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Abstract

We investigate submeasures on Boolean algebras in the context of Maharam’s problem and

its solution. We generalise results that were originally proved for measures, to cases where

additivity is not present. We investigate Talagrand’s construction of a pathological exhaustive

submeasure, attempting to give a more explicit description of this submeasure and we also

consider some of its forcing properties. We consider the forcing consisting of submeasures

that have as their domain a finite subalgebra of the countable atomless Boolean algebra.

We find and investigate a linear association between the real vector space of all real-valued

functionals on the countable atomless Boolean algebra, which includes the collection of all

submeasures, and the space of all signed finitely additive measures on this Boolean algebra.
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1 Introduction

1 Introduction

Given a non-empty set X, a collection A of subsets of X such that X ∈ A and A is closed

under intersections and complementation (with respect to X) is called an algebra of sets.1 A

function µ : A → R is called a measure if and only if µ(a) ≥ 0 and a ∩ b = ∅ → µ(a ∪ b) =

µ(a) + µ(b), always. If A is closed under countable unions then A is called a σ-algebra of

sets. If for every pairwise disjoint sequence (ai)i∈N from A we have µ(
⋃
i ai) =

∑
i µ(ai) then

the measure µ is called σ-additive. A very familiar and central example is, of course, the

Lebesgue measure on the collection of Borel sets of the unit interval [0, 1]. It is easy to check

that every measure µ satisfies the following properties:

• µ(∅) = 0;

• µ(a) ≤ µ(b), if a ⊆ b;

• µ(a ∪ b) ≤ µ(a) + µ(b), always.

A function satisfying the above three properties is called a submeasure. If A is a σ-algebra

then a submeasure µ is called continuous (or Maharam) if and only if for every sequence

a1 ⊇ a2 ⊇ · · · from A with an empty intersection, we have infi µ(ai) = 0. Every σ-additive

measure is continuous.

These definitions extend in the natural way to the case when A is an arbitrary σ-complete

Boolean algebra (that is not necessarily isomorphic to a σ-algebra of sets). A submeasure is

called strictly positive if and only if (∀a)(a 6= ∅ → µ(a) > 0). If we identify Borel subsets

of [0, 1] that differ by a set of measure 0 then the corresponding collection (of equivalence

classes) defines a σ-complete Boolean algebra M, the random algebra, on which the Lebesgue

measure defines a strictly positive σ-additive measure.

According to [11, Page 880], the following problem was first posed by D. Maharam. It is

also known as the control measure problem. It certainly appears in [28].

Problem A. (Maharam) Does there exist a σ-complete Boolean algebra that carries a

strictly positive continuous submeasure (a Maharam algebra) but does not carry a strictly

positive σ-additive measure?

Notice that it is not as difficult a task to find examples of strictly positive continuous sub-

measures that are not measures (see Example 4.4, below). Maharam’s problem has many

equivalent formulations (see [12]), but arguably the simplest and that carrying the “least

structure” is as follows. Call an algebra of sets A atomless if and only if every non-empty

member of A has a non-empty strict subset that is also a member of A. There is (up to

isomorphism) only one countably infinite atomless algebra of sets, which we denote by A.

Problem B. Does there exist a submeasure µ : A→ R such that:

1We shall define everything properly in the next section.
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1 Introduction

• For every sequence (ai)i∈N of pairwise disjoint members of A we have limi µ(ai) = 0;

• There exists an ε > 0 such that, for every n ∈ N, there exists a sequence a1, ..., an of

pairwise disjoint members of A such that infi µ(ai) ≥ ε?

Problem A has a positive solution if and only if Problem B does. Note that the transition from

Problem A to Problem B (or rather from Problem B to Problem A) is not easy since it re-

lies on the rather “deep” theorem of Kalton and Roberts from [19] (see Theorem 2.11, below).

A solution to Maharam’s problem was announced in 2006 by M. Talagrand and was even-

tually published in [33]. In [33] a submeasure is constructed satisfying the properties listed

in Problem B. Between the time of its formulation and the announcement of its solution,

Maharam’s problem obtained a considerable amount of attention and notoriety, and was gen-

erally considered an important problem of measure theory (for example, see [29]).

It is clear from the above two formulations that Maharam’s problem is a very natural prob-

lem and, at the same time, a very simply stated problem. Moreover, the fact that a counter

example has been provided means that there is now a theory of continuous submeasure open

for investigation that is different from the classical theory of measures.

Despite the fact that Maharam’s problem is no longer open, it is not clear how much more

insight we have into the problem in light of its solution and, in particular, why it was so

difficult. Talagrand’s solution is a very intricate and difficult one, even after the dust has

settled. Trying to master it poses a completely different set of problems altogether.

There are also many interesting questions surrounding Talagrand’s solution. Most notably

perhaps is the question of whether or not Talagrand’s example of a complete Boolean algebra

that does not carry a strictly positive σ-additive measure has a complete regular subalgebra

that does. This is a very natural question to ask, but more than this, its solution is related

to the well-known problem of Prikry (see [34]). Just as we can quotient the Borel sets of [0, 1]

by sets of Lebesgue measure 0, we can instead quotient by the collection of meagre subsets

to obtain the so called Cohen algebra C. Prikry’s problem can then be stated as follows.

Problem. (Prikry) Is it relatively consistent with ZFC that every ccc σ-complete Boolean

algebra regularly embeds either M or C?

Recall that a Boolean algebra satisfies the countable chain condition (ccc) if and only if it

contains no uncountable antichains. If it is the case that Talagrand’s algebra does not contain

a regular subalgebra carrying a strictly positive σ-additive measure then this algebra will be

the first known example (in ZFC) of a ccc complete Boolean algebra that does not regularly

embed M or C, and of course Prikry’s problem would have a negative solution.

In this dissertation we investigate submeasures on Boolean algebras in the context of Ma-

haram’s problem, its solution, and the many (still open) questions that have arisen as a

11



1 Introduction

result of this solution. Either directly or indirectly we have ultimately been motivated and

influenced by these three themes. The techniques used in this dissertation are in the main

combinatorial, although we do consider some forcing, but this is never more complicated than

one step forcing (the point being that there is no iterated forcing).

We have organised this dissertation into sections. Each section will make use of the pre-

liminaries (Section 2) but we have tried to make them as self contained as possible; each with

their own definitions and motivating discussion. We have provided an index of symbols and

definitions on page 96.

Let us now summarise the results of this dissertation. In Section 3 we generalise two re-

sults that were originally proved for measures to the case where additivity is not present.

The first result (Theorem 3.2) states that under Todorcevic’s Open Colouring Axiom, the

Boolean algebra P(ω)/Fin does not contain a Maharam algebra, as a subalgebra. The orig-

inal result is from [5] which states that P(ω)/Fin does not contain M as a subalgebra. The

second result of this section reads as as follows.

Theorem (3.6). Let B be a σ-complete Boolean algebra and A a subalgebra carrying an

exhaustive submeasure µ. Then there exists a continuous submeasure µ̂ on σ(A) such that

• (∀a ∈ A)(µ̂(a) ≤ µ(a)).

• If λ is another continuous submeasure on σ(A) such that (∀a ∈ A)(λ(a) ≤ µ(a)) then

(∀a ∈ σ(A))(λ(a) ≤ µ̂(a)).

• If µ is σ-subadditive then (∀a ∈ A)(µ(a) = µ̂(a)).

Here σ(A) denotes the smallest σ-complete σ-regular subalgebra of B generated by A. This

is analogous to the corresponding classical result for measures from [37].

In Section 4 we show that if one forces with the collection of all normalised submeasures

µ such that the domain of µ is a finite subalgebra of A, then any generic for this forcing will

define a submeasure that is not uniformly exhaustive but is exhaustive with respect to the

antichains from the ground model (Theorem 4.1). We also discuss possible applications for

this result.

In Section 5 we consider the forcing notion associated to the σ-ideal path of Borel sets that

have ν-measure 0, where ν is Talagrand’s pathological exhaustive submeasure. We show that

the collection of random reals in any forcing extension due to this ideal is ν-null, once ν has

been constructed in this extension. We also give a proof, following [24], that the collection of

ground model reals will be ν-null and meagre in any such extension. We show, however, that

the ideal path is analytic on Gδ, and therefore that this last result concerning the ground

model reals actually follows from [8].

12



1 Introduction

In Section 6 we attempt to give an explicit description of the values that Talagrand’s sub-

measure ν takes. This is motivated by the fact that the values of the Lebesgue measure on

2ω are easily calculable. However, we do not get particularly near to ν, but instead consider

the very first pathological submeasure ψ constructed in [33]. We show for example that

ψ(
∏
n∈N
{1, 2, ..., 2n}) = 2

2500
216 .

In the final section we find and investigate a linear map which sends each real-valued func-

tional (and therefore each submeasure) g on A, to a signed finitely additive measure f(g) on

A (Theorem 7.2). We define such a map explicitly and investigate the submeasure obtained

as the preimage of the Lebesgue measure. We consider the corresponding forcing notion and

show that it contains an antichain of length continuum. We show that the determining real

added by this forcing cannot be a splitting real.

13



2 Preliminaries

2 Preliminaries

In this section we present the background material needed for this dissertation. Our intention

is not to give an introduction to these topics but only to consolidate the required information,

provide references and also to establish notation. As a rule of thumb, we present only concepts

that the author did not see as an undergraduate student. For example we do not define what

a topological space is or what a partial order is, since these notions seem to be standard

enough.

2.1 General notation and product spaces

We let N = {1, 2, 3, ...} and ω = {0, 1, 2, 3, ...}. If n ∈ N then by [n] we mean the set

{1, 2, 3, ..., n}. If n ∈ ω then we will sometimes identify n with the collection {0, 1, 2, 3, ...n−1}
(by considering it as a von Neumann ordinal). In this case 0 is identified with ∅. The first

infinite cardinal and the first uncountable cardinal are denoted by ℵ0 and ℵ1, respectively.

The size of the continuum (the cardinality of R) is denoted by c. The first uncountable ordinal

is denoted by ω1. Given two sets X and Y we let XY denote the collection of all Y valued

functions with domain X. If f ∈ XY , then we shall denote X by dom(f), and {f(x) : x ∈ X}
by ran(f). If A ⊆ X, then by f [A] we shall mean the set {f(a) : a ∈ A}. The powerset of

a set X is denoted by P(X). Given a set X we will write [X]<ω to mean the collection of

all finite subsets of X. The collection of countably infinite subsets of X will be denoted by

[X]ω. The symbol Id will always represent an identity map. If s and t are sequences, then

by s_t we shall mean the sequence that is formed by concatenating t to the right of s.

Given a sequence of non-empty sets (Xi)i∈J we will always equip

X :=
∏
i

Xi = {f : N→
⋃
i

Xi : (∀i)(f(i) ∈ Xi)},

with the Tychanoff topology, where each Xi is equipped with the discrete topology. If I ⊆ J
and s ∈∏i∈I Xi then by [s] we mean the collection

{f ∈ X : (∀i ∈ I)(s(i) = f(i))}.

Sets of the form [s], for s ∈ ∏i∈I Xi and I finite, form a base for the topology on X. These

will be clopen (closed and open) and indeed the collection of clopen sets of X will be subsets

of X that are a finite union of sets from this just described base. Thus X is 0-dimensional

(has a base of clopen sets). We denote the collection of clopen sets of X by Clopen(X) and

the collection of Borel sets of X by Borel(X). If the Xi are finite then the space X will be

compact. This follows by Tychnoff’s theorem, since each Xi is compact. To avoid Tychnoff’s

theorem see [13, Theorem 30]. It is straightforward to see that X is Hausdorff. In the case

when each Xi = {0, 1} and I = ω, we will denote X by 2ω.

14



2 Preliminaries

Suppose that J = N, then X is metrisable by

d(f, g) := 2−n

where

n := min{k : f(k) 6= g(k)}.

If for each i we have a group structure (Xi, 0i,+i) then X may also be considered a group

where addition is given by

(f +X g)(i) = f(i) +i g(i)

and the identity is given by

0X(i) = 0i.

2.2 Boolean algebras

Unless otherwise stated, everything in this subsection may be found in [12] or [22].2 A

Boolean algebra B := (B, 0, 1,+, ·) is a commutative ring (with unity) such that multipli-

cation is idempotent, that is, (∀b)(b2 = b). We let B+ be B \ {0}. There exists a natural

partial order on B+ defined by

a ≤B b↔ a · b = a.

Notice that if B is a Boolean algebra and a ∈ B+ then the collection

{b ∈ B : b ≤B a}

also forms a Boolean algebra with unit a. We denote this Boolean algebra by Ba.

A Boolean algebra B is called atomless (or non-atomic) if

(∀a ∈ B+)(∃b ∈ B+)(b <B a).

If a ∈ B+ is such that (∀b ∈ B+)(b 6< a) then a is called an atom of B. The collection of

atoms of B will be denoted by atoms(B). Of course these definition apply to any partial order.

We can define a new binary operation on B by

a ∪B b = a+ b+ a · b.

The use of the familiar ‘∪’ is not really an abuse of notation. Notice that if A is an algebra

of subsets of a non-empty set X, then (A, ∅, X,4,∩) is a Boolean algebra and that ∪A = ∪.3

2The book [12] is available for free.
3For concreteness, recall that if X is a non-empty set then A ⊆ P(X) is an algebra of subsets of X if

and only if the following conditions hold:

• ∅ ∈ A;

• a ∈ A → X \ a ∈ A;

15



2 Preliminaries

Here 4 represents the symmetric difference of two sets

a4b := a \ b ∪ b \ a.

The converse of the above forms part of the well known Stone representation theorem.4

Theorem 2.1 (Marshall H. Stone). Every Boolean algebra is (ring) isomorphic to an algebra

of sets.

In fact the algebra of sets in Stone’s theorem will be the collection of clopen sets of a com-

pact Hausdorff 0-dimensional topological space. This topological space is known as the Stone

space of B and it is unique up to homeomorphism.

The Stone space of a Boolean algebra has a simple enough description. Given a Boolean

algebra B, a collection u ⊆ B is called a filter if and only if the following conditions hold:

• 0 6∈ u;

• (∀a, b ∈ B)(a ∈ u ∧ a ≤B b→ b ∈ u);

• (∀a, b ∈ u)(a · b ∈ u).

A filter u is called an ultrafilter if and only if it is maximal with respect to the above three

conditions. In the case that B = P(N), an ultrafilter u is called non-principal if and only

if it does not contain any finite sets. Let Ult(B) denote the collection of all ultrafilters in B.

On Ult(B) we can define a topology in which the basic open sets are sets of the form

{u ∈ Ult(B) : a ∈ u}, (2.1)

for a ∈ B. This topological space is compact Hausdorff and 0-dimensional. The sets given

by (2.1) are clopen and the map

F : a 7→ {u ∈ Ult(B) : a ∈ u}

defines an isomorphism between B and the algebra of clopen subsets of Ult(B).

Notice that for a Boolean algebra B the operations +, · and ∪B correspond to 4, ∩ and ∪,

respectively, in its Stone space. Notice also that

a ≤B b↔ F (a) ⊆ F (b).

As is usual, we shall often take advantage of this (notational) association and not distinguish

between, for example, + and 4. We will also drop the subscripts on the Boolean operations

• a, b ∈ A → a ∩ b ∈ A.

The algebra A is called a σ-algebra if for every sequence (an)n∈N we have
⋃
n an ∈ A.

4The rest of Stone’s theorem needs some category theory which does not concern us here.
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2 Preliminaries

since this should never cause any confusion.

Two members a and b of a Boolean algebra are disjoint if and only if a · b = 0. A sub-

set X of a Boolean algebra is called an antichain if and only if

(∀a, b ∈ X)(a 6= b→ a · b = 0).

If an antichain X ⊆ B is maximal (as an antichain) then it is also called a partition of B.

A Boolean algebra B satisfies the countable chain condition (ccc) if and only if every

antichain in B is at most countable.

A subset I ⊆ B is called an ideal if and only if the following conditions hold:

• 1 6∈ u;

• (∀a, b ∈ B)(a ∈ u ∧ a ≥ b→ b ∈ u);

• (∀a, b ∈ u)(a ∪ b ∈ u).

An ideal I on B is called σ-complete if and only if for every countable X ⊆ I we can find

a ∈ I such that

a = supX,

where the supremum here is taken with respect to ≤ on B.

Given an ideal I on a Boolean algebra B we can construct a new Boolean algebra, the quo-

tient of B by I, by identifying members of B that differ by a member of I. More precisely,

we say that a ∼ b if and only if a4b ∈ I and we form the collection of equivalence classes

B/I = {[b]∼ : b ∈ B}. We define the operations of + and · on B/I by [a]∼ + [b]∼ = [a+ b]∼

and [a]∼ · [b]∼ = [a ·b]∼. Under these operations B becomes a Boolean algebra with constants

[0]∼ and [1]∼.

A Boolean algebra B is called σ-complete if and only if every countable subset X ⊆ B

has a least upper bound in B (and therefore a greatest lower bound) with respect to ≤. A

Boolean algebra is called complete if and only if every subset X ⊆ B has a least upper

bound in B. If X ⊆ B and X has a least upper bound in B then we shall denote this

(unique) element by ∑
X.

Similarly we denote the greatest lower bound of a set (should it exist) by∏
X.

If B is a σ-complete ideal on a σ-complete Boolean algebra then B/I will be σ-complete

also.
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2 Preliminaries

Fact 2.2. ([22, Lemma 10.2]) If a σ-complete Boolean algebra is ccc then it is complete.

Let us now discuss homomorphisms between Boolean algebras. Homomorphisms, epimor-

phisms, monomorphisms (or embeddings) and isomorphisms are defined as they are for rings

(following [1], for example). A Boolean algebra A is a subalgebra of B if and only if the

identity map on A is a monomorphism from A into B. If A is a subalgebra of B, then A is

called a σ-regular subalgebra of B if and only if for every countable X ⊆ A we have

A∑
X ∈ A→

A∑
X =

B∑
X.

We call A a regular subalgebra of B if and only if we can drop the restriction that X

be countable in the definition of σ-regular. An embedding f : A → B is called σ-regular

embedding if and only if f [A] is a σ-regular subalgebra of B. Similarly we define a regular

embedding.

Given a Boolean algebra B and a subset X ⊆ B, we will denote by 〈X〉 the subalgebra

of B generated by X. More specifically we have

〈X〉 :=
⋂
{A : A is a subalgebra of B and X ⊆ A}.

With regards to this last definition, we have the following.

Fact 2.3. ([22, Corollary 4.5]) If B is a Boolean algebra and X ⊆ B, then |〈X〉| = |X|.

If B is σ-complete then we can consider

σ(X) :=
⋂
{A : A is a σ-complete σ-regular subalgebra of B and X ⊆ A}.

We say that σ(X) is σ-generated by X. There is of course the analogous definition without

the ‘σ’, but since we will always be concerned with ccc Boolean algebras, these definitions

will always coincide.

The following discussion follows [18]. A partial order (P,≤) is called seperative if and

only if

(∀a, b ∈ P )(a 6≤ b→ (∃c ≤ a)(∀d ≤ c)(d 6≤ b)). (2.2)

Notice that every Boolean algebra gives rise to a separative partial order since we can always

take c := a \ b in (2.2). If (P,≤) is a separative partial order then there exists a complete

Boolean algebra B and an injective map f : P → B+ with the following properties:

• (∀a, b ∈ P )(a ≤ b↔ f(a) ≤ f(b));

• (∀a ∈ B+)(∃b ∈ P )(f(b) ≤ a).

The complete Boolean algebra here will be unique up to isomorphism, and is called the

completion of P . It follows that if (P,≤) arrises from a Boolean algebra then f(1) = 1
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and we can extend f so that f(0) = 0. Moreover, it will follow from the first item above

that f is an embedding. The second item above says that the image of P under f is dense

in B. Concisely then, we may say that every separative partial order embeds densely into

a complete Boolean algebra. Given a partial order (P,≤), two of its members a and b are

called compatible if and only if there exists c ∈ P such that c ≤ a and c ≤ b. Of course if P

arises from a Boolean algebra then a and b are compatible if and only if they are not disjoint.

In the case that a partial order (P,≤) is not separative we define a separative partial order

(Q,�), called the separative quotient of P , and a map g : P → Q such that the following

hold:

• (∀a, b ∈ P )(a ≤ b→ g(a) � g(b));

• (∀a, b ∈ P )(a and b are compatible in P ↔ g(a) and g(b) are compatible in Q).

The partial order Q is defined as follows. Let ∼ be the equivalence relation on P defined by

a ∼ b↔ (∀c ∈ P )(a is compatible with c↔ b is compatible with c).

Then Q is the collection of equivalence classes of ∼ and � is defined by

[a] � [b]↔ (∀c ≤ a)(c and b are compatible).

Once again, for more details on separative partial orders and separative quotients see [18].

Recall that a subset of a topological space is nowhere dense if and only if the interior

of its closure is empty. A set is meagre if and only if it is a countable union of nowhere

dense sets. Two very central examples of Boolean algebras are as follows (the third, the

random algebra is discussed in the next subsection).

Definition 2.4. Fix once and for all the following Boolean algebras.

• A = Clopen(2ω) (Cantor algebra).

• C = Borel(2ω)/I where I denotes the σ-ideal of meagre subsets of 2ω (Cohen algebra).

It is easy to check that the Cantor algebra is atomless and countable. The following is not

so easy to check.

Fact 2.5 ([22, Corollary 5.16]). The Cantor algebra is the unique countable atomless

Boolean algebra.

Of course one can replace the space 2ω by X :=
∏
iXi for finite and non-empty sets Xi and

Clopen(X) will still be atomless and countable. The natural map from

A 7→ C : a 7→ [a]I

witnesses that the Cohen algebra has a countable dense subset, and therefore must be ccc.

Since the ideal I is σ-complete and C is ccc, C must be complete (Fact 2.2). The same map
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witnesses that the Cohen algebra is the completion of the Cantor algebra. By uniqueness of

such completions we obtain the following.

Fact 2.6. The Cohen algebra is the unique complete atomless Boolean algebra with a countable

dense subset.

Finally let us recall here the concept of a direct limit. Everything is taken from [17, Pages

49-51]. Since we are only interested in Boolean algebras we present direct limits in terms of

them only.

Definition 2.7. A directed system is a triple ((I,≤), (Bi)i∈I , (fi,j)i,j∈I) where (I,≤) is a

partial order, (Bi)i∈I is sequence of Boolean algebras and (fi,j : Bi → Bj)i,j∈I is a sequence

of maps, such that the following hold:

• for every i, j ∈ I there exists k ≥ i, j;

• if i = j then fi,j = Id;

• if i ≤ j then fi,j is a homomorphism;

• if i ≤ j ≤ k then fi,k = fj,k ◦ fi,j.

Given a directed system ((I,≤), (Bi)i∈I , (fi,j)i,j∈I) let B =
⋃
i∈I{i} ×Bi (the disjoint union

of the Bi). For (i, a), (j, b) ∈ B say that (i, a) ∼ (j, b) if and only if there exists k ≥ i, j such

that fi,k(a) = fj,k(b). Clearly ∼ is an equivalence relation. Let gi : Bi → B/ ∼ be the map

a 7→ [(i, a)]∼ and call these the limit maps. Define a Boolean structure on B/ ∼ as follows:

• 1 = gi(1) and 0 = gi(0), for some i ∈ I;

• a+ b = c, if and only if, we can find some i ∈ I and ai, bi, ci ∈ Bi such that ai ∈ a, bi ∈
b, ci ∈ c and ai + bi = ci;

• a · b = c, if and only if, we can find some i ∈ I and ai, bi, ci ∈ Bi such that ai ∈ a, bi ∈
b, ci ∈ c and ai · bi = ci.

The structure B := (B/ ∼,+, ·, 1, 0) is called the direct limit of our directed system. The

maps gi will always be homomorphisms, and if i ≤ j then gi = gj ◦ fi,j . If the maps fi,j are

injective (embeddings) then the gi will be also. Moreover, if the fi,j are injective then the

direct limit B is unique up to isomorphism. More precisely, we have the following.

Fact 2.8. Suppose that the fi,j are injective. If we have a Boolean algebra C and homomor-

phisms hi : Bi → C such that for each i ≤ j we have hi = hj ◦ fi,j and C =
⋃
i∈I ran(hi), then

there exists an isomorphism F : B→ C such that hi = F ◦ gi, always.

