
Copyright
by

Abhik Kumar Das
2013



�e Dissertation Commi�ee for Abhik Kumar Das
certi�es that this is the approved version of the following dissertation:

An Information�eoretic Approach to
Structured High-Dimensional Problems

Commi�ee:

Sriram Vishwanath, Supervisor

Sujay Sanghavi

Alex Dimakis

Felipe Voloch

Syed Ali Jafar



An Information�eoretic Approach to
Structured High-Dimensional Problems

by

Abhik Kumar Das, B.Tech., M.S.E.

DISSERTATION

Presented to the Faculty of the Graduate School of

�e University of Texas at Austin

in Partial Ful�llment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

December 2013



To Ma, Baba, and my sister Ankita.



Acknowledgments

I consider myself very fortunate to have a wonderful supervisor like Sriram

Vishwanath, and I am thankful to him for his guidance, support and encourage-

ment during my time as a graduate student at UT Austin. Sriram has been an

excellent mentor and role-model; he has helped me out in numerous aspects, like

help with formulating the research problems and having one-on-one discussions

about ways to tackle them, his constructive criticism, his tips for improving my

presentation skills and technical writing style. I am thankful to Sujay Sanghavi,

with whom I have had a fruitful collaboration on some of my research problems,

and am indebted to him for his valuable career-related advice. I am grateful to

Syed Jafar, Alex Dimakis and Felipe Voloch for agreeing to be a part of my disser-

tation commi�ee, and for their comments and suggestions related to improving

di�erent aspects of this dissertation. I am also glad to have interacted with Sanjay

Shakko�ai, who has been my favorite teacher during my time at UT Austin.

My graduate student life would be incomplete without the excellent in-

teractions that I have had with fellow graduate students at UT Austin. Among

the senior students in my research group, Rajiv Soundararajan, Jubin Jose, Shree-

shankar Bodas, and Shweta Agrawal, were immensely helpful during my initial

years as a graduate student with their valuable advice on research mentality as

well as the personal front. Kumar Appaiah, Praneeth Netrapalli, Sharayu Moharir

v



and Siddhartha Banerjee have been great friends who have helped me out through-

out my time in graduate school. I treasure the conversations I’ve had with fellow

LINC and WNCG group members, Deepjyoti Deka, Youngchun Kim, Avhishek

Cha�erjee, Ankit Rawat, Ioannis Mitliagkas, Hongbo Si, Aneesh Reddy, Anish

Mi�al, Srinadh Bhojanapalli, Sarabjot Singh, Harpreet Dhillon, Ethan Elenberg,

Subhashini Krishnasamy, Abhishek Gupta, Joyce Ho, Avik Ray and Yongseok Yoo.

I also thank Janet Preuss and Karen Li�le for having meticulously taken care of

my appointments and reimbursements through my time as a PhD student.

I have had an awesome social life at Austin which kept me in great spirits

during the course of my studies at UT Austin. I thank my friends, Shatam Agrawal,

Pradeep Dhananjay, Aswin Balasubramanian, Guneet Kaur, Harsh Shah, Kiran Di-

vakar, Aditya Aravind, Tanvi Joshi and Kriti Kapoor for having put up with me – I

won’t never forget the great times we spent pulling all-nighters, watching movies

and going on road trips. I am also thankful to my friends from my undergraduate

days, Mudit Jain, Vivek Tiwari, Siddhartha Patowary, Sidhant Misra, Man Prakash

Gupta and Pratap, who have been a great source of warmth and happiness, and

have given me encouragement and their best wishes through all these years.

My parents and my sister Ankita have always stood by me and given their

un�inching support to every aspect and endeavor of my life. I have no words to

express my gratitude and love for them, it is a fact that this dissertation would

not have seen the light of day without their blessings and best wishes. I am espe-

cially grateful to my brother-in-law Samarjit for giving me motivation. I am also

thankful to my grandparents and maternal uncle for being my well-wishers.

vi



An Information�eoretic Approach to
Structured High-Dimensional Problems

Abhik Kumar Das, Ph.D.
�e University of Texas at Austin, 2013

Supervisor: Sriram Vishwanath

A majority of the data transmi�ed and processed today has an inherent

structured high-dimensional nature, either because of the process of encoding us-

ing high-dimensional codebooks for providing a systematic structure, or depen-

dency of the data on a large number of agents or variables. As a result, many prob-

lem setups associated with transmission and processing of data have a structured

high-dimensional aspect to them. �is dissertation takes a look at two such prob-

lems, namely, communication over networks using network coding, and learning

the structure of graphical representations like Markov networks using observed

data, from an information-theoretic perspective. Such an approach yields intuition

about good coding architectures as well as the limitations imposed by the high-

dimensional framework. �e dissertation studies the problem of network coding

for networks having multiple transmission sessions, i.e., multiple users communi-

cating with each other at the same time. �e connection between such networks

and the information-theoretic interference channel is examined, and the concept

of interference alignment, derived from interference channel literature, is cou-

pled with linear network coding to develop novel coding schemes o�ering good
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guarantees on achievable throughput. In particular, two setups are analyzed – the

�rst where each user requires data from only one user (multiple unicasts), and the

second where each user requires data from potentially multiple users (multiple

multicasts). It is demonstrated that one can achieve a rate equalling a signi�cant

fraction of the maximal rate for each transmission session, provided certain con-

straints on the network topology are satis�ed. �e dissertation also analyzes the

problem of learning the structure of Markov networks from observed samples –

the learning problem is interpreted as a channel coding problem and its achiev-

ability and converse aspects are examined. A rate-distortion theoretic approach

is taken for the converse aspect, and information-theoretic lower bounds on the

number of samples, required for any algorithm to learn the Markov graph up to

a pre-speci�ed edit distance, are derived for ensembles of discrete and Gaussian

Markov networks based on degree-bounded graphs. �e problem of accurately

learning the structure of discrete Markov networks, based on power-law graphs

generated from the con�guration model, is also studied. �e e�ect of power-law

exponent value on the hardness of the learning problem is deduced from the con-

verse aspect – it is shown that discrete Markov networks on power-law graphs

with smaller exponent values require more number of samples to ensure accurate

recovery of their underlying graphs for any learning algorithm. For the achievabil-

ity aspect, an e�cient learning algorithm is designed for accurately reconstructing

the structure of Ising model based on power-law graphs from the con�guration

model; it is demonstrated that optimal number of samples su�ces for recovering

the exact graph under certain constraints on the Ising model potential values.
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Chapter 1

Introduction

�e recent decade has seen an explosion in the amount of data that needs

to be communicated and processed. With the advent of the internet and mobile

devices, understanding and designing ways of communicating and analyzing data

in an e�cient manner has gained signi�cant interest. At present, most of the data

typically possess a structured high-dimensional nature. For example, data is gen-

erally preprocessed and provided a regular structure (for protection against errors

and corruption) through the use of high-dimensional codebooks prior to trans-

mission across channels or networks. Likewise, data may be modeled as being

generated from the interactions among several variables or agents, thereby im-

parting a high-dimensional build. As such, it is important to consider this inherent

high-dimensional nature of data for the purpose of processing and analysis.

�e problem of communication over networks is a relevant one, as net-

works like cellular networks, WiFi and the internet have become a part and par-

cel of our daily lives. �e number of users involved in these networks tend to

be large; therefore, it is important to design coding schemes that allow users to

simultaneously share the network resources for data transmission. One of the

major challenges of this problem lies in ensuring that most users transmit data at
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rates as close as possible to the capacity values supported by the network. It is

known that for point-to-point channels and some instances of simple networks

one can bring the achievable transmission rates for coding schemes closer to ca-

pacity values if the codeword lengths are su�ciently long, i.e., the dimensionality

of coding schemes is large enough [1–3]. Also, the problem of designing cod-

ing schemes can be shown to reduce to the problem of �nding e�cient sphere

packings, also referred to as the sphere packing problem [1]. �erefore, designing

high-dimensional codebooks is analogous to �nding a solution to the sphere pack-

ing problem in the high-dimensional regime. �is observation motivates the treat-

ment of the task of designing codebooks for communication over networks as a

structured high-dimensional problem. �e goal for the case of multiple users com-

municating over networks is to design multiple high-dimensional sphere packings

(one packing per user) that are practical, e�cient and resolvable from each other,

so that the destinations for the users can recover the data meant for them.

As mentioned before, the observation of data may be modeled as the result

of interdependencies among a collection of variables or agents, with the inter-

dependencies either being absolute or probabilistic in nature. A succinct way of

describing the data or the process generating it is through the use of graph-based

representations, where the variables or agents become the nodes and the inter-

dependencies become the edges. For example, if the observed data is assumed to

be generated from probability distributions, Markov networks are the undirected

graph structures that encode the distribution as well as the conditional indepen-

dence relations among the variables [4] (see Figure 1.1). Likewise, human mu-
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Figure 1.1: Example of Markov network: la�ice Ising model

tations and diseases can be depicted by networks that show interactions among

genes or protein complexes. An important problem associated with this model-

ing scheme is learning the underlying graph structure from observed data. In the

context of Markov networks, this is also referred to as the problem of learning the

structure of Markov networks or graphical model selection – it crops up in a wide

variety of �elds, ranging from computer vision and image processing to biology

and statistical physics. Given the number of variables is large, the observed data

has a high-dimensional aspect to it; therefore, graphical model selection can be

interpreted as a structured high-dimensional problem. A major challenge of this

problem lies in deriving the necessary and su�cient conditions on the nature and

volume of observed data required for reconstructing the graph topology.

�us, the problems of communication over networks and learning graph

structure from data generated using graph-based representations, like Markov net-

works, are di�erent versions of the structured high-dimensional framework. �is

dissertation a�empts to address some of the challenges and issues in the context

3



of these problems using tools and techniques from information theory.

1.1 Motivation

�e signi�cance of communication over networks makes it a well-studied

and established area of research. �e noisy channel coding theorem, stated by

Shannon, characterizes the capacity of point-to-point channels with noise hav-

ing arbitrary probability distributions [1]. However, our understanding of coding

schemes that can achieve maximal throughput in networks with multiple users is

still limited. On the theoretical side, coding schemes that achieve network capacity

are known only for networks with one unicast session (one source and one desti-

nation) [5, 6], one source multicast session (one source and multiple destinations;

each destination requires data from the source), and one destination incast ses-

sion (multiple sources and one destination; the destination requires data from all

sources) [6, 7]. It is known that routing is su�cient to achieve the capacity in net-

works with single unicast session. For networks with one source multicast or one

destination incast session, a more sophisticated coding scheme called network cod-

ing, that involves joint encoding of incoming data packets at every intermediate

node, is required for achieving capacity. Nevertheless, the information-theoretic

study of these special cases give us intuition on the architectural properties of

optimal coding schemes for general instances of communication networks.

�is provides the motivation for information-theoretic study of the prob-

lem of communication over general networks, which is one of the focuses of this

dissertation. As mentioned before, optimal coding strategies based on network

4
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Sources Destinations

Figure 1.2: Communication network with multiple sessions.

coding have been designed for networks with either one source or one destina-

tion. We take a look at network setups with multiple sessions, i.e., multiple sources

and destinations communicating with each other, and employing network coding

as the coding scheme. An example of network with multiple sessions is illus-

trated in Figure 1.2, where destinations D1,D2,D3 needs messages from sources

S1, {S2,S4}, {S1,S3} respectively. In particular, we examine the performance and

limitations of network coding as well as characterize the achievable rates for net-

works with multiple unicasts (multiple sources and destinations with each source

communicating with a unique destination) or multicasts (multiple sources and des-

tinations with each source communicating with multiple destinations). An impor-

tant observation in this context is that the application of network coding in net-

works with multiple sessions makes it analogous, in structure, to an interference

channel (or its generalized version). As such, coding strategies for interference

channels, such as interference alignment, could potentially be coupled with net-
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work coding to provide throughput guarantees [8–11]. �e interplay of multiple

sessions in a general network setup can be very complicated with arbitrary cor-

relations among sessions, arising due to factors like presence of bo�leneck links

and sharing of network paths. In this dissertation, we investigate the in�uence of

network structure and interaction of multiple sessions on the achievable rates, as

well as the feasibility and limitations of (linear) network coding approach.

Markov networks provide a powerful framework for representing proba-

bility distributions in multi-dimensional space succinctly. �e problem of learning

Markov networks is an important task, and it involves estimating the structure of

the underlying undirected graph as well as the probability distribution parameters.

�ere are two aspects to the problem of learning Markov networks. One aspect

is concerned with learning algorithms that can accurately estimate the structure

and parameters of a Markov network using the observed samples generated by its

probability distribution. We refer to this as the achievability aspect, since it has the

same spirit as the achievability aspect of channel coding theorems. �e other as-

pect is concerned with obtaining information-theoretic limits of the learning prob-

lem, i.e., necessary conditions on the nature and number of observed samples that

characterizes the Markov network. We refer to this as the converse aspect, since

it is analogous to the converse aspect of channel coding theorems. Understand-

ing both these aspects of the learning problem is useful in general – the converse

aspect provides a description of se�ings where recovery of the Markov network

structure is impossible, regardless of the learning algorithm or cleverness of its

design, while the achievability aspect focuses on designing practical learning al-
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gorithms as well as algorithmic issues such as computational complexity.

�is provides the motivation for studying these aspects for the problem of

learning Markov graphs from an information-theoretic perspective, which is the

other focus of this dissertation. �ere has been a decent amount of work in the

context of the converse aspect of the learning problem, where bounds on sample

complexity have been derived for exact recovery of speci�c families of Markov

graphs. We take a look at this from a rate-distortion theoretic perspective – in

place of exact recovery, we permit some amount of distortion in the estimate of

the Markov graph structure, and examine the potential reduction in the bounds

(this paradigm is analogous to rate-distortion theory in information theory [?]).

We also place emphasis on the formulation of strong converse type results, similar

to those in channel coding theorems. In other words, a typical result should state

that unless the number of available samples exceeds some threshold, the probabil-

ity of error in learning the Markov network structure goes to one as the problem

size increases. Also, a graphical structure that o�en occurs in natural situations

is the power-law graph, i.e., a graph whose degree sequence exhibits a power-law

or Pareto distribution. �e standard property of a power-law graph is as follows –

given α > 1, the number of nodes with degree k in a power-law graph with expo-

nent α is roughly proportional to k−α . Examples of instances where power-law be-

havior has been observed include social networks [12], protein complex networks

[13], gene networks [14] and portions of the internet [15]. As such, many Markov

networks derived from natural situations or setups are typically based on power-

law graphs. A direction that we explore is the connection between the power-law
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exponent α and hardness of the problem of learning Markov graphs, and exami-

nation of both the converse and achievability aspects. One of the main hurdles in

the problem of designing algorithms for learning power-law graph-based Markov

networks is the possibility of large variation in the node degrees; for example, the

minimum degree could be constant, while the maximum degree could scale with

the number of nodes. We consider the family of power-law graphs generated by

the deterministic con�guration model [16], and make use of its structural prop-

erties for designing the learning algorithm for exact recovery of Markov network

topology. In this dissertation, we investigate the relationship between the hard-

ness of learning Markov networks and their structural properties, providing some

partial answers for speci�c ensembles of Markov networks and graphs.

1.2 Main Contributions

We now provide an overview of the main contributions of the dissertation.

We analyze the problem of (linear) network coding for setups with multiple ses-

sions. We demonstrate the relationship between networks with multiple sessions

and the information-theoretic interference channel, and show that linear network

coding coupled with interference alignment techniques can achieve a rate equal

or close to 1
2 per source for a broad class of networks having three unicast ses-

sions with mincuts of one [8, 9, 17]. We extend this idea to networks with multiple

multicasts, focus on designing practical coding schemes and examine the impact

of network topology on the complexity of the alignment scheme [18]. We show

that it is possible to achieve a rate of 1
L+d+1 per source under certain network con-

8



straints, using linear network coding coupled with interference alignment, where

each destination gets data from L sources, and d depends only on the network.

We consider the problem of deriving information-theoretic limits on the

number of samples and probability of error for the problem of learning the graph

structure of Markov networks, where we permit distortion in terms of edit dis-

tance in the graph estimate [19]. We provide strong converse results for both �-

nite alphabet-based and Gaussian Markov networks based on graphs coming from

the ensemble of degree-bounded graphs. We also study the problem of learning

the structure of discrete Markov networks, based on power-law graphs generated

using the con�guration model. We examine the e�ect of power-law exponent on

the hardness of the learning problem and show that it is inherently di�cult to

learn Markov graphs with smaller power-law exponents, in terms of sample com-

plexity. Furthermore, we design an e�cient learning algorithm that accurately

reconstructs the graph structure of power-law graph-based Ising model.

1.3 Dissertation Outline

�e rest of the dissertation is organized as follows. We provide background

on prior literature related to the topics of the dissertation in Chapter 2. We present

a detailed description of the work completed in the context of (linear) network cod-

ing for multiple sessions and learning the underlying graph structure of Markov

networks in Chapters 3 and 4 respectively. Note that the proofs of most of the

lemmas and theorems mentioned in these chapters are available in the appendices.

