 4.19a 

shows the long time stress relaxation behavior after flow cessation and the trapped 

internal stresses continue to relax very slowly for long times. The effect of preshear flow 

on the relaxation at long times is shown in figure 4.19b. It was shown in figure 4.13 that 

the asymmetry in microstructure also begins to freeze after the initial rapid decay and 

hence the long time relaxation is a slow equilibration of this residual asymmetry in the 

microstructure and this regime must depend only on the asymmetry at the beginning of 

this slow relaxation and not the preshear flow.   Figure 4.19c presents the stresses scaled 

by the internal stress on flow cessation and this further shows that the nature of the long 

term relaxation is independent of the preshear flow conditions. The effect of the 

constituent properties of the soft particle glass on the long term relaxation was also 

investigated by performing the long term relaxation experiments with samples of varied 

constituent properties but no observable scaling was observed as shown in figure 4.20. 
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Figure 4.19:   (a) Long term relaxation of trapped internal stresses in a soft particle glass 

with 2% polymer, water solvent and 1% crosslinker presheared at 148 Pa. (b) and (c) 

Effect of preshear flow on the long term relaxation demonstrated using a soft particle 

glass with 2% polymer, water-glycerol (36/64) solvent and 1% crosslinker presheared at 

62Pa (blue), 148 Pa (green), 250 Pa (black) and 350 Pa (red). 
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Figure 4.20: Investigation of the effect of constituent properties of soft particle glasses on 

long term relaxation behavior. 
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4.8 SUMMARY AND CONCLUSIONS 

Experiments were performed using concentrated microgel samples with 

systematically varied constituent properties to determine their stress relaxation behavior 

on flow cessation. Unlike viscous liquids the stress in these materials does not vanish on 

flow cessation and instead there is a quick initial relaxation after which the material gets 

trapped with an internal stress which relaxes slowly and this internal stress is smaller for 

larger preshear stresses. Long term relaxation experiments were performed to determine 

the fate of these trapped internal stresses. The internal stresses continue to relax slowly 

and in this regime the preshear flow conditions do not affect the rate of stress relaxation. 

 Particle scale simulations using a soft particle glass packed to a volume fraction 

of 0.8 were built to further elucidate the microscopic origin of these internal stresses. 

During preshear, the macroscopic flow distorts the microstructure: more particles are in 

the compressive region of the flow, where they are more compressed than at equilibrium, 

and fewer particles are in the extensional region, where these are less compressed.  On 

flow cessation the elastic stress drives the material back to equilibrium according to two 

different processes. The center-to-center distance and the average number of contacts 

relax quickly through ballistic motion to their equilibrium values. This process is fast 

because only central forces at particle-particle contacts are important in order to change 

particle compression. However, some asymmetry in the angular distribution of particles 

persists because the particles cannot move over large distances. This metastable 

asymmetry in the pair distribution function is the origin of the internal stress and is 

characterized by the spherical harmonic g2,-2(r). The larger the elastic stress is during the 

preshear flow, i.e. the driving force, the more easily the isotropy of the pair distribution 

function is restored and the smaller is the internal stress ( 0 I y   ). The subsequent 

relaxation of the internal stress is extremely slow because any change of the local 
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topology between two contacting particles requires collective rearrangements over long 

distances.  

The internal stress follows a universal scaling with the elastic stress created in the 

material which itself depends on the preshear stress. This scaling allows us to predict the 

internal stress for various processing conditions. At the microscopic level two parameters 

are important: the solvent viscosity and the particle elasticity which can be tuned by the 

nature and the architecture of the particles. While the microgels are soft and non-

Brownian (E
*
R

3
/kT 10

5
), it will be interesting to use the same framework to investigate 

ultrasoft particles like star polymers where thermal effects come into play and potentially 

provide new relaxation mechanisms [Erwin et al. (2011)]. The connection between 

internal stress and slow relaxation and aging phenomena in soft particle glasses is another 

intriguing question for which preliminary investigations are presented in Supplemental 

Material 4.A. 
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SUPPLEMENTAL MATERIAL 4.A: CONSEQUENCES OF INTERNAL STRESSES IN AGING 

EXPERIMENTS 

Concentrated microgels are soft particle glasses which exhibit physical aging 

which is the evolution of material properties with time. This section describes the 

consequence of the presence of internal stresses on aging. All experiments in this section 

were performed with a microgel sample of C=2%, solvent viscosity of 1 mPa.s and the 

constituent particles have an elastic modulus E
*
 of 18,000 Pa. The preshear step in all the 

experiments was performed by shearing the sample at the rate of 200s
-1

 for 30s. 

4.A.1 Variation of viscoelastic moduli with time 

 The viscoelastic moduli of concentrated microgels evolve with time. Microgel 

samples were presheared and then allowed to evolve with time and the viscoelastic 

moduli were computed at a frequency of 1 rad/s to follow their evolution. Figure 4.A.1 

shows this evolution. The elastic modulus of the material increases and the loss modulus 

decreases with time.  

 

Figure 4.A.1:  Evolution of viscoelastic moduli with time 



 155 

4.A.2 Difference between aging at zero stress and zero shear rate  

 The aging behavior of such soft particle glasses is monitored by first preshearing 

the material to remove the internal stresses during preparation and loading and to bring 

the material to a reproducible state and then allowing the material to rest for a waiting 

time tw and then applying a probe stress smaller than the yield stress to study the material 

behavior [Cloitre et al. (2000)]. Aging experiments were performed by ―resting‖ the 

material at zero stress and zero shear-rate to determine if the internal stresses had any 

effect on the aging behavior. Figure 4.A.2 shows that the internal stresses do affect the 

material behavior as the probe stress is much smaller than the yield stress and does not 

erase the internal stress.  

 

 

Figure 4.A.2:   Waiting at zero stress and zero shear rate during aging experiments 
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An experiment consisting of preshearing, relaxing the sample at zero stress for a 

time tw and then setting the shear rate to zero was performed to understand the effect of 

relaxing the material at zero stress on the trapped internal stress in the material. 

Interestingly the internal stress builds up when the shear rate is set to zero as shown in 

figure 4.A.3 revealing that relaxing the material at zero stress does not completely 

equilibrate the material. 

 

 

Figure 4.A.3:   Effect of zero stress relaxation on the internal stresses trapped in the 

material  
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4.A.3 Effect of internal stresses in aging  

 Now that it has been demonstrated that performing the waiting step in the aging 

experiments at zero shear rate and zero stress are different due to the presence of the 

internal stresses, aging experiments were performed using both protocols at different 

waiting times and the results are presented in figure 4.A.4. Figure 4.A.4a shows the 

evolution of stress after the preshear step when the shear rate is set to zero. Now the 

elastic modulus of the material presented in section 4.2.1 is 651 Pa and thus the stress 

created due to the 1% constant strain should be 6.51Pa or slightly higher due to aging 

during waiting time tw, but this disturbance is much smaller than the yield stress and does 

not erase the internal stress and hence the stress response we note is a combination of the 

internal stress and the effect of the 1% strain. In figure 4.A.4b the stress evolution is 

presented with the origin as the instant the probe strain is applied, here we can clearly see 

that the material with a longer waiting time exhibits a higher stress jump due to the 

increased modulus. Even though the material is loaded with a constant 1% strain the 

material continues to relax its stresses and evolves with time. In figure 4.A.4c the stress 

evolution for the zero stress waiting case is presented. The stress jump at the instant of 

probe strain application exhibits similar trends with the waiting time. The most 

remarkable distinction here is that the material continues to relax with time under loading 

at short times but at long times it tends to reach a stress plateau. It was shown in Figure 

4.A.3 that when the shear rate is set to zero after waiting at zero stress, the internal 

stresses build up initially but they relax at long times. This suggests that the internal 

stresses trapped in these materials is at the root of their aging characteristics and the 

evolution of the asymmetry of the microstructure which give rise to these internal stresses 

might be the microscopic driver of the physical aging process.  
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Figure 4.A.4:   Effect of internal stresses on aging of soft particle glasses. (a) The 

evolution of stress after application of probe strain with 0 and end of waiting time as 

origin using a zero shear rate waiting protocol. (b) The evolution stress after application 

of probe strain using a zero stress waiting protocol 

 

  



 159 

4.A.4 Time-waiting time rescaling 

 A time waiting time rescaling is characteristic of aging phenomenon in many 

glassy materials [Cloitre et al. (2000); Struik (1978)]. A similar scaling is presented here 

for the two different aging protocols used. The curves collapse for both cases but 

interestingly the relaxation path is different for the two cases. The presence of internal 

stresses and associated microstructural distortions drive the material to continue to relax 

at long times but in the zero stress waiting case the material reaches a constant plateau. 

The internal stresses and the stresses due to the probe strain are of similar order of 

magnitudes and hence it would be interesting to apply a probe strain in the opposite 

direction to the internal stress (-1%) to investigate further the interaction of the internal 

stresses with the probe strain.  
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Figure 4.A.5:   Time-waiting time rescaling for the stress evolution on application of a 

probe strain for zero shear rate waiting time (a,b) and zero stress waiting time (c).  
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SUPPLEMENTAL MATERIAL 4.B:  SIMULATION DATA TABLES 

Table 4.B.1: Variation of internal stresses with preshear stresses in microgels 

Sample P  (Pa) 
I (Pa) 

C = 2 wt. %, 1% crosslinker, water solvent 

55 29.2 

65 23.3 

75 19.9 

110 16.6 

150 16.2 

250 13.2 

   

C = 2.6 wt. %, 1% crosslinker, water solvent 

90 64.2 

95 57.0 

115 46.7 

150 38.9 

200 34.7 

350 28.6 

   

C = 2 wt. %, 1% crosslinker, water-glycerol solvent (53/47) 

50 26.4 

75 18.5 

120 14.1 

170 12.3 

225 11.6 

   

C = 2 wt. %, 1% crosslinker, water-glycerol solvent (36/64) 

40 26.008 

60 18.363 

100 12.712 

131 10.221 

153 9.9099 

250 7.7944 

350 7.14442 

443 6.8836 

500 6.1788 

550 5.5094 
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Table 4.B.1 (Continued) 

 

Sample P  (Pa) 
I (Pa) 

C = 2 wt. %, 1% crosslinker, water-glycerol solvent (23/77) 

35 14.083 

65 9.1763 

75 8.488 

125 4.8806 

250 6.5822 

   

C = 3 wt. %, 2% crosslinker, water solvent 

50 17.348 

65 13.939 

95 12.595 

120 13.045 

150 12.206 

   

C = 3.8 wt. %, 2% crosslinker, water solvent 

115 92.294 

135 58.279 

170 48.402 

220 45.974 

   

C = 4 wt. %, 2% crosslinker, water solvent 

135 80.984 

150 68.97 

170 58.856 

190 54.081 

225 51.416 

250 51.213 

300 51.059 
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Table 4.B.2: Variation of internal stresses with preshear stresses in simulations 

Volume fraction 
*

s E   *

I
E  

0.8 

10
-4

 1.72E-05 

10
-5

 4.61E-05 

10
-6

 1.64E-04 

10
-7

 3.96E-04 

10
-8

 6.40E-04 
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Chapter 5: Active Microrheology 

5.1 INTRODUCTION  

Soft particle glasses form a diverse family of materials including microgels 

[Borrega et al. (1999)], compressed emulsions [Lacasse et al. (1996)], block copolymer 

micelles [Buitenhuis and Forster (1997)], star polymers [Likos (2006)], and foams 

[Princen and Kiss (1989)]. The ability of these soft glasses to exhibit both solid like and 

liquid like properties has made them useful as rheological additives for coatings, ceramic 

pastes, textured food and cosmetic products. The structure and dynamics of biological 

materials such as tissues [Angelini et al. (2011)] and intracellular cytoplasm [Trepat et al. 

(2007)] also resemble those of soft particle glasses. Rheological characterization and 

control of soft particle glasses is crucial for efficient industrial use as well as furthering 

our understanding of the physics behind such soft jammed systems.  

Bulk rheological measurement techniques like shear and extensional rheometry 

have been extensively used to characterize such complex fluids [Macosko (1994)]. 

