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Abstract

Specht modules occupy a position of central importance in the representation theory of
both the symmetric and Iwahori-Hecke algebras, and there is hence considerable interest
in achieving a greater understanding of their structure. To this end, over the past thirty
years there has been much study undertaken of the homomorphism spaces between these
modules, with a particular emphasis being placed upon the construction of explicit homo-
morphisms between Specht modules.

Being a generalization of the Iwahori-Hecke algebra of type A, Specht modules are of a
similar importance to the Ariki-Koike algebra. In this thesis we provide and analogue
of James’s kernel intersection theorem, the latter having been a key tool in the study
of homomorphisms between Specht modules in the setting of both the symmetric group
and the Iwahori-Hecke algebra of type A. We also provide and outline of how this result
may be used to construct homomorphisms between Specht modules for the Iwahori-Hecke
algebra of type B. Additionally, as a byproduct of this work, we include a sufficient con-
dition for certain kinds of commonly encountered tableaux to determine homomorphisms
between analogues of Young’s permutation modules and the Specht modules.
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3.3.3 Generating Mλ∩Ȟ λ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.4 Homomorphisms and Quasi-Semistandard Tableaux . . . . . . . . . . . . . . 50

4 One Node Homomorphisms 51
4.1 Chapter Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2 Characterizing Tableaux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.3 Describing Homomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.4 The Image of mλl

(1) under a Semistandard Homomorphism . . . . . . . . . . 59
4.5 Manipulating Maps: Semi-standardization . . . . . . . . . . . . . . . . . . . . 67

4.5.1 Semi-standardizing Θ
(
mλd

(s)
d,t

)
. . . . . . . . . . . . . . . . . . . . . . . 68

4.5.2 Semi-standardizing Θ
(
mλl

(s)
)

. . . . . . . . . . . . . . . . . . . . . . . . 77
4.6 Killing off Homomorphisms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4



4.6.1 When does Θ
(
mλd

(s)
d,t

)
= 0? . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.6.2 When Does Θ(mλl
(1))= 0? . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.7 An Example of an Explicit Homomorphism . . . . . . . . . . . . . . . . . . . . 85

5 Concluding Remarks 92

5



Chapter 1

Introduction

First described by Ariki and Koike [4] and, independently, by Broué and Malle [7], the
Ariki-Koike algebra Hr,n can most easily be thought of as a particular deformation of the
group algebra of the complex reflection group Z/rZoSn. In the case of Ariki and Koike’s pa-
per, their algebra arises as a natural generalization of the Iwahori-Hecke algebras of type
A and type B, both of which can be considered special cases of the Ariki-Koike algebra.
Broué and Malle, on the other hand, were concerned with constructing such deformations
for a more general class of complex reflection groups, being motivated by possible, and
presently still conjectured, applications to Lie theory (see, for instance, [6] for further
details).

In addition to its obvious connections to the study of Iwahori-Hecke algebras of type A and
type B, and those conjectured to exist with Lie theory, the Ariki-Koike algebra also ap-
pears in other related areas of mathematics. For instance, in knot theory the Ariki-Koike
algebra has led in part to a generalization of the Birman-Murakami-Wenzl algebras [25]
that play a role in the study of non-intersecting knots in a solid torus. There is also consid-
erable current interest in the deep relationship between certain topics in quantum group
theory and the representation theory Ariki-Koike algebra. Although specific examples of
this relationship will be reviewed in due course of this introduction, we refer the reader
to [3] and [36] for a broader, more comprehensive account of this topic.

The purpose of this chapter is to provide a brief overview of historical and more recent
developments in the representation theory of the Ariki-Koike algebra. We focus in partic-
ular on those most relevant to this thesis, i.e. those pertaining to the study of spaces of
homomorphisms between pairs of Specht modules. Before continuing, the reader should
be aware that in this thesis we concentrate almost entirely upon the Ariki-Koike algebra
as defined over a basis due to Dipper, James, Mathas, and Murphy [21]. As such, the
introduction we provide is very much confined to this setting and rather limited in scope.
Unfortunately, this means that a number of topics and a wealth of research conducted in
other settings is not discussed. In compensation, the reader is directed to more complete
surveys provided in [22], [40], and [34].
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The Representation Theory of Hr,n

Much is already known about the representation theory of the Ariki-Koike algebra. Not
surprisingly given its origins, this has been found to have a number of features in common
with that of the Iwahori-Hecke algebra of Type A and the symmetric group Sn; indeed,
much of the development of this subject has been a process of attempting to generalize
results from these two better known structures. In this section we provide an account
of some of the most important, aspects of the established representation theory of Hr,n

relevant to the material appearing in later chapters.

Cellular Algebras, Cell Modules, and Irreducible Modules

One of the most important feature shared with the Iwahori-Hecke algebra of type A is
that the Ariki-Koike algebra is ‘cellular’. Motivated by properties of the much studied
Kazhdan-Lusztig canonical basis of the former algebra [34], the notion of a cellular al-
gebra was introduced by Graham and Lehrer in [24]. One very useful property of such
algebras is that a great deal of their representation theory can be determined from the
cellular structure alone. For instance, once identified as being cellular, the irreducible
modules of the algebra in question are immediately characterized as being the simple
heads, relative to a particular bilinear form arising from the multiplicative properties of
cellular algebras, of a class of so-called ‘cell’ modules.

As this suggests, these cell modules occupy an important position in the representation
theory of cellular algebras, and determining their structure is consequently of much in-
terest. To this end, a major contemporary research direction is focused on decomposition
numbers, these being the multiplicities with which each simple module appears as a com-
position factor of a given cell module, computing these being equivalent to computing the
multiplicities of cell modules appearing as composition factors of the principal indecom-
posable modules.

Before we consider the Ariki-Koike algebra, it’s worthwhile mentioning that a given al-
gebra is defined as being cellular if it has a cellular basis, this being a basis satisfying
certain ‘nice’ multiplicative properties. However, such an algebra may have more than
one cellular basis, and those modules that comprise the cell modules differs over differ-
ent cellular basis. For instance, the cell modules for the Iwahori-Hecke algebra of type
A defined by Kazhdan and Lusztig in [34], Dipper and James in [10], and Murphy [44]
differ, although they are isomorphic (see [44] and [42]).

The Representation Theory of the Ariki-Koike Algebra

As has already been mentioned, the Ariki-Koike algebra is cellular. The cellular basis
of the Ariki-Koike algebra that we work with in this thesis is due to Dipper, James, and
Mathas [21], this being a generalization the Murphy basis of the Iwahori-Hecke algebra
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of type A constructed in [44] and [45]. This basis is indexed by pairs of standard Young
tableaux, giving the representation theory of the Ariki-Koike algebra a combinatorial fla-
vour very reminiscent of that of the Iwahori-Hecke algebras and the symmetric group. In
particular, there are a number of striking similarities with the representation theory of
the Iwahori-Hecke algebra of type A as set out in [39]. The cell modules with respect to
this basis are the Specht modules, as defined in [21], themselves a generalization of the
Specht modules that occur in the representation theory of the Iwahori-Hecke algebra of
type A. Here, each Specht module Sλ, where λ is a multipartition, is defined as a quotient
of a particular right ideal Mλ of Hr,n, and a clear strategy for constructing homomorph-
isms Θ̂ : Sλ → Sμ between Specht modules is to analyse the structure of homomorphisms
Θ : Mλ → Sμ and determine when we can factor these homomorphisms through Sλ. This
topic will be discussed in much greater detail once we have covered some of the most
important developments in the study of the Ariki-Koike algebra.

The simple Hr,n-modules were fully classified in arbitrary characteristic by Ariki in [2]
and Ariki and Mathas in [5]. These simple modules are indexed by combinatorial objects
known as ‘Kleshchev Multipartitions’, which can be considered as a (highly non-trivial)
generalization of the e-restricted partitions appearing in [10] indexing the irreducible
modules for the Iwahori-Hecke algebra of type A. The proof of this classification draws
heavily on the theory of crystal bases of quantum groups developed by Kashiwara [33]
and is covered in depth in [26]. A development closely related to this classification of
the simple modules, and one that again makes use of the connection between Hr,n and
quantum groups, is that in characteristic zero the decomposition numbers of the Ariki-
Koike algebra are known, this being due to results of Ariki [1], Uglov [47], and James
and Mathas [32]. Despite this being a major development, it should be remarked that the
decomposition numbers are known only ‘in principle’, in so much as they can be calcu-
lated by a recursive algorithm. As such, even in characteristic zero, there remains much
interest in studying decompositions, particularly with a view to finding a closed formula.
More generally, a major open problem is James’ Conjecture [30], the hypothesis of which
being that, in certain specific cases, the decomposition numbers of the Iwahori-Hecke al-
gebra of type A are the same in both prime and zero characteristic. Although a vast
subject and one well beyond the scope of this thesis, some recent developments in this
area and background to the problem of solving James’ Conjecture are given in [16], [17]
and [23].

A useful tool in the study of the Ariki-Koike algebra is the cyclotomic q-Schur algebra
introduced in [21], this being the endomorphism algebra of the direct sum of certain right
ideals of Hr,n. As in the case of the Iwahori-Hecke algebra of type A and the q-Schur al-
gebra, and the symmetric group and the Schur algebra, a close relationship exists between
the representation theory of these two structures. This is particularly the case for the de-
composition numbers and block structure of the two algebras (see [31] and [39, Theorem
5.5] respectively). In fact, it is the q-Schur algebra that provides much of the motiva-
tion for the Dipper-James-Mathas-Murphy basis, since this can be ‘lifted’ to a basis of
the q-Schur algebra in the sense that elements of the latter can be expressed as a linear
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combination of elements of the former.

Finally, an important and more recent development in the representation theory of the
Ariki-Koike algebra, and one well beyond the scope of this thesis, involves the Khovanov-
Lauda-Rouquier algebra. First introduced in [35] and, independently, in [46], these are
graded algebras arising from ongoing efforts to categorify quantum groups. Their rel-
evance here is that the Ariki-Koike algebra is in fact a special case of the Khovanov-
Lauda-Rouquier algebra, an isomorphism between the Ariki-Koike algebra and a certain
Khovanov-Lauda-Rouquier algebra being due to Brundan and Kleshchev [8]. This discov-
ery establishes a non-trivial Z-grading of the Ariki-Koike algebra, and both this grading
and the more general connection with the Khovanov-Lauda-Rouquier algebras have been
the subject of considerable interest since they were first established.

Homomorphisms Between Specht Modules

In the case of the symmetric group and the Iwahori-Hecke algebra of type A, the struc-
ture of the space of homomorphisms between Specht modules has attracted considerable
attention. We now provide a summary of developments in this area that are most relevant
to this thesis.

The Symmetric Group

Two of the first major results relating to the study of Specht modules and the homo-
morphism spaces between them are the kernel intersection theorem [28, Corollary 17.18],
which expresses each Specht module as an intersection of certain homomorphisms, and
the semistandard homomorphism theorem [28, Theorem 13.13]. As long as the character-
istic of the ground field of the group algebra is not equal to 2, the latter result provides
a basis for the homomorphism space from a given Specht module to one of Young’s per-
mutation modules. The theorem still provides a basis of such homomorphism spaces in
the case where the characteristic of the ground field is equal to two, but only for a certain
class of Specht modules. The significance of these results to this thesis is that they have
provided much of the theoretical foundation and inspiration for many later developments,
including our own.

In [19] Fayers and Lyle decompose the homomorphism space between Specht modules as
a tensor product of homomorphism spaces between Specht modules of ‘smaller’ algebras,
these being obtained by removing rows and columns from the partitions indexing the
former Specht modules. A similar process was used by James [29] and Donkin [13] to
study the decomposition numbers of the symmetric group algebra.

This was subsequently used by Fayers and Martin in [20], building upon and generalizing
an earlier result of Carter and Payne [9], to determine when the homomorphism space
between certain pairs of Specht modules are non-zero. It is significant that, whereas the
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result of Carter and Payne employs an argument based in geometry, the methods em-
ployed by Fayers and Martin are far more constructive and achieve a similar aim via
combinatorial reasoning; in particular, the combinatorics of tableaux are used to con-
struct explicit examples of homomorphisms, this being an approach that forms much of
the basis of this thesis. As an explicit example of such results being used to investigate
the structure of Specht modules, a recent paper [12] by Dodge and Fayers partly uses [20]
to exhibit what are, in the authors’ own words, the first new examples of decomposable
Specht modules to be found in the last thirty years. The last published instance of such
examples of decomposable Specht modules being due to Murphy in 1980 [43].

The Iwahori-Hecke Algebra of Type A

One of the first results pertaining to the study of the space of homomorphisms between
Specht modules of the Iwahori-Hecke algebra of type A was the generalization of the
kernel intersection theorem, this appearing in [10]. A generalization of the semistand-
ard homomorphism theorem subsequently appeared in [11], and thus set the stage for
a similar analysis of homomorphism spaces and programme of research as that applied
previously to the representation theory of the Symmetric group.

Following the work of Fayers and Martin in [20] and working in the same combinatorial
setting, Lyle produced a similar construction of homomorphisms between Specht modules
for the Iwahori-Hecke algebra of type A [37]. This, combined with [14] led to a classific-
ation of the reducible Specht modules when q 6= −1; when q =−1 or F is of characteristic
zero we have only a necessary condition for the reducibility of Specht modules [15].

This method of constructing homomorphisms between Specht modules applies only to
the classical non-cellular setting of Dipper and James. In the more modern view of the
Iwahori-Hecke algebra of type A as a cellular algebra, our definition of the Specht modules
differs considerably and hence we cannot call upon the kernel intersection theorem of
Dipper and James. Addressing this problem, a ‘cellular analogue’ of this theorem was
recently developed by Lyle [38].

In general, the constructions of homomorphisms in either setting is a difficult and very
technical matter, one that is wholly dependent on our ability to express homomorphisms
in terms of the elements of a certain basis of the homomorphism space. This has meant
that, until recently, such constructions have been limited to individual special cases.
Fayers addresses this in [18] by providing an algorithm for computing the homomorph-
ism space between arbitrary pairs of Specht modules, thus removing one of the biggest
obstacles faced when studying such spaces.
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The Ariki-Koike Algebra and this Thesis

To date there has been little research into the homomorphism spaces between Specht
modules for the Ariki-Koike algebra. In this thesis we generalize [38], providing an
analogue of the kernel intersection theorem appropriate to the Dipper-James-Mathas-
Murphy basis of the Ariki-Koike algebra. In principle, this allows us to identify when
a homomorphism Θ : Mλ → Sμ can be factored through Sλ to provide a homomorphism
Θ̂ : Sλ → Sμ, as well as a means of constructing homomorphisms between Specht modules
using basis elements of HomHr,n (Mλ,Sμ). Although such constructions are generally dif-
ficult in practice, we apply this result to construct homomorphisms between certain pairs
of Specht modules, much in the same way that Lyle constructed ‘one-node homomorph-
isms’ between Specht modules for the Iwahori-Hecke algebra of type A in [37]. We also
provide a sufficient condition for tableaux to determine homomorphisms between Young
permutation modules of the Ariki-Koike algebra.

Unfortunately, our results are more limited than those of [20], [37], or [38]. This is be-
cause we cannot currently say when those homomorphisms in HomHr,n (Sλ,Sμ) that can
be extended to elements of HomHr,n (Mλ,Sμ) comprise the entire homomorphism space
HomHr,n (Sλ,Sμ). An analogue, described later in Conjecture 1, of the semistandard ho-
momorphism theorem mentioned earlier would resolve this question, and it is believed
that such an analogue is possible. As such, a natural continuation of the research presen-
ted in this thesis would consist of:

• Deducing an analogue of the semistandard homomorphism theorem;

• Generalizing the results appearing in [18] to the Ariki-Koike algebra. Doing so
would allow us to methodically extend our method of constructing homomorphisms
considerably further than the special cases considered in this thesis. The author
believes that this should be relatively straightforward; and

• Providing a necessary condition for tableaux to determine a homomorphism to com-
plement the sufficient condition given in this thesis.

Main Results and an Outline of the Thesis Structure

Chapters 3, 4, and 5 contain a number of new results. Much of our main focus is devel-
oping the theoretical machinery necessary to construct homomorphisms between Specht
modules of the Ariki-Koike algebra by factoring homomorphisms Θ : Mλ → Sμ through Sλ.
Our approach to this problem utilizes the basis for HomHr,n (Mλ,Sμ) provided by those ho-
momorphisms ΘS : Mλ → Sμ indexed by an important variety of combinatorial objects
called the semistandard μ-tableaux of type λ.

During the course of the author’s research it became apparent that it was not at all clear
if and when an element of the more general set of μ-tableaux of type λ determines a ho-
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momorphism and when it does not. We provide a partial solution to this dilemma in the
form of a simple necessary condition for a μ-tableau of type λ to determine a homomorph-
ism ΘS : Mλ → Sμ. This condition depends purely on the combinatorics of the tableau in
question.
Theorem (Theorem 3.4.2). Let λ and μ be multipartitions. A row-semistandard μ tableaux
S of type λ determines a homomorphism ΘS : Mλ → Sμ whenever the entries in S adhere to
a certain ordering.

In addition to being of interest in its own right, this result is an important technical
necessity when it comes to the business of actually constructing homomorphisms.

We also show that a necessary and sufficient condition for a homomorphism Θ : Mλ → Sμ

to factor through Sλ is that a certain two-sided ideal Mλ∩Ȟ λ is contained in the kernel
of Θ. The central result of our thesis is that, for every multicomposition λ, this ideal is
generated (as a right ideal) by a finite family of elements mλd

(s)
d,t and mλl

(s) of Hr,n.
Theorem (Theorem 3.3.16). Let I be the right ideal of Hr,n generated by the sets

D(λ)=
{
mλd

(s)
d,t : (d, t, s) ∈ def(λ,d)

}

and
L(λ)=

{
mλl

(s) : s ∈ def(λ, l)
}

.

Then I= Mλ∩Ȟ λ.

As a corollary, this theorem then provides us with another necessary and sufficient con-
dition for homomorphisms Θ : Mλ → Sμ. More to the point, with this result in place, we
can consider the image of Θ of only a finite number of elements of Hr,n when trying to
construct a homomorphism between Specht modules Sλ and Sμ from Θ.
Theorem (Corollary 3.3.17). Let Θ : Mλ → Sμ be a homomorphism. Then the following
statements are equivalent:

• Θ (mλh)= 0 for every h ∈Hr,n with mλh ∈ Ȟ ;

• Θ
(
mλd

(s)
d,t

)
= 0 for every (d, t, s) ∈ def(λ,d) and Θ

(
mλk

(s)
)
= 0 for every s ∈ def(λ, l); and

• Θ factors through Sλ.

Finally, we apply the previous result to a specific class of pairs of Specht modules. In this
setting we derive an explicit condition for when there exists a non-zero homomorphism
between Specht modules.

This condition depends upon the residues of the Young diagrams associated with the
multipartitions indexing the Specht modules we’re working with. Informally speaking,
the residue of a particular node appears as a scalar expressed in terms of the para-
meters q,Q1, . . . ,Qr, and so in effect the theorem places a restriction upon which Ariki-
Koike algebras exhibit non-zero homomorphisms between the Specht modules being con-
sidered.
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Theorem (Theorem 4.7.3). Let λ and μ be multipartitions such that μ is constructed from
λ by the deletion of a removable node r in a single component x and the adjoining of an
addable node a to component x−1. Then there exists a non-zero homomorphism Θ̂ : Sλ →
Sμ whenever resμ(a)= resλ(r)

So, for instance, if the residue of a is q2Q1 and the residue of r is q−1Q2 we have that a
non-zero homomorphism exists between Sλ and Sμ whenever Q1 = q−3Q2.

The definition of all terms and objects used in this summary can be found in Chapter 2
and Section 3.2.

The structure of the thesis is as follows:

Chapter 2 Here we collect together those fundamental definitions and results from the
representation theory of both the Ariki-Koike algebra and the Iwahori-Hecke algebra of
type A that we will need in the course of this thesis. We conclude with a discussion of
some important topics such as the classification of the irreducible modules of the Ariki-
Koike algebra, although this is not directly relevant from a technical perspective to the
rest of the thesis.

Chapter 3 In this chapter we prove the main result of this thesis, that being an ana-
logue of the kernel intersection theorem of James in the setting of the Murphy basis of
the Ariki-Koike algebra, and provide an outline of how this can be used to construct ho-
momorphisms between Specht modules. In doing so we set the stage for the remainder of
the thesis, providing many of the definitions and technical results that will be needed in
chapter four.

Chapter 4 Here we provide an application of the results from the previous chapter
by deriving a condition that describes when it is possible to construct homomorphisms
between certain related Specht modules for the Iwahori-Hecke algebra of type B, this
being a special case of the Ariki-Koike algebra.

Chapter 5 Concluding remarks are provided, including a brief discussion of current
research and possible future development of the material contained in this thesis. We also
provide a conjecture regarding expressing tableaux explicitly in terms of the generators
of Hr,n
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Chapter 2

Background

The aim of this chapter is to provide a summary of the standard definitions and results
later chapters require. In most cases we will adopt the notation and terminology found
in [40]. We also describe the classification of the irreducible modules of the Ariki-Koike
algebra in section 2.8, although this topic will not feature directly in the remainder of the
thesis.

2.1 The Ariki-Koike Algebra

Let F be a field and let q,Q1,Q2, . . . ,Qr be non-zero elements of F with q 6= 1.
Definition 2.1.1. For each pair of positive integers n and r the Ariki-Koike algebra is
the unital associative algebra with generators T0,T1, . . . ,Tn−1, subject to the following
relations:

(T0 −Q1)(T0 −Q2) ∙ ∙ ∙ (T0 −Qr)= 0

T0T1T0T1 = T1T0T1T0

(Ti − q) (Ti +1)= 0 for 1≤ i ≤ n−1,

TiTi+1Ti = Ti+1TiTi+1 for 1≤ i < n−1,

TiT j = T jTi for 0≤ i < j−1< n−1.

As in the introduction, we let Hr,n or, more simply, H denote this algebra.
Remark. The condition that q 6= 1 is necessary since the corresponding theory for q = 1
requires a ‘degenerate’ version of the Ariki-Koike algebra, which we do not go into here.

For each 1 ≤ i ≤ n− 1, let si be the simple transposition si = (i, i + 1). If w ∈ Sn and
si1 si2 ∙ ∙ ∙ sik is a reduced expression for w, we set Tw = Ti1 Ti2 ∙ ∙ ∙Tik . Due to Matsumoto’s
Theorem on reduced expressions [41], Tw is independent of the choice of reduced expres-
sion for w, and so is well defined. We shall write Ti1,i2,...,ik for Ti1 Ti2 ∙ ∙ ∙Tik whenever the
latter would be too cumbersome.
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If `(w) is the length of the permutation w ∈Sn, a consequence of the relations defining
H is the following multiplication formula:
Proposition 2.1.1. Suppose that w ∈Sn, then

TwTsi =

{
Twsi if `(wsi)> `(w),
qTwsi + (q−1)Tw otherwise.

Note that the subalgebra generated by T1,T2, . . . ,Tn−1 is isomorphic to the Iwahori-Hecke
algebra of type A, which we define properly in section 2.6. Much of the work in this thesis
uses this fact in order to apply results from the representation theory of this algebra to
the study of the Ariki-Koike algebra.
Definition 2.1.2. For each 1≤ k ≤ n, define the element Lk ∈Hr,n by

Lk := q1−kTk−1Tk−2 ∙ ∙ ∙T1T0T1 ∙ ∙ ∙Tk−2Tk−1.

These elements are an analogue of the Jucys-Murphy elements that occur in the repres-
entation theory of Hn and Sn, occupying a similar role by virtue of generating a large
abelian subalgebra of Hr,n. These elements also play an crucial part in this thesis, much
of the technical details of which being concerned with studying how they interact with
one another and the generators of Hr,n.
Proposition 2.1.2 ([21, (2.1)]).

1. Let 1≤ l ≤ r. If j 6= k, then T j and
∏k

i=1(Li −Ql) commute.

2. LiT j = T jLi whenever j 6= i, i−1.

2.2 Multipartitions, Diagrams and Tableaux

Recall that:

• A composition of n is a sequence λ = (λ1,λ2, . . .) of non-negative integers such that
|λ| =

∑
i λi = n. It is convention to write λ = (λ1,λ2, . . . ,λl), where l is the largest

positive integer such that λl is non-zero. We refer to a given term λi in this sequence
is the i-th row of λ. ;

• A partition λ is a composition satisfying the additional condition that λi ≥ λi+1 for
all i ≥ 1.

• A multicomposition of n in r parts is an r-tuple (λ(1),λ(2), . . . ,λ(r)) of compositions
such that |λ| =

∑
k |λ

(k)| = n. For 1 ≤ k ≤ r, the k-th component or part of λ refers to
the composition λ(k), and λ(k)

i denotes the i-th row of the k-th component.

• A multicomposition in which each component is a partition is a multipartition.

Clearly, compositions and partitions can be regarded as multicompositions and multipar-
titions in 1-part respectively.
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The set of multicompositions of n in r parts is partially ordered under the dominance
relation: μ is said to dominate λ, in which case we write λEμ, if and only if

l−1∑

k=1
|λ(k)|+

s∑

i=1
λ(l)

i ≤
l−1∑

k=1
|μ(k)|+

s∑

i=1
μ(l)

i (2.1)

for all positive integers l and s. We write λCμ if λEμ and λ 6=μ.

The diagram [λ] of a multicomposition λ is a sequence of Young diagrams, each cor-
responding to the composition forming the corresponding component of λ. More form-
ally,
Definition 2.2.1. The diagram [λ] of a multicomposition λ is the set

[λ]=
{
(i, j, k) ∈N2 × {1,2, . . . , r} : 1≤ j ≤λ(k)

i

}
.

The elements of [λ] are referred to as the nodes of the diagram.

Represented graphically as an array of boxes, we take the coordinates of the triple ( i, j, k)
to refer to the row, column, and component in which that node appears. For this reason,
we will refer to each term of a given component as a row of that component.

If λ is a multipartition, two important classes of nodes of [λ] are the removable and ad-
dable nodes:

• i ∈ [λ] is removable whenever the diagram [λ]\ {i} is that of a multipartition; and

• a triple i ∈ N2 × {1,2, . . . , r} and such that i ∉ [λ] is an addable node whenever the
diagram [λ]∪ {i} is that of a multipartition.

Definition 2.2.2. Given a multicomposition λ, a λ-tableau is a bijection t : [λ]→ {1,2, . . . , n},
and may be represented visually as filling the nodes of [λ] with entries taken from {1,2, . . . , n}.

As we shall see, certain tableaux index the basis elements of Hr,n, the study of which
is often a matter of investigating the combinatorial properties of tableaux. A λ-tableau
t is row standard if its entries are increasing along the rows of each component, and
standard if λ is a multipartition and the entries increase both along the rows and down
the columns of each component. We let RStd(λ) denote the set of row standard λ-tableaux
for each multicomposition λ and, if λ is also a multipartition, Std(λ) the set of standard
λ-tableaux.

The initial λ-tableau tλ is the standard λ-tableau in which each node (i, j, k) ∈ [λ] contains
the entry

c−1∑

k=1
|λ(k)|+

a−1∑

i=1
λ(c)

i +b.

We say that a node (i, j, k) ∈ [λ] is higher than a node (x, y, z) ∈ [λ] if tλ(i, j, k) < tλ(x, y, z),
otherwise we say that (i, j, k) is lower than (x, y, z).

The elements of the symmetric group Sn most naturally act on the set of tableaux by
permuting the entries.
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Definition 2.2.3. If λ is a multicomposition, define Dλ to be the set

Dλ =
{
w ∈Sn : tλ ∙w is row-standard

}

and Sλ to be the subgroup of Sn consisting of all permutations that stabilize the rows of
tλ.