Finally, we conclude the dissertation by summarizing it in Chapter 5.
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Chapter 2

Background

We present a detailed account of prior literature/background related to the

topics mentioned in the dissertation. To be precise, we review the research work

that has been done in the context of the problem of communication over networks

utilizing network coding, and the problem of learning graph structures using ob-

served data from graphical representations, especially Markov networks.

2.1 Network Communication

�e problem of communication over networks is a established and rele-

vant area of research. One aspect of communication networks that has been well-

studied is characterizing its capacity region and designing coding schemes that

achieve good throughput. �ere has been a good deal of progress on this front –

channel coding theorems and capacity regions have been derived for special cases

of network topologies such as broadcast channels [2, 20], multiple access channels

[21, 22], relay channels [23, 24] and interference channels [25, 26]. It is also known

that the capacity between sources and their destinations in a network is dependent

on the minimum cut set (its cardinality is referred to as mincut) between them with

respect to the rest of the network [1]. However, ascertaining the capacity region

10
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Figure 2.1: Bene�ts of using network coding over routing.

and achievable throughput for general networks is still an open problem.

�e traditional way of transmi�ing data across networks has been routing,

that employs directed paths for unicast sessions and directed trees for multicast

sessions. When the data is routed over a unicast path, each intermediate node for-

wards the packets it receives to its outgoing links. In a multicast session over a tree,

the intermediate nodes may duplicate packets and forward them to several outgo-

ing links. It has been shown that routing achieves capacity for the case of a single

unicast connection in the network, but proves to be sub-optimal for multicast con-

nection(s). �e concept of network coding, introduced in [6, 27], generalizes the

routing approach by allowing the intermediate nodes to generate new packets by

combining or jointly encoding the data packets they receive. �is methodology

o�ers several important bene�ts such as increase in the achievable throughput

and improvement in the reliability and robustness of the network. An example

showing the advantage of network coding over routing is the bu�er�y network,
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depicted in Fig 2.1 [28]. �e network has two sources, S1 and S2, and two destina-

tions, D1 and D2. We assume that each directed edge of the network can transmit

one packet per time-slot or channel use. With routing approach, the packets are

transmi�ed over two trees – the �rst tree transmits the packets generated by S1,

and the second tree transmits packets generated by S2. However, the network

does not contain two edge-disjoint trees with S1 and S2 as the roots. Hence, mul-

ticast sessions involving S1 and S2 cannot be implemented through routing. For

example, the trees depicted in Figures 2.1(b) and 2.1(c) share the bo�leneck edge

(V1,V2). However, this con�ict is resolvable using the network coding approach,

as shown in Figure 2.1(d). To demonstrate this, suppose packets a and b (in bits)

are transmi�ed by S1 and S2 respectively. �ese packets are sent to nodeV1 which

generates a new packet a ⊕ b (bitwise-XOR) which is then sent to D1 and D2. �is

allows the each of the destinations to reconstruct both packets a and b.

Linear network coding is a special case of network coding, where packets

modeled as elements of a �nite �eld and they are encoded at the intermediate nodes

of a network using arithmetic operations of the �nite �eld to form linear combina-

tions. As a result, each destination receives packets that are a linear combination

of the packets transmi�ed by the sources and it recovers the desired packets by

solving a system of linear equations over the �nite �eld. In other words, the use of

linear network coding provides us a linear transfer function representation of the

network [29]. �is technique has been shown to achieve the maximum throughput

for network setups with one unicast session or multicast/incast session involving

one source/destination, where the coe�cients for linear combinations can be gen-
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erated using a deterministic algorithm [30] or chosen uniformly at random from

the �nite �eld [31]. Despite this, linear network coding has been shown to be inad-

equate in characterizing the limits of inter-session linear network coding [32–35],

which includes the practical cases of multiple unicast and multicast sessions.

�ere is evidence that linear network coding signi�cantly outperforms rout-

ing in terms of achievable throughput for networks with multiple sessions [36].

However, there exist only approximation methods for determining the achievable

rates in such se�ings [37], and sub-optimal heuristic methods for constructing

linear network codes. For example, an approach, based on coding pairs of �ows

using poison-antidote bu�er�y structures and packing networks using these but-

ter�ies to improve the throughput, is examined in [38]. �e design of sub-optimal

linear codes for networks with multiple unicasts, based on linear and integer pro-

gram methods, is analyzed in [39]. While [40] develops online and o�-line back

pressure algorithms for �nding approximately throughput-optimal network codes

within the class of codes restricted to XOR coding between pairs of �ows, [41]

describes a tiling approach to design codes using dynamic programming for net-

works with multiple unicasts on a triangular la�ice. �e feasible and infeasible

connectivity levels for networks with unicasts are identi�ed in [42], and network

code assignments are provided for the feasible ones. �e problem of determin-

ing the feasibility and construction of linear network codes for two interacting

multicast sessions is analyzed in [43, 44] using a graph-theoretic approach. An

important point to note is that most of these approaches are applicable to speci�c

network topologies and they do not give general throughput guarantees.
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�e simplest, yet non-trivial, example of a network with multiple sessions

operating at the same time is the interference channel. �e concept of interference

alignment, developed in [10], allows one to achieve the optimal degrees of free-

dom. �e basic idea behind interference alignment is to encode the source signals

into appropriately designed subspaces such that the subspace containing the de-

sired signals and the subspaces containing the interference signals don’t overlap

at the destinations, thereby allowing the destinations to recover their desired sig-

nals provided the signal-to-noise ratio (SNR) is large. Interestingly, interference

alignment has been found to be versatile and has been applied to a wide variety

of scenarios, including compound broadcast channels [45], cellular networks [46],

relay networks [47], index coding [48, 49], and distributed storage [50–52].

2.2 Learning Markov Networks

Markov networks, also known as (undirected) graphical models, provide

an e�cient means of compactly encoding probability distributions as undirected

graphs in the high-dimensional regime. �e random variables in the probability

distribution get mapped to nodes of the undirected graph, while the interrelation-

ships (or the lack of thereof) among them get mapped to its edges. As such, Markov

networks are widely used for modeling and designing applications in a multitude

of se�ings, for example, social network modeling [53, 54], image processing and

computer vision [55, 56] and computational biology [57, 58]. However, with the in-

creasing use of this framework in complex and less well-understood domains, the

problem of selecting the most suitable or accurate Markov network from among
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Figure 2.2: Learning Markov networks from given samples.

the exponentially large space of possible network structures has gained a great

deal of importance. �us, the problem of recovering Markov networks from ob-

served samples generated by their probability distributions, also referred to as the

graphical model selection problem, is an active area of study and research.

A pictorial view of the problem of learning Markov networks is depicted

in Figure 2.2, where a Markov network based on six random variables needs to

be learnt from its sample values. As mentioned earlier, this learning problem has

two aspects to it – achievability and converse aspects. While the converse aspect

is bene�cial in the sense that it provides us lower bounds on the sample com-

plexity related to learning, the achievability aspect deals with design of learning

algorithms that are e�cient and have low probability of error using as minimal

samples as possible. �ere is a signi�cant body of literature related to both these

aspects, especially for the specialized cases of Ising model [59–63], and Gaussian

Markov networks [64–66]. �e graph ensembles that have been considered include

degree-bounded graphs [59–61, 64, 66], graphs with limited number of edges [60]
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and random graphs such as Erdös-Rényi and small-world graphs [61, 66].

A common theme in deriving information-theoretic limits on the sample

complexity is to treat the graphical model selection problem as a noisy chan-

nel coding problem and make use of Fano’s inequality, that generally gives weak

bounds. �e only known strong converse results are mentioned in [61] and [67],

for the cases of exact reconstruction of Ising model based on Erdös-Rényi graphs

and Gaussian Markov networks based on degree-bounded graphs respectively.

[68] derives lower bounds on the sample complexity of learning the Markov graph

based on two ensembles of power-law graphs, the con�guration model [16] and

the Chung-Lu model [69], both having power-law exponent greater than 3.

�e learning algorithms designed for recovering Markov networks can

broadly be classi�ed into three classes – search-based, optimization-based, and

greedy techniques. �e search-based algorithms �nd the smallest set of nodes

through exhaustive search, conditioned on which a node is independent of other

nodes [59, 61, 66]. �e optimization-based algorithms frame the learning problem

as a convex optimization problem, but require a strong incoherence assumption

[65]. �e algorithms that use greedy methods discover the neighborhoods of nodes

by minimizing some function of the random variables, like conditional entropy, in

a greedy fashion [62, 63]. In the context of power-law graphs, [68] examines the

performance of these learning algorithms and observes that the sample complexity

scales poorly with the number of nodes if the variation in the degrees of nodes is

large; it concludes by stating that the task of deriving e�cient learning algorithms

for power-law structured Markov networks is an outstanding open problem.
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Chapter 3

Network Coding for Multiple Sessions

�e presence of multiple sessions forms a signi�cant fraction of tra�c in

most wired and wireless networks today. �erefore, coding schemes that can bet-

ter utilize network resources to serve multiple connections have many potential

applications. In this chapter, we consider the problem of network coding for mul-

tiple sessions over networks representable by directed acyclic graphs. In particu-

lar, we make use of the linear network coding structure for designing codebooks.

As mentioned before, the use of linear network coding results in a linear trans-

fer function representation for the network in terms of its transmission streams;

these streams can “mix” with each other and generate “interference” at the desti-

nations [70, 71], that can signi�cantly impact the achievable rates. It is known that

the throughput achieved using linear network coding between any set of sources

and destinations is upper bounded by the graphical mincut between them; this

is also referred to as the generalized mincut-max-�ow theorem [29]. A su�cient

but somewhat restrictive condition for interference-free transmission in networks

employing linear network coding is derived in [70], but it is generally di�cult to

design coding schemes satisfying the condition for multiple sessions case.

We analyze the problem of designing codebooks from an interference align-
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ment perspective and adopt a strategy that couples the concepts of linear network

coding (over multiple time-slots) to that of interference alignment, through the use

of precoding matrices (or vectors) – we refer to this coding scheme as precoding-

based network alignment (PBNA), along the lines of [72, 73]. Note that a similar

approach is adopted in the context of analyzing multiple groupcasts for achieving

the optimal transmission rates associated with index coding problem [74, 75].

MainResults: We observe that a network with multiple sessions, employ-

ing linear network coding as the coding scheme, has a structure similar to that of

the interference channel; this allows us to design a PBNA scheme that achieves a

rate of 1
2 per session under certain structural constraints for networks having three

unicast sessions with mincut of one per session. We also introduce the concept of

interference graph for networks having multiple multicast sessions. We use the in-

terference graph to design precoding matrices – we show that for networks with

K sources and mincuts of either zero or one for any source-destination pair, each

source can achieve a rate of 1
L+1 using a PBNA scheme over (L + 1) time-slots if

the interference graph is acyclic, where every destination is interested in messages

from L (L < K ) sources and some structural constraints are satis�ed. We obtain a

weaker achievability result if the interference graph has cycles – we show that a

rate of 1
L+d+1 per source can be achieved with the alignment scheme over (L+d +1)

transmissions under certain structural constraints, where d depends only on the

topology of interference graph and satis�es 0 ≤ d < K −L. We proceed to develop

an algorithm that gives the optimal (or smallest feasible) value of d for a given

interference graph, and therefore, reasonable rates for the PBNA scheme.
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3.1 System Model and Preliminaries

We consider a communication network represented by a directed acyclic

graph G = (V ,E), where V is the set of nodes and E is the set of directed links.

We assume that each link represents a noiseless channel and transmissions across

di�erent links do not interfere with each other. �ere are K sources S1,S2, . . . ,SK ,

and M destinations D1,D2, . . . ,DM , among the nodes inV . We have multiple mul-

ticast sessions in G, i.e., Di is interested in messages from some subset of sources,

say Ai ⊂ {S1,S2, . . . ,SK }. For the sake of simplicity, we let |Ai | = L for all i . �en

the special case of multiple unicasts satis�es K = M , L = 1, andAi = {Si } for all i .

We assume that the messages generated by di�erent sources are probabilistically

independent of each other and transmi�ed in form of symbols from Fq – the �nite

�eld with q elements, where q is a prime number or its power. We also restrict the

capacities of links in E to one symbol (from Fq) per channel use or time-slot.

We employ linear network coding for communication between the sources

and destinations in G. In other words, every node generates and transmits linear

combinations of its received packets, where the coe�cients for linear combination

come from Fq . �ese coe�cients can be interpreted as variables, say ξ1,ξ2, . . . ,ξs

(s is determined by G), drawing values from Fq . �en a linear network coding

scheme refers to choosing a suitable assignment for ξ := [ξ1 ξ2 · · · ξs] ∈ Fsq .

As a starting point for tackling the problem of designing coding schemes

for multiple sessions, we assume that the mincut between Sj and Di is one if Sj ∈
Ai , and at most one for remaining choices of i, j – this ensures thatDi is connected

to all sources inAi . We also assume that the mincut between all sources inAi and
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Di with respect toG is one, so that Di can receive at most one symbol per time-slot

from them. If xi ∈ Fp is the symbol transmi�ed by Si , the following relation holds:

yi =
K∑
j=1

mij (ξ )xj , i = 1,2, . . . ,M , (3.1)

where yi is the symbol received by Di , andmij (ξ ) is the transfer function between

Sj and Di . Note that yi and mij (ξ ) are multivariate polynomials from the poly-

nomial ring Fp[ξ ] for all i, j. �e transfer functions are determined by the ad-

jacency matrix of the line graph of G; a description about their generation and

structure is given in [29]. Since Di is only interested in messages from sources

in Ai , the presence of non-zero transfer functions mij (ξ ), Sj < Ai , acts as “inter-

ference” to the decoding processes at the destinations. Note that mij (ξ ) . 0 for

Sj ∈ Ai , since the mincut between each source inAi and Di is one. Also, the min-

cut between Sj and Di being zero for some i, j implies that mij (ξ ) ≡ 0. We de�ne

Bi = {Sj < Ai : mij (ξ ) . 0} – the set of interfering sources for Di . We also assume

Bi , ∅ – this ensures the presence of interference at each of the destinations.

�e generalized max-�ow-mincut theorem states that multicast sessions

can hope to achieve maximal throughout if there exists an assignment of ξ , say

ξ
0
∈ Fsp , such that mij (ξ 0

) = 0 for Sj ∈ Bi and mij (ξ 0
) , 0 for Sj ∈ Ai . However,

there exists a broad class of networks for which such an assignment of ξ does not

exist, thereby making multiple sessions with maximal data rates infeasible.
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3.1.1 Applying Interference Alignment

Note that the relations in (3.1) have a form similar to that of the information-

theoretic interference channel, where xj with Sj ∈ Bi , play the role of interfering

signals and the transfer functions play the role of channel gains. �is observa-

tion motivates the use of interference alignment techniques for designing cod-

ing schemes. However, there are two major points of di�erence between the two

se�ings. �e �rst point is that transmi�ed messages come from a �nite �eld in

networks, whereas they are real or complex-valued in interference channels. �e

second point is that the channel gains in interference channel are generated from

some probability distribution, whereas the channel gains are transfer functions in

the network setup, that are deterministic and in�uenced by its structure.

As mentioned before, we focus on the application of interference align-

ment schemes for designing codebooks; for simplicity, we restrict ourselves to

codebooks that ensure the sources in G transmit at equal rates. We consider n

successive time-slots and de�ne ξ (k ) as the assignment of ξ for the kth time-slot,

k = 1,2, . . . ,n. Given a,b,n such that a ≤ b and n ≥ La + b, we de�ne zi ∈ Fa×1
q as

the message vector of Si , and consider a n × a precoding matrix Vi that encodes zi

inton symbols. �enDi receives an× 1 vector yi , satisfying the following relation:

yi =
K∑
j=1

MijVjzj , i = 1,2, . . . ,M . (3.2)

Note thatMij is an×n diagonal matrix withmij (ξ
(k ) ) as its (k ,k )th entry. We de�ne

δ as the vector of variables in ξ (1),ξ (2), . . . ,ξ (n) and those used in the precoding
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matrices. We also de�ne the following vector spaces over polynomial ring Fq[δ ]:

Ui = span([MijVj : Sj ∈ Ai]),

Wi = span([MijVj : Sj ∈ Bi]),

for i = 1,2, . . . ,M , where span(E) denotes the vector space generated by the col-

umn vectors of some matrix E. �en the alignment approach seeks to design pre-

coding matrices that satisfy the following conditions for some assignment of δ :

dim(Ui ) = La, dim(Wi ) ≤ b, dim(Ui ∩Wi ) = 0, (3.3)

for i = 1,2, . . . ,M , where dim(U ) denotes the dimension number of vector space

U . �e constraint on the dimension ofWi maps the interference vectors to a single

subspace at each destination. �e constraint on the dimension ofUi ∩Wi guaran-

tees that the subspace spanned by the interference vectors is linearly independent

of the subspace spanned by the desired vectors; this along with the constraint on

the dimension ofUi permits error-free recovery of desired messages at the desti-

nations. �erefore, Si can transmit a symbols in n successive time-slots, thereby

achieving a rate of a
n – this is what we refer to as the PBNA coding scheme.

