
This is a pre-copyedited, author-produced PDF of an article accepted for publication in

Systematic Biology following peer review. The definitive publisher-authenticated version

FlatNJ: A novel network-based approach to visualize evolutionary and

biogeographical relationships. Monika Balvociute; Andreas Spillner; Vincent Moulton.

Systematic Biology 2014; doi: 10.1093/sysbio/syu001

is available online at: http://sysbio.oxfordjournals.org/cgi/content/abstract/syu001?

ijkey=TnbKmmQy0mCQjzr&keytype=ref.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of East Anglia digital repository

https://core.ac.uk/display/19595707?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://sysbio.oxfordjournals.org/cgi/content/abstract/syu001?ijkey=TnbKmmQy0mCQjzr&keytype=ref
http://sysbio.oxfordjournals.org/cgi/content/abstract/syu001?ijkey=TnbKmmQy0mCQjzr&keytype=ref


Version dated: January 16, 2014

RH: NETWORK-BASED VISUALIZATION OF EVOLUTIONARY RELATIONSHIPS

FlatNJ: A novel network-based approach to visualize

evolutionary and biogeographical relationships
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Abstract.— Split networks are a type of phylogenetic network that allow visualization of conflict

in evolutionary data. We present a new method for constructing such networks called

FlatNetJoining (FlatNJ). A key feature of FlatNJ is that it produces networks that can be drawn

in the plane in which labels may appear inside of the network. For complex data sets that involve,

for example, non-neutral molecular markers, this can allow additional detail to be visualized as

compared to previous methods such as split decomposition and NeighborNet. We illustrate the

application of FlatNJ by applying it to whole HIV genome sequences, where recombination has

taken place, fluorescent proteins in corals, where ancestral sequences are present, and

mitochondrial DNA sequences from gall wasps, where biogeographical relationships are of

interest. We find that the networks generated by FlatNJ can facilitate the study of genetic

variation in the underlying molecular sequence data and, in particular, may help to investigate



processes such as intra-locus recombination. FlatNJ has been implemented in Java and is freely

available at www.uea.ac.uk/computing/software/flatnj.

(Keywords: phylogenetic network, split, split network, flat split system, NeighborNet, QNet)

Phylogenetic networks are useful for representing evolutionary scenarios that are not

described sufficiently well by a single phylogenetic tree. There are several types of phylogenetic

networks and various methods have been proposed for their construction (for an overview, see

Huson et al. 2010). Here we are concerned with split networks (also known as a “data-display

networks”), a type of phylogenetic network that is commonly used in exploratory data analysis

(Huson and Bryant 2006; Morrison 2010). Split networks are designed to represent character (or

tree) conflict in a data set, without making prior assumptions about the causes of those conflicts.

Such conflicts might be caused, for example, by horizontal gene transfer or recombination,

homoplasy or methodological issues in data collection or analysis.

Split networks have been used in various applications including the evolutionary analysis

of viruses (Tugume et al. 2010), plants (Goremykin et al. 2013), microbes (Octavia and Lan

2006), animals (The STAR Consortium 2008), and even languages (Dunn et al. 2005). As an

illustrative example, consider the split networks in Figure 1, which we generated from

subcollections of a Simian immunodeficiency virus (SIV) data set published in Pelletier et al.

(1995) and analyzed using split networks in Wain-Hobson et al. (2003). Each network in this

figure represents a collection of splits or bipartitions of the taxa that label the network. In

particular, each split is represented by a band of parallel edges that all have the same length. For

example, the band of bold edges in network N1 represents the split that groups taxa 104 and 119

together versus the remaining taxa. This is much the same as the way in which each edge of an

unrooted phylogenetic tree represents a split of its leaf set.

www.uea.ac.uk/computing/software/flatnj


The boxes that appear in many of the networks in Figure 1 indicate pairs of splits that are

incompatible, that is, pairs of groupings that cannot be represented simultaneously in a single

phylogenetic tree. Therefore, such boxes indicate that the data are not treelike. In this particular

example, some of the boxes are probably the result of intra-locus recombination. For example, the

box in network N1 with one vertex labeled 119 indicates that taxon 119 shares similarities with

both taxon 203 and taxon 104. This suggests that taxon 119 could be a recombinant, although a

more detailed recombination analysis would have to be performed to verify this possibility.

The two methods for generating split networks that are most relevant to this paper are

split decomposition (Bandelt and Dress 1992b) and NeighborNet (Bryant and Moulton 2004).

Both are implemented in the SplitsTree package (Huson and Bryant 2006), and the networks

generated by them for the SIV data set are depicted in the top two rows of networks in Figure 1.

Split decomposition networks are useful for analysis of small data sets, but have two

disadvantages in general. First, for large data sets, they tend to be very unresolved (cf. network

N3 in Fig. 1, see also Winkworth et al. 2005). Second, split decomposition may yield networks

where edges cross (cf. network N2 in Fig. 1), which can make it difficult to produce a layout for

these networks that can easily be interpreted. NeighborNet overcomes both of these issues as it

can generate quite resolved networks even for much larger data sets (see, e.g., Beiko 2011), and it

is guaranteed to produce a network that is planar, that is, that can be drawn without crossing

edges. Even so, NeighborNet networks are constrained to be outer-labeled, that is, all labels must

lie on the outside of the network. This may lead to situations where potentially useful

information can be lost (the split represented by the bold edges in network N1 in Fig. 1, for

example, is is not displayed by network N4).