Microrheology is a relatively newer technique in which particle scale motion of a probe 

particle inside the material is tracked in response to an applied stimulus to determine the 

local viscoelastic properties of the material. It is widely used to characterize hard and soft 

suspensions including polymers, laponite clays, colloids and biomaterials [Cicuta and 

Donald (2007); Squires and Mason (2010); Waigh (2005); Wilson and Poon (2011); 

Wirtz (2009)] as it offers many advantages over bulk measurements.  The small size of 

the probe allows investigation of the local microstructure and viscoelasticity of the 

material and this can be particularly useful in understanding the variations of properties 

across the sample in composite and heterogeneous materials [Chen et al. (2003); Gardel 

et al. (2003); Hasnain and Donald (2006); Schmidt et al. (1996)]. Microrheology requires 

small sample volumes of micro-liters compared to milliliters in conventional rheometry, 
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and thus it can be used for scarce materials like biological samples [Gardel et al. (2003); 

Lau et al. (2003); Yamada et al. (2000); Ziemann et al. (1994)]. Microrheology 

measurements also provide the advantage of in-vivo characterization of living cells 

without disrupting them [Lau et al. (2003); Weihs et al. (2006); Zaner and Valberg 

(1989)]. The internal nature of the method also removes the surface effects encountered 

in conventional rheometers like wall slip. Accurate rheological characterization at high 

frequencies and shear rates is often not possible using conventional rheometers due to the 

inertia of the equipment but is feasible with microrheology due to low or negligible 

inertia of the probe [Schnurr et al. (1997)].  

There are two broad classes of microrheological techniques, passive and active 

methods. In passive methods the motion of the probe particle in response to its Brownian 

motion or thermal forcing is tracked [Chen et al. (2003); Mason et al. (2000)]. In active 

methods the probe is forced through the material by external sources like optical tweezers 

[Helfer et al. (2000); Jop et al. (2009); Meyer et al. (2006); Valentine et al. (1996); 

Velegol and Lanni (2001); Wilking and Mason (2008)] or magnetic fields [Bausch et al. 

(1999); Habdas et al. (2004); Rich et al. (2011); Schmidt et al. (1996); Zaner and Valberg 

(1989); Ziemann et al. (1994)] and its motion in response is tracked. On comparing the 

Brownian energy density and the elastic energy needed to deform the surrounding 

material with an elastic modulus Glocal to a length dL, 
3 2 2

localkT R G dL R  [Breuer 

(2005)], the imaging technique needs to detect a minimum 0.5( )localdL kT G R . At room 

temperature with 10nm image resolution and a micron sized probe, this method sets an 

upper limit for Glocal of around 40 Pa.  

Soft particle glasses are highly jammed materials in which each constituent 

particle is surrounded by a cage of other particles and they form flat facets at contact 

[Seth et al. (2011)]. The elasticity of these glasses stems from the interactions at these 
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facets due to the jamming and is athermal in nature. Their elastic shear moduli can range 

from 100’s to 1000’s of Pascals [Cloitre et al. (2003b); Mason et al. (1995); Seth et al. 

(2006)]. Thus, active microrheological methods involving external forcing of probe 

particle are necessary to characterize these soft particle glasses. Glassy yield stress fluids 

like laponite suspensions have been investigated using active magnetic probes [Rich et al. 

(2011)].  

The probe forcing in active microrheology can be of constant velocity or constant 

force nature or sometimes even mixed modes are possible [Carpen and Brady (2005); 

Squires and Brady (2005)]. Theory and simulations are being developed to understand 

the different modes of operation and to relate the local viscoelastic information obtained 

from microrheology to the bulk measurements for a variety of suspensions. Detailed 

theory and simulations have been developed for pulling a probe particle through hard 

sphere suspensions using different modes [Carpen and Brady (2005); Khair and Brady 

(2006); Khair and Brady (2008); Squires and Brady (2005); Zia and Brady (2013)]. 

Molecular dynamics simulations and lattice field models [Jack et al. (2008)] of a probe 

particle dragged through a suspension of particles interacting through screened 

Coulombic interactions [Reichhardt and Reichhardt (2008)], binary L-J mixtures 

[Williams and Evans (2006)],  nematic [Foffano et al. (2012)] and Yukawa fluids [Winter 

et al. (2012)] have been developed recently. Mode-coupling theoretical models have also 

been developed to study the active micro-rheology of Brownian systems [Gazuz et al. 

(2009); Gnann et al. (2011)].  

Here particle-scale simulations of active microrheology where a tagged soft 

particle is pulled through a suspension of soft jammed particles is developed. In the 

constant velocity case the probe particle always undergoes a consistent directed motion 

because of the nature of the forcing and thus it cannot be used to investigate the 
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microscopic origins of yielding behavior observed in these soft particle glasses [Wilson et 

al. (2009)]. So a constant external force is applied to the tagged probe particle to drag it 

through the jammed soft particle suspension, and its response is tracked. The 

microstructural changes around the probe particle are also determined. Finally, the results 

from microrheology are connected to the properties obtained from macrorheology. 

The rest of the chapter is organized as follows. The simulation technique is 

described in section 5.2. The simulation results for the tagged particle motion at different 

forces and suspension concentrations are presented in section 5.3 and the microstructural 

changes associated with the motion of the tagged particle are presented in section 5.4. 

The local viscoelastic properties are correlated to the bulk macroscopic properties 

determined earlier in section 5.5. 

5.2 SIMULATION TECHNIQUE  

Soft particle glasses are modeled as three dimensional packings of N periodically 

replicated non-Brownian elastic spheres dispersed in a solvent with viscosity s  at 

volume fractions exceeding the random close-packing of hard spheres. The 3D packings 

are built as described in section 2.3 with a 10% polydispersity and a mean radius R. To 

study the dynamics of the suspension during active microrheology, a random particle   

is chosen and tagged as the probe particle and it is pulled at a constant external force F in 

the x-direction as shown in figure 5.1. 
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Figure 5.1:   Simulation box with a jammed soft particle glass. A tagged particle is pulled 

with a constant force F in the positive x-direction 

The dynamics of the suspension is modeled using the micromechanical 

framework described in section 2.2. The elastic repulsion between two particles  and   

is modeled with a modified Hertz potential and when the probe particle is pulled through 

the suspension there is a sheared, thin film of solvent at the facets between the particles 

which move relative to each other which creates an elastohydrodynamic (EHD) drag 

force. The form of the elastic repulsion and elastohydrodynamic drag has been described 

in section 2.2.  The particles also experience an effective drag force due to relative 

motion with the solvent. The tagged particle alone faces an additional force F in the x-

direction due to the external pull. Neglecting particle and fluid inertia, the sum of all 

forces on each particle is zero. The resulting equation of motion can be made 

dimensionless by scaling lengths, time and velocity by R, *

s E and *

sRE  , 

respectively. It has the form: 
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x
n n e  (5.1) 

where x  is the non-dimensional particle position; ( )rf   is a coefficient that accounts 

for the hindered mobility of particles due to the high concentration and is set equal to 

0.01 for these simulations; R is the radius of particle   non-dimensionalized by the 

mean radius R; RrRRε αββααβ /)(   is the relative deformation between particles  

and   where r   is their center-to-center distance; n  and n  are directions 

perpendicular and parallel to the flat facet at particle-particle contact respectively.  ,u  

is their relative velocity parallel to the flat facet at contact;   is the Kronecker delta 

function which enforces that the external force is applied only to the tagged probe particle 

 . ex is the unit vector in the x-direction.  

These N coupled equations of motion were integrated to determine the evolution 

of the spatial position and velocity of each particle. Periodic boundary conditions were 

applied. The open source code LAMMPS [Plimpton (1995)] was used to perform the 

simulations. Packings of 1,000 particles were generated for five different volume 

fractions 0.7, 0.75, 0.8, 0.85 and 0.9. Each simulation was averaged over five different 

probe pulls and for long times after steady state was reached. Simulations using 10,000 

particles were also performed to confirm the absence of box size effect. The 

microstructure presented in section 5.4 for volume fraction 0.8 was calculated by 

averaging over 50 different probe pulls and long times after steady state for a better 

average.   
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5.3 TAGGED PROBE PARTICLE MOTION 

5.3.1 Position and velocity of tagged probe particle 

The position and velocity of the tagged particle was tracked as it was pulled 

through the suspension with a constant external force F. Figure 5.2 shows the velocities, 

of the tagged particle in x-, y- and z- directions in a suspension of volume fraction 0.8 at 

small (figure 5.2a) and large forces (figure 5.2b). These are highly jammed suspensions 

and each particle is surrounded by a cage of other particles with flat facets at particle-

particle contact. When the applied force is small, the tagged particle velocities in x-, y- 

and z- directions oscillate around zero and are of similar small magnitude even at long 

times. On the other hand at large forces, the velocity in the direction of pull (Ux) is 

always in the positive x- direction or the direction of pull and is of much larger magnitude 

than Uy and Uz. The probe is pulled with a constant force and not constant velocity and so 

it can move in lateral directions as well as the direction of pull when it encounters 

particles in front of it.  
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Figure 5.2:   Instantaneous velocity U of the tagged particle in x- (red solid lines), y- (blue 

dashed lines) and z- (green dash dotted lines) direction being pulled through the jammed 

suspension at small: F=0.001 E
*
R

2
 (a) and large: F=10

 
E

*
R

2
 (b) force; x- is the direction 

of pull.  
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The displacement of the tagged probe particle was tracked in x-, y- and z- 

directions. Figure 5.3 shows the displacements of the tagged particle in a suspension of 

volume fraction 0.8 at small (figure 5.3a) and large forces (figure 5.3b). Figure 5.3a 

shows that when the applied external force is small, the tagged particle displacements are 

less than a particle radius.  When the applied force is large the tagged probe particle 

translates several particle radii in the x- direction.  Displacement in the x- direction is 

larger than that in the y- and z- directions due to the dominance of the external pulling 

force in the same direction.  

These results show that there exists a threshold force beyond which the tagged 

probe particle will escape its cage. When the cage elasticity is stronger than the applied 

force, the tagged particle just ―rattles‖ inside its cage.  When the external force is large 

enough, the tagged particle overcomes the cage elasticity and moves with a constant 

average velocity. Thus, the presence of a threshold force and yielding phenomenon at the 

particle scale is identified.   
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Figure 5.3:   Displacement of the tagged particle in x- (red solid lines), y- (blue dashed 

lines) and z- (green dash dotted lines) directions being pulled through the jammed 

suspension at small: F=0.001 E
*
R

2
 (a) and large: F=10 E

*
R

2
 (b) force. x- is the direction 

of pull.  

 

  



 174 

5.3.2 Force-velocity relationship of tagged probe particle in pull direction 

The average velocity of the tagged particle in the direction of pull xU  is 

computed for different forces of pulling F . The instantaneous velocities of the tagged 

particle are time averaged after reaching steady state and then the time average is again 

averaged over different simulation runs in which different particles were tagged and 

pulled to get xU . Figure 5.4 shows the variation of xU  of the tagged particle for 

different forces and different volume fractions. For forces less than the threshold force, 

the magnitude of the average pull velocity is smaller than the standard deviation which 

spans zero velocity and so the velocity is set to zero. 

This threshold force is greater for larger volume fractions as the cage elasticity is 

higher. Reference slopes of 1 and 2 are also shown in the figure for clarity. Above the 

threshold force the slope is 2 suggesting that 
0.5

xF U . It is noteworthy that the 

elastohydrodynamic (EHD) force at particle-particle contact has the same scaling and this 

suggests that the EHD forces dominate this regime and the external force acts to counter 

it when the tagged particle is pulled through the suspension. The EHD forces depend on 

the particle-particle compression and so for the same external force the tagged particle 

exhibits a smaller average velocity at larger volume fractions due to the increased 

resistance. At very large forces a Stokes-like drag scaling: xF U  is observed and this 

suggests that this regime is dominated by the external force. The absence of the effect of 

volume fraction in this large force regime further confirms the domination of the external 

force in this regime. 
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Based on the presence of the threshold force and the identification of the EHD 

and Stokes-like drag dominated regimes the following model is proposed for the force-

velocity relationship of the tagged particle in the x- direction:  

 

0.5

1 2* 2 * 2 * *

y x x

s s

F U UF
k k

E R E R RE RE 

   
     

   
 (5.2) 

where Fy  is the threshold force beyond which a particle escapes its cage. The solid lines 

in figure 5.4 correspond to the numerical fits of this model and the agreement with the 

simulation data shows that this model captures the physics of the tagged particle motion.   

 

 

Figure 5.4:   The velocity of the tagged particle in the direction of pull (x-) at different 

force of pull for different volume fractions. Slopes of 1 and 2 are indicated for reference. 

The lines are fits to the model in equation (5.2) based on the observed threshold force and 

slopes. 
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The next step is to connect the coefficients of the model in equation (5.2) to the 

material properties. The threshold force is a measure of the microscopic cage strength and 

oscillatory shear experiments and simulations (see Chapter 3) on soft jammed 

suspensions suggest that the elasticity of the cage 0cageG G  where G0 is the low 

frequency elastic modulus which depends on volume fraction [Mohan et al. (2013); 

Rogers et al. (2011b); van der Vaart et al. (2013)] The threshold force from equation 

(5.2) is presented as a function of the low frequency elastic modulus in figure 5.5a and 

indeed 
2

01.62yF G R .  