2.3 Submeasures and Maharam’s problem

Once again, unless otherwise stated everything in this subsection can be found in [12]. Recall

from the introduction, the definition of a submeasure on a Boolean algebra.
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Definition 2.9. Given a Boolean algebra B, a function µ : B→ R is called a submeasure

if and only if the following hold:

• µ(0) = 0;

• (∀a, b ∈ B)(a ≤ b→ µ(a) ≤ µ(b)) (monotonicity);

• (∀a, b ∈ B)(µ(a ∪ b) ≤ µ(a) + µ(b)) (subadditivity).

We let Null(µ) denote the collection of all a ∈ B such that µ(a) = 0. The submeasure µ is

called strictly positive if

(∀a)(a > 0→ µ(a) > 0).

A submeasure µ is normalised if µ(1) = 1.

A submeasure on a Boolean algebra B is diffuse if and only if for every ε > 0 we can find a

partition a1, ..., an of B such that for every i, µ(ai) ≤ ε.

If a submeasure µ on a Boolean algebra B satisfies

• (∀a, b ∈ B)(a ∩ b = 0→ µ(a) + µ(b)) (additivity),

then µ is called a finitely additive measure. Both additivity and subadditivity have their

‘σ’ analogues. A submeasure µ on a Boolean algebra B is σ-subadditive if it satisfies the

following condition:

• (∀X ∈ [B]ω)(
∑
X ∈ B→ µ(

∑
X) ≤∑x∈X µ(x)) (σ-subadditivity).

The submeasure µ is called σ-additive if it satisfies the following condition:

• (∀X ∈ [B]ω)([(X is an antichain)∧(
∑
X ∈ B)]→ µ(

∑
X) =

∑
x∈X µ(x)) (σ-additivity).

We will call a σ-additive submeasure a measure.

A functional on a Boolean algebra B is a function µ : B → R such that µ(0) = 0. Notice

that any non-negative valued (finitely) additive functional is a submeasure and any non-

negative valued σ-additive functional is a σ-subadditive submeasure. An additive functional

that can take negative values will be called a signed measure.5

Crucial to Maharam’s problem (and this dissertation) are the following properties.

Definition 2.10. Let B be a Boolean algebra carrying a submeasure µ. The submeasure µ

is called

• exhaustive, if for every antichain {a0, a1, ...} ⊆ B we have limn µ(an) = 0.

• uniformly exhaustive, if for every ε > 0 there exists N ∈ N such that for every

pairwise disjoint a1, ...aN ∈ B we have minn µ(an) < ε.

5In [12] measures take values in R ∪ {∞}. All measures we consider here are real-valued.
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• pathological, if the only finitely additive measure dominated by µ is the constant 0

function. A submeasure λ on B dominates a submeasure µ if and only if (∀a ∈
B)(µ(a) ≤ λ(a)), and we write µ ≤ λ.

• continuous if for every sequence a1 ≥ a2 ≥ · · · from B such that
∏
i ai = 0 we have

µ(
∏
i ai) = 0.

It is useful to know that continuity of a submeasure µ on a complete Boolean algebra B, as

stated above, implies that if (ai)i∈N is a sequence from B such that∏
i

∑
j≥i

aj =
∑
i

∏
j≥i

aj (2.3)

then we have

lim
i
µ(ai) = µ(

∏
i

∑
j≥i

aj).

This implies, for example, that every continuous submeasure is exhaustive. The property

(2.3) gives rise to the sequential topology on B which we do not consider here, but is given a

thorough treatment in [2].

Given two submeasures µ and λ on a Boolean algebra B we say that λ is absolutely con-

tinuous with respect to µ if for every sequence (ai)i∈N from B we have

lim
i
µ(ai) = 0→ lim

i
λ(ai) = 0.

We write λ� µ. We say that λ and µ are equivalent if and only if λ� µ and µ� λ.

Notice that every finitely additive measure is uniformly exhaustive. A converse to this is

the well known result due to N. J. Kalton and J. W. Roberts.

Theorem 2.11. ([19]) A submeasure is uniformly exhaustive if and only if it is is equivalent

to a finitely additive measure.

Proof. Omitted, but see [9, Theorem 7H] for a concise proof.

It is straightforward to see that if a submeasure µ is absolutely continuous with respect to a

uniformly exhaustive submeasure then µ is also uniformly exhaustive. Thus the hard part of

the Kalton-Roberts theorem is in the ‘only if’ direction.

Definition 2.12. An atomless Boolean algebra B is called a Maharam algebra if and only

if it is σ-complete and carries a strictly positive continuous submeasure. An atomless Boolean

algebra B is called a measure algebra if and only if it is σ-complete and carries a strictly

positive measure.

If the domain of a measure is σ-complete then that measure will be continuous. This gives

the following.
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Fact 2.13. Every measure algebra is a Maharam algebra.

If B is a Boolean algebra carrying a strictly positive exhaustive submeasure µ, then for each

ε > 0, every antichain contained in

{a ∈ B : µ(a) > ε}

must be finite. Since we have

B+ =
⋃
n∈N
{a ∈ B : µ(a) > 1/n},

we obtain the following.

Fact 2.14. Every Maharam algebra is ccc.

We can define the ‘Lebesgue measure’ on 2ω by defining λ : Clopen(2ω)→ R by λ([s]) = 2−|s|.

This may be extended uniquely to Borel(X) (see Proposition 2.24, below). Another central

example of a Boolean algebra, along with C and A, is the following random algebra.

Definition 2.15. Let M be the σ-complete Boolean algebra Borel(2ω)/Null(λ), where λ is

the Lebesgue measure on 2ω.

Notice that the Lebesgue measure λ on 2ω defines a strictly positive measure on M by

λ([a]Null(λ)) = λ(a),

in particular M is ccc and therefore complete. Just as with A and C, the algebra M has its

own uniqueness property.

Fact 2.16. ([27]) The random algebra is the unique measure algebra that is σ-generated by

a countable set.

Let us now discuss three formulations of Maharam’s problem (two of which we have men-

tioned in the introduction). This will serve two purposes. The first is that it will nicely define

the context in which we here investigated submeasures. The second purpose is that it will

allow us to elaborate more on the properties of Definition 2.10 and their interactions with

each other.

Recall Problem A from our introduction.

Is every Maharam algebra a measure algebra?

Recall also Problem B.

Is every exhaustive submeasure on A uniformly exhaustive?

We add to this one more formulation.

Problem C. Does every exhaustive submeasure fail to be pathological?
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A positive answer to one of these questions yields a positive answer to the other, as sum-

marised by the following theorem.

Theorem 2.17. The following statements are equivalent.

(A) Every Maharam algebra is a measure algebra.

(B) Every exhaustive submeasure on A is uniformly exhaustive.

(C) An exhaustive submeasure cannot be pathological.

Talagrand’s result states that these statements have a negative answer.

Theorem 2.18. ([33]) There exists a strictly positive pathological exhaustive submeasure on

A that is not uniformly exhaustive.

We present Talagrand’s solution in Subsection 2.5. But for now let us prove Theorem 2.17,

starting with (A)→ (B). For this we will need Lemma 2.21, below. First let us extract two

claims from the proof of Lemma 2.21, because we will need them again.

Lemma 2.19. ([12, Page 600]) Let B be a σ-complete Boolean algebra carrying a sub-

measure µ, and let A be a subalgebra of B such that the restriction of µ to A is exhaustive.

Let b0 ≥ b1 ≥ · · · ∈ B be such that, for each n and ε > 0, there exists a ∈ A satisfying

µ(bn4a) < ε. Then for each ε > 0, there exists N ∈ ω such that

(∀m,n ≥ N)(µ(bm4bn) < ε).

Proof. Omitted.

Theorem 2.20. ([30, Theorems 10.9.1 and 10.12.5]) Let (X, d) and (Y, d) be two metric

spaces with Y complete, and let S ⊆ X be a dense subset. Then every uniformly continuous

function f : S → Y , extends uniquely to a uniformly continuous function on the entirety of

X. If (X ′, d) and (X ′′, d) are completions of X, and if f ′ : X → X ′′ and f ′′ : X → X ′′ are

isometries onto dense sets, then there exists an isometry f : X ′ → X ′′, that maps f ′[X] onto

f ′′[X].

Proof. Omitted.

Lemma 2.21. ([12, Lemma 393B]) Let A be a Boolean algebra carrying a strictly positive

exhaustive submeasure µ. Then the metric completion Â of A with respect to d(a, b) = µ(a4b)
is a complete Boolean algebra and µ extends to a strictly positive continuous submeasure µ̂

on Â.

Proof (Sketch). The Boolean operations + and · on A are absolutely continuous with respect

to the metric d. This follows from the identities

(a+ b) + (c+ d) ⊆ (a+ c) ∪ (b+ d) and (a · b) + (c · d) ⊆ (a+ c) ∪ (b+ d),
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for each a, b, c, d ∈ A. The function µ : A→ R is also uniformly continuous since a ⊆ b∪(a+b),

for each a, b ∈ A. Thus all these functions extend uniquely to uniformly continuous functions

on the metric completion Â of A and Â× Â (Theorem 2.20). Ring identities are verified in Â

by considering convergent sequences from A. For example, to verify the identity

(∀a, b, c ∈ Â)(a · (b+ c) = a · b+ a · c), (2.4)

one can show that the set C := {(a, b, c) ∈ Â× Â× Â : a · (b+ c) = a · b+ a · c}, is a closed

set (since we are working in a metric space, this can be done via convergent sequences).

Since the identity expressed in (2.4) holds in A and A × A × A is dense in Â × Â × Â, it

follows that C = Â × Â × Â. In the same way, we see that µ extends to a strictly positive

submeasure on Â. The algebra Â is seen to be σ-complete by first showing that any sequence

in a1 ≥ a2 ≥ · · · ∈ Â is in fact Cauchy (Lemma 2.19). Then supremums and infimums in

Â are obtained as limit points of such sequences, which exist by completeness of our metric

space. Metric completeness is used in this way to also show that µ̂ is Maharam.

We will also need the following.

Fact 2.22. ([28, Proof of Theorem 1]) Any two strictly positive continuous submeasures

µ and λ on a Maharam algebra B are equivalent.

Proof of (A) → (B). Let µ be an exhaustive submeasure on A. Let A = A/Null(µ). By

setting µ([a]Null(µ)) = µ(a) we define an exhaustive strictly positive measure on A. By

Lemma 2.21 we can extend µ to a strictly positive continuous submeasure on a σ-complete

Boolean algebra B. Without loss of generality we may assume that B is atomless. By (A)

the algebra B carries a strictly positive measure λ. By Fact 2.22 we know that µ and λ are

equivalent. But λ is a measure and is therefore uniformly exhaustive.

Proof of (B)→(A). Let µ be a strictly positive continuous submeasure on a σ-complete atom-

less Boolean algebra B. Suppose that µ is not uniformly exhaustive. Then for some fixed

ε > 0 we can find, for each n ∈ N, a partition of B into pieces an1 , ..., a
n
n such that µ(ani ) ≥ ε,

for each i. Let A be any countable atomless subalgebra of B containing each of the ani . We

can do this because B is atomless. In particular µ will not be uniformly exhaustive on A

(which is isomorphic to A), which contradicts (B). Thus µ is uniformly exhaustive on B and

so by Theorem 2.11 there exists a finitely additive measure λ equivalent to µ. It follows

by definition that λ will be strictly positive and continuous and so σ-additive. Thus B is a

measure algebra.

To deal with (C) we quote the following result due to J. P. R. Christensen.

Theorem 2.23. ([4, Theorem 1]) If λ is a non-trivial pathological submeasure on a Boolean

algebra B and µ is a non-trivial finitely additive measure, then λ 6� µ and µ 6� λ.

This allows us to complete the proof of Theorem 2.17.
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Proof of (B)→(C). If µ is an exhaustive submeasure then it must be equivalent to a measure

by (B) and Theorem 2.11. In particular it cannot be pathological by Theorem 2.23.

Proof of (C)→(B). Let µ be an exhaustive submeasure on A. By (C) we can find a maximal

collection of non-trivial finitely additive measures {µi : i ∈ I} that are each dominated by µ

and are such that

(∀i, j)(i 6= j → inf{µi(A) + µj(1 \A) : A ∈ A} = 0). (2.5)

Suppose that I is uncountable. Then for some ε > 0 there exists a countably infinite J ⊆ I

such that µj(1) > ε, for each j ∈ J . Using (2.5), find a countably infinite set J ′ ⊆ J and a

pairwise disjoint sequence (aj)j∈J ′ such that µj(aj) > ε, for each j ∈ J ′. But this contradicts

the exhaustivity of µ. Thus we can assume that J = N. Let cj = µj(1)/2j and set

λ =
∑
j

cjµj .

By maximality of (µj)j the non-trivial finitely additive measure λ is equivalent to µ (see [19,

Page 808]).

2.4 Extension of submeasure

Lemma 2.21 says that one can extend a strictly positive exhaustive submeasure µ to a strictly

positive continuous submeasure on a complete Boolean algebra that contains the domain of

µ as a regular subalgebra. Here is another extension result that we will use.

Proposition 2.24. ([29, Proposition 7.1]) Let K be a 0-dimensional compact topological

space and let ϕ be an exhaustive submeasure on Clopen(K). Then ϕ extends uniquely to a

continuous submeasure on Baire(K), the σ-algebra generated by Clopen(K).

Proof. First extend ϕ to the collection {A ⊆ K : A is open or closed} by

ϕ(A) =

{
sup{ϕ(C) : C ⊆ A ∧ C ∈ Clopen(K)}, if A is open;

inf{ϕ(C) : A ⊆ C ∧ C ∈ Clopen(K)}, if A is closed.

Let M be the algebra of subsets of K defined by, A ∈ M if and only if for each ε > 0 there

exists an open set O and a closed set C such that ϕ(O \ C) < ε and C ⊆ A ⊆ O. Of course

Clopen(K) is a subalgebra of M.

Since ϕ is exhaustive, for any open set O there exists a sequence of clopen sets (On)n∈N

such that each On ⊆ O and limn ϕ(O\On) = 0. We use this to show that M is a σ-algebra as

follows. Let (An)n∈N be a sequence of members of M such that An ⊆ An+1 and fix ε > 0. Let

(Cn)n∈N and (On)n∈N be a sequence of closed sets and a sequence of open sets, respectively,

such that for each n we have ϕ(On \ Cn) < ε2−n and Cn ⊆ An ⊆ On. Let O =
⋃
n∈NOn

and find a clopen E such that ϕ(O \E) < ε. By compactness there exists some N such that
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E ⊆ ⋃n∈[N ]On. Let C =
⋃
n∈[N ]Cn. Then

ϕ(O \ C) ≤ ϕ(O \ E) +
∑
n∈[N ]

ϕ(On \ Cn) < 2ε.

Thus the sets C and O witness that
⋃
n∈NAn ∈M.

Now let us show that ϕ is continuous on Baire(K) ⊆ M. Let (An)n∈N be a sequence from

Baire(K) such that An ⊇ An+1 and
⋂
nAn = ∅ and suppose for a contradiction that, for

some ε > 0, we have

lim
n
ϕ(An) = inf

n
ϕ(An) > ε.

Find a sequence of closed sets (Cn)n∈N such that Cn ⊆ An and ϕ(An \ Cn) < ε2−n−1. For

each k ∈ N we have that

ϕ(Ak) ≤ ϕ(
⋂
n∈[k]

Cn) +
∑
n∈[k]

ϕ(An \ Cn),

so that ϕ(
⋂
n∈[k]Cn) ≥ ε/2. By compactness once again, we have that

⋂
n

An ⊇
⋂
n

Cn 6= 0,

which is the desired contradiction.

2.5 Talagrand’s construction

We present here the construction of the pathological exhaustive submeasure that is not uni-

formly exhaustive from [33] (see Theorem 2.18, above). For the rest of this dissertation, let

T =
∏
n∈N

[2n].

We also fix

T = Clopen(T ).

For each n ∈ N, let An = {[f � [n]] : f ∈ T } and Bn be the subalgebra of T generated by An.

Members of Bn will be finite unions of sets of the form [s], for s ∈∏k∈[n][2
k].

Let

M = T× [N]<ω × R≥0.

For finite X ⊆M, where X = {(X1, I1, w1), ..., (Xn, In, wn)}, let

w(∅) = 0, w(X) =
n∑
i=1

wi,
⋃
X =

n⋃
i=1

Xi.
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The value w(X) is called the weight of X.

We have the following general construction.

Definition 2.25. If Y ⊆M and is such that there exists a finite Y ′ ⊆ Y such that T =
⋃
Y ′

then Y defines a submeasure φY given by

φY (B) = inf{w(Y ′) : Y ′ ⊆ Y ∧ Y ′ is finite ∧B ⊆
⋃
Y ′}.

For k ∈ N and τ ∈ [2n] let

Sn,τ = {f ∈ T : f(n) 6= τ}.

For k ∈ N, let

η(k) = 22k+102(k+5)4(23 + 2k+52(k+4)4), α(k) = (k + 5)−3

and set

Dk = {(X, I, w) ∈M : |I| ∈ [η(k)] ∧ w = 2−k
(
η(k)

|I|

)α(k)

∧ (∃τ ∈
∏
n∈I

[2n])(X =
⋂
n∈I

Sn,τ(n))}.

See Figure 1 on page 65, for the behaviour of the sequences α(k) and η(k). Let D =
⋃
k∈NDk

and

ψ = φD.

An important property of ψ is the following.

Proposition 2.26. ([31, Page 9]) Any non-trivial submeasure µ such that µ ≤ ψ must be

pathological and cannot be uniformly exhaustive.

Thus it is enough to now construct a non-trivial exhaustive submeasure that lies below ψ.

Definition 2.27. ([31, Page 11]) Let µ : T→ R be a submeasure and let m,n ∈ N.

• For each s ∈∏i∈[m][2
i] we define the map

π[s] : T → [s]

by

(π[s](x))(i) =

{
s(i), if i ∈ [m];

x(i), otherwise.

• For m < n we say a set X ⊆ T is (m,n, µ)-thin if and only if

∀A ∈ Am,∃B ∈ Bn such that B ⊆ A, B ∩X = ∅ and µ(π−1
A [B]) ≥ 1.

For I ⊆ N, we say that X is (I, µ)-thin if it is (m,n, µ)-thin for each m,n ∈ I with

m < n.
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The rest of the construction proceeds by a downward induction. For p ∈ N, let Ep,p = Cp,p = D
and ψp,p = φCp,p . Now for k < p, given Ek+1,p, Ck+1,p and ψk+1,p we let

Ek,p = {(X, I, w) ∈M : X is (I, ψk+1,p)-thin, |I| ∈ [η(k)] and w = 2−k
(
η(k)
|I|

)α(k)
},

Ck,p = Ck+1,p ∪ Ek,p and ψk,p = φCk,p .

Next let U be a non-principal ultrafilter on N. For each k ∈ N let Ek and Ck be subsets

of M defined by

x ∈ Ek ↔ {p : x ∈ Ck,p} ∈ U ,

and Ck = D ∪⋃l≥k El.

Finally, let νk = φCk . It is clear from Definition 2.25 that we have

ν1 ≤ ν2 ≤ ν3 · · · ≤ ψ.

Now the submeasure ν1, which we shall denote by ν from here on, is the desired counter

example to Maharam’s problem. The fact that ν is non-trivial and exhaustive requires two

separate arguments. Exhaustivity follows by showing that for each k and antichain (an)n∈N

from T we have

lim sup
n

νk(an) ≤ 2−k.

This last property is known as 2−k-exhaustivity.

2.6 Set theory

We outline here the set theory that we shall need. Once again, our intention is not to give an

introduction to these topics and as a starting point we take [23] (and in particular Chapter

7). Our forcing notation and technique (for example, via countable transitive models) is from

[23] and we avoid forcing via Boolean valued models (for example, as described in [18]).

2.6.1 Forcing and Borel codes

Forcing notions (partial orders) (P,≤) will have a top element which we will also denote by

P. By a ≤ b we will mean that a is stronger than b. We will not distinguish between the

forcing relation  and ∗ from [23]. When we do force over the universe V , we follow [23,

Section 7.9]. We shall abbreviate countable transitive model by c.t.m.. Of course ZFC is used

to denote the usual Zermelo-Fraenkel axioms of set theory with the Axiom of Choice. The

statement “let M be a c.t.m. of ZFC” is to be interpreted as “let M be a c.t.m. of a finite

fragment of ZFC that is enough to furnish the following definitions and argument” (see [23,

Sections 7.1 and 7.9]). This is to avoid Gödel’s second incompleteness theorem in the usual

way. Given a c.t.m. of ZFC and a partial order (P,≤), the letter ‘G’ will often denote a

P-generic filter over M . Canonical P-names will be denoted by ‘ř’ and other names by ‘ṙ’.
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The following describes the collection BC ⊆ ωω of Borel codes.

Lemma 2.28. ([3, Page 11] and[18, Page 504]) There exists a set BC ⊆ ωω and a

surjection BC → Borel(2ω) : c 7→ Ac such that the following predicates of Borel codes are

absolute for c.t.m.’s of ZFC:

• c ∈ BC;

• Ac = ∅, Ac = Ad, Ac ∩Ad = Ae, Ac = Ad4Ae and Ac =
⋃
n∈ω Acn;

• Ac is meagre, Ac is Lebesgue null.

The predicate ‘x ∈ Ac’ is also absolute.

Borel codes provide a very convenient way to discuss the ‘description’ of a Borel set, regardless

of what model of set theory we are considering. The idea is that the Borel code c contains

all the information that is used in the construction of Ac from the open sets. Since there are

continuum many Borel sets, there must be some that are not ‘definable’ like 2ω or [(1, 1, ..., 1)].

We may, however, want to consider how some fixed (possibly undefinable) Borel set A behaves

in two different models of set theory M and N , say. We can do this by considering the Borel

code c such that Ac = A and then considering the sets AMc and ANc . Just like we can construct

2ω in M to get (2ω)M , we may also construct Ac in M to get AMc . We are assuming that

c ∈M ∩N . Of course by absoluteness of the predicate x ∈ Ac we know that AMc = Ac ∩M .

2.6.2 Forcing with ideals

Given a σ-ideal I on Borel(2ω) we can define a forcing notion PI = (Borel(2ω)/I)+ where

the generic extensions due to PI are determined by (and determine) a single real ṙ ∈ 2ω.

Examples of such reals are the Cohen real and the random real, which arise from the Cohen

algebra and the random algebra, respectively. These are discussed in Subsection 2.6.3. Here

we describe this idealised forcing and the determining generic real added.

Proposition 2.29. ([38, Page 15]) Let I be a σ-complete ideal on Borel(2ω). Then there

exists a PI-name ṙ such that

PI  ṙ ∈ 2̇ω ∧ (∀c ∈ B̌C)(ṙ ∈ Ac ↔ Ǎc ∈ Ġ). (2.6)

Proof. By [23, Theorem 7.11] we may instead work with the forcing notion P = {A ∈
Borel(2ω) : A 6∈ I}, ordered by inclusion. Let G be a P-generic filter. For each ε > 0 it

is possible to find disjoint clopen A1, ..., An that cover 2ω such that each Ai has diameter

≤ ε. By genericity, G must choose one of these. Now the collection of closed sets in G has

the finite intersection property, so by compactness their intersection is non-empty. Since G

contains closed sets of arbitrarily small diameter, this intersection must be a singleton. Thus

let ṙ be such that

P  ṙ ∈
⋂
{Ac : c ∈ B̌C ∧Ac is closed ∧Ac ∈ Ġ}.

30



2 Preliminaries

Now let us show that the collection

B = {Ac : c ∈ BC ∧Ac  ṙ ∈ Ac}

is closed under countable unions and countable intersections. Let (Cn)n∈N ⊆ B and B =⋃
n∈NCn. Let D ∈ P and D ⊆ B. By the σ-completeness of I we can find an n such that

D ∩Cn 6∈ I. But D ∩Cn ≤ Cn  ṙ ∈ Cn ⊆ B. In particular, for any D ≤ B, D  ṙ ∈ B and

so we must have B  ṙ ∈ B. Now let B =
⋂
n∈NCn. Since B ≤ Cn for every n, B  ṙ ∈ Cn

for every n and so B  ṙ ∈ B. By definition B also contains all closed sets of P and so in fact

P = B. That is,

P  ṙ ∈ 2̇ω ∧ (∀c ∈ B̌C)(Ǎc ∈ Ġ→ ṙ ∈ Ac).