In this paper, we present a new method to infer phylogenetic networks. Our new method,

FlatNJ, helps to rectify the difficulties with split decomposition and NeighborNet as it does not

force labels to the outside of the network (cf. network N7 in Fig. 1), it avoids crossings between

edges as much as possible (cf. network N8 in Fig. 1) and it can yield informative splits even when

the number of taxa increases (cf. network N9 in Fig. 1). As with the QNet method (Grünewald



et al. 2007) for generating outer-labeled planar split networks, FlatNJ takes quartet data as

input. In addition, FlatNJ employs an agglomerative approach to construct networks similar to

that used in Neighbor-Joining (Saitou and Nei 1987) and NeighborNet, that involves repeatedly

identifying taxa that are “neighbors”.

After presenting the FlatNJ method in the next section, we illustrate its potential

applications in the Results section by applying it to three data sets that each involve molecular

sequences sampled from within a single species or from closely related species. The first two data

sets (whole HIV genome sequences and fluorescent proteins in corals) were selected to shed some

light on the potential of FlatNJ to identify potential candidates for statistical inference in the

analysis of intra-locus recombination. Note that biologists increasingly study patterns of genetic

variation that may be caused by intra-locus recombination and introgression of genes (see e.g.

Gonthier and Garbelotto 2011; Bahr and Wilson 2012; Zhao et al. 2013) as well as the potential

role of these processes in the adaptation of species to environmental change (see e.g. Becker et al.

2013) and the impact of them on the accuracy of species tree reconstruction methods (see e.g.

Lanier and Knowles 2012). The last data set (gall wasps) was chosen to give an impression of the

performance of FlatNJ in displaying the biogeographic structure of a somewhat larger collection

of non-recombining mitochondrial DNA. We conclude with a discussion, where we also mention

some possible future directions.

Methods

In the following, X will always denote a set of n ≥ 4 taxa, and any split of X that groups

a non-empty subset A of X against the remaining taxa B = X −A will be denoted by A|B. Note

that A|B and B|A both denote the same split.

As mentioned in the Introduction, a split network is a graphical representation of a

collection of splits of X. For convenience, we call any such collection Σ a split system on X; the

collection of all possible splits of X is denoted by Σ(X). The length of the edges representing a

split S in a split network is proportional to a non-negative real number ω(S), also called the



weight of S. The pair (Σ, ω), consisting of the split system and its weighting, is called a weighted

split system on X. We now describe the special kind of split systems underlying FlatNJ networks.

Flat split systems

Flat split systems first appeared in Bryant and Dress (2007) and can be formally defined

in several equivalent ways. In the following, we describe them, in a way that is sufficiently general

for the purpose of explaining our new method, but omit some technical details that are not of

great importance here. The reader interested in these details is referred to the definition of flat

split systems given in Spillner et al. (2011) which, for the convenience of the reader, is also briefly

explained in the supplementary material (doi:10.5061/dryad.q80f6).

First we recall that any outer-labeled split network, such as a NeighborNet network,

represents a circular split system. This is a split system Σ on X, for which there exists an

ordering x1, x2, . . . , xn of the n taxa in X such that every split in Σ is of the form

{xi, xi+1, . . . , xj}|X − {xi, xi+1, . . . , xj} for some 1 ≤ i ≤ j < n (cf. Fig. 2a). We can also view the

splits in any such split system as arising in the following way: The taxa in X are arranged as

points along a circle and a split is represented by a straight line separating the set of points into

two non-empty subsets (cf. Fig. 2b). Note that NeighborNet networks are constructed from

circular split systems: The fact that NeighborNet networks are outer-labeled is essentially a

consequence of the points representing the taxa in X being constrained to lie on a circle.

When we adopt the view that circular split systems arise from taxa arranged on a circle, it

is natural to wish to remove this constraint and to arrange the taxa in X arbitrarily in the plane,

but to still represent splits by straight lines (cf. Fig. 2c). In particular, a split system Σ of X is

called flat if X can be arranged in the plane so that every split in Σ can be represented by some

straight line (Technically speaking, this is actually an affine split system, see, e.g., Spillner et al.

2011, but for simplicity we shall just call such split systems flat in this paper.). To simplify the

subsequent description, we shall assume that no three points in X lie on a common straight line.

This will not, however, restrict the split systems that can be obtained.



Note that the freedom of being able to place the taxa in X anywhere in the plane is the

reason why we can have interior labels in the corresponding split networks. Also note that, as we

represent splits by straight lines, it can be shown (just as with any circular split system on X)

that any flat split system Σ of X contains at most
(
n
2

)
splits (Spillner et al. 2011). If Σ contains

precisely
(
n
2

)
splits, we call it full. In addition, if Σ is weighted we require that ω(S) > 0 holds for

all S ∈ Σ.

Systems of 4-splits

When we developed FlatNJ, we at first considered taking a matrix of pairwise distances as

input, as with the NeighborNet method. However, this has the disadvantage that there can be

more than one flat split system representing such a matrix (see, e.g., Fig. 3a-c). Intuitively, the

problem is that pairwise distances cannot distinguish between the two fundamentally different

geometric configurations of four points in the plane (cf. Fig. 3d and e): Either none of the points

is inside the triangle formed by the other three, or precisely one of the points is inside the triangle

formed by the other three. To discriminate between these two configurations, we decided to

consider quartet-like input data like that used for the QNet method (Grünewald et al. 2007). In

particular, using a link between flat split systems and the theory of oriented matroids (Bryant

and Dress 2007), it can be formally shown that four-element subsets are sufficient to discriminate

a pair of full flat split systems.