It is not difficult to see that [39, Proposition 3.3] implies that Dλ is a complete set of right
coset representatives of Sλ in Sn. Moreover, we have the following:
Proposition 2.2.1 ([39, Proposition 3.3]). If w ∈Sλ and d ∈ Dλ, then TwTd = Twd and
`(wd)= `(w)+`(d).

If t is a λ–tableau, let d(t) denote the unique permutation such that t= tλ ∙d(t).
Definition 2.2.4. For each 1≤ x ≤ n the residue of x in t is defined as

rest(x)= q j−iQk

where t(i, j, k)= x. We write resλ(x) for restλ(x).
Example 1. Suppose that λ= ((2,2,1), (3,1)), then

tλ =




1 2
3 4
5

, 6 7 8
9



 .

If t is the row standard λ-tableau given by

t=




1 3
2 5
9

, 4 7 8
6



 ,

then d(t)= (2,3)(4,5,9,6). The residue of 9 in each tableau is given by resλ(9)= q−1Q2 and
rest(9)= q−2Q1.

Using the dominance order on multipartitions, we can impose a partial order on the set
of standard λ–tableau thus: Let k be a positive integer with 1 ≤ k ≤ n. For each standard
λ–tableau t, let t ↓ k be the sub–tableau consisting of the nodes of [λ] in which only the in-
tegers 1 to k appear as entries. Also, let Shape(t ↓ k) denote the multipartition associated
with t ↓ k. Then, for standard λ-tableaux s and t, define the relation sE t by

sE t if and only if Shape(s ↓ k)EShape(t ↓ k) for every k = 1,2, . . . , n. (2.2)

We write sC t if sE t and s 6= t.

2.3 A Cellular Basis of Hr,n and Specht Modules

The following basis of Hr,n is due to Dipper, James, and Mathas [21]. For each mul-
ticomposition λ let Sλ be the row stabilizer of tλ and define elements xλ and u+

λ
of Hr,n
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by

xλ =
∑

w∈Sλ

Tw and u+
λ =

r∏

s=2

|λ(1)|+∙∙∙+|λ(s−1)|∏

i=1
(Li −Qs).

Applying the relations in Proposition 2.1.2 shows that xλu+
λ
= u+

λ
xλ. Set mλ = xλu+

λ
and

let Mλ denote the right Hr,n-module mλHr,n.

Define ∗ : Hr,n → Hr,n to the anti-isomorphism given by T∗
i = Ti for all 0 ≤ i < n and set

mst = T∗
d(s)mλTd(t) for each multicomposition λ and pair of λ-tableaux s and t.

Theorem 2.3.1 ([21, Theorem 3.26]). A cellular basis of Hr,n over F is given by the set

{mst :λ is a multipartition,s, t ∈Std(λ)}

Note that T∗
w = Tw−1 for each w ∈Sn and L∗

k = Lk for 1≤ k ≤ n.

For each multipartition λ, let Ȟ λ
r,n be the F–module with basis

{
mst : s,t ∈Std(μ),μ is a multipartition such that λCμ

}
.

Via the properties of cellular algebras, Ȟ λ
r,n is a two–sided ideal of Hr,n.

Definition 2.3.1. If λ is a multipartition, we define the Specht module Sλ to be the right
Hr,n-module generated by Ȟ λ

r,n +mλ.

Note that Ȟ λ
r,n is not contained in mλHr,n, so the Specht module is not a quotient module

in the accepted sense.

The set {
Ȟ λ

r,n +mtλt : t ∈Std(λ)
}

forms a basis of Sλ as a module over F, the elements of which we denote as mt = Ȟ λ
r,n+mtλt

for t ∈Std(λ).
Proposition 2.3.2 ([31, Proposition 3.7]). Suppose that 1≤ k ≤ n and let s and t be stand-
ard λ–tableaux. Then, there exist scalars rv ∈ F such that

mstLk = rest(k)mst+
∑

v∈Std(λ)
vBt

rvmsv mod Ȟ λ
r,n.

An extremely useful corollary of this proposition is that mλLk = resλ(k)mλ modulo Ȟ λ
r,n

for any given multipartition λ; this follows immediately from the fact that mλ = mtλtλ and
that no λ-tableau dominates tλ.

2.4 Semistandard Tableaux and Homomorphisms

Definition 2.4.1. Let λ and μ be multicompositions. A μ-tableau of type λ is a mapping

T : [μ]→N× {1, . . . , r}

such that the number of nodes n ∈ [μ] with T(n)= (i, k) for a given i and k is λ(k)
i .
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We call the codomain of T the entries of T and impose a total ordering ¹ on this set
thus:

(i, k)¹ ( j, l) if and only if k < j, or k = j and i ≤ l.

A μ-tableau of type λ is row-semistandard whenever the entries are non-decreasing along
the rows of each component, and the set of all row-semistandard μ-tableaux of type λ is
denoted Tr(μ,λ).
Definition 2.4.2. Suppose now that λ is a multicomposition, μ is a multipartition, and
λEμ. Then we say that a μ-tableau T of type λ is semistandard whenever:

1. T is row-semistandard;

2. the entries are strictly increasing down each column of every component; and

3. if (i, j, k) ∈ [μ] and T(i, j, k)= (a, c), then k ≤ c.

Let T0(μ,λ) denote the set of all semistandard μ–tableaux of type λ. If t is a μ-tableau,
let λ(t) be the μ-tableau of type λ in which the node (i, j, k) ∈ [μ] is occupied by (a, c) if
the entry t(i, j, k) appears in row a of component c of tλ. We use Tλ to denote the tableau
λ(tλ).

When it comes to actually writing down examples of such tableaux, we will let ik rep-
resent the entry (i, k), such a format being better suited to displaying as the entry in a
diagram.
Example 2. If λ= ((3,2,1), (2,1)), μ= ((4,3,1), (1)), and t is given by

t=




1 3 6 9
2 5 7
4

, 8



 ,

then

λ(t)=




11 11 31 22
11 21 12
21

, 12



 Tλ =




11 11 11
21 21
31

, 12 12
22



 .

Let λ be a multicomposition and μ a multipartition. For S ∈ T0(μ,λ) and t ∈ Std(μ) we
define

mSt =
∑

s∈Std(μ)
λ(s)=S

T∗
d(s)mμTd(t).

The importance of these elements is given by the following theorem, due to Dipper, James,
and Mathas.
Theorem 2.4.1 ([21, Theorem 4.14]). Suppose that λ is a multicomposition of n. Then Mλ

is free as an F-module with basis

{
mSt : S ∈T0(μ,λ), t ∈Std(μ) for each multipartition μ

}
.
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The right ideals Mλ of Hr,n are, in a sense, an analogue of Young’s permutation modules
for the group algebra of Sn. Referring to these modules as permutation modules, each
Specht module arises as the quotient of the permutation module corresponding to the
same indexing multipartition.

One of the reasons that semistandard tableaux are important to us is that they determine
a set of linearly independent, non-zero homomorphisms from permutation modules to
Specht modules: Let λ be a multicomposition and μ a multipartition with λEμ and let T
be a semistandard μ tableau of type λ. By [21, Proposition 4.9] we may define a non-zero
homomorphism from Mλ to Sμ by

ΘT (mλh)= Ȟ μ+





mμ

∑

t∈Std(μ)
λ(t)=T

Td(t)





h (2.3)

for h ∈H . We call such homomorphisms semistandard.

The fact that semistandard homomorphisms are non-zero follows from the definition of
Ȟ μ, although not obviously so.
Lemma 2.4.2. ΘT : Mλ → Sμ is non-zero for every T ∈T0(μ,λ).

Proof. By definition every element of Ȟ μ is a linear combination of the set

{
T∗

d(s)mνTd(t) :μCν and s,t ∈Std(ν)
}

If ΘT were not non-zero, then we would have

∑

t∈Std(μ)
λ(t)=T

mμTd(t) ∈ Ȟ μ.

But this is impossible since both the elements mμTd(t) in the above sum and those in the
basis of Ȟ μ are elements of the standard basis of H , and hence linearly independent.

Example 3. Suppose that λ = ((3,2,1), (2,2)) , μ = ((4,2,1), (2,1)), and that T ∈ T0(μ,λ) is
given by

T=




11 11 11 21
21 31
12

, 12 22
22



 .

Then

ΘT(mλh)= Ȟ μ+ (1+T1)(1+T2 +T2,1)(1+T3 +T3,2 +T3,2,1)

× (1+T5)(1+T8)

× (L1 −Q2)(L2 −Q2) ∙ ∙ ∙ (L7 −Q2)

× (1+T4)(1+T7)(1+T9)h
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for each h ∈ H . Since (1+T1)(1+T2 +T2,1)(1+T3 +T3,2 +T3,2,1)(1+T5)(1+T8) = xμ and
(L1 −Q2)(L2 −Q2) ∙ ∙ ∙ (L7 −Q2)= u+

μ we have that

ΘT(mλh)= Ȟ μ+mμ(1+T4)(1+T7)(1+T9)h.

Of considerable importance is the fact that semistandard homomorphisms are linearly
independent, a property that follows from [21, Theorem 6.6]. In fact, the semistandard
homomorphisms provide a basis for the space of all homomorphisms from Mλ to Sμ which
factor through Mμ. The following conjecture appears in the ‘folklore’.
Conjecture 1. If q 6= −1 and Qi 6=Q j whenever i 6= j, then the homomorphisms defined in
(2.3) provide a basis for the entire homomorphism space HomH

(
Mλ,Sμ

)
.

2.5 Quantum Integers and the Quantum Characteristic

Suppose that α≥ 0 is an integer and define [α] ∈ F by

[0]= 0

[α]= 1+ q+ q2 +∙∙ ∙+ qα−1 for α> 0.

These are known as the quantum integers and play a role in the combinatorics of the rest
of the paper. We may also define quantum factorials thus

Set [0]!= 1 and [α]!= [0][1] ∙ ∙ ∙ [α] for α> 0 and, for α≥β≥ 0 set

[
α

β

]

=
[α]!

[β]![α−β]!
.

Definition 2.5.1. The quantum characteristic of F is the positive integer e that is minimal
such that [e]= 0. If no such integer exists, we set e =∞.

Note that e = charF whenever q = 1, otherwise q is a primitive e-th root of unity in F.
Throughout this thesis, we will concentrate only on the case where q 6= −1.

2.6 The Iwahori-Hecke Algebra of Type A

A number of our results rely on the ability to ‘reduce’ certain problems to the setting of
the Iwahori-Hecke algebra of type A. This subsection introduces the standard definitions
and results from this setting that we will need.

A further reason for including this subsection is that due to the similarities between the
notation commonly used in the setting of the Iwahori-Hecke algebra of type A and relating
to the Ariki-Koike algebra, we are forced to use our own notation for the latter in order to
distinguish between the two cases and avoid confusion.
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Definition 2.6.1. The Iwahori-Hecke algebra of type A is the associative unital algebra
with generators t1, t2, . . . , tn−1 such that

t2
i = (q−1)ti + q (1≤ i ≤ n−1)

ti ti+1ti = ti+1ti ti+1 (1≤ i < n−1)

ti t j = t j ti (1≤ i < j−1≤ n−1).

As we remarked in section 2.1, the Iwahori-Hecke algebra of type A is isomorphic to the
subalgebra of the Ariki-Koike algebra generated by the elements T1, . . . ,Tn−1 of Hr,n. We
will denote this latter algebra by Hn.

Let λ be a composition, then the diagram of λ is the set

[λ]=
{
(i, j) ∈N2 : 1≤ j ≤λi

}
,

and a λ-tableau is a bijection t : [λ] → {1,2, . . . , n}. As with the Ariki-Koike algebra, we
say that such a tableau is row-standard whenever its entries increase along the rows
and standard when, in addition to being row-standard, its entries also increase down the
columns. Moreover, compositions and tableaux in this setting may be partially ordered in
a manner identical to that (2.1) and (2.2)
Definition 2.6.2. If λ is a multicomposition, set yλ =

∑
w∈Sλ

Tw and define Nλ to be the
right Hn-module yλHn. If λ is a partition, we define Ȟ λ

n to be the two-sided ideal of Hn

with an F-basis given by
{
T∗

d(s) yνTd(t) : ν a partition of n with λCν, and s, t ∈Std(ν)
}

.

It’s worth remarking that these modules are an analogue of both the Hr,n-modules Mλ

and the Young permutation modules of the symmetric group.

2.7 Applying the Representation Theory of Hn to Hr,n

A key technique used in this thesis consists of reducing problems in Hr,n to problems in
an Iwahori-Hecke algebra and applying results from this latter setting. One way in which
we can do this is by ‘stacking’ the components on a multicomposition. Another, equally
important but more restrictive in when it can be applied, method concerns studying the
individual components of a multicomposition.

2.7.1 Stacking Components of Multicompositions

Let λ be a multipartition of n in r parts and let α(λ) be the composition of n determ-
ined by ‘stacking’ the components of [λ] on top of one another such that [λ(i+1)] appears
immediately below [λ(i)] for all 1 ≤ i ≤ r−1. More formally, we have
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Definition 2.7.1. If λ is a multicomposition of n given by

λ=
((
λ(1)

1 , . . . ,λ(1)
ρ1(λ)

)
,
(
λ(2)

1 , . . . ,λ(2)
ρ2(λ)

)
, . . . ,

(
λ(r)

1 , . . . ,λ(r)
ρr(λ)

))
,

then α(λ) is the composition of n for which each row given by

α(λ)i =λ
( j)
k

where j and k are such that i =
∑ j−1

l=1 ρl(λ)+k.

With this definition in place, we immediately have that xλ = yα(λ) and that the diagram
[α(λ)] of α(λ) is the set

[α(λ)]=

{

(i, j) ∈N2 : 1≤ j ≤
r∑

k=1
ρk(λ)

}

We can associate an α(λ)-tableau in Hn to a λ-tableau in Hr,n in what amounts to a
similar fashion. If t is a λ-tableau, let α(t) : [α(λ)] → {1,2, . . . , n} be the α(λ)-tableau given
by

(i, j) 7→ t(x, j, z)

where x and z are such that i =
∑z−1

l=1 ρl(λ)+ x.
Example 4. Let λ= ((2,1), (3,3)), and

t=

(
1 5
3

, 4 6 9
2 7 8

)

.

Then α(λ)= (2,1,3,3) and

α(t)=

1 5
3
4 6 9
2 7 8

Lemma 2.7.1. If t is a row standard λ-tableau, then

1. α(t) is a row standard α(λ)-tableau.

2. Td(t) = Td(α(t))

Proof. Immediate.

Writing mλTd(t) = u+
λ

yα(λ)Td(α(t)) we may therefore apply results from the representation
theory of Hn to yα(λ)Td(α(t)).

Given multicompositions μ and λ, we can perform the same kind of procedure on μ-
tableaux of type λ for multicompositions. If S ∈ T (μ,λ), we define α(S) to be the α(μ)-
tableau of type α(λ) formed by stacking the components of S in the same manner as was
done for λ-tableaux. To complete this process, relabel every entry of the form uv appearing
in S using the rule

(u,v) 7→ u+ρ1(λ)+∙∙ ∙+ρv−1(λ).
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Lemma 2.7.2. If S is a row-semistandard μ-tableau of type λ, then α(S) is a row-semistandard
α(μ)-tableau of type α(λ).

Proof. Suppose that j < l are positive integers and that S(x, j, z) = (u,v) and S(x, l, z) =
(s, t). If S is row-semistandard, then (u,v)¹ (s, t). Therefore, either v = t and u ≤ s or v < t,
and hence

u+ρ1(λ)+∙∙ ∙+ρv−1(λ)≤ s+ρ1(λ)+∙∙ ∙+ρt−1(λ).

Our proof now follows from the construction of α(μ).

Example 5. If μ= ((3,2), (2,1,1)), then α(μ)= (3,2,2,1,1). Additionally, if λ= ((2,1), (3,2,1))
and S ∈T0(μ,λ) is given by

S=



11 11 22
21 12

,
12 12
22
32





then

α(S)=

1 1 4
2 3
3 3
4
5

2.7.2 Individual Components of a Multicomposition

Under certain circumstances, we may also use the fact that each component of a mul-
ticomposition is a composition in order to work with an Iwahori-Hecke algebra of type A
or something isomorphic to such an algebra.
Definition 2.7.2. For positive integers m and s, let σm

s be the isomorphism from Ss to
the symmetric group on {m+1, . . . , m+ s} given by

σm
s ((i, i+1))= ((i+m, i+1+m)) for each 1≤ i ≤ s−1

and set Sm,s =σm
s Ss.

For each multicomposition, let λ
(i)

=
∑i−1

j=1 |λ
( j)| for each 1 ≤ i ≤ r. An immediate con-

sequence of this definition is that, for each multicomposition λ, then Sλ(i) =S
λ

(i)
,|λ(i)|

for

every 1 ≤ i ≤ r; that is to say, Sλ(i) is the group of permutations in Sn that permute only
the entire appearing in the i-th component of tλ.
Definition 2.7.3. For each 1 ≤ i ≤ r, define H (λ(i)) be the subalgebra of Hr,n generated
by the set {

T
λ

(i)
+1

,T
λ

(i)
+2

, . . . ,T
λ

(i+1)
−1

}
.

We may then also define an isomorphism ζλi : H|λ(i)| →H
(
λ(i)

)
via

ζλi : T j 7→ T
λ

(i)
+ j
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for each 1≤ j ≤ |λ(i)|−1.

The following lemma collects together some properties of the objects just defined that
will help us transition between the Ariki-Koike algebra Hr,n and certain Iwahori-Hecke
algebras of type A.
Lemma 2.7.3. Let λ be a multicomposition. Then

1. ζλi (yλ(i) )ζλj (yλ( j) )= ζλj (yλ( j) )ζλi (yλ(i) ) whenever i 6= j;

2. xλ =
∏r

i=1 ζ
λ
i (yλ(i) ); and

3. if w ∈Sλ(i) for any 1≤ i ≤ r and v ∈S|λ(i)| is such that σλ
(i)

|λ(i)|
(v)= w then

xλTw =
(
ζλ1

(
yλ(1)

)
∙ ∙ ∙ζλi−1

(
yλ(i−1)

))
ζλi

(
yλ(i) Tv

)(
ζλi+1

(
yλ(i+1)

)
∙ ∙ ∙ζλr

(
yλ(r)

))
.

Proof. Writing xλ =
∏r

i=1 xλ(i) , where xλ(i) =
∑

w∈S
λ(i)

Tw, the first part of the lemma follows
immediately. As for the second part, if w ∈Sλ(i) , then Tw commutes with all xλ( j) with
i 6= j; hence, xλTw =

(
xλ(1) ∙ ∙ ∙ xλ(i−1)

)
xλ(i) Tw

(
xλ(i+1) ∙ ∙ ∙ xλ(r)

)
.

Let λ be a multicomposition. The importance of the lemma above and preceding defin-
ition is that we may express certain λ-tableaux in terms of tableaux for its individual
components. Our requirements are such that we will address this matter on a case by
case basis whenever we have cause to do so, rather than provide a general description of
this situation.

2.8 Further Topics from the Representation Theory of the
Ariki-Koike Algebra

Although not of direct relevance to this thesis, it would be remiss to write a thesis on
the representation theory of an algebra and not discuss the irreducible modules for that
algebra. This subsection therefore presented as a summary of such topics.

Irreducible H -Modules

One important feature of the theory of cellular algebras is that it provides a partial clas-
sification of irreducible modules of such algebras. Phrased purely in terms of the Ariki-
Koike algebra, this classification proceeds thus: Let λ be a multipartition. There is a
unique symmetric and associative bilinear map Sλ×Sλ → F given by

‹ms, mt›muv = musmtv mod Ȟ λ

where u,v ∈ Std(λ). Defining rad Sλ to be the radical of this bilinear form and setting
Dλ = Sλ/radSλ, we can now state this partial classification, due to Graham and Lehrer
[24], of the irreducible modules of H .
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Theorem 2.8.1. The set {Dλ : λ is such that Dλ 6= 0 } is a complete set of pairwise inequi-
valent irreducible H -modules.

Following Ariki [2], we now complete this classification by identifying those multiparti-
tions λ such that Dλ 6= 0. Let λ be a multipartition and say that a node x= (a, b, c) ∈ [λ] is
an i-node if i = resλ(x). If x is an i-node, we say that it is

1. normal if

(a) whenever y is a removable i-node lower than x, there are more removable
i-nodes between x and y than there are addable i-nodes, and

(b) there are at least as many removable i-nodes as there are addable i-nodes
lower than x;

2. good if there are no normal i-nodes higher than x.

Note that (a) doesn’t necessarily imply (b). We may have an instance where the lowest
removable i-node occurs above a number of addable i-nodes

A multipartition μ is Kleshchev if μ is the empty multipartition or [μ] = [λ]∪ {x} for a
Kleshchev multipartition λ and a good node x. In the most general case, Kleshchev mul-
tipartitions correspond precisely to the irreducible modules of H , as this next theorem,
due to Ariki, demonstrates.
Theorem 2.8.2 ([2]). Suppose that q 6= 1 and Qs 6= 0 for 1≤ s ≤ r, and that λ is a multipar-
tition of n, Then Dλ 6= 0 if and only if λ is Kleshchev.

The appearance of Kleshchev multipartitions in the representation theory of H seems
slightly mysterious and rather technical at first, especially compared with their analogues
in the representation theory of Hn and Sn. That they do occupy such a role is due to the
intimate connection between the Ariki-Koike algebra and quantum algebra, demonstrat-
ing how non-trivial the process of constructing such analogues can be when dealing with
the Ariki-Koike algebra. We refer the reader to [3] for further details and references on
this connection.
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Chapter 3

A Cellular Analogue of James’s
Kernel Intersection Theorem

3.1 Introduction

Let λ be a partition and, for positive integers d and 0≤ t <λd+1, let νd,t be the composition
given by

ν
d,t
i =






λi +λi+1 − t if i = d,
t if i = d+1,
λi otherwise.

In [10], each Specht module Sλ for Hn is defined as a particular submodule of Mλ, with
the following theorem characterizes these as the intersection of the kernels of a family
of homomorphisms ψd,t : Mλ → Mνd,t

. Note that these are not the same as the Specht
modules previously defined and which we consider throughout the remainder of this
thesis.
Theorem 3.1.1 ([10, Theorem 7.5]). If λ is a partition of n, then

⋂

d≥1

λd+1−1⋂

t=0
kerψd,t = Sλ.

This is the kernel intersection theorem, a corollary of which is that the image of a homo-
morphism Θ : Sμ → Mλ lies in Sλ, if and only if ψd,t ◦Θ= 0 for every d and t. We may use
this to identify and, with some more work, construct explicit homomorphisms between
Specht modules, this being the strategy adopted in [20] and [37] for the symmetric group
and Iwahori-Hecke algebra of type A respectively.

With respect to the cellular basis of Murphy, the definition of the Specht modules for Hn

differs substantially from that of [10]. In particular, in that other setting a Specht module
Sλ appears as a submodule of Mλ, which isn’t true in the setting of the cellular basis we
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are working with. As a result, Theorem 3.1.1 is in our case false and we therefore require
an alternative means of constructing homomorphisms in this setting. Just such a means
appearing in [38], in which we are provided with an analogue of the kernel intersection
theorem for the Murphy basis of Hn and the corresponding Specht modules in this setting.
In this chapter we generalize this result further, extending it to the Ariki-Koike algebra
with respect to the Dipper-James-Murphy basis defined in subsection 2.3.

The underlying philosophy of this chapter is that, for a given multipartition λ, a homo-
morphism Θ : Mλ → Sμ factors through Sλ if and only if Θ(mλh) = 0 for all h ∈Hr,n with
mλh ∈ Ȟ λ

r,n. If this is the case, then Θ determines a homomorphism Θ̃ : Sλ → Sμ such that
the following diagram commutes:

Mλ
πλ //

Θ !!CCCCCCCC Sλ

Θ̃}}||||||||

Sμ

where πλ : Mλ → Sλ is the projection given by πλ(mλh) = Ȟ λ
r,n +mλh for all h ∈ Hr,n. In

particular, we prove that this condition is equivalent to Θ(mλh)= 0 for only a finite family
of elements h ∈Hr,n. Note that Θ(mλh)= 0 for every h ∈Hr,n with mλh ∈ Ȟ λ

r,n if and only

if Θ(x) = 0 for every x ∈ Mλ∩Ȟ λ
r,n. Therefore, we can restate our objective as being the

construction of a finite set of generators of the right ideal Mλ∩Ȟ λ
r,n.

This is the same reasoning as that employed in [38], and the set of generators we construct
here is in fact a generalization of those appearing in that paper. Indeed, the relationship
between the two is sufficiently close that there will be times at which, in light of section
2.7, we can use the results of [38] in proving our own.

3.2 Setting the Stage

Here we specify some of the notation and objects upon which the results of this chapter
depend and that occupy a central role throughout this thesis. Let λ be a multicomposition
of n:

• for every 1 ≤ i ≤ r, let ρ i(λ)=max{x :λ(i)
x 6= 0}; and

• for every pair of integers i and j with 1≤ i ≤ r and 0≤ j ≤ ρ i(λ),

λ
(i)
j =

i−1∑

k=1
|λ(k)|+

j∑

l=1
λ(i)

l and λ
(i)

=
i−1∑

k=1
|λ(i)|.

Now let η = (η1,η2, . . . ,ηl) be a composition of n and, for each positive integer m, let σm
n

be the isomorphism from Sn to the symmetric group on {m+1, . . . , m+ n} given by σm
n :

(i, i+1) 7→ (m+ i, m+ i+1) for every 1 ≤ i ≤ n−1. We set Dm,η =σm
n Dη, where Dη is the the

set of minimal length coset representatives of Sη in Sn.
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Definition 3.2.1.
C(m : η)=C(m : (η1,η2, . . . ,ηl))=

∑

w∈Dm,η

Tw.

For a positive integer m, let fm : {1,2, . . . , n}→ {m+1, m+2, . . . , m+n} be the function given
by i 7→ i+m. Using the definition of Dη, C(m : η) can be thought of as the sum of terms Tw

such that ( fm ◦ tλ) ∙w is row standard1.
Example 6. Suppose that m = 4 and η= (2,2), then

f4 ◦ t
η = 5 6

7 8

and C(4 : (2,2))= 1+T6 +T6,5 +T6,7 +T6,7,5 +T6,7,5,6.

We now define two families of elements of Hr,n associated with each multipartition of
n, calling these d- and l-elements. As we will see, these elements determine our chosen
generators of Mλ∩ Ȟ λ, and may be thought of as performing a similar role in Hr,n as
the homomorphisms ψd,t do in the representation theory of the symmetric group or in the
Dipper-James version of the representation theory of the Iwahori-Hecke algebra of type
A.

d-elements of H : For a multipartition λ of n, let def(λ,d) be the set

def(λ,d)=
{
(d, t, s) ∈N3 : 1≤ s ≤ r,1≤ d < ρs(λ),1≤ t ≤λ(s)

d+1

}

and define
d(s)

d,t =C
(
λ

(s)
d−1;

(
λ(s)

d , t
))

for each (d, t, s) ∈ def(λ,d).

These are a direct generalization of the hd,t elements of Hn appearing in [38]. In fact, one

way in which d(s)
d,t arises is to consider the partition λ(s) and the Iwahori-Hecke algebra

H|λ(s)|: we can take the element hd,t associated with λ(s) and set d(s)
d,t = ζλ

|λ(s)|
(hd,t), where

ζλ
|λ(s)|

: H|λ(s)| →H (λ(s)) is the isomorphism defined in section 2.7.

l-elements of H : For a multipartition λ of n, let def(λ, l) be

def(λ, l)=
{
s ∈Z : 1≤ s < r, and λ(s+1) 6= ;

}

and define
l(s) =

(
L
λ

(s+1)
+1

−Qs+1

)
.

