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Long-wavelength, small-amplitude disturbances on the surface of a fluid layer subject to

a normal electric field are considered. In our model a dielectric medium lies above a layer of

perfectly conducting fluid, and the electric field is produced by parallel plate electrodes. The

Reynolds number of the fluid flow is taken to be large, with viscous effects restricted to a

thin boundary layer on the lower plate. The effects of surface tension and electric field enter

the governing equation through an inverse Bond number and an electrical Weber number

respectively. The thickness of the lower fluid layer is assumed to be much smaller than the

disturbance wavelength, and a unified analysis is presented allowing for the full range of

scalings for the thickness of the upper dielectric medium. A variety of different forms of

modified KdV equation are derived, involving Hilbert transforms, convolution terms, higher

order spatial derivatives and fractional derivatives. Critical values are identified for the

inverse Bond number and electrical Weber number at which the qualitative nature of the

disturbances changes.

I. INTRODUCTION

In this paper we consider disturbances on the interface between a fluid film and a di-

electric medium lying between parallel plate electrodes. Our particular focus will be with

the separation of the electrodes relative to the wavelength of the disturbances. The effect

of electric fields on a thin fluid layer is important in a number of contexts1, including, for

example, processes such as the electrostatic liquid film radiator2.

For an inviscid horizontal fluid layer in the absence of any electric field, a weakly nonlinear

analysis for small-amplitude, long-wavelength disturbances gives rise to the Korteweg-de

Vries equation3, which admits the familiar sech-squared solitary solutions. The relative

importance of surface tension forces compared to gravity enters through an inverse Bond

number, which is defined precisely below. However, when the value of this parameter is close

to a particular critical value the coefficient of the third derivative term in the KdV equation

becomes small and wavelength shortening means that a different scaling between amplitude

and wavelength must be considered. This gives rise to an additional fifth derivative term3.

In each case, the effect of surface tension enters through a normal stress term at the fluid

surface. The application of an electric field modifies these governing equations by introducing

an additional stress at the surface.
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Previous investigations into the effect of electric fields, detailed below, have involved

solving the hydrodynamic flow alongside the calculation of the electric field for the specific

physical problem. More recently an equation for the evolution of surface disturbances was

presented for an arbitrary surface stress4. This allows the investigation of the effect of

electric field in a unified approach including perturbation terms omitted from earlier results.

This is the motivation for the present paper.

We consider the case when the electric field is generated by parallel electrodes, so that

in the undisturbed state the electric field is normal to the interface. Two horizontal parallel

plates are separated by distance h + d with a layer of inviscid fluid, of undisturbed depth

h, lying on the lower impermeable plate. Between the fluid layer and the upper plate, lies a

second fluid with different electric properties and this fluid is taken to be hydrodynamically

passive. A potential difference V0 is then applied between the two plates. Previous analyses

of this problem have focused either on the case when the lower fluid is a perfect conductor,

or on the case when both fluids are perfect dielectrics. In the first instance the tangential

component of electric field at the interface is zero, while in the second situation the surface

charge density at the interface is zero. In both cases the tangential force at the interface

due to the electric field is zero, which simplifies the analysis somewhat since there is no need

to consider a hydrodynamic boundary layer at the fluid surface4. Here we examine the case

when the lower fluid is assumed to be a perfect conductor, though the analysis can be readily

modified to the case of two perfect dielectrics. We demonstrate how the magnitude of the

imposed potential difference and the relative depth of the two layers affects the evolution of

surface disturbances, allowing comparison with previous studies which have largely focussed

on the cases when the thickness of the upper medium is either much greater than5,6, or much

less than7–10 the disturbance wavelength.

When the separation distance of the electrodes is large compared with the disturbance

wavelength, corresponding to the normal electric field tending to a constant far from the

surface, a Korteweg-de Vries Benjamin-Ono type equation is obtained for an inviscid fluid5,6.

The case when the electrode separation distance is comparable to the disturbance wavelength

was briefly considered as part of a larger study on the existence of solitary waves subject

to electric fields11. Then the effect of electric field enters through a convolution term and

it was demonstrated that the results for large electrode separation distance5,6 emerge as a

natural limit.
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More attention has been focussed on when the upper medium is of comparable thickness

to the depth of the fluid, and hence much less than the disturbance wavelength7–10. A

Korteweg-de Vries (KdV) equation is obtained with coefficients involving the electric field

parameters. However, the actual value of these coefficients do not agree in these different

treatments, and some inconsistencies in the results are clear. One by-product of the present

paper is the opportunity to revisit some of the results of these earlier works, and thereby

eliminate the inconsistencies in their results. We are then able to demonstrate how the

corrected results are consistent with more general theory.