We now present some definitions that are necessary for us to describe our method. For

any four distinct elements a, b, c and d in X, a 4-split is either of the form {a, b}|{c, d} or of the

form {a}|{b, c, d}. As with splits of the whole taxon set, {a, b}|{c, d} and {c, d}|{a, b} (and,

similarly, {a}|{b, c, d} and {b, c, d}|{a}) denote the same 4-split. Note that 4-splits that group two

taxa versus two other taxa are usually referred to as quartets. Thus, 4-splits can be viewed as a

straight-forward generalization of quartets where also groupings of one taxon versus three other

taxa are considered. Also note that there are precisely seven distinct 4-splits for any set of four

taxa. In the following, we denote the collection of all possible 4-splits that can be formed from the



taxa in X by F = F(X) and we will usually also consider a weighting λ that assigns to every

4-split in F a non-negative real number. The pair (F , λ) will then be referred to as a (weighted)

system of 4-splits and our method takes such a system as its input.

Note that, unlike the QNet method, FlatNJ also assigns weights to the trivial splits (i.e.,

splits that separate one taxon from all of the rest) in the resulting flat split system. These splits

correspond to “pendant” edges in the final split network. In our first experiments we found that

the split systems we generated from systems of 4-splits tended to be almost circular. On

investigating this phenomenon, we realized that this was probably due to the fact that any flat

split system that contains all of the possible trivial splits must in fact be circular. Moreover, the

presence of many 4-splits of the form {x}|{a, b, c} with large weights in the input will naturally

lead to flat split systems that contain the trivial split {x}|X − {x}, thus blocking the option of x

being placed inside the resulting split network. For this reason, given a system of 4-splits (F , λ),

we first compute the quantity

β(x) = min
{x}|{a,b,c}∈F

λ({x}|{a, b, c}) (1)

for every x in X, that is, the smallest weight over all 4-splits of the form {x}|{a, b, c} in F . Then

we adjust λ by subtracting β(x) from the weight of every 4-split of this form because this amount

of weight will definitely be represented in the resulting split network independently of whether x

is placed inside the network or not (see the section below describing the final step of our method

for more details on how this is achieved).

Generating systems of 4-splits

We now present two possible methods to generate systems of 4-splits: the first produces

such systems from multiple sequence alignments using statistical geometry (Eigen et al. 1988),

and the second directly from distances between points in the plane.

For the first method, let A be a sequence alphabet, and let D denote a measure of

pairwise dissimilarity between the letters in A. Here we use D(L,L) = 0 and D(L,L′) = 1 for any



two distinct letters L and L′ in A (see, e.g., Nieselt-Struwe and von Haeseler 2001). Then, for a

multiple sequence alignment with ` columns c1, c2, . . . , c`, each column ci, 1 ≤ i ≤ `, yields a

distance matrix Di on X by putting Di(x, x
′) = D(L,L′), where L and L′ are the letters in

column ci in the sequence corresponding to taxon x and taxon x′, respectively. To obtain a weight

for each 4-split in F , we put

λ({a, b}|{c, d}) =
1

`

∑
16i6`

1

2

(
max

{
Di(a,c)+Di(b,d)
Di(a,d)+Di(b,c)
Di(a,b)+Di(c,d)

}
−Di(a, b)−Di(c, d)

)
and

λ({a}|{b, c, d}) =
1

`

∑
16i6`

1

2
min

{
max{Di(a,b)+Di(a,c)−Di(b,c),0}
max{Di(a,c)+Di(a,d)−Di(c,d),0}
max{Di(a,b)+Di(a,d)−Di(b,d),0}

}

for any four distinct taxa a, b, c and d in X. Note that the i-th summand in both formulae

corresponds to the so-called isolation index (Bandelt and Dress 1992a) of the 4-split with respect

to the distance matrix Di.

We also developed a second method for generating systems of 4-splits from distances

between points in the plane (coming from, e.g., geographical coordinates for sampling locations of

taxa) since we are also interested in the possibility of incorporating such information into our

analyses. Recall that, for any four distinct taxa a, b, c and d, there are essentially two different

ways in which the corresponding taxa locations can be arranged (cf. Fig. 3d and e). In each case,

only six 4-splits (out of the seven possible 4-splits) are suggested by the relative position of the

locations and these are exactly those 4-splits represented in the corresponding split network in

Figure 3b and c, respectively.

To assign weights to the 4-splits, we apply the formula in Moulton and Spillner (2012,

Thm. 3) to the Euclidean distances DE between the locations. This formula will yield the unique

weights for the 4-splits such that the shortest path lengths in the corresponding split network

equal the given Euclidean distances. In particular, if the four taxa are arranged as in Figure 3d

this is equivalent to weighting each 4-split by its isolation index with respect to DE as given

above (which immediately implies λ({a, c}|{b, d}) = 0). Otherwise, if the four taxa are arranged



as in Figure 3e, we put λ({d}|{a, b, c}) = 0 and set

λ({a}|{b, c, d}) =
1

2
(DE(a, b) +DE(a, c)−DE(b, d)−DE(c, d)),

λ({b}|{a, c, d}) =
1

2
(DE(a, b) +DE(b, c)−DE(a, d)−DE(c, d)),

λ({c}|{a, b, d}) =
1

2
(DE(a, c) +DE(c, b)−DE(a, d)−DE(b, d)),

λ({a, b}|{c, d}) =
1

2
(DE(a, d) +DE(b, d)−DE(a, b)),

λ({a, c}|{b, d}) =
1

2
(DE(a, d) +DE(c, d)−DE(a, c)), and

λ({a, d}|{b, c}) =
1

2
(DE(b, d) +DE(c, d)−DE(b, c)).

It is easy to verify that these weights will always be non-negative.