1This is something of an abuse of terminology, since, strictly speaking, fm◦tλ is not a tableau in the way we
have defined the term. However, it has the advantage of making some kind of intuitive sense, and permitting
it avoids having to have an overly complicated definition of tableaux that we use only once.
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for each s ∈ def(λ, l).

Should we wish to express the fact that a given d- or l-element is that which is associated
with a particular multipartition λ, we will write d(s)

d,t(λ) or l(s)(λ).
Example 7. Let λ= ((3,1), (2,2), (2,1,1)). Then

d(1)
1,1 = 1+T3 +T3T2 +T3T2T1 d(2)

1,1 = 1+T6 +T6T5

d(2)
1,2 = 1+T6 +T6T5 +T6T7 +T6T7T5 +T6T7T5T6

d(3)
1,1 = 1+T10 +T10T9 d(3)

2,1 = 1+T11

l(1) = L5 −Q2 l(2) = L9 −Q3.

For a multipartition λ of n, our set of generators of Mλ ∩ Ȟ λ will be the union of the
sets

D(λ)=
{
mλd

(s)
d,t : (d, t, s) ∈ def(λ,d)

}
and L(λ)=

{
mλl

(s) : s ∈ def(λ, l)
}

.

More formally, let Iλ be the right ideal of H generated by D(λ)∪L(λ). Then,
Claim 3.2.1. For each multipartition λ of n, Iλ = Mλ∩Ȟ λ.

Much of the remainder of this chapter is dedicated to proving this claim, from which our
main theorem then follows.
Theorem 3.2.1. Let Θ : Mλ → Sμ be a homomorphism. Then the following are equivalent:

1. Θ
(
mλd

(s)
d,t

)
= 0 for every (d, t, s) ∈ def(λ,d) and Θ

(
mλk

(s)
)
= 0 for every s ∈ def(λ, l);

2. Θ (mλh)= 0 for every h ∈Hr,n with mλh ∈ Ȟ λ; and

3. Θ factors through Sλ.

Proof. The equivalence of 2. and 3. is straightforward and was dealt with in the intro-
duction to this chapter, whereas the equivalence of 1. and 2. follows (almost) immediately
from claim 3.2.1.

1.⇒ 2. If mλh ∈ Ȟ λ, then mλh ∈ Mλ∩Ȟ λ. Thus, Θ(mλh) is zero, since Iλ = Mλ∩Ȟ λ is
generated as a right ideal by D(λ)∩L(λ).

2.⇒ 1. Immediate.

3.2.1 Applications to the Construction of Homomorphisms

Here we provide some motivation for Theorem 3.2.1 with a discussion of how we can
use it to construct homomorphisms between Specht modules. We also take this as an
opportunity to introduce further objects and notation that will feature in the rest of this
thesis.

Each d- and l-element can be associated with a multicomposition corresponding to a dia-
gram formed by rearranging certain nodes of λ.
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Definition 3.2.2. For any (s, d, t) ∈ def(λ,d) define the multicomposition λ ∙d(s)
d,t by

(
λ ∙d(s)

d,t

)(l)

i
=






λ(s)
d + t if l = s and i = d,

λ(s)
d+1 − t if l = s and i = d+1,

λ(l)
i otherwise.

For any s ∈ def(λ, l) define the multicomposition λ ∙ l(s) by

(
λ ∙ l(s)

)(k)

j
=






1 if k = s and j = ρs(λ)+1,

λ(s+1)
1 −1 if k = s+1 and j = 1,

λ(k)
j otherwise.

In other words, λ ∙ d(s)
d,t is the multicomposition whose diagram is formed by raising the

last t nodes of the (d+1)-th row of the s-th component of [λ] to the end of the d-th row of
the same component. Similarly λ ∙ l(s) is the multicomposition whose diagram is obtained
by removing the last node from the first row of component s+1 of [λ] and inserting a new
row consisting of a single node at the bottom of component s.
Example 8. Let λ= ((3,1), (2,2), (2,1,1)). Then

[
λ ∙d(2)

1,2

]
=



 , ,



 ,and

[
λ ∙ l(1)

]
=



 , ,



 .

Now suppose that Θ : Mλ → Sμ is a homomorphism of the form

Θ=
∑

S∈T0(μ,λ)
aSΘS

where aS ∈ F and ΘS : Mλ → Sμ is the homomorphism determined by S ∈T0(μ,λ). We shall
see in Proposition 4.1.2 and Section 4.5 that, for each S ∈ T0(μ,λ) and (s, d, t) ∈ def(λ,d),

we can express ΘS

(
mλd

(s)
d,t

)
as an F-linear combination of elements of the form

ΘX

(
m

λ∙d(s)
d,t

)
,

where
ΘX : Mλ∙d(s)

d,t → Sμ

is a homomorphism for each X ∈T0

(
μ,λ ∙d(s)

d,t

)
. Propositions 4.4.6 and 4.4.8 taken together

with Section 4.5 perform a similar role for ΘS

(
mλl

(s)
)

for each s ∈ def(λ, l). Applying The-
orem 3.2.1 is then a matter of collecting like terms and, using the linear independence
of semistandard homomorphisms, identifying when these are zero. A further reason for
introducing the multicompositions given in Definition 3.2.2 and the homomorphisms de-
termined by them is that, since every such S is semistandard, these homomorphisms are
linearly independent by [21, Corollary 6.14]; therefore, we can be sure that such linear
combinations are non-zero.
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Constructing Homomorphisms Between Specht Modules: an Example

Let λ = ((2,2), (2,1)) and μ = ((5), (2)). Then D(λ) = {mλd
(1)
1.1, mλd

(1)
2,1, mλd

(2)
11 } and L(λ) =

{mλl
(1)}, where

d(1)
1,1 = 1+T2 +T2,1 d(1)

2,2 = 1+T2 +T2,1 +T2,3 +T2,3,1 +T2,3,1,2

d(2)
1.1 = 1+T6 +T6,5 l(1) = L5 −Q2,

and T0(μ,λ)= {S1,S2}, where

S1 =
(

11 11 21 21 12 , 12 22

)
S2 =

(
11 11 21 21 22 , 12 12

)
,

and the homomorphisms determined by the tableaux S1 and S2 are given by

ΘS1 (mλh)= Ȟ μ+mμ(1+T5)h, ΘS2 (mλh)= Ȟ μ+mμT5,6h

for every h ∈H .

Suppose now that Θ ∈HomH (Mλ,Sμ) is of the form

Θ=α1ΘS1 +α2ΘS2

for some α1,α2 ∈ F. If we define X1,X2 ∈T0(μ,λ∙d(1)
1,1), X3,X4 ∈T0(μ,d(1)

2.1 ∙λ), X5 ∈T0(μ,d(2)
1,1 ∙λ),

and B ∈T0(μ, l(1) ∙λ) by

X1 =
(

11 11 11 21 12 , 12 22

)
X2 =

(
11 11 11 21 22 , 12 12

)

X3 =
(

11 11 11 11 12 , 12 22

)
X4 =

(
11 11 11 11 22 , 12 12

)

X5 =
(

11 11 21 21 12 , 12 12

)
B=

(
11 11 21 21 31 , 12 22

)

we have

ΘS1

(
mλd

(1)
1,1

)
=ΘS1 (mλ)d(1)

1,1 = Ȟ μ+mμ

(
1+T2 +T2,1

)
(1+T5)

= Ȟ μ+
(
1+ q+ q2)

mμ(1+T5)

=
(
1+ q+ q2)

ψX1

(
md(1)

1,1∙λ

)

and so, performing the same calculation for each element of D(λ),

Θ
(
mλd

(1)
1,1

)
=α1

(
1+ q+ q2)

ΘX1

(
md(1)

1,1∙λ

)
+α2

(
1+ q+ q2)

ΘX2

(
md(1)

1,1∙λ

)

Θ
(
mλd

(1)
2,1

)
=α1 (1+ q)

(
1+ q+ q2)

ΘX3

(
md(1)

1,1∙λ

)

+α2(1+ q)
(
1+ q+ q2)

ΘX4

(
md(1)

1,1∙λ

)

Θ
(
mλd

(2)
1,1

)
=

(
α1(1+ q)+α2q2)

ΘX5

(
md(1)

1,1∙λ

)
.
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Setting each of these equations to zero, we see that α1 =α2 = 0, and hence θ ≡ 0, whenever

e 6= 3, and so let us assume that e = 3. In this case Θ
(
mλd

(1)
1.1

)
and Θ

(
mλd

(1)
2,1

)
are zero

and
Θ

(
mλd

(2)
1,1

)
= 0⇔α2 =−q−2(1+ q)α1. (3.1)

This leaves us with only Θ
(
mλl

(1)
)

to contend with. Let i ≤ n. Recall that the residue of i
in tμ is given by

restμ(i)= qy−xQz,

where (x, y, z) ∈ [μ] is such that tμ(x, y, z)= i. Using the fact, due to proposition 2.3.2, that
mμLi = resμ(i)mμ and

TiLi = Li+1Ti − (q−1)Li+1

we have, upon a direct calculation,

Θ
(
mλl

(1)
)
=α1ΘS1 (mμ)(L5 −Q2)+a2ΘS2 (mμ)(L5 −Q2)

= Ȟ μ+α1mμ(1+T5)(L5 −Q2)+α2mμT5,6(L5 −Q2)

= Ȟ μ+α1mμ(L5 +L6T5 − (q−1)L6 −Q2 −Q2T5)

+α2mμ(L6T5,6 − (q−1)L6T6 −Q2T5,6)

= Ȟ μ+α1mμ(q4Q1 +Q2T5 − (q−1)Q2 −Q2 −Q2T5)

+α2mμ(Q2T5,6 − q(q−1)Q2 −Q2T5,6)

=
(
α1

(
q4Q1 − qQ2

)
−α2q(q−1)Q2

)
ΘB

(
mλ∙l(1)

)
. (3.2)

Note that q(q−1)Q2 appears in the penultimate line due to the fact that T6 ∈Sμ, and so
mμT6 = qmμ.

Now, substituting the conclusion of (3.1) into (3.2) yields

Θ
(
mλl

(1)
)
=

(
q4Q1 − q−1Q2

)
ΘB

(
mλ∙l(1)

)
;

therefore, when e = 3, the homomorphism Θ : Mλ → Sμ given by Θ=αΘS1 +α2ΘS2 factors
through Sλ if and only if

−q−2(1+ q)α1 =α2 and α1
(
q4Q1 − q−1Q2

)
= 0.

Moreover, this then easily provides us with a homomorphism Θ̂ ∈ HomH (Sλ,Sμ). For
instance, setting α1 = 1 we have that

Θ̂(mλh)= Ȟ μ+ΘS1 (mλh)− q−2(1+ q)ΘS2 (mλh)

is just such a homomorphism, from which we may also conclude that HomH (Sλ,Sμ) is
non-empty if (q4Q1 − q−1Q2)= 0.
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3.3 Proof of Claim 3.2.1

Our starting point is to provide a basis of Mλ∩Ȟ λ when regarded as an F-module. The
remainder of the proof then consisting of showing that each element of this basis can be
expressed as a linear combination of elements from D(λ) and L(λ).
Lemma 3.3.1. The right ideal Mλ∩Ȟ λ is free as an F-module with basis

{mSt : S ∈T0(ν,λ), t ∈Std(ν) for ν a multipartition with λCν} .

Proof. By Theorem 2.4.1, every element of Mλ∩Ȟ λ can be expressed as a linear combin-
ation of elements mSt with S ∈ T0(ν,λ) and t ∈ Std(ν), with ν ranging over the multipar-
titions of n. Moreover, these elements are linearly independent over F. The lemma then
follows from the basis for Ȟ λ given in Section 2.3.

Since mSt = mStνTd(t) for every t ∈Std(ν), we will have Mλ∩Ȟ λ ⊆ Iλ if we have that

mStν =
∑

(d,t,s)∈def(λ,d)
γ(s)

d,tmλd
(s)
d,th

(s)
d,t +

∑

u∈def(λ,l)
γ(u)mλl

(u)h(u) ∈ Iλ (3.3)

where γ(s)
d,t,γ

(u) ∈ F and h(s)
d,t, h(u) ∈ H , for every S ∈ T0(ν,λ) with ν a multipartition of n

dominating μ. In fact, we will prove a slightly more general result with the aim of gaining
a sufficient condition for when row-semistandard tableaux determine homomorphisms
between permutation modules. As a first step towards this goal we provide the following
easy but very useful lemma.
Lemma 3.3.2. Let w ∈Sn be such that, for every i, w(i) appears in the same component of
tν as does i. Then Twu+

ν = u+
ν Tw.

Proof. Since w only permutes entries within each component of tν, we can write w as
a product w = w1w2 ∙ ∙ ∙wr where wi ∈ Sν(i),ν(i) . Each wi fixes all entries not in the set

{ν(i) +1,ν(i) +2, . . . ,ν(i) +|ν(i)|}, and so w does not involve s
ν(i) for any 1 ≤ i ≤ r. Therefore,

Tw may be expressed as Tw1 Tw2 ∙ ∙ ∙Twr , each term commuting with u+
ν by Proposition 2.1.2

and the definition of u+
ν .

The following notation mimics that appearing in [38].
Definition 3.3.1. Let ν and λ be multicompositions and let S be a ν-tableau of type λ:

• For each pair of integers (i, j) with 1 ≤ j ≤ r and 1≤ i ≤ ρ j(λ) and (k, l) with 1 ≤ l ≤ r

and 1 ≤ k ≤ ρl(ν), define S(i, j)
(k,l) to be the number of entries appearing in the k-th row

of the l-th component of S that are equal to (i, j).

• For 1≤ j ≤ r and 1≤ i ≤ ρ j(λ), let ΓS(x,y) be the sequence

S(1,1)
(i, j) ,S(2,1)

(i, j) , . . . ,S(ρ1(λ),1)
(i, j) ,S(1,2)

(i, j) ,S(2,2)
(i, j) , . . . ,S(ρ2(λ),2)

(i, j) , . . . ,S(1,r)
(i, j) ,S(2,r)

(i, j) , . . . ,S(ρr(λ),r)
(i, j) .
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• Let S be a ν-tableau of type λ and let tS be the row-standard λ-tableau in which i
occupies a node in row u of component v if the place occupied by i in tν is occupied
by (u,v) in S. If tS = tλ ∙w, we set TS = Tw. This is a generalization of the 1S notation
introduced in [10].

Our next lemma makes use of the definitions and general reasoning outlined in section
2.7.
Lemma 3.3.3. Suppose that λ and ν are multipartitions of n and that S ∈Tr(ν,λ). Then

mStν = xλTSu+
ν

∏

i, j≥1
C

(
ν

( j)
i−1 :ΓS(i, j)

)
.

Proof. Recall that xν = yα(ν) and consider the row-semistandard α(ν)-tableau α(S) of type
α(λ). This allows us to write

mStν =
∑

x∈Dν
λ(tνx)=S

T∗
x xνu+

ν =







∑

z∈Dγ

ι(tγz)=T

T∗
z yγ





u+

ν = yTtγu+
ν ,

where

• the first equality is a consequence of the definition of mStν given in Subsection 2.4
and the fact that S is semistandard forces the tableaux tν ∙ x to be standard; and

• γ=α(ν), ι=α(λ), and T=α(S).

Note that, since the expressions involving γ and ι are merely the ‘stacked’ versions of
∑

x∈Dν
λ(tνx)=S

T∗
x xν,

the x’s and z’s being considered are in fact the same permutations

Applying [38, Corollary 3.7] to yα(S)α(t)α(ν) yields

yTtγ = yα(λ)Tα(S)

∏

i≥1
C

(
α(ν)i−1 :α(S)1

i , . . . ,α(S)ρ(α)
i

)

= xλTS

∏

i, j≥1
C

(
ν

( j)
i−1 :ΓS(i, j)

)
.

By definition, for each i and j the term C
(
ν

( j)
i−1 :ΓS(i, j)

)
consists only of elements Tw ofSν(i) ;

therefore, C
(
ν

( j)
i−1 :ΓS(i, j)

)
u+
ν = u+

νC
(
ν

( j)
i−1 :ΓS(i, j)

)
, by Lemma 3.3.2. This then completes the

proof.

Example 9. Let λ= ((3,2,2), (3,1,1)) and ν= ((4,3,2,1), (2)) and let S ∈T0(ν,λ) be given by

S=







11 11 11 12
21 21 31
31 32
22

, 12 12
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Then

mStν = (1+T8 +T8T9)(1+T6)T7,6,5,4T11,10,9T11,10mν

= xλT7,6,5,4T11,10,9T11,10u+
ν (1+T3 +T3,2 +T3,2,1)(1+T6 +T6,5)(1+T8)

= xλTSu+
ν

∏

i, j≥1
C

(
ν

( j)
i−1 :ΓS(i, j)

)
.

As a consequence of this lemma and we need only focus on how TS interacts with u+
ν for

each multipartition ν of n dominating λ and every S ∈T0(λ,ν) in order to show that mStν

is of the form given in 3.3. This breaks down into two cases:

• when all of the components of λ are the same size as their counterparts in ν; and

• when at least one component of ν is larger than the corresponding component of λ.

Of these two cases, the former is considerably easier and so we consider this first. To
help distinguish between these two cases, we will informally view ν as being constructed
from λ by a process moving nodes around the diagram [λ]. In the first case, [ν] can be
formed by moving nodes within the components of [λ], which we will describe as ν being
a component-wise shift of λ. The second case, where ν is in part formed by moving nodes
between components, is described as ν as being a cross-component shift of λ.

Before we study these two cases, recall that one of the conditions for a tableau S ∈T (ν,λ)
to be semistandard, as given in Definition 2.4.2, is that

if (a, b, c) ∈ [ν] and S(a, b, c)= (i, k), then c ≤ k (3.4)

Subsequent results throughout this thesis depend heavily on our non-semistandard tableaux
satisfying this condition, and so we define Tr,0(ν,λ) as the set of row-semistandard ν-
tableaux of type λ satisfying (3.4).
Definition 3.3.2. We say that S is quasi-semistandard whenever S ∈Tr,0(ν,λ).

3.3.1 Component-wise shifts

Let λ and ν be multicompositions such that λCν and |λ(s)| = |ν(s)| for every integer s with
1≤ s ≤ r. Then:

• the s-th components of each multipartition are partitions of the same size, which we
denote by ns;

• since ν(s) =λ
(s)

and λEν we have that λ(s)Eν(s) for every value of s; and

• the set of entries appearing in a given component of tλ,
{
λ(s) +1,λ(s) +2, . . . ,λ(s+1)

}
,

is the same the set of entries appearing in the corresponding component of tν.
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Lemma 3.3.4. Let S ∈ Tr,0(ν,λ) and let wS ∈Sn be such that TS = Tw. Then, for all i,
1≤ i ≤ n and wS(i) appear in the same component of tλ.

Proof. We proceed by induction on the component index s. Let s = 1 and suppose that
i appears in the first component of tλ. If wS(i) does not appear in the first component
of tλ, then at least one node (x, y,1) ∈ [ν] such that S(x, y,1) = (u,v) for some v ≥ 2. Since
|λ(1)| = |ν(1)| we must there for have some entry of the form (a,1) appearing in a component
of S lower than the first, contradiction our assumption that S is quasi-semistandard.

Suppose now that the lemma holds for all values of s less than some arbitrary k and that
i appears in component k of tλ. Suppose also that wS(i) does not appear in component k of
tλ. Since S is quasi-semistandard and |λ(k)| = |ν(k)|, we have that wS(i) must appear in a
component lower than k. But then component k of S contains a term of the form (u,v) with
v ≥ k+1, meaning that there is an entry of the form (a, k) appearing in some component l
of S other than k. By our inductive hypothesis, l ≥ k, but this contradicts our assumption
that S is quasi-semistandard. Thus, i and wS(i) both appear in component k of tλ and, by
induction, the lemma is proved.

For each 1 ≤ j ≤ r, let wj ∈Sλ( j) be such that the s-th component of tλ ∙wS is the same as
that of tλ ∙wj. Setting TS( j) = Twj , we have a decomposition of TS in terms of the elements
TS( j) .
Lemma 3.3.5. Let λ and ν be multipartitions such that λE ν and |λ(i)| = |ν(i)| for all
1≤ i ≤ r. Then, whenever S ∈Tr,0(ν,λ), the elements TS(1) , . . . ,TS(r) commute pairwise and

TS =
r∏

j=1
TS( j) .

Moreover,

TS

∏

x,y≥1
C

(
ν

(y)
(x−1) :ΓS(x,y)

)
=

r∏

y=1

(

TS(y)

∏

x≥1
C

(
ν

(y)
(x−1) :ΓS(x,y)

)
)

.

Proof. Since wj ∈ Sλ( j) for each 1 ≤ j ≤ r, we may write w = w1w2 ∙ ∙ ∙wr. Therefore,
Twj Twk = Twk Twj whenever j 6= k, due to the defining relations of H , and so

TS =
r∏

j=1
TS( j) .

By similar reasoning, TS( j) commutes with C
(
ν

(y)
x−1 :ΓS(x,y)

)
whenever j 6= y, since each term

of C
(
ν

(y)
x−1 :ΓS(x,y)

)
is an element of Sλ(i) .

We are now almost in a position to present the main result of this subsection, that be-
ing that mStν ∈ Iλ for every S ∈ T0(ν,λ) whenever ν is a component-wise shift of λ. Its
proof requires a fairly technical factorization of xλ and relies on being able to set certain
problems in the context of Iwahori-Hecke algebras of type A as detailed in Section 2.7. In
particular, we will make use of the following result, due to Lyle.
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Theorem 3.3.6 ([38, Theorem 2.3]). Let Hn be the Iwahori-Hecke algebra of type A and
let λ be a partition of n. Then Nλ∩Ȟ λ

n = Iλ.

Here Nλ and Ȟ λ
n refer to the ‘type A’ analogues, described in Definition 2.6.2, of Mμ and

Ȟ μ (where λ is a partition of n and μ a multipartition). In this case Iλ refers to the ideal
of Hn generated by elements yλd

(1)
d,t(λ).

We will first prove that a result analogous to Theorem 3.3.6 holds for component-wise
shifts. Doing so will require us to make use of the the isomorphism ζλi : H|λ(i)| →H

(
λ(i)

)

given in Definition 2.7.3 and our setting

xλ\λ(k) =
k−1∏

i=1
ζλi

(
yλ(i)

) r∏

j=k+1
ζλj

(
yλ( j)

)

for each 1≤ k ≤ r. Note that, as a consequence of Lemma 2.7.3, we have xλ = xλ\λ(k)ζλk

(
yλ(k)

)
.

In what follows, for S a quasi-semistandard ν-tableau of type λ, we write

mStν =
∑

s∈RStd(ν)
λ(s)=S

T∗
d(s)mν (3.5)

Proposition 3.3.7. Let λ and ν be multipartitions with λC ν and |λ(i)| = |ν(i)| for all
1≤ i ≤ r. If S ∈Tr,0(ν,λ), then mStν ∈ Mλ. Moreover, if S is semistandard, then mStν ∈ Iλ.

Proof. If |λ(i)| = |ν(i)| for all 1≤ i ≤ r, then u+
λ
= u+

ν . Also, by Lemma 3.3.3, we have

mStν =
∑

s∈RStd(ν)
λ(s)=S

mstν =
(
xλTSu+

λ

) ∏

x,y≥1
C

(
ν

(y)
x−1 :ΓS(x,y)

)
.

By Lemma 3.3.2, TSu+
λ
= u+

λ
TS, and so we can write

mStν = xλu+
λTS

∏

x,y≥1
C

(
ν

(y)
x−1 :ΓS(x,y)

)

= mλTS

∏

x,y≥1
C

(
ν

(y)
x−1 :ΓS(x,y)

)
.

Thus, our first statement is true, this obviously being an element of Mλ.

To show that mSt
μ ∈ Iλ whenever S is semistandard, suppose that k is the least value for

which λ(k)Cν(k). Lemma 3.3.5 and the fact that TS(i) = 1 for all 1 ≤ i < k allows us to write

mStν = u+
λxλ

r∏

j=k

(

TS( j)

ρ j(ν)∏

i=1
C

(
ν(s)

i−1 :ΓS(i, j)

)
)

. (3.6)

Writing xλ = xλ\λ(k)ζλk

(
yλ(k)

)
and substituting into (3.6) yields

mStν = u+
λxλ\λ(k)

(

ζλk
(
yλ(k)

)
TS(k)

ρk(ν)∏

i=1
C

(
ν(k)

i−1 :ΓS(i,k)

)
)

h, (3.7)
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where h consists of all remaining terms of the product that appears in (3.6). Our proof
proceeds by first showing that

ζλk
(
yλ(k)

)
TS( j)

ρk(ν)∏

i=1
C

(
ν(s)

i−1 :ΓS(i,k)

)
∈ ζλk

(
Nλ(k)

∩Ȟ λ(k)

|λ(k)|

)
,

By setting T ∈ T (ν(k),λ(k)) to be the tableau obtained by relabeling the entries of S(k)

according to the rule
S(k)(i, j, k)= (l, k)⇒ T(i, j)= l

we now have that

ζλk
(
yλ(k)

)
TS(k)

ρk(ν)∏

i=1
C

(
ν(k)

i−1 :ΓS(i−1,k)

)
= ζλk

(
y
Ttν

(k)

)
.

Note that this rule means that T is a semistandard ν(k)-tableaux of type λ(k) whenever S is
semistandard. This follows from the fact that the condition |λ(k)| = |ν(k)| for every 1≤ k ≤ r
means that all the entries appearing in the k-th component of S are all of the form (�, k),
which, in turn, means that l is non-decreasing along the rows of this component and
strictly increasing down its columns. Hence,

y
Ttν

(k) ∈ Nλ(k)
∩Ȟ λ(k)

|λ(k)|
.

By Theorem 3.3.6 this implies that

ζλk

(
y
Ttν

(k)

)
= ζλk

(

yλ(k)

∑

d,t
d(1)

d,t

(
λ(k))h′

)

=

(

ζλk
(
yλ(k)

)∑

d,t
d(k)

d,t(λ)

)

ζλk
(
h′)

where 1 ≤ d, 1 ≤ t ≤ λ(k)
k+1, and h′ ∈H|λ(n)|, and so our proof is complete since substituting

this into (3.7) yields

mStν =

(

mλ

∑

d,t
d(k)

d,t(λ)

)

ζλk
(
h′)h ∈ Iλ.

3.3.2 Cross component shifts

As in the case for component-wise shifts, we use Lemma 3.3.3 to write

mStν =

(

xλTS

∏

x,y≥1
C

(
ν(x−1,y) : ΓS(x,y)

)
)

u+
ν

with the aim of expressing the right hand side as an element of Iλ whenever λCν and
S ∈ T0(ν,λ). Here the situation we’re interested in is where |λ(i)| < |ν(i)| for at least one
1≤ i ≤ r−1. As before, we have

∏

x,y≥1
C

(
ν(x−1,y) :ΓS(x,y)

)
u+
ν = u+

ν

∏

x,y≥1
C

(
ν(x−1,y) :ΓS(x,y)

)
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and so we focus our attention upon xλTSu+
ν .

In this case, it is not in general true that TSu+
ν = u+

ν TS. Our intent, therefore, is to de-
termine how TS interacts with u+

ν , with the aim of writing xλTSu+
ν in the form given in

(3.3).

In order to proceed, we must introduce a particular family of λ-tableaux. As before, let λ

and ν be multipartitions with λCν, and, recalling Definition 3.3.2, let S ∈ Tr,0(ν,λ). The
tableaux in question will be defined recursively as follows:

1. Recalling Definition 3.3.1, set tS(0) = tS;

2. For 1 ≤ i < r−1 define tS(i) to be the λ-tableau obtained from tS(i−1) by setting the
entries in the first i components to be the same as in tλ. Note that the first i com-
ponents of tS contain only entries from the set {1,2, . . . ,ν(i+1)} and so there are then
τi =

∑i
j=1(|ν( j)|− |λ( j)|) entries from the first i components of tν appearing in the re-

maining r− i components of our tableau. Labelling these {x1, x2, . . . , xτi }, such that
xi < xj whenever i < j, we replace these elements using the rule

xk 7→λ(i) +k.

