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Abstract

The bacterium Streptomyces coelicolor is a model organism which belongs to a

family of bacteria known as Streptomycetes. It is fungal-like in appearance, com-

posed of branching filamentous cells which produce reproductive spores on aerial

branches. Streptomycetes are a particularly important family of bacteria because

they are the source of a large proportion of natural antibiotics. Yet the type of

growth exhibited by them is unusual in the bacterial world and the exact mecha-

nisms are poorly understood.

In this thesis, we outline methods for the analysis and modelling of the early

stage growth and morphology of Streptomyces coelicolor and three mutant strains

which have been created by deactivation of the cytoskeletal genes, filP and scy.

We provide an experimental technique suitable for growing bacteria for analysis

and describe the development of a semi-automatic image analysis tool for gathering

morphological statistics. Using this, we present a comprehensive analysis of the

wild-type and mutant bacteria, highlighting differences between the strains.

We also introduce three new models of S. coelicolor growth and use these to

help understand our experimental data and to suggest a mechanism which drives

the extension of tips and initiation of new branches.
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Chapter 1

Introduction

1.1 Streptomyces coelicolor

The bacterium Streptomyces coelicolor is a model organism which belongs to a family

of bacteria known as Streptomycetes. It is fungal-like in appearance, composed of

branching filamentous cells which produce reproductive spores on aerial branches.

Streptomycetes are a particularly important family of bacteria because they are the

source of a large proportion of natural antibiotics, as well as anti-cancer chemicals

and industrially important enzymes.

Figure 1.1 shows a microscope image of early-stage S. coelicolor growth. In

filamentous organisms such as Streptomyces, cells are arranged in hyphae - these are

long filaments of cells divided by wall-like structures called septa (not visible in the

figure) that form as the filament extends and its DNA is replicated. The septum

forms a barrier between one cell and the next, but does not physically divide them

in the same way as with organisms that replicate by binary division. Filaments grow

only at the tips with growth nutrients carried along the hyphae to the growing ends.

At points along the filament, a lateral branch may form and a new filament will

begin growing outwards.

Though it is possible to observe the growth and morphology of Streptomyces

using microscopy, there is currently not a good understanding of the mechanisms

of tip extension, septation and branching. Streptomyces morphology exhibits a very

similar appearance to that of many species of filamentous fungi, but the significant
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10μm

Figure 1.1: Example image of Streptomyces coelicolor growth. The bacterium is
composed of long strands of branching filaments and growth occurs only at tips.

differences in internal structure between eukaryotic and prokaryotic cells mean that

different processes are almost certainly at work.

1.2 Thesis scope

The work presented in this thesis has focussed on trying to gain a better understand-

ing of the early stage growth and morphology of S. coelicolor, through experimental

work, image processing, statistics gathering and mathematical modelling.

Our work has involved investigating four different strains of S. coelicolor : the

wild-type, two single mutant strains with a single cytoskeletal gene deactivated, and

a fourth double mutant strain with both genes deactivated. One of these genes,

known as scy, was recently characterised by the Kelemen group at UEA and has

been a particular focus of our research.

The experimental work has involved growing cultures of bacteria and taking

thousands of microscope images of growth at various stages of development. We

have used image processing techniques to develop a semi-automatic analysis tool,

which has enabled us to provide a comprehensive quantitative description of the

early-stage morphology of the bacteria, something that we believe to be unique.

12
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The modelling work has enabled us to test a number of hypotheses related to

the internal mechanisms of growth and branching and to see if these could explain

the observed patterns of development. At all times, we have sought to tie together

the experimental work with the modelling work and to use one to inform the other.

1.3 Structure of thesis

We now provide a brief overview of the thesis.

Chapter 2. We provide an introduction to the Streptomyces lifecycle and explain

the current understanding of the processes of tip growth, septation, branching and

growth direction. We discuss the similarities and differences to filamentous fungi.

Chapter 3. We describe the laboratory techniques which we developed to grow

cultures of S. coelicolor suitable for morphological analysis. This includes details of

the bacterial strains used, the preparation of growth media, the use of fluorescent

staining, microscopy and the structure of the time series experiments carried out.

Experiments were carried out using four different bacterial strains and two types of

growth medium.

Chapter 4. We provide an overview of previous image processing work associ-

ated with filamentous microbes and then describe a number of techniques which

we employed in the development of our own semi-automatic tool for the analysis of

Streptomyces bacteria. We also provide a brief overview of the software structure,

including a UML class diagram.

Chapter 5. We present the results of applying our analysis tool to a set of 2,200

images of growing S. coelicolor that we gathered using the techniques described

in Chapter 3. These results are presented in a series of graphs and tables, which

together highlight a number of significant morphological differences between the

wild-type and the mutant strains. Understanding these differences provides insights

into the function of the deactivated mutant genes.

13
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Chapter 6. We begin with a review of existing models of filamentous growth

in Streptomyces, as well as some relevant fungal models. We then outline three new

models of Streptomyces growth that we have developed. The first is formulated as

a set of ordinary differential equations which describe the balance of three types

of hyphal element. The second model adopts an agent-based approach to provide

a probabilistic, spatial, description of developing bacteria. Our final model uses a

mechanistic description of the internal filament to describe tip extension and branch

iniitation. The first and last models were developed with significant input from Dr.

Scott Grandison, UEA.

Chapter 7. We summarise the work presented in this thesis and go on to dis-

cuss future directions for the work. These include early work in time-lapse imaging,

enhancements to our analysis tool and future directions for development of our

models.

14



Chapter 2

Biology of Streptomyces

2.1 Summary

In this chapter, we introduce some basic biology of Streptomyces and review current

literature concerning growth and branching. The review mainly focuses on research

related to the model organism Streptomyces coelicolor, which has been the object of

our own analysis and modelling work.

Section 2.2 introduces the bacterium by providing a high-level view of its lifecycle

from germination of a spore through to growth of vegetative and aerial mycelia and

production of new spores. In the sections that follow, there is a more detailed study

of the cytoskeleton, growth, branching, septation and growth direction. There is

also some discussion of the biology of fungal species, as there are many similarities

in the morphological characteristics of filamentous bacteria and fungi and some of

the insights obtained from the study of fungi are also applicable to the study of

Streptomyces.

2.2 The Streptomyces lifecycle

The genus Streptomyces, part of the Actinomycetes family of bacteria, are commonly

occurring soil dwelling organisms. Fungal-like in appearance, they are composed of

branching filamentous cells which produce reproductive spores on aerial branches.

Streptomyces are particularly important bacteria because they are the source of a

large proportion of medicinal antibiotics, as well as herbicides, antitumour agents
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Spore

Germ tube Septum

Figure 2.1: Vegetative growth of Streptomyces: Growth occurs only at the tips,
while behind the tip the formation of occasional septa divides the mycelium into cell
compartments. Periodically a branch may begin to form at a non-tip (sub-apical)
cell.

and industrially important enzymes [37, 40].

Streptomyces cells are arranged in long filaments called hyphae. These cells are

divided by septa and growth occurs only at the tips. Periodic branching results

in the production of child filaments which emerge laterally to the parent filament.

In most Streptomyces, branches only occur at sub-apical cells (that is, away from

the tip), although in filamentous fungi and some mutant strains of Streptomyces,

branching can also take place at the tip [26]. Although the tip extension rate is

relatively constant, an exponential increase in the number of growing tips results

in an exponential increase in overall biomass, at least in the early stages of colony

growth [11].

The lifecycle of Streptomyces consists of a vegetative growth phase, involving

colonisation of a substrate medium, followed by the growth of aerial mycelium and

the production of antibiotics and new spores.

Figure 2.1 illustrates the vegetative growth of a typical Streptomyces bacterium.