Neighbors in flat split systems

FlatNJ constructs a flat split system from a system of 4-splits using an agglomerative

approach similar to the ones used in Neighbor-Joining and NeighborNet. One of the key steps in

both of these previous approaches is the selection of “neighbors”. As mentioned above, the splits

displayed in the networks produced by NeighborNet can be represented by arranging points on a

circle (cf. Fig. 2b). Two distinct taxa x and x′ are considered to be neighbors if they correspond

to consecutive points along the circle (e.g., b and c are neighbors in Fig. 4a). Note, however, that

this is equivalent to the following condition (cf. Fig. 4a and b):

(Nb) The straight line segment with end points x and x′ does not intersect any of the straight

lines through any pair of distinct elements in X − {x, x′}.

The advantage of condition (Nb) is that it can readily be applied to any set of points in

the plane not necessarily arranged around a circle (cf. Fig. 4c and d). More precisely, given a flat

split system Σ, two taxa x and x′ in X are neighbors relative to Σ if there exists some

arrangement of X in the plane so that every split in Σ can be represented by a straight line and

also x and x′ satisfy condition (Nb). Note that there exist flat split systems for which no pair of

taxa form neighbors (cf. Fig. 4e). Such split systems will not be generated by FlatNJ.



The overall approach

Given a system of 4-splits (F , λ), FlatNJ essentially works in the following four stages, in

a similar way to the NeighborNet method. (i) A pair of neighbors x and x′ in X is selected. (ii)

The neighbors x and x′ are removed from X and replaced by a new element z representing both x

and x′ (i.e., x and x′ are agglomerated into a new element z). The system of 4-splits (F , λ) is then

updated to give a new system on X ′ = (X − {x, x′}) ∪ {z}. This selection and agglomeration

procedure is repeated until only four elements remain. (iii) The whole agglomeration process is

reversed to create a full flat split system Σ. (iv) The split weights are estimated for Σ relative to

(F , λ), and a corresponding planar split network is then drawn. We describe each of (i)–(iv) in

more detail in the following four sections.

Choosing neighbors

As with Neighbor-Joining and NeighborNet, we choose neighbors by assigning scores to

pairs of elements in X. In particular, we use two scoring functions that have been chosen to

ensure that the algorithm is “consistent” (see below). The first function is based on the following

observation. Let (Σ, ω) be a weighted flat split system and x and x′ be two taxa that are

neighbors in Σ. Then, for any two distinct taxa y and y′ in X − {x, x′}, for at least one of the

4-splits {x}|{x′, y, y′}, {x, y}|{x′, y′}, {x, y′}|{x′, y} and {x, y, y′}|{x′} that separate x and x′ the

sum of the weights of all the splits in Σ that extend the 4-split is 0 (a split S = A|B of X extends

a 4-split {a, b}|{c, d} if either {a, b} ⊆ A and {c, d} ⊆ B or {a, b} ⊆ B and {c, d} ⊆ A; the

extension of a 4-split of the form {a}|{b, c, d} is defined in the same way). For example, for the

full flat split system Σ on the set X = {a, b, c, d, e} represented by the arrangement in Figure 4c,

the taxa c and d are neighbors and there is no split in Σ that extends the 4-split {c}|{a, b, d}.

This suggests defining the following score for any pair x and x′ of taxa in X:

σmin(x, x′) =
∑

y,y′∈X−{x,x′}
y 6=y′

min

{
λ({x}|{x′,y,y′})
λ({x′}|{x,y,y′})
λ({x,y}|{x′,y′})
λ({x,y′}|{x′,y})

}
.



Intuitively, the score σmin(x, x′) captures the total amount of 4-split weight, over all 4-splits in F ,

that will definitely not be represented in the resulting flat split system if we make x and x′

neighbors. Hence, good candidates for neighbors are taxa x and x′ for which σmin(x, x′) is

minimized.

Once we have found the pairs that minimize the score σmin(x, x′), we employ a second

scoring function that aims to capture the total amount of 4-split weight, over all 4-splits in F of

the form {x, x′}|{y, y′}, that will be represented in the resulting flat split system if we make x

and x′ neighbors. More formally, we put

σmax(x, x′) =
∑

y,y′∈X−{x,x′}
y 6=y′

λ({x, x′}|{y, y′}).

Note that this function is also used in the selection of neighbors in the QNet algorithm

(Grünewald et al. 2007).

Hence, in summary, we choose neighbors by first computing all pairs {x, x′} that minimize

σmin(x, x′) and then, out of these pairs, selecting some pair {x, x′} that maximizes σmax(x, x′).

Agglomeration

We now explain how to update the system of 4-splits (F , λ) on X to form one on the set

X ′ = (X − {x, x′}) ∪ {z} once a pair of neighbors x and x′ has been selected in X. First, all those

4-splits that involve neither x nor x′ remain the same in the updated system of 4-splits on X ′.

Otherwise, let a, b, c be any three distinct elements in X − {x, x′} and put Yx = {x, a, b, c} and

Yx′ = {x′, a, b, c}. Then the 4-splits involving precisely the four taxa in {z, a, b, c} are assigned the



average of the weights of the corresponding 4-splits of Yx and Yx′ , that is, we put:

λ({z}|{a, b, c}) =
1

2

(
λ({x}|{a, b, c}) + λ({x′}|{a, b, c})

)
,

λ({a}|{z, b, c}) =
1

2
(λ({a}|{x, b, c}) + λ({a}|{x′, b, c})),

λ({b}|{z, a, c}) =
1

2
(λ({b}|{x, a, c}) + λ({b}|{x′, a, c})),

λ({c}|{z, a, b}) =
1

2
(λ({c}|{x, a, b}) + λ({c}|{x′, a, b})),

λ({z, a}|{b, c}) =
1

2
(λ({x, a}|{b, c}) + λ({x′, a}|{b, c})),

λ({z, b}|{a, c}) =
1

2
(λ({x, b}|{a, c}) + λ({x′, b}|{a, c})), and

λ({z, c}|{a, b}) =
1

2
(λ({x, c}|{a, b}) + λ({x′, c}|{a, b})).