The structure of the paper is as follows. In §II, the set-up of the problem is discussed

in more detail, key scalings are introduced and the equation for an arbitrary normal stress

is discussed. In §III, the normal stress at the surface due to the imposed electric field is

evaluated as a function of electrode separation, and compared with other work for different

scalings of this separation distance. The novelty of the present treatment lies in the concise

derivations based on recent general theory4 which allows additional terms, such as higher

order derivatives and viscous effects, to be included in a rational manner. Numerical results

are presented in §IV for travelling waves and waves which evolve in time. In §V results

are summarised with key scalings parameters identified, with comparisons to experimental

measurements made in §VI. Finally, some minor corrections to the results of earlier papers7,8

are noted in the Appendix.

II. GOVERNING EQUATION

Suppose that an impermeable electrode is located at y∗ = −h with a fluid layer occupying

the region −h < y∗ < η∗(x∗, t∗) above the electrode, where we take x∗, y∗ to be the horizontal

and vertical dimensional coordinates and t∗ the dimensional time. The flow in the perturbed

fluid layer is taken to be irrotational and so the velocity field is given by u∗ = ∇∗φ∗ where

φ∗(x∗, y∗) is the dimensional velocity potential and satisfies Laplace’s equation. The elec-

trode is maintained at potential V ∗ = 0 and we consider the case when the fluid is a perfect

conductor and hence the electric field in the fluid layer is zero. Above this layer we have a

dielectric medium assumed to be hydrodynamically passive, but which supports an electric

field E∗ = ∇V ∗. A second horizontal electrode is located at y∗ = d and maintained at

potential V ∗ = V0. In this case V ∗, the dimensional electric potential, satisfies Laplace’s
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FIG. 1. Fluid layer occupying the region −h < y∗ < η∗(x∗) with upper electrode located at y∗ = d

and maintained at potential V0

equation in the region η∗(x∗) < y∗ < d. The set-up is illustrated in figure 1.

At the interface the fluid velocity satisfies the kinematic condition, and since the lower

fluid is a perfect conductor the tangential component of the electric field is zero. The normal

component of the electric field at the interface gives rise to a normal stress on the surface,

which together with the effect of surface tension lead to additional terms in the Bernoulli

condition at the interface.

The set of equations governing the fluid flow, the electric field and the interface conditions

is non-dimensionalised using the undisturbed depth h, the gravitational acceleration g and

the potential difference V0. The shallow water linear wave speed is
√
gh and so we change

to a frame moving at speed c
√
gh with c = O(1). Assuming that the amplitude of the

perturbation of the surface is O(δh) and that the wavelength is O(ε−1h), we write

η =
1

δh
η∗, x =

ε

h

(
x∗ − c

√
ght∗

)
, y =

1

h
y∗, t = δε

√
g

h
t∗,

and in the small-amplitude long-wavelength limit we have δ, ε � 1. The scaling chosen for

the time is so that time derivative terms enter at the same order as the nonlinear terms. For

an arbitrary stress applied at the surface of the fluid, a governing equation derived in the

large Reynolds number limit is available4. In the present case, the tangential stress is zero,

as discussed earlier, and the governing equation takes the form

2ηt + 3cηηx =
cε2

δ

(
−1

3
ηxxx −

1

45
ε2η(v)

)
− 1− c2

cδ
ηx +

c
1
2 δb
δ
S[ηx] +

1

cδ2
dTn
dx

. (1)

Previously it was assumed that the effect of the normal stress is O(1) or smaller4, in which

case c = 1. Here we choose to retain greater generality, in order to allow for a greater range

of scales for the electrical forcing.
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The first three terms on the right hand side of (1) are hydrodynamic terms and the reason

why the O(ε4) term is retained along with the O(ε2) terms, will become clear later in the

exposition. The fourth term is due to dissipation in the viscous boundary layer on the lower

electrode, with

S[f ] =
1

π

∫ ∞
0

f(x+ s, t)√
s

ds, δb =

(
µ

ερh
√
gh

) 1
2

, (2)

where δbh is the thickness of the viscous boundary layer at the base of the fluid and S(f)

can be considered to be a fractional derivative. In the final term, Tn is the non-dimensional

normal stress which here consists of contributions from the surface tension and the electric

field. In dimensional terms,

T ∗n = σ∇∗.n + 1
2
ε0(E

∗
n)2 =

ση∗x∗x∗(
1 + η∗x∗

2
) 3

2

+
ε0(V

∗
y∗ − η∗x∗V ∗x∗)2

2
(
1 + η∗x∗

2
) ,

where σ is the surface tension parameter and ε0 is the dielectric constant of the upper