Example 10. If λ= ((2,1), (2,2), (2,2,1)) and ν= ((3,2,1), (3,1), (2)), and S ∈T0(ν,λ) is given
by

S=




11 11 23
21 22
13

, 12 12 33
22

, 13 23





Then

tS(0) =



 1 2
4

, 7 8
5 10

,
6 11
3 12
9



 tS(1) =



 1 2
3

, 7 8
5 10

,
6 11
4 12
9





tS(2) =



 1 2
3

, 4 5
6 7

,
9 11
8 12

10



 .

Remark. It is in the second part of this construction that the fact that S is quasi-
semistandard is necessary. Otherwise, τi may not represent the number of entries from
the first i components of tν appearing in the last r− i components of tS(i).

With this definition in mind, if w ∈Sn is the permutation such that tS = tλ ∙w, set TS =
Tw. In order to better describe how TS interacts with u+

μ , we introduce the following
notation.

• For any given multicomposition α of n, let u+
α(i) refer to the factor of u+

α corresponding
to the first i components of α:

u+
α(i) =

i+1∏

j=2

|α(1)|+∙∙∙+|α( j−1)|∏

k=1
(Lk −Q j)
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• Similarly, we specify u+
α(i) as the factors of u+

α corresponding to the last (r −1)− i
components:

u+
α(i) =

r∏

j=i+1

|α(1)|+∙∙∙+|α( j−1)|∏

k=1
(Lk −Q j).

• Finally, if γ is another multicomposition of n, with αE γ, let u+
γ(i)\α(i) signify the

‘difference’ between u+
γ and u+

α at the i-th component:

u+
γ(i)\α(i) =

γ(i)
∏

j=α(i)+1

(L j −Qi+1).

Example 11. Suppose that α= ((2,1), (2,2), (2,2,1)). Then

u+
α(2) = (L1 −Q2)(L2 −Q2)(L3 −Q2)

× (L1 −Q3)(L2 −Q3)(L3 −Q3)(L4 −Q3)(L5 −Q3)(L6 −Q3)(L7 −Q3)

u+
α(2) = (L1 −Q3)(L2 −Q3)(L3 −Q3)(L4 −Q3)(L5 −Q3)(L6 −Q3)(L7 −Q3),

and, if γ= ((3,2,1), (3,1), (2)), then

u+
γ(2)\α(2) = (L8 −Q3)(L9 −Q3)(L10 −Q3).

The following lemma expresses how the terms of TS in a sense filter out the extraneous
terms of u+

ν , the result being something of the form u+
λ

h for some h ∈ H . Subsequent
results then establish that whatever is to the right of u+

λ
after this filtering procedure is

completed consists of a linear combination of the elements of D(λ) and L(λ) (multiplied on
the right by elements of H ).
Lemma 3.3.8. Let λ and ν be multipartitions of n in r parts with λCν. If S is a quasi-
semistandard ν-tableau of type λ, then, for every 0≤ i ≤ r−1

TSu+
ν =

(
TS(i)u

+
λ(i) u

+
ν(i+1)

)
u+
ν(i)\λ(i) hi

for some hi ∈H .

Proof. Let wS be the permutation associated with TS and for each 0 ≤ i ≤ r−1 let wS(i) be
the unique permutation such that tS(i) = t

λ ∙wS(i). Furthermore, let wi be the permutation
such that tS(i−1) = tS(i) ∙wi. Our strategy is to compare the lengths of wS and wS(i)wi in
order to show that the latter is reduced for all i, and that Twi commutes ‘enough’ with u+

μ .
Recall that, for w ∈Sn, Dyer’s reflection cocycle is the set

N(w)= {( j, k) ∈Sn : 1≤ j < k ≤ n and jw > kw}

and that the length `(w) of w is the same as the cardinality of N(w). Hence the length
of wS is equal to the number of pairs ( j, k) where j < k and where k occupies a node of tS
higher than that j occupies.
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It is trivial to see that the lemma is true when i = 0; in this case TS(i) = TS, u+
λ(i) = u+

ν(i)\λ(i) =
1, and u+

ν(i+1) = u+
ν . Assume now that the lemma is true for an arbitrary value i = k, so that

TSu+
ν =

(
TS(k)u

+
λ(k) u

+
ν(k+1)

)
u+
ν(k)\λ(k) hk.

For any node x ∈ [λ], let nS(i)(x) be the number of entries in tS(i) less than tS(i)(x) situated
in lower nodes. By its definition wS(k+1) fixes the first k+1 components of tλ, so

`(wS(k))=
∑

x∈[λ(k+1)]

nS(k)(x)+
∑

x∉[λ(k+1)]

nS(k)(x)

=
∑

x∈[λ(k+1)]

nS(k)(x)+`(wS(k+1)),

where the equality `(wS(k+1)) =
∑

x∉[λ(k+1)] nS(k)(x) follows immediately from the construc-
tion of the tableau tS(k+1).

We will now show that for every element of the set

{(
tS(k)(x), tS(k)(y)

)
: x ∈

[
λ(k+1)

]
, tS(k)(x)> tS(k)(y), and x lower than y

}

there is an element of N(wk+1) and vice versa, and so

∑

x∈[λ(k+1)]

nS(k)(x)= N(wk+1)= `(wk+1).

By our construction of tS(k+1) from tS(k), wk+1 permutes only the elements of Ω = {λ(k) +
1, . . . ,ν(k+1)}. Additionally, if x and y are nodes of the final r− (k+1) components of [λ]
such that tS(k+1)(x) and tS(k+1)(y) take entries from the set {λ(k+1) +1, . . . ,ν(k+1)}, then

tS(k+1)(x)wk+1 < tS(k+1)(y)wk+1 ⇔ tS(k)(x)< tS(k)(y). (3.8)

Suppose that a and b are such that a < b and awk+1 > bwk+1. If x, y ∈ [λ] are such that
tS(k+1)(x)= a and tS(k+1)(y)= b, then x ∈ [λ(k+1)]; otherwise, (3.8) results in a contradiction.
Since a < b and the first k+1 components of tS(k+1) are the same as those of tλ, we therefore
conclude that y is lower than x. Conversely, suppose that x and y are such that x ∈ [λ(k+1)],
y is lower than x, and tS(k)(x) > tS(k)(y). Since x ∈ [λ(k+1)] and y is lower than x, we have
that tS(k+1)(x)< tS(k+1)(y).

We now complete our proof of the lemma: `(wS(k)) = `(wS(k+1))+`(wk+1), and so wS(k) =
wS(k+1) ∙wk+1 is reduced; this in turn implies that TS(k) = TS(k+1)Twk+1 . Finally, since wk+1

fixes all entries outside of Ω, we see that Twk+1 commutes with u+
λ(k) u

+
ν(k+1) . Combining

these two facts then yields

TSu+
ν =

(
TS(k+1)u

+
λ(k+1) u

+
ν(k+2)

)
u+
ν(k+1)\λ(k+1) Twk+1 u+

ν(k)\λ(k) h,

as required.
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Example 12. Let λ = ((2,1,1), (3,1), (2,1)) and ν = ((4,2), (3,1), (1)), and let S ∈ T0(ν,λ) be
given by

S=

(
11 11 31 13
21 22

, 12 12 12
23

, 13

)

Then

TSu+
ν = T8,7,6,5T8,7,6T10T3,4

× ((L1 −Q2) ∙ ∙ ∙ (L6 −Q2)) ((L1 −Q3) ∙ ∙ ∙ (L10 −Q3))

= T8,7,6,5T8,7,6T10︸ ︷︷ ︸
TS(1)

((L1 −Q2) ∙ ∙ ∙ (L4 −Q2))
︸ ︷︷ ︸

u+
λ(1)

((L1 −Q3) ∙ ∙ ∙ (L10 −Q3))
︸ ︷︷ ︸

u+
ν(2)

× (L5 −Q2)(L6 −Q2)
︸ ︷︷ ︸

u+
ν(1)\λ(1)

T3,4

= T10︸︷︷︸
TS(2)

((L1 −Q2) ∙ ∙ ∙ (L4 −Q2)) ((L1 −Q3) ∙ ∙ ∙ (L8 −Q2))
︸ ︷︷ ︸

u+
λ(2)=u+

λ

× (L9 −Q3)(L10 −Q3)
︸ ︷︷ ︸

u+
ν(2)\λ(2)

T8,7,6,5T8,7,6(L5 −Q2)(L6 −Q2)T3,4

It’s worth remarking that in the above example, TS(r−1) = TS(2) = T10 commutes past
u+
λ

(L9−Q3) and so, since l(2) = L9−Q3 we can write mStν = mλl
(2)h for some h ∈H .

We might well ask what happens when |λ(r)| = |ν(r)|, since in this case u+
ν does not contain

a factor of l(r−1) =
(
L
λ

(r) −Qr

)
. To answer this question, suppose that k is a positive integer

and maximal such that |λ(k)| 6= |ν(k)|. If S is a quasi-semistandard ν-tableau of type λ, then
each of the final r− k components of S are a permutation of the entries appearing in the
corresponding component of the tableau λ(tν). Hence we can define another semistandard
ν-tableau of type λ, which we denote by R, constructed from S by replacing all the last
r−k components with those of λ(tν).
Corollary 3.3.9. Suppose that λ and ν are both r-multicompositions of n such that λCν

and suppose that k is the maximal positive integer such that |λ(k)| 6= |ν(k)|. If S ∈Tr,0(ν,λ),
then

xλTSu+
ν = xλTR(k−1)u

+
λu+

ν(k−1)\λ(k−1)h

for some h ∈H . Moreover, u+
ν(k−1)\λ(k−1) 6= 1.

Proof. If |λ(l)| = |ν(l)| for all l ≥ k, then the permutation determining TS fixes the final r− l
components of tν. We may then write this permutation as a product uv where u ∈SX and
v ∈SY for

X =
{
1,2, . . . ,ν(k+1)

}
and Y =

{
ν(k+1) +1,ν(k) +2, . . . , n

}
.

Hence TS = TuTv, and, by definition, Tu = TR. Given that v only permutes the entries of
Y within the components of tν they occupy, Tv commutes with u+

ν and

xλTSu+
ν = xλTRu+

ν Tv.
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Applying Lemma 3.3.8 then yields

xλTSu+
ν = xλTR(k−1)u

+
λ(k−1)u

+
ν(k)u

+
λ(k−1)\ν(k−1)h

for h ∈H . However, by the definition of k, u+
ν(k) = u+

λ(k) and so

xλTSu+
ν =

(
xλTR(k−1)u

+
λ

)
u+
ν(k−1)\λ(k−1)h.

Using the fact that u+
ν(k−1)\λ(k−1) = l

(l−1)h for some h ∈H , we may rewrite the conclusion
of Corollary 3.3.9 in the following, more suggestive form:

xλTSu+
ν = xλTR(k−1)u

+
λ l

(k−1)h

for some h ∈H .

We next attempt to better describe TR(k−1) in a form more suited to our purposes. Through-
out we will fix k as the maximal integer x such that |ν(x)| 6= |λ(x)|.

For 1≤ s ≤ t, define

π(t, s)= (s, s+1, . . . , t)

D(t, s)= Tπ(t,s) = Tt−1Tt−2 ∙ ∙ ∙Ts

Lemma 3.3.10 ([38, Lemma 3.8]). Suppose that A is an α-tableau of type β for composi-
tions α and β, and let a(0)= tβ. If we define a(i) recursively by

a(i)= a(i−1)π(i∗, i),

where i∗ occupies the same node in a(i−1) as does i in tA, then

TA =
n−1∏

j=1
D( j∗, j).

It’s worth remarking that Lemma 3.3.10 was originally stated for partitions and row-
semistandard tableaux, but can be modified as we have done since the lemma depends on
neither of these restrictions. The statement and its notation can then be easily adapted to
multicompositions and the setting of the Ariki-Koike algebra: if λ and μ are multiparti-
tions of n and A ∈T0(μ,λ) we consider the compositions α(λ) and α(μ) and the α(μ)-tableau
α(A)-of type α(λ), and use the fact that TA = Tα(A).
Lemma 3.3.11. Let λ and ν be multipartitions with λCν such that there is at least one
1≤ i ≤ r with |λ(i)| < |ν(i)| and let S be a quasi-semistandard ν-tableau of type λ. Then

xλTSu+
ν = xλu+

λD((λ(k) +1)∗,λ(k) +1)l(k−1)h

for an element h ∈H .
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Proof. By Corollary 3.3.9 and the fact that S is quasi-semistandard, we can write

xλTSu+
ν = xλTR(k−1)u

+
λu+

ν(k−1)\λ(k−1)h
′

for some h′ ∈ H . By definition, u+
ν(k−1)\λ(k−1) = l

(k−1)h′′ for some h′′ ∈ H and so we can
rewrite this as

xλTSu+
ν = xλTR(k−1)u

+
λ l

(k−1)h′′h′.

Applying Lemma 3.3.10 to TR(k−1), and recalling that , we have

TR(k−1) =
ρr(λ)∏

i=λ(k)+1

D(i∗, i)=D
((
λ(k) +1

)∗
,λ(k) +1

) ρr(λ)∏

j=λ(k)+2

D( j∗, j),

where the first equality results from the fact that the first k−1 components of tS(k−1) are
identical to those of tλ and hence D(i∗, i)= 1 for every i <λ(k) +1.

The product
ρr(λ)∏

j=λ(k)+2

D( j∗, j)

commutes with u+
λ
l(k−1) in its entirety since j >λ(k)+1 and so the result follows due to the

fact that
D

((
λ(k) +1

)∗
,λ(k) +1

)
= T(

λ(k)+1
)∗
−1

∙ ∙ ∙T
λ(k)+2T

λ(k)+1

commutes with u+
λ

, but not necessarily with u+
λ
l(k−1).

Note that D((λ(k)+1)∗,λ(k)+1)= 1 when (λ(k)+1)∗ =λ(k)+1, so that xλTSu+
ν = mλl

(k−1)h for
some element h ∈ H . Our proof that mStν ∈ Iλ is then complete in the cross-component
case if D(x∗, x) can be expressed as a linear combination of elements of the form d(s)

d,th and

l(u)h for h ∈H .

For this, we will need the following characterization of d(s)
d,t due to Lyle [38, Lemma 3.9]:

for m,a, b ≥ 0, define

‹m,a, b› := {i= (i1, i2, . . . , ib) : m+1≤ i1 < i2 < ∙∙ ∙ < ib ≤ m+a+b} .

If (a, b) is a composition, then

C(m ; (a, b))=
∑

i∈‹m,a,b›

b∏

l=1
D(m+a+ l, il).

Therefore,

d(s)
d,t =

∑

i∈‹λ(d−1,s),λ
(s)
d ,t›

t∏

l=1
D

(
λ(d,s) + l, il

)
, (3.9)

for every (d, t, s) ∈ def(λ,d).
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Lemma 3.3.12. For 1≤ l ≤ ρk(λ), we have

D
(
λ(l,k) +1,λ(k) +1

)
= d(k)

l,1d
(k)
l−1,1 ∙ ∙ ∙d

(k)
1,1

−d(k)
l−1,1d

(k)
l−2,1 ∙ ∙ ∙d

(k)
1,1hl−1

...

−d(k)
2,1d

(k)
1,1h2

−d(k)
1,1h1

−h0,

where h0, h1, . . . , hl−1 ∈ H and h0 commutes with u+
λ
l(k−1) and hi commutes with u+

λ
for

every 1≤ i ≤ l−1.

Proof. If l = 1, then using (3.9) with s = k and t = 1 gives us

D
(
λ(1,k) +1,λ

(k)
+1

)
= d(r)

1,1 −
λ(1,k)+1∑

i=λ(k)+2

D
(
λ(1,k) +1, i

)

and we can take the sum on the right hand side as our h0. Suppose then that the lemma
is true for some arbitrary value of l. Since

D
(
λ(l+1,k) +1,λ(k) +1

)
=D(λ(k+1,k) +1,λ(l,k) +1)D(λ(l,k) +1,λ(k) +1)

and

D(λ(l+1,k) +1,λ(l,k) +1)= d(r)
l+1,1 −

λ(l+1,k)+1∑

j=λ(l,k)+2

D(λ(l+1,k) +1, j),

we have

D(λ(l+1,k) +1,λ(k) +1)= d(k)
l+1,1d

(k)
l,1 ∙ ∙ ∙d

(k)
1,1

−d(k)
l,1d

(k)
l−1,1 ∙ ∙ ∙d

(k)
1,1




λ(l+1,k)+1∑

j=λ(l,k)+2

D(λ(l+1,k) +1, j)





...

−d(k)
2,1d

(k)
1,1



d(k)
l+1,1 −

λ(l+1,k)+1∑

j=λ(l,k)+2

D(λ(l+1,k) +1, j)



h2

−d(k)
1,1



d(k)
l+1,1 −

λ(l+1,k)+1∑

j=λ(l,k)+2

D(λ(l+1,k) +1, j)



h1

−



d(k)
l+1,1 −

λ(l+1,k)+1∑

j=λ(l,k)+2

D(λ(l+1,k) +1, j)



h0.
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It is routine to check that d(k)
l+1,1 and

∑
D(λ(l+1,k)+1, j) both commute with d(k)

x,1d
(k)
x−1,1 ∙ ∙ ∙d

(k)
1,1

for every x ≤ k−1 and x ≤ k respectively.

That

d(k)
l+1,1 −

λ(l+1,k)+1∑

j=λ(l,k)+2

D(λ(l+1,k) +1, j)

commutes with u+
λ
l(k−1) follows from both terms being elements of the symmetric group

acting on the set {λ(l,k)+1, . . . ,λ(l+1,k)}. The given expression can then be written in terms
of generators Ti of H with i 6=λ(k) +1.

Recall that when S is a quasi-semistandard ν-tableau of type λ, we have

TSu+
ν = u+

λD((λ(k) +1)∗,λ(k) +1)l(k−1)h, (3.10)

for some h ∈ H . We now show that we can rewrite the right hand side of (3.10) in the
form we need in order to show that mStν ∈ Iλ in the cross-component case.
Lemma 3.3.13. Let S be a quasi-semistandard ν-tableau of type λ and let

u+
λD((λ(k) +1)∗,λ(k) +1)l(k−1)

be as in (3.10). Then there is some l with 1≤ l ≤ ρk(λ) such that

u+
λD((λ(k) +1)∗,λ(k) +1)l(k−1) = u+

λ

(
l−1∑

i=1
rid

(k)
i,1hi − l

(k−1)h′
0

)

for h′
0, h′

1, . . . , h′
l−1 ∈H and ri ∈ F.

Proof. Since S is quasi-semistandard, the λ-tableau tR(k−1) defined previously is row-
standard. We also have, by definition that the first k−1 components of tR(k−1) are identical
to those of tλ. Hence we have that the entry (λ(k) +1)∗ appears at the beginning of a par-
ticular row of component k; hence, D(x∗, x) is of the form

D
(
λ(l−1,k) +1,λ(k) +1

)

for some l with 1≤ l ≤ ρk(λ); in fact, l is the number of the row containing (λ(k) +1).

The statement now follows from Lemma 3.3.12. Indeed, by definition d(k)
i,1 commutes with

u+
λ

for all values of i, and so, using the notation in Lemma 3.3.12, we can take

h′
i = d

(k)
i−1,1d

(k)
i−2,1 ∙ ∙ ∙d

(k)
1,1hi

for each 1≤ i ≤ l−1, and h′
0 = h0.

Proposition 3.3.14. Let λ and μ be multipartitions of n with λCν and such that there is
at least one 1≤ i ≤ r with |λ(i)| < |ν(i)|. If S ∈Tr,0(ν,λ), then mStν ∈ Iλ.
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Proof. If S is a quasi-semistandard, then Lemma 3.3.3 and Lemma 3.3.11 shows that we
can write mStν as

xλu+
λD((λ(k) +1)∗,λ(k) +1)l(k−1)h

for some h ∈H . Applying Lemma 3.3.13 then completes the proof.

3.3.3 Generating Mλ∩Ȟ λ

Recall that we take Iλ to be generated as a right ideal of H by the sets

D(λ)=
{
mλd

(s)
d,t : (d, t, s) ∈ def(λ,d)

}
and L(λ)=

{
mλl

(s) : s ∈ def(λ, l)
}

.

Let λ and ν be compositions of n and let S ∈Tr(μ,λ). A useful result from the representa-
tion theory of the Iwahori-Hecke Algebra of type A [39, 4.6] is that

∑

x∈Dγ

ν(tλx)=T

yλTx = hyν (3.11)

for some h ∈Hn. Using this ability to regard certain constructions in H as objects in Hn

and properties of the latter algebra, showing that Iλ is contained in Mλ∩Ȟ λ is relatively
straight forward.
Lemma 3.3.15. For every r-multipartition λ of n

Iλ ⊆ Mλ∩Ȟ λ.

Proof. Fixing (d, t, s) ∈ def(λ,d), let ν= λ ∙d(s)
d,t and consider mλd

(s)
d,t. The terms d(s)

d,t and u+
λ

commute with one another, since u+
ν = u+

λ
and d(s)

d,t ∈H (Sν); hence,

mλd
(s)
d,t =

(
xλd

(s)
d,t

)
u+
λ .

Let S be the row-semistandard λ-tableau of type ν derived from Tλ by changing the first t
entries in row d+1 of component s from (d+1, s) to (d, s). We have

xλd
(s)
d,t = xλ

∑

x∈Dλ

ν(tλx)=S

Tx = yα(λ)

∑

x∈Dα(λ)

α(ν)(tα(λ)x)=α(S)

Tx,

and so, by (3.11),
mλd

(s)
d,t = hyα(ν)u

+
ν = hxνu+

ν = hmν

for some h ∈Hn; thus, mλd
(s)
d,t ∈ Mλ∩Ȟ λ since ν dominates λ.
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Now fix s ∈ def(λ, l) and let ν = λ ∙ l(s). If S is the row-semistandard λ-tableau of type ν

derived from Tλ by changing the entry in the first node of the first row of component s+1
from (1, s+1) to (ρs(λ)+1, s), then

∑

x∈Dλ

ν(tλx)=S

Tx = 1,

and so, again by (3.11), we have
xλ = hxν

for an element h ∈ H . Since u+
λ
l(s) = u+

ν and λCν we have that mλl
(s) = xλu+

ν = hxνu+
ν =

hmν ∈ Mλ∩Ȟ λ, as required.

We may now prove the main result of this chapter by collecting together the most import-
ant results so far encountered in this chapter.
Theorem 3.3.16. Let Iλ be the right ideal of Hr,n generated by the sets

D(λ)=
{
mλd

(s)
d,t : (d, t, s) ∈ def(λ,d)

}

and
L(λ)=

{
mλl

(s) : s ∈ def(λ, l)
}

.

Then Iλ = Mλ∩Ȟ λ.

Proof. By Lemma 3.3.1, the right ideal Mλ∩Ȟ λ is free as an F-module with basis

{mSt : S ∈T0(ν,λ), t ∈Std(ν) for ν a multipartition with λCν} .

Proposition 3.3.14 shows us that mStν ∈ Iλ whenever there exists some 1 ≤ i ≤ r such that
|λ(i)| 6= |ν(i)|, whilst Lemma 3.3.7 does the same for the case where |λ(i)| = |ν(i)| for every
1 ≤ i ≤ r; therefore, Mλ ∩ Ȟ λ ⊆ Iλ. Lemma 3.3.15 then completes the proof, since its
conclusion is that Iλ ⊆ Mλ∩Ȟ λ for every multipartition λ.

Via our discussion in the introduction to this chapter, we immediately have the (import-
ant) corollary of this result.
Corollary 3.3.17. Let Θ : Mλ → Sμ be a homomorphism. Then the following are equival-
ent:

• Θ (mλh)= 0 for every h ∈Hr,n with mλh ∈H ;

• Θ
(
mλd

(s)
d,t

)
= 0 for every (d, t, s) ∈ def(λ,d) and Θ

(
mλk

(s)
)
= 0 for every s ∈ def(λ, l); and

• Θ factors through Sλ.
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3.4 Homomorphisms and Quasi-Semistandard Tableaux

Before we continue on to constructing homomorphisms in the next chapter, we provide
a useful consequence of the proof of Theorem 3.3.16. As we saw in Section 2.4, every
semistandard tableaux S ∈ T0(μ,λ) determines a homomorphism ΘS : Mλ → Sλ; in this
section we prove that the same is true of quasi-semistandard tableaux. Recall that Mλ∗

is the image of Mλ under the anti-isomorphism ∗ : H →H ; that is, Mλ∗ =H mλ.
Lemma 3.4.1 ([21, Corollary 5.17]). Suppose that λ and μ are multicompositions of n.
Then HomH (Mλ, Mμ)∼= Mλ∗ ∩Mμ via the map ϕ 7→ϕ(mλ).

The following proposition and its corollary establishes the property of being quasi-semistandard
as a sufficient condition for a row-semistandard tableau in T (μ,λ) to determine an ele-
ment of HomH (Mλ, Mμ) and HomH (Mλ,Sμ) respectively.
Proposition 3.4.2. Let λ and μ be multipartitions of n with λCμ and let S be a row-
semistandard μ-tableau of type λ. Setting

ΘS(mλh)=





Ȟ μ+mμ

∑

s∈RStd(μ)
λ(s)=S

Td(s)





h

for each h ∈ H defines a homomorphism from Mλ to Sμ whenever S satisfies (3.4), i.e.
when S is quasi-semistandard..

Proof. By Propositions 3.3.14 and 3.3.7, we have that mStμ ∈ Mλ; hence, mStμ ∈ Mλ ∩
H mμ. Applying the anti-isomorphism ∗ : H →H to mStμ yields mtμS ∈H mλ∩Mμ. The
remainder follows from Lemma 3.4.1.
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Chapter 4

One Node Homomorphisms

4.1 Chapter Introduction

Before introducing this chapter, which for the most part concerns a very specific class
of multipartitions, we provide a couple of more generally applicable results. Let λ and
μ be multipartitions such that λCμ, and recall that each quasi-semistandard tableau
S ∈T0,r(μ,λ) determines a homomorphism ΘS : Mλ → Sμ via

ΘS(mλh)= Ȟ μ+mμ

∑

s∈RStd(μ)
λ(s)=S

Td(s)h.

Definition 4.1.1. Let ΩS
(x,y) be the sequence

S(x,y)
(1,1),S

(x,y)
(2,1), . . . ,S

(x,y)
(ρ1(λ),1),

S(x,y)
(1,2),S

(x,y)
(2,2), . . . ,S

(x,y)
(ρ2(λ),2),

...

S(x,y)
(1,r) ,S

(x,y)
(2,r) , . . . ,S

(x,y)
(ρr(λ),r).

The first result of this chapter serves a similar purpose to that of Lemma 3.3.3 in the
previous chapter, in so much as it expresses an object in which we’re interested in a form
more suited to our aims.

If λ and μ are multicompositions with λEμ, and S is a μ-tableau of type λ, we set first(S) to
be the ‘largest’ μ-tableau such that λ(first(S))= S in the dominance ordering on μ-tableaux.
More intuitively, first(S) is the μ-tableau such that

• λ(first(S))= S, and
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• if i and j both appear in the same row of tλ and i < j, then i appears in first(S)
occupying a node of [μ] higher than that occupied by j.

Lemma 4.1.1. Let μ and λ be multicompositions of n with λCμ, and let S be a μ-tableau
of type λ. Then

mμ

∑

s∈RStd(μ)
λ(s)=S

Td(s) = mμTd(first(S))

∏

i=(i1,i2)
C

(
λ

(i2)
i1−1 :ΩS

i

)
.

Proof. Immediate from the definitions.