Reversing the agglomeration process

Once all possible agglomerations have been performed, a set with four elements, which we

denote by X∗, and a system of 4-splits (F∗, λ∗) on X∗ is left. Note that, since X∗ contains

precisely four taxa, every split of X∗ can be viewed as a 4-split. Moreover, note that Σ(X∗) is not

a flat split system since it contains seven splits. Therefore, to obtain a full flat split system on X∗

(which must contain precisely
(

4
2

)
= 6 splits), we need to select one split in Σ(X∗) that will be

removed. Following again the idea that we want to minimize the amount of 4-split weight not

represented in the output, we choose a split S ∈ Σ(X∗) that, when viewed as a 4-split, is assigned

minimum weight by λ∗ over all splits of X∗ and put Σ∗ = Σ(X∗)− {S}. Put differently, we

choose Σ∗ since it covers as much of the weight as possible of the 4-splits in F∗. In addition, we

construct an arrangement of X∗ in the plane such that all the splits in Σ∗ are represented by

straight lines through this arrangement.

Next, starting with X∗ we reverse the agglomerations one by one. For simplicity, we only

describe how this is done for the last reversal that replaces z in X ′ by x and x′ to obtain the set

X since the other reversals are performed in a completely analogous way. To this end, assume



that we have a full flat split system Σ′ on X ′ arranged in the plane. From this we want to find a

suitable arrangement of X in the plane that corresponds to a full flat split system Σ on X (see

Fig. 5a). In particular, the arrangement of X is obtained by replacing the point representing z in

X ′ by two points representing x and x′, respectively (cf. Fig. 5b). These two points are placed in

such a way that, for each split S = A|B ∈ Σ′ with z ∈ A, we have the split

(A− {z}) ∪ {x, x′}|B ∈ Σ. This is achieved by placing x and x′ close enough to the original

position of z. In the situation depicted in Figure 5b it suffices, for example, to place x and x′

inside the shaded region.

In addition to those splits that arise from the splits in Σ′, the split system Σ also contains

n− 1 splits that separate x and x′. The splits of this type that are contained in Σ depend on the

position of x′ relative to x. Note that there is some freedom in choosing the precise coordinates of

x and x′. Topologically, there are, however, only 2(n− 2) different configurations that can be

described as follows. We place a suitably small disk centered at the original position of z (cf.

Fig. 5c). At the center of this disk we place x. Then we partition the disk into 2(n− 2) sectors by

drawing straight lines that contain x and any of the points in X ′ − {z}. For each of these sectors,

placing x′ anywhere within that sector yields the same flat split system on X, and placing x′ in a

different sector yields a different flat split system (cf. Fig. 5d and e). Let C denote the resulting

collection of 2(n− 2) different full flat split systems.

We now use the input system of 4-splits (F , λ) again to select one of the flat split systems

in C. More specifically, we select some Σ in C for which

∑
y,y′∈X−{x,x′}

y 6=y′

∑
S′ a 4-split of {x,x′,y,y′}

and some S in Σ extends S′

λ(S′) (2)

is maximum. In other words, we consider all 4-splits in F that involve both x and x′ and select a

split system Σ for which the total weight of those 4-splits that are extended by some split in Σ is

maximum. Note that there can be more than one Σ in C that maximizes (2). In this case we

select, among those maximizing (2), one for which Σ contains the two trivial splits {x}|X − {x}



and {x′}|X − {x′}, if such a Σ exists, and an arbitrary one otherwise. This ensures that if there is

a simpler way to accommodate the input data (i.e., a phylogenetic tree or a circular split system)

then we choose this.

Weighting and drawing

Once we have computed a full flat split system Σ on X whose structure reflects that of the

input system of 4-splits (F , λ), it only remains to compute non-negative weights for the splits in

Σ. To do this, we use an approach similar to the one used in QNet. More specifically, split

weights ω are computed so that the system of 4-splits (F , λ(Σ,ω)) on X (which is defined by

setting, for every 4-split S′ ∈ F , λ(Σ,ω)(S
′) to be the total weight of those splits S of X that

extend S′) is as close as possible to the input system of 4-splits (F , λ) in the least squares sense,

that is, we minimize ∑
S′∈F

(
λ(S′)− λ(Σ,ω)(S

′)
)2
. (3)

To minimize this last expression we solve a quadratic program (see, e.g., Lawson and

Hanson 1974). The user can then filter the resulting weighted flat split system (Σ, ω) if desired

using the method described in Grünewald et al. (2007) to suppress splits with very low weights.

In particular, the user provides a real-valued threshold t, 0 ≤ t ≤ 1, which suppresses any split S

in Σ for which there exists some other split S′ in Σ such that S and S′ are incompatible and the

weight of S is less than a fraction t of the weight of S′.

The resulting weighted flat split system (Σ, ω) is represented by a planar split network N ,

which is drawn using the algorithm presented in Spillner et al. (2011). It can then be displayed

using the SplitsTree package (Huson and Bryant 2006). Note that the filtering mentioned above

can help ease interpretation of this network by reducing the number of small boxes that appear in

it. At this stage, the values β(x), defined in (1) for all x in X, are also taken into account as

follows. If N already contains a pendant edge representing the trivial split {x}|X − {x} then the

length of this pendant edge is just increased by β(x). Otherwise (i.e., N does not contain a

pendant edge representing the trivial split {x}|X − {x} and β(x) > 0), a new pendant edge of



length β(x) is added to N . Note that this last step can potentially produce pendant edges that

must cross some other edges in the planar network N .