For the other direction suppose that Ac  ṙ ∈ Ac′ . If ¬(Ac ≤ Ac′) then B = Ac \ Ac′ 6∈ I.

But then B  ṙ ∈ B ∧B ∩Ac′ = 0. So Ac 6 ṙ ∈ Ac′ , which is a contradiction. Now suppose

that G is PI-generic and that in V [G], ṙ ∈ Ac′ . Then for some Ac ∈ G, Ac  ṙ ∈ Ac′ . By the

previous argument, Ac ≤ Ac′ and so in V [G], Ac′ ∩ V ∈ G.

Let M be a c.t.m. of ZFC with I ∈ M . Let PI denote (Borel(2ω)/I)M . Call a real r ∈ 2ω,

PI-over M , if and only if

(∀c ∈ BC ∩M)(Ac ∩M ∈ I → r 6∈ Ac). (2.7)

The above is saying that a real is PI over M if and only if it misses every I-positive Borel

set from the ground model, after it has been computed in the universe.

Proposition 2.30. If M is a countable transitive model of ZFC with I ∈ M and ṙ is the

PI-name promised by Proposition 2.29 then for any PI-generic G over M , ṙG is PI-over M .

Proof. If for some c ∈ B∩M such that Ac∩M ∈ I we have that r ∈ Ac then Ac∩M ∈ G∩I
(by (2.7)) which is a contradiction.

If one wants to avoid mentioning countable transitive models, then we can use the following

definition.

Definition 2.31. Given PI and another forcing notion Q, we will say that Q adds a PI-real

if and only if there exists a Q-name ṙ such that

Q  ṙ ∈ 2̇ω ∧ (∀c ∈ B̌C)(Ǎc ∈ Ǐ → ṙ 6∈ Ac) (2.8)

In the case that Q arises from a complete Boolean algebra B (if not then we may consider

the Boolean completion of Q, by [23, Theorem 7.11]), we have a combinatorial formulation

of (2.8).

Fact 2.32. ([34]) A complete Boolean algebra B adds a PI-real if and only if there exists a

regular embedding from Borel(2ω)/I to B.
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Proof. For the ‘only if’ direction if Ġ is a Q-name for the PI-generic obtained from the PI-real

then we obtain the regular embedding:

Borel(2ω)/I → Q : p 7→
∑
{q : q  p̌ ∈ Ġ}.

For the other direction, if f : Borel(2ω)/I → Q is a regular embedding then in any forcing

extension due to a Q-generic H, we can (as in [23, Corollary 7.6]) define a generic G for

Borel(2ω)/I (and therefore the determining real) by

G = {f(p) : p ∈ H}.

2.6.3 Generic reals

We saw in Subsection 2.6.1 how the generic extensions of C and M, the Cohen and random

algebras, are determined by certain members of 2ω. Using Fact 2.32 we obtain the following.

Definition 2.33. A complete Boolean algebra B adds a Cohen real if and only if there

exists a regular embedding from C to B. Similarly, a complete Boolean algebra B adds a

random real if and only if there exists a regular embedding from M to B.

A forcing notion P is ωω-bounding if and only if every real f ∈ 2ω in a given forcing extension

due to P is dominated by a real r ∈ 2ω from the ground model, that is to say,

(∀m)(r(m) ≥ f(m)).

The algebra M is ωω-bounding, while the algebra C is most certainly not! This is because the

Cohen real added cannot be dominated by a real from the ground model. In fact the property

of ωω-bounding, for ccc Boolean algebras, is equivalent to weak distributivity, which is the

following combinatorial property. A complete ccc Boolean algebra B is weakly distributive

if and only if for every countable sequence (An)n∈ω, of partitions of B, there exists a dense

subset A of B such that

(∀n)(∀a ∈ A)(|{b ∈ An : a ∩ b 6= 0}| <∞).

There are many equivalent definitions of weak distributivity, but the above is perhaps the

most transparent (see [2]).

Fact 2.34. ([2]) Every Maharam algebra is weakly distributive, and therefore cannot add a

Cohen real.

The algebra C is actually nowhere weakly distributive, which is to say that for every

a ∈ C+ the algebra Ca is not weakly distributive, and this is a simple consequence of Fact

2.6.

We will also consider splitting reals.
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Definition 2.35 ([35, Page 2]). A forcing notion P adds a splitting real if and only if

there exists a P-name Ȧ such that

P  Ȧ ⊆ ω̌ ∧ (∀B ∈ ˇP(ω))(|B| =∞→ (|Ȧ ∩B| =∞∧ |B \ Ȧ| =∞)).

Informally, Ȧ is a splitting real if for every infinite set of natural numbers B from the ground

model, Ȧ partitions (or splits) B into two infinite pieces, one being a subset of Ȧ and the

other being disjoint from Ȧ.

Given a function f ∈ 2ω we can define a subset of ω by {n ∈ ω : f(n) = 1}. In this way we

may speak about members of 2ω being splitting reals.

Fact 2.36. Cohen reals and random reals are splitting reals.

Proof. Let M be a c.t.m. of ZFC. Let f ∈ 2ω and let A = {n ∈ ω : f(n) = 1}. Suppose that

(without loss of generality) there exists B ∈M ∩ω such that |B ∩A| < ω. Since [ω]<ω ⊆M ,

we know that

f ∈ C := {g ∈ 2ω : (∀n ∈ B \A)(g(n) = 0)} ∈M

Since C is in the ground model and is both meagre and Lebesgue null, f cannot be a Cohen

real nor can it be a random real.

The above fact, with respect to the random algebra, is actually a specific instance of the more

general result that every Maharam algebra adds a splitting real ([35]).
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In this section we present two results that were originally proved for additive submeasures but

generalise to cases when additivity is not present. The first result says that under Todorcevic’s

Open Colouring Axiom (OCA) the Boolean algebra P(ω)/Fin, where Fin is the ideal of finite

subsets of P(ω), does not contain a Maharam algebra as a subalgebra. This generalises the

result from [5] which states that under OCA, P(ω)/Fin does not contain a measure algebra

as a subalgebra. In fact this was not so difficult to achieve. For this one needs to observe

that the (sophisticated) proof from [5] goes through for any σ-complete Boolean algebra B

such that for some embedding F : Clopen(ω × ω2)→ B we have

(∀n ∈ ω)(∀f1, f2, ... ∈ ω2)(∃N1, N2, ... ∈ ω)(
∑
i∈ω

F({n} × [fi � Ni]) < F({n} × 2ω)).

This we do in the next subsection. Once one substitutes the above promised embedding for

the embedding used in [5] the rest follows the original proof identically. It is evident from the

close proximity of the proof of the above statement to the original one, that really what we

have observed is that it was not additivity but continuity of the Lebesgue measure on which

the result from [5] relies on.

Our second result, which we prove in Subsection 3.2, states that if one has an exhaustive

σ-subadditive submeasure µ on a subalgebra A of a σ-complete Boolean algebra B then µ

extends to a continuous submeasure on the smallest σ-complete σ-regular subalgebra of B

containing A (see Theorem 3.6). If we replace exhaustivity by additivity in the above then

we get the original and classical result for measures. This second result seemed to require a

little more effort, however, it does follow a standard procedure for constructing the collection

of Lebesgue measurable sets.

Extension of submeasure has been observed before (see [9]). We discuss the extension theo-

rems that we have already mentioned in Subsection 3.2, but we would like to point out here

that we could not deduce the above from what we found in the literature.

3.1 OCA and Maharam algebras

Given a set X we let

[X]2 = {{x, y} : x, y ∈ X ∧ x 6= y}.

If X is equipped with a topology then we can equip [X]2 with the topology induced from the

product space X ×X. Here is the statement of OCA.

OCA. If X is a separable metric space and [X]2 = X1 ∪ X2 such that X1 is open in [X]2

then one of the following must hold:

• There exists an uncountable set Y ⊆ X such that [Y ]2 ⊆ X1;
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• There exists a sequence (Yn)n∈N of subsets of X such that X =
⋃
n Yn and, for each n,

[Yn]2 ⊆ X2.

OCA is relatively consistent with ZFC, and one does not need any large cardinal assumptions

for this (see [25], not [23]).

The main result of [5] is the following.

Theorem 3.1. Assuming OCA, the random algebra is not a subalgebra of P(ω)/Fin.

Notice that this is in contrast to the situation in which one is working under the continuum

hypothesis (CH). The Boolean algebra P(ω)/Fin contains, as a subalgebra, every Boolean

algebra of cardinality at most ℵ1 (see [22, Section 5.5]). Thus under CH, which asserts that

ℵ1 = c (= |M|), the algebra P(ω)/Fin will indeed embed the random algebra.

In this section we observe that Theorem 3.1 remains true if we replace the random alge-

bra by any Maharam algebra:

Theorem 3.2. Assuming OCA, the Boolean algebra P(ω)/Fin does not contain a Maharam

algebra as a subalgebra.

We work in the product space ω × 2ω corresponding to the discrete topology on ω. It is

straightforward to check that Clopen(ω × 2ω) is the collection of sets of the form⋃
n∈ω
{n} ×Bn

for Bn ∈ Clopen(2ω). If λ is the Lebesgue measure on Clopen(2ω) then we can define a

measure on Clopen(ω × 2ω) by

λ(
⋃
n∈ω
{n} ×Bn) =

∑
n∈ω

2−nλ(Bn).

This will extend uniquely to Borel(ω × 2ω). The complete Boolean algebra Borel(ω ×
2ω)/Null(λ) will be σ-generated by the collection ω × Clopen(2ω) and will therefore be iso-

morphic to the random algebra (Fact 2.16).

Definition 3.3. Let B be a σ-complete Boolean algebra. Say that C(B) holds if and only if

there exists an embedding F : Clopen(ω × ω2)→ B such that

(∀n ∈ ω)(∀f1, f2, ... ∈ ω2)(∃N1, N2, ... ∈ ω)(
∑
i∈ω

F({n} × [fi � Ni]) < F({n} × 2ω)).

We prove that Theorem 3.1 is true if we replace the random algebra with any σ-complete

algebra B such C(B) holds. This involves nothing more than reproducing the arguments

from [5] with the embedding X 7→ [X]Null(λ) replaced by the F that witnesses C(B). Since

these arguments are no different to those from [5] we will only present that part of [5] where

C(B) is used. This is done in Section A. For what remains we direct the reader to [5]. What
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is left to do here then is to show that C(B) holds for any Maharam algebra B, and this is a

straightforward consequence of continuity and the following fact.

Fact 3.4. ([12, 392Xg]) If B is an atomless σ-complete Boolean algebra then any strictly

positive continuous submeasure on B will be diffuse.

Proposition 3.5. C(B) holds for every (atomless) Maharam algebra B.

Proof. Let B be a Maharam algebra carrying a strictly positive continuous submeasure µ.

Let (ai)i∈ω be a partition of B. Since µ will be diffuse, for each i, j ∈ ω we can find a partition

Aji of ai into finitely many pieces each with µ-measure not greater than 1
j+1 . For each i, let

Bi be the (countable atomless) subalgebra of Bai generated by
⋃
j A

j
i and let fi : A → Bi

be any isomorphism. Now let

F(
⋃
n∈ω
{n} ×Bn) =

∑
n∈ω

fn(Bn).

Let f ∈ ω2 and m ∈ ω. For each ε > 0 there exists a finite partition a1, a2, ..., an of

Clopen({m}×2ω) such that for each i, µ(F(ai)) ≤ ε. But for k large enough there will be an i

such that {m}×[f � k] ⊆ ai, and so µ(F({m}×[f � k]))→ 0 as k →∞. Thus given f0, f1, ... ∈
ω2 for each i we can choose Ni such that µ(F({m}× [f � Ni])) < 2−i−2µ(F({m}×2ω)). Then

by σ-subadditivity of µ we get

µ(
∑
i∈ω

F({n} × [fi � Ni])) ≤
∑
i∈ω

µ(F({n} × [fi � Ni])) <
1

2
µ(F({n} × [∅]),

and since µ is strictly positive we are done.

3.2 Extension of submeasure (revisited)

We prove here the following.

Theorem 3.6. Let B be a σ-complete Boolean algebra and A a subalgebra carrying an ex-

haustive submeasure µ. Then there exists a continuous submeasure µ̂ on σ(A) such that

• (∀a ∈ A)(µ̂(a) ≤ µ(a)).

• If λ is another continuous submeasure on σ(A) such that (∀a ∈ A)(λ(a) ≤ µ(a)) then

(∀a ∈ σ(A))(λ(a) ≤ µ̂(a)).

• If µ is σ-subadditive then (∀a ∈ A)(µ(a) = µ̂(a)).

In fact µ̂ will be of the form

µ̂(a) = sup{ψ(a) : ψ is a continuous submeasure on σ(A) and (∀b ∈ A)(ψ(b) ≤ µ(b)}

(see (4.4), below). This is analogous to the following classical result which describes the case

when µ is finitely additive.
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Theorem 3.7. ([37, Page 330]) Let B be a σ-complete Boolean algebra and A a subalgebra

carrying a finitely additive measure µ. Then there exists a σ-additive measure µ̂ on σ(A)

such that

• (∀a ∈ A)(µ̂(a) ≤ µ(a)).

• If λ is another σ-additive measure on σ(A) such that (∀a ∈ A)(λ(a) ≤ µ(a)) then

(∀a ∈ σ(A))(λ(a) ≤ µ̂(a)).

• If µ is σ-additive then (∀a ∈ A)(µ(a) = µ̂(a)).

Other extension results already exist (see [9, Theorems 1I, 10D, 10E, 10F]). Most relevant to

us are Lemma 2.21 and Proposition 2.24. By compactness of the space K in the statement of

Proposition 2.24, this result is implied by Theorem 3.6. Moreover, the proof of Proposition

2.24 relies on the compactness of K (on two occasions), while the techniques used to prove

Theorem 3.6 are purely combinatorial. With regards to Lemma 2.21, at the end of this

subsection we prove the following.

Proposition 3.8. Let B be a σ-complete Boolean algebra and A a subalgebra carrying a

strictly positive σ-subadditive exhaustive submeasure µ. Then σ(A)/Null(µ̂) is isomorphic to

the metric completion Â of A with respect to the metric induced by µ, where µ̂ is the submea-

sure promised by Theorem 3.6. Moreover, we can find an isomorphism F : σ(A)/Null(µ̂)→ Â

such that

(∀a ∈ σ(A)/Null(µ̂))(µ̂(a) = (µ̃ ◦ F )(a)).

where µ̃ is the extension of µ to Â (via Lemma 2.21).

Towards a proof of Theorem 3.6, fix a σ-complete Boolean algebra B, a subalgebra A of B

and a submeasure µ : A→ R. Define the following outer measure µ∗ : B→ R by

µ∗(a) = inf{
∑
n∈ω

µ(an) : an ∈ A ∧ a ⊆
∑
n

an}. (3.1)

Lemma 3.9. µ∗ is a σ-subadditive submeasure on B and (∀a ∈ A)(µ∗(a) ≤ µ(a)). If µ is

σ-subadditive (on A) then µ∗ is an extension of µ.

Proof. This is straightforward to see. For subadditivity consider a sequence (ai)i∈ω from B

and fix ε > 0. For each i ∈ ω let (aij)j∈ω ⊆ A be such that ai ⊆
∑

j∈ω aij and

∑
j∈ω

µ∗(aij) ≤ µ∗(ai) +
ε

2i+1
.

Then by definition we must have

µ∗(
∑
i∈ω

ai) ≤
∑
i,j∈ω

µ∗(aij) ≤
∑
i∈ω

(µ∗(ai) +
ε

2i+1
) = ε+

∑
i∈ω

µ∗(ai).

Since ε > 0 was arbitrary, we are done.
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Definition 3.10. Let A be the collection of all a ∈ B such that there exists a sequence

(an)n∈ω ⊆ A with

µ∗(an4a)→ 0.

We now work towards showing that A is a σ-complete σ-regular subalgebra of B.

Lemma 3.11. The algebra A is a subalgebra of A which is a subalgebra of B.

Proof. Clearly A ⊆ A. Let a1, a2 ∈ A and fix ε > 0. Let b1, b2 ∈ A be such that

µ∗(a14b1), µ∗(a24b2) < ε.

Let a = a1∪a2, b = b1∪b2 ∈ A and c = b1\b2 ∈ A. Since a4b, (a1\a2)4c ⊆ (a14b1)∪(a24b2)

we have

µ∗(a4b), µ∗(a1 \ a24c) ≤ µ∗(a14b1) + µ∗(a24b2) ≤ 2ε.

Thus a1 ∪ a2, a1 \ a2 ∈ A.

Lemma 3.12. If µ is exhaustive then µ∗ is exhaustive on A.

Proof. Let (ai)i∈ω be an antichain A. Since the ai are pairwise disjoint, for any sequence

(bi)i∈ω and n ∈ ω, we have

(bn \
∑
i<n

bi)4an ≤ bn4an ∪
∑
i<n

bi \ ai. (3.2)

Now fix ε > 0 and find a sequence of positive reals (εn)n such that∑
n

εn < ε,

and for each n let bn ∈ A be such that µ∗(bn4an) < εn. Let cn = bn \
∑

i<n bn. By (3.2) we

know that

µ∗(cn4an) ≤
∑
i≤n

εi < ε.

But µ is exhaustive, so for n large enough we have µ∗(cn) ≤ µ(cn) < ε. In particular for n

large enough we have

µ∗(an) ≤ µ∗(an \ cn) + µ∗(cn) < 2ε.

Lemma 3.13. Let ε > 0 and (an)n∈ω be a pairwise disjoint sequence from A. If µ is exhaus-

tive then we can find a sequence (bn)n∈ω from A such that for some N ∈ ω we have∑
n≥N

an =
∑
n∈ω

bn ∧
∑
n∈ω

µ∗(bn) ≤ ε.

Proof. Let ck =
∑

i≤k ai. This is a non-decreasing sequence in A. Since µ∗ is exhaustive

(by Lemma 3.12) on A, the sequence (ck)k∈ω is Cauchy with respect to the pseudometric
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d(a, b) = µ∗(a4b) (by Lemma 2.19). In particular, we can find a sequence N0 < N1 < · · · ∈ ω
such that for each i ∈ ω and n,m ≥ Ni we have

µ∗(cn4cm) ≤ ε

2i+1
.

Now take N = N0 and bi = cNi4cNi+1 .

Lemma 3.14. If (an)n∈ω is a pairwise disjoint sequence from A and if µ is exhaustive then∑
i∈ω ai ∈ A. Since A is an algebra, it follows that A is a σ-regular subalgebra of B.

Proof. Let (an)n∈ω be a pairwise disjoint sequence from A and lets show that a =
∑

n an ∈ A.

Fix ε > 0 and let N and (bn)n∈ω be as promised by Lemma 3.13. Let c =
∑

n<N an and

b ∈ A be such that

µ∗(c4b) < ε.

Then

a4b ⊆ (c4b) ∪
∑
n≥N

an = (c4b) ∪
∑
n∈ω

bn

so that

µ∗(a4b) ≤ µ∗(c4b) + µ∗(
∑
n∈ω

bn) ≤ ε+
∑
n∈ω

µ∗(bn) ≤ 2ε.

Proof of Theorem 3.6. By Lemma 3.14 we know that on σ(A), a σ-regular subalgebra of A,

the submeasure µ̂ = µ∗ � σ(A) is exhaustive and σ-subadditive and so it is continuous. The

rest is easy to verify.

Finally, let us give a proof of Proposition 3.8.

Proof of Proposition 3.8. Let A1 = σ(A)/Null(µ̂) and A2 = Â. Then A1 and A2 are both

metric completions of A. Let ψ1 : A → A1 and ψ2 : A → A2 be the respective canonical

embeddings. It is easy to check that ψ1 and ψ2 are isometries. Thus F = ψ2 ◦ψ−1
1 : ψ1[A]→

A2 is an isometry onto a dense subspace of A2. We can then uniquely extend F to an

isometry F ′ : A1 → A2 (Theorem 2.20). We claim that this is the desired isomorphism.

Indeed, consider the map f : ψ1[A]→ ψ1[A] : a 7→ ac and its uniformly continuous extension

f ′ : A1 → A1 : a 7→ ac. Consider also g : ψ2[A]→ ψ2[A] : a 7→ ac and its uniformly continuous

extension g′ : A2 → A2 : a→ ac. Since for every a ∈ ψ1[A] we have

(F ◦ f)(a) = (ψ2 ◦ ψ−1
1 )(ac) = ((ψ2 ◦ ψ−1

1 )(a))c = (F (a))c = (g ◦ F )(a)

We see that F ′ ◦f ′ and g′ ◦F ′ are both uniformly continuous extensions of the same function.

Thus F ′ ◦ f ′ = g′ ◦ F ′ and for every a ∈ ψ1[A] we have

F ′(ac) = (F ′ ◦ f ′)(a) = (g′ ◦ F ′)(a) = (F ′(a))c.
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Since the maps (a, b) 7→ a∩ b, a 7→ µ(a) and a 7→ a are also uniformly continuous we can use

the same analysis to verify the remaining criteria for F ′ to be the desired isomorphism.
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4 Forcing with submeasures of a finite domain

Let P be the collection of all normalised submeasures µ : A → [0, 1] ∩ Q where A is a finite

subalgebra of A. Order P by reverse inclusion: µ ≤ λ if and only if λ ⊆ µ.

In this section we prove the following.

Theorem 4.1. Let M be a c.t.m. of ZFC. If G ⊆ P ∈M is P-generic over M then λ :=
⋃
G

is a normalised submeasure on A that is not uniformly exhaustive and is such that for any

antichain (ai)i∈N ∈M we have limi λ(ai) = 0.

In fact P is a well known forcing notion.

Lemma 4.2. The separative quotient of P is countably infinite and atomless and therefore

(by Fact 2.6) its Boolean completion is the Cohen algebra.

Proof. Let P′ be the separative quotient of P. Since the submeasures in P only take rational

values and we have assumed B is countable the partial order P is also countable and so P′ is

at most countable. Given a ∈ B+ \ {1} and q ∈ Q ∩ [0, 1] we can always find a submeasure

λq ∈ P such that λq(a) = q. The λq correspond to countably many distinct equivalence

classes of P′, so P′ is infinite. Now suppose that λ ∈ P and let a be an atom of dom(λ) such

that λ(a) > 0. Let c ∈ A+ be such that c < a and let A be the subalgebra generated by

dom(λ) ∪ {c}. Let λ1 be the submeasure on A defined by

λ1(b) = min{λ(d) : d ∈ A ∧ b ⊆ d}. (4.1)

Then λ1 ≤ λ and λ1(c) = λ(a). Now given b ∈ A we can find b′ ∈ dom(λ) and b′′ ∈ {c, a\c, 0}
such that b = b′ t b′′, so we can take λ2 to be the submeasure on A defined by

λ2(b) =

{
λ(b′ ∪ a), if b′′ = a \ c;
λ(b′), otherwise.

Then λ2 ≤ λ and λ2(c) = 0 6= λ1(c). Thus λ1 and λ2 correspond to two different members of

P′ and so one of them must define a different equivalence class to λ, and we are done.

Thus, Theorem 4.1, together with Lemma 4.2, is saying that in any forcing extension adding

a Cohen real there exists a submeasure, constructed from P, that is not uniformly exhaustive

but is exhaustive with respect to the antichains from the ground model.

Of course a priori this is uninteresting in light of Theorem 2.18. The motivation here is

in the fact that it was known before [33] that the existence of an exhaustive submeasure that

is not uniformly exhaustive is (equivalent to) a Π1
2-statement and is therefore absolute for

models of set theory (see [2]). It follows that if such a submeasure exists in some forcing

extension then the existence of such a submeasure follows from ZFC. The aim then is to

provide a new proof of the existence of such a submeasure using the theory of forcing. Of

course Theorem 4.1 does not provide such a solution since in any forcing extension due to P
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4 Forcing with submeasures of a finite domain

new antichains might be added that have not been accounted for.