medium. Non-dimensionalising and using the scaling defined above gives

Tn =
(
ε2δτηxx + 1

2
WeD

3Q2
) (

1 +O(δ2ε2)
)
, Q = Vy − ε2δηxVx,

where V is the electric potential, non-dimensionalised by V0, D = d/h and the non-

dimensional parameters characterising the effects of the electric field and the surface tension

are

We =
ε0V0

2

ρgd3
, τ =

σ

ρgh2
, (3)

an electric Weber number and an inverse Bond number respectively. The governing equation

then takes the form

2ηt + 3cηηx =
ε2

cδ

(
(τ − 1

3
c2)ηxxx −

1

45
c2ε2η(v) − 1− c2

ε2
ηx + E1

)
+
c

1
2 δB
δ
S[ηx], (4)

where

E1 =
WeD

3

2ε2δ

d(Q2)

dx
. (5)

We now see why the fifth derivative term was retained in the asymptotic series, since if

τ is close to its critical value of 1
3
c2, then the fifth derivative term becomes comparable

in magnitude with the third derivative term. At this stage it is more usual to set c = 1

to eliminate what appears to be largest term on the right hand side of (4). However, we

choose to retain added generality, which proves necessary when considering different forms

6



of electric field. The exact form of E1 depends on the imposed electric field and we now

consider how the magnitude of the potential difference and the relative thickness of the two

layers affects the governing equation.

III. ELECTRIC FIELD

In considering the effect of the separation of the two electrodes, we focus on two main

cases; first when the thickness of the upper (dielectric) medium is comparable to the distur-

bance wavelength and, second, when the thickness of the dielectric medium is comparable

to the thickness of the lower layer (and hence much less than the wavelength of the distur-

bance). In terms of the dimensionless parameters introduced, the two cases correspond to

εD = O(1) and D = O(1) respectively. In each case the problem reduces to solving

ε2Vxx + Vyy = 0, V (x,D) = 1, V (x, δη) = 0,

in order to express the electric term E, defined in equation (5), in terms of η.

A. Case εD = O(1)

In this case we write ∆ = εD, Y = εy and V (x, Y ) then satisfies Laplace’s equation.

The boundary conditions on V are simplified if we write V = (Y + εδφ)/∆. Linearising the

boundary condition at the interface Y = εδη to Y = 0 then gives

φxx + φY Y = 0, φ(x, 0) = −η, φ(x,∆) = 0, (6)

with Q and E1 given by

Q =
1

D

(
1 + εδφY + o(ε2δ)

)
, E1 =

WeD

ε
φxY (x, 0).

The system (6) is readily solved by taking Fourier transforms with respect to x giving φ(x, Y )

in the form of a convolution

φ(x, Y ) = η ∗ f, f(x, Y ) = F−1(F (k, Y )), F (k, Y ) = −sinh (k(∆− Y ))

sinh(k∆)
,

and hence

E1 =
We∆

ε2
G[ηx], G[η] ≡ η ∗ g, g(x) = F−1 (kcoth(k∆)) . (7)
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Substituting into (4) we see that the wave speed is given by c = 1 and the governing equation

becomes

2ηt + 3ηηx =
ε2

δ

(
(τ − 1

3
)ηxxx −

1

45
ε2η(v) +

We∆

ε2
G[ηx]

)
+
δB
δ
S[ηx], (8)

where η(v) denotes the fifth derivative of η with respect to x. In the inviscid limit this agrees

with earlier travelling wave analysis11.

If ∆ → ∞, corresponding to separation much greater than the disturbance wavelength,

then since φ satisfies Laplace’s equation with φ→ 0 as Y →∞ it can be readily shown that

the first partial derivatives throughout Y > 0 are related by φY = −H[φx], and φx = H[φY ],

where H denotes the Hilbert transform with respect to x, defined as the Cauchy principal

value of a convolution integral12 ,

H[f ] = PV

(
1

π

∫ ∞
−∞

f(s, t)

x− s
ds

)
.

Hence the electrical forcing term in the governing equation becomes E = ε−1DWeH[ηxx].

This can also be derived by taking the limit of (7) as ∆ → ∞ and noting that F [H(f)] =

−i sgn(k)F(f), to give

2ηt + 3ηηx =
ε2

δ

(
(τ − 1

3
)ηxxx −

1

45
ε2η(v) +

We∆

ε2
H[ηxx]

)
+
δB
δ
S[ηx]. (9)

Setting δb = 0 this is in agreement with previous results6,11 (observing that in their notation

Eb = DWe).