Implementation of FlatNJ

We have implemented FlatNJ in Java. For analyzing the examples below, we ran the

program on a PC with Intel i5-2300(4) CPU, with 6 GB of main memory and with the operating

system Ubuntu 12.04. The run time of our implementation is superpolynomial in the worst case

due to the fact that the computation of the weights for the splits involves solving a quadratic

program (for this we use algorithms in the Gurobi Optimizer, version 5.0, www.gurobi.com),

although in practice we have not found this to be a limitation for sets of up to 100 taxa. Note

that the entire agglomeration process and its reversal can be done in polynomial time. More

specifically, in our implementation we take O(n4) time, which is optimal since the input consists

of 7 ·
(
n
4

)
4-splits on the set X.

Consistency of FlatNJ

An important property that any method for constructing a split network should ideally

satisfy is consistency. This means that if the method is designed to produce a split system with a

certain special property (e.g., compatible or circular), then if such a split system (or associated

data) is taken as input, the same split system should result. For example, if a compatible/circular

weighted split system corresponding to a phylogenetic tree/outer-labeled planar network is taken

as input to Neighbor-Joining/NeighborNet, then it can be shown that the split system will be

reproduced (Atteson 1999; Bryant et al. 2007).

By construction, FlatNJ always generates a flat split system Σ on X with the following

special recursive property: Σ contains at least one pair of taxa that are neighbors, and if any pair

of neighbors in Σ is agglomerated then a new flat split system results that has at least one pair of

neighbors and that has the same property. We call such flat split systems neighborly (note that

there are flat split systems that are not neighborly). If (Σ, ω) is a weighted flat split system, and

www.gurobi.com


FlatNJ is given (F , λ(Σ,ω)) as input system of 4-splits, then it can be shown that it will reproduce

(Σ, ω) if any of the following hold: (a) Σ is compatible, (b) Σ is circular, or (c) (Σ, ω) is a

neighborly, full flat split system. Note that both of the scoring functions σmin and σmax are

necessary to achieve consistency of FlatNJ in (a)–(c). In particular, when used on its own, the

scoring function σmin can fail to select neighbors even in circular split systems. Similarly, even

though σmax will always select neighbors in circular split systems, used alone it can fail to select

neighbors in neighborly flat split systems (see supplementary material for more details).

In general, although we have found that there are many non-full, neighborly flat split

systems for which FlatNJ is consistent, there are also such split systems that FlatNJ cannot

reproduce. Ideally, we would like to give a complete and concise description of those flat split

systems for which FlatNJ is consistent. However, we expect that there might not be one since such

a description would probably pave the way for a polynomial time algorithm to decide whether or

not an arbitrary split system is flat, a problem that we strongly suspect to be NP-complete.

Results

We now illustrate some potential uses of FlatNJ by presenting its application to data sets

involving recombination, ancestral sequences and biogeographical features. In each of these cases

we shall see how labeling the inside of a network can be useful for understanding the specific

structure of the data.

A circulating recombinant form of HIV

The first data set involves the study of recombination in viruses, for which split networks

have been commonly used. In this example, we applied FlatNJ to analyze the circulating

recombinant form CRF49 of HIV reported in de Silva et al. (2010). We aligned the three whole

genome sequences representing CRF49 published in de Silva et al. (2010) together with reference

sequences for the collection Sub = {A,B,C,D, F,G,H, J,K} of known subtypes of HIV (see



supplementary material for details). In Figure 6 we present the networks produced by

NeighborNet and FlatNJ for this data set.

It was found in de Silva et al. (2010) that CRF49 is composed of the known subtypes A

(23% of total sequence length), C (18%), J (48%), K (5%) and, in addition, also contains a

region (6%) that could not be assigned to any of the known subtypes. This composition is

reflected by the fact that both the NeighborNet and FlatNJ networks contain the splits

SJ = {CRF49 , J}|Sub− {J} and SC = {CRF49 , C}|Sub− {C} (the split decomposition network,

included in the supplementary material, only contains the split SJ). Moreover, the weight

assigned to these splits in both networks is quite similar to the relative contribution of subtypes J

and C to CRF49.

Note that the FlatNJ network also contains the split SA,G = {CRF49 , A,G}|Sub−{A,G},

which indicates that subtypes A and/or G could have contributed to CRF49. According to de

Silva et al. (2010), subtype A contributed to CRF49, but this cannot be easily deduced from the

NeighborNet network. In fact, it is impossible to display the three splits SJ , SC and SA,G

together in any outer-labeled split network. Hence, the FlatNJ network provides a more complete

visualization of the composition of CRF49 inferred in de Silva et al. (2010).

Ancestral forms of fluorescent proteins

We now consider a data set presented in Ugalde et al. (2004) to investigate the evolution

of fluorescent proteins in corals. This data set consists of previously published proteins and

reconstructed ancestral sequences presented in Ugalde et al. (2004). Here we focus on those

groups of proteins for which an ancestral sequence was presented in Ugalde et al. (2004):

Red = {Kaede,mc1,R1 2}, pre-Red = {G1 2}∪Red, Red/Green = {R2,mc2,mc3,mc4}∪pre-Red

and ALL = {G5 2,mc5}∪Red/Green. The sequences were aligned (see supplementary material for

details) and the networks produced by NeighborNet and FlatNJ are depicted in Figure 7. We use

the same labels as in Ugalde et al. (2004) and the names of the groups above are used to indicate

the corresponding ancestral sequences.