Illustrative Example: We present a network example (see Figure 3.1) that

highlights the bene�t of using PBNA scheme – note that this is motivated by an

analogous example examined in the context of index coding for multiple group-

casts in [74]. �ere are K = 4 sources and M = 3 destinations in the network

such that A1 = {S1,S2}, A2 = {S1,S3}, A3 = {S2,S4} (i.e., L = 2). Also, the min-

cut between each source and destination is one, so that the rate of each source is
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Figure 3.1: Network example using PBNA scheme.
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upper-bounded by 1
2 . Note that the presence of the bo�leneck link (V ,V ′) allows

only one source to transmit per time-slot for the routing approach, and therefore,

a rate of 1
4 per source can be achieved via time-sharing. It can also be shown that

the linear network coding cannot achieve a rate of 1
2 per source. However, the use

of PBNA scheme enables each source to transmit one message in three time-slots,

thereby achieving a rate of 1
3 per source – this is depicted in Figure 3.1, where lin-

ear network coding is performed over �nite �eld F3 = {0,1,2}, and zi ∈ F3 is the

scalar message for Si . �en Di receives yi ∈ F3
3 across three time-slots, given by

y1 = [1 1 2]tz1 + [1 2 1]tz2 + [1 1 1]t (z3 + z4),

y2 = [1 1 2]tz1 + [1 1 1]tz3 + [1 2 1]t (z2 + z4),

y3 = [1 2 1]tz2 + [1 1 1]tz4 + [1 1 2]t (z1 + z3).

Note that U1 = span([1 1 2]t , [1 2 1]t ) and W1 = span([1 1 1]t ), from con-

struction of y1. �us, U1 and W1 are linearly independent vector spaces with

dim(U1) = 2 and dim(W1) = 1 – this allows D1 to recover the messages from

sources in A1 (for example, by taking inner products of y1 with [1 0 2]t and

[1 2 0]t ). Likewise, D2 and D3 can recover messages from sources in A2 and A3

respectively; this completes the PBNA scheme description achieving a sum rate of
4
3 (this can be shown to be the optimal sum rate for this network example).

3.2 Network Coding for Unicast Sessions

In this section, we describe the PBNA scheme for networks with multiple

unicast sessions. In particular, we focus on a special case – networks that have
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three unicast sessions, i.e., K = M = 3, L = 1, Ai = {Si } and Bi = {S1,S2,S3}\{Si }
for all i; this is the smallest non-trivial instance of the problem and therefore, its

analysis can be used as stepping stone for be�er understanding of the performance

of linear network coding schemes in the scenario of unicast connections.

3.2.1 Results for Achievable Data Rates

We �rst consider the case where all the transfer functions of the network

with three unicast sessions are non-zero polynomials; we handle the case where

some of the interference transfer functions are zero later. Note that since L = 1,

one of the ways to achieve data rate close to 1
2 per session is to design precoding

matrices with a close to b and n close to a + b in values (so that a
n is close to 1

2 ).

Next, we de�ne the following rational functions, based on the transfer functions:

p1(ξ ) =
m11(ξ )m32(ξ )

m12(ξ )m31(ξ )
, p2(ξ ) =

m22(ξ )m31(ξ )

m21(ξ )m32(ξ )
,

p3(ξ ) =
m33(ξ )m21(ξ )

m23(ξ )m31(ξ )
, t (x ) =

m12(ξ )m23(ξ )m31(ξ )

m13(ξ )m32(ξ )m21(ξ )
.

Given a positive integer v , we also de�ne the following set of rational functions:

Sv =

f (t (ξ ))

д(t (ξ ))
: f (x ),д(x ) ∈ Fq[x],gcd( f ,д) = 1,deg ( f ) ≤ v,deg (д) ≤ v

 .
We consider two cases depending on whether t (ξ ) is a constant in Fp or not.

Case I: t (ξ ) is not a constant. Here, we choose a = v , b = v + 1 and

n = 2v + 1. �erea�er, we consider the following choice of precoding matrices:

V1 = [e Te T2e · · · Tv−1e], (3.4)
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V2 = M31M−1
32 [e Te T2e · · · Tv−1e], (3.5)

V3 = M21M−1
23 [Te T2e T3e · · · Tve], (3.6)

where e is the vector of (2v + 1) ones and T is the (2v + 1) × (2v + 1) diagonal

matrix with its (k ,k )th element as t (ξ (k ) ). �en the following result holds good:

�eorem 3.2.1. If t (ξ ) is not a constant and pi (ξ ) < Sv , i = 1,2,3, for some positive

integer v , then one can achieve a rate of v
2v+1 per source using PBNA scheme with

large enough Fq , for networks with three unicast sessions and mincuts of one.

Proof. Refer to Appendix A.1 �

Note that asv → ∞, the achievable rate tuple in �eorem 3.2.1 approaches
(

1
2 ,

1
2 ,

1
2

)
.

In other words, each unicast session achieves a rate of 1
2 in an asymptotic fashion,

if v can be chosen arbitrarily large. �erefore, we have the following corollary:

Corollary 3.2.2. If t (ξ ) is not a constant and pi (ξ ) < Sv , i = 1,2,3, for all positive

integers v , then one can achieve a rate of 1
2 per source using PBNA scheme with

large enough Fq , for networks with three unicast sessions and mincuts of one.

One possibility where pi (ξ ) < Sv , i = 1,2,3, gets satis�ed is when each of mii (ξ ),

i = 1,2,3, possesses a variable that does not occur inmij (ξ ), i , j. Interestingly, it

turns out that one can achieve a rate of 1
2 per source for this case using a coding

scheme across two time-slots, inspired by the ergodic alignment scheme [11].

Note that checking the membership of pi (ξ ), i = 1,2,3, in Sv requires that

we test polynomial equality/inequality for 3|Sv | ≤ 3q2v+2 instances. �is can
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become cumbersome if v is large. Generally, transfer functions tend to be well-

structured; hence, it is possible to make the assumptions on pi (ξ )’s less restrictive,

that can be checked e�ciently. �is fact is shown in [17], where Sv is replaced by

S =
1, t (ξ ), 1 + t (ξ ),

t (ξ )

1 + t (ξ )

 ,
provided �nite �eld size q is a power of 2. �e proof of this involves careful degree

counting and identifying the graph-related properties of transfer functions.

Case II: t (ξ ) is a constant. Here, we choose a = b = 1 and n = 2. If

t (ξ ) ≡ c ∈ Fq , with c , 0, we consider the following choice of precoding matrices:

V1 = [1 1]T , V2 = M31M−1
32 [1 1]T , V3 = M21M−1

23 [c c]T . (3.7)

�us, the coding scheme is based on two time-slots and the following result holds:

�eorem 3.2.3. If t (ξ ) is a constant in Fq and pi (ξ ), i = 1,2,3, are non-constants,

then one can achieve a rate of 1
2 per source using PBNA scheme in two time-slots with

large enough Fq , for networks with three unicast sessions and mincuts of one.

Proof. Refer to Appendix A.2 �

Next, we consider the case when some of the interference transfer func-

tions are zero (note thatmii (ξ ) . 0, else communication between Si and Di would

not be possible). Such a situation is desirable in the context of designing PBNA

schemes as it eliminates the need of satisfying at least one of the alignment con-

ditions. �en we can choose one of the precoding matrices freely and the PBNA

scheme gets simpli�ed – we set a = b = 1, n = 2, and the following result holds:
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�eorem 3.2.4. If some interference transfer function, mij (ξ ), i , j, equals zero,

then one can achieve a rate of 1
2 per source using PBNA scheme in two time-slots with

large enough Fq , for networks with three unicast sessions and mincuts of one.

Proof. Refer to Appendix A.3 �

Summary: We develop a systematic mechanism for analyzing the achiev-

able rates for networks with unicast sessions. We show that under certain con-

ditions, a rate of half the mincut per session can be achieved in a network with

three unicast sessions and mincuts of one. �e primary ingredient in designing

the coding scheme is the combination of the notions of interference alignment,

borrowed from interference channel literature, and linear network coding.

3.3 Network Coding for Multicast Sessions

In this section, we describe the PBNA scheme for networks with multi-

ple multicast sessions. For this, we use the notion of interference graph whose

structural properties in�uences the achievable rates of any coding strategy.

Interference Graph: We consider an undirected bipartite graph H =

(X,Y,F ), whereX = {S1,S2, . . . ,SK },Y = {W1,W2, . . . ,WM } are the node parti-

tions, and F is the set of undirected edges such that (Sj ,Wi ) ∈ F i� Sj ∈ Bi . �us,

H encodes the set of sources whose signals act as interference, and therefore, need

to be aligned to a single subspace at each destination - hence, we refer to it as the

interference graph. �e topology ofH has a direct bearing on the achievable rates

of the sources; for example, abundant low-degree nodes inY and smaller values of
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|F | could result in potentially higher achievable rates due to lesser number of in-

terference terms (and alignment constraints) at the destinations. �e interference

graph of the network example in Figure 3.1 is illustrated in Figure 3.2(a).

3.3.1 Results for Achievable Data Rates

We analyze the connection between structural properties of the interfer-

ence graph and achievable source rates. We �rst consider the case where the inter-

ference graphH has no cycles. �en we have the following achievability result:

�eorem 3.3.1. IfH has no cycles, then one can achieve a rate of 1
L+1 per source in

(L+1) time-slots using PBNA scheme with large enough Fq , under certain constraints

that are checkable in time polynomial in L, |F | and transfer function degrees.

Proof. Refer to Appendix A.4. �

�e absence of cycles in the interference graph is advantageous in the sense that

it enables one to choose a set of precoding matrices/vectors independently of each

other and use them to construct precoding matrices/vectors for the remaining

sources. Also, feasibilty of the PBNA scheme can be checked in polynomial time

(in terms of network parameters) and coding is practical as it uses (L + 1) time-

slots. �us, the sources can achieve a sum rate of K
L+1 and each destination can

receive data from the desired sources at a rate of L
L+1 using PBNA strategy.

�e presence of cycles in the interference graph can impose restrictions on

the choice of precoding matrices that may the a�ect the ease of satisfying align-

ment constraints. We illustrate this using a network with K = M = 4 and L = 2 –
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Figure 3.2: Examples of some interference graphs.

we setA1 = {S3,S4},A2 = {S1,S4},A3 = {S1,S2},A4 = {S2,S3}, and assume all the

transfer functions are non-trivial. We also de�ne the following rational function:

t (ξ ) ≡
m12(ξ )m23(ξ )m34(ξ )m41(ξ )

m11(ξ )m22(ξ )m33(ξ )m44(ξ )
.

�e interference graph for this network is depicted in Figure 3.2(b); it is easy to see

that the graphH is a cycle; we have the following negative result for this setup:

�eorem 3.3.2. IfH is the cycle interference graph of the network described above

(see Figure 3.2(b)) and t (ξ ) is a non-constant rational function (i.e., t (ξ ) . a, a ∈ Fq),
then one cannot achieve a rate of 1

3 per source in �nite number of time-slots.

Proof. Refer to Appendix A.5. �

�us, the presence of cycles in the interference graph can result in the

PBNA scheme requiring large number of time-slots for each source to achieve a

rate close to 1
L+1 and sum rate close to K

L+1 . One way of tackling this problem is to

allow the destinations to decode some of the interference messages, i.e., Di agrees
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to decode messages from some sources in Bi along with those from sources in

Ai . �is approach reduces the number of relations in (3.3) to be satis�ed, thereby

e�ectively removing edges from the interference graph H . For example, if Di

decodes messages from Sj ∈ Bi , the alignment constraints involving Vj that need

to be satis�ed at Di get eliminated; this is equivalent to removing (Sj ,Wi ) ∈ F
from H . However, the tradeo� of this approach is reduction in the source rates

since each destination needs to decode potentially more than L messages.

We de�ne Ei ⊆ Bi as the set of extra sources whose messages are decoded

byDi , so thatDi now recovers messages from sources in Āi = Ai∪Ei , and the new

interfering set of sources for Di is B̄i = Bi \Ei . �ese updates are equivalent to the

process of removing edges in {(Sj ,Wi ) : Sj ∈ Ei } fromH to get a new interference

graph H̄ = (X,Y, F̄ ), where F̄ = {(Sj ,Wi ) : Sj ∈ B̄i }. Our objective is to remove

these edges in such a way that cycles are eliminated from H and resultant H̄ is

acyclic in nature – therea�er, we can use PBNA scheme to provide guarantees on

achievable source rates. In particular, we have the following achievability result:

�eorem 3.3.3. Suppose H̄ , generated from H as described above, has no cycles,

and letd = max1≤i≤M |Ei |. �en one can achieve a rate of 1
L+d+1 per source in (L+d+1)

time-slots using PBNA scheme with large enough Fq , under certain constraints that

are checkable in time polynomial in L, d , |F̄ | and transfer function degrees.

Proof. Refer to Appendix A.6 �

Note that if H has cycles, there can be multiple candidates for subgraph

H̄ that has no cycles. Since we want to maximize the data rates for the sources,
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we are interested in the smallest value that d can take – we refer to this optimal

value asd∗. �erefore, we need to solve the following graph-theoretic optimization

problem overH – what is the minimum value of d so that if we remove some set

of min(d , |Bi |) edges from node Wi ∈ Y (|Bi | is the degree of node Wi ), the

resulting graph H̄ has no cycles? We �rst assume that H is a connected graph.

�en a modi�ed optimization problem, that gives the same optimal value d∗, is as

follows – what is the minimum value ofd so that if we remove at mostd edges from

each node in Y , the resulting subgraph K is a spanning tree of H ? We denote

the optimal H̄ and K , obtained as solutions to these optimization problems, by

H̄ ∗ and K ∗ respectively. Note that H̄ ∗ can obtained from K ∗ by removing edges

fromK ∗, if needed, such that the di�erence between degrees ofWi inH and H̄ ∗

is min(d∗, |Bi |) for all i . In other words, it su�ces to obtain K ∗ fromH .

We use the concepts from matroid theory to design an algorithm that out-

puts K ∗ for a givenH . For this, we recall the de�nitions of matroid and its dual:

De�nition 3.3.1. Consider a �nite set E and a family of subsets of E, denoted by

I. �enM = (E,I) is a matroid if (a) ∅ ∈ I (∅ is null set), (b) A ∈ I ⇒ B ∈ I,

where B ⊆ A, and (c) there exists x ∈ A with B∪ {x } ∈ I, if A,B ∈ I and |A| > |B |.
�e elements of I are called independent sets, and an independent set having the

largest number of elements is called a basis. Also, the dual ofM is another matroid

M̄ such that for every independent set in it, there is a disjoint basis inM.

A detailed description about properties of matroids can be found in [76].

Since H is connected, we consider its graphic matroid M – its indepen-
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dent set is an edge-set of H that forms a tree or forest subgraph of H (i.e., the

independent set forms a subgraph with no cycles). �e bases ofM are the edge-

sets that form spanning trees of H . �en an independent set of the dual of M,

denoted by M̄, is an edge-set ofH whose complement form a subgraph contain-

ing some spanning tree of H (i.e., the independent set forms a subgraph whose

complement is connected). Also, given positive integer d , we consider a partition

matroidMd – its independent set is an edge-set of H such that at most d edges

are chosen from every node in Y . �e bases ofMd are edge-sets of H that form

subgraphs with min(d, |Bi |) edges incident on nodeWi ∈ Y for all i .

Note that M̄ ∩Md is a matroid – its independent set is an edge-set of H
such that has at most d edges incident at every node inY and whose complement

forms a subgraph containing a spanning tree ofH . �us, the problems of �nding

d∗ and K ∗ reduces to �nding the minimum value of d for which the complement

of a basis of M̄ ∩ Md forms a spanning tree of H . �e minimum value of d is

equal to d∗, and the edges in that basis need to be removed fromH for obtaining

K ∗. In other words, if I is the basis of M̄ ∩Md∗ , then K ∗ = (X,Y,F \I).

We de�ne an arbitrary labeling of edges ofH as F = {e1,e2, . . . ,e |F |}, then

we can use Algorithm 1 to get d∗ and K ∗ for a given connected graphH .

�eorem 3.3.4. Given any (connected) bipartite graphH , Algorithm 1 �nds d∗ and

spanning tree K ∗ forH , with a computational complexity of O (
(
1 + K

M

)
|F |2).