This begins with a spore, from which a single initial germ tube will emerge. Suc-

cessive rounds of tip extension and septation follow, interspersed with occasional

branching activity. Often, after a delay of a few hours, a second germ tube emerges

in the opposite direction to the original one and growth then continues on both

germ tubes. Some example microscope images of vegetative mycelia are provided in

Figure 2.2.
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Figure 2.2: Microscope images of Streptomyces coelicolor vegetative mycelia,
grown on minimal media and stained with Propidium Iodide (red) and Wheat
Germ Agglutinin conjugate (green): (a) and (b) Phase contrast and fluorescence
images taken 8-10 hours after incubation. (c) and (d) Florescence images taken
12-14 hours after incubation. (e) Eventually a mass of tangled filaments forms.
Spores are shown as bright red dots.
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Vegetative mycelia

Aerial mycelia

(a) (b) (c)

Growth media

Figure 2.3: Aerial growth of Streptomyces: (a) Aerial mycelia begin to emerge
perpendicular to plane of growth. (b) Synchronous septation generates the pre-
spore compartments. (c) Spores chains are formed.

Nielsen states that in rich media, branching is highly favoured and the hyphal

diameter is larger, while in poor media, branching is inhibited and the diameter is

smaller [61]. This behaviour in poor media is thought to be because the mycelium

extends itself in order to reach an environment better equipped to provide the nu-

trients needed for growth.

Eventually branching and septation cease completely in the centre of a colony

and aerial mycelium may then form (Figures 2.3 and 2.4). This aerial growth phase

is thought to be triggered by a sensitivity to nutrient depletion and possibly other

signals [19]. At this point, curling aerial hyphae emerge perpendicular to the veg-

etative mycelia. These hyphae do not branch, but instead transition into chains of

spores [74], which are dispersed further afield to begin reproduction at new sites.

During this aerial growth phase, secondary metabolite production is initiated and re-

sults in the release of antibiotics and other chemicals. The production of antibiotics

might have evolved as a defence mechanism against competing bacteria in the soil,

and the fact that Streptomyces produces such a wide range of antibiotics is thought

to be a reflection of its need to compete with a wide range of different bacteria [11].

If left to grow for long enough, eventually the colony originating from a single

spore grows to a size visible by the naked eye and has a white, fluffy appearance as

18



Biology of Streptomyces
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Figure 2.4: Example microscope images of S. coelicolor aerial hyphae, stained
with Propidium Iodide (red) and Wheat Germ Agglutinin conjugate (green): (a)
Curling aerial hypha before septation. (b) Aerial hypha after septation. (c) Spore
chain. (Images provided by Neil Holmes and Gabriella Kelemen)

a result of the mass of aerial mycelium protruding from it (Figure 2.5). Later the

colony turns grey in colour, indicating that production of mature spores is complete.

2.3 Similarities with filamentous fungi

Because of the very similar appearance and morphology of filamentous fungi to

Streptomyces bacteria and the lack of knowledge of many of the internal bacterial

mechanisms of extension and branching, it can be helpful to consider relevant fungal

biology. Filamentous fungi are an order of magnitude larger than Streptomyces in

terms of hyphal diameter and length. This makes them easier to image and perhaps

explains why there is a greater volume of literature describing them. However,

Goriely and Tabor point out that there are fundamental differences in the internal

structure of fungi and actinomycetes [25].

Fungi are eukaryotic organisms (genetic material is held within a membrane-

bound nucleus in the cell), while Streptomyces is a prokaryotic organism (genetic

material is not membrane-bound). Fungi have a much more complicated internal

structure which includes a cytoskeleton and organelles, while the cell wall structure

is also different [25]. In fungi, it is thought that the cytoskeleton behaves as stress-

bearing internal scaffolding [41]. Although it is now known than many prokaryotes

possess a cytoskeleton, organelles are still thought to exist only in eukaryotes.
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Figure 2.5: Image of a S. coelicolor colony after 6 days of growth on MMM media.
(Image provided by Neil Holmes)

In fungi, vesicles are the organelles responsible for moving material for tip ex-

pansion around the hyphae. Vesicles accumulate at various points in the mycelium,

often at the site of septa formation and at tips. The high concentration of vesicles

found at the tip of a hypha is termed the Spitzenkörper. It is assumed that vesi-

cles congregate at the Spitzenkörper prior to migrating to and fusing with the cell

membrane to produce new cell wall surface [71]. To date, no Spitzenkörper has been

observed in Streptomyces.

2.4 The genetics of Streptomyces

The genome of S. coelicolor was sequenced in 2002 and is 8,667,507 base pairs long,

with 7,825 predicted protein encoding genes [6]. The production of ‘knockout’ mu-

tants - bacteria with specific genes disabled - has been instrumental in understanding

the genetics of Streptomyces. A common technique used to produce mutants is the

PCR-targeting procedure [32] and is the method used for the experimental work

presented in Chapter 3 of this thesis.

In the sections that follow, some mention is made of particular genes and associ-

ated proteins that have been found to be involved with tip growth and branching in

S. coelicolor. We use the convention of writing gene symbols in italics with lower-case

initial letter and proteins in upright text with first letter capitalised - for example

ftsZ and FtsZ respectively.
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2.5 The cytoskeleton

The cytoskeleton is the name given to a lattice of fibres which provide a supporting

framework for the cell and help to maintain its shape. A range of cytoskeletal

proteins have been identified in bacteria. FtsZ and MreB proteins are structurally

and evolutionally related to the eukaryotic proteins tubulin and actin [4]. As is

further discussed in Section 2.7, FtsZ is involved in marking the location of septa.

MreB controls the shape of rod shaped bacteria such as Escherichia coli or Bacillus

subtilis by generating helical scaffolds for cell wall synthesis. The function of MreB

in Streptomyces is less clear, but is thought to be linked to the process of sporulation

[54]. Growth of a mutant strain of S. coelicolor with the mreB gene deleted resulted

in normal growth of vegetative mycelia, but many aerial hyphae had a swollen,

irregular appearance and displayed lysis (cell death) [54].

Within S. coelicolor, the FilP protein has been identified as a key component in

forming cytoskeletal structures [4]. Removal of the filP gene resulted in a distorted

morphology and lower biomass when compared to the wild-type, while the use of

atomic force microscopy (AFM) showed that the hyphae of filP knockout mutants

were more deformable and softer than the wild-type [4]. Tip extension is marked

by the landmark protein DivIVA [17], which we discuss further in the next section.

DivIVA is an essential protein, which means that a knockout mutant of divIVA is

not viable.

Recent work by Kelemen et al. has identified another Streptomyces cytoskeletal

protein known as Scy [39], which seems to have an important role in the regulation of

tip extension and branching and has been the focus of much of the research presented

in this thesis.

2.6 Tip growth

A typical Streptomyces filament is less than 1 µm in diameter and can grow to lengths

of 50-100 µm [25]. Kretschmer states that the extension rate of S. granaticolor tips

increases exponentially during the first hours, synchronous with periodical rounds of

DNA synthesis, and with the lengthening of the supporting hyphae [42]. It reaches a
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maximum when the growth rate equals the rate of transport to the tips of nutrients

needed for cell construction. Allan and Prosser measured the hyphal extension rate

of S. coelicolor on solid minimal media to be 10-13 µm h−1 [2], while in liquid MEM

media, Gray et al. found a hyphal extension rate of 8 µm h−1 [28].

Goriely et al. [24] describe the tip growth mechanism in Streptomyces as a

complex process whereby wall building materials are incorporated into the tip as it

is stretched by turgor pressure (intra-cellular fluid pressure). As the tip is stretched

and built, the more distant parts of the hyphal element become rigid. The process

by which wall building material and DNA is transported to the tip is unclear and

the molecular basis of tip extension is also not well understood [18]. Due to the

small diameter of hyphae, it is very difficult to make a detailed study of the internal

mechanics of hyphal growth [28].

The bulk of the cell wall is composed of peptidoglycan, a polymer made from

amino acids and sugars. Fluorescent conjugates of the antibiotic vancomycin can be

used to visualise the location of peptidoglycan which has yet to be fully incorporated

into the cell wall. This shows strong signals at hyphal tips and also at locations where

lateral branches are about to form [14]. In earlier work, Gray et al. were able to

label a peptidogyclan precursor known as GlcNAc and found it also localised to tips

and, to a lesser extent, sites of lateral branching [28].