The coefficient k1 in the model is associated with the EHD force. The coefficient 

of the EHD force at particle-particle contact is  
1/2

* (2 1)/4nCE   . This coefficient involves 

E*
1/2

 which is a measure of elasticity of the particle itself and does not depend on the 

concentration of the suspension. On the other hand (G0/E*)
0.5 

represents the elasticity of 

the jammed suspension. Figure 5.5b presents the variation of k1 with (G0/E*)
0.5 

 and 

shows that  
0.5

*

1 0k G E which is further confirmed by figure 5.5c In which the dotted 

line corresponds to a value of 387 which is the slope of k1 versus (G0/E*)
0.5

 in figure 

5.5b.  This suggests that  
0.5

*

1 0387k G E .  

The coefficient k2 in the model is associated with the hindered stokes drag as 

described earlier. The hindered stokes drag force 
6

( )

s
stokes particle

r

R
F U

f




. On non-

dimensionalization, 
* 2 *

6

( )

particlestokes

r s

UF

E R f RE



 

 
 
 

. Figure 5.5d presents the coefficient k2 for 

different volume fractions and the dotted line corresponds to the coefficient of 
6

( )rf




 

from the definition of the hindered stokes drag. This suggests that 2 6 ( )rk f  . 

 



 177 

 

Figure 5.5:   Variation of the parameters of the model in equation (5.2). (a) The threshold 

force vs low frequency elastic modulus from bulk rheology. The line corresponds to a 

linear fit: 
2

01.62yF G R . (b)  Variation of k
1
 in the model with (G0/E

*
)
0.5

 and the dotted 

line corresponds to a linear fit of slope 387. (c) Efficiency of k1/(G0/E
*
)
0.5

 scaling for 

different volume fractions and the dotted line corresponds the slope from (b)  (d) 

Variation of k
2
 with volume fraction and the dotted line corresponds to the coefficient of 

the hindered stokes drag. 
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Now, with 
2

01.62yF G R ,  
0.5

*

1 0387k G E  and 2 6 ( )rk f   in the model in 

equation (5.2) we find that, 

 
   
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2
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1.62 387
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    
 (5.3) 

Figure 5.6 presents the simulation data for different volume fractions in these new scaled 

co-ordinates and the master curve in equation (5.3) is presented as a dashed line.  

 

 

Figure 5.6:   Scaled force-velocity master curve. The symbols correspond to simulation 

data and the dashed line represents the master curve:  
1/2

2

0 0 0

6
1.62 387

( )

x s x sU UF

G R RG f RG
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

   
     

   
.  

 

 

 



 179 

5.3.3 Force-velocity relationship of tagged probe particle in perpendicular directions 

The tagged particle is pulled with a constant force and not constant velocity so it 

has room to drift laterally to accommodate better the other particles on its way. The 

signed values of the tagged particle velocities in the y- (Uy) and z- (Uz) directions 

oscillate around zero as shown in figure 5.3 and so the average of the absolute values of 

these velocities will be a better measure of the effect of the external force on the tagged 

particle motion in perpendicular directions. So in figures 5.7a and 5.7b the ratio of the 

average velocity of the tagged particle in x- and y-, and, x- and z- directions respectively 

are presented. Firstly, all the volume fraction data collapse considerably suggesting that 

 0 sRG   might be the relevant scaling for velocities in the y- and z- directions as well. 

Secondly, at forces below the threshold force  x y zU U U  confirming that below the 

threshold force, the test particle is trapped and is rattling inside the cage. At forces greater 

than the threshold force the external force exceeds the cage elasticity and the particle 

moves out of the cage and this transition can be clearly seen in figure 5.7. 
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Figure 5.7:   The ratio of average magnitudes of velocity of the tagged particle parallel   

(x-) and perpendicular (y- a) and z- b) ) to the direction of pull at different force of pull 

for different volume fractions.  
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5.4 MICROSTRUCTURAL CHANGES AROUND TAGGED PROBE PARTICLE 

The microstructure at rest is radially symmetric and the most probable radial 

separation of the jammed constituent particles is less than twice the particle radius 

[Mohan and Bonnecaze (2012); Mohan et al. (2013); Seth et al. (2006)]. Figures 5.8 

shows the pair distribution around the tagged probe particle pulled in a suspension of 

0.8   at different forces in the x-y plane (parallel to direction of pull) and y-z plane 

(perpendicular to direction of pull), x- being the direction of pull. The white lines 

represent the radial separation at which the pair probability is maximum (rm) for the static 

case. At forces below the threshold force the pair distribution is symmetric and the radial 

separation at which the pair probability is maximum is the same as the static case value. 

At forces above the threshold force (where EHD interactions are dominant) there is an 

accumulation of particles in front of the tagged particles as it tries to push through the 

particles in front of it and there is a depletion of particles behind the tagged particle as it 

moves away [Carpen and Brady (2005); Meyer et al. (2006); Squires and Brady (2005); 

Sriram et al. (2010)]. The particles in front of the tagged particle are more compressed 

than the static case. It is noteworthy that this distortion is qualitatively different from the 

accumulation depletion in compression-extension axes observed in bulk shear flow (see 

figure 2.A.1). At very large forces the external force is dominant and the particles in front 

are very highly compressed and pushed away due to the elastic repulsion. Thus 

neighboring particles accumulate in the plane perpendicular to the pull direction and the 

paste seems locally fluidized in the direction of motion of the particle which might be the 

microstructural origin of the linear force-velocity relationship at these large forces. The 

g(r) including next nearest neighbors is presented in Supplemental Material 5.A. 

Simulations with 10,000 particle boxes were also performed for volume fraction 0.8 and 
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the force-velocity relationship collapsed on to the data from the other 1,000 particle 

boxes indicating that this is not a box size effect (Supplemental Material 5.B).  

 

Figure 5.8:   Pair distribution function g(r) in the (a-c) x-y plane and (d-f) y-z plane, x- 

being the direction of pull when the tagged particle is pulled at different forces for 

0.8  . White lines correspond to the most probable radial separation at rest. 
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 The radially averaged pair distribution function is presented in figure 5.9a. As 

the external force exceeds the threshold force, the radius of maximum pair density (rm) 

between the tagged probe particle and its nearest neighbors decreases and at very large 

forces (as it goes into the linear stokes regime) rm becomes constant as the elastic 

repulsion of the particles do not allow further compression. The number of contacts (Nc) 

of the tagged probe particle decreases as the probe particle begins to move at forces 

exceeding the threshold force and becomes constant at very large forces as shown in 

figure 5.9b. This constancy in rm and Nc suggests that at very large forces, the 

microstructural distortion around the probe particle reaches a limit and doesn’t change 

anymore. The variation of the peak of accumulation of particles and the number of 

contacts from microrheology show good agreement with the results from bulk simulation 

results of chapter 2 as shown in figure 5.9c and d. 
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Figure 5.9:   Evolution of radially averaged g(r) (a) and number of contacts Nc (b) when 

the tagged particle is pulled at different forces in a suspension of volume fraction 0.8. 

Comparison of radius of maximum accumulation (c) and number of contacts (d) from 

micro- (closed symbols) and macro- rheology (open symbols). 

The tagged particle disturbs its neighbors as it is pulled through the suspension. 

The speed map of its neighbors is presented in figure 5.10a-c. If the external force is 

smaller than the threshold force the tagged particle is trapped inside its cage and thus it 

does not move the particles around it. As the external force exceeds the threshold force 

the particle breaks free of its cage and pushes the particles in front of it and pulls the 

particles behind it. At very large forces this pushing and pulling intensifies. The average 

speed of neighbors as a function of distance from the tagged particle is presented in 

figure 5.10d. As expected, the disturbance is larger in magnitude for larger forces and it is 
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noteworthy that this disturbance extends to the tagged particle’s next nearest neighbors as 

well.  The average speed of neighbors non-dimensionalized by the speed of tagged 

particle is presented in figure 5.10e. At forces below the threshold force the tagged 

particle is rattling inside the cage and is as trapped as the other particles in the jammed 

suspension so the ratio of its average speed to that of its neighbors is close to 1. At forces 

exceeding the threshold force the tagged particle moves but the disturbance caused by it 

is much smaller than its own speed. 
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Figure 5.10:   (a-c) Map of distribution of speeds around tagged particle when pulled at 

different forces in a suspension of volume fraction 0.8. The color mapping uses 

represents the speed and is in units of *

sRE  . (d) The average speed of neighbors at 

volume fraction 0.8. (e) The average speed of neighbors non-dimensionalized by the 

average speed of the tagged particle itself (colors correspond to scheme in figure 5.9a). 
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5.5 CORRELATION OF MICRORHEOLOGY TO THE BULKRHEOLOGY 

In Chapter 2 the simulations on rheology of bulk steady shear flow and the 

microstructural analysis showed that the microstructural distortion gave rise to the yield 

stress and shear thinning. A comparison of the microstructural distortion in micro and 

macro rheology show that they are qualitatively different and hence it is crucial to 

connect the properties obtained from microrheology to those from macrorheology in 

order to use active microrheology as a standalone technique. 

Figure 5.11a shows the variation of the threshold force with volume fraction and the 

variation of the yield stress with volume fraction from Chapter 2. Figure 5.11b shows the 

direct correlation between the threshold force and the yield stress which further confirms 

that the yield stress from bulk measurements and the threshold force from microrheology 

measurements are equivalent information. The motion of a sphere in a Bingham plastic 

has been numerically investigated by Beris et al. (1985) and the critical yield number (

22 yY R F  )  above which there is no flow was found to be 0.143 which implies that 

2 20.143 2 0.023y y yF R F R   and it noteworthy that the slope in the figure 5.11b is 

0.027 which is close to this.  

Experiments by Atapattu et al. (1995) on Carbopol which are microgel based 

Herschel Bulkley fluids with shear thinning exponent (p) close to 0.5 suggest 

2 20.183 2 0.029y y yF R F R   and they say that this difference of co-efficient from 

Beris et al. (1985) might be due to the shear thinning nature which is not present in 

Bingham plastics. Recent magnetic tweezer microrheology experiments of Rich et al. 

(2011) on laponite suspensions which are even more shear thinning than the microgels 

(p=0.95 from bulk measurements) indicate that using 
20.023y yF R  under-predicts 

the yield stress by 40-50% on comparison to bulk measurements. This suggests that 

20.038y yF R  might be more fitting in their case.  The soft particle glasses 
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investigated here exhibit a shear thinning exponent of 0.5 [Seth et al. (2011)] and it is 

noteworthy that the coefficient of 0.027 from our simulation agrees more closely with the 

experiments of [Atapattu et al. (1995)]. Thus the variation in this coefficient seems to be 

systematic and increasing with increase in the shear thinning exponent. This is not 

entirely surprising because in a material with a larger shear thinning exponent, the 

decreased particle resistance is smaller once the probe particle begins to move and hence 

a smaller external force is sufficient to drag the probe particle. Though small, this effect 

needs to be kept in mind when extracting a yield stress from microrheological 

measurements. 

 

 

Figure 5.11:   (a) The threshold force from microrheology (circles) and yield stress from 

bulk rheology (squares) as a function of volume fraction. (b) Direct correlation between 

yield stress from bulk rheology and the threshold force from microrheology. 
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Once the threshold force is exceeded an effective viscosity of the suspension is 

computed from the microrheology measurements using a modified Stokes drag law:  

 
 
 

* 2

*6 /

eff

s micro x s

F E R

U RE



  

 
 

 
 (5.4) 

The local shear rate corresponding to the effective viscosity is chosen as local xU R   

and in non-dimensional terms  * *

s local x sE U RE   . The effective viscosity from 

bulk steady shear simulations of [Seth et al. (2011)] is ,eff bulk   . Figure 5.12a shows 

the effective micro and macro viscosity (from Chapter 2) vs the local and bulk shear rate 

respectively. The microviscosity captures the shear thinning nature and the exponent of 

0.5 which is observed in bulk rheological simulations and experiments of soft particle 

glasses. Only the lowest ( =0.7) and largest ( =0.9) volume fractions investigated are 

shown in the main figure for clarity. All other volume fractions follow the same trend and 

fall in between these two concentrations. The local shear rate for microrheology is fixed 

by the average velocity of the tagged particle and so for a one on one comparison the 

macroviscosity is extracted for the same shear rates using the constitutive equation 

derived in Chapter 2. The direct comparison is shown in figure 5.12b as a parity plot. 

There seems to be good quantitative agreement between the micro- and macroviscosity.  

These connections enable microrheology as a viable technique for estimating the yield 

stress and shear thinning behavior of soft glasses.  