Considering instead the case ∆� 1, then

kcoth(k∆) ∼ 1

∆

(
1 + 1

3
k2∆2 − 1

45
k4∆4 +O(∆6)

)
and F−1(kcoth(k∆)) is written as a sum of generalised functions to give

E1 =
We

ε2
ηx − 1

3
D2Weηxxx − 1

45
ε2D4Weη

(v) +O(ε4)

The first term corresponds to a shift in the wavespeed c and the second term modifies the

dispersive term. Substituting into (4) we see that c = (1−We)
1
2 and

2ηt + 3cηηx =
ε2

cδ

[(
τ − 1

3
(c2 +D2We)

)
ηxxx −

1

45
ε2(c2 +D4We)η

(v)
]

+
c

1
2 δB
δ
S[ηx]. (10)

We now compare the limit εD → 0 with the D = O(1) case.
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B. Case D = O(1)

We set z = y/D so the interface is located at z = γη, where γ = δh/d. Writing V = z+γφ

gives

(εD)2φzz + φxx = 0, φ(x, γη) = −η, φ(x, 1) = 0,

with solution

φ(x, z) = −(1− z)r +
1

6
(εD)2(1− z)

(
(1− z)2 − (1− γη)2

)
rxx + (εD)4q(z, η)r(iv) +O(ε6),

where r = η/(1− γη) and q(z, η) can be readily calculated, but is not included here in the

interests of conciseness.

Assuming that the disturbance amplitude is small compared with the depth of the di-

electric medium, γ � 1, and hence

φz(x, γη) ∼ η + γη2 − 1

3
ε2D2ηxx −

1

45
ε4D4η(iv) +O(γ2, γε2, ε4)

E1 =
We

ε2
(ηx + 3γηηx)−

WeD
2

3
ηxxx −

Weε
2D4

45
η(iv).

Finally, substituting into equation (4), we see that the wave speed is given by c = (1−We)
1
2

and

2ηt+3c
(

1− We

Dc2

)
ηηx =

ε2

cδ

[(
τ − 1

3
(c2 +D2We)

)
ηxxx − 1

45
ε2(c2 +D4We)η

(v)
]
+
c

1
2 δB
δ
S[ηx].

(11)

This agrees with (10), the small εD limit of (8), in the matching region 1 � D � ε−1.

Finally, (11) can be re-written more compactly as

2ηt + 3Aηηx = Bηxxx + Cη(v) +
c

1
2 δB
δ
S[ηx],

A =

(
1− We

(1−We)D

)
c, B =

ε2

cδ

(
τ − 1

3
− 1

3
We(D

2 − 1)
)
, C = −ε

4

cδ

1 +We(D
4 − 1)

45
.

(12)

When the distinguished scaling δ = ε2 is taken and the viscous dissipation term is dropped

this agrees with the (corrected) results of Easwaran7 and Gonzalez & Castellanos8, discussed

in the Appendix.
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IV. NUMERICAL SOLUTIONS

Governing equations have been obtained for long-wavelength, small-amplitude distur-

bances when the separation of the electrodes is comparable with the wavelength (8) and

short compared with the wavelength (11). In each case, the effect of viscous dissipation in

the base boundary layer was included. The analysis for when the electrode separation is

very small was presented largely to allow comparison with earlier work, and hence in this

section we focus on numerical solutions of (8) which we re-write as

2ηt + 3ηηx = aηxxx − bη(v) + p G[ηx] + q S[ηx], (13)

where a =sgn(τ − 1
3
),

b =
ε2

45|τ − 1
3
|
, p =

We∆

ε2|τ − 1
3
|
, q =

δB
δ
,

and we have set ε2 = |τ − 1
3
|δ so that the third derivative term enters at the same order as

the quadratic nonlinearity. The transform terms G[ηx] and S[ηx] are defined in (7) and (2)

respectively. In the absence of viscous dissipation, travelling wave solutions may exist, so

the numerical approach we take is to search for such solutions when q = 0 and then look at

how these solutions evolve when q > 0.

Noting that G[eikx] = ĝ(k)eikx and S[eikx] = ŝ(k)eikx, where

ĝ(k) = kcosh(k∆), ŝ(k) =


e
iπ
4√
|k|
, k > 0,

e−
iπ
4√
|k|
, k < 0,

this suggests that for both travelling and evolving solutions, a numerical scheme should be

used in which spatial derivatives and transform terms are evaluated in spectral space.