Proof. Refer to Appendix A.7. �
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Algorithm 1 Finding d∗ and K ∗ for connected graphH
Initialize: H = (X,Y,F ), F = {e1,e2, . . . ,e |F |}

for d = d( |F | − K −M + 1)/Me to b|F |/Mc do
I ← ∅
for i = 1 to |F | do

if I ∪ {ei } ∈ M̄ ∩Md then
I ← I ∪ {ei }

end if
end for
if |I | = |F | − K −M + 1 then

break
end if

end for
Output: d∗ = d , K ∗ = (X,Y,F \I)

In caseH is not a connected component, we can apply Algorithm 1 on its

disjoint components separately and obtain their corresponding optimal values of

d and optimal spanning trees. �en d∗ is the maximum of the optimal values of

d obtained for the disjoint components, and H̄ ∗ can be obtained using an edge

removal process from the set of disjoint optimal trees similar to the one used for

the case of connected graphH . Also, if number of disjoint components ofH is c ,

the time complexity for running Algorithm 1 overH is O (c
(
1 + K

M

)
|F |2).

Summary: We describe a systematic mechanism for providing guaran-

tees on achievable data rates for networks employing linear network coding with

multiple multicast sessions. We use the PBNA scheme for designing codebooks

that use �nite number of time-slots for networks with acyclic interference graphs.

For networks with cyclic interference graphs, we present a graph sparsi�cation

approach that optimally removes cycles and gives reasonable achievable rates.
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Chapter 4

Learning Structure of Markov Networks

�e usefulness of Markov networks in e�ciently encoding probability dis-

tributions with large number of random variables in form of undirected graphs has

led to its widespread adoption for modeling and designing applications in �elds

like social network analysis [53, 54], image processing/computer vision [55, 56]

and computational biology [57, 58]. �e problem of learning the graph structure

of any Markov network from samples generated by its underlying probability dis-

tribution is a well-studied one and is referred to as the problem of learning Markov

graphs or graphical model selection. A tractable approach of tackling this learn-

ing problem is to interpret it as a channel coding problem, as done in information

theory, and derive the necessary and su�cient conditions for error-free recovery

of Markov graphs with respect to a given learning algorithm. �ere is diverse lit-

erature associated with the two aspects of graphical model selection for speci�c

ensembles of Markov networks – the achievability aspect dealing with the design

and analysis of e�cient and near-optimal (in terms of sample and computational

complexity) learning algorithms/estimators, and the converse aspect dealing with

deriving information-theoretic lower bounds on sample complexity for any learn-

ing algorithm to correctly reconstruct the structure of Markov networks.

35



Main Results: We analyze the problem of learning Markov graphs from

a rate-distortion theoretic perspective, and provide lower bounds on the number

of samples required for any algorithm to learn the Markov graph structure of a

probability distribution, up to a pre-speci�ed edit distance. In particular, for both

discrete and Gaussian models onp variables with degree at mostd , we show that at

least Ω
((
d − s

p

)
log2 p

)
samples are required for any algorithm to learn the graph

structure up to edit distance s . Our bounds represent a strong converse; i.e., we

show that for a smaller number of samples, the probability of error of any learn-

ing algorithm goes to one as the problem size increases. In this sense, our results

have stronger consequences than the traditional ones obtained using Fano’s in-

equality (the typical result here is that the probability of error is bounded away

from zero, like ≥ 1
2 , with increasing problem size). Moreover, our bounds indicate

that substantial gains in sample complexity may not be possible without paying a

signi�cant price in edit distance error. We also take a look at the problem of accu-

rately learning discrete Markov networks based on power-law graphs generated

by the con�guration model, i.e., networks whose degree sequence follow a power-

law distribution. It has been observed that power-law graphs crop up in a number

of real-world scenarios, e.g., internet graphs, biological networks and gene asso-

ciations. We examine the e�ect of power-law exponent on the limits of sample

complexity, and use the converse aspect to show that learning algorithms require

more samples (in order-wise sense) to exactly recover Markov graphs having low

values of power-law exponents. In the context of designing algorithms for power-

law Markov networks, a major challenge faced in the learning process is that the
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degrees may not always be bounded by constants and the maximum degree could

scale with number of nodes. We design an algorithm, similar to conditional varia-

tion distance thresholding in structure, and show that ferromagnetic Ising model

on power-law graphs with p variables and exponent greater than 3 can be learnt

exactly using Ω(log2 p) samples that is order-wise optimal if the minimum de-

gree scales like a constant. In case the power-law exponent lies between 2 and 3,

we get a sample complexity requirement that is poly-log in the number of nodes

(Ω((log2 p)
3), to be precise) under certain constraints on the degree sequence.

4.1 System Model and Preliminaries

We consider an undirected graph G = (V ,E), where V = {1, . . . ,p} is the

set of nodes and E is the set of edges. A Markov network is obtained by associating

a random variable Xi to i ∈ V , that takes values from alphabet A, and specifying

a joint probability distribution f (·) over vector X = (X1,X2, . . . ,Xp ) that satis�es

f (xA,xB |xC ) = f (xA |xC ) f (xB |xC ),

where A,B and C are any disjoint subsets of V such that every path from a node

in A to a node in B passes through a node in C (C is also called a separator set for

A,B), and xA,xB,xC denote the restrictions of (x1, . . . ,xp ) ∈ Ap to indices inA,B,C

respectively. Note that f (·) denotes the probability mass function (p.m.f.) for the

case of discrete Markov networks (i.e., |A| < ∞) and probability density function

(p.d.f.) for the case of continuous Markov networks (i.e., |A| = R or C). Next, we

present examples of families of discrete and continuous Markov networks.
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Ising Model: �is is a well-known example of family of discrete Markov

networks that is studied in a multitude of �elds like statistical physics [77], com-

puter vision [78] and algorithmic game theory [79]. �is discrete model is obtained

by se�ing A = {−1,1}, and assigning real-valued node potentials hi to i ∈ V and

edge potentials θij to (i, j ) ∈ E. �en the p.m.f. ofX satis�es the following relation:

f (x ) ∝ exp



∑
i∈V

hixi +
∑
(i,j )∈E

θijxixj


 .

�e Ising model is said to be zero-�eld if hi = 0 for all i ∈ V . Also, the Ising model

is said to be ferromagnetic if θij > 0 for all (i, j ) ∈ E. Note that the normalization

constant depends on the graph structure and values of edge/node potentials.

Gaussian Markov Networks: �is is a well-known example of family of

continuous Markov networks; here, X possesses a real-valued multivariate Gaus-

sian distribution (i.e., A = R). Without loss of generality, we assume that X has

the zero vector as its mean. Given a p × p positive de�nite matrix Θ satisfying

Θ(i, j ) = 0 i� (i, j ) < E (Θ(i, j ) is the (i, j )th entry of Θ), the p.d.f. of X is given by

f (x ) =
1√

(2π )p |Θ−1 |
exp

(
−1

2x
TΘx

)
,

Note that Θ serves as the inverse covariance matrix of X ; it is also referred to as

the potential matrix, since Θ(i, j ) acts as the potential of (i, j ) ∈ E. We also de�ne

λ∗(Θ) , min
(i,j )∈E

|Θ(i, j ) |√
Θ(i,i )Θ(j, j )

.

Note that this quantity is invariant to rescaling of the random variables, and it

plays an important role in determining the bounds on sample complexity.
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We restrict our a�ention to Markov networks based on two graph ensem-

bles. �e �rst ensemble is that of degree-bounded graphs – the set of graphs whose

node degrees are bounded above by a pre-speci�ed quantity. �e second ensemble

is that of power-law graphs generated using the con�guration model [16]. Our fo-

cus on degree-bounded graphs is in light of the fact that there has been extensive

work on learning Markov networks based on these graphs. Our focus on power-

law graphs stems from the observation of the emergence of power-law behavior

in natural networks like social networks and protein interaction networks.

4.1.1 Learning Algorithm and Error Criterion

We denote the set of all undirected graphs on p nodes by Up . Given two

undirected graphs H and H ′ on the same set of nodes, we de�ne edit distance

∆(H ,H ′) as the minimum number of edge additions and/or deletions needed for

changing H to H ′. Next, we describe the system setup for analyzing the problem

of learning structure of Markov networks. We consider an ensemble of M undi-

rected graphs on a common set of p nodes, G = {G1, . . . ,GM }, and an ensemble

of M Markov networks K = {K1, . . . ,KM }, such that Ki has Gi as its underlying

graph and the random variables in X = (X1, . . . ,Xp ) draw values from alphabet

A. We choose a Markov network K ∈ K uniformly at random and obtain n i.i.d.

vector samples Xn = (X (1), . . . ,X (n) ) from the distribution of K . Our objective is

to reconstruct G, the underlying graph of K , using the samples Xn. A learning al-

gorithm is any function ϕ : Anp →Up that maps the observed samples to a graph

estimate Ĝ = ϕ (Xn ) ∈ Up . Given a non-negative integer s , we de�ne the error
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event for the learning algorithm as {∆(G,Ĝ ) ≥ s} = {∆(G,ϕ (Xn )) ≥ s}, i.e., error

occurs if the edit distance between the actual graph and the reconstructed version

is at least s . �erefore, the probability of error of learning algorithm ϕ is given by

P (n)
e,s (ϕ) = P (∆(G,ϕ (Xn )) ≥ s ) =

1
M

M∑
i=1

P (∆(Gi ,ϕ (X
n )) ≥ s ��K = Ki ) .

A learning algorithm requires s = 0 to ensure exact recovery of the Markov graph;

we denote the probability of error as P (n)
e (ϕ) = P (n)

e,0 (ϕ). As mentioned before,

the converse aspect of the graphical model selection problem is concerned with

�nding lower bounds on the probability of error for any ϕ, in terms of n and the

parameters associated with K . Also, the achievability aspect is concerned with

designing ϕ such that its probability of error can be made arbitrarily small.

4.2 Learning Markov Graphs up to Edit Distance

In this section, we present strong converse results for the problem of learn-

ing Markov graphs up to a pre-speci�ed edit distance for families of discrete and

Gaussian Markov networks based on degree-bounded graphs. First, we derive gen-

eral lower bounds on the sample complexity for ensemble of Markov networks

based on arbitrary graphs. �erea�er, we use these bounds to derive results for

the specialized ensembles of Markov networks on degree-bounded graphs.

4.2.1 Markov Networks on General Graphs

We de�ne the following quantities for graph ensemble G and any G ∈ G:

B (s,G ) , {H : ∆(G,H ) < s, H ∈ Up }, B (s,G) , max
G∈G
|B (s,G ) |.
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Note that B (s,G ) denotes the set of graphs that are at an edit distance less than s

from G and B (s,G) denotes the maximum set size among such B (s,G )’s, G ∈ G.

We also de�ne another quantity, analogous to mutual information in structure:

I (Ki ;X (1) ) ,

H (X (1) ) − H (X (1) |K = Ki ), |A| < ∞,
h(X (1) ) − h(X (1) |K = Ki ), A = R.

Note that H (·) and h(·) represent the entropy and di�erential entropy functions

respectively. Given K ,G, we de�ne bounds R,C1,C2 on the following quantities:

R ≤ log2 M − log2 B (s,G), C1 ≥ p log2 |A|, C2 ≥ max
1≤i≤M

I (Ki ;X (1) ).

While C1 is well-de�ned only if A is a �nite set, C2 is well-de�ned for general

alphabets, like A = R. �e following result holds for discrete Markov networks:

�eorem 4.2.1. Consider an ensemble of M discrete Markov networks K on p ran-

dom variables and the ensemble of their underlying undirected graphs G on p nodes.

Suppose the random variables take values from some �nite alphabetA. �en we have

the following lower bound on the probability of error for any learning algorithm ϕ:

P (n)
e,s (ϕ) ≥ 1 − 2−(R−nC1) .

Proof. Refer to Appendix B.1. �

We also have the following result for graph recovery in general Markov networks:

�eorem 4.2.2. Consider an ensemble of M discrete Markov networks K on p ran-

dom variables and the ensemble of their underlying undirected graphs G on p nodes.
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Suppose the random variables take values from a general alphabetA. �en we have

the following lower bound on the probability of error for any learning algorithm ϕ:

P (n)
e,s (ϕ) ≥ 1 − 4A(K )

(R − nC2)2
− 2−

(R−nC2 )
2 ,

where A(K ) , max1≤i≤M var
(
log2

f (X (1) |K=Ki )
f (X (1) )

����K = Ki

)
, and f (·) denotes p.m.f.

and p.d.f. for discrete and continuous Markov networks/distributions respectively.

Proof. Refer to Appendix B.2. �

A consequence of �eorem 4.2.1 is that the probability of error of any learn-

ing algorithm is lower bounded by 1 − 2− R
2 , if n < R

2C1
. �erefore, the probability

of error approaches one as p → ∞, if R scales with p. Likewise, �eorem 4.2.2

states that the probability of error of any learning algorithm is lower bounded by

1− 8A(K )
RC2
− 2− R

4 , if n < R
2C1

; the probability of error approaches one as p → ∞, only

if R scales with p and ensembleK satis�esA(K ) = o(RC2). In this sense, �eorem

4.2.2 seems to be weaker than �eorem 4.2.1 as (1 − P (n)
e ) is upper bounded by

polynomial decaying term (in R) in �eorem 4.2.2 for n < R
2C2

, whereas it is upper

bounded by an exponential decaying term (in R) in �eorem 4.2.1 for n < R
2C1

.

Nevertheless, �eorem 4.2.2 yields a more general result since it is applicable to

ensembles of Markov networks with any alphabet set, be it �nite or in�nite.

Next, we make use of these results to derive high-dimensional results for

discrete and Gaussian Markov networks based on graphs in Gp,d , the set of undi-

rected graphs on p nodes where degree of each node is bounded above by d . �e

main idea is to choose G andK in an intelligent way (G should be a subset of the
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graph ensemble), so that reasonable values for the bounds R,C1,C2 can be derived.

�erea�er, �eorem 4.2.1 and �eorem 4.2.2 can be used to obtain the necessary

conditions/bounds on sample complexity associated with these ensembles.

4.2.2 Discrete Markov Networks on Degree-bounded Graphs

We consider any family of discrete Markov networks (for example, Ising

model) with �nite alphabet A and based on graphs in Gp,d . For each G ∈ Gp,d , we

choose a Markov network from the family whose underlying graph isG. We refer

to this ensemble of discrete Markov networks as K D
p,d

, with |K D
p,d
| = |Gp,d |. We

choose G = Gp,d , K = K D
p,d

and C1 = p log2 |A|. Also, the following lemma holds:

Lemma 4.2.3. Given G = Gp,d , d ≤ p−1
2 , 0 < s ≤ p (p−1)

4 , the following bounds hold:

log2 |G| ≥
pd

4 log2

( p
8d

)
, B (s,G) < s

(p2

2
s

)
.

Proof. Refer to Appendix B.3. �

�is lemma gives the value of bound R for Gp,d . �en the following result holds:

�eorem 4.2.4. Suppose K is chosen uniformly from K D
p,d
. If for some α < 1, d =

o(pα ), 2 ≤ s < (1−α ) pd16 , and the number of i.i.d. samples, generated fromK , satis�es

n <
1

2 log2 |A|
((
d

4 −
2s
p

)
log2 p −

d

4 log2 8d
)
= Ω

((
(1 − α )d − 8s

p

)
log2 p

)
,

then for any learning algorithm ϕ, we observe that P (n)
e,s (ϕ) → 1 as p → ∞.

Proof. Refer to Appendix B.4. �
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�e use of �eorem 4.2.4 for small values of s (like s = 2) gives a sam-

ple complexity requirement of n = Ω(d log2 p), that is consistent with the sample

complexity bound for ensuring exact recovery of Markov graph (s = 0) [59]. �e

theorem also leads to an interesting observation – we require s = Θ(pd ), the order

of the maximum number of edges of a graph in Gp,d , to reduce the scaling of n, as

compared to its optimal scaling of n = Ω(d log2 p) for s = 0. In other words, pro-

viding additional scope for improvement in form of permi�ed non-zero distortion

does not help a learning algorithm in reducing the scaling of sample complexity

for discrete Markov networks based on graphs in Gp,d , unless the permi�ed edit-

distance based distortion is comparable to the maximum number of edges.

4.2.3 Gaussian Markov Networks on Degree-bounded Graphs

Next, we consider the family of Gaussian Markov networks based on graphs

in Gp,d . Here, we construct G and K as follows. Without any loss of generality,

we assume that p is even. We choose d perfect matchings on p nodes, each perfect

matching chosen uniformly at random, and form a multi-graph resulting from the

union of the edges in the matchings. We refer to the set of all such multi-graphs

asHp,d . �e uniform distribution over the set of perfect matchings de�nes a prob-

ability distribution overHp,d . We have the following result for this distribution:

Lemma 4.2.5 ([80]). Consider a multi-graph H formed from the union of d random

perfect matchings on p nodes, that are chosen according to a uniform distribution.

Suppose the eigenvalues of the weighted adjacency matrix of H , denoted by A, are

d = λ1(A) ≥ λ2(A) ≥ · · · ≥ λp (A). If ρ (A) , max2≤i≤p |λi (A) |, then we have
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P (ρ (A) < 3d1/2) ≥ 1 − cp−τ , where c is positive constant and τ =
⌈
(d−1)1/2+1

2

⌉
− 1.