Another interesting observation from the microviscosity in figure 5.12a is that it 

becomes independent of concentration and shear rate at very large pulling forces. This is 

the regime when the external force dominates and hindered Stokes drag describes the 

velocity 
 2* 2 *

x

s

UF
k

E R RE 
  where 2 6 ( )rk f  is independent of the local shear rate 
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or concentration (see figure 5.5). In the previous section it was shown that the 

microstructural distortion does not change with an increase in force at large forces and 

this implies that the resistance from the other particles does not change with increase in 

force and this could be at the root of the constant microviscosity in this regime. These 

high shear rates are not accessible experimentally in bulk rheological measurements ( > 

10
4
 s

-1
).  
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Figure 5.12:   (a) The effective viscosity from microrheology (filled symbols) and bulk 

rheology (open symbols). (b) Direct comparison of effective viscosity from 

microrheology and bulk rheology for different volume fractions and shear rates 
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5.6 SUMMARY AND CONCLUSIONS 

Particle scale simulations were developed to model the active microrheology of 

soft particle glasses by pulling a random tagged soft particle with a constant external 

force and tracking its response. A threshold force is identified below which the tagged 

probe particle remains trapped in its cage and the microstructure around the particle is 

symmetric and similar to the static case. Beyond the threshold force the tagged probe 

particle escapes its cage and exhibits a net positive velocity in the direction of pull. 

Similar signatures of yielding behavior from microrheology experiments have been 

observed for concentrated hard sphere suspensions [Habdas et al. (2004)] and laponite 

suspensions [Rich et al. (2011)]. In this regime, the neighboring particles accumulate in 

front of and deplete behind the tagged particle. The force-velocity relationship shows an 

exponent of 0.5 post yielding where the particle motion is dominated by EHD 

interactions and our findings include a force-dominated regime independent of 

concentration at very large forces which are currently not inaccessible with steady shear 

experiments. In this large force regime the glass is locally fluidized where particles 

deplete in the pull direction. A similar force dominated linear regime independent of 

temperature has been observed in microrheology of temperature dependent glassy 

systems [Winter and Horbach (2013)]. A generalized scaling for the force and velocity 

data has been identified to obtain a concentration independent master curve for the active 

micro-rheology of these soft particle glasses.  

The microstructural distortion from micro and macro rheology are qualitatively 

different and thus connecting the information obtained from microrheology to the bulk 

rheological properties of the material is crucial in interpreting microrheological data 

[Khan and Sood (2010); Squires and Brady (2005); Wilson et al. (2009)].  The findings 

demonstrate that the threshold force obtained from microrheology is equivalent 
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information to the yield stress obtained from bulk rheological measurements. The shear 

thinning behavior can be extracted from the effective microviscosity and the values agree 

well with bulk rheological measurements.  

The threshold force here corresponds to O(G0R
2
) and soft particle glasses like 

microgels and compressed emulsions can have an elastic modulus of 100’s or 1000’s of 

Pa. For a material with an elastic modulus of 500 Pa and 200nm radius, the threshold 

force required would be 10pN. To reach the shear rates relevant to commercial use the 

external force required would be O(100G0R
2
) which would be 1nN. Accessible forces 

using optical tweezers are limited to the pN range but forces in the range 10pN-10nN are 

accessible through magnetic tweezers and thus active magnetic methods would be best 

suited for soft particle glasses [Breuer (2005)]. The effect of the softness of the probe 

might be a factor in these microrheological measurements, simulations of hard probe 

particles pulled through soft suspensions will allow determination of the probe particle 

softness effect. On the experiments side, it might be interesting to synthesize core-shell 

particles with a magnetic core and a soft shell to maintain the soft contact interactions in 

these glasses.  

The size of the probe particle can also play a role in the measurements made 

[Meyer et al. (2006); Squires and Brady (2005)]. In soft particle glasses the number of 

contacts of the probe particle can change with the size of the probe and further 

investigations in this direction are required to determine the effect precisely. Other 

interesting future directions include using oscillatory pulling forces [Ziemann et al. 

(1994)] to determine if the oscillatory rheology of these glasses could be predicted using 

microrheology and the use of force pulses [Bausch et al. (1999); Ziemann et al. (1994)] 

to investigate the stress relaxation in these materials. 
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SUPPLEMENTAL MATERIAL 5.A: LONG RANGE MICROSTRUCTURE AROUND TAGGED 

PROBE PARTICLE 

 

 

Figure 5.A.1:   Long range pair distribution function g(r) in the x-y plane when the tagged 

particle is pulled at different forces for  0.8. x- is the direction of pull. White lines 

correspond to the most probable radial separation at rest. 
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SUPPLEMENTAL MATERIAL 5.B: INVESTIGATION OF BOX SIZE EFFECT 

 

 

Figure 5.B.1:   The velocity of the tagged probe particle at different forces of pull in a 

suspension of volume fraction 0.8 using a 1000 and 10,000 particle box. 
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SUPPLEMENTAL MATERIAL 5.C: SIMULATION DATA TABLES 

 

Table 5.C.1 Force-velocity data for probe in volume fraction 0.7 

* 2
F Ε R   *

x sU RE η    *

x sstdev U RE η  

1.00E-04 3.43E-09 1.71E-08 

1.00E-03 7.02E-09 3.05E-08 

0.004 5.57E-08 5.13E-08 

0.005 6.28E-08 5.51E-08 

0.007 7.46E-08 6.22E-08 

0.01 1.12E-07 8.83E-08 

0.02 2.80E-07 1.39E-07 

0.03 6.09E-07 3.16E-07 

0.05 1.77E-06 7.36E-07 

0.1 7.94E-06 1.87E-06 

0.2 2.46E-05 5.69E-06 

0.5 1.13E-04 1.46E-05 

1 1.98E-04 2.95E-05 

2 6.26E-04 5.52E-05 

5 0.00218 1.38E-04 

10 0.00456 2.83E-04 

50 0.02509 0.00136 
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Table 5.C.2 Force-velocity data for probe in volume fraction 0.75 

* 2
F Ε R   *

x sU RE η    *

x sstdev U RE η  

1.00E-04 1.37E-08 2.18E-08 

1.00E-03 1.19E-08 4.62E-08 

0.01 3.91E-08 2.93E-08 

0.02 7.21E-08 5.55E-08 

0.03 1.78E-07 1.37E-07 

0.05 2.69E-07 1.68E-07 

0.07 7.92E-07 3.94E-07 

0.1 2.38E-06 2.16E-06 

0.2 1.60E-05 2.93E-06 

0.4 5.67E-05 1.11E-05 

0.5 7.76E-05 1.22E-05 

1 1.59E-04 8.67E-06 

2 4.43E-04 3.03E-05 

10 0.00428 3.37E-04 

5 0.00196 1.59E-04 

50 0.02493 0.00141 

500 0.25898 0.01414 
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Table 5.C.3 Force-velocity data for probe in volume fraction 0.8 

* 2
F Ε R   *

x sU RE η    *

x sstdev U RE η  

1.00E-04 1.06E-08 3.50E-08 

1.00E-03 9.03E-09 4.93E-08 

0.01 8.10E-09 3.57E-08 

0.03 6.82E-08 8.16E-08 

0.05 1.83E-07 8.28E-08 

0.06 2.07E-07 7.52E-08 

0.1 1.82E-06 1.17E-06 

0.2 5.53E-06 2.54E-06 

0.5 4.63E-05 4.64E-06 

1 1.33E-04 1.10E-05 

2 3.70E-04 3.22E-05 

5 0.00174 1.55E-04 

10 0.00404 3.23E-04 

50 0.02485 0.0014 

500 0.25233 0.01369 
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Table 5.C.4 Force-velocity data for probe in volume fraction 0.85 

* 2
F Ε R   *

x sU RE η    *

x sstdev U RE η  

1.00E-04 -1.15E-08 1.01E-08 

1.00E-03 2.26E-09 8.67E-08 

0.01 -3.03E-09 6.66E-08 

0.05 1.22E-07 1.48E-07 

0.1 7.00E-07 6.82E-07 

0.2 2.18E-06 1.91E-06 

0.5 1.75E-05 5.60E-06 

1 9.32E-05 1.70E-05 

2 2.86E-04 3.26E-05 

5 0.00131 1.55E-04 

10 0.0034 3.80E-04 

20 0.00882 6.16E-04 

50 0.02456 0.00141 

500 0.25224 0.01369 
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Table 5.C.5 Force-velocity data for probe in volume fraction 0.9 

* 2
F Ε R   *

x sU RE η    *

x sstdev U RE η  

1.00E-04 -3.67E-09 9.58E-09 

1.00E-03 -2.06E-08 3.42E-08 

0.01 1.19E-08 1.82E-08 

0.05 1.49E-08 2.91E-08 

0.1 5.90E-07 4.26E-07 

0.2 8.42E-07 5.89E-07 

0.5 3.92E-06 1.69E-06 

1 3.91E-05 2.01E-05 

2 1.88E-04 1.06E-05 

5 9.96E-04 1.63E-04 

10 0.00289 1.61E-04 

50 0.02401 0.00138 

100 0.04973 0.00271 

500 0.25209 0.01369 
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Table 5.C.6 Threshold force, k1, k2 for different volume fractions 

  * 2

yF Ε R  
1k  2k  

0.7 0.00317 31.71443 1823.354 

0.75 0.01172 48.80386 1688.481 

0.8 0.02668 61.24167 1685.74 

0.85 0.08467 81.51242 1602.093 

0.9 0.13085 120.2535 1490.746 

Note:  These are coefficients for fits with the model in equation (5.2) using the data in 

tables 5.C.1 to 5.C.5 where the average was atleast 1.25 times the standard deviation 
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Chapter 6:  Pairwise Theory for Quiescent Glasses§ 

6.1 INTRODUCTION 

The microstructure of soft particle glasses can be directly connected to the 

macroscopic rheology of these materials as shown in chapter 2 for steady shear flow and 

chapter 3 for oscillatory shear flow. The microstructure and its changes with flow also 

give additional insight on the flow mechanisms at work. Thus, understanding the 

microstructure of soft particle glasses and developing a method of predicting it would be 

very useful to determine the macroscopic properties and the microscopic mechanisms at 

work. The microstructure is embodied by the pair distribution function g(r) which is a 

local map of the density of pairs of particles. For quiescent glasses the microstructure is 

radially symmetric and is described by the radial pair distribution function g(r). The 

dispersed particle sizes in these jammed systems range from a few nanometers [Likos 

(2006)] to hundreds of micrometers [Fridrikh et al. (1996)]. The elasticity of the particles 

is derived from surface tension, osmotic or entropic/steric forces, depending on their 

composition [Bonnecaze and Cloitre (2010)]. Despite the different particle sizes and 

sources of elasticity, these concentrated suspensions of soft particles share many common 

properties [Bonnecaze and Cloitre (2010); Seth et al. (2011)], so a unifying microscopic 

theory would prove useful in determining the constituent properties and non-dimensional 

groups that are relevant to understanding the microstructure and rheology of these soft 

particle glasses. 

 In these soft jammed suspensions it is the elastic repulsion forces that are 

dominant and not the thermal forces thus they are referred to as athermal. In the quiescent 

state when there is no flow and the particle distribution function becomes time 

                                                 
§ Much of this chapter has appeared in Mohan L. and R. T. Bonnecaze, "Short-ranged pair distribution function for 

concentrated suspensions of soft particles," Soft Matter 8, 4216-4222 (2012) 
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independent, the elastic interactions among the particles at contact determines their 

microstructure and rheology. Given the microstructure embodied by the pair distribution 

function, the bulk elastic properties of these concentrated suspensions can be determined, 

e.g., the high frequency modulus via the Zwanzig-Mountain relationship [Zwanzig and 

Mountain (1965)]. Since the interaction potentials between soft particles often vanish 

beyond contact, only the short-ranged pair distribution function (at radial separations less 

than a particle diameter) is needed to compute their bulk properties.  

The athermal nature, ultrasoft interactions and high packing fractions make 

theoretical determination of the microstructure of these concentrated suspensions of soft 

particles a challenge. Theories to predict the pairwise distribution function of systems of 

hard spheres have been developed extensively [Hansen and McDonald (2006); 

McQuarrie (2000)]. In the case of soft particles, several closure relationships have been 

coupled with the Ornstein-Zernike relation [Carbajal-Tinoco (2008); Jacquin and Berthier 

(2010); Lang et al. (2000); Louis et al. (2000)] to obtain the pairwise distribution 

function. Hard sphere perturbation theories have been developed for the same, where 

equivalent diameters with respect to hard sphere systems are chosen based on matching 

the free energies [Andersen et al. (1971); Ben-Amotz and Stell (2004); Jacquin et al. 

(2011); Lado (1984); Mansoori and Canfield (1969); Mon (2002)], Boltzmann factors 

[Chandler et al. (1983)], liquid structure factors [Verlet and Weis (1972)] or second virial 

coefficients [Hoye and Reiner (2006)] of the system. However, these methods are only 

applicable at volume fractions below random close packing, where a hard sphere 

reference states exists. Further, the temperature factor or thermal energy that plays a 

major role in these theories is not significant in the case of the soft particle suspensions 

examined here, where the elastic interactions due to the large compressions are dominant, 
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again making it difficult or impossible to apply these theories in practice for highly 

concentrated, athermal suspensions of soft particles. 