In contrast to tip extension, DNA replication appears to happen throughout the

hyphal length. Kummer and Kretschmer treated S. granaticolor and S. hygroscopi-

cus with a chemical which is incorporated exclusively into the DNA. They found no

significant difference in the incorporation of the label up to a distance of 80 µm from

the tip and concluded that all nucleoids had the same mean replication activity [46].

In S.coelicolor, the protein DivIVA has been found to be important in determin-

ing tip growth and hyphal shape [17]. DivIVA forms a focus at each growing tip

and is found to be present at the site of lateral branches before the branch is visible

[33]. Underexpression of the protein results in unusually curling hyphae and apical

branching, while overexpression produced shorter, thicker hyphae with swollen ends

[17] and increased branching sites [33]. Flärdh and Buttner suggest that DivIVA

acts as a ‘landmark protein’ that recruits cell wall building machinery to its location
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[19]. Hempel et al. concluded that DivIVA foci form preferentially at curved hyphal

walls, after observing a preference for branches to appear on the outer side of bent or

slightly curved hyphae. In their experiments, 68% of 120 observed branching events

occurred on the outer convex side of curled hyphae [33].

In fungi, the Spitzenkörper is thought to operate as a Vesicle Supply Centre,

regulating the supply of cell wall building material held in vesicles [69]. Robson

reports that recent research with fungi has shown that tip extension is not strictly

linear and may occur as a series of cyclic pulses [72].

In one of the few successful attempts at timelapse imaging of Streptomyces,

Jyothikumar et al. observed the early development of 45 S. coelicolor spores [38].

Their experiments found spores formed one or two germ tubes, but never more - in

contrast to the work of Noens et al. who found up to four germ tubes per spore

[63]. Jyothikumar et al. found in 15-20% of germ tubes, that the growth of the

primary germ tube ceased for a period of 1-5 hours when a lateral branch emerged.

In the remaining 80-85% of germ tubes, the growth of the primary filament appeared

to be unaffected by the emergence of the branch. The cases where primary germ

tube growth was stunted appeared to be where branches happened relatively soon

after the emergence of the germ tube. The means by which this pause in growth

occurs is not known, but the authors suggest that one explanation is that hyphal

extension requires the presence of a nucleoid close to the tip and so it is necessary for

chromosome replication to take place before both tips posses an associated nucleioid

and can extend.

2.7 Septation

Although not exhibiting the binary cell division often associated with bacteria, the

process of septum formation in Streptomyces allows the discrimination of mycelial

cell compartments. In vegetative mycelia, septa are formed relatively infrequently

and tend to be formed far behind the tip. However, during sporulation in aerial

mycelia, septa are far more closely spaced and the compartments they create become

the spores which are dispersed in order for the organism to reproduce.

In vegetative mycelia, synthesis of new cell wall occurs only at tips, in the apical
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compartment. However, it appears that DNA replication occurs in both apical and

sub-apical compartments [40], perhaps leading to the formation of branches in the

sub-apical compartments.

As has been found in many other types of bacteria, the tubulin-like FtsZ protein

is implicated in septum formation in S. coelicolor. This forms so-called ‘Z-rings’

which mark the location of future septation activity and recruit additional proteins

to the site [27]. The ftsZ gene does not seem to be essential for Streptomyces growth.

Experiments involving bacteria with the gene removed still result in the growth of

a colony, but no septation occurs and a single giant cell is formed [55]. However,

because FtsZ is needed to produce cell divisions in aerial hyphae, no spore chains

are produced and the bacteria is incapable of reproduction.

Kretschmer [43] examines the length and timing of septation during vegetative

growth in S. granaticolor. Looking at the mean length of the apical and sub-apical

cells (known as c1 and c2 respectively), the work found that decreased growth rates

resulted in decreased mean length of both c1 and c2. Perhaps surprisingly, septum

formation was found to be suppressed to a larger extent in richer media.

Examining the timing of septation, Kretschmer found that in fast growing cul-

tures, the time between successive septations, T , was similar to C, the DNA replica-

tion time of the organism. The author concludes that septation timing is determined

by the rhythm of DNA replication, if the apical cell has attained a certain length.

Below this length, septation is suppressed and, even under optimal conditions, T is

never less than C.

2.8 Branching

Kretschmer suggested that a build up of cell wall precursors beyond a point at

which they can be used at the tip is what triggers branching [44]. Kretschmer also

looked at the location of branches within the apical hyphal region of Streptomyces

granaticolor and found that branches were not located at the midpoint between the

tip and previous branch, but tended to be nearer the previous branch [45]. The

distance from a newly formed branch to the tip changed from 12 to 44 µm, while

from the new branch to the previous branch from 12 to 27 µm.
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Riquelme and Bartnicki-Garcia have studied branching in the fungus Neurospora

crassa using high resolution light microscopy [70]. Unlike in Streptomyces, apical

branching does occur, although less commonly than lateral branching. The authors

found the Spitzenkörper to be implicated in lateral branch formation, one being

clearly visible at the site of each new branch. Lateral branches were found to have no

significant disturbance on the growth rate of the parental tip, although the opposite

was true with apical branching. The former observation, at least, supports the view

that branching does not drain the resources needed to continue tip growth, but

occurs because excess resources are available and cannot be efficiently transported

to, and used by, the increasingly distant hyphal tip.

Prosser and Tough suggest that branching in fungi occurs at locations where

there is an accumulation of vesicles, but that in prokaryotes (such as Streptomyces),

branching is not related to an accumulation of vesicles [67]. In fungi, vesicles often

accumulate at the point of septum formation, so branches are often positioned closed

to septa. Kieser et al. [40] and Chater and Losick [11] both report that branch points

are often close to septa, although neither provide experimental detail or provide an

explanation for it. Yang et al. also report that experiments indicate Streptomyces

branches are also often located near septa [85]. However, Prosser and Tough note

that the branch closest to the tip is not usually located near a septum [67].

As noted in Section 2.6, DivIVA loci are observed at the sites of new branches

in S. coelicolor [33].

2.9 Growth direction

There appears to be little published work on the factors determining growth direction

in Streptomyces.

In fungi, growth direction appears to be determined by Spitzenkörper trajectory.

This meanders slightly, but follows a broadly straight line. Riquelme et al. describe

findings that point to the cytoskeleton being responsible for fixing Spitzenkörper

trajectory and hence direction of the growing hypha [71]. By using antimicrotubular

agents to attack the cytoskeleton, they were able to produce a marked disturbance

in hyphal trajectory.
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The hyphae of many fungi and Streptomyces bacteria can alter the direction of

their growth or cease elongation [36], according to the presence of other hyphae.

The avoidance mechanism is known as autotropism and may be due to either a

localised reduction in oxygen around hyphae, a higher presence of carbon dioxide,

or perhaps a secreted metabolite [72]. Allan and Prosser observed this phenomenon

in S.coelicolor, stating that hyphae only rarely crossed over. In some media, they

were able to observe tips extend until they almost touched another branch, at which

point the tip would stop growing and a new branch would form [2].

2.10 Discussion

This chapter has provided an overview of the Streptomyces lifecycle and reviewed

some of the current thinking of the processes involved in tip extension, septation and

branching. A number of genes have been implicated in the regulation and control of

hyphal extension and branching in vegetative mycelia and of particular importance

are divIVA, scy and filP.

In the next chapter, we describe experiments we have carried out to grow cultures

of wild-type S. coelicolor and of mutants created by knocking out the scy and filP

genes.
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Chapter 3

Experimental Work

3.1 Summary

This chapter describes the experimental work we carried out in order to gather data

on the early stage growth and morphology of Streptomyces coelicolor and three mu-

tant strains. The work involved growing samples of bacteria, fixing them, staining

them and preparing slides for imaging with epifluorescent microscopy. In the follow-

ing sections, we describe the evolution of our experimental method, the preparation

of growth media, the preparation of spores and the microscopy methods used.