We eliminate those multi-graphs from Hp,d whose weighted adjacency matrices

A satisfy ρ (A) ≥ 3d1/2 and get a reduced subset H ′
p,d

. By Lemma 4.2.5, Hp,d\H ′p,d
forms a small fraction of Hp,d . We �x constants λ ∈

(
0, 1

4d1/2

)
, δ > 0 and de�ne

µ , δ
λ−1−4d1/2 . For every multi-graph H ∈ H ′

p,d
, we generate a p × p matrix Θ =

(4d1/2µ + δ )Ip + µA, where Ip is the p × p identity matrix and A is the weighted

adjacency matrix of H . We refer to the resulting set of these matrices as Tp,d . Note

that every matrix in Tp,d is symmetric and positive de�nite, since the minimum

eigenvalue ofΘ ∈ Tp,d is at least 4d1/2µ+δ−ρ (A)µ > d1/2µ+δ > 0, which implies all

eigenvalues of Θ are positive. Also, the choice of µ ensures λ∗(Θ) = λ for Θ ∈ Tp,d .

�us, the matrices of Tp,d can be inverse covariance matrices of Gaussian Markov

networks. By construction, the underlying graphs of these Markov networks are

in Gp,d . We denote this ensemble of Gaussian Markov networks by KG
p,d

and its

graphical ensemble by G′
p,d
⊆ Gp,d . We choose G = G′

p,d
and K = KG

p,d
. �en the

following lemmas give the values of bounds R and C2 for these ensemble choices:

Lemma 4.2.6. Given G = G′
p,d
, 0 < s ≤ p (p−1)

4 , large p, the following bounds hold:

log2 |G| ≥
pd

2 log2

( p

4d2

)
− 1, B (s,G) < s

(p2

2
s

)
.

Proof. Refer to Appendix B.5 �

Lemma 4.2.7. If K is chosen uniformly at random from K = KG
p,d
= {K1, . . . ,KM },

max
1≤i≤M

I (Ki ;X (1) ) ≤ p

2 log2

(
1 + 4d1/2

λ−1 − 4d1/2

)
.

45



Proof. Refer to Appendix B.6. �

�e use of these lemmas allows us to derive strong converse result as stated below:

�eorem 4.2.8. Suppose K is chosen uniformly from KG
p,d
. If for some α < 1

2 , d =

o(pα ), 2 ≤ s < (1 − 2α ) pd8 and number of i.i.d. samples, generated from K , satis�es

n <

(
d − 4s

p

)
log2 p − 2d log2 2d

2 log2
(
1 + 4d1/2

λ−1−4d1/2

) = Ω



(
(1 − 2α )d − 4s

p

)
log2 p

log2
(
1 + 4d1/2

λ−1−4d1/2

)

 ,

then for any learning algorithm ϕ, we observe that P (n)
e,s (ϕ) → 1 as p → ∞.

Proof. Refer to Appendix B.7. �

�e use of �eorem 4.2.8 gives a sample complexity requirement of n =

Ω
((
d − s

p

)
log2 p

)
for λ = Θ

(
1

d1/2

)
, and n = Ω

(
d1/2

(
d − s

p

)
log2 p

)
for λ = Θ

(
1
d

)
.

For small values of s , these reduce to n = Ω(d log2 p) for λ = Θ
(

1
d1/2

)
, and n =

Ω(d3/2 log2 p) for λ = Θ
(

1
d

)
. While the sample complexity bound for ensuring

exact recovery of Markov graph matches for the �rst case, it is o� by a factor ofd1/2

for the second case [64] (the sample complexity of exact recovery with λ = Θ
(

1
d

)
is

n = Ω(d2 log2 p)). Analogous to the case of discrete Markov networks with graphs

in Gp,d , the theorem also indicates the following fact – we require s = Θ(pd ) to

reduce the scaling of n, as compared to its optimal scalings for small values of s .

�us, the scaling of sample complexity cannot be reduced, unless the given edit-

distance based distortion is comparable to the maximum number of edges.
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Summary: We develop a rate-distortion framework for the problem of

learning Markov graphs, where we characterize lower bounds on sample complex-

ity using edit-distance based distortion criterion. Our results suggest that for both

discrete and Gaussian Markov networks based on ensemble of degree-bounded

graphs, substantial gains in sample complexity may not be possible unless the dis-

tortion limit is made a constant fraction of the number of edges in the graph.

4.3 Markov Networks based on Power-Law Graphs

In this section, we present results related to both the converse and achiev-

ability aspects of the problem of learning structure of Markov networks based on

power-law graphs obtained using the con�guration model. We restrict ourselves

to discrete Markov networks for deriving lower bounds on sample complexity for

learning algorithms targeting exact recovery of underlying graphs. �erea�er, we

design an e�cient algorithm for recovering the structure of power-law graph-

based Ising models. We start by describing the con�guration model and the way

to generate power-law graphs, and examine its structural properties. �erea�er,

we look into the converse and achievability aspects of the learning problem.

4.3.1 Con�guration Model and Power-Law Graphs

We consider a degree sequence d = (d1,d2, . . . ,dp ) for an undirected graph

on p nodes, and a set of con�guration points W = {1,2, . . . ,2m}, where 2m =∑n
i=1 di . We de�ne Wk = {∑k−1

i=1 di + 1,∑k−1
i=k di + 2 . . . ,∑k

i=1 di }, k = 1,2, . . . ,p (we

set d0 = 1). �us, {Wk : 1 ≤ k ≤ p} forms a partition of W with |Wk | = dk . We
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de�ne mapping ψ : W → {1,2, . . . ,p} such that ψ (x ) = k for x ∈ Wk . Given a

(perfect) matching F for W (i.e., a partition of W into m pairs {x ,y}), we obtain

a multi-graph G (F ) = (V ,E) with V = {1,2, . . . ,p} and (ψ (x ),ψ (y)) ∈ E for each

{x ,y} ∈ F . �erefore, choosing a matching F forW uniformly at random results

in the generation of a multi-graph G (F ), where i ∈ V has degree di . We refer to

this model as the con�guration model and designate the ensemble as G (d).

�e number of distinct matchings F of the 2m points in W is given by

N2m =
(2m)!
m!2m . We call a multi-graph simple if it has no self-loops or multiple

edges between nodes. An important point to note is that the number of matchings

corresponding to each simple graph in G (d) is the same, i.e., simple graphs are

equiprobable in the space of multi-graphs. We refer to the subset of simple graphs

as Gs (d) ⊂ G (d). Furthermore, we de�ne dmin = mini∈V di , dmax = maxi∈V di , and

Dl =
∑
i∈V

dli , l = 0,1,2, . . . ,

so that D0 = p, D1 = 2m. We assume that dmax = o(p
1
3 ) and dmin = o(dmax) –

under these constraints, it is known that the probability ofG (F ) being simple for

a uniformly chosen F asymptotically goes to qs = exp(−ν2 − ν2

4 ) as p → ∞, where

ν = D2
D1
− 1 [81]. �e use of this fact gives the following lower bound on |G (d) |:

Lemma 4.3.1. Given a degree sequence d and large p, the ensemble Gs (d) satis�es

|Gs (d) | ≥ qs
2

N2m∏
i∈V di !

≥ qs
2

∏
i∈V

(
m1/2

2di

)di
.

Proof. Refer to Appendix B.8. �
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Next, we state a lemma that we use for ge�ing tight bounds on summations:

Lemma 4.3.2 ([82]). Given a continuous and positive function f : R→ R, we have
∫ b

a
f (x )dx ≤

b∑
k=a

f (k ) ≤
∫ b

a
f (x )dx + f (b + 1), if f is an increasing function,

∫ b

a
f (x )dx ≤

b∑
k=a

f (k ) ≤
∫ b

a
f (x )dx + f (a − 1), if f is a decreasing function,

for all positive integers a,b with a < b, and f well-de�ned over [a − 1,b + 1].

We consider the generation of simple power-law graphs using the con�g-

uration model, i.e., simple graphs whose degree sequence follow a power-law or

Pareto distribution. Given α > 1, a power-law graph with exponent α has the

property that the number of nodes with degree k is proportional to k−α . For p

nodes and given values of dmin,dmax, we de�ne ζ (α ) = (
∑dmax

k=dmin
k−α )−1. �en the

number of nodes with degreek is approximatelypζ (α )k−α , wheredmin ≤ k ≤ dmax.

For the sake of simplicity and convenience, we assume that pζ (α )k−α , dmin ≤ k ≤
dmax, are integers. Note that this gives the constraint dmax ≤ (pζ (α ))

1
α , since there

is at least one node with degree dmax. �erefore, we impose a stronger restriction

dmax = o(p
min( 1

3 ,
1
α ) ), and de�ne the degree sequence d for power-law graphs as

dj = l , pζ (α )




l−1∑
k=dmin

k−α

 < j ≤ pζ (α )




l∑
k=dmin

k−α

 , dmin ≤ l ≤ dmax.

We denote the ensemble of graphs generated using the con�guration model

and having the power-law degree sequence as de�ned above, by Gα , and its subset
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of simple graphs by Gs,α . Application of Lemma 4.3.2 to function f (x ) = xt−α gives

St =
dmax∑

k=dmin

kt−α ∈



(
dt+1−α

max
2(t + 1 − α ) ,

2dt+1−α
max

(t + 1 − α )
)
, t > α − 1,

 dt+1−α
min

2(α − t − 1) ,
2dt+1−α

min
(α − t − 1)


 , t < α − 1,

(4.1)

where t is any real, and dmin is greater than some constant (that depends only on

α ). Note that the bounds on St allow us to compute order-wise tight bounds on

ζ (α ) and Dl , as ζ (α ) = 1
S0
,Dl = pζ (α )Sl . We also de�ne the following quantities:

d̄ =


(α − 1)
(2 − α )d

2−α
maxd

α−1
min , 1 < α < 2

(α − 1)
(α − 2)dmin , α > 2

, d̃ =



(2 − α )
(3 − α )dmax , 1 < α < 2
(α − 2)
(3 − α )d

3−α
maxd

α−2
min , 2 < α < 3

(α − 2)
(α − 3)dmin , α > 3

.

One can check that d̄ is close (up to some constant factor) to average degree of the

power-law graph (i.e., D1
p ), and d̃ is close in value (up to some constant factor) to

the ratio of average squared degree divided by average degree (i.e., D2
D1

). �en the

following theorem gives a lower bound on number of power-law graphs in Gs,α :

Lemma 4.3.3. �ere exists constant c0 > 0 s.t. for dmin ≥ c0 and large p, we have

log2 |Gs,α | ≥
pd̄

9 log2

(
(α − 1)
|α − 2| p

)
.

Proof. Refer to Appendix B.9. �

Note that we inherently assume thatdmin is larger than some suitable constant and

p is large enough in all the subsequent results concerning the graphs in Gs,α .
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4.3.2 Structural Properties of Power-Law Graphs

Next, we examine some structural properties of power-law graphs in Gs,α
with α > 2. We consider a stronger set of assumptions on the scalings ofdmin,dmax:

(A1) dmin = Θ(1), dmax = Θ((log2 p)
δ1 ) for some δ1 <

1
2(3−α ) , 2 < α < 3,

(A2) dmin = Θ(1), dmax = Θ(pδ2 ) for some δ2 < min
(

1
6 ,

1
α

)
, α > 3.

�e choice of these scalings ensure that ν = o((log2 p)
1/2), so that the probability

of ge�ing a simple graph is exp(−o(log2 p)). �us, as long as some property holds

for a uniformly generated graph fromGα with probability ≥ 1−p−Θ(1) , it also holds

for a uniformly selected simple graph from Gs,α with probability ≥ 1 − p−Θ(1) .

We show that power-law graphs generated using the con�guration model

tend to be tree-like. Given a positive integer r , we de�ne the r -neighborhood of a

node in a graph as the subgraph resulting from the set of nodes that reachable from

it via at most r edges. We de�ne r0 =
1
2

log2 p

log2 (64d̃ )
and assume it is an integer. �en

the r0-neighborhoods of nodes of graphs in Gs,α satisfy the following property:

Lemma 4.3.4. Given α > 2 and assumptions (A1), (A2) hold, if a graph from Gs,α
is selected uniformly at random, there is at most one cycle in the r0-neighborhood of

any node with probability ≥ 1 − p−Θ(1) (i.e., r0-neighborhood is almost a tree).

Proof. Refer to Appendix B.10. �

An alternate way of restating the consequence of Lemma 4.3.4 is that there exist

at most two paths, of length at most r0, between any two nodes in a graph of Gs,α ,
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with high probability. We de�ne B (i,r ) as the number of nodes in r -neighborhood

of i ∈ V . �en the following result provides bounds on B (i,r0) for graphs in Gs,α :

Lemma 4.3.5. Given α > 2, ϵ > 0, and assumptions (A1), (A2) hold, if a graph from

Gs,α is selected uniformly at random, then the r -neighborhoods, 1 ≤ r ≤ r0, satisfy

P (B (i,r ) < p
1
4 + ϵ

2di (64d̃ ) (r−1) ∀i ∈ V ) ≥ 1 − p−ϵ , 2 < α < 3,

P (B (i,r ) < p
1
4 + ϵ

8di (64d̃ ) (r−1) ∀i ∈ V ) ≥ 1 − p−ϵ , α > 3.

Proof. Refer to Appendix B.11 �

4.3.3 Lower Bounds on Sample Complexity

We analyze the converse aspect of the learning problem and derive lower

bounds on number of samples required for any algorithm to accurately learn the

structure of a discrete Markov network with its graph in Gs,α . For this, we consider

any family of discrete Markov networks with alphabet A and based on graphs in

Gs,α . For each G ∈ Gs,α , we choose a Markov network whose underlying graph is

G. We refer to this ensemble of Markov networks asK D
s,α . �en the use of �eorem

4.2.1 gives the following bound on sample complexity for exact graph recovery:

�eorem 4.3.6. Suppose a discrete Markov network is chosen uniformly from K D
s,α .

If the number of i.i.d. samples, generated from the discrete Markov network, satis�es

n <
d̄

10 log2 |A|
log2

(
(α − 1)
|α − 2| p

)
,

then for any learning algorithm ϕ, we observe that P (n)
e (ϕ) → 1 as p → ∞.
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Proof. Refer to Appendix B.12. �

�us, the use of �eorem 4.3.6 gives a sample complexity requirement of n =

Ω(d2−α
maxd

α−1
min log2 p) for 1 < α < 2, and n = Ω(dmin log2 p) for α > 2, for ensur-

ing exact recovery of the Markov graph. Note that the sample complexity result

for α > 3 matches the one derived in [68] in order-wise sense, where a slightly

modi�ed version of con�guration model is used and dmin is set as 1. In case dmax

scales withp, �eorem 4.3.6 implies that a larger number of samples (in order-wise

sense) is needed by a learning algorithm to reconstruct the underlying graph of a

discrete Markov graph whenα is less than 2, as compared to when it is greater than

2. Furthermore, the transition in the sample complexity requirement is sharp and

observed at α = 2. A potential reason for this phenomenon is that the fraction of

high degree nodes decreases as α increases. In other words, for a �xed number of

samples, it is inherently di�cult to learn power-law graph-based discrete Markov

networks with lower exponent values (less than 2, to be precise); moreover, this

issue aggravates as the power-law exponent value goes down from 2 to 1.

4.3.4 Learning Algorithm for Ising Model

Next, we examine the achievability aspect of the learning problem and

work on designing an algorithm for learning the graph structure of discrete Markov

networks based on graphs in Gs,α . In particular, we focus on the ferromagnetic

Ising model family with that has �nite node weights and edge weights. As ob-

served in Section 4.3.3, the problem of learning power-law Markov graphs tends

to be challenging, in terms of sample complexity, if the power-law exponent is
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less than 2, since then the average degree depends on the maximum degree, that

can scale with the number of nodes. �erefore, we restrict ourselves to the regime

α > 2, and also allow assumptions (A1) and (A2) to hold. As pointed out in [68],

one of the major challenges that a learning algorithm faces in the context of power-

law Markov networks is to tackle the large variation in degrees of nodes. We use a

learning algorithm, similar to the empirical conditional variation distance thresh-

olding algorithm, studied in [61, 62, 83] for reconstructing Markov networks based

on degree-bounded, large-girth, Wa�s-Strogatz and Erdös-Rényi graphs.

Given 0 < θmin ≤ θmax, we consider the family of ferromagnetic Ising

models on p random variables, with �nite node potentials and edge potentials

lying in [θmin,θmax]. We choose any Ising model from this family with p.m.f. f (·)
and G = (V ,E) ∈ Gs,a as its underlying graph. We de�ne the following mapping,

that can be thought of as some measure of distance between random variables:

ρ (i, j ) = min
U⊆V :|U |≤2

max
xi ,xU

| f (xi |xj = 1,xU ) − f (xi |xj = −1,xU ) |, i, j ∈ V .