Here a microscopic theory is developed to predict the radial pair distribution 

function g(r) that describes the amorphous structure of these amorphous, jammed 

systems. The constituent particles are impenetrable and form flat facets at contact and the 

behavior at these facets determine the properties of these materials. Elastic properties of 

the soft particle glasses, such as the osmotic pressure and high frequency modulus can be 

determined from the pairwise radial distribution function [McQuarrie (2000); Zwanzig 

and Mountain (1965)]. Further, since interaction potentials between soft particles vanish 

beyond contact, only the distribution function resolved over a short range is needed. The 

remainder of the chapter is organized as follows. The pairwise theory to predict g(r) is 

described in section 6.2. A perturbation expansion based analytical approximation is also 

presented in the same section. Particle scale simulations performed to validate the theory 

and the insights gained from them are discussed in section 6.3. Theoretical predictions of 

the short ranged pair distribution function are presented in section 6.4 and the elastic 

properties that can be calculated from it are presented in section 6.5. The theory is 

validated by comparison with data from computer simulations and experiments.  
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6.2 PAIRWISE THEORY - DESCRIPTION 

6.2.1 Theoretical approach  

A mean-field approach is used where the n-body system is replaced by a two-

body problem with an effective mean force. Consider a reference particle located at the 

origin surrounded by a suspension of compressed soft particles as shown in figure 6.1.  

 

 

 

 

 

Figure 6.1:   Schematic of forces acting on a test particle located a distance r  from  the 

reference particle. The forces acting on a particle (dark red) a distance r from the 

reference particle (dark red at origin) are the pairwise contact force FH and the effective 

many body force of the concentrated suspension surrounding the particle FE. 

 

 

  



 206 

The transport or conservation of mass equation for the pair distribution function 

g(r) is given by [Batchelor (1977)]: 

  ( ) ( ) 0,g r r V  (6.1) 

where ( )rV  is the velocity of the test particle, located at r, relative to the reference 

particle due to elastic forces of all the other particles. This is imagined to be the result of 

two contributions: the pairwise elastic interaction with the reference particle and the 

effect of all the other particles surrounding it. Thus,  ( ) H Er   V M F F  where M  is the 

mobility of the particles. The pairwise elastic repulsion between the test particle and the 

reference particle is given by:  

 
( )

( )H r

du r
r

dr
 F e  (6.2) 

where ( )u r  is the interaction potential between particles and er is the radial unit vector. 

EF  is the effective mean elastic force of the bulk suspension acting on the test particle 

which captures the interaction due to all the other particles. This many body force is 

postulated as the sum of the pairwise elastic force ( )H mrF , where mr  
is the radius of 

maximum pairwise density (separation between particles where 
( )

0
dg r

dr
 ), and a force 

analogous to the fluctuating Brownian force in thermal systems [Batchelor (1976)], so 

that,  

 ( ) ( ) ln ( ),E H mr r U g r   F F  (6.3) 
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where the thermal energy kT is replaced by the average elastic energy <U>. This average 

elastic energy depends on the pairwise interaction potential and increases with increasing 

volume fraction  .  

At the stationary state (no flow) the pair distribution function of the suspension is 

radially symmetric, and thus equation (6.1) becomes,  

 2 ln ( )
( ) ( ) ( ) 0,H H m

d d g r
r g r F r F r U

dr dr

  
    

  
 (6.4) 

where 
( )

( ) .H

du r
F r

dr
   Note that the mobility drops out and thus its value is not needed 

for the remaining analysis.  Because the potential vanishes beyond contact, equation (6.4) 

is only valid for radial positions less than the particle diameter and so only describes the 

short-ranged pair distribution function. However, only the short-ranged value is needed to 

compute the bulk properties of the suspension. From the integration of equation (6.4) and 

the fact that ( )g r  is finite and continuous, it is found that,  

  
1

( ) ( )exp ( ) ( ) .H m mg r a u r F r r r
U


 

      
 

 (6.5) 

What remains is the determination of the three constants, U , a  and mr , all of 

which depend on volume fraction. They are determined by the following conditions. 

First, the average energy U  is proposed to be the energy per contact per particle and is 

determined self-consistently using the relationship,
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2
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0

2

2

0

4 ( ) ( )

2 4 ( )

R

R

nr u r g r dr

U

nr g r dr










. (6.6) 

The factor of two in the denominator is included because each contact is shared between 

two particles. Second, the number of contacts per particle,  N, is also constrained, 

 
2

2

0

4 ( )

R

N nr g r dr  . (6.7) 

It has been found that  c N cN N K


    , where 6cN   is the number of contacts at 

random close packing,  7.7 0.5NK    and 0.5 0.03    [O'Hern et al. (2002); O'Hern 

et al. (2003)]. The constraint on the number of contacts is useful in determining the 

coefficient ( )a   in equation (6.5). Finally, the non-dimensional overlap distance 

2 /mr R  has been observed to follow the scaling  
2

r cK N N  [van Hecke (2010); 

Wyart et al. (2005)] . A preliminary estimate for rK  can be obtained by the following 

mass conservation argument. Consider a random close packing of spheres ( c =0.64) with 

radius rcpR  in a fixed volume V . The random close packing volume fraction 

34 3 rcp

c

R

V


  . Imagine the particle radius being increased to R  such that the final 

volume fraction is unity. The final radius 

1 3

1/3

4 3
rcp c

V
R R 



 
  
 

. Assuming that the 

spheres were just touching each other at random close packing, the overlap distance 

2 /mr R  at the final volume fraction due to the compression is thus given by

   1/32
2 1rcp cR R

R
   . Comparing this to the scaling for the overlap distance and the 

relationship between number of contacts and volume fraction already available, we find 
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that 0.013rK  . Thus using the scaling for rm in equation (6.5), and self consistently 

determining U  using equation (6.6), and ( )a   using equation (6.7), we can determine 

the short-range pair distribution function for any given volume fraction and interaction 

potential. In the next section the constants U  and ( )a   are evaluated by numerical 

integration. 

6.2.2 Analytical approximation using perturbation expansion 

The theory requires numerical solution through iterative calculations, and it is 

insightful to develop an approximate analytical expression of g(r) as follows.  For r close 

to rm, ( )u r  can be written as the Taylor-series expansion: 

  2 3( )
( ) ( ) ( )( ) ( ) ( ) .

2

m
m m m m m

u r
u r u r u r r r r r O r r


        (6.8) 

Using this approximation up to the quadratic term in equation (6.5) we find the pair 

distribution to have the Gaussian form [Seth et al. (2006)]: 

 

2

2

0

( )1
( ) ( )exp ( ) ( ) ,

2

( )
( )exp ( ) .

2

m
m m

m
m

u r
g r a u r r r

U

u r
g r r

U





  
     

  

 
   

 

 (6.9) 

where, 

 0

( )
( ) ( )exp .mu r

g a
U

 
 

  
 

 (6.10) 
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The constant ( )a   and thus 0 ( )g 
 
are determined by the constraint on the number of 

contacts in equation (6.7). Using the form of g(r) in equation (6.9), ( )a   is determined to 

be given by, 

 
( )

( ) exp
4

mu rN
a

nI U




 
  

 
 (6.11) 

where, 
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               

     
       

      

 (6.12) 

and the width of the peak of g(r) is given by, 

 
2

( )m

U

u r
 


. (6.13) 

The peak value 0 ( )g  can be determined from ( )a   using equation (6.10). 

In general the pairwise interaction potential depends in the overlap, say

 ( ) 2u r r


 , where  is some positive exponent. The average elastic energy 

( ) (2 )m mU u r r  . And  ( )mu r  is the second derivative of the interaction potential 

and scales as 2(2 )mr
 . This makes (2 )mr  . The overlap 

     
2

2 m c cr N N      as indicated previously. Thus, the width of the peak scales 

as ( )c   . 
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6.3 PARTICLE SCALE SIMULATIONS 

Particle scale simulations were performed to validate the predictions from the 

pairwise theory for three different interparticle potentials. Monodisperse 3D packings 

were built using the technique described in section 2.3. Different interaction potentials 

were used to build these packings. The three pairwise interaction potentials are listed in 

Table 6.1 for Hertzian contacts for linearly elastic spheres, the potential for a compressed 

emulsions and the potential for spheres composed of a non-linear elastic Mooney-Rivlin 

material. The pairwise elastic repulsion force for these interaction potentials is presented 

in figure 6.2. These configurations were used to compute the pair distribution functions 

(g(r)), osmotic pressure ( ) and the high frequency shear moduli ( G ) using the 

methodology described in [Seth et al. (2006)]. 

 

 

 

Figure 6.2:   Elastic Repulsion forces for hertz potential (solid lines), compressed 

emulsion potential (dashed) and Mooney-Rivlin material potential (dash-dot) 
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Table 6.1: Pairwise interaction potential used in simulations. 

Interaction Potential u(r) Parameters 

Hertz Potential [Johnson 

(1985)] 

2.5

* 38
2

15 2

r
E R

R

 
 

 
 

E
*
-particle contact modulus 

R - particle radius 

Compressed emulsions 

[Lacasse et al. (1996)] 

3

2 2
2 1

R
R C

r




  

     

 
  - interfacial tension 

0.36C    2.32   

Mooney-Rivlin 

material** [Liu et al. 

(1998)] 

1

* 34
2

13 2

n
C r

E R
n R


  

 
  

 

1, 1.5C n   for / 1.9r R   

31.62, 3C n     for 

1.8 / 1.9r R   

790.57, 5C n   for  / 1.8r R   

 

The simulations confirm that  
1/2

c N cN N K      where 6cN  , 0.64c   

and  
2

2 /m r cr R K N N   . The constants 
NK

 
and 

rK
 
were found to depend slightly 

on the nature of the interacting potential. They were found to be very close to the values 

in literature and our preliminary estimate cited earlier.  Figure 6.3 shows the effect of 

volume fraction and interaction potential on the number of contacts. Figure 6.3a shows 

that the number of contacts goes to Nc at random close packing limit and figure 6.3b 

shows the scaling with volume fraction. Figure 6.4 shows the effect of volume fraction 

and interaction potential on the overlap at mr . Figure 6.4a shows that the particle-particle 

overlap vanishes at random close packing limit and figure 6.4b shows the scaling with 

number of contacts. The effect of the interaction potential is more evident at higher 

volume fractions as the particles are more compressed and the interaction energy is more 

important. Note that the overlap based on the radial separation of maximum pair density 

is proportional to the overlap based on the average radial separation of pairs of particles 

(see figure 6.5). 

                                                 

** The potential here is 4 2 times greater than that used in the dynamic simulations in previous chapters 
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Figure 6.3:   Simulation results (symbols) and corresponding models for cN N  . Lines: 

fits with scaling laws using constants NK =8.67, 8.49, 7.31 for Hertz (circles), 

compressed emulsions (squares) and Mooney Rivlin Materials (diamonds), respectively. 
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Figure 6.4:   Simulation results (symbols) and corresponding models for 2 /mr R .  

Lines: fits with scaling laws using constants rK =0.0091, 0.0105, 0.016 for Hertz 

(circles), compressed emulsions (squares) and Mooney Rivlin Materials (diamonds), 

respectively. 
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Figure 6.5:   Simulation data for comparison of the overlap distance based on the radius 

of maximum pair density to that based on the average pair separation for Hertz (circles), 

compressed emulsions (squares) and Mooney Rivlin Materials (diamonds), respectively.  
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6.4 THEORETICAL PREDICTIONS OF RADIAL PAIR DISTRIBUTION FUNCTION 

6.4.1 Average elastic energy  

The constants U  and ( )a   are evaluated by numerical integration to evaluate 

the radial pair distribution function g(r) in equation (6.5). The self consistently 

determined values of average energies U  from theory match very closely the values 

from simulations. The agreement between theoretical predictions and simulation values 

are shown in figure 6.6a. The average elastic energy vanishes as we move towards the 

random close packing limit as shown in figure 6.6b, a necessary condition for the pair 

distribution function to become singular at 0.64.c    

 

 

 

Figure 6.6:   (a) Comparison of theoretical predictions (lines) of average elastic energy 

with simulation results (symbols). (b) Variation of average energy with volume fraction 

for Hertz (circles), compressed emulsions (squares) and Mooney-Rivlin Materials 

(diamonds). 
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6.4.2 Radial pair distribution function g(r)  

Figure 6.7 shows the theoretical predictions of the radial distribution functions 

computed using equation (6.5) with the three constraints discussed and their comparison 

to simulation results. Calculations were done with three different pairwise interaction 

potentials for linear elastic Hertzian spheres, compressed emulsions, and non-linear 

elastic Mooney-Rivlin spheres as given in Table 6.1. Appropriate values of 
NK

 
and 

rK  

were used for each interaction potential. Unlike concentrated hard sphere suspensions, 

the centers between soft particles can be less than two radii apart. The results have been 

shown for volume fractions 0.675, 0.7, 0.75, 0.8, 0.85 and 0.9 in the insets and for 

volume fractions of 0.7, 0.8 and 0.9 in the main figures. Indeed the peak sharpens and 

narrows as the volume fraction approaches that for hard spheres at random close packing. 