As can be seen, both networks group sequences emitting the same color (red, green or

cyan) together. However, the networks also contain many pairs of incompatible splits suggesting a

complex, non-treelike evolution of fluorescent proteins in corals. This is in agreement with the

findings in Kelmanson and Matz (2003), suggesting that intra-locus recombination could be one of

the mechanisms that produced the sequence diversity we see today. This data set illustrates that

it could be useful to allow internal labels when ancestral sequences are present. Indeed, in contrast

to the NeighborNet, FlatNJ places all four ancestral sequences inside the network. Moreover,

their placement relative to one another also better reflects the groups of proteins given above.

Biogeography of gall wasps

In our final example we consider a data set of 80 mitochondrial DNA sequences (see

supplementary material for details) sampled from individuals of the species A. kollari (oak gall

wasp) for which geographic coordinates for the sampling locations corresponding to each sequence

are known (see Fig. 8). This data set was also used in Spillner et al. (2011) to illustrate how, in a

somewhat ad-hoc fashion, flat split systems can also be generated using multi-dimensional scaling.

A. kollari is native to regions at the latitude of the Mediterranean from Portugal to Iran.

Stone et al. (2001, 2007) studied the colonization of Northern Europe, in particular the British

Isles, by this species and concluded that the data suggest that a large number of individuals of A.

kollari that came originally from the Eastern Mediterranean were introduced to Britain by

human trade. One step taken to reach this conclusion was the generation of a NeighborNet

network for the sequences, which suggested that a tree-based analysis was not sufficient to fully

assess the data.

The networks produced by NeighborNet and FlatNJ from the sequence alignment are

presented in Figure 9. Overall, the networks are quite similar with 45% of the total weight of all

splits in the FlatNJ network corresponding to splits that are also represented in the NeighborNet.

This is somewhat reassuring as we feel that it is desirable for FlatNJ to not behave too differently

from the well-established NeighborNet method, at least for data that are planar in nature. In



contrast, the network produced by the split decomposition method (included in the

supplementary material) is again much less resolved.

We next explored a way to visualize the relationship between the geographic and genetic

data using split networks. More specifically, we generated the flat split system Σgeo from

Euclidean distances between the sampling locations and, to investigate which of the splits in Σgeo

are supported by the genetic distances, we reassigned weights to the splits in Σgeo by minimizing

the objective function (3) for the 4-split weights obtained from the sequence alignment. The split

network representing the resulting weighted flat split system is depicted in Figure 10. The network

displays a clear-cut geographic structure, although it is quite different from the FlatNJ network in

Figure 9. Even so, the split highlighted in bold is present (up to sequence (80)) in both networks,

which might represent a signal for a geographical divide between the sequences from Iberia and

South-Western France and the other sequences. Note that such a major divide has not only been

observed for A. kollari but also for other species from the genus Andricus (cf. Stone et al. 2007).

Discussion

We have introduced and implemented a new method called FlatNJ for generating split

networks. As with NeighborNet and QNet, the method generates planar split networks. Unlike

QNet, FlatNJ permits the estimation of pendant edge lengths, and, in contrast to both

NeighborNet and QNet, FlatNJ allows internal vertices in the network to be labeled. Note that,

although split decomposition also allows internal labels, it does not necessarily produce a planar

network.

We emphasize that FlatNJ does not force the data to be represented using many boxes or

internal labels: If the data are perfectly treelike then FlatNJ will return a tree and this will be the

same tree that Neighbor-Joining, split decomposition and NeighborNet will all necessarily return.

More generally, if the data are perfectly represented by some weighted circular split system then

FlatNJ will return this circular split system including the weights and, thus, agree with the output

of NeighborNet. It is only when encountering data that are neither treelike nor circular that



FlatNJ provides the option to produce a network that is not a tree or an outer-labeled network.

Thus, FlatNJ offers an excellent opportunity for exploratory data analysis (Morrison 2010).

To illustrate some of FlatNJ’s potential uses, we applied it to three data sets. In the

analysis of recombination the added value of having labels inside the network is mainly the

flexibility gained by representing collections of splits that cannot be displayed with outer-labeled

networks. We also saw that ancestral sequences can be naturally placed by FlatNJ in the interior

of the network, which not only helps avoid unnecessary distortion in the representation, but might

potentially help to identify candidate ancestral sequences in situations where these are not known.

In the last data set geographic considerations were of interest and we demonstrated that FlatNJ

could also be useful for analyzing and visualizing such data. As a further potential application, it

should also be noted that the taxon selection problem described in Minh et al. (2009) can be

solved efficiently for the weighted split systems produced by FlatNJ (using, e.g., the algorithm

presented in Spillner et al. (2008)).

Even though we have found that FlatNJ is able to visualize more information than

NeighborNet this can come at a price: To avoid distortion FlatNJ sometimes uses more pairs of

incompatible splits to represent the data than NeighborNet (see, e.g., the networks N5 and N8 in

Fig. 1). Moreover, we have found that producing a suitable layout of the labels of interior vertices

can be quite challenging, especially for data where large groups of taxa label the inside of the

network (see, e.g., Fig. 9). Developing alternative ways to draw the network that address this

would be desirable. More generally, although having a planar network can be useful for

interpreting data, as noted in Bryant and Moulton (2004), some data sets are intrinsically better

represented by “high-dimensional”, non-planar networks such as the ones that can be generated

using split decomposition. It is therefore still an interesting challenge to develop methods to help

effectively construct and visualize such networks.

As with some other quartet-based methods (such as QNet), the applicability of FlatNJ

can be somewhat limited by the fact that its input consists of a system of 4-splits, whose size

grows with a polynomial of degree 4 in the number of taxa. In particular, compared with



NeighborNet, the split construction phase in FlatNJ and QNet is one order of magnitude slower

(O(n3) vs. O(n4) for n taxa). Even so, in practice we have found that data sets with up to 100

taxa can usually be processed within a few minutes using the current implementation. Using

4-splits also has consequences for memory usage. As with QNet, with careful manipulation of

matrices, FlatNJ is implemented using O(n4) memory.