3.2 Bacterial strains

Table 3.1 details the four bacterial strains used in the experiments. These were the

wild-type (also known as M145), a mutant with the scy gene deactivated (∆scy), a

mutant with the filP gene deactivated (∆filP) and a double mutant with both scy

and filP deactivated (∆scy-filP).

The PCR-targeting procedure, as described in [32], was used for generation of

the knockout mutants. This involves combination of the bacterial DNA with a

Strain Description Reference or Source
M145 Wild-type SCP1− SCP2− Kieser et al. 2000 [40]
K111 ∆scy (∆28-1326aa)::apr derivative of M145 Kelemen et al. 2010 [39]
K113 ∆filP ::apr derivative of M145 Bagchi et al. 2008 [4]
K115 ∆scy-filP ::apr derivative of M145 Kelemen et al. 2010 [39]

Table 3.1: Bacterial strains used in the experiments.
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cassette containing the apramycin resistance gene aac(3)IV, attached at either end

by adapters designed to bind to the DNA sequence before and after the target gene.

If this process is successful, then the cassette will replace the target gene. The

successfully modified bacteria can then be identified by exposing to apramycin and

selecting for resistance to it.

3.3 Growth media

A common method for growing bacteria in the laboratory is to use a Petri dish

(referred to as a ‘plate’) containing a layer of solid agar-based growth medium onto

which is spread a solution of spores.

There are a wide range of recipes for growth media, each containing different

ratios of the sugars, salts and minerals which the bacteria requires for growth. Some

media are described as minimal media, meaning that they have less of the nutritional

components, while those described as complete media tend to have a much richer

set of constituents.

For our main experiments, we used two media - Minimal Medium Mannitol

(MMM) and Soya Flour Mannitol medium (SFM). As suggested by its name, MMM

is not a very rich medium, while SFM is considered much richer. For spore counting

experiments (Section 3.4) we also used Lennox Broth (LB) Agar medium, which is

richer still than SFM. It is used for spore counting because it results in very rapid

growth and produces colonies which are visible very quickly.

Each medium has to be made in the laboratory, but can be kept for a number of

months before use. In order to prepare plates, the medium is melted in a microwave

until completely liquid and homogeneous. It is then allowed to cool slightly before

being poured into a plate to a depth of around 5 mm. The plates are left to cool

and the media sets solid. Pouring of plates needs to be carried out under a laminar

flow hood in order to prevent contamination with microbes present in the air.

Recipes used to create the media may be found in Appendix A. All are based

on those described in [40].
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Figure 3.1: Photograph of plate used for spore counting experiments: Image
taken after approximately 2 days of growth. The small dots are colonies, each
grown from a single spore of S. coelicolor.

3.4 Preparation for growth

Suspensions of spores were provided by the Kelemen lab. These had previously been

prepared according to the method described in [40]. The process involves scraping

spores from a plate containing a fully grown culture of the appropriate strain, mix-

ing with sterile water, centrifuging, vortexing (rapidly swirling the solution with a

specially designed machine) and finally mixing with sterile 20% glycerol.

Spores were supplied as a concentrated spore stock suspended in glycerol. For

use, these needed to be diluted to the desired concentration with sterile water. In

order to calculate how much to dilute the stock for use in the main experimental

work, it was necessary to perform some spore counting experiments.

Based on past experience, we made an initial approximate guess at the concen-

tration of the stock and then worked out the ratios of water to spore stock required

to dilute down to a few thousand spores per 100 µl. We produced a diluted spore

solution at this ratio and also a further 10x and 100x dilution of that stock. We

took 60 µl of each new spore solution, spread on a plate of LB media and incubated

at 30℃. After 2-3 days, the spores grew into colonies that were visible to the naked

eye (Figure 3.1). We were then able to count the number of colonies and, based on

our dilution, calculate the original concentration of the spore stock.
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Figure 3.2: An example image of spore clumping: This can create beautiful
images, but it is impossible to distinguish an individual spore’s filament structure.

For the purposes of microscopy, we want something in the order of a few thousand

spores per cm2. This ensures that there are a large enough number of samples per

microscope slide, but that the spores are sufficiently well spaced to avoid interfering

with each other. With the results from the spore counting experiments, we were

able to calculate the dilution required for the main experiments in order to produce

the required spore density on the slide.

In an attempt to synchronise the spores, we heat shocked them. This involves

placing the spore solution in a 50℃ heat bath for 10 minutes, then placing it on ice

[40]. This process is thought to cause the spores to ‘reset’ with the aim that the

point of germination will be reasonably uniform across all spores in the solution.

The final stage of spore preparation involves ultrasound sonication. Initially

we didn’t carry this out, but we introduced it when we found that we were getting

excessive clumping of spores. When spores clump, they stick together and produce a

mass of hyphae which are indistinguishable from each other and from the originating

spore (Figure 3.2). Sonication involves lowering a sterilised probe into the spore

solution and emitting ultrasound for around 30 seconds. The vibration generated

by the ultrasound waves causes the spores to shake apart in a more effective manner

than vortexing alone does. At least in liquid media, ultrasound treatment is also

thought to contribute to synchronicity [58]. Once sonicated, the spore solution must

30



Experimental Work

be rapidly spread onto plates, before the spores have time to reagregate.

3.5 Static imaging

For static imaging, a bacterial culture is grown for a pre-determined time before a

sample is taken and fixed to a microscope slide. The process of fixing (preserving and

preventing further biochemical reactions) causes the bacteria to die and means that

growth is frozen at that point in time. There are standard microbiology laboratory

techniques for preparation and imaging of bacteria, but for reasons which we will

explain in the following sections, we found it necessary to spend some time developing

a method that suited our particular requirements. The requirements were:

• We wanted to encourage 2-dimensional growth of the Streptomyces bacteria,

as this would allow us to more easily measure the morphological characteristics

of the different strains.

• We needed bacteria to be reasonably well spaced, so that the growth from one

spore did not interfere or overlap with the growth from another.

• We needed reasonably high contrast images with a strong profile of the bacte-

rial cell wall, so that it was possible to produce software to carry out automatic

image analysis.

• We needed the bacteria to be undisturbed, so that their morphology was un-

affected by shocks or stresses.

In the sections that follow, we describe the evolution of our experimental tech-

nique, beginning with our first attempts at growing Streptomyces on microscope

cover slips and leading on to the development of our final method.

With one notable exception, the techniques described make use of two fluores-

cent stains. The first, Propidium Iodide (PI), binds to DNA and appears red on

fluorescent microscopy images. The second, a Wheat Germ Agglutinin (WGA) con-

jugate, binds to the bacterial cell wall, causing it to appear green under fluorescent

microscopy. The particular WGA stain we used was AlexaFluor 488, supplied by

Molecular Probes.
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Spore streak

Cover slip

Overhead viewSide view

Figure 3.3: Growing Streptomyces on a cover slip: spores are streaked across the
plate and cover slips inserted into the solid medium at an angle. Bacteria grow
along the cover slip.

3.5.1 Growth on a cover slip inserted into media

A well established technique used for imaging Streptomyces involves growth on a

cover slip inserted at an angle into a solid medium. Figure 3.3 illustrates the ex-

perimental setup. A Petri dish is filled with a solid medium such as MMM, which

provides the energy source and nutrients needed for growth of the bacteria. Using

a sterile tooth pick, an appropriately diluted spore solution is streaked in four lines

across the plate. Where each line has been spread, a sterilised cover slip is inserted

at an angle into the medium. This process is performed under a laminar flow hood

in order to prevent contamination with other microbes.

The Petri dish is covered and placed in an incubator at 30℃. In our experiments,

we tended to leave the sample overnight for a period between 10 and 20 hours

before fixing. During that time, the spores germinate and the bacteria grow over

the medium, including along the cover slip where it is in contact with the medium.