A. Travelling Wave Solutions

We consider solutions of (13) travelling at speed C in the form η = 2CN(Z), with

Z =
√

2|C|(x − Ct), choosing the new variables so that in the case b = p = q = 0, the

travelling wave solution is given by N(Z) = sech2Z. Recalling that (13) is in a frame

moving with non-dimensional velocity c = 1, the non-dimensional speed of the travelling

wave is 1 + Cδ, so the Froude number F is given by F = 1 + Cδ, and the disturbance
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amplitude characterised by δ|C| = |F − 1|. We then write N(Z) as a Fourier series on

[−Mπ,Mπ],

N(Z) =
n∑

r=−n
cre

iRZ , R =
r

M
,

to give the set of nonlinear equations

cr −
3

2

∑
s

cr−scs = γ
(
aR2 −BR4 + PRcosh(βR)

)
cr, r = −n..n, (14)

with unknowns cr. Here the parameters a,B, P, β are given in terms of the Froude number

F , the inverse Bond number τ , the electric Weber number We and the relative separation

of the electrodes D = d/h by, a =sgn(τ − 1
3
), γ =sgn(F − 1) and

B =
2|F − 1|

45|τ − 1
3
|2
, P =

WeD

|2(F − 1)(τ − 1
3
)|1/2

, β =

∣∣∣∣∣2(F − 1)

τ − 1
3

∣∣∣∣∣
1
2

D. (15)

Note that from the definition of the electric Weber number (3), keeping P constant and

varying D corresponds to varying the depth, d, of the upper dielectric medium while keeping

the average electric field in this region V0/d constant. The set of equations (14) is then

solved using Newton’s method. In the large-β limit this formulation agrees with earlier

analysis11 where the (B,P ) parameter space was investigated and conditions for the existence

of travelling waves determined.

We now illustrate the travelling wave solutions for a range of parameter values. We

stress that at this stage the parameters are chosen to illustrate the changes in behaviour as

parameters vary, rather than modelling a specific physical situation. Physical values of the

parameters are discussed in §VI.

In the large-D limit, the case τ > 1
3

has the richest mathematical behaviour with the

existence of travelling waves depending on the set of parameters F , τ and We and for this

reason we present results for the case when F < 1 and τ > 1
3
, so γ = −1 and a = 1, and

then set B = 0.5 to allow comparison with earlier results11 valid when β � 1. Choosing

β = 5.0 gives results very similar to those of the β →∞ limit. In figure 2(a) it is seen that

as the magnitude of the electric field increases (ie P increases), the maximum disturbance

amplitude decreases, but oscillations in the decaying tail appear and grow in amplitude. For

P above a critical value Pc ≈ 2.29 the numerical method does not converge to a solution, and

it is reasonable to conclude that travelling wave solutions do not exist for P > Pc. Choosing

a smaller separation distance, so β = 2.5, similar behaviour is seen with no solutions for
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(a)

(b)

FIG. 2. Travelling wave form when a = 1, γ = −1, B = 0.5, with (a) β = 5.0 and P = 1.0, 2.0, 2.25;

and (b) β = 2.0 and P = 0.5, 1.0, 1.5, 1.75

P > Pc ≈ 2.1. Decreasing β to 2.0, quite different behaviour occurs. In figure 2(b) it is

seen that the maximum disturbance amplitude decreases as P increases, but in this case no

oscillations appear in the decaying tail. Numerically, no solutions are found for P > Pc ≈ 1.8

which coincides with the maximum amplitude going to zero.

B. Effect of viscosity on evolving wave.

Pseudospectral schemes are well established for solving Burgers equation and the KdV

equation (see, for example, Fornberg13). In a pseudospectral formulation, all derivatives
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and spatial transforms linear in the dependent variable are evaluated in spectral space, as

described above, but due to the presence of nonlinear terms the solution is most easily

advanced forward in time in physical space. We take this approach to investigate the effect

of viscous dissipation due to the lower boundary and also to validate the travelling wave

solutions obtained above. Writing η = 2CN(X,T ) with X =
√

2|C|x and T =
√

2|C|t we

take as a sample case, a = 1, γ = −1, B = 0.5, β = 2.5, P = 1.0. Since γ = −1, the Froude

number is less than one and so the perturbation wave propagation speed is negative. For

the numerical solutions we choose C = −1
2
. As the initial condition, we take the travelling

wave solution illustrated in figure 2b and then solve

2NT + 3NNX = R[N ]

where R[N ], written in terms of Fourier components, is given by

R[N ] = −γ(iR)
(
aR2 −BR4 + P cosh(βR)R +Qie±

iπ
4

√
|R|
)
cr, r = −n..n.

Setting Q = 0, the numerical solution propagates to the left at speed 1
2
, unchanged in form,

which demonstrates the validity of the travelling wave form obtained earlier. Results are not

illustrated for this case. Setting Q = 0.05 it is seen in figure 3 that the solution propagates to

the left, with speed close to 1
2
, but decays in amplitude, as is to be expected since wave energy

is dissipated by the viscous boundary layer. For these parameter values the disturbance is

a depression wave which follows from the fact that the inverse Bond number exceeds 1
3
. We

return to discuss the physical relevance of this case and in particular the effect of viscosity

at the end of this paper.