We prove Theorem 4.1 in the next subsection and in Subsection 4.2 we discuss possible

directions for its development.

4.1 Proof of Theorem 4.1

We prove Theorem 4.1. The following is implicit in [16], and actually we have already used

two instances of it in Lemma 4.2.

Lemma 4.3. Let C be an atomless Boolean algebra carrying a normalised submeasure µ and

let a0, a1, ..., an ∈ C+ be a finite partition of C. Let ϕ0, ..., ϕn be normalised submeasures

on Ca0 , ...,Can, respectively. Then C carries a normalised submeasure ϕ such that for each

a ∈ ⋃i Cai ∪ 〈a0, ..., an〉, we have

ϕ(a) =

{
µ(ai)ϕi(a), if i ∈ n+ 1 and a ∈ Cai;

µ(a), otherwise.
(4.2)

Moreover, if the µ and the ϕi take only rational values then so does ϕ.

Proof. Let A = 〈a0, a1, ..., an〉. Define the function f :
⋃n
i=0 Cai ∪ A→ R by

f(a) =

{
µ(ai)ϕi(a), if i ∈ n+ 1 and a ∈ Cai ;

µ(a), otherwise.

Now define ϕ : C→ R by

ϕ(a) = inf{
∑
c∈A

f(c) : A ∈ [
n⋃
i=0

Cai ∪ A]<ω ∧ c ≤
∑

A}. (4.3)

It is straightforward to check that ϕ is a submeasure.

Finally let us observe that the value in (4.3) can always be achieved by a cover from

[
⋃n
i=0 Cai ∪ A]<ω, that is to say, in (4.3) we are actually taking a minimum rather than

an infimum. In particular the submeasure ϕ will be rational valued if µ and the ϕi are. To

obtain the minimum, note that if a ∈ C then a will be a disjoint union of sets ci ∈ Cai and so

if A ∈ [
⋃n
i=0 Cai ∪ A]<ω is a cover of a then we can find another cover A′ ∈ [

⋃n
i=0 Cai ∪ A]<ω

such that the members of A′ are pairwise disjoint, (∀i)(A′ ∩ Cai ∈ {∅, ci}) and∑
c∈A′

f(c) ≤
∑
c∈A

f(c).

Since there are only finitely many such A′ (given a) we are done.

This previous lemma gives rise to the following example.
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4 Forcing with submeasures of a finite domain

Example 4.4. Let B be a measure algebra, a ∈ B \ {0, 1} and µ be the submeasure on B

defined by (∀a ∈ A+)(µ(a) = 1). By Lemma 4.3 we can find a submeasure ϕ on B such that

ϕ � Ba and ϕ � Bac are σ-additive but such that ϕ(a) = ϕ(ac) = 1. It is straightforward to

verify that ϕ is continuous (and not additive).

Now we deal with the density arguments needed for P.

Lemma 4.5. If A is a finite subalgebra of A and µ : A→ [0, 1]∩Q is a normalised submeasure

then there exists an exhaustive submeasure λ : A→ [0, 1] ∩Q extending µ.

Proof. Let a0, ..., an be the atoms of A and for each i ∈ n+1 let ϕi : Aai → Q be a normalised

finitely additive measure (take the Lebesgue measure for example). Let ϕ be the submeasure

promised by Lemma 4.3. To see that ϕ is exhaustive let (bi)i∈ω be a disjoint sequence in A
and fix ε > 0. For each i ∈ n + 1 let Di = {bj ∩ ai : j ∈ ω}. Then each Di is a disjoint

sequence in Aai and so, since each ϕi is exhaustive, we can find an N such that

(∀m ≥ N)(ϕ(bm) = ϕ(
⊔

i∈n+1

bm ∩ ai) ≤
∑
i∈n+1

ϕ(bm ∩ ai) =
∑
i∈n+1

ϕi(bm ∩ ai) ≤ (n+ 1)ε).

Since ε was arbitrary (and n was fixed) we are done.

Lemma 4.6. Let ε ∈ (0, 1] and (ai)i∈ω ⊆ A be a disjoint sequence. Then for any finite

subalgebra A of A and submeasure µ : A → [0, 1] ∩Q, we can find a finite subalgebra C of A
and a submeasure µ′ : C→ [0, 1] ∩Q extending µ, such that for some n ∈ ω we have, an ∈ C

and µ′(an) < ε.

Proof. By Lemma 4.5 we can find an exhaustive submeasure λ : A → [0, 1] ∩ Q extending

µ. Then for some n, λ(an) < ε. Let C be the algebra generated by A ∪ {an} and take

µ′ = λ � C.

If C is a Boolean algebra carrying a normalised submeasure µ : C→ [0, 1] and n ∈ N then we

will say that µ is n-pathological if and only if we can find disjoint a1, ..., an ∈ C such that

(∀i)(µ(ai) = 1).

Lemma 4.7. Let A be a finite subalgebra of A and µ : A→ [0, 1]∩Q a normalised submeasure.

Then for any n ∈ N we can find a finite subalgebra C containing A and an n-pathological

submeasure λ : C→ [0, 1] ∩Q extending µ.

Proof. Let b0, ...., bk be the atoms of A. For each i ∈ k + 1 let bi1, ..., b
i
n be a partition of bi

into non-zero pieces. Let C be the subalgebra of A generated by {bij : i ∈ k+ 1, j ∈ [n]}). For

a ∈ C let

λ(a) = µ(
⋂
{b ∈ C : a ≤ b}). (4.4)

Then λ : A → [0, 1] is a submeasure extending µ. Also if, for l ∈ [n], we let al =
⋃
i∈k+1 b

i
l

then (since al 6∈ A and al intersects each atom of C) λ(al) = 1 and of course the al are

pairwise disjoint.
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4 Forcing with submeasures of a finite domain

Proof of Theorem 4.1. The fact that λ ∈ BR follows by the genericity of G and the fact that

for any p ∈ P and a 6∈ dom(p), we can find q ≤ p such that a ∈ dom(q) (for example, see

(4.4)). It is a normalised submeasure because its restriction to any finite subalgebra of B

is. By Lemma 4.7, for each n ∈ N, the set {p ∈ P : p is n-pathological} is dense in P and

so for each n, we can find an n-pathological p ∈ G. The disjoint sequence that witnesses

this, a1, ..., an, is such that (∀i)(λ(ai) = p(ai) = 1). Thus λ cannot be uniformly exhaustive.

Suppose for a contradiction that for some antichain (ai)i∈ω in M and ε ∈ (0, 1] we have

(∀i)(λ(ai) ≥ ε). By Lemma 4.6 the set D = {p ∈ P : (∃i ∈ N)(ai ∈ p ∧ p(ai) < ε)} is

dense. Thus we can find a p ∈ G ∩ D and an i ∈ ω such that ai ∈ dom(p) ⊆ dom(λ) and

λ(ai) = p(ai) < ε, which is a contradiction.

4.2 Remarks

It is more than likely that a more sophisticated forcing is required to achieve what we want.

However, if we are to stick with the P described in this section there are (at least) two possible

directions one could pursue, which we try to describe here.

The first is to assume that Theorem 4.1 is enough. Notice that since one can always find a

filter that intersects countably many sets (see [23]), Theorem 4.1 is essentially saying that

given countably many antichains of A one can find a submeasure that is not uniformly ex-

haustive but is exhaustive with respect to these antichains. Now then perhaps it is possible

that there exists a countable collection of antichains, such that exhaustivity on this collection

ensures exhaustivity proper. Here is a non-example to illustrate. Given two sequence (ai)i∈ω

and (bi)i∈ω from A, say that (ai)i∈ω → (bi)i∈ω if and only if there exists subsequences (aik)k

and (bjk)k such that for each k we have aik ≤ bjk . Call a collection A of antichains from A
exhaustive if and only if for any antichain a from A we can find b ∈ A such that a → b.

Clearly then if there exists a countable exhaustive collection of antichains then we are done.

This, as would be expected, is not the case.

Lemma 4.8. If A is an exhaustive family of antichains then |A| ≥ ℵ1.

Proof. In what follows, for each antichain a in A, fix an enumeration a = {a(0), a(1), ...}.
We may without loss of generality assume that each antichain in A is maximal. Let A =

{a0, a1, ...}. By maximality of the members of A, for any b ∈ A+ and a ∈ A we can find i ∈ ω
such that b ∩ a(i) 6= 0. In this way we can find an f ∈ ωω such that for each n ∈ ω we have

cn :=
⋂n
i=0 ai(f(i)) 6= 0. If, for some n, we have that m ≥ n→ cn = cm, then every member

of every antichain a in Acn , will be a subset ai(f(i)), for every i. That is

(∀i)(∀j)(a(j) ≤ ai(f(i))). (4.5)

This contradicts the exhaustivity of A. Otherwise, we can find a subsequence (cnk)k∈ω such

that cnk > cnk+1
. We can then take a(k) = cnk \ cnk+1

and reach the same contradiction as

before.

44



4 Forcing with submeasures of a finite domain

The second direction involves assuming that Theorem 4.1 is not enough! In this case one

could try to employ an iteration of some sort. At each stage of the iteration a submeasure

is generated that ‘kills’ the previous antichains, with the aim that at the end of the iteration

all antichains will have been taken care of (much like the proof of the consistency of Mar-

tin’s Axiom, as described in [23]). The problem here is one of taking limits of submeasures

where as of yet we have no control over the coherence of these submeasures. This is not a

new observation, since it is evident from Talagrand’s construction that the limit process of

submeasures is indeed an important one with regards to Maharam’s problem. Indeed, it was

a limit argument that motivated the definition of uniform exhaustivity in the first place (see

[32, Page 102]). To illustrate consider the following straightforward lemma.

Lemma 4.9. If B is a Boolean algebra carrying a collection of normalised submeasures

(ϕi)i∈ω such that for every a ∈ B the limit ϕ(a) = limi ϕi(a) exists then ϕ defines a normalised

submeasure.6

In particular, suppose that at each (successor) stage of the above described iteration the

submeasure added is dominated by the previous one. At limit stage one could just take the

pointwise infimum of the previous submeasures to obtain a submeasure that is exhaustive

with respect to all the antichains that have already appeared (since it is dominated by all

the submeasures that have already been constructed). Unfortunately, there seems to be no

guarantee that this submeasure will not become uniformly exhaustive. Notice that although

we are in fact dealing with the Cohen forcing, it is perfectly plausible that a new submeasure

may be dominated by an old one. This is of course in contrast to members of ω2 where the

Cohen real added cannot be dominated by a ground model real. Indeed all submeasures will

be dominated by the submeasure that takes the value 1 everywhere but on the empty set,

and this is of course in the ground model.

If we are to attempt the above procedure, we must make sure that the submeasures added

are not superpathological. A submeasure is superpathological if it does not dominate a

non-zero exhaustive submeasure. Superpathological submeasures have been constructed in

[32, Example 3]. One possible way to ensure that the added submeasures are not super-

pathological is to fix a finitely additive measure in the ground model and to see to it that

any newly constructed submeasures lie above it. Notice that a finitely additive measure will

stay finitely additive (and therefore exhaustive) in any forcing extension. One could take the

Lebesgue measure which has the added benefit of being rational valued. Thus we are lead to

the following two problems.

Question 4.10. Given a sequence ϕi ≥ ϕi+1 of normalised submeasures under what condi-

tions can we ensure that limi ϕi is not uniformly exhaustive?

Question 4.11. Suppose we have a finite subalgebra A of A, a submeasure ϕ on A, a finitely

additive submeasure λ on A and a submeasure µ on A that is not uniformly exhaustive.

6Notice that this can be seen as a ‘weak∗ convergence’ for submeasures. We are not aware of any integration
theory for submeasures to really call it weak∗ convergence.
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4 Forcing with submeasures of a finite domain

Suppose also that λ ≤ ϕ ≤ µ and λ ≤ µ. Can we, for each n ∈ N, extend ϕ to an exhaustive

n-pathological submeasure ϕn on A such that λ ≤ ϕn ≤ µ?

A positive answer to Question 4.11 would allow us to obtain the required decreasing sequence

of submeasures. The obvious way to tackle Question 4.10 is to fix from the outset a collection

of partitions a1, a2, ... of B such that |ai| ≥ n and to see to it that each ϕi is n-pathological

witnessed by an. The methods employed in the proof of Theorem 4.1 do not allow us to do

this.
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5 Talagrand’s ideal

5 Talagrand’s ideal

The main result of this section is that in any forcing extension corresponding to Talagrand’s

submeasure ν, the collection of random reals will be ν-null, once ν has been computed in this

extension. This is proved in Subsection 5.1 where the reader will also find a more precise

statement of the above (Theorem 5.2). This is related to the problem of whether or not this

forcing actually adds a random real, which we have already mentioned in the introduction,

but has also been raised in the literature a number of times (see [7, Question 12], [10, Problem

3A], [36, Question 3]).

In Subsection 5.2 we give a proof that in any forcing extension due to ν, the set of ground

model reals will be both Lebesgue null and meagre (Theorem 5.7). This result actually fol-

lows from the results of [8], where it is shown that the σ-ideal of Lebesgue null sets, is the

only analytic on Gδ ideal that does not force the ground model reals to be Lebesgue null.

Similarly, the σ-ideal of meagre sets is the only analytic on Gδ ideal that does not force the

ground model reals to be meagre. We show that the σ-ideal corresponding to ν is indeed

analytic on Gδ (see Proposition 5.10). The main ingredient of the proof given here is the

result proved by Fremlin, that ν is invariant under the action of the isometry group of T
(Proposition 5.11). The rest then follows [24].

5.1 Random reals are ν-null

We work in the context of Subsection 2.5, in particular T is the product space
∏
i∈N[2i],

T = Clopen(T ) and ν : T → R is Talagrand’s submeasure. We may extend ν to a σ-

subadditive submeasure on P(T ) by

ν(A) = inf{
∑
i∈N

ν(Ai) : Ai ∈ T ∧A ⊆
⋃
i∈N

Ai} (5.1)

where the restriction of ν to Borel(T ) is a continuous submeasure (by Lemma 3.9 and Proposi-

tion 2.24). This extension remains pathological, since any non-trivial finitely additive measure

dominated by this extension, will restrict to one dominated by ν on T. Let

path = {A ∈ P(T ) : ν(A) = 0}.

For the rest of this subsection fix a countable transitive model M of ZFC and U ∈ M such

that, in M , U is a non-principal ultrafilter. By νM we mean Talagrand’s submeasure as

defined in M and with respect to U . By pathM we mean the collection (in M) of νM -null

sets. We will also denote the complete Boolean algebra Borel(T )/path, as computed in M ,

by pathM . By N we mean either a countable transitive model of ZFC such that M ⊆ N or

V itself. By νN we mean ν as defined in N with respect to any non-principal ultrafilter V (in

N) such that U ⊆ V. Such an ultrafilter exists since U will always have the finite intersection

property and will not contain any finite sets, and so any non-principal extension will do. We

do not know if different ultrafilters produce different ideals, nevertheless, the choice of the
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5 Talagrand’s ideal

ultrafilter here will not matter. We let pathN denote the collection of νN -null sets. If V is

any non-principal ultrafilter over N we let νV be Talagrand’s submeasure defined with respect

to the ultrafilter V.

Given a subset A of BC let R(A) = {f ∈ T : (∀c ∈ A)(Ac ∈ null → f 6∈ Ac)} and

C(A) = {f ∈ T : (∀c ∈ A)(Ac ∈ meagre→ f 6∈ Ac)}. If H is a countable transitive model of

ZFC then R(BC∩H) is just the collection of random reals over H and similarly C(BC∩H)

is just the collection of Cohen reals over H. We prove the following.

Theorem 5.1. Let G be a pathM -generic filter over M . Then in M [G] we have

(∀V)((V is a non-principal ultrafilter on N ∧ U ⊆ V)→ νV(R(BC ∩M) ∪ C(BC ∩M)) = 0).

We state the following related question which is asking if the ground model reals become

ν-null.

Question 5.2. path  (∀V)((V is a non-principal ultrafilter on N ∧ U ⊆ V)→ νV(Ť ) = 0)?

Notice that the corresponding result for random and Cohen reals requires a Fubini property

for these ideals (see [3, Theorem 3.2.39] and [24, Theorem 3.22]), which we do not have for

path (see [7, Theorem 7]).

Towards a proof of Theorem 5.1 we first state the following result due to Christensen.

Theorem 5.3. ([4, Theorem 2]) If B is a Boolean algebra, µ : B→ [0, 1] is a pathological

submeasure and λ : B→ [0, 1] is finitely additive then

inf{µ(A) + λ(Ac) : A ∈ B} = 0

In [24] two σ-ideals I and J on P(T ) are called dual if and only if there exists a Borel set

A such that A ∈ I and T \A ∈ J .

Corollary 5.4. If B is a σ-complete Boolean algebra, µ : B→ [0, 1] is a continuous patho-

logical submeasure and λ : B → [0, 1] is a σ-additive measure then there exists A ∈ B such

that

µ(A) = 0 = λ(Ac).

In particular, the ideals null and path are dual.

Proof. Let (An)n∈N be a sequence such that µ(An), λ(Acn) ≤ 2−n. By continuity if we set

A =
⋂
k∈N

⋃
n≥k An we have that µ(A) = 0. But

λ(Ac) = λ(
⋃
k∈N

⋂
n≥k

Acn).

Now for each k, λ(
⋂
n≥k A

c
n) ≤ λ(Acn) ≤ 2−n → 0, n → ∞. By continuity of λ then

λ(Ac) = 0.
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To gain some control on the ν-null sets in a forcing extension of pathM , we have the following.

Proposition 5.5. If c ∈ BC∩M then νM (AMc ) ≥ νN (ANc ). In particular for any c ∈ BC∩M ,

if Ac ∩M ∈ pathM then Ac ∩N ∈ pathN .

Proof. Let T ∗ be the collection
⋃
I∈[N]<ω

∏
n∈I [2

n]. Let φ1(f, τ) be the formula

τ ∈ T ∗ ∧ f ∈ T ∧ (∀n ∈ dom(τ))(f(n) 6= τ(n)))

Of course

f ∈
⋂

n∈dom(τ)

Sn,τ(n) ↔ φ1(f, τ).

Since T ∗M = T ∗ and T M = T ∩M , we have

(∀τ)(∀f ∈M)(φ1(f, τ)↔ φM1 (f, τ)).

So if τ ∈ T ∗

(
⋂
n∈I

Sn,τ(n))
M = {f : φ1(f, τ)}M = {f ∈M : φM1 (f, τ)} =

⋂
n∈I

Sn,τ(n) ∩M. (5.2)

Let φ2(x) be the formula

x is a function ∧ dom(x) = 3 ∧ (∃τ ∈ T ∗)(∃k)(x(0) =
⋂

n∈dom(τ)

Sn,τ(n)

∧ x(1) = |τ | ∧ x(2) =

(
η(k)

|τ |

)α(k)

).

Of course

φ2(X)↔ X ∈ D.

By this and (5.2) we see that

DM = {(A ∩M, I,w) : (A, I, w) ∈ D}. (5.3)

Note that the sequences (η(k))k∈N and (α(k))k∈N are in M .

Now we follow the proof of Proposition 5.11 (below) and proceed by downwards induction.

Let [k, p] be the statement that

(CMk,p = {(AM , I, w) : (AM , I, w) ∈ Ck,p}) ∧ (∀A ∈ T)(ψMCk,p(A
M ) = ψNCk,p(A

N )).

We show that for each k ≤ p the statement [k, p] holds. First we show that ψMD (AM ) =

ψND (AN ), this along with (5.3) will prove [p, p]. Suppose ψMD (AM ) < η, for some η ∈ Q>0.

Then we can find {(Xi∩M, Ii, wi) : i ∈ [N ]} ⊆ DM such that AM = A∩M ⊆ ⋃i∈[N ]Xi∩M =

(
⋃
i∈[N ]Xi)

M and
∑

i∈[N ]wi < η. Thus {(Xi ∩N, Ii, wi) : i ∈ I} ⊆ DN witnesses ψND (A) < η.

The other direction is the same but just using the fact that if {(Xi ∩N, Ii, wi) : i ∈ I} ⊆ DN
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then {(Xi ∩M, Ii, wi) : i ∈ I} ⊆ DM .

Suppose now for some [k + 1, p] holds. By [k + 1, p], for every s ∈ T ∗ and B ∈ T, we

have

ψMk+1,p((π
−1
[s] (B))M ) = ψNk+1,p((π

−1
[s] (B))N ),

from which it follows that

(∀X ∈ T)( X ∩M is (I, ψMk+1,p)-thin if and only if X ∩N is (I, ψNk+1,p)-thin).

From this, arguing as in the case for [p, p], we obtain [k, p].

Finally, since U ⊆ V, we have for each k ∈ N:

(?) If (X ∩M, I,w) ∈ EMk then (X ∩N, I, w) ∈ ENk ,

where of course EMk = {(X, I, w) : {p : (X, I, p) ∈ CMk,p} ∈ U} and ENk = {(X, I, w) : {p :

(X, I, p) ∈ CNk,p} ∈ V}. This completes the proof.

Proof of Theorem 5.1. Since, in M , the ideals path and null are dual, we can find c, d ∈
BC ∩M such that that Ac ∩M ∈ nullM and Ad ∩M = T \ Ac ∩M ∈ pathM . Let G be a

path-generic filter over M . In M [G], if f ∈ R(BC∩M) then f 66∈ Ac so that R(BC∩M) ⊆ Ad.
But by Proposition 5.5 we know that, since Ad ∩M ∈ pathM , for any appropriate V we have

ν
M [G]
V (Ad ∩M [G]) = 0. The same proof works for meagre (using Lemma 5.14, below), but of

course we can use the fact that Borel(T )/path is a Maharam algebra and therefore cannot

add any Cohen reals (Fact 2.34).

Finally, let us comment on the absoluteness of the above ideals.

Definition 5.6 ([24]). An ideal I ⊆ P(T ) is called absolute if and only if there exists a

formula, in the language of set theory, φ(x) such that I = {x ∈ P(T ) : φ(x)} and (∀c ∈
BC ∩M)(φ(Ac)↔ (φ(Ac))

M ), for every countable transitive model M of ZFC).

Both meagre and null are absolute (see [24]). With regards to the absoluteness of path, the

problem is that the ideal path is defined in terms of a non-principal ultrafilter on N, which

of course is not absolute. Thus we can find an (absolute) formula φ(x, y) such that for some

non-principal ultrafilter U on N

path = {A ⊆ P(T ) : φ(A,U)}.

We remark that by [35], if N is a forcing extension of M due to pathM then V, being maximal,

contains a splitting real over M . In particular V will contain a subset of N that does not

contain (as a subset) any member of U . Thus with regards to (?), in the proof of Proposition

5.5, we see that EMk will be strictly smaller than ENk , this suggests that we do not have

nullN = nullM . On the other hand, Fremlin has asked whether or not these ultrafilters

could be replaced by actual converging sequences ([10, Problem 3B]). If this is indeed the

case then it would follow that path is absolute.
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5.2 The ground model reals are Lebesgue null and meagre

We prove the following.

Theorem 5.7. path  Ť ∈ ˙meagre ∩ ˙null.

Recall that a set is analytic if and only if it is the continuous image of a Borel set (see [18,

Chapter 11]). Given a set A ⊆ T × T , for x ∈ T , we define

Ax = {y ∈ T : (x, y) ∈ A}.

An ideal I on Borel(T ) is called analytic on Gδ if and only if for every Gδ set A ⊆ T × T ,

the set {x : Ax ∈ I} is analytic. As we have already remarked, Theorem 5.7 actually follows

from [8], since path is analytic on Gδ. To see this we have Proposition 5.10, below. But first

we recall the following.

Definition 5.8. ([6, Page 116]) Given two sets X and Y and two σ-algebras A ⊆ P(X)

and B ⊆ P(Y ), a function f : X → Y is called (A,B)-measurable if and only if

(∀B ∈ B)(f−1(B) ∈ A).

Theorem 5.9. ([6, Pages 123 and 125]) Let X be a set and A ⊆ P(X) be a σ-algebra.

Suppose that for each n ∈ N we have an (A,Borel(R))-measurable map fn : X → R, and in

addition, for each x ∈ X the limit limn fn(x) exists. Then the map

X 7→ R : x 7→ lim
n
fn(x)

is (A,Borel(R))-measurable.