Our second result calculates ΘS

(
mλd

(s)
d,t

)
for each (d, t, s) ∈ def(λ,d) in terms of a linear

combination of elements ΘX(mν), where ν=λ∙d(s)
d,t and X ∈T0,r(μ,ν). Its statement requires

us to first expand some of the notation established in the previous chapter.
Definition 4.1.2. If λ and μ are multicomposition and S ∈T (μ,λ), let S(x,y)

>i be the number
of entries of the form (x, y) occupying a node of S lower than i.
Proposition 4.1.2 ([38, Proposition 2.7]). Let λ and μ be multipartitions of n with λCμ

and fix an element (d, t, s) of def(λ,d). Suppose that S is a semistandard μ-tableau of type
λ and let A be the set of row–semistandard μ-tableau of type ν=λ ∙d(s)

d,t obtained from S by
replacing t entries of the form (d+1, s) with (d, s). Then each X ∈A is quasi-semistandard
and hence ΘX defined in (3.3.10) is a homomorphism Mν → Sμ. Moreover,

ΘS

(
mλd

(s)
d,t

)
=

∑

X∈A

(
∏

i
q
S

(d,s)
>i

(
X

(d,s)
i −S(d,s)

i

) [
X(d,s)

i

S(d,s)
i

])

ΘX (mν) ,

where i runs over the rows in S.

Proof. By the discussion above, we may write

xμ
∑

s∈Std(μ)
λ(s)=S

Td(s) = yα(μ)

∑

α(s)∈RStd(α(μ))
α(λ)(α(s))=α(S)

Td(α(s)).

This defines a homomorphism Nα(λ) → Nα(μ), where these are the ‘type A’ permutation
modules described in Definition 2.6.2, by [39, Equation 4.6]. Working in type A, we can
adapt the proof of [38, Proposition 2.7] almost immediately; namely, by applying the anti-
isomorphism ∗ to [37, Proposition 2.14].

Example 13. Let λ= ((3,2,2,1), (2,1)) and μ= ((4,3,2), (2)), and let S be given by

S=




11 11 11 22
21 21 31
31 41

, 12 12



 .

Then
ΘS

(
mλd

(1)
2,1

)
= (1+ q+ q2)ΘX1 (mν)+ΘX2 (mν),
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where

X1 =




11 11 11 22
21 21 21
31 41

, 12 12



 and X2 =




11 11 11 22
21 21 31
21 41

, 12 12



 .

Notice that the tableaux X ∈ T0,r(μ,ν) referred to in Proposition 4.1.2 are not necessarily
semistandard, and so the various ΘX involved in each linear combination may not be
linearly independent. This leads to the possibility that such a combination is in fact zero.
In order to address this complication, much of this chapter is dedicated to expressing each
ΘX in terms of semistandard (and hence linearly independent) homomorphisms.

In [18], Fayers provided an algorithm for expressing homomorphisms ΘS : Sλ → Mμ in
type A that are indexed by non-semistandard tableaux as a linear combination of semistand-
ard homomorphisms. Unfortunately, we cannot presently make use of this algorithm even
in type A due to the differences between the Specht modules appearing in that paper,
which are the Specht modules in the sense of [10] that we discuss as the beginning of
Chapter 3, and the Specht modules that arise as a result of the cellular basis we work
with here. However, the author is currently working with Lyle in the hope that we will be
able to fully generalize [18] to the setting of the Ariki-Koike algebra.

For the remainder of this chapter, we apply the results from the previous one to construct
homomorphisms between certain pairs of Specht modules for the Ariki-Koike algebra with
r = 2 (otherwise known as the Iwahori-Hecke algebra of type B. Suppose that λ and μ are
bipartitions such that λEμ and

μ=
((
λ(1)

1 , . . . ,λ(1)
i +1, . . . ,λ(1)

ρ1(λ)

)
,
(
λ(2)

1 , . . . ,λ(2)
j −1, . . . ,λ(2)

ρ2(λ)

))
(4.1)

for a given pair of integers i and j. In other words, μ and λ are such that [μ] can be
formed from [λ] by removing a single node from the second component and adding it to
the first. When μ is related to λ in this way we will call a homomorphism Θ : Mλ →
Sμ a one-node homomorphism, these forming the focus of this chapter. We will actually
concentrate on the case where i = 1 and j = ρ2(λ), from which the more general case can
be inferred.

4.2 Characterizing Tableaux

With λ and μ multipartitions and as specified at the end of section 4.1, here we collect
a number of properties of semistandard μ-tableaux of type λ. This will culminate in a
characterisation of such tableaux in terms of the entries occupying a certain class of nodes
of [μ].
Lemma 4.2.1. If S ∈T0(μ,λ), then there is exactly one node n ∈

[
μ(1)

]
such that S(n)= (i,2),

for some 1≤ i ≤ ρ2(λ).

Proof. There are exactly |λ(1)| = |μ(1)| − 1 entries of the form (x,1) appearing in S. All
of these must occur in the first component if S is to be semistandard, leaving precisely
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one unoccupied node n ∈
[
μ(1)

]
. The proof of the lemma is then complete, since there are

|λ(1)| = |μ(1)|+1 of entries of the form (i,2) and the same number of nodes of [μ] yet to be
assigned an entry by S.

The following lemma demonstrates that every semistandard μ-tableau of type λ is com-
pletely determined by which entries occupy nodes in the set

Eμ =
{
(i, j, k) ∈ [μ] : j =μ(k)

i

}
.

Since the elements of this set depend only on the values taken by a = (i, k), we write(
i,μ(k)

i , k
)

as ea.

Lemma 4.2.2. Let S ∈T0(μ,λ). Then S(i, j, k)= (i, k) for every (i, j, k) ∈ [μ] with j 6=μ(k)
i .

Proof. The first row of S must contain all of those entries of the form (1,1). Were this not
the case, our assumption that S is semistandard would be contradicted as there would be
at least one such entry in either:

• a lower row of the first component, violating condition 2 of Definition 2.4.2; or

• a lower component than the first, violating condition 3.

Since μ(1)
1 = λ(1)

1 +1 and S is row-semistandard, there is precisely one node occupied by an
entry other than (1,1) and this node must be situated at the end of the row; therefore, the
lemma holds when (i, k)= (1,1) .

Now let (i, k) be such that (1,1) ≺ (i, k). If the lemma holds for every row x and every
component z such that (x, z)≺ (i, k), then, by either condition 2 or condition 3 of Definition
2.4.2, each entry of the form (x, z) occupies a node higher than row i of component k. There
are

∣
∣
∣λ(k−1)

∣
∣
∣+

i−1∑

l=1
λ(k)

l

such entries and
∣
∣
∣λ(k−1)

∣
∣
∣+

(i−1)∑

l=1
λ(k)

l +1

possible nodes they can occupy, and so there is at most one entry of the form ( i, k) occupy-
ing one of these available nodes. Employing a similar argument, the λ(k)

i = μ(k)
i nodes of

row i in component k contain at least λ(k)
i − 1 instances of this entry. The lemma now

follows since the remaining entry in this row is equal to or greater than ( i, k) and S is
row-semistandard.

We shall prove that S is in fact completely determined by the set of nodes ea where a =
(i, k) is such that either:

• i < ρk(μ) and (i+1, k)≺ S(ea); or

• i = ρk(μ) and (1, k+1)≺ S(ea).
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We denote this set ES.
Example 14. Let λ= ((4,3,2,1), (3,2,1,1)) and μ= ((5,3,2,1), (3,2,1)), and let S ∈ T0(μ,λ)
be given by

S=







11 11 11 11 31
21 21 21
31 41
22

,
12 12 12
22 42
32





 .

In this case, ES = {(1,5,1), (4,1,1), (2,2,2)}.

If instead S is given by

S=







11 11 11 11 21
21 21 31
31 41
12

,
12 12 22
22 32
42





 ,

then ES =;.
Lemma 4.2.3. Let S ∈T0(μ,λ) and let j,k ∈N2 be such that ej,ek ∈ ES; then S(ej)≺ S(ek) if
and only if j<k.

Proof. Suppose that S(ej)≺ S(ek) and k¹ j. If j= ( j1, j2), then there are exactly

∣
∣
∣μ( j2−1)

∣
∣
∣+

j2∑

i=1
μ

( j2)
i −1

nodes of [μ] higher than ej. Moreover, since μ(1)
1 =λ(1)

1 +1 and μ(z)
x =λ(z)

x for all (x, z) 6= (1,1)
and (x, z) 6= (ρ2(λ),2), this is also the number of entries in S that are less than or equal
to ( j1, j2). That S is semistandard means that all such nodes must be occupied by these
entries and, since ek is higher than ek, this contradicts our assumption that S(ej)≺ S(ek).

Conversely, suppose that j≺k and that k= (k1, k2). Then, by similar reasoning, all nodes
higher than ek are occupied by entries less than or equal to (k1, k2); therefore, S(ej) ¹
(k1, k2)≺ S(ek).

Proving that S is completely determined by the entries it maps to each node of the set ES

depends on describing how S assigns entries to the remaining nodes of [μ]. Lemma 4.2.2
already accomplishes this for those nodes not appearing at the ends of the rows of [μ], and
so we now focus on those nodes that do.
Proposition 4.2.4. Let S be a semistandard μ-tableau of type λ and let k = (k1, k2) for
1≤ k2 ≤ 2 and 1≤ k1 ≤ ρ2(μ):

1. we have

S(ek)=

{
(k1 +1, k2) if k1 < ρk2 (λ)

(1, k2 +1) if k1 = ρk2 (λ) and k2 = 1

whenever

(a) k≺min{j : ej ∈ ES},
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(b) S(ej)¹k≺min{l : el ∈ ES and S(ej)≺ el} for j such that ej ∈ ES, or

(c) S(ej) ¹ k ≺ (ρ2(λ),2) for j such that S(ej) 6= (ρ2(λ),2) and j = max{l : el ∈ ES}
(should such a value j exist);

2. S(ek)= (k1, k2) whenever j≺k≺ S(ej) for any j such that ej ∈ ES; and

3. If k= (ρ2(λ),2), then S(ek)= (ρ2(λ),2).

Proof. For the first part of the lemma we prove only (a) in the case where k1 < ρk2 (λ),
the remainder of 1. and the remaining case being sufficiently similar to this to warrant
omission.

1. (a) Suppose that k ≺ min{j : ej ∈ ES}; therefore, S(ek) is equal to either (k1, k2) or

(k1 +1, k2). The first row of the first component of [μ] consists of μ(1)
1 = λ(1)

1 +1

nodes, λ(1)
1 of which being assigned by entries of the form (1,1) by S. Since S is

semistandard, S(ek) = (2,1) if k = (1,1). If k 6= (1,1) and the statement is true
for all l≺k, then there are

∣
∣
∣μ(k2−1)

∣
∣
∣+

k1∑

i=1
μ

(k2)
i −1

nodes higher than ek and these must all be assigned entries less than or equal
to k. In particular, these include all possible instances of k: S(e(k1−1,k2)) = k

and there are μ
(k2)
k1

−1 further instances of k occupying the nodes of row k1,

component k2, giving a total of μ
(k2)
k1

= λ
(k2)
k1

entries. Therefore S(ek) 6= k and
hence S(ek)= (k1 +1, k2).

2. Our proof is essentially the same as that of 1. (a). Suppose that j = ( j1, j2) is such
that ej ∈ ES and that j≺k≺ S(ej). There are

∣
∣
∣μ( j2−1)

∣
∣
∣+

j1∑

i=1
μ

( j2)
i −1

nodes higher than j and the same number of entries less than or equal to j. Since
S(ej) 6= j and S, these nodes must occupy the nodes in question. There are now two
possibilities to consider: either j1 = ρ j2 (μ) or j1 < ρ j2 (μ). Since the proof proceeds
in an identical fashion for both possibilities, we will omit the latter case. If k =
( j1 +1, j2), then S(ej) 6= k and, since S is semistandard, row j1 +1 of component j2

contains all entries of the form k that appear in S. There are λ
( j2)
j1

such entries and

μ
( j2)
j1

=λ
( j2)
j2

; therefore S(ek)=k. Our inductive step mimics that of 1. (a), completing
the proof.

We conclude this section by remarking that each of its results apply, subject to changing
some of the entries, to the more general case when μ is given by (4.1): Fix positive integers
k ≤ ρ1(λ) and j ≤ ρ2(λ). If μ(1)

i = λ(1)
i for all 1 ≤ i ≤ k, then S(i,1) = (i,1). Similarly, if
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μ(2)
i = λ(2)

i for all j ≤ i ≤ ρ2(λ), then S(i,2) = (i,2). In this way, the set ES still completely
determines S.

4.3 Describing Homomorphisms

We now use the results of the previous subsection to refine our description of semistand-
ard homomorphisms ΘS : Mλ → Sμ. A great deal of the most important aspect of this
description depends solely upon the images of the elements of ES under S.
Definition 4.3.1. Let j= ( j1, j2) be such that ej ∈ ES. If S(ej)= (x, y), define αj = t

μ(ej) and

ωj =λ
(y)
x−1 +1.

Additionally, for integers 1 ≤ a, b ≤ n−1, set
→
T (a, b) = TaTa+1 ∙ ∙ ∙Tb−1, adopting the con-

vention that
→
T (a, b)= 1 whenever a = b.

Proposition 4.3.1. Let S be a row-semistandard μ-tableau of type λ. Then

ΘS(mλh)=

(

Ȟ μ+mμ

∏

j∈ES

→
T

(
αj,ωj

) ∏

i=(i1,i2)
C

(
λ

(i2)
i1−1 :ΩS

i

)
)

h,

where 1≤ i2 ≤ 2 and 1≤ i1 ≤ ρ i2 (λ), for all h ∈H .

Proof. By Lemma 4.1.1

ΘS(mλh)=

(

Ȟ μ+mμTd(first(S))

∏

i=(i1,i2)
C

(
λ

(i2)
i1−1 :ΩS

i

)
)

h,

and so we must show that ∏

j∈ES

→
T

(
αj,ωj

)
= Td(first(S)).

Suppose that j = ( j1, j2) is any node with ej ∈ ES. By definition, d(first(S)) sends αj to
the smallest integer in row x1 of component x2 of the tableau tλ with (x1, x2) = S(ej). By
Lemma 4.2.3 and the definition of first(S)

d(first(S)) :αj 7→ωj 7→ωj −1 7→ ∙ ∙ ∙ 7→αj +1 7→αj.

If k is minimal such that ek ∈ ES and j<k, then, again by Lemma 4.2.3,

d(first(S)) : i 7→ i

for all integers i. Hence d(first(S)) consists of disjoint cycles

(
αj,ωj,ωj −1,ωj −2, . . . ,αj +1

)
,

for every j ∈ ES.
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Example 15. Let λ= ((3,2,1), (2,2,1)) and μ= ((4,2,1), (2,2)), and let S ∈T0(μ,λ) be given
by

S=




11 11 11 22
21 21
31

, 12 12
22 32



 .

We have ES = {(1,1)}, α(2,1) = 4, and ω(2,1) = 9, and so
→
T (α(2,1),ω(2,1))= T4,5,6,7,8 and ΘS(mλ)=

Ȟ μ+mμT4,5,6,7,8(1+T9).

The subsequent lemma lays out some useful properties of the description of ΘS(mλh) given
in Proposition 4.3.1.
Lemma 4.3.2. Let S be a semistandard μ-tableau of type λ and let j = ( j1, j2) and k =
(k1, k2) be elements of ES. If j 6=k, then:

1.
→
T (αj,ωj) and

→
T (αk,ωk) commute with one another;

2. C(λ
( j2)
j1

:ΩS
j ) and C(λ

(k2)
k1

:ΩS
k) commute with one another; and

3.
→
T (αj,ωj) and C

(
λ

(k2)
k1

:ΩS
k

)
commute with one another.

Furthermore, if j is not the unique node of [μ] for which S is occupied by an entry of the
form (�,2) and k 6= (1,2), then the element l(1) = (L|λ(1)|+1 −Q2) commutes with both

→
T (αj,ωj) and C(λ

(k2)
k1

:ΩS
k).

Proof. 1. That
→
T (αj,ωj) and

→
T (αk,ωk) commute follows immediately from the fact

that their indexing permutations are disjoint; see the proof of Proposition 4.3.1.

2. The permutations indexing the terms of C(λ
( j2)
j1−1 : ΩS

j ) are all elements of the sym-

metric group on {λ
( j2)
j1−1 +1, . . . ,λ

( j2)
j1

} whilst those indexing the terms of C(λ
(k2)
k1−1 : ΩS

k)

are elements of that on the set {λ
(k2)
k1−1 +1, . . . ,λ

(k2)
k1

}.

3. Our proof proceeds in a similar fashion to the previous two cases: we need only the
additional observation that

C
(
λ

(i2)
i1−1 :ΩS

i

)
= 1

for all i = (i1, i2) with j ≺ i ≺ S(ej). This follows from the fact that all entries of the
form (i1, i2) are confined to a single row of S, by Proposition 4.2.4.

A consequence of Lemma 4.3.2 is that we can rewrite our semistandard homomorphisms
in a form which is much more convenient for computing the action of ΘS

(
mλl

(1)
)
.

Corollary 4.3.3. Let S be a semistandard μ-tableau of type λ, Then

ΘS

(
mλl

(1)
)
= Ȟ μ+mμ

→
T (αn,ωn)C

(
|λ(1)| :ΩS

(1,2)

)
l(1)hS,
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where
hS =

∏

j∈ES

j 6=n

→
T (αj,ωj)

∏

i=(i1,i2) 6=(1,2)
C

(
λ

(i2)
i1

:ΩS
i

)
.

Proof. An immediate consequence of Lemma 4.3.2.

4.4 The Image of mλl
(1) under a Semistandard Homomorph-

ism

Our intention here is to provide an analogue of Proposition 4.1.2 for the elements mλl
(s).

Even in the case we consider, where μ and λ are identical bar the position of a single node,
this is so much more lengthy and technical than the proof of Proposition 4.1.2.

We begin with the following lemma specifying how the Jucys-Murphy element Li acts on
the generators Ti and Ti+1.
Lemma 4.4.1. Recall that Li = q1−iTi−1,i−2,...,1,0,1,...,i−2,i−1. For all 1≤ i ≤ n:

1. TiLi+1 = (q−1)Li+1 +LiTi;

2. TiLi = Li+1Ti − (q−1)Li+1;

3. T jLi = LiT j whenever j 6= i or i−1, and

4. let a and b be positive integers with a < b, then is equal to

→
T (a, b)Li =






La
→
T (a, b)+ (q−1)

∑b
j=a+1 L j

→
T (a, j−1)

→
T ( j, b) if b = i,

Li+1
→
T (a, b)− (q−1)Li+1

→
T (a, i)

→
T (i+1, b) if b > i and a ≤ i,

Li
→
T (a, b) if b < i or a > i

Proof. 1., 2., and 3. follow immediately from direct calculation, and the latter two state-
ments of the fourth part are an immediate consequence of these. That

→
T (a, i−1)Li = La

→
T (a, i−1)+ (q−1)

i−1∑

j=a
L j

→
T (a, j−1)

→
T ( j, i−1)

follows from repeated application of 1.

Fix S ∈ T0(μ,λ) and, as in the previous section, let n = (n1, n2, n3) be the unique node in
the first component of [μ] for which S(n1, n2, n3)= (x,2), where x is a positive integer with
1 ≤ x ≤ ρ2(λ). The form taken by ΘS(mλl

(1)) depends on whether or not x = 1, and so we
consider each of these two cases in turn.
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The case where x = 1: For 1 ≤ z ≤ ρ1(λ)− n1 and ν = λ ∙ l(1), define tableaux W0,Wz ∈
T (μ,ν) by

W0(i, j, k)=

{
(ρ1(λ)+1,1) if (i, j, k)=n,
S(i, j, k) otherwise,

(4.2)

and

Wz(i, j, k)=






(ρ1(λ)+1,1) if (i, j, k)=
(
n1 + z,μ(1)

n1+z,1
)
,

S
(
n1 + z,μ(1)

n1+z,1
)

if (i, j, k)=n,

S(i, j, k) otherwise

(4.3)

for all (i, j, k) ∈ [μ]. W0 and, for all specified values of z, Wz satisfy the hypothesis of Propos-
ition 3.4.2, and so define homomorphisms ΘW0 ,ΘWz : Mν → Sμ. We explicitly describe this
homomorphism below.
Lemma 4.4.2.

ΘW0 (mνh)=

(

Ȟ μ+mμ

∏

j∈ES

→
T (αj,ωj)

∏

i 6=(1,2)
C

(
λ

(i2)
i1−1 :ΩS

i

)
)

h

and

ΘWz (mνh)=

(

Ȟ μ+mμ

∏

j∈ES\{n}

→
T (αj,ωj)

→
T

(
αn,λ

(1)
n1+z−1 +1

) →
T

(
μ(1)

n1+z,ωn

)

×
∏

i 6=(1,2)
C

(
λ

(i2)
i1−1 :ΩS

i

)
C

(
λ

(1)
n1+z−1 : 1,λ(1)

n1+z −1
)
)

h

for every h ∈H .

Proof. The tableau W0 is constructed from S by relabelling the single entry of the form
(1,2) appearing in the first component as (ρ1(λ)+1,1). Hence

Td(first(W0)) = Td(first(S)) =
∏

j∈ES

→
T (αj,ωj).

By definition, if i ∈ [μ] is such that S(i) 6= (1,2), then S(i)= W0(i); therefore,

C
(
λ

(i2)
i1−1 :ΩS

i

)
=C

(
λ

(i2)
i1−1 :ΩW0

i

)

for all i 6= (1,2). Also, since the entries of the form 12 are all confined to the first row of the
second component of W0, we have

C
(
|λ(1)| :ΩW0

(1,2)

)
= 1.

This proves the first part of the proposition.

For the second part, first(S)(i) = first(Wz)(i) for every i 6= n and i 6= e(n1+z,1). Applying a
similar argument as in the proof of Proposition 4.3.1 then yields

Td(first(Wz)) =
∏

j∈ES\{n}

→
T (αj,ωj)

→
T

(
αn,λ

(1)
n1+z−1 +1

) →
T

(
μ(1)

n1+z,ωn

)
.
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Additionally, by the construction of Wz,

C
(
λ

(i2)
i1−1 :ΩS

i

)
=C

(
λ

(i2)
i1−1 :ΩWz

i

)

whenever i 6= (1,2) or i 6= (n1 + z,1). Since

C
(
|λ(1)| :ΩWz

(1,2)

)
= 1,

we are left with only

C
(
λ

(1)
n1+z−1 :ΩS

(n1+z,1)

)
and C

(
λ

(1)
n1+z−1 :ΩWz

(n1+z,1)

)

to consider. By Lemma 4.2.4, all entries of this form (n1 + z,1) are contained in the same
row of S, and so

C
(
λ

(1)
n1+z−1 :ΩS

(n1+z,1)

)
= 1.

On the other hand, in Wz one entry of the form (n1 + z,1) appears as Wz(en), with the
remaining λ(1)

n1+z −1 entries all appearing in row n1 + z; hence,

C
(
λ

(1)
n1+z−1 :ΩWz

(n1+z,1)

)
=C

(
λ

(1)
n1+z−1 : 1,λ(1)

n1+z −1
)
.

Combining these observations yields the stated expression for ΘWz (mν).

We can write

ΘW0 (mν)= Ȟ μ+mμ

→
T (αn,ωn)

∏

j∈ES

j 6=n

→
T (αj,ωj)

∏

i 6=(1,2)
C

(
λ

(i2)
i1−1 :ΩS

i

)

= Ȟ μ+mμ

→
T (αn,ωn)hS (4.4)

and

ΘWz (mν)= Ȟ μ+mμ

→
T

(
αn,λ

(1)
n1+z−1 +1

) →
T

(
μ(1)

n1+z,ωn

)

×hSC
(
λ

(1)
n1+z−1 : 1,λ(1)

n1+z −1
)
. (4.5)

We let hWz denote hSC
(
λ

(1)
n1+z−1 : 1,λ(1)

n1+z −1
)
= hSC

(
λ

(1)
n1+z−1 :ΩWz

(n1+z,1)

)
.

We will show that ΘS(mλl
(1)) can be expressed as a linear combination of ΘW0 (mν) and,

for each z with 1 ≤ z ≤ ρ1(λ)− n1, ΘWz (mν). In order to simplify the proof, we need the
following three results.
Lemma 4.4.3.

mμ

→
T (αn, |λ(1)|+1)

(
L|λ(1)|+2 −Q2

)
∈ Ȟ μ

Proof.
→
T (αn, |λ(1)|+1) and

(
L|λ(1)|+2 −Q2

)
commute with one another, and, by the remark

following Proposition 2.3.2, we have mμL|λ(1)|+2 = mμL|μ(1)|+1 ≡Q2mμ mod Ȟ μ.
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Lemma 4.4.4.

(q−1)Q2mμ

→
T (αn, |λ(1)|+1)L|λ(1)|+2

λ(2)
1 −1∑

i=1

→
T

(
|λ(1)|+2, |λ(1)|+1+ i

)
(4.6)

is equal to (
qλ(2)

1 −1 −1
)
Q2mμ

→
T (αn, |λ(1)|+1)

modulo Ȟ μ.

Proof. The term
→
T (αn, |λ(1)| +1) commutes past everything that appears to its right in

(4.6), and mμL|λ(2)|+2 =Q2mμ; hence, equation (4.6) is equal to

(q−1)Q2mμ

λ(2)
1 −1∑

i=1

→
T

(
|λ(1)|+2, |λ(1)|+1+ i

) →
T (αn, |λ(1)|+1). (4.7)

By [39, Corollary 3.4] mμ

→
T

(
|λ(1)|+2, |λ(1)|+1+ i

)
= qi+1−2mμ for every 1 ≤ i ≤ λ(2)

1 − 1.
Therefore, (4.7) is in turn equal to

(q−1)Q2




λ(2)

1 −2∑

y=0
qy



mμ

→
T (αn, |λ(1)|+1).

Lemma 4.4.5. For every n1 +1≤ y≤ ρ1(μ),

mμ

μ(1)
y∑

k=μ(1)
y−1+1

→
T (αn, k−1)

→
T

(
k, |λ(1)|+1

)
Lk (4.8)

is equal to

qμ(1)
y −yQ1mμ

→
T

(
αn,λ

(1)
y−1 +1

) →
T

(
μ(1)

y , |λ(1)|+1
) λ

(1)
y +1∑

k=λ
(1)
y−1+2

→
T

(
λ

(1)
y−1 +1, k−1

)

modulo Ȟ μ.

Proof. Using Proposition 2.3.2 to evaluate mμLk for each k, we have that (4.8) is equal to

mμ

μ(1)
x∑

k=μ(1)
y−1+1

qk−yQ1
→
T (αn, k−1)

→
T

(
k, |λ(1)|+1

)
. (4.9)

Writing
→
T

(
k, |λ(1)|+1

)
as

→
T

(
k,μ(1)

y

) →
T

(
μ(1)

y , |λ(1)|+1
)

and observing that

→
T (αn, k−1)

→
T

(
k,μ(1)

y

)
=

→
T

(
k,μ(1)

y

) →
T (αn, k−1),
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yields

mμ

→
T (αn, k−1)

→
T (k,μ(1)

y )= qμ(1)
y −kmμ

→
T (αn, k−1).

Substituting this into (4.9) then allows us to write (4.8) as

qμ(1)
y −yQ1mμ

μ(1)
y∑

k=μ(1)
y−1+1

→
T (αn, k−1)

→
T

(
μ(1)

y , |λ(1)|+1
)
, (4.10)

and, since μ(1)
y−1 =λ

(1)
y−1 +1 we have that

→
T (αn, k−1)=

→
T

(
αn,μ(1)

y−1

) →
T

(
μ(1)

y−1, k−1
)

=
→
T

(
αn,λ

(1)
y−1 +1

) →
T

(
λ

(1)
y−1 +1, k−1

)

Moreover,
→
T

(
λ

(1)
y−1 +1, k−1

)
and

→
T

(
μ(1)

y , |λ(1)|+1
)

commute for all stated values of k. Ap-

plying this fact to (4.10) then yields

(4.8)= qμ(1)
y −yQ1mμ

→
T

(
αn,λ

(1)
y−1 +1

) →
T

(
μ(1)

y , |λ(1)|+1
)

×
λ

(1)
y +1∑

k=λ
(1)
y−1+2

→
T

(
λ

(1)
y−1 +1, k−1

)
,

as required.