As described in Section 4.1.1, we are provided with n i.i.d. samples from f (·) – we

rename this collection as xn = (x (1),x (2), . . . ,x (n) ), as the samples are deterministic

when used by the learning algorithm. We also de�ne the empirical p.m.f. f̂ (·) as

f̂ (x ) = f̂ (x1,x2, . . . ,xp ) =
1
n

n∑
l=1
I(xi = x (l )

i , 1 ≤ i ≤ p),

where I(·) is the indicator function. Note that f̂ (·) can be used to compute/de�ne

empirical marginal and conditional p.m.f.’s related to f (·). �is allows us to de�ne

ρ̂ (i, j ) = min
U⊆V :|U |≤2

max
xi ,xU

| f̂ (xi |xj = 1,xU ) − f̂ (xi |xj = −1,xU ) |, i, j ∈ V ,
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Algorithm 2 Learning algorithm ϕ∗ to obtain Ĝ from xn

Initialize: V = {1,2, . . . ,p}, Ê = ∅
for all i, j ∈ V do

if ρ̂ (i, j ) > ζn,p then
Ê ← Ê ∪ {(i, j )}

end if
end for

Output: Ĝ = (V , Ê)

which serves as the empirical counterpart (or approximation) of ρ (·, ·).

�e learning algorithm ϕ∗ for obtaining Ĝ, the estimate of G, is tabulated

in form of Algorithm 2. �e value of threshold ζn,p in�uences the sample complex-

ity required for exact recovery, and is stated in the subsequent subsection. �e

motivation behind this learning algorithm comes from the observation that ρ (i, j )

tends to be larger when edge exists between i and j than when the edge does not

exist. In other words, the in�uence of X j on Xi is more when i, j are neighbors

versus when they are non-neighbors. Also, ρ (·, ·) and ρ̂ (·, ·) are close in value if

the number of samples n is large – we corroborate all of these facts below.

Non-neighboring nodes: If i, j ∈ V are non-neighboring nodes inG, then

by Lemma 4.3.4 there exists at most two short paths of length at most r0 connecting

i to j with high probability. We de�ne the l-separator set for two nodes as the

minimum number of nodes that need to be removed for eliminating all paths of

length ≤ l between them. �is means the r0-separator set size for i, j is at most

two with high probability. We use the following strong correlation decay result,

related to separator sets, for ferromagnetic Ising model to show that ρ (i, j ) is small:
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Lemma 4.3.7 ([83]). Consider a ferromagnetic Ising model based on graph G =

(V ,E), with p random variables and p.m.f. f (x1,x2, . . . ,xp ). Given non-neighboring

nodes i, j ∈ V and positive integer l , let U ⊆ V be the l-separator set for i, j and let

A(i,l ) be the number of nodes that are at a distance of l from i in Gi,SAW, the self-

avoiding walk (SAW) tree ofG with i as root. �en for xi ,xj ∈ {−1,1}, xU ∈ {−1,1} |U | ,

| f (xi |xj = 1,xU ) − f (xi |xj = −1,xU ) | ≤ A(i,l ) (tanhθmax)
l .

�e SAW tree rooted at node i of a graph is the tree with i as its root and generated

via self-avoiding walks starting at i in the graph. In the context of Ising model, a

node that closes a cycle is made the leaf of the tree (this generates potentially

multiple copies of a node) and is assigned value of 1, if the node label ending

the cycle is larger than the node label starting the cycle, otherwise it is assigned

value of −1. �e advantage of using a SAW tree is that it transforms a non-tree

Ising model into a tree-structured Ising model, whose analysis is more tractable.

A description about SAW trees and their properties can be found in [61].

�e application of Lemma 4.3.7 to our Ising model learning setup yields:

�eorem 4.3.8. Consider a ferromagnetic Ising model based on a uniformly selected

graph from Gs,α , where α > 2, assumptions (A1), (A2) hold, and tanhθmax <
1

(64d̃ )2
.

�en P (ρ (i, j ) = o(p−κ )) ≥ 1 − p−Θ(1) , for some κ > 0 and non-neighbors i, j.

Proof. Refer to Appendix B.13. �

Neighboring nodes: If i, j ∈ V are neighbors, the following result holds:
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�eorem 4.3.9. Consider a ferromagnetic Ising model based on a uniformly selected

graph from Gs,α , where α > 2. �en ρ (i, j ) ≥ 1
16 (1 − e−4θmin ) for neighbors i, j.

Proof. Refer to Appendix B.14. �

4.3.5 Performance Analysis

We have the following concentration result that relates ρ to its estimate ρ̂:

Lemma 4.3.10. For n i.i.d. samples, we get the following concentration inequality:

P ( |ρ̂ (i, j ) − ρ (i, j ) | ≤ γ ∀i, j ∈ V ) ≥ 1 − 192p4 exp

− nγ 2 f 2

min
2(γ + 4)2


 ,

where γ > 0 can be any arbitrary real value and fmin = minxU :|U |≤2 f (xU ).

Proof. Refer to Appendix B.15. �

We choose ζn,p = 1
32 (1 − e−4θmin ) for ϕ∗. We also assume θmin = Ω

(
1

(logp)r
)

for some constant r > 0. �en we have the following performance-related result:

�eorem 4.3.11. Consider a ferromagnetic Ising model based on a uniformly se-

lected graph from Gs,α , where α > 2, assumptions (A1), (A2) hold, tanhθmax <
1

(64d̃ )2

and θmin = Ω
(

1
(logp)r

)
for some constant r > 0. Suppose we choose ζn,p = 1

32 (1 −
e−4θmin ) for ϕ∗. Given p is large enough and the number of i.i.d. samples n satis�es

n >
218

(1 − e−4θmin )2 f 2
min

log2

(p
3

)
then ϕ∗ recovers the correct underlying graph with probability ≥ 1−p−Θ(1) . Further-
more, the computational complexity for running the learning algorithm is O (p4).
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Proof. Refer to Appendix B.16. �

Results of�eorem 4.3.11: Since we have the restriction that tanhθmin ≤
tanhθmax ≤ 1

(64d̃ )2
≤ 1

212 , we can approximate 1 − e−4θmin ≈ 4θmin. Also, it can be

shown that fmin is greater than some constant, along the lines of [83] (the result in

[83] is demonstrated for Erdos-Renyi graphs, but the same proof technique can be

used to prove that fmin is bounded in our case). �us, it is su�cient to have a sam-

ple complexity of Ω(θ−2
min log2 p) for learning algorithm ϕ∗ to recover the correct

graph. For the scaling θmin = Θ
(

1
d̃2

)
, we get the sample complexity requirement of

n = Ω(d̃4 log2 p) – this transforms to θmin = Θ
(

1
(logp) (3−α )δ1

)
with n = Θ((log2 p)

3)

for 2 < α < 3, and θmin = Θ
(

1
d2

min

)
with n = Θ(d4

min log2 p) for α > 3. Keep-

ing in mind that n = Ω(dmin log2 p) is the information-theoretic lower bound on

sample complexity for α > 2 to ensure accurate recovery, one can note that the

constraints are more restrictive and the sample complexity result is worse for the

case 2 < α < 3 than for the case α > 3. However, since assumption (A2) makes

dmin a constant, we can conclude the the sample complexity associated with the

converse and achievability aspects match in an order-wise sense for α > 3. A

probable reason for the relative poor performance of the learning algorithm for

2 < α < 3 could be the structural nature of power-law graphs in that regime –

they generally have a big core with many high degree nodes residing in it [69]. So,

there is scope for designing learning algorithms with be�er performance (in both

sample and computational complexity) in this regime of power-law exponent.

Comparison with previous results: �e statistical guarantees provided

by some well-known algorithms in the context of learning power-law graphical
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models are examined in [68] – two generative models of power-law graphs are con-

sidered, the con�guration model and Chung-Lu model [69]. �e `1-regularization

based learning algorithm [84] needs a sample complexity of n = Ω(d3
max log2 p)

for both con�guration and Chung-Lu power-law graphs (the average degree is

assumed to be Θ(1)). �e greedy algorithm, described in [85], performs slightly

be�er and guarantees accurate recovery with n = Ω(d2
max log2 p) samples. �e

performance analysis of the conditional variation distance thresholding estima-

tor [61], the motivation behind our learning algorithm, exhibits a trade-o� in the

context of learning Chung-Lu power-law graph-based Ising model – restricting

the algorithm to run in polynomial time shoots up the sample complexity require-

ment to Ω(poly(p) log2 p). In contrast, by performing a careful analysis, we show

that our learning algorithm performs reasonably well in the regime α > 3. On the

other hand, there is a additional (log2 p)
3 factor in the sample complexity for the

regime 2 < α < 3 when dmax is restricted to have Θ(poly(log2 p)) scaling.

Summary: We study the problem of learning discrete Markov networks

based on power-law graphs generated by con�guration model and show that the

learning problem is inherently di�cult in terms of sample complexity when the

power-law exponent is less than 2. �erea�er, we design a algorithm for learning

the power-law structure of ferromagnetic Ising model. �e algorithm proves to

be order-optimal when the minimum degree is constant for power-law exponent

exceeding 3; on the other hand, the sample complexity is sub-optimal when the

power-law exponent lies between 2 and 3 and maximum degree is restricted to

have a poly-log scaling nature (this is a limitation of the generative model).
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Chapter 5

Conclusion

�is dissertation seeks to analyze structured high-dimensional problems

using information-theoretic tools and techniques. We address two problems that

have an inherent structured high-dimensional �avor to them – the problems of

communication over networks that employ linear network coding and learning

Markov networks from observed samples generated from underlying probabil-

ity distributions. An information-theoretic analysis of these problems gives in-

tuition about good coding architectures as well as the limitations of transmis-

sion/learning. For the problem of communication over networks, we design linear

network coding schemes based on interference alignment techniques that guar-

antee good throughput in networks with multiple sources and destinations com-

municating with each other. For the problem of learning Markov networks, we

provide strong lower bounds on probability of error of any learning algorithm in

terms of the number of available samples and parameters of the family of Markov

networks based on degree-bounded graphs and power-law graphs. We also exam-

ine the achievability problem for Markov graphs generated by the con�guration

power-law graph model. �us, the use of information-theoretic methods can prove

to be useful in understanding issues as well as providing solutions to potentially

di�cult problems/issues in the structured high-dimensional framework.
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Appendix A

Proofs for Chapter 3

A.1 Proof of �eorem 3.2.1

Using relations (3.4)–(3.6), we get V2 = M31M−1
32 V1,V3 = M21M−1

23 TV1. V1 is

full rank since it has the structure of Vandermonde matrix; this implies dim(Ui ) =

v for all i . We also have dim(Wi ) ≤ v+1 for all i , because of the following relations:

rank([M12V2 M13V3]) = rank(M12M31M−1
32 [V1 V1]) = rank([V1 V1]) = v,

rank([M21V1 M23V3]) = rank(M21[V1 TV1]) = rank([V1 TV1]) = v + 1,

rank([M31V1 M32V2]) = rank(M31[V1 V1]A) = rank([V1 V1]) = v .

Note that rank([M11V1 M12V2]) = rank([P1V1 V1]), where P1 = M11M32M−1
12 M

−1
31

is a (2v + 1) × (2v + 1) diagonal matrix with p1(ξ
(k ) ) as its (k ,k )th entry. Since

p1(ξ ) < Sv , there does not exist linear combinations of columns of P1V1 andV1 that

are equal. In other words, rank([P1V1 V1]) = 2v , i.e., [M11V1 M12V2] is full rank.

Likewise, we can show that [M11V1 M13V3] is full rank, which implies dim(U1 ∩
W1) = 0. �is way it is possible to show that dim(Ui ∩Wi ) = 0, i = 2,3, as well.

�us, the relations in (3.3) are satis�ed over Fq[δ ]. �erefore, it remains to show

that there exists an assignment of δ , say δ 0, for which the relations still hold. Since
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any v rows of V1 are also the rows of a Vandermonde matrix, it is full rank only if

a(δ ) =
∏
i,j

(t (ξ i ) − t (ξ (j ) ))

is non-zero-valued at δ = δ 0. Also, [MiiVi MijVj], i , j is full rank, if the deter-

minant of the �rst 2v rows, denoted by polynomial rij (δ ), is non-zero at δ = δ 0.

�erefore, we require the following polynomial gives a non-zero element at δ = δ 0:

f (δ ) = a(δ )
∏
k

∏
i,j

mij (ξ
(k ) )

∏
i,j

rij (δ ).

�e existence of δ 0, such that f (δ 0) , 0, is guaranteed by the application of

Schwartz-Zippel Lemma [29], for large enough Fq . Hence, the relations in (3.3)

are satis�ed for some assignment and each source can transmit at rate of v
2v+1 .

A.2 Proof of �eorem 3.2.3

One can check that the choice of the precoding matrices in (3.7) satis�es

the alignment constraints, i.e., MijVj = MikVk for all i , j,k . Also, the constraint

dim(Ui ∩Wi ) = 0 reduces to pi (ξ
(1) )/pi (ξ

(2) ) not being equal to some constant in

Fq , i = 1,2,3. �ese facts hold good unless at least one of pi (ξ )’s is identically a

constant in Fq . Analogous to the proof of �eorem 3.2.1, the existence of a feasible

PBNA scheme reduces to �nding an assignment of variables that makes a non-

trivial polynomial non-zero in Fq . �e existence of such an assignment of variables

is guaranteed by Schwartz-Zippel Lemma for large enough Fq , and this allows each

source to transmit at rate of 1
2 via coding across two successive time-slots.
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A.3 Proof of �eorem 3.2.4

Consider an example where we assume that m12(ξ ) ≡ 0 and rest of the

transfer functions are non-zero polynomials. �en we choose the precoding ma-

trices as V1 = [1 1]t , V2 = M31M−1
32 [1 1]t , V3 = M21M−1

23 [1 1]t . One can verify

that rate of 1
2 per source is achievable here if p2(ξ ) and p3(ξ ) are non-constant

polynomials. Likewise, other cases can be handled using similar arguments.

A.4 Proof of �eorem 3.3.1

We prove this achievability result by se�ing n = (L + 1), a = b = 1, and

designing precoding matrices Vi , i = 1,2, . . . ,K , that satisfy the relations in (3.3).

Note that since H has no cycles, it is either a tree or a collection of disjoint trees

(i.e., a forest graph). We assume there are c ≥ 1 disjoint trees and denote them by

Tl = (Xl ,Yl ,Fl ), l = 1,2, . . . ,c . �us, {Xl : l = 1,2, . . . ,c}, {Yl : l = 1,2, . . . ,c},
{Fl : l = 1,2, . . . ,c} are partitions of X,Y,F respectively, and H = ∪c

l=1Tl . Note

that ifH is a single spanning tree graph, then we have c = 1 andH = T1.

We handle the disjoint trees separately, i.e., precoding vectors for sources

in Xl are designed independently of those for sources in Xk , k , l . Given l ∈
{1,2, . . . ,c}, we choose any Sal ∈ Xl as the tree root. Next, we de�ne L (l )

0 = {Sal },
L (l )

1 as the set of neighbor nodes of Sal in Tl , and L (l )
k+1 as the set of neighbors of

nodes in L (l )
k

for k ≥ 1 (these sets are levels of the BFS tree rooted at Sal ). Since Tl
is a bipartite graph, L (l )

2k+1 ⊆ Yl and L (l )
2k ⊆ Xl for k ≥ 0. �erea�er, we associate
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a (L + 1) × (L + 1) matrix Hij with (Sj ,Wi ) ∈ Fl , that is related to Mij as follows:

Hij :=

Mij , Sj ∈ L (l )

2k , Wi ∈ L (l )
2k+1, k ≥ 0,

M−1
ij , Sj ∈ L (l )

2k+2, Wi ∈ L (l )
2k+1, k ≥ 0.

�erefore, by construction,Hij is a diagonal matrix withhij (ξ (t ) ) as its (t ,t )th entry,

such that hij (ξ ) ≡ mij (ξ ) for Sj ∈ L (l )
2k , Wi ∈ L (l )

2k+1 with (Sj ,Wi ) ∈ Fl , and

hij (ξ ) ≡ (mij (ξ ))
−1 for Sj ∈ L (l )

2k+2,Wi ∈ L (l )
2k+1 with (Sj ,Wi ) ∈ Fl , for k ≥ 0.

We set Val = [θ (1)
l

θ (2)
l
· · · θ (L+1)

l
]T , where θ (k )

l
, k = 1,2, . . . ,L + 1, are vari-

ables that take values from Fq . Since H has the structure of a collection of trees,

there exists a unique path between Su and Sv , say Puv , if they are connected to

each other via edge(s). �en, given i , al and Si ∈ Xl , we assign Vi = TiVal , where

Ti =
∏

(u,v ):(Sv ,Wu )∈Pi,al
Huv .

Note that Ti is (L+1) × (L+1) diagonal matrix with (k ,k )th entry as ti (ξ (k ) ), where

ti (ξ ) ≡
∏

(u,v ):(Sv ,Wu )∈Pi,al
huv (ξ ).

�is choice of precoding vectors ensures MijVj = MikVk if Sj ,Sk ∈ Bi and |Bi | ≥ 2.