In what follows call a map f : T → R measurable if and only if it is (Borel(T ),Borel(R))-

measurable. The following should be compared to [20, Theorem 17.25].

Proposition 5.10. Let µ : Borel(T ) → R be a Maharam submeasure. Then for each Borel

set A ⊆ T × T , the map

x 7→ µ(Ax)

is measurable. In particular, by considering the preimage of {0}, the ideal Null(µ) is analytic

on Gδ (in fact Borel on Borel).

Proof. For concreteness first recall the Borel hierarchy on T × T (see [18, Page 140]). Let

Σ0
1 be the collection of all open sets in T × T , and let Π0

1 be the collection of all closed sets

in T × T . If α < ω1 and Σ0
β and Π0

β have been defined for each β < α, then we let Σ0
α be

the collection of all countable unions of sets from
⋃
β<α Π0

β. We let Π0
α be the collection of

all countable intersections of sets from
⋃
β<α Σ0

β. Then we have

Borel(T × T ) =
⋃
α<ω1

Σ0
α =

⋃
α<ω1

Π0
α.
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5 Talagrand’s ideal

Each Σ0
α and Π0

α is closed under finite intersections and finite unions, and we also have

Π0
β ⊆ Π0

α and Σ0
β ⊆ Σ0

α, for each β ≤ α < ω1

Now fix a Maharam submeasure µ on Borel(T ). Given A ∈ Borel(T × T ), let [A] be the

statement:

The map T → T : x 7→ µ(Ax) is measurable.

We claim that, if R ⊆ Borel(T × T ) is such that (∀A ∈ R)([A]) and R is closed under finite

intersections, then

(∀(Ai)i∈N ⊆ R)([
⋂
i

Ai]).

Indeed, let (Ai)i∈N be a sequence from R and let A =
⋂
iAi. Since R is closed under finite

intersections, we may assume that Ai ⊇ Ai+1, for each i. Let f : T → R be the map

x 7→ µ(Ax) and, for each n ∈ N, let fn : T → R be the map

x 7→ µ((An)x).

By the monotonicity of µ, we have that f1(x) ≥ f2(x) ≥ · · · , and since µ is Maharam we

have

f(x) = lim
n
fn(x).

By Theorem 5.9, since (∀i)([Ai]) holds and therefore each fi is measurable, we must have

[
⋂
iAi]. The same argument shows that, if R ⊆ Borel(T × T ) is such that (∀A ∈ R)([A])

and R is closed under finite unions, then

(∀(Ai)i∈N ⊆ R)([
⋃
i

Ai]).

Let us now show that [A] holds for each open set A of T ×T . If A =
⋃
i∈[n][si]× [ti] ⊆ T ×T ,

for some finite sequences si and ti, then for each x ∈ T and function µ : Borel(T ) → R we

have

µ(Ax) = µ(
⋃
{[ti] : i ∈ [n] ∧ x ∈ [si]}).

From this it is straightforward to see that the map x 7→ µ(Ax) is continuous (and so mea-

surable). Now suppose A is an open set in T × T . Then we can find finite sequences (si)i∈N

and (ti)i∈N such that A =
⋃
i∈N[si]× [ti]. For each n, let An =

⋃
i∈[n][si]× [ti]. Then, by the

above applied to R := {An : n ∈ N}, we see that [A] holds.

Thus we can now work our way up the Borel hierarchy.7 Since for each A ∈ Σ0
1 we have [A],

and Σ0
1 is closed under finite intersections, we know (by the above arguments) that [A] holds,

for each A ∈ Π0
1. Proceeding in this way along ω1, we see that (∀A ∈ Borel(T × T ))([A]),

and we are done.

7Professor G. Plebanek has pointed out to me that at this point we may apply the Monotone Class Theorem
(see [15, Theorem 6B]), and by doing so avoid any commentary on the Borel hierarchy.
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5 Talagrand’s ideal

The proof of Theorem 5.7 here uses the following.

Proposition 5.11. ([10, Proposition N]) If g is a bijective isometry of T then

(∀E ∈ T)(ν(g[E]) = ν(E)).

We remark that in [10], Fremlin has made some modifications to the definitions found in [33].

It is not clear to us that Proposition 5.11 is valid for Talagrand’s construction as it appears

in [33]. It is clear that the result holds true if one considers only isometries that are pointwise

defined by permutations of the sets [2n].8 It is not difficult to find other bijective isometries

(see, for example, Remark 7.33). This is enough for our purposes.

Clearly, from (5.1), this invariance lifts to P(T ) and in particular we have

(∀A ∈ Borel(T ))(∀f ∈ T )(ν(A+ f) = ν(A)).

This is actually saying that path is 0-1-invariant according to [24]. The same is true for

meagre and null (again see [24]).

We will also need the following, which is just the observation that Theorem 3.20 from [24]

goes through without the absoluteness for the ideal that one is forcing with.

Theorem 5.12. Let J be a 0-1-invariant absolute ideal on T . Let M be a countable transitive

model of ZFC and consider pathM as in the previous subsection. Let G be pathM -generic

over M . If (pathM and J are dual)M then (T ∩M ∈ J )M [G].

We prove Theorem 5.12 at the end of this subsection, but from this and Corollary 5.4, we

may already conclude that

path  Ť ∈ ˙null. (5.4)

Let us now show that the ideals meagre and path are also dual.

Lemma 5.13. For every A ∈ Borel(T ) \ path there exists B ∈ (Borel(T ) ∩ meagre) \ path
such that B ⊆ A.

Proof. Suppose that for some A ∈ Borel(T )\path we have Borel(T )∩meagre∩P(A) ⊆ path.

Let ṙ be a name, via Propositions 2.29 and 2.30, such that

path  (∀c ∈ B̌C)(Ȧc ∩ Ť ∈ ˇpath→ ṙ 6∈ Ac) (5.5)

(i.e. ṙ is the name determined by path). We claim that

A  ṙ is a Cohen real. (5.6)

8That is, isometries F : T → T , such that for some sequence of permutations hn : [2n] → [2n] we have
F (f)(n) = hn(f(n)).
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If not then for some B ⊆ A and some c ∈ BC with Ac ∈ meagre we have B  ṙ ∈ Ac. If

d ∈ BC is such that B = Ad then B  ṙ ∈ Ad ∩Ac. Let e ∈ BC be such that Ae = Ac ∩ Ad.
But then

Ac ∩Ad ∈ Borel(T ) ∩ meagre ∩ P(A) ⊆ path.

In particular B  Ǎe ∈ path ∧ ṙ ∈ Ae, which contradicts (5.5). Thus (5.6) holds which

contradicts the fact that path  ‘there are no Cohen reals over M ’ (Fact 2.34).

Lemma 5.14. The ideals path and meagre are dual.

Proof. Use Lemma 5.13 to find for each A ∈ Borel(T )\path a meagre Borel set Γ(A) 6∈ path

such that Γ(A) ⊆ A. Let B1 = Γ(T ). If Bβ for β < α < ω1 has been constructed let

Bα =

{
Γ(T \ (

⋃
β<αBβ)), if T \ (

⋃
β<αBβ) 6∈ path

∅, otherwise

Since Borel(T )/path is ccc (Fact 2.14), we know that B := {Bα : α < ω1 ∧ Bα 6∈ path} is

countable. Thus T \⋃B ∈ path and
⋃
B ∈ meagre, since each Bα ∈ meagre.

By Lemma 5.14 and Theorem 5.12 we obtain

path  Ť ∈ ˙meagre, (5.7)

which, along with (5.4), proves Theorem 5.7.

Proof of Theorem 5.12. Let c ∈ BC∩M be such that Ac∩M ∈ JM and (T \Ac)∩M ∈ pathM .

Let F = ṙG ∈M [G] be the generic real determined pathM (as outlined in Subsection 2.6.2).

Let

B = Ac ∩M [G]− F := {f − F : f ∈ Ac ∩M [G]}.

Since J is 0-1 invariant and absolute, B ∈ JM [G]. Let d ∈ BC∩M [G] be such that, in M [G],

Ad = B. We claim that we have T ∩M ⊆ Ad ∩M . Indeed, let h ∈ T ∩M . In M , we can

find a Borel code e such that Ae = (T \Ac)− h = T \ (Ac− h). Since pathM is 0-1 invariant

we know that Ae ∩M ∈ pathM . Thus in M [G], F 6∈ T \ (Ac − h) and so F ∈ Ac − h. By

definition it follows that h ∈ B.
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6 Talagrand’s ψ

This section is motivated by the fact that the values the Lebesgue measure λ takes on

Clopen(2ω) are easily calculable. Indeed, if A ∈ Clopen(2ω) then we know that for some

n ∈ ω we have

λ(A) = |{s ∈ n2 : [s] ⊆ A}| · 2−n.

Many results about Cohen and random reals rely on the fact that Cohen forcing has a very

transparent tree representation (see for example [7]) and that the Lebesgue measure is easily

calculable (see for example [3, Section 2.5.A]). With the forcing associated to Talagrand’s

construction one does not, yet, have either; a nice tree representation or any control over the

defining submeasure.

We would like to know if it is possible to find an explicit description of Talagrand’s submea-

sure analogous to the one we have for the Lebesgue measure. Actually we do not consider

Talagrand’s submeasure at all since we did not get so far. Instead, and as a start, we attempt

to calculate explicit values for the first (pathological) submeasure constructed in [33], this is

the submeasure denoted by ψ in Subsection 2.5 (and in [33]). We remark that in [33] the

value η(k) was set to 22k+102(k+5)4(23 + 2k+52(k+4)4). As pointed out by Talagrand anything

larger will do (see [31, Page 8]), so for simplicity we take the value

η(k) = 22500k4

(see Inequality 1, on page 62). We start by trying to measure the entire space and in

Subsection 6.1 we show that

ψ(T ) = η(1)α(1) = 2
2500
216

(see (6.6)). In Subsection 6.2 we try to measure sets of the form [s], for s ∈ ∏n∈I [2
n] and

I ∈ [N]<ω. We show that

ψ([s]) = min{2−δ(|I|)+1, 2−δ(|I|)
(
η(δ(|I|))
|I|

)α(δ(|I|))
},

where δ(m) = min{n ∈ N : η(n) ≥ m} (see (6.8)). We were unable to measure more compli-

cated sets.

Subsection 6.3 consolidates certain inequalities that we will call upon throughout.

Finally let us introduce a diagram which might be helpful to the reader, and which was

certainly how we arrived at most (if not all) of what follows in this section. We will not men-

tion them again and so the uninterested reader need only pay attention to the next definition

before moving on.

Definition 6.1. For X ∈ T we say that X is a D-set if and only if for some (non-empty)
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6 Talagrand’s ψ

finite set I ⊆ N and some τ ∈∏n∈I [2
n] we have

X =
⋂
n∈I
{y ∈ T : (∀n ∈ I)(y(n) 6= τ(n)}) =

⋂
n∈I

Sn,τ(n).

Since we can recover I and τ from X we allow ourselves to denote I by XInd and τ(n) by

X(n).

If X = {X1, ..., Xn} is a collection of D-sets then we may represent X by a diagram as follows.

We first consider the grid I ×⋃n
i=1X

Ind
i and then place a mark on each point (i,m) of our

grid such that m ∈ XInd
i . As an example suppose, in the above, that n = 5 and

XInd
1 = {3, 11}, XInd

2 = {2, 5}, XInd
3 = {3, 5, 7}, XInd

4 = {7}, XInd
5 = {7}.

Then X can be represented by:

•

•

•

•
•
•
• • •

1 2 3 4 5
2

3

5

7

11

Of course these diagrams do not tell us anything about the particular values Xi(l), but these

particular values won’t matter. What will matter is whether these values are constant or all

distinct across each row of our diagram. For example suppose in the above diagram we know

that X3(7) = X4(7) = X5(7) (so X is constant across row 7). Then we can very quickly spot

from this:

EQUAL

•

•

•

•
•
•
• • •

1 2 3 4 5
2

3

5

7

11

that
⋃
iXi is not a cover of T . This is because for any s ∈ T such that s(3) = X1(3),

s(5) = X2(5) and s(7) = X3(7) = X4(7) = X5(7), the sequence s will not be a member of⋃
iXi.

6.1 Measuring the entire space

We begin with with the following natural definition.

Definition 6.2. Let A ⊆ T , X a collection of D-sets and Y ∈ [D]<ω. We say that X (resp.

Y ) is a cover of A if and only if A ⊆ ⋃X (resp. A ⊆ ⋃Y ). We say that X (resp. Y ) is a

proper cover of A if and only if it is a cover of A and for any X ′ ( X (resp. Y ′ ( Y )

A 6⊆
⋃
X ′(resp. A 6⊆ ⋃Y ′).
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6 Talagrand’s ψ

Clearly then given A ⊆ T we have

ψ(A) = inf{w(X) : X ⊆ D and X properly covers A}. (6.1)

The idea of this subsection (and indeed the rest of this section) is as follows. For each proper

cover X of T we find another cover Y of T of lower weight, where the Y here will have a

very regular structure (it will be a rectangle) and so will have an easily calculable weight. Of

course it will be sufficient to consider the infimum over all such regular structures.

Definition 6.3. For any n ∈ N let

δ(n) = min{k ∈ N : η(k) ≥ n}

and

w(n) = 2−δ(n)

(
η(δ(n))

n

)α(δ(n))

.

If X is a finite collection of D-sets then we will denote the weight of X by

w(X) =
∑
Y ∈X

w(|Y Ind|).9

By Inequality 2 (page 63), we see that if X is a D-set then w(|I(X)|) will be the least weight

that we can possibly attach to it. Specifically, we will always have (X, I(X), w(|I(X)|)) ∈ D
and, if (X, I(X), w) ∈ D then w ≥ w(|I(X)|).

Here is the regular structure we mentioned above.

Definition 6.4. Let X = {Xi : i ∈ I} be a collection of D-sets. We call X an N-rectangle

for some integer N ≥ 2 if and only if the following hold:

• |I| = N ;

• XInd
i = XInd

j for all i, j ∈ I;

• Xi(m) 6= Xj(m), whenever i 6= j and m ∈ XInd
i ;

• |XInd
i | = N − 1 for all (any) i ∈ I.

Notice that the weight of an N -rectangle is given by

N · w(N − 1). (6.2)

Rectangles give rise to proper covers of T :

Lemma 6.5. If X := {Xi : i ∈ I} is an N -rectangle then X is a proper cover of T .

9We now are using the term weight for D-sets and members of D, but with two different meanings.
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6 Talagrand’s ψ

Proof. Assume that x ∈ T \ ⋃iXi. Then for each i we can find an mi ∈ XInd
i such that

x(mi) = Xi(mi). These mi must be distinct for if i 6= j and m := mi = mj , then Xi(m) =

x(m) = Xj(m), contradicting the third item from Definition 6.4. But then {m1, ...,mN} ⊆
XInd
i , for some i, a (cardinality) contradiction. To see that this cover is proper let J be

a non-empty strict subset of {1, 2, ..., N}. Then |J | ≤ N − 1 = |XInd
i |, for each i ∈ J .

Enumerate

J = {a1, a2, ..., ak}.

Inductively, choose b1 ∈ XInd
a1 , b2 ∈ XInd

a2 \{b2}, b3 ∈ XInd
a3 \{b1, b2}, ..., bk ∈ XInd

ak
\{b1, ..., bk−1}.

Now define y ∈∏i∈J [2bi ] by

yi =

{
Xai(bi), if i ∈ {b1, ..., bk};

1, if i 6∈ J .

and note that y ∈ T \⋃i∈J Xi.

Given a proper cover of T we claim that we can find an N -rectangle of lower weight. Before

we can demonstrate this we need one more claim.

Lemma 6.6. Let X = {Xi : i ∈ I} be a collection of D-sets that properly covers T . Then

|
⋃
i∈I

XInd
i | ≤ |I| − 1.

Proof. For each i ∈ I let Ii = XInd
i . Recall that a complete system of distinct representatives

for {Ii : i ∈ I} (a CDR) is an injective function F : I → ⋃
i∈I Ii such that (∀i ∈ I)(F (i) ∈ Ii),

and that by Hall’s marriage theorem a CDR exists if and only if

(∀J ⊆ I)(|J | ≤ |
⋃
i∈J

Ii|),

see [14]. Clearly if a CDR existed for {Ii : i ∈ I} then
⋃
i∈I Xi would not cover T (just argue

as in the proof of Lemma 6.5). So for some J ⊆ I we have |⋃i∈J Ii| ≤ |J | − 1. Assume that

|J | is as large as possible so that

(J ′ ⊆ I ∧ |J ′| > |J |)→ (|J ′| ≤ |
⋃
i∈J ′

Ii|). (6.3)

If J = I then we are done. So we may assume that J ( I. Since X is a proper cover of

T there exists t ∈ T such that t 6∈ ⋃i∈J Xi. For i ∈ I \ J let I ′i = Ii \
⋃
j∈J Ii. Suppose

that {I ′i : i ∈ I \ J} has a CDR F : I \ J → ⋃
i∈I\J I

′
i. Let s ∈ ∏k∈ran(F )[2

k] be defined by

s(k) = XF−1(k)(k). Then the function (t \ {(k, t(k)) : k ∈ ran(F )}) ∪ s 6∈ ⋃i∈I Xi, which is a

contradiction. Thus no such CDR can exist and so by Hall’s theorem again, we may find a

J ′ ⊆ I \ J such that |⋃i∈J ′ I
′
i| ≤ |J ′| − 1. But then

|
⋃

i∈J∪J ′
Ii| = |

⋃
i∈J

Ii ∪
⋃
i∈J ′

I ′i| ≤ |J | − 1 + |J ′| − 1 ≤ |J |+ |J ′| − 1 = |J ∪ J ′| − 1.
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But |J ∪ J ′| > |J |, contradicting (6.3).

Proposition 6.7. For every proper cover of T there exists an N -rectangle of lower weight.

Proof. Let X = {(X, Ii, wi) : i ∈ [M ]} is a proper cover of T and assume that I1 is such that

(∀i ∈ [M ])(w(|I1|) ≤ w(|Ii|)). By Lemma 6.6 we have

(∀i)(|Ii|+ 1 ≤ |
⋃
i∈[N ]

Ii|+ 1 ≤M). (6.4)

So if Y is an |I1|+ 1-rectangle we get:

w(X) ≥
∑
i∈[M ]

w(|Ii|) ≥Mw(|I1|) ≥ (|I1|+ 1)w(|I1|)
(6.2)
= w(Y ).

Thus we have

ψ(T ) = inf{w(X) : X is an N -rectangle, for some N}. (6.5)

But by Inequality 6 (page 64) we see that ψ(T ) is just the weight of a 2-rectangle, that is to

say,

ψ(T ) = η(1)α(1). (6.6)

6.2 Measuring an atom

Throughout this subsection fix a non-empty finite subset I of N and an τ ∈∏i∈I [2
i]. In this

subsection we try to measure A := [τ ].

Note that as in the previous subsection

ψ(A) = inf{w(X) : X ⊆ D is a proper cover of A}.

The idea here is the same as before but instead of rectangles we use the following analogue

of Definition 6.4 and also Definition 6.11, below.

Definition 6.8. Let X := {Xi : i ∈ I} be a collection of D-sets. We call X a (J, S,N)-

rectangle for some non-empty finite subset J of N, S ⊆∏j∈J [2j ] and integer N ≥ 2 if and

only if the following hold:

• J ( XInd
i , always;

• {⋂l∈XInd
i \J Sl,Xi(l) : i ∈ I} is an N -rectangle;

• (∀s ∈ S)(∀i ∈ I)(∀j ∈ J)(Xi(j) 6= s(j)).

In the case that S = {s}, we shall call X a (J, s,N)-rectangle.
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For example, in the case that J = [m], for some m ∈ N, this new type of rectangle is just an

old rectangle with m rows attached to the bottom (most likely with a gap) where the values

of the determining sequences along these rows miss the corresponding values of s.

Of course the weight of a (J, s,N)-rectangle is given by

N · w(|J |+N − 1)

Lemma 6.9. Every (I, τ,N)-rectangle covers A.

Proof. Let X = {Xi : i ∈ I} be an (I, τ,N)-rectangle, as in the above statement. Assume

that we can find a y ∈ A \⋃X. The assumption that y 6∈ X cannot be witnessed by y(i) for

some i ∈ I since for each such i, we have y(i) = τ(i) 6= Xj(i), for each j ∈ I. In particular

y witnesses that Y = {⋂l∈XInd
i \I Sl,Xi(l) : i ∈ I} does not cover T , which contradicts Lemma

6.5 and the fact that Y is an N -rectangle.

Next we see how to use Lemma 6.6 in this new situation and adapt what we have already

done with ψ(T ) to ψ(A) (compare (6.4) above, and (6.10) below).

Lemma 6.10. If X = {Xi : i ∈ I} is a proper cover of A such that (∀i ∈ I)(XInd
i \ I 6= 0)

then {⋂l∈XInd
i \I Sl,Xi(l) : i ∈ I} is a proper cover of T

Proof. For each i ∈ I, let Ii = XInd
i . Let X ′i =

⋂
l∈Ii\I Sl,Xi(l) and lets show that Y := {X ′i :

i ∈ I} is a cover of T . Suppose not and let x ∈ T \⋃Y . Thus for every i ∈ I there exists

an mi ∈ XInd
i \ I such that x(mi) = Xi(mi). Let y ∈ A be such that y(j) = x(j), for each

j ∈ {mi : i ∈ I}. Then it is straightforward to see that y 6∈ ⋃X, which contradicts the

assumption that X is a cover of A. Suppose now that Y is not proper. Then there exists

I ′ ( I such that {X ′i : i ∈ I ′} is a cover of T . But then {Xi : i ∈ I ′} is a cover of A,

contradicting the properness of X.

Definition 6.11. A D-set X is a (I, S, J)-spike for some non-empty finite subset I of N,

S ⊆∏j∈I [2
j ] and J ⊆ I if and only if X is of the form

X =
⋂
j∈J

Sj,t(j) (6.7)

such that t ∈∏j∈J [2j ] and (∀s ∈ S)(∀j ∈ J)(t(j) 6= s(j)). In the case that S = {s}, we shall

call X an (I, s, J)-spike.

Of course, every (I, τ, J)-spike covers A.

Proposition 6.12. For every proper cover of A there exists an (I, τ, J)-spike of lower weight.

Assuming this for now we obtain

ψ(A) = min{w(X) : X is an (I, τ, J)-spike for some J ⊆ I}
= min{2−δ(|I|)+1, w(|I|)}. (6.8)
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Proof of Lemma 6.12. Let X = {(Xi, Ii, wi) : i ∈ [N ]} be a proper cover of A and let m = |I|.
If there exists i ∈ [N ] such that |Ii| ≤ m then any (I, τ, J)-spike such that |J | = |Ii| will have

a lower weight than X and will cover A and we will be done. So we may assume that

(∀i ∈ [N ])(|Ii| > m). (6.9)

By Lemma 6.10 and Lemma 6.6 we get

(∀i ∈ [N ])(|Ii| ≤ N +m− 1). (6.10)

We now divide the proof into the following cases.

• δ(N +m− 1) = 1. Then

w(X) ≥
∑
i∈[N ]

2−1

(
η(1)

|Ii|

)α(1) (6.10)

≥ N2−1

(
η(1)

N +m− 1

)α(1)

,

and this lower bound can be achieved by any (I, τ,N)-rectangle.

• δ(N + m − 1) > 1. Let δ1 = δ(N + m − 1) − 1, δ2 = δ(N + m − 1), J1 = {i ∈ [N ] :

δ(|Ii|) ≤ δ1} and J2 = [N ] \ J1. Of course

η(δ1) < N +m− 1 ≤ η(δ2). (6.11)

Notice that if 2 > η(δ1)−m+ 1 then

(∀i ∈ [N ])(η(δ1)
(6.11)

≤ m
(6.9)
< |Ii| ≤ N +m− 1 ≤ η(δ2)),

and so

w(X) ≥
∑
i∈[N ]

2−δ2
(
η(δ2)

|Ii|

)α(δ2) (6.10)

≥ N2−δ2
(

η(δ2)

N +m− 1

)α(δ2)

,

which can be achieved by any (I, τ,N)-rectangle. So we may assume that

2 ≤ η(δ1)−m+ 1.