V. OVERVIEW OF GOVERNING EQUATIONS AND KEY SCALINGS

In §III, governing equations have been obtained for the propagation of disturbances on

the surface of a fluid layer subject to surface tension and a normal electric field due to

parallel plate electrodes. When the thickness of the upper dielectric medium is comparable

to the disturbance wavelength, (∆ = εD = O(1)), the disturbances are governed by (8).

Unless the inverse Bond number τ is close to the critical value of 1
3
, the effect of the electric

field is comparable that of surface tension when the disturbance wavelength is such that

δ = ε2 and the Weber number is O(ε2). Writing We = ε2Ŵe gives

2ηt + 3ηηx = (τ − 1
3
)ηxxx + ∆Ŵe G[ηx] +

δB
δ
S[ηx], (16)
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FIG. 3. Effect of viscous dissipation on the wave form η = −N(X,T ) when a = 1, γ = −1, B = 0.5,

β = 2.0, P = 1.0, C = −0.5, with Q = 0.05 for times T = 0, 10, 20.

with wave speed c = 1. However if τ is close to 1
3
, such that τ = 1

3
+ ε2τ1, then the

wavelength adjusts such that δ = ε4 and electric effects are comparable to the diffusive

terms when We = ε4W̃e, in which case

2ηt + 3ηηx = τ1ηxxx − 1
45
η(v) + ∆W̃e G[ηx] +

δB
δ
S[ηx], (17)

again with c = 1. In the inviscid case and taking the limit ∆ � 1, all these conclusions

agree with earlier results6,11.

When D = O(1), we have wave speed c = (1 − We)
1
2 and hence the analysis is only

valid when We < 1. When We is close to one, the wave speed approaches zero and a new

set of scalings is required. Other special cases arise when τ and We are close to critical

values, making the coefficients of the nonlinear term or the third derivative term close to

zero. These critical values are given by,

Wec =
D

D + 1
, τc = 1

3
(1 +We(D

2 − 1)),

and it is seen that the effect of the electric field can either increase or decrease the critical

value of τ from 1
3
. All of these particular special cases can be considered in a unified way

by defining a new timescale, T = |A|t, where A is defined in (12). The governing equation

then becomes

2ηT + 3ηηx = B̂ηxxx + Ĉη(v) + P̂ S[ηx],
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where

B̂ =

(
ε2(τ − τc)
δ|We −Wec|

)
D

D + 1
, Ĉ = −

(
ε4

δ|We −Wec|

)
D(1 +We(D

4 − 1))

45(D + 1)
,

and the coefficient of the viscous damping term is

P̂ =
(1−We)

3
4 δb

|We −Wec|δ
D

D + 1
.

Unless τ is close to τc, we have the distinguished scaling ε2 = δ|We −Wec| and hence

2ηT + 3ηηx =
D(τ − τc)
D + 1

ηxxx + P̂ S[ηx], (18)

whereas if τ = τc + ε2τ2 then the amplitude and wavelength are related by ε4 = δ|We−Wec|

and the governing equation becomes

2ηT + 3ηηx =
(
Dτ2
D + 1

)
ηxxx −

(
D(1 +We(D

4 − 1))

45(D + 1)

)
η(v) + P̂ S[ηx]. (19)

Taken together, equations (16-19), together with the scalings defined, provide a set of model

equations for the weakly nonlinear evolution of small-amplitude, long-wavelength distur-

bances influenced by an electric field produced by a pair of parallel electrodes.

VI. SUMMARY

Governing equations have been obtained for the propagation of disturbances on the sur-

face of a fluid layer subject to surface tension and a normal electric field due to parallel plate

electrodes. Three non-dimensional parameters, τ,We, D enter the analysis, together with

a parameter characterising viscous dissipation due to the thin boundary layer at the base

of the fluid layer. The key parameter ranges have been identified and the corresponding

equations (16-19) summarised in Section V.

In §IV numerical solutions were presented illustrating the forms of travelling waves pos-

sible in the regime where the disturbance length scale is comparable to the thickness of the

dielectric layer. Those results illustrate the modification of the waveform due to the higher

derivative term and the electric field via the hyperbolic cotangent transform term. The key

qualitative observation is that as the electrodes are moved closer, oscillations in the tail of

the soliton appear to be suppressed. In addition the parameter ranges over which travelling

wave solutions exist in the inviscid limit are modified by the exact form of the electric field

imposed.
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Finally we consider how relevant these model equations are to physical situations of

interest. We consider the case of a horizontal layer of either mercury or water with air of

dielectric constant

εA = 8.8× 10−12Fm−1,

above this layer and below the upper electrode. Mercury and water are considered as they

have been the subject of experimental investigation of solitary wave propagation14,15, though