This transition is shown most clearly, for example, in figure 6.7d for the Hertz potential. 

For the Hertz potential and compressed emulsions, the peak of ( )g r  decreases while the 

spread increases with increase in volume fraction. For a given volume fraction, the spread 

of the curve is lower for stiffer potentials. In the case of the Mooney Rivlin material at 

0.9  , compressions > 20% become more likely and the interaction at these 

compressions becomes stiffer which leads to a narrower ( )g r  curve with a larger peak. 

The theoretical predictions closely match the results from simulations and thus validate 

the theory. 
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Figure 6.7:   Comparison of theoretical predictions from equation (6.5) (dashed lines) of 

g(r) with computer simulations (solid lines) for (a) Hertz Potential, (b) Compressed 

emulsions and (c) Mooney-Rivlin Material. Right to left in (a), (b) and (c): volume 

fraction =0.7, 0.8 and 0.9. Insets: Theoretical predictions for volume fractions 0.675, 0.7, 

0.75, 0.8, 0.85 and 0.9 (right to left).  (d) Hertz potential – volume fractions 0.645, 0.65, 

0.675, 0.7, 0.725 (right to left) 
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6.4.3 Perturbation expansion based analytical approximation 

The analytical expressions for ( )a  , 0 ( )g 
 

and ( )   determined using the 

perturbation expansion [equations (6.9)-(6.13)] are plotted as a function of c   in 

figure 6.8 and are compared with the numerically evaluated values using equation (6.5). 

As expected, ( )a   and 0 ( )g 
 
diverge while the width ( )  vanishes as c  , the hard 

sphere random close packing limit. The scaling for this behavior in the region          

c  = 10
-3

 to 10
-1

 are given by: 

  
0.906 0.0144

( ) ca   
 

  (6.14) 

  
0.933 0.0073

0( ) cg   
 

  (6.15) 

  
0.986 0.0098

( ) c   


  (6.16) 

These scalings are close to those derived by [Jacquin et al. (2011)] where it was predicted 

that the peak of  
1

0( ), ( ) cg r g   


 and that the width of the peak,  ( ) c    . 

Thus, the theory here predicts closely, the behavior of suspensions near the jamming 

transition as well as for more compressed suspensions. 
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Figure 6.8:   Computational (symbol) and analytic (lines) predictions of ( )a   and peak 

0 ( )g   and width ( )   of g(r) for different volume fractions. (circles/solid lines-Hertz 

potential, square/dashed lines-compressed emulsion potential, diamonds/dashed-dotted 

lines-Mooney-Rivlin potential). 
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From equation (6.9),  

2

0

( )
exp

( )

mr rg r

g  

  
   

   

 is a universal curve for 

concentrated soft particle suspensions. Figure 6.9 shows the theoretical curve (black line) 

and the scaled simulation data. The simulation data has been scaled with the peak, rm and 

width from the simulation results.  The agreement is good, especially close to rm since the 

Gaussian form has been derived using a quadratic expansion of the potential about rm. 

 

 

 

Figure 6.9:   Theoretical universal curve (black solid line) and scaled simulation data 

(symbols).  Hertz (circles), compressed emulsions (squares) and Mooney-Rivlin 

Materials (diamonds). Volume fractions: 0.65 (green), 0.8 (blue) and 0.9(red). 
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6.5 THEORETICAL PREDICTIONS OF ELASTIC PROPERTIES 

Elastic properties of these materials can be predicted using the short ranged pair 

distribution function ( )g r . The osmotic pressure   of the suspensions may be 

determined according to [McQuarrie (2000)]: 

  
22

3

0

4 ( )

6

R
n du r

r g r dr
dr


    . (6.17) 

The high frequency elastic modulus G  can be computed with the Zwanzig-Mountain 

formula [Zwanzig and Mountain (1965)]:  

 
2

2 4

0

2 ( )
 = ( ) .

15

R d du r
G n g r r dr

dr dr




 
 
 

  (6.18) 

Figure 6.10 shows the theoretical predictions of these properties for different interaction 

potentials as well as predictions from simulations and experimental osmotic pressures for 

compressed emulsions [Mason et al. (1997)] and foams [Princen and Kiss (1987)]. The 

osmotic pressure and elastic moduli for the Hertzian and compressed emulsion potentials 

appear to approach a plateau value at the higher concentrations.  However, for the 

Mooney-Rivlin material, the bulk materials stiffen with increasing volume fraction and 

no such plateau is observed.  There is good agreement among the theoretical, 

computational and experimental values.   
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Figure 6.10:   Comparison of theoretical predictions (lines) of elastic properties for a) 

hertz potential, b) compressed emulsion potential and c) Mooney-Rivlin material 

potential with computer simulations (circles-osmotic pressure and squares-high frequency 

modulus)  and experiments on osmotic pressure of compressed emulsions (diamond) 

[Mason et al. (1997)] and foams (triangle) [Princen and Kiss (1987)]. Upper lines: high 

frequency elastic modulus and lower lines: osmotic pressure.   
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6.6 SUMMARY AND CONCLUSIONS 

A theory and methodology has been developed to predict the short ranged radial 

distribution function for athermal, highly concentrated, amorphous suspensions of soft 

particles based on the transport equation for the distribution function and a component of 

its flux from a proposed mean elastic force. An analytical approximation for the radial 

distribution function has also been developed based on perturbation expansion of the 

elastic energy around radius of maximum pair density rm.  The theory accurately predicts 

the distribution function for a variety of soft particles compared to computational 

simulations. The predicted distribution functions can further be used to accurately predict 

the osmotic pressure and high frequency modulus. The elastic properties and the radial 

distribution function g(r) do not change significantly for polydispersities upto 20% [Seth 

et al. (2006)]. Thus the theory can be used even for mildly polydisperse systems with the 

average particle radius. Although the main focus of theory is to predict the microstructure 

and elastic properties at concentrations much larger than random close packing for hard 

spheres, the predicted radial distribution function becomes singular with the expected 

scalings as the volume fraction approaches random close packing.  This theory provides a 

new tool for predicting the microstructure for these concentrated soft particle materials. 
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SUPPLEMENTAL MATERIAL 6.A: SIMULATION DATA TABLES  

 

Table 6.A.1: Hertz Potential 

  N rm/R 
* 2

U E R  *E  
*

G E∞  

0.65 6.805 1.992 2.18E-06 0.00026 0.0139 

0.7 8.043 1.9565 9.14E-05 0.0036 0.0328 

0.75 8.838 1.921 3.60E-04 0.01005 0.0514 

0.8 9.469 1.886 8.28E-04 0.01953 0.078 

0.85 10.013 1.854 1.47E-03 0.0306 0.0965 

0.9 10.472 1.824 2.28E-03 0.0418 0.1024 

 

 

Table 6.A.2: Compressed Emulsions 

  N rm/R 
2

U R  ( )  R  G ( ) R∞  

0.65 6.804 1.992 2.33E-05 3.16E-03 0.1183 

0.7 8.037 1.955 8.41E-04 3.37E-02 0.2768 

0.75 8.828 1.918 3.35E-03 9.36E-02 0.4859 

0.8 9.429 1.878 8.03E-03 0.1878 0.7400 

0.85 9.915 1.839 1.53E-02 0.3212 1.0294 

0.9 10.301 1.807 2.53E-02 0.4991 1.3733 
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Table 6.A.3: Mooney-Rivlin material 

  N rm/R 
* 2

U E R  *E  
*

G E∞  

0.65 6.804 1.993 2.14E-06 3.03E-04 1.23E-02 

0.7 7.8948 1.952 1.14E-04 4.24E-03 2.86E-02 

0.75 8.5222 1.892 3.85E-04 1.27E-02 8.29E-02 

0.8 8.9718 1.861 1.09E-03 3.28E-02 1.53E-01 

0.85 9.3124 1.825 2.50E-03 7.13E-02 3.45E-01 

0.9 9.5954 1.782 4.60E-03 1.47E-01 8.15E-01 
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SUPPLEMENTAL MATERIAL 6.B: THEORY DATA TABLES  

 

Table 6.B.1: Hertz Potential 

  
a( )  

(equation 5) 

* 2
U E R  *E  

*
G E∞  

0.7 130.418 7.72E-05 3.66E-03 4.38E-02 

0.75 77.4092 0.000346 9.89E-03 6.47E-02 

0.8 56.8626 0.000872 1.92E-02 8.04E-02 

0.85 45.9658 0.00169 3.13E-02 9.29E-02 

0.9 39.2681 0.00285 4.63E-02 1.02E-01 

 

 

Table 6.B.2: Compressed Emulsions 

  
a( )  

(equation 5) 

2
U R  ( )  R  

G ( ) R∞  

0.7 120.2923 0.00091 3.69E-02 4.26E-01 

0.75 81.0637 0.0039 1.057E-01 6.85E-01 

0.8 66.3913 0.0099 2.18E-01 9.97E-01 

0.85 58.9524 0.0198 3.87E-01 1.385 

0.9 54.6925 0.0350 6.32E-01 1.872 
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Table 6.B.3: Mooney-Rivlin Material 

  
a( )  

(equation 5) 

* 2
U E R  *E  

*
G E∞  

0.7 103.49 0.000138 4.765E-03 4.74E-02 

0.75 190.65 0.000422 1.32E-02 1.05E-01 

0.8 92.78 0.00150 4.206E-02 2.836E-01 

0.85 131.65 0.00363 1.032E-01 6.591E-01 

0.9 93.70 0.00883 2.658E-01 1.701 
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Chapter 7:  Pairwise Theory for Sheared Glasses 

7.1 INTRODUCTION 

The successful prediction of microstructure and elastic properties for jammed 

suspensions by the pairwise theory presented in the previous chapter established the wide 

applicability of this framework. The distortion of this static microstructure by flow causes 

elastic stresses which are at the root of the yield stress and shear thinning behavior of 

these soft particle glasses. Thus, developing a microscopic theory for sheared glasses 

would be useful for increased understanding and to have a faster design tool than 

simulations to formulate soft particle glasses.  

Suspensions of hard particles in shear have been studied theoretically at length 

and pairwise theories have been developed to explain the microstructural changes and 

their relation to macroscopic properties [Batchelor (1977); Brady and Morris (1997)]. 

Mode coupling theory (MCT) [Fuchs and Cates (2002); Fuchs and Ballauff (2005); 

Hebraud and Lequeux (1998)] and soft glassy rheology (SGR) models [Sollich et al. 

(1997); Sollich (1998)] are theoretical frameworks which explain the flow curves of near 

hard sphere glasses close to the glass transition.  These theories predict the yielding and 

shear thinning of glassy suspensions but they contain many adjustable parameters which 

are not directly related to the constituent properties which can be tuned to formulate these 

suspensions. Also, they do not specifically consider the soft elastic contact repulsions 

which are at the root of the viscoelastic properties of the highly jammed soft particle 

glasses. Thus a simple theoretical tool to rapidly describe these materials is in need. 

Here the pairwise theory presented in Chapter 6 is extended to include flow 

effects and is tested to predict the microstructure and rheology of soft particle glasses 

under shear. An external velocity field is added to the quiescent model and the resulting 
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transport equation is derived for sheared glasses.  Appropriate parameters including 

elastic energy and particle mobility, and, boundary conditions for the governing equation 

are chosen based on the relevant microscopic properties and the resulting equation is 

solved using a commercial PDE solver-COMSOL to determine the pair distribution 

function. Finally, the shear stresses are calculated from the pair distribution function. The 

remainder of the chapter is organized as follows. The pairwise theory to predict the 

microstructure under shear is presented in section 7.2 and the theoretical predictions 

using a particle scale mobility computed from microrheology simulations in chapter 5 is 

presented in section 7.3. The theoretical predictions show good qualitative agreement 

with particle simulations but quantitatively they predict higher elastic stresses. The cause 

for this higher prediction is identified as the particle scale mobility and the theoretical 

predictions using a larger particle scale mobility is presented in section 7.4. 

7.2 PAIRWISE THEORY - DESCRIPTION 

7.2.1 Theoretical Approach 

The mean-field approach presented in chapter 6 for quiescent glasses is extended 

to sheared glasses. The many-body system is replaced by a two-body problem with an 

effective mean force. A reference particle located at the origin is surrounded by a 

suspension of compressed soft particles under simple shear flow of shear rate   as shown 

in figure 7.1. All particles are considered to be of radius R. 
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Figure 7.1:   Schematic of forces acting on a test particle located a distance r from the 

reference particle under a simple shear flow ( )U  r  . The forces acting on a particle (dark 

red) a distance r from the reference particle (dark red at origin) are the pairwise contact 

force FH and the effective many body force FE. 