By Inequality 3 we have

w(X) =
∑
i∈J1

w|Ii| +
∑
i∈J2

w|Ii| ≥ |J1|2−δ1 + |J2|2−δ2
(

η(δ2)

N +m− 1

)α(δ2)

.

– 2−δ2
(

η(δ2)
N+m−1

)α(δ2)
≤ 2−δ1 . Then

w(X) ≥ N2−δ2
(

η(δ2)

N +m− 1

)α(δ2)

,
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which can be achieved by any (I, τ,N)-rectangle..

– 2−δ2
(

η(δ2)
N+m−1

)α(δ2)
> 2−δ1 . Then

w(X) ≥ N2−δ1
(6.11)
> (η(δ1)−m+ 1)2−δ1 .

But this can be achieved by any (I, τ, η(δ1)−m+ 1)-rectangle since

w(η(δ1)−m+1) = 2−δ(η(δ1))

(
η(δ(η(δ1)))

η(δ1)

)−α(δ(η(δ1)))

= 2−δ1
(
η(δ1)

η(δ1)

)−α(δ1)

= 2−δ1 .

Now, by Inequality 7, any (I, τ, I)-spike has a lower weight than any (I, τ, k)-rectangle, and

this completes the proof.

We may generalise Proposition 6.12 slightly as follows.

Definition 6.13. A collection A ⊆ ∏n∈[m][2
n] is called l-empty, for l ∈ [m], if and only

if [2l] \ {s(l) : s ∈ A} 6= 0. If I ∈ P([m])+, then A is I-empty if and only if I = {l :

A is l-empty}. If no such I exists then call A full.

Definition 6.14. Let A ⊆∏n∈[m][2
m] and X a finite collection of D -sets properly covering⋃{[s] : s ∈ A}. Call X a hereditary cover of A if and only if X properly covers each [s]

for s ∈ A.

Now the proof of the following is exactly the same as that of Proposition 6.12.

Proposition 6.15. If A ⊆∏n∈[m][2
n] is is I-empty then for any hereditary cover of A there

exists an (I,A, J)-spike, of lower weight.

6.3 Inequalities

Here we provide the various inequalities that are needed for the previous subsections. These

identities were motivated by Figure 1, below, which was computed using the numerical com-

puting package MATLAB. We used the symbolic manipulation package Maple to carry out

the computations in the proofs of Inequalities 1, 2 and 5.

Inequality 1. For each k ∈ N, we have

22k+102(k+5)4(23 + 2k+52(k+4)4) ≤ 22500k4 .

Proof. We have

22k+102(k+5)4(23 + 2k+52(k+4)4) ≤ 22k+102(k+5)4(2(k+4)4 + 2k+52(k+4)4)

≤ 22k+102(k+5)42(k+4)4(1 + 2k+5)

≤ 22k+102(k+5)42(k+4)42k+6

≤ 22k+102(k+5)42(k+4)42k+6
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≤ 24(k+5)4

≤ 24k4+80k3+600k2+2000k+2500 ≤ 22500k4 .

Inequality 2. For each k ∈ N and n ∈ [η(k)]

2−k
(
η(k)

n

)α(k)

< 2−(k+1)

(
η(k + 1)

n

)α(k+1)

.

Proof. Since nα(k+1)−α(k) < 1 for each n it is enough to show that 1 ≤ 1
2
η(k+1)α(k+1)

η(k)α(k)
. Thus it

is enough to show that 2(k+5)3(k+6)3+2500k4(k+6)3 ≤ 22500(k+1)4(k+5)3 . But

(k + 5)3(k + 6)3 + 2500k4(k + 6)3 − 2500(k + 1)4(k + 5)3

= −285500− 1407800k − 2648910k2 − 2524189k3

− 757047k4 − 82467k5 − 2499k6 < 0.

Inequality 3. For δ1, δ2, k ∈ N such that δ1 ≤ δ2 and k ∈ [η(δ1)] we have

2−δ1
(
η(δ1)

k

)α(δ1)

≥ 2−δ2 .

Proof. We have

2(δ2−δ1)(δ1+5)3η(δ1) ≥ η(δ1) ≥ k,

which implies the desired inequality.

Inequality 4. Let N,M, δ1, δ2 ∈ N be such that 2 ≤ N ≤M and δ1 ≤ δ2. Then

M

N

(N − 1)α(δ1)

(M − 1)α(δ2)
≥ 1.

Proof. If N = M then we are done, so assume N < M . Since α(δ1) ≥ α(δ2)

M

N

(N − 1)α(δ1)

(M − 1)α(δ2)
≥ M

N

(N − 1)α(δ1)

(M − 1)α(δ1)
.

So it is enough to show that (
M

N

)(δ1+5)3

≥ M − 1

N − 1
.

Let n = M −N > 0 so that(
M

N

)(δ1+5)3

=

(
N + n

N

)(δ1+5)3

>
1

N (δ1+5)3
(N (δ1+5)3+(δ1+5)3N (δ1+5)3−1n) = 1+(δ1+5)3N−1n.
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Thus it is enough to show that (N − 1)(1 + (δ1 + 5)3N−1n) ≥ N + n− 1. Now

(N − 1)(1 + (δ1 + 5)3N−1n) = N + (δ1 + 5)3n− 1− (δ1 + 5)3N−1n ≥ N + n− 1

↔ (δ1 + 5)3n− (δ1 + 5)3N−1n ≥ n
↔ (δ1 + 5)3(1−N−1) ≥ 1,

so we are done.

Inequality 5. Let δ1, δ2 ∈ N be such that δ1 ≤ δ2. Then

2δ1−δ2
η(δ2)α(δ2)

η(δ1)α(δ1)
≥ 1.

Proof. If δ1 = δ2 then we are done, so assume δ1 < δ2. It is enough to show that

(δ1 − δ2)(δ1 + 5)3(δ2 + 5)3 + 2500δ4
2(δ1 + 5)3 − 2500δ4

1(δ2 + 5)3 ≥ 0.

But if we let n = δ2 − δ1 then we have

(δ1 − δ2)(δ1 + 5)3(δ2 + 5)3 + 2500δ4
2(δ1 + 5)3 − 2500δ4

1(δ2 + 5)3 =
7∑
i=1

ciδ
i
1,

where we have the following values for the ci:

i ci

1 312375n4 − 1875n3 − 9375n2 − 15625n

2 187425n4 + 1248500n3 − 9375n2 − 18750n

3 37485n4 + 749550n3 + 1871250n2 − 9375n

4 2499n4 + 149940n3 + 1124250n2 + 1247500n

5 7497n3 + 187425n2 + 562125n

6 7497n2 + 74970n

7 2449n

Each of these coefficients is strictly positive.

Inequality 6. Let N,M, δ1, δ2 ∈ N be such that 2 ≤ N ≤M and δ1 ≤ δ2. Then

N2−δ1
(
η(δ1)

N − 1

)α(δ1)

≤M2−δ2
(
η(δ2)

M − 1

)α(δ2)

.

Proof. We need to show that

1 ≤
[
M

N

(N − 1)α(δ1)

(M − 1)α(δ2)

][
2δ1−δ2

η(δ2)α(δ2)

η(δ1)α(δ1)

]
.

Which follows from Inequalities 4 and 5.
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Inequality 7. Let k,N, δ1, δ2 ∈ N be such that δ1 ≤ δ2. Then

2−δ1
(
η(δ1)

k

)α(δ1)

≤ N2−δ2
(

η(δ2)

N + k − 1

)α(δ2)

. (6.12)

Proof. We need to show that

1 ≤
[
N

kα(δ1)

(N + k − 1)α(δ2)

][
2δ1−δ2

η(δ2)α(δ2)

η(δ1)α(δ1)

]
.

The second term in this product is Inequality 5. So let us show that 1 ≤
[
Nkα(δ1)(N + k − 1)−α(δ2)

]
.

Since δ1 ≤ δ2 we know that

N
kα(δ1)

(N + k − 1)α(δ2)
≥ N

(
k

N + k − 1

)α(δ2)

,

and we are done since 1 ≤ N (δ2+5)3k(N + k − 1)−1.

Figure 1: Behaviour of the function x 7→ log2(2−k
(
η(k)
x

)α(k)
), for fixed k, and for x ∈ [1, η(k)].

Here we take the η(k) as defined in Subsection 2.5. The blue, green and red plots (from left
to right) are for k = 1, 2, 3, respectively. The horizontal line is just to indicate the function
x 7→ 0.
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7 Submeasures and signed measures

7 Submeasures and signed measures

We begin with the following definition.

Definition 7.1. If B is a Boolean algebra, call a collection {ai : i ∈ [n]} ⊆ B, ∗-free if and

only if for every non-empty J ⊆ [n] we have⋂
j∈J

aj

 ∩
⋂
j 6∈J

acj

 6= 0 ∧
⋃
i∈[n]

ai = 1.

In this section we prove and investigate the following result.

Theorem 7.2. For every countable Boolean algebra A there exists a Boolean algebra B and

an injective map f : A→ B with the following properties:

(T.1) B = 〈f[A]〉, in particular B will also be countable (Fact 2.3);

(T.2) if A′ ⊆ A is a finite subalgebra, then the collection f[atoms(A′)] is ∗-free in B;

(T.3) (∀a, b ∈ A)(f(a ∪ b) = f(a) ∪ f(b)).

Moreover, if D is a Boolean algebra and g : A→ D satisfies the above, then for any functional

µ on A, there exists a unique signed finitely additive measure λ on D such that µ(a) = λ(g(a)),

for each a ∈ A.

Thus to each functional on a given countable Boolean algebra we associate a signed measure.

In fact this association will be a linear map from the real vector space of all functionals on A

to the real vector space of all signed measures on B. We are of course interested in the case

when µ is a submeasure. Unfortunately even for very simple submeasures, the corresponding

measure may be unbounded. We prove Theorem 7.2 in Subsection 7.1 and in Subsection 7.2

we attempt to generalise the above to the case when A a Maharam algebra.

In subsection 7.3, given a sequence (Xi)i∈N of finite non-empty sets, we construct another

sequence (Yi)i∈N, consisting also of finite non-empty sets, and an injective map

f : Clopen(
∏
i∈N

Xi)→ Clopen(
∏
i∈N

Yi)

that satisfies properties (T.2) and (T.3) of Theorem 7.2. To obtain the rest of Theorem

7.2, we can take B = 〈f[A]〉 where A := Clopen(
∏
i∈NXi). In the above context, if λ is a

(non-negative) measure on Clopen(
∏
i∈N Yi), then µ : A→ R defined by µ(a) = λ(f(a)), will

be a submeasure (see Remark 7.9). This raises the following question: If λ is the Lebesgue

measure on Clopen(
∏
i∈N Yi) then what submeasure do we get on A? Understanding this

submeasure reduces to counting. For arbitrary Xi this becomes difficult, however, when we

restrict to |Xi| = 2, the counting becomes manageable.

It will be straightforward to see, for arbitrary Xi, that sets of the form {f ∈∏i∈NXi : f(n) =
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f7−→ λ(c) = 1
4 λ(d) =

1
2 λ(e) = 1

4µ(a) = 3
4 µ(b) = 3

4

Figure 2: Finite version of Theorem 7.2.

m} have (sub)measure bounded way from 0 (Lemma 7.23). In particular, if supi |Xi| = ∞
then the submeasure we obtain from the Lebesgue measure will not be uniformly exhaustive.

One might hope then that this submeasure might be exhaustive. We show that this is not

the case when we restrict to |Xi| = 2, and that this is witnessed by an antichain of length

continuum (Theorem 7.31). As a consequence of this, we show that the determining real

added by the corresponding idealised forcing cannot be a splitting real (Corollary 7.34). We

cannot prove in general that this submeasure will not be exhaustive for arbitrary Xi.

In section 7.4 we collect some miscellaneous counting arguments concerning the above.

7.1 Proof of Theorem 7.2

We prove here Theorem 7.2. To illustrate the motivating idea of this construction consider

the submeasure µ defined on the finite Boolean algebra A of two atoms, a and b, given by

µ(a) = µ(b) =
3

4
, µ(a ∪ b) = 1.

This is clearly not additive. If we supposed for a moment that µ was additive then a and b

would have to intersect. Thus we view the atoms a and b as not having enough space for the

submeasure µ. We try to insert this space by allowing a and b to intersect, and by doing so

turning µ into a measure. To this end we consider the algebra B of three atoms c, d and e

and the map f : A→ B define by

a 7→ c ∪ d, b 7→ d ∪ e, a ∪ b 7→ c ∪ d ∪ e.

The atom d then becomes the inserted space, and on B we can take the measure

λ(c) = λ(e) =
1

4
, λ(d) =

1

2

(see Figure 2). Notice that no matter what values we had for µ, we would still be able to

solve (uniquely) for λ and so we have a finite version of Theorem 7.2. Indeed, one need only

solve the following system of linear equations:

λ(c) + λ(d) = µ(a), λ(d) + λ(e) = µ(b), λ(c) + λ(d) + λ(e) = 1.
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The final f and B will be obtained as a direct limit of these finite constructions.

In this way we are led to the definition of ∗-free from Definition 7.1, and the following.

Definition 7.3. For n ∈ N let Fr∗n be the Boolean algebra P(P([n])+). Call the sets {y ∈
P([n])+ : i ∈ y}, for i ∈ [n], the ∗-free generators of Fr∗n.

Remark 7.4. Clearly the ∗-free generators of Fr∗n are ∗-free and generate Fr∗n. If Frn is

the freely generated Boolean algebra over n elements with free generators a1, ..., an then Fr∗n

may be viewed as the Boolean algebra

Frn⋃n
i=1 ai

(= {a ∈ Frn : a ⊆
⋃
i∈[n]

ai}).

In the motivating example we see that the algebra B with three atoms c, d and e is given by

Fr∗2 where we can take

c = {{1}}, d = {{1, 2}}, e = {{2}}.

Notice that the atoms of A are mapped to the ∗-free generators of B (= Fr∗2).

The fact that we can always solve for λ (as in the motivating example) is given by the

following two lemmas.

Lemma 7.5. For each n ∈ N enumerate P([n])+ = {yi : i ∈ [2n − 1]}. Then the matrix

(aij)i,j∈[2n−1] defined by

aij =

{
1, if yi ∩ yj 6= 0;

0, otherwise.

is invertible.

Since we could not find a particularly enlightening proof of Lemma 7.5 we leave it to the end

of this subsection.

Lemma 7.6. Let a1, ..., an be the ∗-free generators of Fr∗n and µ : {⋃i∈I ai : I ∈ P([n])+} →
R any functional. Then there exists a unique signed measure λ : Fr∗n → R such that (∀I ∈
P([n])+)(λ(

⋃
i∈I ai) = µ(

⋃
i∈I ai)).

Proof. Since we only need to decide the values that λ should take on the atoms of Fr∗n we

need only find a solution to the following set of linear equations:∑
y∈P([n])+∧q∩y 6=0

Xy = µ(
⋃
i∈q

ai) : q ∈ P([n])+.

These equations have a unique solution by Lemma 7.5. Now set λ({y}) = Xy.

We give an explicit expression for λ in Section 7.4 (Lemma 7.36).

Definition 7.7. Let A be a finite Boolean algebra with n atoms. A map f : A → Fr∗n is

called A-good if and only if the following hold:
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7−→

Id

7−→ F

f7−→

g7−→

Figure 3: Commutative maps of Lemma 7.11 with m = 2 and n = 4.

• f injectively maps the atoms of A onto the ∗-free generators of Fr∗n;

• for each a ∈ A we have f(a) =
⋃{f(b) : b ∈ atoms(A) ∧ b ≤ a}.

Of course in the context of the above definition any map sending the atoms of A onto the

∗-free generators of Fr∗n, induces an A-good map (by just taking unions).

Lemma 7.8. Let A be a finite Boolean algebra with n atoms and let f be an A-good map.

Then f is injective and satisfies the following properties:

• f(0) = 0Fr∗n and f(1) = 1Fr∗n,

• (∀a, b ∈ A)(f(a ∪ b) = f(a) ∪ f(b)).

Moreover, for any functional µ on A, we can find a unique signed measure λ on Fr∗n such

that (∀a ∈ A)(µ(a) = λ(f(a))).

Proof. The properties of f follow by definition. The last part is just Lemma 7.6.

Remark 7.9. If f : C→ C′ is an injective map such that we always have f(c∪d) = f(c)∪f(d)

then for any measure λ on C′ one can define a submeasure µ on C by µ(c) = λ(f(d)).

The fact that we can coherently put together the maps from Lemma 7.8 to build the map f

from Theorem 7.2 is justified by following two lemmas (see Figure 3).

Lemma 7.10. Let n ∈ N and for each i ∈ [n], let ai = {y ∈ P([n])+ : i ∈ y}, so that a1, ..., an

are the ∗-free generators of Fr∗n. Let B be a finite Boolean algebra and let b1, ..., bn be ∗-free

members of B. Then the map ai 7→ bi extends uniquely to a monomorphism from Fr∗n to B.

Proof. We need only define the embedding on the atoms of Fr∗n and this is given by

{y} =

⋂
j∈y

aj

 ∩
⋂
j 6∈y

acj

 7→
⋂
j∈y

bj

 ∩
⋂
j 6∈y

bcj

 .
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Lemma 7.11. Let A be a subalgebra of a finite Boolean algebra B. Let f be A-good and g

be B-good. Let m be the number of atoms of A and n the number of atoms of B. Then there

exists an embedding F : Fr∗m→ Fr∗n such that

g � A = F ◦ f. (7.1)

Proof. Let F ′ : f [A]→ g[B] be the map g ◦ f−1. By Lemma 7.8 we see that⋃
a∈f [A]

F ′(a) =
⋃

a∈f [A]

g ◦ f−1(a) = g ◦ f−1(
⋃

a∈f [A]

a) = g(1A) = g(1B) = 1Fr∗n,

and so the map F ′ sends the ∗-free generators of Fr∗m to ∗-free members of Fr∗n. By Lemma

7.10 we can find an embedding F : Fr∗m→ Fr∗n which agrees with F ′ on f [A].

Proof of Theorem 7.2. See Subsection 2.2 for the definitions relating to direct limits. Fix a

countable Boolean algebra A let (Ai)i∈N be a sequence of finite subalgebras of A such that

Ai ⊆ Ai+1 ⊆ A. For each i, let ni = |atoms(Ai)| and, by choosing the Ai appropriately, see

to it that ni < ni+1. For each i, let Ci = Fr∗ni and let fi be an Ai-good map. For i < j, let

fi,j : Ci → Cj be the embeddings promised by Lemma 7.11, with respect to the good maps

fi. If i = j then we let fi,j = Id in Ai. Now suppose that i ≤ j ≤ k and let a1, ..., al be

the ∗-free generators of Ci. By applying (7.1) appropriately, it is straightforward to compute

that both fi,k and fj,k ◦fi,j map am to fk(am), for each m ∈ [l]. Thus both these embeddings

map the ∗-free generators of Ci to the same ∗-free members of Ck and so, by the uniqueness

part of Lemma 7.10, we see that

fi,k = fj,k ◦ fi,j .

This shows that ((N,≤), (Ci)i∈N, (fi,j)i,j∈N) is a directed system. Let B be the corresponding

direct limit and let gi : Ci → B be the corresponding limit maps. We have the following

commutative diagram for i ≤ j:

B

Ci Cj

Ai Aj

gi gj

fi,j

fi fj

Id

Set f(a) = (gi ◦ fi)(a) for any i such that a ∈ Ai. Let us now check that f satisfies the desired

properties. The fact that f is injective follows since each gi is an embedding (and in particular

injective), and each fi is an Ai-good map (and in particular injective). Properties (T.2) and

(T.3) follow by the properties of good maps. Property (T.1) follows since for every b ∈ B,

we can find a finite subalgebra A′ ⊆ A, such that b ∈ 〈f[A]〉.
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Let µ : A → R be any functional. By the final part of Lemma 7.8 for each i we can

find a unique measure λi : Ci → R such that (∀a ∈ Ai)(µ(a) = λi(fi(a))). We now define the

measure λ : B→ R by

λ(b) = λi(g
−1
i (b))

for any i such that b ∈ ran(gi). To see that this is well defined we just notice that for i ≤ j,

the uniqueness of λi implies that λj ◦ fi,j = λi.

Suppose now that D is a Boolean algebra and g : A → D is an injective map satisfying

(T.1), (T.2) and (T.3). Let (Ai)i∈N and (ni)i∈N be as above. For each i ∈ N, let Di = g[Ai],

gi = g � Ai and pi : Di → Fr∗ni be any isomorphism which injectively maps the ∗-free

generators of Di to the ∗-free generators of Fr∗ni. For each i, let fi,i+1 = pi+1 ◦ p−1
i and

fi = pi ◦ gi. For i < j let, fi,j = fj−1,j ◦ · · · fi+1,i+2 ◦ fi,i+1 and fi,i = Id. The system

((N,≤), (fi,j)i,j∈N, (Fr∗ni)i∈N) is a directed system. Let B be its direct limit and gi be the

corresponding limit maps. Define f : A→ B by f(a) = (gi ◦ fi)(a), for any i such that a ∈ Ai.

As above, we see that B and f satisfy the properties in the statement of Theorem 7.2, with

respect to A. Finally, for each i ∈ N, let hi = p−1
i and notice that by construction, for i ≤ j

we have hi = hj ◦ fi,j . By Fact 2.8, we can find an isomorphism F : B → D, such that

hi = F ◦ gi, for each i. In particular, given a functional µ on A, if we let λ be the signed

measure on B defined by (∀a)(µ(a) = λ(f(a))), then we can define a signed measure on D by

ϕ(a) = λ(F−1(a)), and for each a ∈ A we have,

µ(a) = λ(f(a)) = λ((gi ◦ fi)(a)) = λ((F−1 ◦ hi ◦ fi)(a)) = λ((F−1 ◦ p−1
i ◦ fi)(a))

= λ((F−1 ◦ gi)(a))

= ϕ(g(a)).

As we have already mentioned, even for very simple submeasures the corresponding measure

obtained from Theorem 7.2 may be signed and, even worse, unbounded, as the following

example shows.

Example 7.12. For each n let µ : P([n]) → R be the submeasure µ([n]) = 1, µ(0) = 0 and

µ(a) = 1
2 , otherwise. If λ : Fr∗n→ R is the corresponding measure from Lemma 7.8 then

(∃a ∈ Fr∗n)(λ(a) = −1

2

(
n

2

)
)

In particular, in the context of Theorem 7.2 and its proof, if we take µ : A → R to be

(∀a ∈ A \ {0, 1})(µ(a) = 1
2) and µ(1) = 1 then for each i, the algebra 〈f[Ai]〉 will contain an

element of λ-measure −1
2

(
ni
2

)
. Thus infb∈B λ(b) = −∞.

Proof. Notice that I ∈ P([n])+ we have {I} = (
⋂
i∈I ai) \ (

⋃
i 6∈I ai). Notice also that

λ({{i}}) = λ(
⋃
l∈[n] al) − λ(

⋃
l∈[n]\{i} al). We also have that for i 6= j we have λ({{i, j}}) =

71



7 Submeasures and signed measures

λ(
⋃
l∈[n] al)− (λ(

⋃
l∈[n]\{i,j} al) + λ({{i}}) + λ({{j}})). This shows that if i 6= j then

λ({{i, j}}) = −λ(
⋃
l∈[n]

al)− λ(
⋃

l∈[n]\{i,j}

al) + λ(
⋃

l∈[n]\{i}

al) + λ(
⋃

l∈[n]\{j}

al)).

Thus we can take a = {y : y ∈ [[n]]2}.

The following table defines the measure of Example 7.12 for n = 3.

I µ(
⋃
i∈I ai) λ(

⋂
i∈I ai ∩

⋂
i 6∈I a

c
i )

{1} 0.5 0.5

{2} 0.5 0.5

{3} 0.5 0.5

{1, 2} 0.5 −0.5

{1, 3} 0.5 −0.5

{2, 3} 0.5 −0.5

{1, 2, 3} 1 1

It is not clear to us how to predict when a submeasure will generate a non-negative measure,

or even just a bounded signed measure (in the case that the measure is bounded but signed,

one could hope to employ, for example, the Jordan decomposition theorem (see [37, Page 25])).

Before we move on, we record the following.