�erefore, the constraint dim(Wi ) = 1 is satis�ed for all i (this is trivially satis�ed

if |Bi | = 1). Also, the constraints dim(Wi ) = 1, dim(Ui ∩Wi ) = 0 are satis�ed

if and only if the set of vectors {MijVj : Sj ∈ Ai } and MikVk , for any k ∈ Bi ,
form a full rank (L + 1) × (L + 1) matrix, say Rik . Note that the entries of Rik are

rational functions based on multivariate polynomials in Fq[δ ], where δ comprises

of variables in ξ (k ) and the new variables θ (k )
l

, k = 1, . . . ,L + 1, l = 1, . . . ,c .
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�e fact whether Rik is full rank or not can be checked by computing the

determinant of Rik – if the determinant is a rational function such that the product

of its numerator and denominator, say rik (δ ) ∈ Fq[δ ], is non-trivial, then Rik is full

rank, else it is not. Also, computing these determinant values require time that

is polynomial in L, |F | and the transfer function degrees. �erefore, we need the

following polynomial to be non-trivial so that all constraints in (3.3) are satis�ed:

f (δ ) =
L+1∏
k=1

∏
(i,j ):mi j (ξ ).0

mij (ξ
(k ) )

K∏
i=1

∏
k<Ai

rik (δ ).

An assignment of δ from F(L+1) (s+c )
q that makes f (δ ) non-zero is guaranteed for

large enough Fq using Schwartz-Zippel Lemma. �erefore, this assignment of δ

enables each source to transmit at rate of 1
L+1 , and achieve sum rate of K

L+1 .

A.5 Proof of �eorem 3.3.2

Note that L = 2 for this case, therefore, we require a = b and n = 2a + b in

order to achieve a rate of a
n =

1
3 per source. �en the constraints dim(Wi ) = a for

all i , as given in (3.3), imply that precoding matrices satisfy the following relations:

M11V1A1 = M12V2, M22V2A2 = M23V3,

M33V3A3 = M34V4, M44V4A4 = M41V1,

where Ai , i = 1,2,3,4, are full rank a × a matrices. �ese relations result in the

equation TV1 = V1A, where T = M12M23M34M41(M11M22M33M44)
−1 and A =

A1A2A3A4; this imposes restrictions on choices of V1. T is a diagonal matrix with

its (k ,k )th entry as t (ξ (k ) ). �us, we have t (ξ (k ) )vk = vkA, where vk is the kth row
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of V1, k = 1,2, . . . ,n. �is means if vk is not the zero vector for some k , then it is

one of the le� eigenvectors of A and t (ξk ) is the corresponding eigenvalue [86].

Since t (ξ ) is not a constant in Fq , the eigenvectors form a linearly independent set

and A is full rank. �is implies vk is the zero vector for (n − a) instances of k , i.e.,

(n−a) rows of V1 are zero vectors. �en the four alignment relations stated above

imply that the corresponding (n − a) rows of Vi , i = 2,3,4, are also zero vectors.

One can check that these precoding matrices satisfy dim(Ui∩Wi ) > 0 for all i , that

makes recovery of desired messages impossible at each destination. �erefore, the

sources cannot achieve a rate of 1
3 each, with a = b using a PBNA-based coding

approach. However, if a < b and the relations in (3.3) could be satis�ed by some

choice of precoding matrices, the achievable rate per source would be at most
a

2a+b =
1

2+(b/a) . Hence, the only possibility for achieving rate close to 1
3 per source is

to choose a,b large enough such that b
a is very close to one; this in turn introduces

the requirement that the number of transmissions n should be very large.

A.6 Proof of �eorem 3.3.3

Note that |Āi | = L + |Ei | ≤ L + min(d , |Bi |), and |Āi | = L + d for at

least one Di . If |Āi | = L + d and B̄i , ∅ for all i , since H̄ has no cycles, we

can directly apply �eorem 3.3.1 to achieve a rate of 1
L+d+1 per source using PBNA

scheme under certain constraints. �e only other case is that |Āi | < L + d and/or

B̄i = ∅ for some values of i (note that B̄i = ∅ implies Di has chosen to decode

messages from all sources in Bi ). �en we can introduce unique arti�cial transfer

functions and auxiliary sources to make |Āi | = L + d and B̄i , ∅ for each such i .
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For example, if |Āi | = L +d − 2 and B̄i = ∅ for some i , we construct three dummy

sources, say S′1,S
′
2,S
′
3, and assume that the corresponding transfer functions with

respect to Di are a set of new variables ηi1, ηi2,γi3 respectively (that take values

from Fq). �erea�er, we make the updates Āi ← Āi ∪ {S′1,S′2} and B̄i ← {S′3}, so

that |Āi | = L + d and |B̄i | = 1. �us, this procedure ensures |Āi | = L + d , B̄i , ∅
for all i , and we can use �eorem 3.3.1 to complete the achievability proof.

A.7 Proof of �eorem 3.3.4

Note that d∗ lies between d( |F | − K −M + 1)/Me and b|F |/Mc sinceH is

connected, the number of edges in its spanning tree is K + M − 1, and at most Md

edges are removed fromH to obtainK ∗ (this implies |F |−K−M+1 < Md∗ < |F |).
Also, the edge-set of the complement ofK ∗ is a basis of M̄ ∩Md∗ . �e inner loop

of the algorithm corresponds to the greedy approach for generating a basis of

M̄ ∩ Md for given d . �e outer loop of the algorithm checks if the complement

of the basis forms a spanning tree for H by examining if the size of the obtained

basis is |F | −K −M + 1 or not. �is, along with the fact that all bases of a matroid

have the same size, shows that the algorithm returns d∗, K ∗ as answers.

As far as the computational complexity of the algorithm is concerned, the

membership of I ∪ {ei } in M̄ ∪ Md for each i and instance of d can be checked

by running BFS (or DFS) algorithm, that requires O ( |F |) time. �e inner for-loop

of the algorithm runs |F | times and the outer for-loop runs at most b|F |/Mc −
d( |F | − K −M + 1)/Me ≤

(
1 + K

M

)
times. �erefore, the algorithm has an overall

computational complexity of O (
(
1 + K

M

)
|F |2), ifH is a connected graph.
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Appendix B

Proofs for Chapter 4

B.1 Proof of �eorem 4.2.1

We de�ne R as the range of ϕ, i.e., the set of all graphs in Up that can be

returned as output by ϕ. Note that the domain of ϕ is Anp , that consists of |A|np

entries. Since the graph estimate can be at an edit distance of at most s from the

true graph, we have |R | ≤ B (s,G) |A|np . We de�ne I = {i : Gi ∈ R}; then we get

P (n)
e,s (ϕ) =

1
M

M∑
i=1

P (∆(Gi ,ϕ (X
n )) ≥ s |K = Ki )

≥ 1
M

∑
i∈Ic

P (∆(Gi ,ϕ (X
n )) ≥ s |K = Ki )

=
|Ic |
M

≥ 1 − |R|
M

≥ 1 − B (s,G) |A|np
M

,

where we use the fact that P (∆(Gi ,ϕ (X
n )) ≥ s |K = Ki ) = 1 for i ∈ Ic , as then

Gi ∈ Rc , ϕ (Xn ) ∈ R. We get the desired result using the de�nitions of R1,C .
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B.2 Proof of �eorem 4.2.2

We prove the result for the case whenA is a �nite set andK is an ensemble

of discrete Markov networks. �e proof for the case whenA = R and the Markov

networks have continuous p.d.f.’s is along the same lines. We �x ϵ > 0 and de�ne

Bi =
{
xn ∈ Anp : log2

f (xn |K = Ki )

f (xn )
≥ n(C2 + ϵ )

}
, i = 1,2, . . . ,M .

�us, Bi a�empts to capture those points in sample space where random variable

log2
f (X n |K=Ki )

f (X n ) exceeds its mean conditioned on K = Ki (strictly speaking, it only

contains a subset of those points as C2 is an upper bound on the mean of the

random variable). Given any learning algorithm ϕ, we de�ne the following sets:

Ri = {xn ∈ Anp : ∆(ϕ (xn ),Gi ) < s}, Si = {xn ∈ Anp : ϕ (xn ) = Gi },

for i = 1,2, . . . ,M . If B (s,Gi ) = {Gi1 , . . . ,Gik }, note that Ri = ∪kt=1Sit . Also,

Si ∩ Sj = ϕ for i , j. �us, the probability of error-free decoding by ϕ is given by

P (n)
c,s (ϕ) =

1
M

M∑
i=1

∑
xn∈Ri

f (xn |K = Ki )

=
1
M

M∑
i=1

∑
xn∈Ri∩Bc

i

f (xn |K = Ki ) + 1
M

M∑
i=1

∑
xn∈Ri∩Bi

f (xn |K = Ki ).

�e �rst term, involving the points in Ri ∩ Bc
i , i = 1,2, . . . ,M , can be bounded as

1
M

M∑
i=1

∑
xn∈Ri∩Bc

i

f (xn |K = Ki ) ≤ 2n(C2+ϵ )

M

M∑
i=1

∑
xn∈Ri∩Bc

i

f (xn )

≤ 2n(C2+ϵ )

M

M∑
i=1

∑
xn∈Ri

f (xn )
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≤ 2n(C2+ϵ )

M

M∑
i=1

|B (s,Gi ) |∑
t=1

∑
xn∈Sit

f (xn )

≤ 2n(C2+ϵ )

M
max
i
|B (s,Gi ) |

=
2n(C2+ϵ )

M
B (s,G)

≤ 2n(C2+ϵ )−R .

�e second term, involving points in Ri ∩ Bi , i = 1,2, . . . ,M , can be bounded as

1
M

M∑
i=1

∑
xn∈Ri∩Bi

f (xn |K = Ki ) ≤ 1
M

M∑
i=1

∑
xn∈Bi

f (xn |K = Ki )

=
1
M

M∑
i=1

P

(
log2

f (Xn |K = Ki )

f (Xn )
≥ n(C2 + ϵ )

���� K = Ki

)
.

Note that X (1), . . . ,X (n) are i.i.d. vectors, so we have the following simpli�cation:

var
(
log f (Xn |K = Ki )

f (Xn )

���� K = Ki

)
= var




n∑
j=1

log f (X (j ) |K = Ki )

f (X (j ) )

���� K = Ki




= n var
(
log f (X (1) |K = Ki )

f (X (1) )

���� K = Ki

)
,

where var(·) is the variance of random variable. We de�ne the following quantity:

A (K ) = max
1≤i≤M

var
(
log f (X (1) |K = Ki )

f (X (1) )

���� K = Ki

)
.

�erea�er, using the de�nition of C2 and applying Chebyshev’s inequality gives

P

(
log f (Xn |K = Ki )

f (Xn )
≥ n(C2 + ϵ )

���� K = Ki

)
≤ A (K )

nϵ2 ,

for i = 1,2, . . . ,M . Choosing ϵ = R−nC2
2n and the relation P (n)

e,s (ϕ) = 1− P (n)
c,s (ϕ) gives

P (n)
e,s (ϕ) ≥ 1 − 4nA (K )

(R − nC2)
2 − 2−

(R−nC2 )
2 .
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B.3 Proof of Lemma 4.2.3

�e �rst inequality follows from the proof of �eorem 1 in [60]. For the

second inequality, note that for any undirected graphs G = (V ,E (G )) ∈ Gp,d ,

H = (V ,E (H )) ∈ Up with ∆(G,H ) < s , we have |E (G,H ) | < s , where E (G,H ) is

the symmetric di�erence between the edge sets E (G ) and E (H ). In other words,

(V ,E (G,H )) is a graph on p nodes and at most s − 1 edges. �erefore, B (s,Gp,d ) is

no more than the number of graphs on p nodes and at most s − 1 edges. �is gives

B (s,Gp,d ) ≤
s−1∑
i=0

(p (p−1)
2
i

)
≤ s

(p (p−1)
2
s

)
< s

(p2

2
s

)
,

where we use the facts that
(
m
i

)
≤

(
m
j

)
for 0 ≤ i ≤ j ≤ m

2 , and 0 < s ≤ p (p−1)
4 .

B.4 Proof of �eorem 4.2.4

We make use of the relations proven in Lemma 4.2.3 to choose bound R as

R =
pd

4 log2
p

8d − log2

s
(p2

2
s

) .
Using the facts that

(
a
b

)
≤

(
a·e
b

)b
and s ≥ 2, we obtain the following lower bound:

R

C1
≥ 1

log2 |A|
((
d

4 −
2s
p

)
log2 p −

d

4 log2 8d
)
.

By hypothesis of the theorem, we have n < R
2C1

. �en �eorem 4.2.1 implies that

P (n)
e,s (ϕ) ≥ 1 − 2−

R
2 . (B.1)

Since d = o(pα ) for some α < 1 and 2 ≤ s < (1 − α ) pd16 , we have R = Θ(pd logp).

�is shows that the second term of the RHS of (B.1) goes to 0 as p → ∞ and hence

the probability of error of any ϕ approaches 1 as the problem size increases.
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B.5 Proof of Lemma 4.2.6

�e upper bound onB (s,G′
p,d
) follows from arguments similar to those used

in the proof of Lemma 4.2.3. For the lower bound on log2 |G′p,d |, note that there

are Np =
p!

2p/2 (p/2)! possible perfect matchings on a set of p nodes. �erefore, a

multigraph composed of d perfect matchings can be formed in (Np )
d ways. It is

possible that multiple copies of the same multigraph get generated during this

construction. Using Lemma 4.2.5, atleast
(
1 − c

pτ

)
(Np )

d of these multigraphs have

(weighted) adjacency matrix A satisfying ρ (A) < 3d1/2, for some constant c > 0.

Note that any given multigraph generated by d perfect matchings is a d-regular

graph and has pd
2 edges. In general, each of the edges can come from any of the d

perfect matchings. �erefore, a single multigraph can potentially be generated by

atmost d
pd
2 sets of d perfect matchings. Also, we desire that the multigraphs have

di�erent underlying undirected graph structures in Gp,d . �e fact that there can

be atmost d edges between two nodes of the multigraph and there are pd
2 edges

in total, gives the lower bound |G′
p,d
| ≥

(
1 − c

pτ

)
1

dpd
(Np )

d . Choosing p > (2c ) 1
τ

ensures that
(
1 − c

pτ

)
≥ 1

2 ; therea�er, we use the fact that p! ≥
(
p
2

) p
2
(
p
2

)
! to get

log2 |G′p,d | ≥ log2


1
dpd

(
1 − c

pτ

) (
p!

2p/2(p/2)!

)d ≥
pd

2 log2
p

4d2 − 1.

B.6 Proof of Lemma 4.2.7

By de�nition we have I (Ki ;X (1) ) = h(X (1) ) − h(X (1) |K = Ki ). Note that

the di�erential entropy of X (1) is upper bounded by the di�erential entropy of a

Gaussian random vector with the same covariance matrix [1]. �is givesh(X (1) ) ≤
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1
2 log2(2πe )p |Σ̄|, where Σ̄ = 1

M

∑M
i=1 Σi and Σi = Θ−1

i is the covariance matrix asso-

ciated with Ki . We also have h(X (1) |K = Ki ) =
1
2 log2(2πe )p |Σi |. �us, this implies

I (Ki ;X (1) ) ≤ 1
2 (log2 |Σ̄| − log2 |Σi |) =

1
2 (log2 |Σ̄| + log2 |Θi |).

By construction, the diagonal entries of Θi are same and equal to 4d1/2µ+δ . �ere-

fore, by Hadamard’s Inequality, |Θi | ≤ (4d1/2µ + δ )p . Also, the minimum eigen-

value of Θi is atleast δ . �is means that the maximum eigenvalue of Σi is at-

most 1
δ or | |Σi | |2 ≤ 1

δ . Hence, the maximum eigenvalue of Σ̄ does not exceed 1
δ as

| |Σ̄| |2 ≤ 1
M

∑M
i=1 | |Σi | |2. �is gives |Σ̄| ≤ | |Σ̄| |p2 ≤ 1

δ p . �e use of these bounds give

I (Ki ;X (1) ) ≤ p

2 log2

(
1 + 4d1/2µ

δ

)
=
p

2 log2

(
1 + 4d1/2

λ−1 − 4d1/2

)
,

where we substitute µ = δ
λ−1−4d1/2 to get the last term in the above relation.

B.7 Proof of �eorem 4.2.8

We use the relations in Lemmas 4.2.6 and 4.2.7 to choose bounds R,C2 as

R =
pd

2 log2
p

4d2 − log2

[
s

(
p2/2
s

)]
− 1,

C2 =
p

2 log2

(
1 + 4d1/2

λ−1 − 4d1/2

)
.

Using the facts that
(
a
b

)
≤

(
a·e
b

)b
and s ≥ 2, we obtain the following lower bound:

R

C2
≥

(
d − 4s

p

)
log2 p − 2d log2 2d

log2
(
1 + 4d1/2

λ−1−4d1/2

) .