The transport or conservation equation for the three dimensional pair distribution 

function g(r) is given by: 

  ( ) ( ) 0g r V r  (7.1) 

where ( )V r  is the velocity of the test particle, located at r, relative to the reference 

particle located at the origin. This velocity is due to elastic forces of all the other particles 

and the external flow field which in this case is simple shear flow represented by 

ˆ( ) xU y r e . The effect of the elastic forces is the result of two contributions as in the 

static case: the pairwise elastic interaction with the reference particle and the effect of all 

the other particles surrounding it. Thus,  ( ) ( ) ( ) ( )H EU M r   V r r F F r  where M  is 

the mobility of the particle. The pairwise elastic repulsion between the test particle and 

the reference particle is given by: 
( )

( )H r

du r
r

dr
 F e  where u(r) is the pairwise 

interaction potential. This force can be written as a perturbation expansion around ( )H mrF , 
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where mr  
is the radius of maximum pairwise density at rest (separation between particles 

where 
( )

0
dg r

dr
  at equilibrium): 

  2 3( )
( ) ( ) ( )( ) ( ) ( ) .

2

H m
H H m H m m m m

r
r r r r r r r O r r


      

F
F F F  (7.2) 

FE(r) is the many body force as before but now it depends on the three dimensional pair 

distribution function g(r): ( ) ( ) ln ( )E H mr r U g   F F r ;  U  is the average elastic 

energy. 

The governing equation thus takes the form: 

  ( ) ( ) ( ) ( ) ln ( ) 0H H mg U M r r U g          
r r rF F . (7.3) 

7.2.2 Numerical Implementation 

 For a given interaction potential and steady shear flow rm, U  and M are 

required to determine the governing equation above. rm is a function of volume fraction 

and can be determined using the scaling presented in Chapter 6 and U  is the elastic 

energy per particle per contact as in the static case and is self consistently determined 

using the following integrals over the entire domain: 

 

 

( ) ( )

2 ( )

domain

domain

nu r g dV

U

ng dV






r

r

 (7.4) 

where n represents the number density of particles and is a function of volume fraction .

M is initially chosen as the particle scale mobility computed from the microrheology 
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simulation results in Chapter 5 where a tagged particle is pulled at a constant force 

through the jammed soft particle glass. Using equation (5.3) from Chapter 5, 

 
0.5

2 3

0 0

1

6
1.62 387

( )

x

s s

r

U
M

F G R G R R

y y f

 

  

 
    

      
     

 (7.5) 

where F is the force of external pull, 
xU  is the velocity in pull direction in response, G0 is 

the low frequency elastic modulus, s  is the solvent viscosity and ( )rf  =0.01 as in the 

particle scale simulations. This mobility is again a function of velocity and the 

appropriate velocity is chosen as the external steady shear flow ˆ( ) xU y r e  and thus M 

is a function of the y- co-ordinate.   

 The computational domain around the reference particle where the test particle 

could be in contact with the reference particle is a sphere of radius 2R around the centre 

of the reference particle. All the flow induced asymmetries are assumed to occur in the 

layer of contact between particles and the pair distribution function is chosen to be a 

constant over the surface r=2R. This constant is chosen such the number of particles in 

contact with the reference particle is the same as the number of contacts per particle in 

the static case:  

 
m

( )
do ain

N ng dV  r . (7.6) 

The shear stress   is computed from the pair distribution function as: 

  
2

( )
2

H

domain

n xy
r g dV

r


 
   

 
 rF  (7.7) 
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The computational domain used in the PDE-solver COMSOL is presented in 

figure 7.2 and is 1/4
th

 of the entire domain due to prevailing symmetries. Symmetry 

boundary conditions are used on the other surfaces as shown in figure 7.2. 

The elastic energy U  is initially chosen based on the elastic energy at 

equilibrium presented in Chapter 6: 2
eq

U U  and equation (7.3) is solved using the 

boundary conditions mentioned. This solution is then iterated using the new elastic 

energy obtained using equation (7.4) until convergence is achieved. Other starting elastic 

energies were also tested to produce similar results (see Supplemental Material 7.A).  

 The computational domain was meshed with 95000 elements and was tested for 

convergence using 160,000 elements (see Supplemental Material 7.A).  

 The compressed emulsion potential 

3

2 2
( ) 2 1

R
u r R C

r




  

      

, where   is the 

interfacial tension, 0.36C   and 2.32  is used for testing the theoretical predictions. 

Out of the three interaction potentials used for testing the pairwise theory for soft glasses 

in Chapter 6 this was chosen as it closely represented the interaction in compressed 

emulsions which is a soft particle glass with particle contact modulus 
* 9.92E R  for 

comparison with particle scale simulations in Chapter 2 and this interaction potential and 

all higher derivatives are continuous across the domain which simplifies the use of the 

perturbation expansion for the elastic force in equation (7.2).  

 Linear and quadratic terms were used in the theoretical predictions presented in 

sections below and the convergence was tested using cubic terms (see Supplemental 

Material 7.A).   
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Figure 7.2:   Computational domain (distance in units of R) and boundary conditions used 

to solve the governing equation (7.3) in the PDE-solver COMSOL 

7.3 THEORETICAL PREDICTIONS USING MOBILITY FROM MICRORHEOLOGY 

7.3.1 Prediction of microstructure  

Figure 7.3 presents the microstructure for three different shear rates for a volume 

fraction of 0.8. There is an accumulation of particles in the compressive quadrant and 

depletion of particles in the extensive quadrants. But the distortion is much higher for low 

shear rates as compared to the particle scale simulations in Chapter 2. 
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Figure 7.3:   Theoretical prediction of pair distribution function g(r) for sheared glasses 

of volume fraction 0.8 using particle mobility from microrheology 

7.3.2 Prediction of flow curve and comparison to simulations 

Figure 7.4 presents the steady shear stress computed from the microstructure 

presented above for a volume fraction of 0.8. The theory qualitatively predicts the 

presence of a yield stress and shear thinning at high shear but quantitatively the theory 

over predicts the stress as compared to the particle scale simulations from Chapter 2 
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which were in good quantitative agreement with experiments. Now, the mobility from 

microrheology was computed through simulations where a single tagged particle was 

pulled through a jammed suspension whereas in steady shear flow all the particles are 

moving and each particle pushes the others around and this would give rise to a collective 

increase in mobility which could be the cause of the stress over prediction. The governing 

equations were solved again with a higher mobility to check this hypothesis. 

 

 

 

Figure 7.4:  Theoretical prediction of flow curve using mobility from microrheology 

(circles) and comparison to particle scale simulations from chapter 2 (line) 

7.4 THEORETICAL PREDICTIONS USING A HIGHER MOBILITY 

7.4.1 Prediction of microstructure  

Figure 7.5 presents the microstructure for three different shear rates for a volume 

fraction of 0.8 computed using a higher mobility (15 times) than that obtained from 

microrheology simulations in chapter 5. The extent of accumulation of particles in the 
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compressive quadrant and depletion of particles in the extensive quadrants has reduced 

from the previous case. A direct comparison made between the theoretical predictions of 

the pair distribution function and the particle scale simulation results from Chapter 2 in 

figure 7.6 shows reasonable agreement. The numerical convergence of these results was 

checked by using more iterations, higher number of elements in the model, adding higher 

order terms in the definition of elastic force and starting the iteration with a different 

elastic energy and is presented in Supplemental Material 7.A. The relevant solver 

parameters and grid sizing is presented in Supplemental Material 7.B.  
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Figure 7.5:   Theoretical prediction of pair distribution function g(r) for sheared glasses 

of volume fraction 0.8 using a higher mobility than that from microrheology 
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Figure 7.6:   Comparison of predictions of pair distribution function g(r) for sheared 

glasses of volume fraction 0.8 in the flow gradient plane at different shear rates from 

theory (left) and simulations (right). 
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7.4.2 Effect of using higher mobility on prediction of flow curve  

Figure 7.7 presents the steady shear stress computed from the microstructure 

presented above for a volume fraction of 0.8. The theory now using a higher mobility 

quantitatively predicts the yield stress and shear thinning at high shear and shows good 

agreement with simulation results from Chapter 2. This study establishes that the 

pairwise theory can be successfully extended to sheared soft particle glasses to 

quantitatively predict their rheology if appropriate particle scale mobility is used taking 

into account the collective neighbor effects under flow.  

 

 

Figure 7.7:  Theoretical prediction of flow curve using higher mobility than from 

microrheology (squares) and comparison to particle scale simulations from chapter 2 

(line) 

7.4.3 Prediction of flow curves and comparison to simulations 

 Figure 7.8a shows theoretical predictions of flow curves for different volume 

fractions and comparison to simulations from Chapter 2. Figure 7.8b and c show the 

variation of the converged average elastic energy and the boundary condition at r=2R. 
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Figure 7.8:  Theoretical prediction of flow curve (a) and average elastic energy (b) using 

higher mobility than that from microrheology (circles) and comparison to particle scale 

simulations from chapter 2 (lines). (c) Boundary condition at r = 2R. 
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7.5 SUMMARY AND CONCLUSIONS 

The pairwise theory presented previously to predict the short ranged pair 

distribution function for quiescent soft particle glasses was extended to steadily sheared 

glasses. A transport equation for the distribution function with components of its flux 

from a proposed mean elastic force and convective flow was developed. Appropriate 

boundary conditions were also determined based on maintaining the number of contacts 

per particle and self consistently determining the average elastic energy. Since the 

governing equation included flow, a particle scale mobility term came into the picture 

when solving the governing equation. A microscopic mobility computed from the 

microrheology simulations in Chapter 5 was used to test the theory. The predicted 

microstructure displayed accumulation and depletion of pair density in the compressive 

and extensive quadrants as observed in particle scale simulations and the shear stress 

predicted from the microstructure exhibited yield stress and shear thinning. Though the 

theoretical predictions showed good qualitative agreement with the simulation and 

experimental data, the predicted stresses for a given shear rate were an order of 

magnitude higher. The initial particle mobility that was used in the theory was computed 

from simulations where a single particle was dragged through a jammed suspension 

where the other particles had no external stimuli but in a steady shear flow all the 

particles are sheared and the collective effect might increase the particle scale mobility. 

The theoretical predictions were then tested using a particle mobility 15 times higher than 

that obtained from microrheology and the results showed good qualitative and 

quantitative agreement with particle scale simulations. Thus, the pairwise theory can be 

extended to quantitatively predict the nonlinear rheology of these materials including 

yield stress and shear thinning when appropriate particle scale mobility is used. 
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Here, for the purposes of testing the theory with a higher mobility, the entire 

mobility obtained from microrheology which includes contributions from elastic, 

elastohydrodynamic and hindered stokes contributions were multiplied by 15. But if 

collective particle dynamics in shear flow gave rise to the increase in mobility their 

contribution to enhancing the mobility of elastic and elastohydrodynamic components 

might be different from that of the stokes drag component. Also, collective mobility 

enhancement effects will be stronger at larger volume fractions. Thus, determining 

appropriate particle scale mobility for particles under shear flow is crucial in developing 

the pairwise theory as a theoretical tool to quantitatively predict the nonlinear rheology of 

these materials under shear. A different kind of microrheology simulations where a 

tagged particle is held stationary as the suspension is sheared might be useful to compute 

the appropriate mobility. The force on the stationary tagged particle can be computed at 

different shear rates of the suspension around it to extract a particle-scale mobility.  
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SUPPLEMENTAL MATERIAL 7.A: NUMERICAL CONVERGENCE TESTS  

7.A.1 Iterations towards self consistently determining average elastic energy 

 

Figure 7.A.1 Convergence of stress iterations towards self consistently determining the 

average elastic energy for a volume fraction of 0.8 (higher mobility case). 

After every iteration the value of g(r) at r=2R and average elastic energy are 

updated based on maintaining the number of contacts to the equilibrium value and self 

consistency respectively. Their evolution is shown below. 

 

 

Figure 7.A.2 Convergence of average elastic energy (a) and boundary condition g(r) at 

r=2R for a volume fraction of 0.8 and using a higher mobility.  



 246 

7.A.2 Insensitivity to number of terms in perturbation of elastic force, number of 

elements in domain and starting average elastic energy 

 

 

Figure 7.A.3 Insensitivity check in terms of number of elements in domain, number of 

perturbation terms in elastic force and starting average elastic energy for a volume 

fraction 0.8 (higher mobility case).  

Note that using the equilibrium energy as the starting average elastic energy 

would require more iterations. Using too low or two high an energy (more than an order 

of magnitude than the equilibrium energy) will not converge to the right result. Using 

starting elastic energy as twice the average elastic energy at equilibrium was found to be 

optimal. 