Proposition 7.13. In the context of Theorem 7.2, if A is atomless then so is B.

Proof. Assume the notation from the proof of Theorem 7.2. Suppose for a contradiction that

b ∈ B is an atom. Let i ∈ N be such that b ∈ ran(gi) and let c = g−1
i (b). Of course c is still

an atom of Ci so we can find a ∈ atoms(Ai) such that c ≤ fi(a). Enumerate atoms(Ai) =

{a, a1, ..., ak}. Let d ∈ A+
a and j be such that 〈Ai ∪ {d}〉 = 〈d, a \ d, a1, ..., ak〉 ⊆ Aj . Now

c = (fi(a) ∩
⋂
l∈L

fi(al)) ∩ (
⋂
l 6∈L

fi(al))
c,

for some L ⊆ [k]. Let q = fj(a \ d), p = fj(d) and r =
⋂
l∈L fj(al) ∩ (

⋂
l 6∈L fj(al))

c. We have

fi,j(c) = fj(a) ∩ r = (q ∪ p) ∩ r = (q \ p t p) ∩ r = ((q \ p) ∩ r) t (p ∩ r).

Since the sets fj(d), fj(a \ d), fj(a1), ..., fj(ak) are ∗-free, we have that (q \ p)∩ r 6= ∅ 6= p∩ r,
and so 0 < fj(p ∩ r) < b, which is a contradiction.

Proof of Lemma 7.5. By induction on n. For the case n = 1, the matrix in question is the

identity, so let us show that this is true for n + 1 assuming it is true for n. Let m = 2n − 1

and m′ = 2n+1 − 1. Enumerate P([n + 1])+ = {yi : i ∈ [m′]} so that {yi : i ∈ [m]} is an

enumeration of P([n])+, ym+1 = {n} and yi+m+1 = yi ∪ {n} for i ∈ [m]. Let An be m ×m
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matrix where, for i, j ∈ [m], we let

An(i, j) =

{
1, if yi ∩ yj 6= 0;

0, otherwise.

Let An+1 be the m′ ×m′ matrix where, for i, j ∈ [m′], we set

An+1(i, j) =

{
1, if yi ∩ yj 6= 0;

0, otherwise.

We want to show that An+1 is invertible. By induction the rows of An are linearly indepen-

dent. Let vi denote the ith row of An+1 and ui the ith row of An. Then

vi =


ui
_0_ui, if i ∈ [m];

0m_1m
′−m, if i = m+ 1;

ui−m−1
_1m

′−m, otherwise.

That is

An+1 =

An (0m)T An

0m 1 1

An 1 1

 .

Here, (0m)T denotes the column vector of length m containing only 0’s. Now let λi ∈ R be

such that
∑

i∈[m′] λivi = 0m
′
. Since

∑
i∈[m]

λiui +
m′∑

i=m+2

λiui−m−1 =
∑
i∈[m]

(λi + λi+m+1)ui = 0m,

by the linear independence of the ui, we must have

(∀i ∈ [m])(λi+m+1 = −λi). (7.2)

Considering the (m+ 1)th column of An+1, by (7.2), we see that λm+1 −
∑

i∈[m] λi = 0. We

now have

0 =
∑
i∈[m′]

λivi =

m∑
i=1

λivi + λm+1vm+1 +

m′∑
i=m+2

λivi

=

m∑
i=1

λivi +

m∑
i=1

λi0
m_1m

′−m +

m∑
i=1

λi+m+1vi+m+1

=

m∑
i=1

λiu
_
i 0_ui +

m∑
i=1

λi0
m_1m

′−m −
m∑
i=1

λiu
_
i 1m

′−m

=
m∑
i=1

λi0
m+1_ui +

m∑
i=1

λi0
m_1m

′−m −
m∑
i=1

λi0
m_1m

′−m
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=
∑
i∈[m]

λi0
m+1_ui.

By the linear independence of the ui and (7.2), we may conclude that λi = 0 for each i 6= m+1.

But then

λm+10m_1m
′−m = 0m

′

and so we must have λm+1 = 0, also. Thus the rows {vi : i ∈ [m′]} are linearly independent

and An+1 is invertible.

7.2 On Maharam algebras

In the context of Theorem 7.2, call a submeasure µ on A true if and only if the corresponding

λ , with respect to some f, is non-negative. In this section we prove the following, which can

be seen as an analogue of Theorem 7.2 in the case when A is a (true) countably generated

Maharam algebra.

Proposition 7.14. Let µ be a continuous submeasure on Borel(2ω) such that µ � Clopen(2ω)

is strictly positive and true, with respect to some f from Theorem 7.2. Then there exists a

strictly positive σ-additive measure λ on the random algebra M and a uniformly continuous

function f : Borel(2ω)/Null(µ)→M such that the following hold:

• f(0) = 0 and f(1) = 1;

• f(a ∪ b) = f(a) ∪ f(b);

• µ(a) = λ(f(a)).

Before we prove Proposition 7.14 we will need the following two lemmas.

Lemma 7.15. Let C and C′ be two Boolean algebras and let f : C → C′ be a map such

(∀a, b ∈ C)(f(a ∪ b) = f(a) ∪ f(b)). Suppose that µ and λ are submeasures on C and C′,

respectively, such that (∀a ∈ C)(µ(a) = λ(f(a)). Then for every ε > 0 we have

(∀a, b ∈ A)(µ(a4b) < ε→ λ(f(a)4f(b)) < ε).

In particular, f is uniformly continuous with respect to the pseudometrics induced by µ and

λ.

Proof. This is because for any a, b ∈ C we have f(a)4f(b) ≤ f(a \ b) ∪ f(b \ a). Indeed, let

a, b ∈ A, then

f(a)4f(b) = f(a\b∪a∩b)4f(b\a∪a∩b) = (f(a\b)∪f(a∩b))4(f(b\a)∪f(a∩b)) ⊆ f(a\b)∪f(b\a).

In particular λ(f(a)4f(b)) ≤ λ(f(a \ b) ∪ f(b \ a)) = µ(a \ b ∪ b \ a) = µ(a4b).

Lemma 7.16. In the context of Theorem 7.2, if µ is a diffuse true submeasure then λ is

diffuse and B/Null(λ) is atomless.
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Proof. Since a is diffuse, for every ε > 0, we can find a partition of A, a1, ...ak, such that

µ(ai) ≤ ε for each i. Now the atoms of the algebra generated by the f(ai) will be a partition

of B and will have λ-measure less than ε also (this uses the monotonicity of λ which we might

not have if λ were not true). It follows that atoms(B) ⊆ Null(λ) and we are done.

Proof of Proposition 7.14. Let f : Clopen(2ω) → Clopen(2ω) and λ be that promised by

Theorem 7.2. By Lemma 7.16 we know that C := Clopen(2ω)/Null(λ) is still atomless (and

countable). Consider the strictly positive finitely additive measure on C, which we also denote

by λ, defined by

λ([a]Null(λ)) = λ(a).

Let D be the metric completion of Clopen(2ω) with respect to the metric induced by µ

(Lemma 2.21). The metric completion of C will be a measure algebra σ-generated by

Clopen(2ω), and so, by Fact 2.16, will be isomorphic to M. Denote the extension of λ

to M by λ also. Let f : Clopen(2ω) → M be the map a 7→ [f(a)]Null(λ). By Lemma 7.15 and

Theorem 2.20, we may extend f to the entirety of D, so that we have a uniformly continuous

function f : D→M such that

(∀a, b ∈ Clopen(2ω))(f(a ∪ b) = f(a) ∪ f(b) ∧ µ(a) = λ(f(a)).

Since f,∪, µ and λ are all uniformly continuous (see the proof of Lemma 2.21), it is straightfor-

ward to see (by taking convergent sequences from Clopen(2ω), for example), that we actually

have

(∀a, b ∈ D)(f(a ∪ b) = f(a) ∪ f(b) ∧ µ(a) = λ(f(a)). (7.3)

But by Proposition 3.8, we can replace D by Borel(2ω)/Null(µ) in (7.3), and we are done.

Unfortunately Proposition 7.14 does not apply to Talagrand’s submeasure. A submeasure µ

on a Boolean algebra A is called submodular if and only if, for each a, b ∈ A, we have

µ(a ∪ b) + µ(a ∩ b) ≤ µ(a) + µ(b). (7.4)

This terminology is taken from [9]. In [38] submodular submeasures are called strongly

subadditive. By [21, Theorem 14], submodular submeasures always dominate a non-trivial

finitely additive measure (i.e. they cannot be pathological). True submeasures are always

submodular, and so in particular Talagrand’s submeasure cannot be true:

Lemma 7.17. Let µ be a submeasure on a countable Boolean algebra A and let λ,B, f be as

in Theorem 7.2. Then µ is submodular if and only if, for each a, b ∈ A, we have

λ((f(a \ b) ∩ f(b \ a)) \ f(a ∩ b)) ≥ 0. (7.5)

Proof. Given a, b ∈ A we show that (7.4) holds if and only if (7.5) holds. If a ⊆ b or b ⊆ a then

both identities always hold. If a∩ b = 0 then (7.4) always holds, by the subadditivity of µ. In

this case (7.5) also holds, again by the subadditivity of µ. Indeed, since µ(a∪b) ≤ µ(a)+µ(b)
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we have

λ(f(a) \ f(b)) + λ(f(a) ∩ f(b)) + λ(f(b) \ f(a)) ≤ λ(f(a) \ f(b)) + 2λ(f(a) ∩ f(b)) + λ(f(b) \ f(a))

from which it follows that

λ(f(a) ∩ f(b)) ≥ 0

as required. Thus we can assume that c1 := a \ b, c2 := b \ a and c3 := a ∩ b are all non-

empty. For brevity, in the following calculation, let y ∈ P([3])+ represent the set (
⋂
i∈y f(ci))\

(
⋃
i∈[3]\y f(ci)). Now we have that µ(a ∪ b) + µ(a ∩ b) ≤ µ(a) + µ(b) if and only if we have

∑
y∈P([3])+

λ(y) +
∑

y∈P([3])+:3∈y

λ(y) ≤
∑

y∈P([3])+:3∈y∨1∈y

λ(y) +
∑

y∈P([3])+:3∈y∨2∈y

λ(y).

But this last inequality is equivalent to asserting that

λ(f(a \ b) ∩ f(b \ a) \ f(a ∩ b)) = λ({1, 2}) ≥ 0.

as required.

7.3 The preimage of the Lebesgue measure

In this section we find an explicit instance of Theorem 7.2. The main result is that if

A = Clopen(N[2]) then the submeasure obtained (via Remark 7.9) as the preimage of the

Lebesgue measure is not exhaustive (see Theorem 7.31). As a consequence we can show

that the real determining the corresponding idealised forcing of this submeasure, cannot be

a splitting real (see Corollary 7.34).

Let (Xi)i∈N be a sequence of finite non-empty sets. Let X(n) =
∏
i∈[n]Xi and X =

∏
i∈NXi.

For convenience we assume that for each i, we have

|Xi| > 1, (7.6)

and we also set X(0) = {∅}. Let T1 = P(X1)+ and

Ti+1 = {A ⊆ X(i+1) : (∀t ∈ X(i))(∃s ∈ A)(s � [i] = t)}. (7.7)

Let T (n) =
∏
i∈[n] Ti and T =

∏
i∈N Ti. Let A = Clopen(X) and B = Clopen(T ).

Definition 7.18. Let f : A→ B be defined as follows. For every n ∈ N and t ∈ X(n) we set

f([t]) =
⋃
{[f ] : f ∈ T (n) ∧ (∀i ∈ [n])(t � [i] ∈ f(i))}

= {f ∈ T : (∀i ∈ [n])(t � [i] ∈ f(i))}

We then extend f to all members of A by taking unions.

To see that f is well defined we need to check that for any a ∈ A, B ⊆ X(m) and C ⊆ X(n)
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such that a =
⋃
t∈B[t] =

⋃
t∈C [t], we have

⋃
t∈B f([t]) =

⋃
t∈C f([t]). We may assume that

m < n. Let f ∈ f([t]) for some t ∈ B. In particular (∀i ∈ [m])(t � [i] ∈ f(i)). By induction

(via (7.7)) we can find s ∈ ∏i∈(m,n]Xi such that (∀i ∈ (m,n])(t_s � [i] ∈ f(i)). But since

t_s ∈ [t] ⊆ a we have t_s ∈ C. Thus f ∈ ⋃t∈C f([t]). The other inclusion is immediate.

Proposition 7.19. The function f is injective and satisfies (T.2) and (T.3) of Theorem 7.2.

Before we prove Proposition 7.19, it will be helpful to record the following.

Definition 7.20. For f ∈ T (n) say that t ∈ X(n) generates f , if and only if,

(∀i ∈ [n])(t � [i] ∈ f(i)).

Lemma 7.21. For every n ∈ N and f ∈ T (n), there exists t ∈ X(n) that generates f .

Conversely, for every n and A ⊆ X(n) there exists an f ∈ T (n) that is generated by precisely

the members of A.

Proof. The first claim may be seen by induction on n using (7.7). Indeed, for the case n = 1,

any member of f(1) generates f . Suppose it is true for n and let f ∈ T (n+1). By induction,

find t ∈ X(n) that generates f � [n]. By (7.7), there exists s ∈ f(n+ 1) such that s � [n] = t

and so, since t generates f � [n], it must be the case that s generates f . The second claim also

proceeds by induction on n. For the case n = 1, if A ⊆ X(1) then the function {(1, A)} ∈ T (1)

and is generated precisely by A. Now suppose it is true for n, and let A ⊆ X(n+1). Let

g ∈ T (n) be generated by precisely the members of B := {t � [n] : t ∈ A}. Now fix x ∈ Xn+1

and let f = g_(A ∪ {t_x : t ∈ X(n) \ B}). It is clear that f ∈ T (n+1). Suppose that t 6∈ A
and t generates f . Then t = s_x, for some s 6∈ B. On the other hand s = t � [n] generates g,

so that s ∈ B, which is a contradiction. If t ∈ A, then by definition t ∈ f(n + 1), and since

t � [n] generates g, we must have that t generates f .

Proof of Proposition 7.19. This all follows from Lemma 7.21. For injectivity, Let n ∈ N and

suppose that C,B ⊆ X(n), such that C 6= B. Without loss of generality, we can find t ∈ C\B.

Now let f ∈ T (n) be generated only by t. Then f ∈ ⋃s∈C f([s]) \ ⋃s∈B f([s]). For property

(T.2), it is enough to check that for each n ∈ N, the collection {f([t]) : t ∈ X(n)} forms a

∗-free collection in B. For this just observe that if A is a non-empty subset of X(n) and

f ∈ T (n) is generated by precisely the members of A, then

f ∈
(⋂
t∈A

f[t]

)
∩
(⋂
t∈A

f[t]

)c
6= ∅.

Property (T.3) follows from how we constructed f (by taking unions).

Now let λ : B→ R be the Lebesgue measure and define the submeasure µ : A→ R by

µ(a) = λ(f(a)).
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Recall that for each a ∈ B we can find A ⊆ T (n) such that a = {[t] : t ∈ A} and that

λ(a) = |A||T (n)|−1.

Thus to understand the submeasure µ we must count functions in T . We will apply the

following lemma (usually without reference) several times from now on.

Lemma 7.22. Let A1, ..., An be disjoint non-empty sets. Then

|{A ⊆
⋃
i∈[n]

Ai : (∀i)(A ∩Ai 6= ∅)}| = |
∏
i∈[n]

P(Ai)
+| =

∏
i∈[n]

(2|Ai| − 1)

Proof. The map A 7→ (A ∩A1, A ∩A2, ..., A ∩An) is a bijection.

From this we can calculate the cardinality of Tn. Indeed, if for each t ∈ X(n−1) we take

A
(n)
t = {t_i : i ∈ Xn} then, by Lemma 7.22, we get

|Tn| = |{A ⊆
⋃

t∈X(n−1)

A
(n)
t : (∀t)(A ∩A(n)

t 6= ∅)}| =
∏

t∈X(n−1)

(2|Xn| − 1). (7.8)

Now we can already obtain some bounds for µ. For the rest of this section, given i ∈ N and

j ∈ Xi, let

Ci,j = {f ∈ X : f(i) = j}.

Lemma 7.23. We have the following.

• For t ∈ X(n) we have µ([t]) ≤ (2
3)n.

• For every i, j we have µ(Ci,j) ≥ 1
2 .

Proof. For the first claim, we want to count the number of f ∈ T (n) generated by t (and

possibly by other things), and then divide by |T (n)|. That is, µ([t]) is given by

|{f ∈ T (n) : (∀i ∈ [n])(t � [i] ∈ f(i))}|/|T (n)| =
∏
i∈[n]

|{A ∈ Ti : t � [i] ∈ A}|/(
∏
i∈[n]

∏
s∈X(i−1)

(2|Xi|−1)).

But since

|{A ∈ Ti : t � [i] ∈ A}| = |P(Xi \ t(i))|
∏

s∈X(i−1)\{t�[i−1]}

|P(Xi)
+| = 2|Xi|−1(2|Xi| − 1)|X

(i−1)|−1.

we get

µ([t]) =
∏
i∈[n]

2|Xi|−1

2|Xi| − 1
≤
(

2

3

)n
,

since for k ≥ 2 we have 2k−1

2k−1
≤ 2

3 (see (7.6)).

For the second claim, we have f(Cn+1,i) =
⋃
t∈X(n) f([t_i]). For every f ∈ T (n), let tf ∈ X(n)
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be a sequence that generates f . For each such f let

Cf = {A ∈ Tn+1 : t_f i ∈ A}.

Then

|Cf | = |P(Xn+1 \ {i})||P(Xn+1)+||X(n)|−1.

But ⊔
f∈T (n)

{f_A : A ∈ Cf} ⊆ Cn+1,i.

So that

λ(
⊔

f∈T (n)

{f_A : A ∈ Cf}) =
|Cf | · |T (n)|
|T (n+1)| =

|Cf |
|Tn+1|

=
2|Xn+1|−1

2|Xn+1| − 1
≥ 1

2

Remark 7.24. Lemma 7.23 says that relative atoms in A will have arbitrarily small µ-

measure, in particular it follows that the submeasure µ is diffuse (and that singletons in

Borel(X) will have µ-measure 0, see below). Moreover, if we take Xi to be such that |Xi| = n

then the coordinate sets (Ci,j)i,j witness that µ will not be uniformly exhaustive.

For the remainder of this section assume that Xi = [2]. Notice that in this case, by (7.8), we

get

|X(n)| = 2n, |Tn| = 32n−1
and |T (n)| = 32n−1. (7.9)

We will need the following function.

Definition 7.25. For k, n ∈ N, let δ(k, n) be the number of f in T (n) that are generated by

precisely k members of X(n). When the context is clear we will write ‘f ∈ δ(k, n)’ to mean

‘f ∈ T (n) and f is generated by precisely k members of X(n)’.

We could not get an explicit expression for δ(k, n) (but see Lemma 7.37). However, for our

immediate purposes we can make do with the following.

Lemma 7.26. We have δ(1, 1) = 2 and δ(2, 1) = 1. For each n ∈ N and k ∈ [2n+1] we have,

δ(k, n+ 1) =
∑

l∈[k/2,k]∩N

δ(l, n)

(
l

k − l

)
22l−k32n−l. (7.10)

Proof. Any member of T (n+1) will be an extension of a member of T (n). If f ∈ T (n) is

generated by precisely l sequences t1, ..., tl, then any extension of f to g ∈ T (n+1) will be

generated by the extensions of the ti that appear in g(n+1). In particular any extension of f

will be generated by at least l sequences. If l < k/2 then any extension of f will be generated

by at most k − 1 sequences. This gives

δ(k, n+1) =
∑

l∈[k/2,k]∩N

∑
f∈δ(l,n)

|{A ∈ Tn+1 : A contains precisely k extensions of generators of f}|.
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It is clear that for each l the number

|{A ∈ Tn+1 : A contains precisely k extensions of generators of f}|

is independent of which f ∈ δ(l, n) we consider. Thus if we enumerate X(n) = {t1, ..., t2n} we

get

δ(k, n+ 1) =
∑

l∈[k/2,k]∩N

δ(l, n)|{A ∈ Tn+1 : A contains precisely k extensions of t1, ...tl}|.

(7.11)

Now fix l ∈ [k/2, k]∩N and suppose that A contains precisely k extensions of t1, ..., tl. Then

we can find some I ⊆ [l] and, for each i ∈ [l] \ I, a natural number ni ∈ [2] such that

A = {t_i 1 : i ∈ I} t {t_i 2 : i ∈ I} t {t_i ni : i ∈ [l] \ I} tA′

where A′ ⊆ ⋃{A(n+1)
s : s ∈ X(n) \ {t1, ..., tl}} such that A′ ∩ A(n+1)

s 6= ∅ for each s ∈
X(n) \{t1, ..., tl} (recall the notation from (7.8)). There are

(
l

k−l
)

such I, 22l−k such ni (given

I) and 32n−l such A′. This together with (7.11) gives (7.10).

The expression corresponding to (7.10) for general Xi is given in Lemma 7.40 on page 89.

Now we give an upper bound the δ(k, n), which is essentially the central calculation of this

subsection.

Lemma 7.27. For every n ∈ N and k ∈ [2n] we have

δ(k, n)

|T (n)| ≤
(

9

10

)n
. (7.12)

Proof. We proceed by induction on n. The fact that

δ(k, 1) =


2, if k = 1,

1, if k = 2,

0, otherwise.

deals with the base step.

For the induction we first recall the following well known fact. Let F (0), F (1), F (2), ... enu-

merate the Fibonacci sequence 0, 1, 1, 2, 3, 5, · · · . Then

Floor(n/2)∑
i=0

(
n− i
i

)
= F (n+ 1). (7.13)

This is proved by an easy induction using the fact that F (n+ 1) = F (n) + F (n− 1) and(
n

k

)
=

(
n− 1

k − 1

)
+

(
n− 1

k

)
.
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We imitate this result to obtain the following.

Claim. Let G(0) = 0 and G(1) = 1 and set G(n+ 1) = G(n) + 3
4G(n− 1). Then

G(n) =
1

2

(
3

2

)n
− 1

2

(
−1

2

)n
and

Floor(n/2)∑
i=0

(
n− i
i

)(
3

4

)i
= G(n+ 1). (7.14)

Proof. The sequence G is an example of a linear homogeneous recurrence relation with con-

stant coefficients and obtaining a closed solution for these is standard. The identity (7.14) is

obtained in precisely the same way as (7.13).

Now by a change of variable l = k − i in (7.10) we get

δ(k, n)

|T (n)| =
1

32n−1

Floor(k/2)∑
i=0

δ(k − i, n− 1)

(
k − i
i

)
2k−2i32n−1−k+i

=

(
2

3

)k
31−2n−1

Floor(k/2)∑
i=0

δ(k − i, n− 1)

(
k − i
i

)(
3

4

)i

≤
(

2

3

)k Floor(k/2)∑
i=0

δ(k − i, n− 1)

(
k − i
i

)(
3

4

)i

By the above claim and induction we obtain

δ(k, n)

|T (n)| ≤
(

9

10

)n−1(2

3

)k Floor(k/2)∑
i=0

(
k − i
i

)(
3

4

)i
=

(
9

10

)n−1(2

3

)k
G(k + 1)

=

(
9

10

)n−1(2

3

)k(1

2

(
3

2

)k+1

− 1

2

(
−1

2

)k+1
)

=

(
9

10

)n−1 10

12
≤
(

9

10

)n
.

Definition 7.28. Given f ∈ T (n) let G(f) = {t ∈ X(n) : t generates f}. Given A ⊆ X(n) let

δ(k,A) = |{f ∈ T (n) : |G(f) ∩A| = k}|.

As before we write ‘f ∈ δ(k,A)’ to mean ‘f ∈ T (n) and |G(f) ∩A| = k’.
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Lemma 7.29. Suppose A ⊆ X(n) and a =
⋃
t∈A[t]. Then for each j ∈ Xn+1 we have

|{f ∈ T (n+1) : [f ] ⊆ f(a ∩ Cn+1,j)}| =
2n∑
k=1

32n−kδ(k,A)(3k − 1). (7.15)

Thus we have

µ(a ∩ Cn+1,j) = µ(a)− 1

|T (n)|
∑
k∈[2n]

δ(k,A)

3k
. (7.16)

Proof. The idea here is precisely the same as that used to obtain (7.10). Without loss of

generality we consider the case j = 1. It is easily seen that

{f ∈ T (n+1) : [f ] ⊆ f(a∩Cn+1,1)} =
2n⊔
k=1

⊔
f∈δ(k,A)

{f_C : t_1 ∈ C for some t ∈ A that generates f}.