By hypothesis of the theorem, we have n < R
2C2

. �en �eorem 4.2.2 implies that

P (n)
e,s (ϕ) ≥ 1 −

8A(KG
p,d
)

RC2
− 2−

R
4 . (B.2)
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Analogous to the proof of �eorem B.4, the last term in the RHS of (B.2) goes

to 0 as p → ∞, as d = o(pα ) for some α < 1
2 and 2 ≤ s < (1 − 2α ) pd8 implies

R = Θ(pd log2 p). It remains to show that the second term in RHS of (B.2) goes to

0 as p → ∞; we do this by deriving a suitable upper bound for A(KG
p,d
).

We derive a deterministic bound on the variance of log2
f (X (1) |K=Ki )

f (X (1) )
. We

de�ne δmax = maxi |Θi |, δmin = mini |Θi |, λmax to be the maximum among the

eigenvalues of Θi , i = 1,2, . . . ,M , and Θ̄ = 1
M

∑M
i=1 Θi . �en given x ∈ Rp , we have

f (x |K = Ki )

f (x )
=

|Θi |1/2 exp(− 1
2x

TΘix )
1
M

∑M
j=1 |Θj |1/2 exp(− 1

2x
TΘjx )

≤ δ 1/2
max

δ 1/2
min

1
1
M

∑M
j=1 exp(− 1

2x
TΘjx )

≤ δ 1/2
max

δ 1/2
min

exp
(1
2x

T Θ̄x
)

≤ δ 1/2
max

δ 1/2
min

exp
(
λmax

2 xTx

)
⇒ log2

f (x |K = Ki )

f (x )
≤ 1

2 log2
δmax
δmin

+ λmax
2 xTx , (B.3)

f (x |K = Ki )

f (x )
=

|Θi |1/2 exp(− 1
2x

TΘix )
1
M

∑M
j=1 |Θj |1/2 exp(− 1

2x
TΘjx )

≥ δ 1/2
min

δ 1/2
max

exp
(
−1

2x
TΘix

)
≥ δ 1/2

min

δ 1/2
max

exp
(
−λmax

2 xTx

)
⇒ log2

f (x |K = Ki )

f (x )
≥ −1

2 log2
δmax
δmin

− λmax
2 xTx . (B.4)
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�us, the joint use of inequalities (B.3) and (B.4) for random variable X ∈ Rp gives

�����log2
f (X |K = Ki )

f (X )

����� ≤
1
2 log2

δmax
δmin

+ λmax
2 XTX ,

which in turn leads to the following upper bound on the variance of log2
f (X |K=Ki )

f (X ) :

var
(
log2

f (X |K = Ki )

f (X )

���� K = Ki

)
≤ 1

2

(
log2

δmax
δmin

)2
+
λ2

max
2 E[(XTX )2 |K = Ki].

For the given ensemble, we have δmax ≤ (4d1/2µ + δ )p , δmin ≥ δp , λmax = (d +

4d1/2)µ + δ ≤ 5dµ + δ , where µ = δ
λ−1−4d1/2 . We also have E[(XTX )2 |K = Ki] =

(Tr(Θ−1
i ))2 + Tr(2Θ−2

i ) ≤ p2+2p
δ 2 ≤ 2p2

δ 2 . Using these, we compute the desired bound:

A(KG
p,d ) = max

1≤i≤M
var

(
log2

f (X |K = Ki )

f (X )

���� K = Ki

)
≤ 3p2

2

(
1 + 5d

λ−1 − 4d1/2

)2
.

For λ = O
(

1
d1/2

)
, A(KG

p,d
) = O (p2d ). Using the de�nitions of R,C2 and scaling of

A(KG
p,d
), we see that the second term of RHS of (B.2) goes to 0 as p → ∞; hence,

the probability of error of any ϕ approaches 1 as the problem size increases.

B.8 Proof of Lemma 4.3.1

�e number of matchings that give rise to the same simple graph in G (d) is∏
i∈V di !. �erefore, the probability of choosing a speci�c simple graph, provided

F is selected uniformly at random, from G (d) is equal to 1
N2m

∏
i∈V di !. Also, as

mentioned in [81], the probability of a graph being simple in G (d) is at least qs
2 for

large p. �us, we have |Gs (d) |( 1
N2m

∏
i∈V di !) ≥ qs

2 – rearranging this gives the �rst

inequality. �e second inequality follows from the �rst inequality and the facts

that N2m =
∏m

j=1(
m+j

2 ) ≥ (m2 )
m, di ! ≤ ddii for i ∈ V , and D1 = 2m = ∑

i∈V di .
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B.9 Proof of Lemma 4.3.3

�e use of Lemma 4.3.1 and de�nition of power-law degree sequence gives

log2 |Gs,α | ≥ pζ (α )
dmax∑

k=dmin

k1−α log2

(
m1/2

2k

)
− ν − ν

2

2 − 1.

Given dmin exceeds some constant in value and p is chosen large enough, we can

make use of Lemma 4.3.2, the lower and upper bounds given in (4.1), and assump-

tions on scalings of dmin,dmax, with respect to p, to obtain the following relations:

ζ (α ) =
1
S0
≥ (α − 1)

2 dα−1
min , 2m = D1 = p

S1
S0
≥ pd̄

4 , ν ≤ D2
D1
=
S2
S1
≤ 4d̃,

dmax∑
k=dmin

k1−α log2

(
m1/2

2k

)
≥

∫ dmax

dmin

x1−α log2

(
m1/2

2x

)
≥ d̄d1−α

min
4(α − 1) log2

(
(α − 1)
|α − 2| p

)
.

Using the above inequalities and considering large p give the desired bound.

B.10 Proof of Lemma 4.3.4

We prove that the property in the theorem statement holds with high prob-

ability for a uniformly generated graph in Gα ; then this would imply that the prop-

erty holds with high probability for a uniformly chosen graph from Gs,α , due to

the assumptions made on dmin,dmax (that ensures Gs,α is a subset of Gα of signif-

icant size). Note that if this property does not hold for a graph in Gα , it means

there exist two cycles in the r0-neighborhood of some node. To be precise, there

exists a path of nodes (i1,i2, . . . ,ik ), il ∈ V , with 4 ≤ k ≤ l0 = 2r0 + 1, along-

side edges (i1,iu ), (ik ,iv ) for some 1 < u,v < k . Also, for large values of p,

m (= Θ(p)) ≥ 3k (= O (log2 p)), so that 2m − i ≥ m, 1 ≤ i ≤ 3k . �us, the
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probability that such a path exists in uniform choice from Gα is bounded above by

di1di2
2m − 1

(di2 − 1)di3
2m − 3 · · · (dik−1 − 1)dik

2m − 2k + 1
(di1 − 2) (diu − 2)

2m − 2k − 1
(dik − 2) (div − 2)

2m − 2k − 3

≤
l0∑
k=4

∑
1<u,v<k

∑
i1,i2,...,ik

di1diu
m

dikdiv
m

k∏
l=1

d2
il

m
≤

l0∑
k=4

k2D2
3D

k−1
2

mk+2 =
6l2

0D
2
3

D2m2

(D2
m

)l0
.

Sincem = D1
2 ,Dl = p

Sl
S0

, we make can use of the relations in (4.1) to bound the above

probability as O (p−
1
2 (log2 p)

2d5−α
maxd

α−3
min ) for α ∈ (2,3), O (p−

1
2 (log2 p)

2d2(4−α )
max d2α−6

min )

for α ∈ (3,4), and O (p−
1
2 (log2 p)

2d2
min) for α ∈ (4,∞). �e scalings of dmin,dmax

by assumptions (A1), (A2) ensure that the probability scaling is at most p−Θ(1) for

graphs in Gα . �is demonstrates that the property holds for uniformly gener-

ated/selected graphs from Gα and Gs,α with high probability (≥ 1 − p−Θ(1)).

B.11 Proof of Lemma 4.3.5

Analogous to the proof of Lemma 4.3.4, we show the result holds for a

graph in Gα generated by choosing a matching uniformly at random. Given i ∈ V
with degree di , we consider the spanning tree of its r0-neighborhood (in case

multiple edges exist between two nodes, we replace it by a single edge for the

r0-neighborhood). Note that by �eorem 4.3.4, the r0-neighborhood of i is al-

most a tree having at most B (i,r0) + 1 edges with high probability. �erefore,

using a well-established result the spanning tree structure (over uniform choice

of matching) is stochastically dominated by the following two-stage (truncated)

branching process (provideddmin exceeds some constant andp is su�ciently large)

[16]– a root node connected to di o�spring nodes in the �rst generation, and
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each node connected to N o�spring nodes in the subsequent generations (we con-

sider r0 generations in total), where N is an integral random variable with p.m.f.

P (N = k ) ∝ (k + 1) fk+1, dmin − 1 ≤ k ≤ dmax − 1, and fk is the fraction of nodes

with degree k in the power-law con�guration model. We de�ne Zr , r ≥ 0, as the

number of nodes in the r th generation of the branching process. �en an alternate

way of describing the branching process is via the sequence {Zr : r ≥ 0} – we set

Z0 = 1, Z1 = di , Zr = N1 + N2 + · · · + NZr−1 , r ≥ 2, where Nj ’s are i.i.d. realizations

of N . �us, we have P (B (i,r ) > x ) ≤ P (Zr > x ), for x ∈ R and 0 ≤ r ≤ r0.

Note that P (N = k ) = (k + 1)1−αS−1
1 , dmin − 1 ≤ k ≤ dmax − 1; this implies

E[N t ] ∈


(
(α − 2)

4(t + 2 − α )d
t+2−α
max dα−2

min ,
4(α − 2)
(t + 2 − α )d

t+2−α
max dα−2

min

)
,α ∈ (2,t + 2),(

(α − 2)
4(α − t − 2)d

t
min,

4(α − 2)
(α − t − 2)d

t
min

)
,α ∈ (t + 2,∞),

for t ∈ R, where we utilize the bounds in (4.1). {Zr , r ≥ 1}, is a bounded sequence

as dmin ≤ Zr ≤ drmax; therefore, E[Zr ] = di (E[N ])r−1 ≤ di (4d̃ )r−1, by property of

branching processes. Given positive integers s,t , using �eorem 1 from [87] gives

E[(N1 + N2 + · · · + Ns )
t ] ≤ (2e2)tst (E[N ])t + (t + 1)tsE[N t ]).

�is result allows us to bound E[Z t
r ], r ≥ 2, in terms of E[Zr−1], E[Z t

r−1], as follows:

E[Z t
r ] ≤ (2e2)tE[Z t

r−1](E[N ])t + (t + 1)tE[Zr−1]E[N t ],

where we use the de�nition Zr = N1 + · · · + NZr−1 . Solving these recursively gives

E[Z t
r ] ≤ dti (2e2E[N ]) (r−1)t

(
1 + 2

(t + 1
2

)t
e−2t E[N t ]

(E[N ])t

)
.
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If we choose t > (α − 2), then for large dmax we get the following upper bounds:

E[Z t
r ] ≤



9(3 − α )t−1

(α − 2)t−1 (t + 1)t
(
dmax
dmin

)t (α−2)
dti (64d̃ ) (r−1)t , α ∈ (2,3),

9(α − 3)
(t + 2 − α ) (t + 1)t

(
dmax
dmin

)t+2−α
dti (64d̃ ) (r−1)t , α ∈ (3,∞).

Note that P (B (i,r ) < x ) ≤ P (Zr < x ) = P (Z t
r < xt ) ≤ E[Z t

r ]
x t . As assumptions (A1),

(A2) hold, se�ing t = 4, x = p
1
4 + ϵ

2di (64d̃ ) (r−1) for α ∈ (2,3), and t = 16dα − 2e,
x = p

1
4 + ϵ

8di (64d̃ ) (r−1) for α ∈ (3,∞), leads to a concentration result for the r -

neighborhood of node i , 1 ≤ r ≤ r0. �e desired concentration result follows from

using the union bound inequality on these individual concentration results.

B.12 Proof of �eorem 4.3.6

�e proof follows from the application of �eorem 4.2.1 and Lemma 4.3.3

with s = 0, since we require exact recovery by the learning algorithm ϕ. Note that

B (0,Gs,α ) = 1, so we choose R = log2 |Gs,α | and C1 = p log2 |A|. �e given bound

on n leads to P (n)
e (ϕ) ≥ 1 − 2−Θ(pd̄ log2 p) – this value approaches 1 as p → ∞.

B.13 Proof of �eorem 4.3.8

�e result of Lemma 4.3.4 implies that the size of r0-separator set for non-

neighboring nodes i, j in a graph from Gs,α is at most two with high probability

(≥ 1 − p−Θ(1)), since the presence of at most one cycle in any r0-neighborhood

means that there are at most two distinct paths of length at most r0 between any

two non-neighboring nodes. We de�ne the r0-separator set for i, j as U ∗ ⊆ V

(|U ∗ | ≤ 2). By construction of the SAW tree, A(i,r0), the number of the nodes at a
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distance of r0 from i in the SAW tree with i as its root satis�es A(i,r0) ≤ 2B (i,r0)

with probability ≥ 1 − p−Θ(1) . �us, applying Lemma 4.3.7 to i, j and set U ∗ gives

| f (xi |xj = 1,xU ∗ ) − f (xi |xj = −1,xU ∗ ) | ≤ 2B (i,r0) (tanhθmax)
r0 ,

for all xi ∈ {−1,1}, xU ∗ ∈ {−1,1} |U ∗ | . �is implies ρ (i, j ) ≤ 2Bi,r0 (tanhθmax)
r0 ,

since we can take maximum over xi ,xU ∗ , followed by minimum over all node sets

U satisfying |U | ≤ 2, both on LHS. Given assumptions (A1), (A2) hold, the use

of constraint tanhθmax <
1

(64d̃ )2
and the probabilistic upper bounds on B (i,r0),

derived in Lemma 4.3.5, gives ρ (i, j ) = o(p−
1
5 ) for α ∈ (2,3), and ρ (i, j ) = o(p−

1
50 )

for α ∈ (3,∞) (ϵ = 1
2 in both cases) for all pairs of non-neighboring nodes i, j with

high probability (≥ 1 − p−Θ(1)); thereby completing the proof of the theorem.

B.14 Proof of �eorem 4.3.9

We use a result from [83] for ferromagnetic Ising model which states that

max
xi∈{−1,1}

| f (xi |xj = 1) − f (xi |xj = −1) | ≥ 1 − e−4θmin

16 , (B.5)

if i, j are neighboring nodes. An interesting property of ferromagnetic Ising model

is that for any pair of nodes u,v , f (·|xU ), xU ∈ {−1,1} |U | , is also a ferromagnetic

Ising model with the same edge weights, but modi�ed node potentials. �is implies

max
xi∈{−1,1}

| f (xi |xj = 1,xU ) − f (xi |xj = −1,xU ) | ≥ 1 − e−4θmin

16 .

�e desired bound on ρ (i, j ) is obtained a�er taking maximum over xU on RHS,

followed by taking minimum over all node sets U with |U | ≤ 2 on RHS again.
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B.15 Proof of �eorem 4.3.10

We make use of the following concentration result, that is derived in [61]:

P ( max
xi ,x j ,xU

| f (xi |xj ,xU ) − f̂ (xi |xj ,xU ) | > γ ) ≤ 2|U |+3 exp

−nγ

2 f 2
min,U

2(γ + 2)2


 ,

where i, j are any pair of nodes,U is any node set, and fmin,U = minxU f (xU ). �us,

restricting the choice of U to |U | ≤ 2 and the fact fmin = minxU :|U |≤2 f (xU ) gives

P ( max
xi ,x j ,xU

| f (xi |xj ,xU ) − f̂ (xi |xj ,xU ) | > γ ) ≤ 32 exp

− nγ 2 f 2

min
2(γ + 2)2


 .

Note that absolute di�erence between | f (xi |xj = 1,xU ) − f (xi |xj = −1,xU ) | and

| f̂ (xi |xj = 1,xU ) − f̂ (xi |xj = −1,xU ) | is at most 2γ if | f (xi |xj = 1,xU ) − f̂ (xi |xj =
1,xU ) | ≤ γ and | f (xi |xj = −1,xU ) − f̂ (xi |xj = −1,xU ) | ≤ γ . �en the desired result

follows a�er application of union bound inequality over all choices of i, j,U .

B.16 Proof of �eorem 4.3.11

Note that since Assumptions (A1), (A2) hold, θmin = Ω( 1
(logp)r ) for some

constant r > 0, and �eorems 4.3.8, 4.3.9 are satis�ed, as long as |ρ̂ (i, j ) − ρ (i, j ) | <
ζn,p

2 , the decision whether edge (i, j ) exists or not is made correctly by learning

algorithm ϕ∗. �erefore, the probability of exact graph recovery by ϕ∗ is at least

P

(
|ρ̂ (i, j ) − ρ (i, j ) | < ζn,p

2 ∀i, j ∈ V
)
≥ 1 − 192p4 exp


− nζ 2

n,p f
2

min
2(8 + ζn,p )2


 .

�us, to ensure that the probability of correct recovery is ≥ 1−p−Θ(1) , it su�ces to

have the bound on n as mentioned in the theorem statement. �e computational

complexity of O (p4) results from the fact that we need to compute all empirical

marginal probabilities having at most 4 variables and provide them to ϕ∗.
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