When the pre-determined growth time has elapsed, the plates are removed from

the incubator. Each cover slip is carefully slid out of the medium and placed on a

piece of paper. While bacterial growth may have occurred on both sides of the slip,

it is normal practice to use the side facing toward the medium. A pipette is used

to transfer 150 µl of methanol onto the cover slip to fix the bacteria. After waiting

for a minute, the methanol is gently tipped off the cover slip. The bacteria are then

covered with 30 µl of WGA/PI stain solution (diluted to 50µg/ml WGA conjugate,

25µg/ml PI), the slip is left in the dark (because the fluorescent dyes are sensitive

to light) at room temperature for the stain to infuse. After 20-30 minutes, the cover
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slip is gently washed in a beaker of water to remove excess stain, then dried as much

as possible by tipping excess water off.

A microscope slide is prepared and a drop of 20% glycerol applied to the centre.

The cover slip is placed, treated side downwards, onto the slide and the edges are

sealed with nail polish. Once the nail polish has dried, the slide may be viewed

under a microscope or stored at 4℃.

We found that the technique is capable of producing good quality, high contrast

images of Streptomyces but we did encounter two significant problems:

• The images tend not to be particularly flat - that is, growth often occurs in 3-

dimensions. This makes analysis difficult or impossible because the microscope

has a limited depth of focus and the computational problems also increase

enormously.

• The action of removing the cover slip from the medium is quite brutal and

we can not be certain what damage is occurring to the bacteria during the

process. The washing of the cover slip is also potentially traumatic for the

bacteria.

These problems led us to consider an alternative method involving growth on

cellophane.

3.5.2 An early technique for growth on cellophane

As with the cover slip procedure described in the previous section, a Petri dish is

filled with a solid medium such as MMM. Once the medium has set, a thin sterile

cellophane disc is taken, washed in sterile distilled water and laid on top of it. The

cellophane discs need to be autoclaved prior to use to ensure they are sterile. This

results in the cellophane drying and crinkling, so the washing is carried out to loosen

them up and return them to their original condition. The damp cellophane clings

to the surface of the medium and stays attached as it dries, though care must be

taken not to dry it so much that it begins to curl away from the surface.

A spore solution is prepared according to Section 3.4. Once the cellophane

surface is dry, the spore solution is spread over the cellophane using a glass spreading
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tool or wet cotton bud. The plate is covered and placed in an incubator at 30℃ for

a predefined period of time. As with the cover slip method, these initial stages need

to be carried out under a laminar flow hood in order to prevent contamination from

the air.

The cellophane is porous to the extent that it allows nutrients from the medium

to pass through to the bacteria, but the pores are sufficiently small that the bacteria

itself is unable to penetrate it. This forces bacterial growth to occur in largely

2-dimensions along the surface of the cellophane.

Once the growth period has elapsed, the plate is removed from the incubator. A

razor blade is used to cut a small square of the cellophane (approximately 1.5 cm

by 1.5 cm) which should contain a few thousand germinated spores. Using tweezers,

the square is laid onto a piece of filter paper. A few drops of methanol are pipetted

onto the cellophane to fix the bacteria. After a minute, tweezers are used to gently

tip the excess methanol from the cellophane surface. A few drops of WGA/PI stain

mixture are then pipetted onto the cellophane and it is covered and left for 20-30

minutes.

Once the stain has had sufficient time to infuse the bacteria, the cellophane is

gently washed by dipping it into a beaker of sterile water. A microscope slide is

prepared with a drop of 20% glycerol in its centre. The cellophane square is laid

across the glycerol and another glycerol drop pipetted on top of it. Finally, a cover

slip is pressed down over the cellophane and sealed with nail polish.

When we tried this technique, we found it resulted in much more 2-dimensional

structures than with the original cover slip method. However, after some time, we

began to notice unusual features in the hyphal structures. We realised that the

bacteria seemed to be adhering much less well to the cellophane than to the glass.

This means that as the stain was washed from the cellophane (a necessary part

of the staining process), some bacteria would move or shear, thus disturbing their

morphology.

We concluded that we needed to find a less brutal method of applying the stain

to the bacteria. We explored the use of alternative stains which do not require

washing and also alternative methods for applying and washing the stain.
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10μm

Figure 3.4: Example image showing staining with the AM1-43 stain: the left-
hand image shows a DIC filter transmitted light image, while the right-hand image
shows the AM1-43 fluorescence image of the same sample. Though clearly vis-
ible, the stain wasn’t evenly distributed throughout the cell wall, with frequent
discontinuities present (examples highlighted with arrows in the figure).

3.5.3 Use of alternative stains

There are stains available which do not require fixing or washing. We tried experi-

menting with two such stains - FM4-64 and AM1-43, from Molecular Probes range

of lipophilic styryl stains. Using these stains, it is possible to remove the methanol

fixing and beaker washing stages from the procedure outlined above.

When imaging samples stained with FM4-64 and AM1-43, we found the stain to

be clearly visible, but not homogeneously distributed throughout the cell membrane

(Figure 3.4). This caused significant problems for processing of the images, so we

concluded that these stains did not provide the required solution to the problem.

3.5.4 An improved technique for cellophane growth

The technique we finally adopted is based on our early technique for cellophane

growth, but with modifications to lessen the strain on the cellophane and bacteria.

It is based on the idea of fixing, staining and washing from below, by laying the

cellophane on small amounts of solution and allowing the solutions to permeate the

membrane. Figure 3.5 illustrates the steps involved.

As with the earlier method, spores are grown on a cellophane disc laid on top of

the medium and the spore solution is prepared according to the method described

in Section 3.4. Once the spores have been allowed to germinate and grow for a

fixed time period, a square of cellophane is cut with a razor blade. A piece of filter
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Figure 3.5: Growing Streptomyces on cellophane: (a) Having spread the spores
on top of the cellophane and incubated, a square is cut and removed. (b) Fixing
and staining is carried out by laying the cellophane onto infused filter paper. (c)
The cellophane is mounted on a slide for viewing.

paper, slightly larger than the cellophane square, is cut and soaked with methanol

from a pipette. The filter paper is placed on top of clingfilm to encourage retention

of liquid. The square of cellophane is laid on top of the methanol soaked paper

and allowed to rest for one minute. During this time, the methanol permeates the

cellophane and produces fixing of the bacteria. Because the methanol evaporates

relatively quickly, there is a danger of the cellophane drying out and curling. This

is avoided if the cellophane is removed after a minute and laid on top of another

piece of filter paper soaked in sterile water. Then, a pipette is used to transfer 15

µl of WGA/PI solution onto a microscope slide. The cellophane square is laid on

top of this and covered while the solution permeates the cellophane and infuses the

cells. As with previous methods, the solution is left for 20-30 minutes in the dark,

but placed in a cold room to prevent the sample from drying out.

Washing of the stain solution is achieved using a piece of filter paper soaked in

sterile water. Using tweezers, the cellophane square is lifted from the microscope

slide and placed on the water soaked paper. It is covered and left for approximately

a minute before lifting it up and placing it at a different site on the paper. This

lifting and reseating process is repeated twice more.

A microscope slide is prepared with a drop of 20% glyercol in the centre. The

washed cellophane is laid on top of the glycerol and another drop placed on top of

the cellophane. A cover slip is pressed down, firmly but without shearing, and the

edges sealed with nail polish.
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When viewing samples prepared with this method, we found generally good

results. Unlike with the early cellophane method, the bacteria seemed largely undis-

turbed by the process of fixing and washing. Good contrast was observed with

epiflourescent microscopy, though it was not quite as good as the methods described

in Sections 3.5.1 and 3.5.2 - perhaps because the washing is not sufficiently thorough

to completely remove all surplus traces of the stain from the cellophane. However,

overall this method provided the best balance of image quality and preservation of

the bacterial morphology.

3.5.5 Microscopy

Obtaining clear, high quality, images of Streptomyces bacteria is not always a trivial

task. This is largely due to their very small size, with diameters of no more than 1

µm. Fungal and plant cells are orders of magnitude larger, making it much easier to

obtain good quality images.

We used a Zeiss Axio Imager widefield upright epiflourescent microscope with an

attached AxioCam HR digital camera. This enabled us to use both transmitted light

techniques and reflected light fluorescence techniques [10]. The microscope was fitted

with both air-based and oil-based objectives. Oil-based objectives allow greater

resolution and sharper images because light is transmitted through an immersion oil

which has a higher refractive index than the air.