So say that f is generated by precisely t1, ..., tk members of A and suppose that [f_C] ⊆
f(a ∩ Cn+1,1) for some C ∈ Tn+1. Then we can find some I ∈ P([k])+ and J ⊆ I such that

C = {t_i 1 : i ∈ I} t {t_i 2 : i ∈ J} t {t_i 2 : i ∈ I \ [k]} tA′.

where A′ ⊆ ⋃{A(n+1)
s : s ∈ X(n) \ {t1, ..., tk}} such that A′ ∩ A(n+1)

s 6= ∅, for each s ∈
X(n) \ {t1, ..., tk}. From this we obtain

|{f ∈ T (n+1) : [f ] ⊆ f(a ∩ Cn+1,1)}| =
2n∑
k=1

δ(k,A)
k∑
i=1

(
k

i

)
2i32n−k,

from which we easily obtain (7.15). Now using the fact that∑
k∈[2n]

δ(k,A) = |{f ∈ T (n) : [f ] ⊆
⋃
t∈A

f([t])}|,

we get that µ(a) = 1
|T (n)|

∑
k∈[2n] δ(k,A), and from this we obtain (7.16).

Proposition 7.30. For every a ∈ A we have

µ(a ∩ Cn,2) = µ(a ∩ Cn,1)→ µ(a), n→∞.

It follows that for every clopen a and ε > 0 there exists b, b′ ⊆ a such that b t b′ = a,

µ(b) = µ(b′) and µ(a)− µ(b) < ε. In particular, µ cannot be exhaustive.

Proof. Let A ⊆ X(n) be such that a =
⋃
t∈A[t]. Let M = |A| and let G(f) = {t ∈ X(n) :

t generates f} (for f ∈ T (n)). Now for any k ∈ [M ] and f ∈ δ(k,A) we have f ∈ δ(k+ |G(f)\
A|, n). In particular

δ(k,A) ≤
2n−M∑
l=0

δ(k + l, n).

82



7 Submeasures and signed measures

But then by Lemma 7.27
δ(k,A)

|T (n)| ≤ (2n −M + 1)

(
9

10

)n
.

Given b ∈ A and n ∈ N let α(b, n) = 2n − |B| + 1, for the (unique) B ⊆ X(n) such that

b =
⋃
t∈B[t]. Then α(b, n) is constant for fixed b. Thus we have

1

|T (n)|
∑
k∈[M ]

δ(k,A)

3k
≤ α(a, n)

(
9

10

)n ∑
k∈[M ]

1

3k
≤ 1

2
α(a, n)

(
9

10

)n
→ 0.

The result now follows by (7.16).

Consider now the extension of µ to Borel(A). That is we set

µ(A) = inf{
∑
i∈N

µ(ai) : ai ∈ A ∧A ⊆
⋃
i

ai}.

We have the following.

Theorem 7.31. For any ε ∈ [0, 1) and I ∈ [N]ω there exists J ∈ [I]ω such that, for each

g ∈∏j∈J Xj, the sets {f ∈ X : f(j) = g(j)} have µ-measure at least ε.

For this we will first show that µ is invariant with respect to the isometry group of X.

Proposition 7.32. If g is a bijective isometry of X then for every a ∈ A we have µ(g[a]) =

µ(a).

Proof. Let g be a bijective isometry of X. Let g0 : X1 → X1 be the permutation defined

by g0(i) = g(i_s)(1), for any s ∈ ∏n>1Xn. For each n ∈ N and t ∈ X(n) we define the

permutation gt : Xn+1 → Xn+1 by gt(i) = g(t_i_s)(n + 1) where s is any member of∏
j>n+1Xi. For n ∈ N let Gn : X(n) 7→ X(n) be the map

t 7→ (g0(t(1)), gt�[1](t(2)), ..., gt�[n−1](t(n))). (7.17)

Claim. The map Gn is a permutation of X(n).

Proof. Clearly this is true for G1. For n ∈ N, let t, s ∈ X(n+1), and suppose that s 6= t. Then

we can find an i ∈ [n+ 1] such that s(i) 6= t(i) but s � [i− 1] = t � [i− 1]. But then

gt�[i−1](t(i)) = gs�[i−1](t(i)) 6= gs�[i−1](s(i)),

since gt�[i−1] and gs�[i−1] are themselves injective. Here by gt�[0] we mean g0. This shows that

Gn+1 is injective. To see that Gn+1 is surjective let t ∈ X(n+1) and define s ∈ X(n+1) as

follows. Let s(1) = g−1
0 (t(1)). If si = (s(1), ...s(i)) has been defined, let s(i+1) = g−1

si (t(i+1)).

Then Gn+1(s) = t.10

10In fact, from this last argument we obtain the following (recursive) definition for G−1
n+1:

G−1
n+1(t) = (g−1

0 (t(1)), g−1

G−1
n+1(t)�[1]

(t(2)), g−1

G−1
n+1(t)�[1]

(t(2)), ..., g−1

G−1
n+1(t)�[n]

(t(n+ 1))).
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Now for each i ∈ N, the map Ti → Ti : A 7→ Gi[A], defines a permutation of Ti. It needs to

be checked that if A ∈ Ti then Gi[A] ⊆ X(i) remains in Ti, but this follows from (7.17). Thus

the map

F : T → T : f 7→ (G1[f(1)], G2[f(2)], ...)

defines a bijective isometry of T .

Claim. If t ∈ X(n) then F [f([t])] = f([Gn(t)]).

Proof. Just note that f ∈ T (n) is generated by t if and only if (G1[f(1)], G2[f(2)], ..., Gn[f(n)])

is generated by Gn(t).

Finally let a ∈ A and A ⊆ X(n) be such that a =
⋃
t∈A[t]. Since the Lebesgue measure is

invariant under the isometry group of T , for any A ⊆ X(n), we have

µ(a) = λ(
⋃
t∈A

f([t])) = λ(F [
⋃
t∈A

f([t])]) = λ(
⋃
t∈A

F [f([t])])

= λ(
⋃
t∈A

f([Gn(t)])) = λ(
⋃

t∈Gn[A]

f([t])) = µ(g[a]).

Remark 7.33. The maps gt in the proof of Proposition 7.32 actually characterise bijective

isometries of X. Indeed, it is straightforward to check that given a sequence (gx)x∈
⋃
i∈ω X

(i)

such that each gx is a permutation of X|x|+1, then the map g : X 7→ X defined by

g(x)(i) = gx�[i−1](x(i))

is a bijective isometry.

Proof of Theorem 7.31. Fix ε > 0. By a repeated application of Proposition 7.30 we can

find an increasing sequence of integers n1 < n2 < · · · ∈ I such that µ(
⋂
i∈[k]Cni,1) ≥ ε,

always. Now we want to measure c =
⋂
i∈NCni,1. This is of course a closed set so that, by

compactness of X, we have

µ(c) = inf{µ(a) : a ∈ A ∧ c ⊆ a}.

Now suppose that a ∈ A is such that c ⊆ a. Let A ⊆ X(n) be such that
⋃
t∈A[t] = a. Let

nk > n. Then it is straightforward to check that
⋂
i∈[k]Cni,1 ⊆ a. This shows that any cover

of c by a clopen set must have µ-measure at least ε. Thus µ(c) ≥ ε. Now let J = {ni : i ∈ N}
and notice that for any g ∈ ∏i∈I Xi the map x 7→ x + g is a bijective isometry of X and so

by Proposition 7.32, we will also have µ(g[c]) ≥ ε.

Consider now the forcing P := (Borel(X)/Null(µ))+. We note that the generic real deter-

mining the extension of P cannot be a Cohen real or a random real beneath any condition.

This follows from the fact that the maximal antichain obtained from Theorem 7.31 consists
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of meagre Lebesgue null sets. In fact we can say slightly more. Recall that both Cohen and

random reals are splitting reals (Fact 2.36).

Corollary 7.34. If ȧ is a name for the subset of natural numbers corresponding to the

determining real of P, then for each p ∈ P we can find q ≤ p and a set Bq ∈ [N]ω such that

q  B̌q ⊆ ȧ ∨ B̌q ∩ ȧ = 0.

In particular, ȧ cannot be a splitting real beneath any condition.

Proof. Let ṙ be the determining real of P. In particular for all Borel sets of positive µ-measure

c, we have c  ṙ ∈ c. Let ȧ be such that P  (∀n ∈ N)(n ∈ ȧ↔ ṙ(n) = 1). Fix p ∈ P. Let

J ∈ [N]ω be that promised by Theorem 7.31 (with I = N). For each g ∈∏i∈J Xi let

cg = {f ∈ X : (∀j ∈ J)(f(j) = g(j))}.

Then the cg form a maximal antichain in P, so we can find some cg and a q′ ≤ cg ∧ p.
Now let B1 = {i ∈ J : g(i) = 1} and B2 = {i ∈ J : g(i) = 2}. Since cg  ṙ � J = g

we must have q′  B̌1 ⊆ ȧ ∧ B̌2 ∩ ȧ = 0. Since one of B1 or B2 is infinite we have that

q′  (∃B ∈ ˇ[I]
ω
)(B ⊆ ȧ∨B ∩ ȧ = 0). In particular, for some name B̌ ∈ dom( ˇ[I]

ω
) and q ≤ q′

we have q  B̌ ⊆ ȧ ∨ B̌ ∩ ȧ = 0 (see [23, 3.7 Corollary (d)]). Now let Bq = B.

Since µ is an example of a pavement submeasure we state the following taken from [38,

Question 7.3.7].

Question 7.35. Does P add a Cohen real?

7.4 Miscellaneous countings

In this section we gather some miscellaneous counting arguments from the previous sections.

We begin by generalising the calculations from Example 7.12 on page 71. In fact the following

may be viewed as a replacement for Lemmas 7.5 and 7.6.

Lemma 7.36. Let n ∈ N and and a1, ..., an be the ∗-free generators of Fr∗n. Let λ : {⋃i∈I ai :

I ∈ P([n])+} → R be any map. Then λ extends uniquely to a measure on Fr∗n and is defined

by:

λ(I) = (−1)|I|
|I|∑
l=0

(−1)l+1
∑
y∈[I]l

λ([n] \ y). (7.18)

where in the above, if z ⊆ [n], by λ(z) we mean λ(
⋃
i∈z ai).

Before we prove this we note the following. If σ(l,m, k) = |{a ∈ [k]m : [l] ⊆ a}|, then clearly

σ(l,m, k) =
(
k−m
m−l

)
and so

k−l∑
i=0

σ(l, l + i, k + 1)xi =

k−l∑
i=0

(
k + 1− l

i

)
xi = (1 + x)k+1−l − xk+1−l. (7.19)
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Proof of Lemma 7.36. By Lemma 7.6 such an extension exists (or just proceed to show that

the above defines the required signed measure). Clearly this extension must satisfy the above

for |I| = 1 (since it is additive). Suppose it is true for all |I| ≤ k. Let I ∈ [n]k+1 and notice

that

1Fr∗n = {I} t
⊔

J∈[I]≤k

{J} t

⋃
i 6∈I

ai

 . (7.20)

Now for each p ∈ [k] we have

∑
J∈[I]p

λ(J) = (−1)p
∑
J∈[I]p

p∑
l=0

(−1)l+1
∑
y∈[J ]l

λ([n] \ y)

= (−1)p
p∑
l=0

(−1)l+1σ(l, p, k + 1)
∑
y∈[I]l

λ([n] \ y).

To see this just observe that for each l ∈ [k] and y ∈ [I]l, the number of times that the term

λ([n] \ y) will appear in the summand will be equal to the number of subsets of I, of size p,

that contain y. This gives

∑
p∈[k]

∑
J∈[I]p

λ(J) =
k∑
p=1

p∑
l=0

(−1)l+p+1σ(l, p, k + 1)
∑
y∈[I]l

λ([n] \ y)

=

k∑
l=1

(−1)l+1σ(0, l, k + 1)λ([n])

−
k∑
l=1

k−l∑
i=0

(−1)iσ(l, l + i, k + 1)
∑
y∈[I]l

λ([n] \ y)

(7.19)
= (1− (−1)k)λ([n]) +

k∑
l=1

(−1)k+1−l
∑
y∈[I]l

λ([n] \ y)

From (7.20) we then get

λ(I) = λ([n])−

(1− (−1)k)λ([n]) +

k∑
l=1

(−1)k+1−l
∑
y∈[I]l

λ([n] \ y)

− λ([n] \ I)

= (−1)kλ([n])− λ([n] \ I) +
k∑
l=1

(−1)k−l
∑
y∈[I]l

λ([n] \ y),

which is easily seen to give (7.18).

Now we describe a procedure that allows us to obtain explicit values for the δ(k, n) via (7.10)

on page 79. From this we can obtain reasonably nice expressions for the first few values of
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δ(k, n), but it is not clear to us how to proceed. Let

γk,n+1 =
∑

l∈[k/2,k)∩N

δ(l, n)

(
l

k − l

)
22l−k32n−l,

(the sum of all but the last expression in (7.10)). Then of course we have

δ(k, n+ 1) = γk,n+1 + δ(k, n)2k32n−k. (7.21)

An(other tedious) induction on n using (7.21) gives

δ(k, n+ 1) = 2(n+1)k32n+1−(n+1)k
n+1∑
i=2

γk,i2
−ik3−2i+ik + δ(k, 1)2nk32n+1−2−nk. (7.22)

Lemma 7.37. We have δ(2, n+ 1) = δ(1, n)|Tn+1| − 2δ(1, n)2 and

δ(3, n+ 1) =
3n+1 − 2n+1

3n
(
3n+1 + 2n+1

53n
δ(1, 1 + n)− 2δ(1, n)2).

Proof. We prove the first expression but omit the second. A straightforward induction on n

using (7.10) gives

δ(1, n) = 2n32n−1−n.

Then we have

γ2,n+1 = δ(1, n)32n−1 = 2n32n+1−2−n.

By (7.22) we get

δ(2, n+ 1) = 2(n+1)232n+1−(n+1)2
n+1∑
i=2

2i−132i−i−12−2i3−2i+2i + δ(2, 1)22n32n+1−2−2n

= 22n+132n+1−2n−3
n+1∑
i=2

(
3

2

)i
+ 22n32n+1−2−2n

= 22n+132n+1−2n−3
n+1∑
i=1

(
3

2

)i
=

2

3
δ(1, n)2

n+1∑
i=1

(
3

2

)i
= 2δ(1, n)2

(
3

2

)n+1

− 2δ(1, n)2,

and we are done since |Tn| = 32n (see (7.9) on page 79).

Next we give an alternative expression for (7.10). This expression is not inductively defined

but it relies on understanding certain partition numbers of integers. This makes it compli-

cated.

For n ∈ N let b(n) = max{k ∈ ω : 2k ≤ n} and let B(n) = {(a0, ..., ab(n)) :
∑b(n)

i=0 ai2
b(n)−i =
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n ∧ ai ∈ ω}. Of course each ai need only range over {0, 1, ...i + 1} (not ω). Notice that

n 7→ |B(n)| is well known as the binary partition function (for example, see [26]). Let

B′(n) = {a ∈ B(n) : (∀i ∈ [b(n)])(a(i) ≤ 2i −
i−1∑
j=0

2i−j−1a(j))}.

Given A ⊆ X(m) and n ≥ m, let (A)n = {t ∈ X(n) : t � [m] ∈ A}. Now suppose n ∈ N and

l ∈ 2n. Let A0 = X(n−b(l)) \ f(n− b(l)). And set

Ai+1 = [X(n−b(l)+i) \ f(n− b(l) + i)] \
⋃
j≤i

(Aj)n−b(l)+i.

The motivation for considering the sets B′(n) comes from the following lemma.

Lemma 7.38. If f ∈ δ(2n − l, n) then (|A0|, |A1|, ..., |Ab(l)|) ∈ B′(l).

Proof. We observe that t ∈ X(n) generates f precisely when (∀i)(t 6∈ (Ai)n). So we have

l = |
⊔
i

(Ai)n| =
b(l)∑
i=0

|Ai|2b(l)−i.

We can go the other way too! Let n ∈ N and l ∈ {0, 1, ..., 2n − 1}. Fix a ∈ B′(l) and define a

member f ∈ δ(2n − l, n) as follows. Let C0 ∈ [X(n−b(l)−1)]a(0) and let A0 = {t_it : t ∈ C0},
for some it ∈ X(n−b(l)). Now let

Ci+1 ∈ [Xn−b(l)+i \
⋃
j≤i

(Aj)n−b(l)+i]
a(i+1),

and set Ai+1 = {t_it : t ∈ Ci+1}, for some it ∈ Xn−b(l)+i+1. Now let f ∈ T (n) be defined by

f � [n − b(l) − 1] = (X(1), X(2), ..., X(n−b(l)−1)) and for i ∈ [0, b(l)] we let f(n − b(l) + i) be

any member of

Zi := {A ∈ Tn−b(l)+i : Xn−b(l)+i \
⋃
j≤i

(Aj)n−b(l)+i ⊆ A ∧A ∩Ai = 0}. (7.23)

It can now be checked that t ∈ X(n) generates f precisely when (∀i)(t 6∈ (Ai)n). In particular

the Ai constructed in the discussion preceding Lemma 7.38 will coincide with the Ai here.

From this we may conclude that δ(2n − l, n) is equal to the number of f ’s one can construct

in the above manner. This gives the following.

Lemma 7.39. For n ∈ N and l ∈ 2n then we have

δ(2n − l, n) =
∑

a∈B′(l)

b(l)∏
i=0

(
2(n−b(l)−1)+i −∑i−1

j=0 2i−j−1a(j)

a(i)

)
2a(i)

i−1∏
j=0

32i−j−1a(j). (7.24)
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Proof. For each a ∈ B′(l) the binomial coefficient counts the number of choices for the Ci.

The term 2a(i) counts the number of choices for Ai, given Ci. The term
∏i−1
j=0 32i−j−1a(j) is

the cardinality of Zi from (7.23).

Finally for this subsection we give an expression for δ(k, n) for general Xi. This again seems

to require integer partitions. For natural numbers l ≤ k ≤ |X(n+1)| let

P (n, k, l) = {(a1, ..., as) : ai ∈ ω ∧
∑
i∈[s]

iai = k ∧
∑
i

ai = l ∧ s ∈ [|Xn+1|]}

That is P (n, k, l) represents a subcollection of integer partitions of k into no more than |Xn+1|.
To see why we are interested in such a collection let (a1, ..., as) ∈ P (n, k, l) and f ∈ T (n) be

generated by t1, ..., tl. Let (Cj)j∈[s] be a partition of [l] such that |Cj | = aj . For each i ∈ Cj
let Bi,j ⊆ Xn+1 such that |Bi,j | = j. Now notice that if A ∈ Tn+1 is such that

{t_i x : x ∈ Bi,j} ⊆ A (7.25)

then f_A ∈ δ(k, n+ 1).

Conversely, if f ∈ δ(k, n+ 1) let {t1, ..., tl} = {t � [n] : t generates f}. Then the ti will be the

generators of f � [n]. If, for j ∈ ω, we let Cj = {i ∈ [l] : ti has precisely i extensions in f(n+ 1)}
and set s = max{j : Cj 6= ∅} then we see that (|C1|, ..., |Cs|) ∈ P (n, k, l). If, for i ∈ Cj , we

set Bi,j = {x : t_i x ∈ f(n+ 1)} then of course

{t_i x : x ∈ Bi,j} ⊆ f(n+ 1).

The number δ(k, n+ 1) is given by∑
l∈[k]

δ(l, n)|{A ∈ Tn+1 : (∃t1, ..., tl ∈ X(n))(A contains precisely k extensions of t1, ..., tl)}|.

So for each l ∈ [k] and f ∈ δ(l, n) we need to count the number of A ∈ Tn+1 such that

f_A ∈ δ(k, n + 1). But from the above discussion this is just the number of A’s satisfying

(7.25), given (a1, ..., as) ∈ P (n, k, l). Thus we have the following.

Lemma 7.40. For general Xi we have

δ(k, n+ 1) =
∑
l∈[k]

∑
a∈P (n,k,l)

∏
j∈dom(a)∧a(j)6=0

δ(l, n)

(
l

a

)(|Xn+1|
j

)a(j)

(2|Xn+1| − 1)|X
(n)|−l

where by
(
k
a

)
we mean the multinomial coefficient(

k,

a(1), a(2), ..., a(k)

)
=

k!∏
i∈[k] ai!

.

Proof. The multinomial coefficient counts the number of choices for the Cj . The binomial
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coefficient counts the number of Bi,j , given the Cj . The last term counts the number of A

that will satisfy (7.25).
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A Dow and Hart

We prove the following Proposition A.1 (below), which is Proposition 2.1 from [5], but under

our more general conditions. This is the only part in which one needs to consider the property

C(B) in [5]. Everything is taken from [5] so we excuse ourselves from any further referencing.

Throughout this section fix a σ-complete Boolean algebra B such that C(B) holds, witnessed

by F. If ϕ : B → P(ω)/Fin is an embedding then a map Φ : B → P(ω) is a lifting for ϕ if

and only if

(∀x ∈ B)(ϕ(x) = [Φ(x)]fin).

If Φ is a lifting then for brevity we will write Φ(x) instead of Φ(F(x)), for x ∈ Clopen(ω×ω2).

We will also write (n, s) instead of {n} × [s].

If A ⊆ ω then a lifting Φ is exact on A if and only if for every n,m ∈ A and s ∈ ⋃n∈ω
n2 we

have

n 6= m→ Φ(n, ∅) ∩ Φ(m, ∅) = ∅ and Φ(n, s) = Φ(n, s_0) t Φ(n, s_1).

If f ∈ ωω and A ⊆ ω then set

Bf,A = {(n, s) : n ∈ A ∧ s ∈ 2f(n)}.

If A ⊆ ω then a lifting Φ is complete on A if and only if for every f ∈ ωω and O ⊆ Bf,A we

have

Φ[O] :=
⋃

(n,s)∈O

Φ(n, s) =∗ Φ(
∑

O),

where two subsets M =∗ N if and only if M4N ∈ Fin (that is, they are identified in

P(ω)/Fin). Theorem 3.1 for B follows from the following two results.

Proposition A.1. If ϕ : B→ P(ω)/fin is an embedding, A ⊆ ω is infinite and Φ is a lifting

for ϕ that is exact on A then Φ is not complete on A.

Theorem A.2. (OCA) If there exists an embedding ϕ : B → P(ω)/fin then there exists a

lifting Φ for ϕ and an infinite A ⊆ ω such that Φ is both exact and complete on A.

Proof of Proposition A.1. Let n ∈ A. For each i ∈ Φ(n, ∅) let fni ∈ 2ω be the unique function

such that

(∀m)(i ∈ Φ(n, fni � m)). (A.1)

By C(B) we can find Nn
1 , N

n
2 , ... such that

Un :=
∑

i∈Φ(n,∅)

F(n, fni � Nn
i ) < F(n, ∅).

Let Cn = F(n, ∅) \ Un and F =
∑

n∈ACn. Now for each n ∈ A we have

[Φ(F )] · [Φ(n, ∅)] = ϕ(F ) · ϕ(n, ∅) = ϕ(F · F(n, ∅)) = ϕ(
∑
k∈A

Ck · (n, ∅)) = ϕ(Cn) 6= 0.

91



A Dow and Hart

Thus

(∀n ∈ A)(|Φ(F ) ∩ Φ(n, ∅)| = ω).

For each n ∈ A let

kn = min Φ(F ) ∩ Φ(n, ∅). (A.2)

Set I = {kn : n ∈ A} and O = {F(n, fnkn � Nn
kn

) : n ∈ A}. Since
∑
O · F = 0 we must have

|Φ(
∑

O) ∩ Φ(F )| < ω. (A.3)

By (A.1) we have I ⊆ Φ[O] and by (A.2) we have I ⊆ Φ(F ). Thus by (A.3)

Φ[O] 6=∗ Φ(
∑

O).
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