in the absence of any electric field. It is reasonable to approximate both impure water and

mercury as perfect conductors and the relevant material parameters are then

ρW = 1× 103 kg m−3, µW = 1× 10−3 Nsm−2, σW = 72× 10−3 N m−1

ρM = 13.5× 103 kg m−3, µM = 1.5× 10−3 Nsm−2, σM = 484× 10−3N m−1

where the subscripts W and M refer to water and mercury respectively. For these material

parameters, the critical value of the inverse Bond number, τ = 1
3
, corresponds to fluid

depths hW ≈ 4.7mm and hM ≈ 3.3mm for water and mercury respectively. Experiments on

water14 focussed on layer depths of 5cm, appreciably larger than hW in which case τ < 1
3

and

elevation waves exist. For mercury, experiments were conducted15 on layers of depth ranging

from 2.12mm to 8.5mm and so covering the cases τ < 1
3

(when elevation solitary waves were

measured) and τ > 1
3

(when depression waves were observed). The experiments on both

water and mercury were conducted in the absence of electric fields and the wave amplitude

was approximately 10% of the fluid depth (corresponding to δ = 0.1 in the notation of the

present paper). We now consider how the effect of electric field is relevant to these parameter

ranges.

When the depth of the air layer is comparable to the disturbance wavelength, the evo-

lution of the wave is given by (13) . Once the material parameters are fixed, the non-

dimensional coefficients a, b, q are functions of h, the depth of the lower layer, and δ the

relative amplitude of the disturbances. The parameter characterising effect of the electric

field can be re-written as

p =
εA
ρgh

√√√√ 1

δ|τ − 1
3
|
E2,

where E = V0/d, the average electric field across the air layer. In order to assess the

importance of the electric field to the evolution of the solitary wave, we define Ec to be

the value of E such that p = 1 and the effect of the electric field is comparable to the

hydrodynamic dispersion term. In Tables 1 and 2 we illustrate the values of ε, τ , b, q, Ec
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h δ ε τ b q Ec λ∗

m V m−1 m

0.5 0.1 0.55 2.9× 10−5 0.020 0.013 1.0× 107 0.91

0.2 0.1 0.55 1.8× 10−4 0.020 0.025 6.4× 106 0.36

0.05 0.1 0.55 0.0029 0.020 0.071 3.2× 106 0.091

0.01 0.1 0.62 0.073 0.033 0.23 1.3× 106 0.016

0.01 0.01 0.19 0.073 0.0031 4.1 7.5× 105 0.053

0.005 0.1 1.6 0.29 1.4 0.23 5.9× 105 0.0031

0.002 0.1 0.26 1.8 0.0010 1.2 9.4× 105 0.0077

TABLE I. Key parameter values for water with air above

h δ ε τ b q Ec λ∗

m V m−1 m

0.5 0.1 0.55 1.4× 10−5 0.020 0.0041 3.9× 107 0.91

0.2 0.1 0.55 8.8× 10−5 0.020 0.0082 2.4× 107 0.36

0.05 0.1 0.55 0.0014 0.020 0.023 1.2× 107 0.091

0.01 0.1 0.57 0.035 0.024 0.078 5.2× 106 0.018

0.01 0.01 0.18 0.035 0.0024 1.4 2.9× 106 0.056

0.005 0.1 0.73 0.14 0.062 0.12 3.3× 106 0.0068

0.002 0.1 0.42 0.88 0.0073 0.30 2.7× 106 0.0048

TABLE II. Key parameter values for mercury with air above

and the dimensional wavelength λ∗ = h/ε, as a function of h and δ for water and mercury

respectively.

From these tables a number of conclusions can be drawn. First the viscous dissipation

is smaller in the case of mercury due to the smaller kinematic viscosity. For water the

viscous terms are significant for water depths close to the critical depth of 4.5mm and hence

depression solitary waves are unlikely to be observable on water due to rapid damping,

whereas for mercury the amplitude decay rate is much lower, allowing depression waves to
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be observed. Indeed this was the primary reason for experimentalists using mercury when

seeking depression solitary waves. Looking now at the magnitude of electric fields at which

electric effects significantly modify the form of the solitary wave, we see that strong fields

are required in both cases, though slightly lower for the case of air above water rather than

mercury. For air, electric breakdown occurs when the field strength is approximately 3×106

V/m, while the breakdown for water is approximately 70×106 V/m. Thus we see that when

the thickness of the air layer is comparable with the disturbance wavelength, the electric

fields of strength less than the air breakdown threshold do have a significant effect on the

form of solitary waves for thinner layers.

Turning now to the case when the thickness of the air layer is comparable to the thickness

of the lower fluid layer, we see that when D = 1, the critical electrical Weber number is 1
2

. For a 1cm layer of water, this requires an electric field of 2.4× 106 V/m, while a layer of

mercury of equal thickness requires a slightly higher field strength due to the higher density.