The microscope was equipped with a range of filters for transmitted light mi-

croscopy and we tried bright field (basic transmission microscopy), phase contrast

filters (in which induced phase contrast shifts are used to increase contrast) and Dif-

ferential Interference Contrast (DIC) optics (which use polarisation of light to give

the impression of depth). We eventually settled on the use of a DIC filter, feeling

it produced images that were clearest for human observers to discern. Though we

did experiment with the use of image processing techniques on the transmitted light

images, we quickly concluded that fluorescent imaging provided us with the clearest

images for automatic processing (Chapter 4).

When undertaking fluorescent imaging, the microscope was set up to take a

series of channel images - one transmitted light image, one green fluorescent image
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(a) (b)

(c) (d)

Figure 3.6: Example microscope images: (a) DIC filter (ordinary light) image.
(b) WGA fluorescent image, showing cell wall profile. (c) PI fluorescent image,
showing location of DNA. (d) Combined image.

(for WGA) and one red fluorescent image (for PI). It also produced a merged image

containing an overlay of all the channel images. Figure 3.6 shows the channel and

combined images for a typical specimen.

3.5.6 Time series experiments

In the absence of a mature method for carrying out live, real-time imaging (Section

7.2.1 describes our own early work on this), we carried out time-series experiments

with the static imaging technique described above. In our time series experiments,

we made slides at regular intervals and used these to understand how the organism

developed over time.

In a typical experiment, we grew samples for up to 18 hours, making slides at

two hour intervals from the sixth hour onwards. We choose the sixth hour as the

start point because our own experimentation has shown that the initial germ tube

only becomes visible at around 6-8 hours under the growth conditions that we used.

We finished at around 18 hours, as by this time the filamentous structures were

generally too complicated to differentiate.
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We began by preparing seven plates and placing them all in an incubator. Six

hours later, we took the first plate out and prepared three slides using the cellophane

on the plate. One slide should contain enough samples, but we prepared three to

allow for errors or inhomogeneity of the spreading. We repeated this process at two

hourly intervals until 18 hours had elapsed.

3.6 Discussion

In this chapter, we have described the experimental approach we developed to enable

good quality imaging of S. coelicolor morphological development. Conventional

techniques for growth on glass cover slips enabled good quality images, but we

found it hard to encourage 2-dimensional growth and found that young hyphae were

easily disturbed when the cover slip was removed from the medium. Our method of

growth on cellophane, combined with application of fixing and staining from below,

enabled us to produce clear images of undisturbed bacteria.

We have also begun to investigate time lapse imaging, where we watch the de-

velopment of a single bacterium over time. We will discuss this as possible future

work in Chapter 7.

In the next chapter, we discuss the computational approaches used for semi-

automatic analysis of microscope images of S. coelicolor grown with the cellophane

techniques described in this chapter.
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Image Processing

4.1 Summary

In the previous chapter, we described the experimental work we carried out in order

to capture microscope images of growing Streptomyces. These images were collected

in order to carry out quantitative analysis of the bacteria’s growth and morphology

with a view to better characterising the wild-type and mutant strains. To analyse

these images, we have developed a software tool, JFilamentAnalyser, to carry out

semi-automatic analysis of filamentous microbes and to generate a wide range of

biometrics and statistics.

This chapter begins with an overview of literature covering the application of

image processing to filamentous microbes. We then move on to discuss our work,

starting with an overview of the multi-stage process we developed to analyse the

images that were captured during our experimental work. This is followed by sections

detailing the theoretical and algorithmic basis of each stage in the process. The

design and use of JFilamentAnalyser is then briefly discussed, with further detail

contained in Appendix C.

4.2 Background literature

A number of reviews have been published which examine the use of image analysis in

the study of filamentous organisms [13, 66, 80, 65]. Cox et al. [13] divide techniques

into those that work on freely dispersed morphologies (those with no tip overlap),
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dispersed morphologies (formed as hyphae becoming more packed with some overlap)

and pellet morphologies (where there is much overlap of hyphae). Because of the

use of filamentous microbes in industry, there is a lot of interest in categorising and

analysing pellet morphologies in submerged cultures [56, 65, 83]. However, our own

work has focused on the analysis of young bacteria which display freely dispersed

morphologies.

Some of the earliest work studying freely dispersed morphologies was that of

Adams and Thomas [1], who used an 8-bit microcomputer connected to a Hewlett

Packard digitiser and a Magiscan image analyser. The hardware carried out image

capture and segmentation (separation of hyphae from background), after which a

human operator edited the images to remove artefacts and identified branches using

a light pen. Software then calculated the length of filaments using the branch point

information provided by the user.

The work of Reichl et al. [68] used similar techniques to Adams and Thomas

in the study of early growth and branching of Streptomyces tendae. Their main

improvement was to implement a method of automatic identification of branching

sites, though there was still a degree of user interaction required in confirming the

software’s analysis. Reichl et al., as well as Adams and Thomas before them, suffered

from the technological limitations of the day which meant low resolution images

and, despite using dedicated image processing hardware, processing times of up to

15 minutes per hyphal structure.

Later work by Drouin et al. [15] and Pons et al. [66] used image processing

techniques on cultures of S. ambofaciens. Their particular focus was on identifying

full and empty hyphal zones and quantifying the location of septa. Special stains

were required to highlight these features, along with software which carried out a

number of rounds of segmentation and skeletonization (thinning of structures).

Despite some of this early work, there are no freely available tools designed for

the morphological analysis of filamentous bacteria. The software supplied with mi-

croscopes typically provides basic colour adjustment functionality and the ability

to manually measure distances and areas, but such tools are inadequate for a de-

tailed quantitative analysis. In the sections that follow, we describe the system we
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Figure 4.1: Diagram showing the steps involved in processing images and ex-
tracting morphological data. The inputs to the process are the two channel images
- the green WGA image and the red PI image.

developed for the morphological analysis of S. coelicolor. Like much of the previous

work, segmentation and skeletonization algorithms are key. In addition, we have

implemented a number of other image processing and morphological analysis steps

with the aim of creating a far more accurate and comprehensive analysis tool.

4.3 Overview of image processing steps

Our aim is to apply image processing and feature detection techniques to automati-

cally extract morphological data from images of S. coelicolor obtained through static

microscopy.

We have developed a multi-stage process for the extraction of morphological

data (Figure 4.1). The process begins with the WGA channel (green fluorescence)

image which provides good contrast between filament wall and background (Section

3.5). The image is clipped and pre-processed and a segmentation algorithm is used

to separate the hyphal mass from the background. Because microscope images are

not always uniformly illuminated, a background removal algorithm is applied before

segmentation. After segmentation, a skeletonization algorithm is applied to the

image in order to thin the hyphae to single pixel widths.
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With a skeletonized hyphal image, it is possible to locate tip points and branch

points and to measure distances between them along the skeleton. The final piece

of information required is the location of the originating spore. Because the spore

contains a high concentration of DNA, it can be located from the PI channel image

where it appears as a small bright oval shape.

Once all key points have been identified and distances between them measured, it

is possible to calculate a wide range of biometrics and statistics about the organism’s

morphology, which we shall describe in Section 4.4.

4.3.1 Pre-processing

Prior to segmentation, some pre-processing is performed on the images. This involves

cropping to ensure that each image contains only one hyphal structure, as well as

the application of a filter to smooth the image and reduce noise. Common filters

for such a task are the mean, median and Gaussian filters [23, 76]. The mean and

median filters replace a pixel’s intensity with the mean or median intensity of the

pixels in the 8-neighbourhoud, while the Gaussian filter weights the neighbouring

pixels according to a 2-dimensional Gaussian distribution.

4.3.2 Segmentation

Segmentation is the name given to the process of identifying the constituent parts

of an image. We wish to identify the hyphae and to remove any parts of the image

that are not hyphae. This includes the image background, noise and any physical

artefacts.