A subtle point, that is tightly linked with generating split networks, is the interpretation

of the weights assigned to their edges (see, e.g., Levy and Pachter 2011). If we use estimates of

pairwise evolutionary distances, for example, then these distances are decomposed according to

the type of split system (e.g., circular or flat) underlying the network, just like the edges in a tree

decompose the distance between two leaves into a sum of branch lengths. In a similar way, the

weights in a quartet or, more generally, a 4-split are decomposed when such input data are used.

We designed FlatNJ to be adaptable and modular: For example, the statistical geometry method

for estimating the 4-split weights presented above could be replaced by any alternative approach

(e.g., likelihood-based as in the Tree-Puzzle method by Schmidt et al. 2002). Moreover, using

extensions of probabilistic models from trees to split networks such as those proposed in Bryant

(2005), the whole agglomerative approach could, in principle, be replaced by a procedure that

estimates a flat split system, including the weights, using a Bayesian or maximum likelihood

approach. How this could be done in a practically useful way remains a challenging direction for

future research.

In conclusion, FlatNJ is a flexible new method to analyze and visualize data. It should

provide a useful complementary approach to methods such as split decomposition, NeighborNet

and QNet, and could also be used as the basis for developing new methods to better understand

data sets involving specific considerations such as ancestral sequences and biogeographical

information.

Supplementary material

An online-only appendix can be found in the Dryad data repository



(doi:10.5061/dryad.q80f6).
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Figure captions

Figure 1: Split networks for SIV sequences (Pelletier et al. 1995). Sequence labels are the same

as those used in Wain-Hobson et al. (2003). Networks in a row are generated with the method

specified in front of the row.

Figure 2: a) An outer-labeled phylogenetic network N representing a circular split system. A

corresponding circular ordering of the taxa is a, b, c, d, e. b) The taxa are represented by points

arranged along a circle respecting the circular ordering. The split S = {a, b}|{c, d, e}

corresponding to the bold edges in N is drawn as a straight line separating the points on the

circle. c) Five points representing taxa. They are not constrained to lie on a circle. The straight

line represents the split S′ = {a, c}|{b, d, e}.

Figure 3: a) A matrix of pairwise distances on the set of taxa X = {a, b, c, d}. b), c) Two split

networks representing weighted flat split systems in which the shortest path distance perfectly

matches the distances given in subfigure a. For clarity, the lengths of the edges are also given as

the number next to each edge. d) A configuration of four points in the plane that corresponds to

the structure of the flat split system represented in subfigure b: No taxon is inside relative to the

other three. e) A configuration of four points in the plane that corresponds to the structure of the

flat split system represented in subfigure c: Taxon d is inside relative to the other three.

Figure 4: a) Any two consecutive elements along the circle are considered neighbors. None of

the bold gray straight lines intersects the dotted straight line segment whose end points are the

neighbors b and c. b) The bold gray straight line through b and e intersects the dotted straight

line segment with end points a and c, indicating that a and c are not neighbors. c) Taxa c and d

are neighbors because none of the bold gray straight lines intersects the dotted straight line

segment with end points c and d. d) Taxa c and e are not neighbors because the bold gray



straight line through a and d intersects the dotted straight line segment with end points c and e.

e) An arrangement of the taxa X = {a, b, . . . , f} in the plane for which there is no pair of

neighbors relative to the corresponding full flat split system.

Figure 5: a) A full flat split system Σ′ on the set X ′ = {a, b, c, z} with z representing two

agglomerated elements x and x′. The black straight lines depict the
(

4
2

)
= 6 splits in Σ′. b)

Replacing z by two points representing x and x′. c) The disk sectors representing the options for

placing x′ relative to x. d) A placement of x′ that yields the four splits {x, a}|{x′, b, c},

{x, a, b}|{x′, c}, {x, a, c}|{x′, b} and {x, c}|{x′, a, b} separating x and x′. e) An alternative

placement of x′ that yields again the splits {x, a}|{x′, b, c} and {x, a, b}|{x′, c} but also two

different splits, namely, {x, b}|{x′, a, c} and {x, b, c}|{x′, a}.

Figure 6: Split networks for three sequences of a circulating recombinant form (CRF49 ) of HIV

reported in de Silva et al. (2010) and representatives of HIV subtypes A-K. The edges that

represent the split SJ = {CRF49 , J}|Sub− {J} mentioned in the text are drawn bold.

Figure 7: Split networks for fluorescent protein sequences including reconstructed ancestral

sequences. The labels correspond to the color emitted by the protein as follows: cyan (G5 2,

mc5 ), green (G1 2, R2, mc2, mc3, mc4 ) and red (R1 2, Kaede, mc1 ). The labels Red, pre-Red,

Red/Green and ALL correspond to reconstructed ancestral sequences from Ugalde et al. (2004)

for the four groups of proteins mentioned in the text.

Figure 8: A map with the sampling locations of the sequences in the gall wasp data set. The

accession numbers corresponding to the labels used in the map and the networks can be found in



the supplementary material.

Figure 9: Split networks produced from the sequence alignment for the gall wasp data set. The

coloring/shading scheme is the same as in Figure 8.

Figure 10: Split network produced by FlatNJ for the gall wasp data set from geographic

coordinates with split weights computed using the weighted 4-splits generated from the sequence

alignment as described in the text. The split highlighted in bold separates the sequences from

Iberia and Southern France from the other sequences. The coloring/shading scheme is the same

as in Figure 8.
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