With the previous three lemmas in place, we’re now ready to precisely describe the image
of mλl

(1) under ΘS for a given S ∈T0(μ,λ).
Proposition 4.4.6. Let S ∈T0(μ,λ) and let ν=λ ∙ l(1). Then

ΘS

(
mλl

(1)
)
=

(
resμ(n)−resλ

(
1,λ(2)

1 ,2
))
ΘW0 (mν)

+ (q−1)
ρ1(μ)−n1∑

z=1
resμ

(
n1 + z,μ(1)

n1+z,1
)
ΘWz (mν).

Proof. By Corollary 4.3.3, we have

ΘS

(
mλl

(1)
)
= Ȟ μ+mμ

→
T (αn,ωn)C

(
|λ(1)| :ΩS

(1,2)

)
l(1)hS

and so we begin by considering

mμ

→
T (αn,ωn)C

(
|λ(1)| :ΩS

(1,2)

)
l(1).

By the definition of S and the fact that S(n)= (1,2),

C
(
|λ(1)| :ΩS

(1,2)

)
=C

(
|λ(1)| : 1,λ(2)

1 −1
)

= 1+
λ(2)

1 −1∑

i=1

→
T

(
|λ(1)|+1, |λ(1)|+1+ i

)
.
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Multiplying on the right by l(1) and applying the fourth part of Lemma 4.4.1 gives us that

C
(
|λ(1)| :ΩS

(1,2)

)
l(1)

is equal to

(
L|λ(1)|+1 −Q2

)
+




(
L|λ(1)|+2 −Q2

)λ
(2)
1 −1∑

i=1

→
T

(
|λ(1)|+1, |λ(1)|+1+ i

)




−



(q−1)L|λ(1)|+2

λ(2)
1 −1∑

i=1

→
T

(
|λ(1)|+2, |λ(1)|+1+ i

)


 .

By Lemma 4.4.3 and Lemma 4.4.4 respectively, multiplying on the left by mμ

→
T (αn,ωn),

and noting that ωn = |λ(1)| +1, has the result that the second term is killed off and the
third term gives us

−
(
qλ(2)

1 −1 −1
)
Q2mμ

∑

i=1

→
T (αn, |λ(1)|+1).

As for the first term, a consequence of Lemma 4.4.1 is that

mμ

→
T (αn,ωn)

(
L|λ(1)|+1 −Q2

)
= mμ

(
Lαn −Q2

) →
T (αn,ωn) (4.11)

+(q−1)mμ

|λ(1)|−αn+1∑

j=1
Lαn+ j

→
T (αn,αn + j−1)

→
T

(
αn + j, |λ(1)|+1

)
(4.12)

Fix an integer z with 1≤ z ≤ ρ1(μ)−n1 and set y= n1 + z so that (4.12) is equal to

(q−1)mμ

ρ1(μ)∑

x=n1+1

μ(1)
y∑

k=μ(1)
y−1+1

Lk
→
T (αn, k−1)

→
T

(
k, |λ(1)|+1

)
.

Lemma 4.4.5 then gives us that ΘS(mλl
(s)) is equal to

mμ

(
Lαn − qλ(2)

1 −1Q2

) →
T (αn,ωn)hS

+(q−1)

(
ρ+1(μ)∑

x=n1+1
qμ(1)

y −yQ1mμ

→
T

(
αn,λ

(1)
y−1 +1

) →
T

(
μ(1)

y , |λ(1)|+1
)

×
λ

(1)
y +1∑

k=λ
(1)
y−1+2

→
T

(
λ

(1)
y−1 +1, k−1

)
hS




 .

Comparison with (4.4) and (4.5) then completes our proof since:

•
∑λ

(1)
y +1

k=λ
(1)
y−1+2

→
T

(
λ

(1)
y−1 +1, k−1

)
hS =C

(
λ

(1)
y−1 :ΩWz

(y,1)

)
hS = hWz ;

• mμLαn ≡ resμ(n)mμ mod Ȟ μ;
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• qλ(2)
1 −1Q2 = resλ(1,λ(1)

2 ,2); and

• qμ(1)
y −yQ1 = resμ

(
(n1 + z,μ(1)

n1+z,1)
)
.

With this case complete, we now turn our attention to the case where S(en) = (x,2) and
x 6= 1. This case is simpler than the last, in terms of both statement its proof. One way of
thinking about both is that l(1) ‘acts’ on the tableau S thus, as we shall see in Proposition
4.4.8

• if (x,2) = (1,2), then l(1) gradually moves (x,2) row by row down through its initial
position in S; and

• if (x,2) > (1,2), then l(1) swaps the positions of (x,2) and an entry of the form (1,2)
such that the resulting tableau is row-semistandard.

The case where 1< x : Define the μ–tableau U of type ν=λ ∙ l(1) by

U(i, j, k)=






(ρ1(λ)+1,1) if (i, j, k)=n,

(x,2) if (i, j, k)=
(
1,μ(2)

1 ,2
)
,

S(i, j, k) otherwise.

(4.13)

Like W0 and Wz, this tableau satisfies Proposition 3.4.2, and so ΘU : Mν → Sμ is a homo-
morphism.
Lemma 4.4.7. Let ν=λ ∙ l(1). Then

ΘU(mνh)= Ȟ μ+mμ

∏

j∈ES\{n}

→
T (αj,ωj)

→
T

(
αn,λ

(2)
+1

) →
T

(
μ(2)

1 ,ωj

)

×
∏

i 6=(1,2)
C

(
λ

(i2)
i1−1 :ΩS

i

)
h

for all h ∈H .

Proof. This is very similar to the proof of Lemma 4.4.2, and so we only provide a sketch
proof. Since all of the λ(2)

1 −1 entries of the form (1,2) in U reside in the first row of the
second component, we have

C
(
|λ(1)| :ΩU

(1,2)

)
= 1.

Now consider entries of the form (x,2). In S we see that

S(x,2)
n = 1= U(x,2)

(1,2) and S(x,2)
(x,2) =λ(2)

x −1= U(x,2)
(x,2).

Thus
C

(
λ

(2)
x−1 :ΩS

(x,2)

)
=C

(
λ

(2)
x−1 :ΩU

(x,2)

)
.

Equality of the remaining terms follows immediately from the definition of U.
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As a result of this lemma, we can in this case write

ΘU (mλ)= Ȟ μ+mμ

→
T

(
αn,λ

(2)
+1

) →
T

(
μ(2)

1 ,ωj

)
hS. (4.14)

Our next result concludes this subsection, expressing ΘS(mλl
(1)) in terms of ΘU(mν) when

S(en)= (x,2) for x > 1 .
Proposition 4.4.8. Let S be a semistandard μ-tableau of type λ. Then

ΘS

(
mλl

(1)
)
=−(q−1)resμ(e(1,2))ΘU(mν).

Proof. By Lemma 4.2.4, all entries of the form (1,2) occupy the first row of the second
component of S whenever 1< x, hence

C
(
|λ(1)| :ΩU

(1,2)

)
= 1

and so Corollary 4.3.3 means that we need only consider mμ

→
T (αn,ωn)l(1). By part 4 of

Lemma 4.4.1 we have

→
T (αn,ωn)l(1) =

(
L|λ(1)|+2 −Q2

) →
T (αn,ωn)

− (q−1)L|λ(1)|+2

→
T

(
αn, |λ(1)|+1

) →
T

(
|λ(1)|+2,ωn

)
,

and evaluating mμL|λ|(1)+2 = mμL|μ(1)|+1 =Q2mμ gives us that

mμ

→
T (αn,ωn)l(1) =−(q−1)Q2mμ

→
T

(
αn, |λ(1)|+1

) →
T

(
|λ(1)|+2,ωn

)
.

Taking |λ(1)|+2= |μ(1)|+1 we can rewrite
→
T (|λ(1)|+2,ωn) as

→
T

(
|μ(1)|+1,μ(2)

1

) →
T

(
μ(2)

1 ,ωn

)
.

Using this, along with the fact that
→
T

(
|μ(1)|+1,μ(2)

1

)
commutes with

→
T

(
αn, |λ(1)|+1

)
and

→
T

(
|μ(1)|+1,μ(2)

1

)
∈

{
Tw ∈H : w ∈Sμ

}

we have

mμ

→
T (αn,ωn)l(1)hS =−(q−1)qμ(2)

1 −1Q2mμ

→
T

(
αn, |λ(1)|+1

) →
T

(
μ(2)

1 ,ωn

)
hS

=−(q−1)resμ(e(1,2))mμ

→
T

(
αn, |λ(1)|+1

) →
T

(
μ(2)

1 ,ωn

)
hS.

The statement then follows immediately from Lemma 4.4.7 and comparison with (4.14).
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Example 16. Let λ= ((2,1), (1,1)) and μ= ((3,1), (1)), and let S1,S2 ∈T (μ,λ) be given by

S1 =

(
11 11 12
21

, 22

)

and S2 =

(
11 11 22
21

, 12

)

.

Then, if Θ=ΘS1 +ΘS2

Θ
(
mλl

(1)
)
=

(
q2Q1 − qQ2

)
ΘX(mν)+ (q−1)q−1Q1ΘY(mν),

where

X=

(
11 11 31
21

, 22

)

and Y=

(
11 11 21
31

, 22

)

.

4.5 Manipulating Maps: Semi-standardization

To recap, we can now calculate ΘS

(
mλd

(s)
d,t

)
and ΘS

(
mλl

(s)
)

for every (d, t, s) ∈ def(λ,d) and

every s ∈ def(λ,d) for a given S ∈T0(μ,λ), in the sense that we may write

ΘS

(
mλd

(s)
d,t

)
=

∑

i
αXiΘXi (mν) (4.15)

and
ΘS

(
mλl

(1)
)
=

∑

i
βWiΘWi

(
mη

)
, (4.16)

where

• αXi ,βWi ∈ F,

• ν=λ ∙d(s)
d,t, and η=λ ∙ l(s); and

• Xi ∈Tr,0(μ,ν) and Wi ∈Tr,0(μ,η).

Although the various ΘXi and ΘWi are homomorphisms, we cannot say if they are lin-
early independent. As a result, it may be the case that (4.15) and (4.16) are zero. To
address this, the results in this section provide us with a way of writing (4.15) and
(4.16) in terms of the images of mν and mη under semistandard, and hence linearly in-
dependent, homomorphisms. For want of a better term, we will call this process semi-
standardization

However, this does not entirely avoid the problem that we may end up unwittingly con-
structing the zero homomorphism. It may be the case that we construct a homomorphism
from the semistandard tableaux presented in this section only to find that the coefficients
we choose are all zero, such as when coefficients contain [e] as a factor, where e is the
quantum characteristic defined in Definition 2.5.1. This problem will be discussed more
fully in Section 4.7.
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4.5.1 Semi-standardizing Θ
(
mλd

(s)
d,t

)

Motivated by convenience and the fact that S(x, y, z) = (x, z) for every y ≤ μ(z)
x , we take to

writing

S=
(
μ : j(1)

1 , j(1)
2 , . . . , j(1)

ρ1(μ), j(2)
1 , j(2)

2 , . . . , j(2)
ρ2(μ)

)
,

where j(z)
x is to be taken as referring to the entry S(x,μ(z)

x , z). In order to avoid any ambi-
guity we shall write d(s)

d,t(μ) to denote the element d(s)
d,t is an element of D(μ), rather than

the more usual D(λ).

Let s and t be fixed. For each particular value of d there are four possible configurations
of S that we need to consider, these being given below. They can be, fairly imprecisely,
summarized, as representing the situation when (d, s) appears in a row higher than d
(Case I and Case II), and when (d, s) appears in row d.

Case I

S=
(
λ : j(1)

1 , . . . , j(s)
d−1, (d+1, s), j(s)

d+1, . . . , j(2)
ρ2(μ)

)
(4.17)

where j(s)
d+1 > (d+1, s) and either d = s = 1 or j(l)

k = (d, s) for some (k, l)< (d, s).

Case II

S=
(
λ : j(1)

1 , . . . , j(s)
d−1, j(s)

d , (d+1, s), j(s)
d+2, . . . , j(s)

ρ2(μ)

)
(4.18)

where j(s)
d > (d+1, s) and either d = s = 1 or j(l)

k = (d, s) for some (k, l)< (d, s).

Case III

S=
(
λ : j(1)

1 , . . . , j(s)
d−1, (d, s), (d+1, s), j(s)

d+2, . . . , j(2)
ρ2(μ)

)
(4.19)

where j(l)
k > (d+1, s) for some (k, l)< (d, s).

Case IV

S=
(
λ : j(1)

1 , . . . , j(s)
k−1, (d+1, s), j(s)

k+1 . . . , j(s)
d−1, (d, s), j(s)

d+1, . . . , j(2)
ρ2(μ)

)
(4.20)

for some 1≤ k ≤ d−1 and where j(s)
d+1 > (d+1, s).

Example 17. Let S be given by






11 11 11 21
21 21 22
31 31
41 41

, 12 12
32





 .

Here A falls into case I for (d, s) = (1,1), case II for (d, s) = (2,1), case III for (d, s) = (3,1),
and case IV for (d, s)= (1,2).
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Before we continue and consider each case (and its sub-cases) we introduce some technical
Lemmas. These go some way towards letting us describe how the elements of D(λ) interact
with certain tableaux.
Lemma 4.5.1 ([38, Lemma 3.13]). Let m ≥ 0 and let η = (η1, . . . ,ηl) be a composition.
Suppose that 0≤ x ≤ l. Then

C
(
m : η1, . . . ,ηl

)
=C(m : η1, . . . ,ηx)C(m+ηx : ηx+1, . . . ,ηl)C(m : ηx,ηl −ηx).

The next two statements are introduced in order to help us better study the ΘXi (mν) terms
described in the introduction to this subsection.
Lemma 4.5.2. Let η= (η1,η2) be a composition and let t be a row-standard η-tableau with
entries taken from {x+1, x+2, . . . , x+|η|} such that t(1,η1)= x+|η|. Then

Td(t) = Tx+η1 Tx+η1+1 ∙ ∙ ∙Tx+|η|−1Tw

where w ∈Dx,(η1−1,η2).

Proof. Let v be the permutation (x+ η1, x+ η2, x+ η2 − 1, x+ η2 − 2, . . . , x+ η1 + 1). Since
v ∈σxSη, that we can write Tvw as TvTw follows from [39, Proposition 3.13].

Proposition 4.5.3. For all x ≥ 0 and every η1,η2 ≥ 1,

C
(
x : (η1,η2)

)
=

(
Tx+η1 Tx+η1+1 ∙ ∙ ∙Tx+|η|−1

)
C

(
x : (η1 −1,η2)

)
+C

(
x : (η1,η2 −1)

)
.

Proof. Let η= (η1,η2) and consider the set of row-standard η-tableaux with entries taken
from the set {x+1, x+2, . . . , x+|η|}. This set can be partitioned into two subsets: that in
which the entry x+|η| occupies the node (2,η2), and that in which x+|η| occupies the node
(1,η1). Due to Lemma 4.5.2, the former provides us with the term

(
Tx+η1 Tx+η1+1 ∙ ∙ ∙Tx+|η|−1

)
C

(
x : (η1 −1,η2)

)
,

with the latter providing the remaining term.

From here on in, for every 1 ≤ i ≤ r, let xμ(i) denote the image of yμ(i) under the isomorph-

ism ζ
μ

i : H|μ(i)| →H
μ(i),μ(i) defined in Section 2.7. The next result, in which this isomorph-

ism plays a prominent role, is a limited generalization of the well known result in the
setting of the Iwahori-Hecke algebra; that being if η is a partition and t is a standard η-
tableau in which i and i+1 appear in the same column, then ytηtTi =−ytηt modulo higher
terms.
Proposition 4.5.4. Suppose that d, s ≥ 1 and that μ(s)

d−1 =μ(s)
d . Then

mμC
(
μ(s)

d−1 −1 : 1,μ(s)
d

)
∈ Ȟ μ
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Proof. Factorizing xμ we can write

mμC
(
μ(s)

d−1 −1 : 1,μ(s)
d

)
= u+

μxμ\μ(s) xμ(s)C
(
μ(s)

d−1 −1 : 1,μ(s)
d

)
.

Setting γ=μ(s), we have that

xμ(s)C
(
μ(s)

d−1 −1 : 1,μ(s)
d

)

corresponds under the isomorphism ζ
μ
s : H|μ(s)| →Hμ(s) defined in Section 2.7 to the sum

μ(s)
∑

i=0
ytγti

where, for every 0 ≤ i ≤μ(s), ti is the row-standard γ-tableau such that

ti(x, y)=






tγ(x, y)+ i if (x, y)= (d−1,γd−1),
tγ(x, y)−1 if y= d and x ≤ i,
tγ(x, y) otherwise.

Apart from when i = μ(s), each such γ-tableau is standard. When i = μ(s) we have ytγti =
ytγti−1 Ti and since μ(s) −1 and μ(s) are in the same column of ti, we then have

ytγt
μ(s) =−ytγt

μ(s)−1
+

μ(s)−2∑

i=0
rti ytγti mod Ȟ

γ

|γ|,

for some rti ∈ F, by [39, Corollary 3.21]. Moreover, applying [39, Corollary 3.19] yields
ri =−1 for each 0≤ u ≤μ(s) −2; hence

μ(s)
∑

i=0
ytγti ∈ Ȟ

γ

|γ|.

This means that
xμ(s)C

(
μ(s)

d−1 −1 : 1,μ(s)
d

)
(4.21)

is a linear combination of terms of the form ζγ(nst) where s and t are standard ξ-tableaux,
with ξ ranging over the partitions of |γ| dominating γ.

We also have that ζγ

(
T∗

d(s)

)
,ζγ

(
Td(t)

)
∈ H (Sγ), and so these terms commute with u+

μ ;

thus, (4.21) is a linear combination of terms of the form

ζγ

(
T∗

d(s)

)
u+
μxμ\μ(s)ζγ(nξ)ζγ

(
Td(t)

)
∈ Ȟ μ.

With these technical results in place, we are now ready to continue on to the main topic
of this section: the semi-standardization of non-semi-standard homomorphisms. Much
of this section has a slight similarity to the previous one, in so much as our dominant
strategy is to define tableaux that suit our needs, along with the homomorphisms determ-
ined by them, and then deduce our results by various comparative methods.

Throughout this section, take ν to denote the multicomposition λ ∙d(s)
d,t. Since we consider

mainly arbitrary values of d and s, there will be no danger of ambiguity in not specifying
values for (d, t, s) in our notation.
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Case I Suppose that d > 1 and that S ∈ T0(μ,λ) is as in (4.17). For t ≥ 1, let X1,X2 ∈
T (μ,λ) be given by

X1(x, y, z)=

{
(d, s) if (x, y, z)= (d,μ(s)

d , s) or (d+1, b, s) with b ≤ t−1
S(x, y, z) otherwise,

and

X1(x, y, z)=

{
(d, s) if (x, y, z)= (d+1, b, s) for b ≤ t,
S(x, y, z) otherwise.

That is to say, X1 and X2 are the two possible μ-tableaux of type λ ∙d(s)
d,t formed from S by

replacing t many entries (d+1, s) with (d, s).
Lemma 4.5.5. The homomorphisms ΘX1 ,ΘX2 : Mν → Sμ are given by

ΘX1 (mν)= Ȟ μ+mμTd(first(S))

∏

i 6=(d+1,s),(d,s)
C

(
λ

(i2)
i1

:ΩS
i

)
C

(
λ

(s)
d−1 : 1,λ(s)

d , t−1
)

and

ΘX2 (mν)= Ȟ μ+mμTd(first(S))
→
T

(
μ(s)

d ,μ(s)
d + t

) ∏

i 6=(d,s),(d+1,s)
C

(
λ

(i2)
i1

:ΩS
i

)

×C
(
λ

(s)
d−1 : 1,λ(s)

d −1, t
)
C

(
λ

(s)
d : 1,λ(s)

d+1 − t−1
)
.

Proof. That Td(first(X1)) = Td(first(S)) is immediate and, by Lemma 4.1.1, provides us with
the required equality for ΘX1 (mν). In the case of ΘX2 (mν) , the proof then proceeds in a
manner identical to that of Propositions 4.4.2 and 4.4.7.

Corollary 4.5.6. The homomorphisms ΘX1 ,ΘX2 : Mν → Sμ are given by

ΘX1 (mν)= Ȟ μ+mμC
(
μ(s)

d−1 :λ(s)
d , t−1

)
C

(
λ

(s)
d−1 : 1,λ(s)

d + t−1
)

×Td(first(S))

∏

i 6=(d+1,s),(d,s)
C

(
λ

(i2)
i1

:ΩS
i

)

and

ΘX2 (mν)= Ȟ μ+mμ

→
T

(
μ(s)

d ,μ(s)
d + t

)
C

(
μ(s)

d−1 :λ(s)
d −1, t

)

×C
(
λ

(s)
d : 1,λ(s)

d+1 − t−1
)
C

(
λ

(s)
d−1 : 1,λ(s)

d + t−1
)

×Td(first(S))

∏

i 6=(d,s),(d+1,s)
C

(
λ

(i2)
i1

:ΩS
i

)
.

Proof. By [37, Lemma 3.13], we have

C
(
λ

(s)
d−1 : 1,λ(s)

d , t−1
)
=C

(
μ(s)

d−1 :λ(s)
d , t−1

)
C

(
λ

(s)
d−1 : 1,λ(s)

d + t−1
)

and
C

(
λ

(s)
d−1 : 1,λ(s)

d −1, t
)
=C

(
μ(s)

d−1 :λ(s)
d −1, t

)
C

(
λ

(s)
d−1 : 1,λ(s)

d + t−1
)
.
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Now, recall that Td(first(S) =
∏

j∈ES

→
T (αj,ωj). By the properties of S detailed in subsection

3.1, we have that i ≺ j if and only if S(ei) ≺ S(ej) and so Ti is not involved in Td(first(S)) for

any i ∈ {μ(s)
d−1+1, . . . ,λ

(s)
d+1}. From this we deduce that the necessary factors of ΘX1 (mν) and

ΘX2 (mν) commute with Td(first(S)) to yield the expressions given in the corollary.

With this Corollary in place, we’re now in a position to refine and, if necessary, semi-

standardize the expression for ΘS

(
mλd

(s)
d,t

)
given in Proposition 4.1.2. Although so far we

have concentrated on the case where d > 1, the following proposition also holds for d = 1
with only minor alterations of the proof being necessary.
Proposition 4.5.7. If t = 1 and either μ(s)

d−1 6=μ(s)
d or j(s)

d−1 = (d, s) then

ΘS

(
mλd

(s)
d,t

)
= qλ(s)

d+1−1
[
λ(s)

d −λ(s)
d+1 +1

]
ΘX1 (mν).

Otherwise, ΘS

(
mλd

(s)
d,t

)
∈ Ȟ μ.

Proof. By Proposition 4.1.2, we have ΘS

(
mλd

(s)
d,t

)
= a1ΘX1 (mν)+ a2ΘX2 (mν) for constants

a1,a2 ∈ F. Suppose that t > 1. Then by, Corollary 4.5.6,

ΘX1 (mν)= Ȟ μ+mμC
(
μ(s)

d−1 :λ(s)
d , t−1

)
h

= Ȟ μ+mμd
(s)
d,t−1(μ)h

for a certain h ∈H , and so ΘX1 (mν) ∈ Ȟ μ. Now, we have

ΘX2(mν) = Ȟ μ+mμ

(
C(λ

(s)
d−1 :μ(s)

d , t)−C(λ
(s)
d−1 :μ(s)

d , t−1)
)
h

= Ȟ μ+mμ

(
d(s)

d,t(μ)−d(s)
d,t−1(μ)

)
h

for a certain h ∈H ; hence ΘX2 (mν) ∈ Ȟ μ.

Suppose now that t = 1 and that either μ(s)
d−1 6= μ(s)

d or j(s)
d−1 6= (d, s). Setting this value of t

in Proposition 4.5.3 gives us

ΘX1 (mν)= Ȟ μ+mμC
(
λ

(s)
d−1 : 1,λ(s)

d

)
Td(first(S))

∏

i 6=(d+1,s),(d,s)
C

(
λ

(i2)
i1

:ΩS
i

)

and

ΘX2 (mν)= Ȟ μ+mμ

→
T

(
μ(s)

d ,μ(s)
d +1

)
C

(
μ(s)

d−1 :λ(s)
d −1,1

)

×C
(
λ

(s)
d : 1,λ(s)

d+1 −2
)
C

(
λ

(s)
d−1 : 1,λ(s)

d

)

×Td(first(S))

∏

i 6=(d,s),(d+1,s)
C

(
λ

(i2)
i1

:ΩS
i

)
.
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By Proposition 4.5.3 this is equal to

Ȟ μ+mμ

(
d(s)

d,1(μ)−1
)
C

(
λ

(s)
d : 1,λ(s)

d+1 −2
)
C

(
λ

(s)
d−1 : 1,λ(s)

d

)

×Td(first(S))

∏

i 6=(d,s),(d+1,s)
C

(
λ

(i2)
i1

:ΩS
i

)
,

and, since mμd
(s)
d,1 ∈ Ȟ μ, this gives us

ΘX2 (mν)= Ȟ μ−mμC
(
λ

(s)
d : 1,λ(s)

d+1 −2
)
C

(
λ

(s)
d−1 : 1,λ(s)

d

)

×Td(first(S))

∏

i 6=(d,s),(d+1,s)
C

(
λ

(i2)
i1

:ΩS
i

)

= Ȟ μ−
[
λ(s)

d+1 −1
]

mμC
(
λ

(s)
d−1 : 1,λ(s)

d

)
Td(first(S))

∏

i 6=(d,s),(d+1,s)
C

(
λ

(i2)
i1

:ΩS
i

)

=−
[
λ(s)

d+1 −1
]
ΘX1 (mν).

The proof is then complete by the direct calculation of a1 = [λ(s)
d ] and a2 = 1 when t = 1.

Finally, suppose that μ(s)
d−1 =μ(s)

d and that j(s)
d−1 = (d, s). Then

ΘX1 (mν)= Ȟ μ+mμC
(
λ

(s)
d−1 : 1,λ(s)

d

)
Td(first(S))

∏

i 6=(d,s),(d+1,s)
C

(
λ

(i2)
i1

:ΩS
i

)
.

Proposition 4.5.4 then completes the proof.

Finally, for Case I, we consider the case when (d, s)= (1,1).
Proposition 4.5.8. If t = 1, then

ΘS

(
mλd

(1)
1,1

)
= qλ(1)

2 −1
[
λ(1)

1 −λ(1)
2 +2

]
ΘX1 (mν).

Otherwise, ΘS

(
mλd

(1)
1,t

)
= Ȟ μ.

Proof. In both cases, the proof is virtually identical to that for when (d, s) 6= (1,1). The
only real difference is that a1 = [λ(1)

1 +1], rather than [λ(1)
1 ].

We now move on to cover the other three cases. Given the similarities between the proofs
so far and those yet to come, we will suppress many of the details, in most cases simply
stating what the relevant tableaux are and the form of the homomorphisms they determ-
ine as and when they are needed without labouring too much over justification.
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Case II Suppose that d > 1 and that S ∈T0(μ,λ) is as in (4.18). For t ≥ 1, let X3 ∈T (μ,λ)
be given by

X3(x, y, z)=

{
(d, s) if (x, y, z)= (d+1, b, s) with b ≤ t
S(x, y, z) otherwise.