In terms of number of elements 95000 elements in the domain was sufficient for 

volume fractions 0.8 and higher whereas 135000 elements were used for volume fraction 

0.75 to get converged results. This is because at lower volume fractions the range of 

compressions where particle pairs are found is smaller. 
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SUPPLEMENTAL MATERIAL 7.B: MESH AND SOLVER SETTING IN COMSOL  

 

Figure 7.B.1:   Mesh setting to generate 95000 elements. The subdomain 1 which is 

r>1.8R was modified with the size shown above for a tighter mesh.  

 

Solver: Direct (UMFPACK) linear system solver with automatic matrix symmetry 
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SUPPLEMENTAL MATERIAL 7.C: THEORY DATA TABLES 

Table 7.C.1 Theoretical predictions using mobility from microrheology for  =0.8 

s

    
    * 2

U E R  g(r = 2R)  

10
-8

 0.017404 0.003286 1.795 

10
-7

 0.01807 0.003407 1.785 

10
-6

 0.020172 0.00373 1.76 

10
-5

 0.02518 0.004738 1.736 

10
-4

 0.037555 0.012601 2.02 

 

Table 7.C.2 Theoretical predictions using higher mobility for  =0.75 

s

    
    * 2

U E R  g(r = 2R)  

10
-8

 0.000959 0.000887 2.73 

10
-7

 0.001063 0.000887 2.73 

10
-6

 0.001395 0.000887 2.73 

10
-5

 0.00233 0.000917 2.658 

10
-4

 0.005741 0.000965 2.55 

 

Table 7.C.3 Theoretical predictions using higher mobility for  =0.8 

s

    
    * 2

U E R  g(r = 2R)  

10
-8

 0.001769 0.002278 2.2085 

10
-7

 0.001914 0.002278 2.2072 

10
-6

 0.002362 0.002288 2.203 

10
-5

 0.003861 0.002288 2.196 

10
-4

 0.008307 0.002379 2.11 
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Table 7.C.4 Theoretical predictions using higher mobility for  =0.85 

s

    
    * 2

U E R  g(r = 2R)  

10
-8

 0.002737 0.003629 1.3 

10
-7

 0.002919 0.003629 1.3 

10
-6

 0.003483 0.003629 1.295 

10
-5

 0.005255 0.003666 1.3 

10
-4

 0.010517 0.003831 1.32 

 

Table 7.C.4 Theoretical predictions using higher mobility for  =0.9 

s

    
    * 2

U E R  g(r = 2R)  

10
-8

 0.004038 0.005847 0.99 

10
-7

 0.004247 0.005847 0.99 

10
-6

 0.004909 0.005847 0.99 

10
-5

 0.006941 0.005877 0.99 

10
-4

 0.012796 0.006048 1 
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Chapter 8: Concluding Remarks 

8.1 CONCLUSIONS 

This dissertation focused on the study of microstructure and rheology of soft 

particle glasses which are highly jammed suspensions of soft particles. Industrially, they 

are used as rheological additives in high-performance coatings, ceramic pastes, textured 

food and personal care products. Fundamentally, they serve as model systems to study 

the microstructure and dynamics of soft crowded systems in biology, such as tissues and 

intracellular cytoplasm, and geology, such as clays and slurries. Various aspects of the 

behavior of these glasses were investigated through theory, particle scale simulations and 

experiments. Their rheology was explained in terms of the constituent properties and the 

microstructural changes that occur during their deformation and flow. The different 

aspects investigated, the important findings and their impact are highlighted below. 

Steady shear rheology 

Particle scale simulations using a new micromechanical model including elastic 

and elastohydrodynamic particle contact interactions showed excellent quantitative 

agreement with experiments for both microgels and concentrated emulsions. This 

validated the micromechanical model and established its usefulness in describing and 

understanding different kinds of soft particle glasses. A constitutive equation that 

connects the constituent properties to the bulk steady shear rheology was established. The 

universality of the model was determined by the microstructure that developed during 

flow. Accumulation and depletion of particle density along the compression and 

extension axes respectively occurs during steady shear with an increased particle 

compression at high shear. This universal model is also useful in predicting hard to 

determine constituent properties like volume fraction or particle modulus from the 

macroscopic rheology which can be easily measured.  Thus, a tool was developed to 
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design materials using the right combination of solvent viscosity, particle concentration 

and modulus to exhibit the desired yield stress and steady shear viscosity.  

Oscillatory shear rheology 

The excellent quantitative agreement of macroscopic properties from particle 

simulations with experimental data further validated the micromechanical model. At 

small strain amplitudes the particles remain trapped in cages and at large amplitudes 

exceeding the yield strain the particles escape their cages. This transition is reflected in 

the appearance of a shear induced diffusion of constituent particles which is identified as 

the microscopic origin of yielding. Detailed study of the large amplitude oscillatory shear 

(LAOS) cycle established how this technique can be efficiently used to characterize soft 

particle glasses by capturing both their linear elastic and nonlinear flow properties.  

Stress relaxation on flow cessation 

The processing of soft particle glasses in many applications requires the material 

to be quenched to a solid state by flow cessation during which they develop internal 

stresses. Experiments using microgel suspensions with varying constituent properties 

showed that internal stress sensitively depends on the processing conditions and material 

properties. The larger the preshear stress, the smaller is the trapped internal stress. A 

universal scaling was developed between the internal stress, constituent properties and 

processing conditions. Simulations revealed the microscopic origin of the trapped internal 

stress to be residual flow induced angular distortion of microstructure. A two-step 

dynamics was identified for the relaxation on flow cessation. The first step corresponds to 

rapid initial stress decay on flow cessation through ballistic particle motion which 

depends on the preshear flow conditions. The second step corresponds to a slow long 

term relaxation of the trapped internal stress through local facet rearrangements. The rate 

of this long term relaxation was found to be independent of the preshear flow conditions.   
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Active Microrheology 

Microrheological techniques offer many advantages over conventional rheometry. 

Soft particle glasses are athermal and Brownian forces are insufficient to produce a 

detectable response, thus active methods are necessary to characterize them. The 

microstructural rationale behind identifying yielding and flow using microrheology was 

determined based on the probe motion. A threshold force existed, beyond which the 

probe particle escaped its cage. A universal force-velocity curve for the probe motion for 

different solvent viscosities, particle modulus and concentration was developed. An 

analysis was established to use information from microrheology to quantitatively predict 

bulk rheological properties.   

Pairwise theory to determine the static microstructure and elastic properties  

 A new method was developed to predict the static short ranged pair distribution 

function and mechanical properties of soft particle glasses. The theory was validated with 

comparison to particle scale simulations and experiments. The computational time 

required for the theory was much smaller than full particle scale simulations. Analytical 

models of the pair distribution function were developed using perturbation methods.  

Pairwise theory to determine the sheared microstructure and flow properties 

 A new method was developed to predict the short range pair distribution function 

and flow curves of sheared soft particle glasses. The computational time for the theory 

was much smaller than full particle simulations. The predicted microstructure displays 

accumulation and depletion of pair density in the compressive and extensive quadrants 

similar to that observed in particle scale simulations. The pairwise theory can be used to 

quantitatively predict the yield stress and shear thinning when appropriate particle scale 

mobility is used. 

 



 253 

8.2 SUGGESTED FUTURE WORK 

The investigations performed in this dissertation and a review of relevant 

literature gave rise to many other interesting and important questions that are still open 

and the following future work is suggested based on it.  

Effect of wall surfaces in microstructure and rheology of soft particle glasses 

 Soft particle glasses are known to slip when sheared with smooth surfaces 

[Meeker et al. (2004b)] and the rheology and flow heterogeneity is also known to be 

affected by the wall-particle interactions [Seth et al. (2012)]. Slip has a significant impact 

on material processing including introduction of surface defects and fracture during 

extrusion [Piau and Agassant (1996)] as well as increased mass flow rates in pumping 

and transportation due to plug flow before yielding [Lu and Zhang (2005)]. Rheology of 

soft particle glasses with walls of varying smoothness and chemical nature can be 

investigated through particle simulations. Microscopically the diffusivity of particles near 

these walls can be determined to explore their connection with the surface effects 

observed macroscopically. This will allow design of fluids with required slip 

characteristics and the study of modified surface interactions will help modify slip 

characteristics of existing fluids by just modifying the surfaces with which they interact. 

Flow heterogeneities are observed when soft particle glasses flow on smooth or 

chemically modified surfaces. Flow induced segregation has been observed in 

multicomponent mixtures like blood and the effect of particle stiffness in confined flow 

of dilute soft particle suspensions has been recently investigated [Kumar and Graham 

(2012)]. It would be both interesting and useful to determine the surface effect in 

microstructure and rheology of soft particle glasses with heterogeneity in constituent 

particle size and/or softness. 
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Determination of appropriate particle mobility to be used in pairwise theory for sheared 

soft particle glasses 

Intuitively, the mobility of a particle in sheared suspensions where all its 

neighbors are also sheared and want to move is larger than the particle mobility computed 

from microrheology where a single particle moves through a jammed suspension of 

particles. In Chapter 7, it was established that the determination of this higher mobility is 

crucial in developing a theoretical tool to quantitatively predict the nonlinear rheology of 

these materials under shear. A different kind of microrheology simulations where a 

tagged particle is held stationary as the suspension is sheared might be useful to compute 

the appropriate mobility. The force on the stationary tagged particle can be computed at 

different shear rates of the suspension around it to extract particle scale mobility.  

Effect of heterogeneity in size of constituent particles  

 The effect of polydispersity in constituent particle size on the elastic properties of 

soft particle glasses has already been investigated by [Seth et al. (2006)]. No significant 

effect was observed in the low frequency storage modulus and osmotic pressure for up to 

20% polydispersity (Gaussian standard deviation around average value) in particle radius. 

[Foudazi et al. (2012)] have recently compared the results presented in chapter 2 with 

experiments on highly concentrated emulsions with a bimodal particle size distribution 

and observed good agreement for size ratio upto 3 and deviations at larger size ratios of 

6. Asymmetric caging at equilibrium and new solid-fluid transitions have been observed 

for soft glassy mixtures of large and small star polymers [Mayer et al. (2008)]. 

Simulations of steady and/or oscillatory shear using the current framework with packings 

of particles with a bimodal size distribution of varying size ratios would be useful to 

characterize the microstructure and rheology of soft particle glasses with large size 

heterogeneities.   
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Effect of heterogeneity in softness of constituent particles 

Mixtures of hard and soft particles are used in many different applications. Latex 

blends are used in paints where the hard particles provide the required stability while the 

soft particles deform and fill the space to give a uniform finish [Eckersley and Helmer 

(1997)]. It has been shown that addition of hard nanoparticles to polymer glasses can be 

used to tune the fragility of the glass [Riggleman et al. (2007)]. Simulations of soft 

particle glasses with bimodal distribution of particle softness with varying softness ratios 

would be useful to characterize the rheology of such latex blends and other composite 

materials. 

Effect of added attractive interactions between particles  

Microgels are used as rheology modifiers in many applications and they can be 

used in conjunction with other additives like in the case of coatings [Boggs et al. (1996); 

Wolfe (1992)] or the surface chemistry of the microgel particles can be modified to suit 

the particular application as in the case of biopolymers used in drug delivery. These 

modifications can result in added attractive interactions and such interactions are known 

to have an effect on the behavior of other glassy systems such as hard sphere glasses 

[Kaufman and Weitz (2006); Pham et al. (2002); Pham et al. (2008)] and star polymers 

[Lo Verso et al. (2006)]. The particle-particle elastic contact interactions used in all the 

investigations in this dissertation were based on purely repulsive interactions and study of 

the microstructure and rheology of soft particle glasses with added tunable attractive 

interactions of varying magnitude would be both interesting and useful.  
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Effect of probe particle size, softness, and other directions in active microrheology  

In Chapter 5 active microrheology was studied by pulling a random tagged 

particle in the suspension and tracking its response. It was also shown that 

experimentally, for soft jammed glasses, active magnetic methods are most suitable. On 

the simulations side, it would be useful and interesting to study the effect of probe size 

and particle softness. In the case of hard sphere suspensions it has been shown that the 

size of the probe particle can play a role in the measurements made [Meyer et al. (2006); 

Squires and Brady (2005)]. In soft particle glasses the number of contacts of the probe 

particle can change with the size of the probe and further investigations in this direction 

are required to determine the effect precisely. Similarly simulations of hard probe 

particles pulled through soft suspensions will allow determination of the probe particle 

softness effect. On the experiments side, it might be interesting to synthesize core-shell 

probe particles with a magnetic core and a soft shell to maintain the soft contact 

interactions in these glasses.  

Other interesting future directions in active microrheology include using 

oscillatory pulling forces [Ziemann et al. (1994)] to determine if the oscillatory rheology 

of these glasses could be predicted using microrheology and the use of force pulses 

[Bausch et al. (1999); Ziemann et al. (1994)] to investigate the stress relaxation in these 

materials. 
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