With good contrast microscope images, relatively simple segmentation methods

can be applied with good results. A grey-level threshold segmentation works by

accepting all pixels that fall above a particular threshold intensity, whilst excluding

all others. Those below the threshold are assigned a value of zero in the segmented

image. Those pixels with intensity above the threshold are assigned a value of one

in the segmented image. So for an image f , represented by an m-by-n matrix of
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(a) (b)

Figure 4.2: Segmentation example: (a) Unprocessed microscope image. (b) Image
after threshold segmentation.

values f(i, j), the output image g is given by

g(i, j) =


1 forf(i, j) ≥ T ,

0 forf(i, j) < T .
(4.1)

In general, threshold segmentation is appropriate for images where the objects

of interest do not touch each other and where the background grey levels are clearly

distinguishable [23, 76]. In the case of the WGA images, the high contrast between

background and cell wall suits this technique. However, where filaments are touching

each other, the technique breaks down and is unable to distinguish between the two

filaments. This is usually not a problem in our work, as the Streptomyces are

sufficiently young that the filaments rarely touch.

The selection of segmentation threshold is key - too low a value and background

image is merged with filament, too high and we break the filament connectivity.

There are a range of automatic threshold selection algorithms that have been pro-

posed, but no one algorithm has been found to be universally applicable [76, 23].

We adopt an approach known as iterative selection [76]. The aim is to provide an

estimate of the mean background grey level Ib and the mean object grey level Io and

to set the threshold T between the two. To begin, an initial guess of T is made by

calculating the mean grey level of the whole image. This threshold is then refined
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according to the following steps:

1. Calculate the mean background intensity Ib by summing the intensities of all

pixels with intensity < T and dividing by the number of pixels.

2. Calculate the mean object intensity Io by summing the intensities of all pixels

with intensity ≥ T and dividing by the number of pixels.

3. Choose a new threshold level which is between the two mean levels just calcu-

lated, i.e. Tnew = 1
2(Ib + Io).

4. If Tnew is different to T , go back to Step 1.

The process repeats until the threshold value stops changing. At that point, the

threshold has reached a ‘best guess’ value. With our data, we find this approach

usually selects a reasonably good threshold point. Even so, better results can often

be obtained through manually adjustment of the value.

Figure 4.2a and 4.2b shows an example image before and after segmentation.

4.3.3 Background removal

The use of threshold segmentation relies on having an image with uniform illumina-

tion. This isn’t always the case with florescence microscopy images, so we implement

a background removal step prior to segmentation. The particular technique we have

used is called a rolling ball algorithm [77] or sometimes a top-hat transformation

[23].

We can consider the image as a 3-dimensional surface, with the height at each

point determined by the pixel’s intensity. The algorithm imagines rolling a ball of

fixed radius underneath the surface, always maintaining contact between the surface

and the ball. The path traced out by the top of the ball forms another surface and

this new surface defines the background level across the image. Any pixel with an

intensity below the background level is set to zero intensity, while any pixel with

intensity above background keeps its current level.

Figure 4.3 illustrates the application of the rolling ball algorithm in 2-dimensions.

The figure shows an intensity waveform with two objects represented by peaks. The
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(a) (b)

(c) (d)

Figure 4.3: The rolling ball algorithm for background removal: (a) Example
intensity waveform. Thresholding alone would probably keep first peak, but lose
the second. (b) We begin to ‘roll’ the ball under the surface of the graph, ensuring
it is always in contact with the graph. (c) The curve the ball draws as it rolls
produces a new function which determines background intensity. (d) Any point
below the background intensity function, we set to zero - this results in a new
waveform that can more easily be thresholded.

(a) (b)

(c) (d)

Figure 4.4: The effect of background removal: (a) Microscope image before pro-
cessing. (b) Image after segmentation, but without background removal - hyphal
shape is not preserved. (c) The original image after background removal. (d) The
original image after background removal and segmentation, the original shape of
the hyphae is preserved.
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ball fits quite well to much of the waveform, but when it reaches the objects, its

radius prevents it from following the line of the peaks. Thus, when the background

is subtracted, the peaks are preserved.

Figure 4.4 shows an example microscope image and demonstrates the difference

that the use of the rolling ball algorithm makes, compared to threshold segmentation

alone.

4.3.4 Skeletonization

The result of segmentation is a binary image, but with filaments of variable thick-

ness. Identification of points of interest and measurement of distances from such

images is difficult, so the images are skeletonized in order to simplify this process.

Thinning, or skeletonization, aims to reduce all lines to single pixel thickness, whilst

still maintaining connectivity.

There are a large range of skeletonization algorithms, each of which has advan-

tages and disadvantages and is more suited to one application than another. Lam

et al. provide a comprehensive overview of skeletonization algorithms [47]. With

the Streptomyces images, we were unable to find a single algorithm that reliably

thinned all hyphae. Through experimentation with a range of Streptomyces images,

we found that a combination approach involving the application of two algorithms

would reliably skeletonize the images. We first applied the algorithm of Zhang and

Suen [86], then the algorithm of Zhou et al. [87]. By doing this, we were able to get

consistently reliable skeletonization results (Figure 4.5).

At a high level, both thinning algorithms operate by successive rounds of pixel

erosion. In each round, the image is scanned and the decision to remove a pixel is

made based on the number of pixels in the 8-neighbourhood and their connectiv-

ity. The process continues until no more pixels can be removed without breaking

connectivity. Detailed descriptions of the algorithms are provided in Appendix B.

Figure 4.6a shows the effect of applying the thinning algorithms to the image in

Figure 4.2b.
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(b) (c) (d) (e)(a)

Figure 4.5: Skeletonization images: (a) Original microscope image. (b) Seg-
mented image. (c) After skeletonization with the Zhang and Suen algorithm [86],
the shape is well preserved, but the image is not perfectly thinned. (d) After skele-
tonization using the algorithm of Zhou et al. [87], the image is more consistently
thinned, but we have lost some parts of the filament. (e) Applying both algorithms
in series enabled us to achieve preservation of shape and consistent thinning.

(a) (b)

Figure 4.6: Skeletonization and point finding: (a) Image from Figure 4.2b after
applying the two thinning algorithms. (b) Branch and tip points located.

48



Image Processing

4.3.5 Point finding

In a skeletonized image, a branch point is defined as any point which has three or

more neighbours in the 8-neigbourhood. To identify the branch points in the image,

the image is raster-scanned and, for each pixel, a count of its neighbours is made.

If the number of neighbours is greater than or equal to 3, the point is marked as a

possible branch point.

Sometimes the pixel representation of a branching filament can result in more

than one neighbouring pixel being marked as a branch point. To avoid this, once

the whole image has been scanned, the list of possible branch points is rationalised

to remove directly connected points. Any 8-neighbourhood connected points are

replaced with a single point located at the average co-ordinate of the connected

points.

Tip points are identified by running a series of 3-by-3 pixel templates over the

image. Where a match is found, an end-point is marked (Figure 4.7).

Figure 4.6b shows the results of applying the point finding algorithms to the

image in Figure 4.6a.

Currently, spore points have to be identified manually, by clicking on them in the

PI channel image. This is a very easy thing for a human to identify, but surprisingly

difficult for software to automatically recognise. We decided that manual selection

of spore point was an acceptable approach to take for our purposes, but in the

future it may be worthwhile to try to develop reliable algorithms for automatic

spore identification.

10 0
0 00
? ??

Figure 4.7: Templates used for finding end points. Each template is moved
over the image, pixel-by-pixel. Where template squares are shown as set (1), the
underlying pixel must also be set. Where template squares are shown as unset (0),
the underlying pixel must also be unset. Grey squares can be set or unset.
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4.3.6 Identification of segments

We define a segment as a section of filament between two tip points, two branch

points or one tip point and one branch point. Once the list of tip points and branch

points has been built, the following algorithm is applied:

1. Take the next item from the list of tip points.

2. Follow the path from the tip point, pixel-by-pixel, until we meet either a branch

point or a tip point.

3. Mark the set of pixels we have traveled as a segment. Remove them from the

skeleton.