That is, X3 is the μ-tableaux of type ν formed from S by replacing t many entries (d+1, s)
with (d, s).
Lemma 4.5.9.

ΘX3 (mν)= Ȟ μ+mμTd(first(S))

∏

i 6=(d,s)
C

(
λ

(i2)
i2

:ΩS
i

)
C

(
λ

(s)
d−1 : 1,λ(s)

d , t
)

Proof. That Td(first(S)) = Td(first(X3)) is immediate by the construction of X3, and so the result
is a consequence of Lemma 4.1.1.

As in the previous case, we can almost immediately state a more useful expression for the
homomorphism ΘX3 :
Corollary 4.5.10.

ΘX3 (mν)= Ȟ μ+mμ

→
T

(
μ(s)

d ,μ(s)
d + t

)
C

(
μ(s)

d−1 :λ(s)
d , t

) →
T

(
μ(s)

d + t,
)

×
∏ →

T
(
αj,ωj

) ∏

i 6=(d,s)
C

(
λ

(i2)
i1

:ΩS
i

)
C

(
λ

(s)
d−1 : 1,λ(s)

d + t−1
)
.

Proof. By Lemma 4.5.1 we have

C
(
λ

(s)
d−1 : 1,λ(s)

d , t
)
=C

(
μ(s)

d−1 :λ(s)
d , t

)
C

(
λ

(s)
d−1 : 1,λ(s)

d + t−1
)

and

Td(first(S)) =
→
T (αk,ωk)

∏

j∈ES

j 6=k

→
T

(
αj,ωj

)
=

→
T

(
μ(s)

d ,ωk

) ∏

j∈ES

j 6=k

→
T

(
αj,ωj

)
.

Therefore, since we may write
→
T

(
μ(s)

d ,ωk

)
=

→
T

(
μ(s)

d ,μ(s)
d + x

) →
T

(
μ(s)

d + x,ωk

)
, the remainder

of the proof is now a matter of multiplying C
(
μ(s)

d−1 :λ(s)
d , t

)
through to the left.

Let X4 ∈T0(μ,ν) be the tableau given by

X4(x, y, z)=






(d, s) if (x, y, z)= (d,μ(s)
d , s)

j(s)
d if (x, y, z)= (d+1,μ(s)

d+1, s)
S(x, y, z) otherwise.

X4 is then the tableau obtained by swapping the position of the (d+1, s) at the end of row
d+1 with that of j(s)

d and then replacing the former with (d, s).

Proposition 4.5.11. If t > 1, then ΘS(mν) ∈ Ȟ μ. Otherwise, ΘS(mν)=−qμ(s)
d+1−1ΘX4 (mν).
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Proof. Using Proposition 4.5.3 and Corollary 4.5.10 we have

ΘX3 (mν)= Ȟ μ+mμ

(
C

(
μ(s)

d−1 :λ(s)
d +1, t

)
−C

(
μ(s)

d−1 :λ(s)
d +1, t−1

))

×
→
T

(
μ(s)

d + t,
)∏ →

T
(
αj,ωj

) ∏

i 6=(d,s)
C

(
λ

(i2)
i1

:ΩS
i

)
C

(
λ

(s)
d−1 : 1,λ(s)

d + t−1
)

= Ȟ μ+mμ

(
d(s)

d,t(μ)−d(s)
d,t−1(μ)

) →
T

(
μ(s)

d + t,
)∏ →

T
(
αj,ωj

)

×
∏

i 6=(d,s)
C

(
λ

(i2)
i1

:ΩS
i

)
C

(
λ

(s)
d−1 : 1,λ(s)

d + t−1
)
.

The case when t > 1 is now immediate.

If t = 1, then

ΘX3 (mν)= Ȟ μ−mμ

→
T

(
μ(s)

d +1,μ(s)
d+1

) →
T

(
μ(s)

d+1,ωk

)∏ →
T

(
αj,ωj

)

×
∏

i 6=(d,s)
C

(
λ

(i2)
i1

:ΩS
i

)
C

(
λ

(s)
d−1 : 1,μ(s)

d

)

= Ȟ μ− qμ(s)
d+1−1mμ

→
T

(
μ(s)

d+1,ωk

)∏ →
T

(
αj,ωj

)

×
∏

i 6=(d,s)
C

(
λ

(i2)
i1

:ΩS
i

)
C

(
λ

(s)
d−1 : 1,μ(s)

d

)

=−qμ(s)
d+1−1ΘX4 (mν).

The second equality comes about due to the fact that mμTi = qmμ whenever si ∈Sμ (see,

for instance, [39, Lemma 3.2]), which is the case when μ(s)
d +1≤ 1<μ(s)

d+1.

We are not yet done with this case, as it might be that μ(s)
d+1 = μ(s)

d+2 and j(s)
d+2 < j(s)

d . Here

X4 is still not semistandard as we would have j(s)
d appearing in a high node of the same

column j(s)
d+2 occupies. In fact, we may have that μ(s)

d+1 = μ(s)
d+l < μ(s)

d+l+1, with j(s)
d being

larger than a number or even all the entries appearing in the nodes below its position.
Fortunately, in such a situation it is possible to swap the position of j(s)

d with that of the
entry immediately below it, a process that introduces a factor of −1. By the properties of
tableaux given in Proposition 4.2.4, we have that if j(s)

d > j(s)
d+2, then j(s)

d+2 = (d+2, s).

Let X ∈T(μ,λ) be the tableau formed from X4 by swapping the positions of j(s)
d and (d+2, s).

That is:

X(i, j, k)=






(d+2, s) if (i, j, k)= ed+1,s,

j(s)
d if (i, j, k)= ed+2,s,
X4(i, j, k) otherwise.

Proposition 4.5.12. With X If X4 are defined as above, then ΘX(mν)=−ΘX4 (mν).
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Proof. We have that ΘX4 (mν) is given by

Ȟ μ+mμ

→
T

(
μ(s)

d+1,ωk

)∏ →
T

(
αj,ωj

) ∏

i 6=(d,s)
C

(
λ

(i2)
i1

:ΩS
i

)
C

(
λ

(s)
d−1 : 1,μ(s)

d

)

= Ȟ μ+mμ

→
T

(
μ(s)

d+1,μ(s)
d+2

) →
T

(
μ(s)

d+2,ωk

)∏ →
T

(
αj,ωj

) ∏

i6=(d,s)
C

(
λ

(i2)
i1

:ΩS
i

)
C

(
λ

(s)
d−1 : 1,μ(s)

d

)

Now we have

mμ

→
T

(
μ(s)

d+1,μ(s)
d+2

)
= mμ

(
C

(
μ(s)

d+1 −1 : 1,μ(s)
d+2

)
−C

(
μ(s)

d+1 −1 : 1,μ(s)
d+2 −1

))

=−mμC
(
μ(s)

d+1 −1 : 1,μ(s)
d+2 −1

)

=−mμC
(
λ

(s)
d+1 : 1,μ(s)

d+2 −1
)

by Proposition 4.5.4. Hence

ΘX4 (mν)= Ȟ μ−mμC
(
λ

(s)
d+1 : 1,μ(s)

d+2 −1
) →

T
(
μ(s)

d+2,ωk

)

×
∏ →

T
(
αj,ωj

) ∏

i 6=(d,s)
C

(
λ

(i2)
i1

:ΩS
i

)
C

(
λ

(s)
d−1 : 1,μ(s)

d

)

=−ΘX(mν).

Notice that if we still don’t have a semistandard homomorphism, we may repeat this

procedure as many times as we can: gradually eliminating terms from
→
T

(
μ(s)

d+1,μ(s)
d+2

)
as

we did in the proof translates into shifting j(s)
d further down the column it occupies, one

node at a time.

Case III Let d > 1 and let S ∈T0(μ,ν) be as in (4.19). For t ≥ 1 ∈T (μ,ν), let X5 be given
by

X5(x, y, z)=

{
(d, s) if x = d+1, y≤ t, and z = s,
S(x, y, z) otherwise.

Proposition 4.5.13. For t ≥ 1, ΘS(mλd
(s)
d,t)= Ȟ μ.

Proof. For some element a ∈ F we have

ΘS

(
mλd

(s)
d,t

)
= aΘX5 (mν)= Ȟ μ+amμTd(first(S))

∏

i=(x,z)
C

(
λ

(z)
x−1 :ΩS

i

)
C

(
λ

(s)
d−1 :λ(s)

d , t
)

= Ȟ μ+amμC
(
μ(s)

d−1 :μ(s)
d , t

)
Td(first(S))

∏

i=(x,z)
C

(
λ

(z)
x−1 :ΩS

i

)

= Ȟ μ+amμd
(s)
d,t(μ)Td(first(S))

∏

i=(x,z)
C

(
λ

(z)
x−1 :ΩS

i

)
= Ȟ μ
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Case IV Let d > 1 and let S ∈ T0(μ,λ) be as in (4.20). Let X6,X7 ∈ T (μ,ν) be given
by

X6(x, y, z)=

{
(d, s) if x = d+1, y≤ t, z = s,
S(x, y, z) otherwise

and

X7(x, y, z)=

{
(d, s) if x = d+1, y≤ t−1, z = s, and (x, y, z)= (k,μ(1)

k ,1)
S(x, y, z) otherwise.

Proposition 4.5.14. If t = 1, then ΘS

(
mλd

(s)
d,t

)
= qλ(s)

d ΘX7 (mν). Otherwise, ΘS

(
mλd

(s)
d,t

)
=

Ȟ μ

Proof. By Proposition 4.1.2 there are coefficients α6 and α7 such that

ΘS

(
mλd

(s)
d,t

)
=α1ΘX6 (mν)+α2ΘX7 (mλ).

We first show that ΘX7 (mν) ∈ Ȟ μ whenever t > 1. In this case we can write

ΘX7 (mν)= Ȟ μ+mμTd(first(X7))C
(
λ

(1)
d−1 : 1,λ(1)

d , t−1
)
h

for some h ∈H . By Lemma 4.5.1 we can write

C
(
λ

(1)
d−1 : 1,λ(1)

d , t−1
)
=C

(
λ

(1)
d−1 +1 :λ(1)

d , t−1
)
C

(
λ

(1)
d−1 : 1,λ(1)

d + t−1
)

=C
(
μ(1)

d−1 +1 : μ(1)
d , t−1

)
C

(
λ

(1)
d−1 : 1,λ(1)

d + t−1
)

Observing that

C
(
μ(1)

d−1 +1 : μ(1)
d , t−1

)
= d(1)

d,t−1(μ)

commutes past Td(first(X7) then shows that ΘX7 (mν) ∈ Ȟ μ for t > 1. The proof that ΘX6 (mν) ∈
Ȟ μ follows a similar course.

4.5.2 Semi-standardizing Θ
(
mλl

(s)
)

The case for mλl
(s) is considerably easier than that for mλd

(s)
d,t. In this case we encounter

only those tableaux of a form given in (4.2),(4.3), and (4.13). By their construction, the
only way in which those tableaux can fail to be semistandard is if μ(s)

d = μ(s)
d+l for integers

d, s, and l and the tableau happens to deposit an entry directly above a smaller entry in
the end nodes of one of these rows. Dealing with this case, the proof of Proposition 4.5.12
can easily be adapted to this situation.
Proposition 4.5.15. Suppose that μ(s)

d = μ(s)
d+l for some d, s, and l. Let S ∈ T0(μ,λ) and

let W0 ∈ T0
(
μ,λ ∙ l(1)

)
be as it was defined in (4.2). If S is such that W0(em,s) > W0(em+1,s) for

some d ≤ m < d + l, then ΘW0

(
mλ∙l(1)

)
= −ΘX

(
mλ∙l(1)

)
, where X ∈ T

(
μ,λ ∙ l(1)

)
is the tableau

formed from W0 by swapping the positions of W0(em,s) and W0(em+1,s).

An analogous statement holds for Wz and U.
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4.6 Killing off Homomorphisms.

Let Θ : Mλ → Sμ be a homomorphism such that Θ =
∑
S∈T0(μ,λ) fSΘS for constants fS ∈

F. Our objective is to determine a set of conditions that determine when Θ
(
mλd

(s)
d,t

)
= 0

for all (d, t, s) ∈ def(λ,d) and when Θ
(
mλl

(1)
)
= 0. This amounts to identifying, using the

machinery developed in the the previous section, and collecting like terms resulting from

the act of evaluating Θ
(
mλd

(s)
d,t

)
and Θ

(
mλl

(1)
)
.

Although fairly simple in terms of the reasoning underpinning this section, in practice
this is a lengthy and technical procedure, especially with regards to mλl

(1). We divide this
section up into two parts in the hope that this will aid clarity.

4.6.1 When does Θ
(
mλd

(s)
d,t

)
= 0?

Let μ be a multipartition and recall that e( j,k) =
(
j,μ(k)

j , k
)
∈ [μ] for every ( j, k) with 1≤ k ≤ r

and 1≤ j ≤ ρk(μ). For each S ∈T0(μ,λ), let S j,k = S
(
e( j,k)

)
and let ES be the sequence

S1,1, . . . ,Sρ1(μ),1,S1,2, . . . ,Sρ2(μ),2

Using the fact, proved in Lemma 4.2.2, that each S is completely determined by S(e( j,k)),
where e( j,k) ∈ Eμ, we write S=

(
μ : ES

)
. This adapts the notation used in [37] to H2,n.

Suppose that S=
(
μ : ES

)
∈T0(μ,λ) and that T ∈T0(μ,λ) is obtained from S by swapping the

positions of the entries (u,v) and (x, y), but keeping all other entries the same. Defining
the pair (r̂(x), ĉ(y)) by Sr̂(x),ĉ(y) = (x, y), we then write

fT = f

(

S :
(r̂(u),ĉ(v))

↓
(x,y)

,
(r̂(x),ĉ(y))

↓
(u,v)

)

Where
(r̂(u),ĉ(v))

↓
(x,y)

is to be read as ‘node
(
r̂(u),μĉ(v)

r̂(u), ĉ(v)
)

is occupied by the entry (x, y)’. This notation is

readily extended to rearranging more than two entries of a tableau.

We are almost in a position to describe what conditions the various coefficients fS must

satisfy so that Θ
(
mλd

(s)
d,t

)
= 0 for a given (d, t, s) ∈ def(λ,d). Before that, we need to consider

what it means to ‘collect like terms’ in the expression of Θ
(
mλd

(s)
d,t

)
.

Suppose that (d, s) > (1,1), that S ∈ T0(μ,λ) is such that Sd,s = (d, s), and that μ(s)
d = μ(s)

d+l
for some 1 ≤ l ≤ ρs(μ). We can ignore the case where S is as in (4.19), since this would

mean that ΘS

(
mλd

(s)
d,t

)
∈ Ȟ μ, and so we conclude that S is as in (4.20); i.e.,

S=
(
j(1)
1 , . . . , (d+1, s), . . . , j(s)

d−1, (d, s), (d+2, s), (d+3, s), . . . , (d+ l, s), j(s)
d+l , . . . , j(2)

ρ2(μ)

)
.
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We then have that ΘS

(
mλd

(s)
d,t

)
= αXΘX(mν) for an element αX ∈ F, ν = λ ∙d(s)

d,t, and where

X ∈Tr,0(μ,ν) is given by

X=
(
j(1)
1 , . . . , (d, s), . . . , j(s)

d−1, (d, s), (d+2, s), (d+3, s), . . . , (d+ l, s), j(s)
d+l , . . . , j(2)

ρ2(μ)

)
.

Therefore, we need to identify those tableaux T ∈T0(μ,λ) such that ΘX(mν) features in the

expression due to Proposition 4.1.2 (and taking section 4.5 into account) for ΘT

(
mλd

(s)
d,t

)
.

These are precisely the tableaux obtained from S by swapping the positions of (d +1, s)
with that of (d, s), (d+2, s), (d+3, s), . . . , (d+ l, s), or j(s)

d+l and rearranging the latter collec-
tion of entries so that the result is semistandard.

Moreover, these are the only configurations we need to consider when (d, s) > (1,1) and
μ(s)

d =μ(s)
d+l . Suppose otherwise and let S be such that Sd,s 6= (d, s), Then (d, s) must appear

in a row higher than d, and so

S=
(
j(1)
1 , . . . , (d, s), . . . , j(s)

d−1, (d+1, s), (d+2, s), (d+3, s), . . . , (d+ l, s), j(s)
d+l , . . . , j(2)

ρ2(μ)

)
.

But then we end up with exactly the same collection of tableaux as we did when we took
S to be such that Sd,s = (d, s).
Proposition 4.6.1. Let Θ : Mλ → Sμ be the homomorphism given by

Θ=
∑

S∈T0(μ,λ)
fSΘS.

Then
Θ

(
mλd

(s)
d,t

)
= 0

for every (d, t, s) ∈ def(λ;d) if and only if the following conditions hold:

• If (1,1)< (d, s) and μ(s)
d =μ(s)

d+l for some 1≤ l ≤ ρs(μ)−d. Then, for each S ∈To(μ,λ) of
the form

S=
(
μ : S1,1, . . . ,Sr̂(d)−1,ĉ(s), (d+1, s),Sr̂(d)+1,ĉ(s), . . . ,

. . . ,Sd−1,s, (d, s), (d+2, s), . . . , (d+ l, s),Sd+l,s, . . .Sρ2(μ),2
)

we have

qλ(s)
d fS+ qλ(s)

d+1−1 f

(

S :
(r̂(d,s),ĉ(d,s))

↓
(d,s)

,
(d,s)
↓

(d+1,s)

)

= 0;

• If (1,1)< (d, s) and μ(s)
d >μ(s)

d+1 =μ(s)
d+l >μ(s)

d+l+1, then for each S ∈T0(μ,λ) of the form

S=
(
μ : S1,1, . . . ,Sr̂(d,s)−1,ĉ(d,s)(d+1, s),Sr̂(d,s)+1,ĉ(d,s), . . . ,

. . . ,Sd−1,s(d, s), (d+2, s), . . . , (d+ l, s),Sd+l,s, . . . ,Sρ2(μ),2
)
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we have

qλ(s)
d fS+ qλ(s)

d+1−1
[
λ(s)

d −λ(s)
d+1 +1

]
f

(

S :
(r̂(d,s),ĉ(d,s))

↓
(d,s)

,
(d,s)
↓

(d+1,s)

)

− qλ(s)
d+1−1 f

(

S :
(r̂(d,s),ĉ(d,s))

↓
(d,s)

,
(d,s)
↓

(d+2,s)
,

(d+1,s)
↓

(d+1,s)

)

...

+ (−1)l−1qλ(s)
d+1−1 f

(

S :
(r̂(d,s),ĉ(d,s))

↓
(d,s)

,
(d,s)
↓

(d+l,s)
,

(d+1,s)
↓

(d+1,s)
,

(d+2,s)
↓

(d+2,s)
, . . . ,

(d+l−1,s)
↓

(d+l−1,s)

)

+ (−1)l qλ(s)
d+1−1 f

(

S :
(r̂(d,s),ĉ(d,s))

↓
(d,s)

,
(d,s)
↓

Sd+l,s

,
(d+1,s)

↓
(d+1,s)

,
(d+2,s)

↓
(d+2,s)

, . . . ,
(d+l,s)

↓
(d+l,s)

)

= 0;

and

• If (d, s)= (1,1) and λ(1)
2 =λ(1)

l+1 >λ(1)
l+2, then for each S ∈T0(μ,λ) of the form

S=
(
μ : 2,3, . . . , l+1,Sl+1,1,Sl+2,1, . . . ,Sρ2(μ),2

)

then
[
λ(1)

1 −λ(1)
2 +2

]
f (S)− f

(

S :
(1,1)
↓

(3,1)
,

(2,1)
↓

(2,1)

)

+ f

(

S :
(1,1)
↓

(4,1)
,

(2,1)
↓

(2,1)
,

(3,1)
↓

(3,1)

)

...

(−1)l−1 f

(

S :
(1,1)
↓

(l+1,1)
,

(2,1)
↓

(2,1)
,

(3,1)
↓

(3,1)
, . . . ,

(l,1)
↓

(l,1)

)

(−1)l f

(

S :
(1,1)
↓

j(1)
l+1

,
(2,1)
↓

(2,1)
,

(3,1)
↓

(3,1)
, . . . ,

(l+1,1)
↓

(l+1,l)

)

= 0.

Proof. In the second case, we have already verified that we have collected all ‘like terms’,
the reader being invited to verify that this is also true of the remaining two cases. The
coefficients with which they appear follow immediately from section 4.5.

In the next section, we will specify coefficients fS that satisfy these conditions. Along with
the results in this subsection, our method of doing this is very similar to that appearing
in [37], as should be expected given the close relationship between that paper and this
thesis. What is entirely different is the role played by l(1) in determining when Θ gives
rise to a homomorphism of Specht modules, this being the subject matter of the next
subsection.

4.6.2 When Does Θ(mλl
(1))= 0?

Collecting like terms in this case is slightly more complicated due to the more involved
expressions for the ΘS

(
mλl

(1)
)

in terms of homomorphisms ΘW : Mλ∙l(1)
→ Sμ evaluated at
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mλ∙l(1) , and the reader will benefit greatly from keeping in mind Propositions 4.4.6 and
4.4.8 when going through many of the statements in this subsection.

Suppose that S ∈ T0(μ,λ) is such that Sm,1 = (1,2) for an integer 1 ≤ m ≤ ρ1(λ) and recall
that one of the terms involved in the expression for ΘS

(
mλl

(1)
)

is ΘW0

(
mλ∙l(1)

)
where W0

is constructed from S by replacing the entry Sm,1 = (1,2) with (ρ1(λ)+1,1). Our strategy
is to identify, for each such S, those other tableaux T for which ΘW0

(
mλ∙l(1)

)
arises when

evaluating the homomorphisms they determine at mλl
(1).

To do this, we will need some more notation. Recall the definitions of the tableaux W0,Wz,
and U ∈T0

(
μ,λ ∙ l(1)

)
constructed from a given tableau S, as given in (4.2), (4.3), and (4.13)

respectively: let n= (n1, n2, n3) be the unique node in the first component of [μ] for which
S(n1, n2, n3)= (x,2), where x is a positive integer with 1 ≤ x ≤ ρ2(λ), and let z be an integer
with 1≤ z ≤ ρ1(λ)−n1. If x = 1, then

W0(i, j, k)=

{
(ρ1(λ)+1,1) if (i, j, k)=n,
S(i, j, k) otherwise,

Wz(i, j, k)=






(ρ1(λ)+1,1) if (i, j, k)=
(
n1 + z,μ(1)

n1+z,1
)
,

S
(
n1 + z,μ(1)

n1+z,1
)

if (i, j, k)=n,

S(i, j, k) otherwise

for (i, j, k) ∈ [μ]. If, on the other hand, x > 1, then

U(i, j, k)=






(ρ1(λ)+1,1) if (i, j, k)=n,

(x,2) if (i, j, k)=
(
1,μ(2)

1 ,2
)
,

S(i, j, k) otherwise.

for (i, j, k) ∈ [μ].

When we wish to avoid any possibility of ambiguity and specify the tableaux they are
constructed from, we will write W0(S),Wz(S), and U(S).

We now specify all possible ways such like terms can appear. This depends greatly on the
form taken by the multipartition μ, and so we proceed on a case by case basis.

Suppose that S ∈T0(μ,λ) is such that Sm,1 = (1,2) for some 2 ≤ m ≤ ρ1(λ) and suppose that
μ(1)

m <μ(1)
m−1 and μ(2)

1 >μ(2)
2 . Then there is an integer 1 ≤ l < m with el,1 ∈ [μ] removable and

Sl,1 = (m,1) : were this node not removable, then part 2. of Proposition 4.2.4 implies that
(m,1) would appear directly above an entry (x,1) with x < m, contradicting the fact that S
is semistandard.

Next, define tableaux T,R ∈T0(μ,λ) by

Tx,y =






(1,2) if (x, y)= (1,2),
S1,2 if (x, y)= (m,1),
Sx,y otherwise

(4.22)
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and

Rx,y =






(1,2) if (x, y)= (l,1)
(m,1) if (x, y)= (m,1)
Sx,y otherwise.

(4.23)

Lemma 4.6.2. Fix an integer m with 2 ≤ m ≤ ρ1(λ) and suppose that S ∈ T0(μ,λ) is such
that Sm,1 = (1,2), Then T and R are the only tableaux such that Wz(T) = W0(S) and U(R) =
W0(S).

Proof. Suppose that X ∈ T0(μ,λ) is such that Xk,1 = (1,2) for an integer 1 ≤ k ≤ ρ1(λ) and
W0(X) = W0(S). Since W0(X) is formed from X merely by relabeling (1,2) as (ρ1(λ)+1,1), we
must have that X= S.

Suppose now that X is such that Wz(X) = W0(S) for some k ≤ z ≤ m. Since Wz(X) is obtained
from X by swapping the positions of (1,2) and (k+z,1) and then replacing (1,2) with (ρ1(λ)+
1,1), leaving the positions of all other entries unchanged, we have that k = l, z = m− l,
and X= T.

Finally, suppose that X is such that Xk,1 = (u,2) for some u > 1 and that U(X) = W0(S). The
tableau U(X) is constructed from X by swapping the positions of (u,2) and S1,2 = (1,2), and
then replacing the latter with (ρ1(λ)+1,1). Our task is then complete, since this means
that k = m and (u,2)= S1,2, so that X= R.

Suppose now that S is as before, but μ(2)
1 = μ(2)

l for some 1 ≤ l ≤ ρ2(μ). Notice that in this
situation, Si,2 = (i+1,2) for every 1 ≤ i ≤ l. With T as in (4.22), define a family of tableaux
Pi ∈T0(μ,λ) by

Pi
x,y =






(x, y) if y= 2 and 1≤ x ≤ i,
Si,2 if (x, y)= (m,1),
Sx,y otherwise.

(4.24)

Lemma 4.6.3. Fix an integer m with 2 ≤ m ≤ ρ1(λ) and suppose that S ∈ T0(μ,λ) is such
that Sm,1 = (1,2). If μ(1)

m < μ(1)
m−1 and μ(2)

1 = μ(2)
l for some 1 ≤ l ≤ ρ2(μ), then T and the Pi are

the only tableaux such that Wz(T)= W0(S) and U(Pi)= W0(S).

Proof. We dealt with T in Lemma 4.6.2, and, by construction, U(Pi)= W0(S) for all i. To see
that these are the only tableaux for which this is true, suppose that X ∈ T0(μ,λ) is such
that U(X)= W0(S). By construction, Xx,y = Sx,y for every (x, y) 6= (m,1) such that y 6= 2 or x > i.
For each of the remaining values of (x, y) we have that Xx,y ∈

{
(1,2), (2,2), . . . , (i,2),Si,2

}
, but

the only semistandard tableaux with these properties are the Pi.

Let S be as before and let μ be such that μ(1)
m = μ(1)

l for some 1 ≤ l ≤ m and μ(2)
1 > μ(2)

2 . In
this case there are integers k and w with l ≤ k ≤ m and 1 ≤ w < l, such that Sw,1 = (k,1).
With this in mind, define Q ∈T0(μ,λ) by

Qx,y =






(1,2) if (x, y)= (w,1),
(x, y) if y= 1 and k ≤ x ≤ m,
Sx,y otherwise,

(4.25)
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and let R be as defined in (4.23).
Lemma 4.6.4. Fix an integer m, with 2 ≤ m ≤ ρ1(λ), and suppose that S ∈T0(μ,λ) is such
that Sm,1 = (1,2). If μ(1)

m = μ(1)
l for some 1 ≤ l ≤ m and μ(2)

1 > μ(2)
2 , then Q and R are the only

tableaux such that Wz(Q)= W0(S) and U(R)= W0(S).

Proof. R has already been dealt with in Lemma 4.6.2, and, by construction Q is the unique
tableaux satisfying the statement of the Lemma.