In conclusion, it has been demonstrated that the model governing equations summarised

in §V are relevant to physical problems involving thin fluid layers. It should be noted at

this point that the derivation of the model equations is rigorous, but based on assumptions

of the lengthscales present in the problem. However, this is not to say that these equations

are uniformly valid as leading order approximations of the full nonlinear equations. For

the simpler case when no electric field is present and the fluid layer is taken to be inviscid,

analysis of the fully nonlinear case was undertaken using a numerical scheme based on

an integrodifferential-equation formulation3. The numerical results show that in this case

the Korteweg-de Vries equation does not provide a wholly accurate description of periodic

gravity-capillary waves for τ < 1
3

due to the presence of short wavelength ripples in the tail

of solitary-type waves, which invalidates the scaling argument used in the derivation of the

KdV equation. The present treatment suggests an alternative critical value for the inverse

Bond number, which may be less, or greater, than 1
3

and a fully nonlinear numerical study

is necessary in order to determine when equations (16–19) are valid approximations of the

full system. However, such an investigation using boundary integral methods is beyond the

scope of the current paper. Despite this proviso, a significant result of the present work is

that the key scalings of the full problem have been identified for further study.

We thank the referees for their helpful comments, in particular concerning the physical
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relevance of the analysis.
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Appendix A: Comparison with Earlier Results

Here we focus on the results of Easwaran7 and Gonzalez & Castellanos8. Written in our

notation, Easwaran7 considered the inviscid case with δ = ε2 and electric Weber number

We = O(1), to obtain

2ηt + 3AηηX = BηXXX ,

where X is the coordinate in the frame moving at speed c
√
gh, c =

√
1−We and A,B are

coefficients involving We and the relative depth of the two layers, D = d/h. Gonzalez &

Castellanos8 obtained a similar equation but with different expressions for the coefficients

A and B.

In Easwaran7, calculations are carried out in dimensional form, but non-dimensionalising

and using the scalings described in §2, gives

A =

(
1− We

3(1−We)D

(
3 + 2d+ d2

))
c, B =

1

c

(
τ − 1− 1

2
We(3D

2 − 2)
)
.

Two inconsistencies are immediately apparent. First, the coefficient A is not dimensionless

due to the 3 + 2d + d2 multiplier. Secondly, in the absence of an electric field (ie We = 0),

the equation becomes

2ηt + 3ηηX = (τ − 1)ηXXX

and the coefficient of the third spatial derivative term does not agree with the well established

result for disturbances on a thin fluid layer3 which has (τ− 1
3
) as the coefficient of the diffusive

term.

In Gonzalez & Castellanos8 the effects of viscosity are also included and the governing

equation for the surface elevation obtained using the Fredholm alternative. However, taking

the inviscid limit gives (in the notation of §2),

A =

(
1− We

(1−We)D

)
c, B = −1

c

(
2τ + 1

3
+ 1

3
We(D

2 − 1)
)
.

While this is dimensionally correct, it suffers the same problem as the Easwaran result in

that setting We = 0 the standard (τ − 1
3
) multiplier of the third derivative is not recovered.
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Attempting to identify the source of the inconsistency using the Fredholm alternative8 is

considerably more involved than reworking the perturbation analysis of Easwaran7. It should

be noted that the latter approach is subtly different from that taken in §2 of the present

paper, in that all quantities are written as perturbation series, including the position of the

interface. While this method7 is equally valid, errors appear in the solution of the electric

potential. Solving the system

εΦµµ + Φyy = 0, Φ(µ, η) = 0, Φ(µ,H) = φ0

where H = h+ b and η = h+ εη1 + ε2η2, as a perturbation series gives

Φ =
φ0(y − h)

b
+ εΦ1 + ε2Φ2 +O(ε3),

where

Φ1 =
φ0η1(y −H)

b2
, Φ2 = −φ0η

′′
1(y −H)3

6b2
+
φ0

b

(
η′′1b

6
+
η21
b2

+
η2
b

)
(y −H),

rather than the results given as equations (10-12) in Easwaran7. Using these results for the

electric potential, and correcting a minor error in the solution in the fluid layer, eventually

yields

2ηt + 3AηηX = BηXXX , c =
√

1−We,

with

A =

(
1− We

(1−We)D

)
c, B =

1

c

(
τ − 1

3
− 1

3
We(D

2 − 1)
)
.

This is clearly dimensionally correct and gives the expected result in the limit as We → 0.

Moreover we see that the error in the results of Gonzalez & Castellanos8 is solely in the

coefficient of the inverse Bond number τ .
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