Remark. By Proposition 4.2.4 we have that Qx,1 = Sx,1 = (x,1) for all values of x with
w < x < k, and Sx,1 6= (x,1) for all values of x with k ≤ x ≤ m. This fact will be important
when we come to construct homomorphisms.

Being a combination of Lemmas 4.6.3 and 4.6.4 and their proofs, we leave the proof of the
following result to the reader.
Lemma 4.6.5. Let S ∈ T0(μ,λ) be such that Sm,1 = (1,2) for some value of m with 2 ≤ m ≤
ρ1(λ). If μ(1)

m =μ(1)
l for some 1≤ l ≤ m and μ(2)

1 =μ(2)
k for some 2≤ k ≤ ρ2(μ). Then, Q and the

Pi, as defined in as in (4.25) and (4.24) respectively, are the only tableaux with Wz(Q)= W0(S)
for some value of z and U(Pi)= W0(S).

Finally, we consider the case when m = 1. This is nearly identical to the situation in
Lemmas 4.6.2 and 4.6.3, with the only difference being that we no longer have to worry
about tableaux where (1,2) appears in a node higher than em,1. This simplifies matters
considerably, and so we only provide a statement.
Lemma 4.6.6. Let S ∈T0(μ,λ) be such that S1,1 = (1,2).

• If μ(2)
1 >μ(2)

2 , then the only tableau X with U(X)= W0(S) is R, as defined in (4.23); and

• If μ(2)
1 =μ(2)

l for an integer 2≤ l ≤ ρ2(μ), then the only tableaux X with U(X)= W0(S) are

the Pi defined in (4.24).

We are now in a position to state our conditions which, taken together with Proposition
4.6.1 concludes this section.
Proposition 4.6.7. Let Θ : Mλ → Sμ be a homomorphism given by

Θ=
∑

S∈T0(μ,λ)
fSΘS,

for fS ∈ F. Then

Θ
(
mλl

(1)
)
= 0

if and only if the following conditions hold:

1. Suppose that Sm,1 = (1,2) and that there exists c < m be such that Sc,1 = (m,1), then:

• If μ(1)
m <μ(1)

m−1 and μ(2)
2 <μ(2)

1 , then

(
resμ

(
em,1

)
−resλ

(
e1,2

))
fS− (q−1)resμ(e1,2) f

(

S :
(m,1)
↓

S1,2

,
(1,2)
↓

(1,2)

)

+ (q−1)resμ
(
em,1

)
f

(

S :
(c,1)
↓

(1,2)
,

(m,1)
↓

(c,1)

)

= 0; and
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• If μ(1)
m <μ(1)

m−1 and μ(2)
1 =μ(2)

l , then

(
resμ

(
em,1

)
−resλ

(
e1,2

))
fS− (q−1)resμ(e1,2) f

(

S :
(m,1)
↓

(2,2)
,

(1,2)
↓

(1,2)

)

+ (q−1)resμ(e1,2) f

(

S :
(m,1)
↓

(3,2)
,

(1,2)
↓

(1,2)
,

(2,2)
↓

(2,2)

)

...

(−1)l−1(q−1)resμ(e1,2) f

(

S :
(m,1)
↓
Sl,2

,
(1,2)
↓

(1,2)
,

(2,2)
↓

(2,2)
, . . . ,

(l,2)
↓

(l,2)

)

+ (q−1)resμ
(
em,1

)
f

(

S :
(c,1)
↓

(1,2)
,

(m,1)
↓

(c,1)

)

= 0.

2. Suppose that Sm,1 = (1,2) and μ(1)
m =μ(1)

l for a given 1≤ l < m. Denote by c the unique
integer such that c < l with Sc,1 = (k,1) for l ≤ k ≤ m.

• If μ(2)
2 <μ(2)

1 , then

(
resμ

(
em,1

)
−resλ

(
e1,2

))
fS− (q−1)resμ(e1,2) f

(

S :
(m,1)
↓

S1,2

,
(1,2)
↓

(1,2)

)

+(q−1)resμ
(
ek,1

)
f

(

S :
(c,1)
↓

(1,2)
,

(k,1)
↓

(k,1)
,

(k+1,1)
↓

(k+1,1)
, . . . ,

(m,1)
↓

(m,1)

)

= 0

• If μ(2)
1 =μ(2)

w for an integer w with 1≤ w ≤ ρ2(μ), then

(
resμ

(
em,1

)
−resλ

(
e1,2

))
fS− (q−1)resμ(e1,2) f

(

S :
(m,1)
↓

(2,2)
,

(1,2)
↓

(1,2)

)

+ (q−1)resμ(e1,2) f

(

S :
(m,1)
↓

(3,2)
,

(1,2)
↓

(1,2)
,

(2,2)
↓

(2,2)

)

...

(−1)l−1(q−1)resμ(e1,2) f

(

S :
(m,1)
↓
Sw,2

,
(1,2)
↓

(1,2)
,

(2,2)
↓

(2,2)
, . . . ,

(w,2)
↓

(w,2)

)

+ (q−1)resμ
(
ek,1

)
f

(

S :
(c,1)
↓

(1,2)
,

(k,1)
↓

(k,1)
,

(k+1,1)
↓

(k+1,1)
, . . . ,

(m,1)
↓

(m,1)

)

= 0.

3. Suppose that S1,1 = (1,2),

• If μ(2)
2 <μ(2)

1 , then

(
resμ

(
e1,1

)
−resλ

(
e1,2

))
fS− (q−1)resμ(e1,2) f

(

S :
(1,1)
↓

S1,2

,
(1,2)
↓

(1,2)

)

= 0
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• If μ(2)
1 =μ(2)

l , then

(
resμ

(
e1,1

)
−resλ

(
e1,2

))
fS− (q−1)resμ(e1,2) f

(

S :
(m,1)
↓

(2,2)
,

(1,2)
↓

(1,2)

)

+ (q−1)resμ(e1,2) f

(

S :
(m,1)
↓

(3,2)
,

(1,2)
↓

(1,2)
,

(2,2)
↓

(2,2)

)

...

(−1)l−1(q−1)resμ(e1,2) f

(

S :
(m,1)
↓
Sw,2

,
(1,2)
↓

(1,2)
,

(2,2)
↓

(2,2)
, . . . ,

(w,2)
↓

(w,2)

)

= 0.

Proof. Immediate from Lemmas 4.6.2, 4.6.3, 4.6.4, 4.6.5 and 4.6.6, and Propositions 4.4.6,
4.4.8, and 4.5.15.

Combining Propositions 4.6.1 and 4.6.7 then provides us with the conditions we need for

Θ
(
mλd

(s)
d,t

)
and Θ

(
mλl

(1)
)

to be zero for all (d, t, s) ∈ def(λ,d). In the next section we use

these to construct and explicit homomorphism satisfying these conditions.

4.7 An Example of an Explicit Homomorphism

Building upon the results of the previous section, we now exhibit constants fS ∈ F for each
S ∈T0(μ,λ) such that the image of mλd

(s)
d,t under the homomorphism

Θ=
∑

S∈T0(μ,λ)
fSΘS (4.26)

is sent to zero for every (d, t, s) ∈ def(λ,d). We then use these constants to show that the
conditions in Proposition 4.6.7 are also satisfied, provided that the residues of certain
nodes obey a simple relationship.

Note that the coefficients fS are well defined by virtue of the linear independence of
ΘS.

Let i and j be such that 1 ≤ i ≤ ρ1(λ) and 1 ≤ j < ρ2(λ)−1 and define S((i,1)),S(( j,2)) ∈ F

by

S((i,1))=






1 if S(ei,1) 6= (i,1)

−q−1 if S(ei,1)= (i,1) and μ(1)
i =μ(i)

i+1[
λ(1)

1 −λ(1)
i + i

]
if S(ei,1)= (i,1) and μ(1)

i >μ(i)
i+1.

S(( j,2))=






1 if S(e j,2) 6= ( j,2)

−q−1 if S(e j,2)= ( j,2) and μ(2)
j =μ(2)

j+1

−q−X [X ] if S(e j,2)= ( j,2) and μ(2)
j >μ(2)

j+1.
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where X =λ(2)
j +ρ2(λ)−λ(2)

ρ2(λ) − j.

With this notation in place set

fS =
ρ1(λ)∏

i=2
S((i,1))

ρ2(λ)−1∏

j=1
S(( j,2))

in the expression for Θ : Mλ → Sμ given in (4.26).
Example 18. Let λ= ((2,1,1), (2,1,1)), μ= ((3,1,1), (2,1)), and let S ∈T0(μ,λ) be given by

S=




11 11 31
21
12

, 12 22
32



 .

Then
fS =−q−1

Proposition 4.7.1. Let Θ =
∑
S∈T0(μ,λ) fSΘS. Then Θ

(
mλd

(s)
d,t

)
∈ Ȟ μ for every (d, t, s) ∈

def(λ,d).

Proof. We show that the homomorphism specified above satisfies the criteria of Proposi-
tion 4.6.1.

1. Suppose that both d and s are greater than 1 and that λ(s)
d = λ(s)

d+l for some 1 ≤

l ≤ ρs(μ). By section 4.5, ΘS

(
mλd

(s)
d,t

)
∈ Ȟ μ if S is of any form other than (4.17) or

(4.20),. That being the case, let us assume that S is as in (4.19). We then have

that ΘX

(
m

λ∙d(s)
d,t

)
, where X ∈T0

(
μ,λ ∙d(s)

d,t

)
is obtained from S by relabelling the entry

S(ed,s)= (d+1, s) as (d, s), appears with a coefficient of

qλ(s)
d f

(

S :
(ř(d,s),s)

↓
(d+1,s)

,
(d,s)
↓

(d,s)

)

+ qλ(s)
d+1−1 fS.

In calculating the value of this coefficient, we may ignore all values of S(i,1) and
S( j,2) except those corresponding to i = d, s and i = ř(d, s) since these are by defini-
tion the same for both tableaux. Hence for some non-zero α ∈ F the above simplifies
to (

qλ(s)
d (−q−1)+ qλ(s)

d+1−1
)
C = 0.

where C is the remainder of
∏

i=2S((i,1))
∏

j=1S(( j,2)) after factoring out the afore-
mentioned values of S(i,1) and S( j,2).

2. (a) Let s = 1, and 2 ≤ d ≤ ρ1(λ). If λ(1)
d > λ(1)

d+1, then, by the same line of reasoning
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as in the previous part, there exists C ∈ F such that

C
(
qλ(1)

d

[
λ(1)

1 −λ(1)
d +d

]
+ qλ(1)

d+1−1
[
λ(1)

d −λ(1)
d+1 +1

]

− qλ(1)
d+1−1(−q−1)+∙∙ ∙ ∙ ∙ ∙+ (−1)−(l−1)qλ(1)

d+1−1((−q)l−1)

+ (−1)l qλ(1)
d+1−1

(
(−q)−(l−1)

[
λ(1)

1 −λ(1)
d+l +d+ l

]))

= C
(
qλ(1)

d

[
λ(1)

1 −λ(1)
d +d

]

+ qλ(1)
d+1−1

([
λ(1)

d −λ(1)
d+1 +1

]
+ q−(l−1) [l−1]

)

+ (−1)q−l+1
[
λ(1)

1 −λ(1)
d+1 +d+ l

])

= 0.

(b) Let s = 2 and let 1 ≤ d ≤ ρ2(λ)−1. If λ(1)
d > λ(1)

d+1, then the proof in this case is
identical to that of the second part of the proof of [37, Theorem 4.2.5]

3. Suppose that (d, s) = (1,1) and that λ(1)
2 = λ(1)

l for some 1 ≤ l ≤ ρ1(λ), Then there
exists an element C ∈ F such that

(
qλ(1)

2 −1
[
λ(1)

1 −λ(1)
2 +2

]
fS− f

(

S :
(1,1)
↓

(3,1)
,

(2,1)
↓

(2,1)

)

...

+(−1)l−1 f

(

S :
(1,1)
↓

(l+1,1)
,

(2,1)
↓

(2,1)
,

(3,1)
↓

(3,1)
, . . . ,

(l,1)
↓

(l,1)

)

+(−1)l f

(

S :
(1,1)
↓

j(1)
l+1

,
(2,1)
↓

(2,1)
,

(3,1)
↓

(3,1)
, . . . ,

(l+1,1)
↓

(l+1,1)

))

= C
(
qλ(1)

2 −1
[
λ(1)

1 −λ(1)
2 +2

]
+qλ(1)

2 −l+1 [l−2]− qλ(1)
l −l+1

[
λ(1)

1 −λ(1)
l + l

])

= qλ(1)
2 −l+1C

(
ql−2

[
λ(1)

1 −λ(1)
2 +2

]
+ [l−2]−

[
λ(1)

1 −λ(1)
l + l

])

= qλ(1)
2 −l+1C

([
λ(1)

1 −λ(1)
l + l

]
−

[
λ(1)

1 −λ(1)
l + l

])
= 0.

We now show that Θ
(
mλl

(1)
)
= 0 when Θ is determined by the coefficients just defined,

subject to a certain condition being satisfied. In particular, let a = eμ1,1 and r = eλ
ρ2(λ),1,

so that a is the node added to the first component of λ and r the node removed from
the second component in order to construct μ; we prove that Θ

(
mλl

(1)
)
= 0 if and only if

resμ(a)= resλ(r).

Let x be an integer with 1 ≤ i ≤ ρ1(λ) and recall that for each S ∈T0(μ,λ) with Sx,1 = (1,2)
we define W0 to be the tableau defined by relabelling Sx,1 as (ρ1(λ)+1,1). Our strategy is
to show that the coefficient with which ΘW0

(
mλ∙l(1)

)
appears in the expression for Θ

(
mλ∙l(1)

)

given in (4.26) is zero if and only if our claimed condition is satisfied. We begin with a
proof of this when x = 1, since this is relatively straight forward, and serves as a good
model for the general proof.
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Definition 4.7.1. If S ∈ T0(μ,λ), we write gW0(S) to denote the coefficient with which
ΘW0

(
mλ∙l(1)

)
appears in the expression for Θ

(
mλ∙l(1)

)
.

Although this definition adds brings yet more notation to the fray, it has the advantage of
allowing us to avoid some cumbersome phrasing throughout the rest of this chapter.
Proposition 4.7.2. If S ∈ T0(μ,λ) is such that Sm,1 = (1,2) for some 1 ≤ m ≤ ρ1(λ), then
gW0(S) = 0 whenever resμ(a)= resλ(r).

Proof. In accordance with Proposition 4.6.7, we have six possible cases to check:

1. 1< m, μ(2)
2 <μ(2)

1 , and μ(1)
m <μ(1)

m−1;

2. 1< m, μ(2)
2 <μ(2)

1 , and μ(1)
m =μ(1)

l for some 1≤ l < m;

3. 1< m, μ(2)
1 =μ(2)

w for some 2≤ w ≤ ρ2(λ), and μ(1)
m <μ(1)

m−1;

4. 1< m, μ(2)
1 =μ(2)

w for some 2≤ w ≤ ρ2(λ), and μ(1)
m =μ(1)

l for some 1≤ l < m;

5. m = 1 and μ(2)
2 <μ(2)

1 ; and

6. m = 1 and μ(2)
1 =μ(2)

w for some 2≤ w ≤ ρ2(λ).

Of these conditions, we will check only the fourth, our reasoning being that the others are
more straightforward in light of this case. Recall that in this case there is some l ≤ k ≤ x
such that Sc,1 = (k,1) with 1 ≤ c < l.

For every s < w, let Pu,Q ∈T0(μ,λ) be as in (4.24) and (4.25). By Lemmas 4.6.4 and 4.6.5 we
know that, other than S itself, only these tableaux contribute to gW0(S), and by Proposition
4.6.7 we need our coefficients to satisfy:

(
resμ

(
em,1

)
−resλ

(
e1,2

))
fS− (q−1)resμ(e1,2) f

(

S :
(m,1)
↓

(2,2)
,

(1,2)
↓

(1,2)

)

+ (q−1)resμ(e1,2) f

(

S :
(m,1)
↓

(3,2)
,

(1,2)
↓

(1,2)
,

(2,2)
↓

(2,2)

)

...

(−1)w(q−1)resμ(e1,2) f

(

S :
(m,1)
↓
Sw,2

,
(1,2)
↓

(1,2)
,

(2,2)
↓

(2,2)
, . . . ,

(w,2)
↓

(w,2)

)

+ (−1)m−k(q−1)resμ
(
ek,1

)
f

(

S :
(c,1)
↓

(1,2)
,

(k,1)
↓

(k,1)
,

(k+1,1)
↓

(k+1,1)
, . . . ,

(m,1)
↓

(m,1)

)

= 0.

Consider

fPu = f

(

S :
(m,1)
↓
Su,2

,
(1,2)
↓

(1,2)
,

(2,2)
↓

(2,2)
, . . . ,

(u,2)
↓

(u,2)

)

(4.27)

for an arbitrary u with 1≤ u ≤ w−1. We have
w∏

j=1
Pu(( j,2))=

(
−q−1)u

and
w∏

j=1
S(( j,2))= 1
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since the fact that S is semistandard means that S(( j,2)) = 1 for all 1 ≤ j ≤ w. Therefore,
we have that fPu =

(
−q−1

)u
fS, and so Pu contributes

(−1)u (
−q−1)u

(q−1)qμ(1)
2 −1Q2 fS =

(
qμ(1)

2 −u−1 − qμ(2)
1 −u

)
Q2 fS.

Adding together the contribution of all such Pu then gives us
(
qμ(2)

1 −1 − qμ(2)
1 −2

)
Q2 fS. (4.28)

Now let u = w. Since μ(2)
w+1 <μ(2)

w we have

w∏

j=1
Pu(( j,2))=

(
−q−1)w−1

(

−q
−

(
λ(2)

w +ρ2(λ)−λ(2)
ρ2(λ)−w

))[
λ(2)

w +ρ2(λ)−λ(2)
ρ2(λ) −w

]

and so the contribution of Pw to fS is

(−1)w(q−1)
(
−q−1)w−1

(

−q
−

(
λ(2)

w +ρ2(λ)−λ(2)
ρ2(λ)−w

))[
λ(2)

w +ρ2(λ)−λ(2)
ρ2(λ) −w

]
qμ(2)

1 −1Q2 fS

=− q1−w
(

−q
−

(
λ(2)

w +ρ2(λ)−λ(2)
ρ2(λ)−w

))(

q
λ(2)

w +ρ2(λ)−λ(2)
ρ2(λ)−w

−1

)

qμ(2)
1 −1Q2 fS

=qμ(2)
1 −w

(

1− q
−

(
λ(2)

w +ρ2(λ)−λ(2)
ρ2(λ)−w

))

Q2 fS

=

(

qμ(2)
1 −w − q

λ(2)
ρ2(λ)−ρ2(λ)

)

Q2 fS, (4.29)

where we have used the fact that λ(2)
w =μ(2)

w =μ(2)
1 .

Finally, consider

fQ = f

(

S :
(c,1)
↓

(1,2)
,

(k,1)
↓

(k,1)
,

(k+1,1)
↓

(k+1,1)
, . . . ,

(m,1)
↓

(m,1)

)

.

The first thing to notice about this is that μ(1)
m+1 <μ(1)

m and that

m∏

i=k
Q((i,1))=

(
−q−1)m−k

[
λ(1)

1 −λ(1)
m +m

]
and

m∏

i=k
P((i,1))= 1

(see Lemma 4.6.4 and the remark that follows it), and so

fQ = (−1)m−k (
−q−1)m−k

[
λ(1)

1 −λ(1)
m +m

]
fS.

Thus, we have that Q contributes

(q−1)qμ(1)
k −kqk−m

[
λ(1)

1 −λ(1)
m +m

]
Q1 fS = qμ(1)

k −m
(
qλ(1)

1 −λ(1)
m +m −1

)
Q1 fS

=
(
qμ(1)

1 −1 − qμ(1)
m −m

)
Q1 fS (4.30)

to gW0(S), making use of the fact that λ(1)
m =λ(1)

k =μ(1)
k in our calculations.
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Finally, combining (4.28), (4.29), and (4.30) with
(
resμ

(
em,1

)
−resλ

(
e1,2

))
fS gives us

(
qμ(1)

m −mQ1 − qλ(1)
2 −1Q2 + qμ(1)

1 −1Q1 − qμ(1)
m −mQ1

−q
λ(2)
ρ2(λ)−ρ2(λ)

Q2 + qμ(2)
1 −wQ2 − qμ(2)

1 −wQ2 + qμ(2)
1 −1Q2

)

fS

=

(

qμ(1)
1 −1Q1 − q

λ(2)
ρ2(λ)−ρ2(λ)

Q2

)

fS

= (resμ(a)−resλ(r)) fS

as required, completing the proof in this case. The remaining cases, being more straight-
foward and sufficiently similar to this case, are omitted.

This concludes our construction of Θ, thus we have (almost) proved the following, the
main result of this chapter.
Theorem 4.7.3. Let λ and μ be multipartitions such that μ is constructed from λ by the de-
letion of a removable node r in a single component x and the adjoining of an addable node
a to component x−1. Then there exists a non-zero homomorphism Θ̂ : Sλ → Sμ whenever
resμ(a)= resλ(r).

Proof. Let S ∈ T0(μ,λ) and suppose that a appears in row a of [μ(x−1)] and r in row b of
[λ(x)]. By Lemma 4.1.1 we have

ΘS(mλh)=

(

Ȟ μ+mμTd(first(S))

∏

i=(i1,i2)
C

(
λ

(i2)
i1−1 :ΩS

i

)
)

h. (4.31)

By construction, S(i, j, k)= (i, k) whenever one of the following is true

• i < a, and k = x−1;

• k < x−1;

• i = a, k = x−1, and j <λ(x)
a +1;

• i > b and k = x; or

• k > x.

Therefore, the right hand side of (4.31) has the following properties:

• d(first(S)) is a permutation in the symmetric group on

{
λ

(x−1)
a +1,λ

(x−1)
a +2, . . . ,λ

(x)
b

}
;

and

• C
(
λ

(i2)
i1−1 :ΩS

(i1,i2)

)
= 1 whenever (i1, i2) is such that: i1 ≤ a and i2 = x−1; i2 < x−1;

i1 > b and i2 = x; or i2 > x.
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We then have that

ΘS

(
mλd

(s)
d,t(λ)

)
= Ȟ μ+mμd

(s)
d,t(λ)Td(first(S))

∏

i=(i1,i2)
C

(
λ

(i2)
i1−1 :ΩS

i

)

Whenever d < a and s = x−1, s < x−1, d > b and s = x, or s > x. Moreover

d(s)
d,t(λ)=C

(
λ

(s)
d−1 :λ(s)

d , t
)
=C

(
μ(s)

d−1 :μ(s)
d , t

)
= d(s)

d,t(μ)

for these values of d and s and any value of t, in which case

ΘS

(
mλd

(s)
d,t(λ)

)
∈ Ȟ μ.

Additionally, ΘS(mλl
(s)) ∈ Ȟ μ for every s < x−1 and s ≥ x since

ΘS

(
mλl

(s)
)
= Ȟ μ+mμl

(s)Td(first(S))

∏

i=(i1,i2)
C

(
λ

(i2)
i1−1 :ΩS

i

)

for these values, in which case

mμl
(s) = mμ

(
L
λ

(s+1)
+1

−Qs+1

)
= mμ

(
L
μ(s+1)+1 −Qs+1

)
= mμ(Qs+1 −Qs+1)+Ȟ μ,

by Proposition 2.3.2. This then leaves us with

• d(s)
d,t when s = x−1 and d ≥ a, or s = x and d ≤ b−1; and

• l(x−1)

to consider, but this follows from the work previously done on one node homomorphisms
since we are essentially in the same case.
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Chapter 5

Concluding Remarks

The main result of this thesis, Theorem 3.2.1, provides us with necessary and sufficient
conditions for a homomorphism Θ : Mλ → Sμ to factor through Sλ, thereby providing us
with a means to identify when it is possible to do so in order to construct a non-zero ho-
momorphism Θ̂ : Sλ → Sμ. The most notable feature of this is that we are only required to
focus upon the behaviour of a finite number of elements in Mλ to identify precisely when
this condition is satisfied. The result appearing in Chapter 4 may be thought of as provid-
ing a ‘proof of concept’, applying Theorem 3.2.1 to a restricted class of Specht modules
in order to provide a relatively straightforward construction of explicit homomorphisms
between them.

There are a number of future developments that could increase the strength of or dir-
ectly lead from the results we have presented here. Perhaps the most obvious would be
the provision of an explicit algorithm for the construction of homomorphisms for a more
general class of Specht modules. The most immediate hinderance to developing such an
algorithm is that we currently know very little about what results from right multiply-
ing ΘS(mλ), where ΘS : Mλ → Sμ is a semistandard homomorphism, by a Jucys-Murphy
element Li.

Despite being elementary in a conceptual sense, solving this problem seems complicated
in terms of execution. That said, the author and Sinéad Lyle are currently working to-
wards shedding light upon this matter and have reason to believe that a result will be
forthcoming.

In addition to possibly playing a role in direction, the following conjecture, due to the
author, may be of independent interest to the reader.
Conjecture 2 (Corlett). Let λ be a multicomposition of n and let t be a λ-tableau. For
every 1≤ x ≤ n, let

• x ∈ [λ] such that tλ(x)= x; and

• nx be the number of entries less than t(x) that in t occupy nodes lower than x.
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Then

Td(t) =

(
n−1+nn∏

j=n
T j

)(
n−2+nn−1∏

j=n−1
T j

)

∙ ∙ ∙

(
n1∏

j=1
T j

)

where we take the empty product to be 1.
Example 19. Let λ= (5,3,3,2,1) and let t be given by

t=

1 2 3 8 10
4 6 11
5 7 9

1214
13

Then Td(t) = T13T8,9,10T7T5,6,7,8,9T4,5,6,7

We now present a straight-forward but useful corollary of Conjecture 2.
Corollary 5.0.4. Let w be a permutation in Sn. Then a reduced expression for w in terms
of simple generators s = (i, i+1) can be found by applying Conjecture 2 to the (1n)-tableau
tλ ∙w.
Example 20. Let w = ( 4 8 11 9 5 10 7 6 )( 13 14 ). Then w = s13s8,9,10s7s5,6,7,8,9s4,5,6,7.

Successfully providing such a general construction of homomorphisms will also depend
upon generalizing Fayers’ recent paper [18] to the setting of the Ariki-Koike algebra and
thereby providing an algorithm for expressing homomorphisms ΘS : Mλ → Sμ indexed
by arbitrary non-semistandard as a linear combination of semistandard homomorph-
isms.

Another, related, development would be to identify an analogue of the row and column
removal theorems [14] in type A for the Ariki-Koike algebra. Such a result would prove
useful in calculating the dimension of homomorphism spaces between Specht modules by
identifying an isomorphism between the homomorphism space of certain Specht modules
for one Ariki-Koike algebra and that between related Specht modules for an Ariki-Koike
algebra that is in some sense ‘smaller’. In particular, it should be possible to use the
results of this thesis in tandem with a row and column removal theorem to exhibit a
number of non-zero homomorphism spaces between Specht modules.

It should also be possible to apply the results of this thesis in a similar capacity to the type
A results they generalize; namely, in studying reducible Specht modules, as in [37, The-
orem 5.2], or attempting to establish lower bounds upon the dimension of homomorphism
spaces between Specht modules, as was achieved in [38, Subsection 2.3].

Finally, a proof of Conjecture 1 would, in addition to being of interest in its own right, be a
particularly welcome addition to our knowledge of the Ariki-Koike algebra. As discussed
in the Introduction to this thesis, much of the study of homomorphism spaces between
Specht modules for the Iwahori-Hecke algebra of type A and the symmetric group has
been built upon two results: the kernel intersection theorem and the semistandard homo-
morphism theorem. Theorem 3.2.1 of this thesis provides half of this foundation, being
an analogue of the former, leaving the latter yet to be established.
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