4. As a result of the removal of points in the previous step, test to see if the point

we finished at should now be made into a tip point.

5. Are there any more tip points? If so, go back to Step 1. If not, we have

identified all the segments.

4.3.7 Length measurement

The lengths of segments can be measured by calculating the arc length. Consider a

real valued differentiable function, f(x). The length, l, of an arc between f(x1) and

f(x2) is given by

l =
∫ x2

x1

√
1 +

df

dx

2

dx . (4.2)

Consider the curve in Figure 4.8a. We can approximate the gradient df
dx at point

i by
df

dx
' fi+1 − fi−1

2d
,

where d is the distance between adjacent points. This equation, combined with the

trapezium rule for approximation of integrals, applied to Equation 4.2 yields the

formula

l = d

N∑
i=0

√
1 +

(
fi+1 − fi−1

2d

)2

.
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fi

fi+1fi-1 d

(a) (b)

Figure 4.8: Finding the length of a segment: (a) We approximate the gradient at
point i by using points either side. (b) When transferred to pixel-based lines, we
sometimes have more than one value of y for a given x. We pick the middle value
(black squares) and discard other values (grey squares).

In practical terms, if we work with single pixel increments for highest accuracy

(i.e. we set d = 1), this simplifies to

l =
N∑
i=0

√
1 +

(
fi+1 − fi−1

2

)2

.

Implementation is a relatively straightforward process of going through each x

co-ordinate in a set of points and finding a corresponding y co-ordinate. This gives

values for fi−1 and fi+1 and calculation of l is then trivial. In some situations, there

may be more than one y co-ordinate for a given x co-ordinate, in which case we

pick the middle value (Figure 4.8b). Accuracy is improved by rotating the image

through 90 degrees (or, in practice, iterating through y co-ordinates, rather than x)

if the segment being measured is taller than it is wide.

The result is a length measurement with units of pixels. To convert to microns,

the value is multiplied by a scaling factor which is determined by the objective used

on the microscope. Accuracy of the method was confirmed by testing against a

series of plotted lines and curves of known length.

4.4 Calculation of biometrics and statistics

Once we know the location of branch and tip points, the segments that connect those

points together, and the length of those segments, we can generate a wide range of

biometrics and statistics. Many of these can be calculated relatively easily - for

example, the number of growing tips, the total hyphal length and the distribution of
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segment lengths are all easily derived and some results have already been published

for the wild-type (see Chapter 5). However, a number of biometrics require some-

what more sophisticated processing which we now describe. These are, to our best

knowledge, new metrics, for which there is no previously published work to consider.

4.4.1 Finding the primary filament

Filaments may be classified according to the order of their branching. Germ tubes

are classified as primary filaments, lateral branches from the germ tube are secondary

filaments, branches from these are tertiary filaments and so forth. We use the term

filament depth to assign a number to this labelling, so primary branches have a

depth of 1, secondary branches a depth 2 etc.

Because our images don’t show the development of the same bacterium over time,

we cannot classify filaments as they emerge. Instead, we retrospectively calculate

the depth based on the assumption that all tips extend at a similar rate and that

none of them stop growing. Though this assumption is unlikely to hold all of the

time, it appears to be a safe assumption when dealing with young bacteria under

conditions of stable nutrient supply [2, 11].

In view of our assumption, we apply the following algorithm to classify the depth

of all filament sections:

1. Mark all segments as unvisited.

2. Set startPoint = sporePoint and d = 0.

3. Increment d.

4. Build a list of all paths from startPoint to all tip points, travelling along only

unvisited segments.

5. Find the longest path in the list and mark each segment of it as visited and

with depth of d.

6. For each branch point in the longest path, set startPoint = branchPoint and

repeat Steps 3-6.
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Figure 4.9: Detecting emerging tips: (a) The tip E is classified as an emerging
tip because it is less than 1.5µm long and is connected to branch point B, which is
in turn connected to the growing tip T and a basal node, N. (b) The first branch
on a germ tube is a special case of the emerging tip. Here the basal node must be
the spore point, S.

We can also use the depth data to calculate a measure of hyphal balance - that

is, the proportion of hyphal length attached to each germ tube. In S. coelicolor,

there are typically two germ tubes, the second emerging later than the first and

extending in the opposite direction. Adding up the hyphal length on each side of

the spore provides insights into the symmetry of the organism.

4.4.2 Detection of emerging tips

We have an interest in identifying newly formed branches in order to gather data

on the positioning of child branches relative to the parent filament. We accomplish

this by looking through the list of tip points and identifying any of these where the

distance to the nearest branch point is less than a threshold value. This tip is classed

as an emerging tip and the nearest branch point provides the point of branching on

the parent filament (Figure 4.9a). The threshold value needs to be chosen carefully

- if it is too low, we miss tips that should be included and reduce the size of our

sample set, but if it is too high, we end up capturing mature tips as well as emerging

tips. We chose a threshold value of 1.5µm based on visual inspection of a number

of images.

The parent branch point, B, must be connected to a node, N, which represents

either its own birth from another filament, or the site of its previous child branch.

New branches tend to form between the tip and the previous branch [45], so the

parent branch point is usually connected to a tip point, T, which represents the
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parent filament’s active tip. The distances from T to B and from B to N are useful

indicators of branching behaviour.

The algorithm for detection of emerging tips is as follows:

1. Take the next point, P, from the list of tip points.

2. Let B be the branch point connected to P.

3. P is classed as an emerging tip if and only if:

• the distance from P to B is less than 1.5µm;

• and B is connected to a tip point T, that isn’t P;

• and B is connected to a branch point, N, that isn’t a spore.

4. Are there any more tip points? If so, go to Step 1.

A special case of this algorithm is used to detect the location of the first branch

on a germ tube (Figure 4.9b). For this, instead of looking for B to be connected to

a tip point and another branch point, we expect B to be connected to a tip point

and the spore point.

4.4.3 Detection of apical branches

We also want to identify apical branching. In wild-type S. coelicolor, new branches

predominantly form behind a tip, but in some fungi and mutants, the growing tip

can split into two [17, 69, 70]. Quantification of the degree of apical branching

could be an important way of understanding the differences between two strains of

bacteria.

Recent apical branches may be identified by looking for two emerging tips which

share the same parent branch point (Figure 4.10). The following algorithm can be

used to detect them:

1. Take the next point, P, from the list of tip points.

2. Let B be the branch point connected to P.

3. P is classified an apical tip if and only if:
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Figure 4.10: Detecting apical branches: We look for two short tip segments which
share the same branch point. In this example, tip points A and C represent apical
branches which share the same branch point, B. However, point D is not an apical
branch, as there is no other short tip segment that shares the same branch point.

• the distance from P to B is less than 2µm;

• and B is connected to a second tip point which is less than 2µm from B.

4. Are there any more tip points? If so, go to Step 1.

4.4.4 Pairwise distances

Our tool generates pairwise distance data for an organism, as a way of representing

the spatial arrangement of mycelia. The pairwise distance data is calculated by

measuring the direct Euclidian distance from each tip point to each of the other tip

points in the organism. The Euclidian distance, le, between point P1 at co-ordinates

(x1, y1) and point P2 at co-ordinates (x2, y2) is given by

le =
√

(x1 − x2)2 + (y1 − y2)2 . (4.3)

4.4.5 Segment deviation

During our experimental work, we observed that filament segments of wild-type

S.coelicolor were generally quite straight compared to some of the mutant bacteria

and we wanted a metric to quantify this apparent difference. Thus, we introduce

the segment deviation, which is a measure of how much longer a segment is than the

Euclidian distance between the two ends of the segment (Figure 4.11). If ls is the

measured length of the segment and le is the Euclidian distance between the two

ends of the segment, then the segment deviation, d is given by

d =
ls
le
. (4.4)
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Figure 4.11: Segment deviation quantifies how much longer a measured segment
length, ls, is than the straight-line Euclidian distance, le, between the two ends of
the segment.

An alternative way of expressing this is as a deviation percentage - that is, the

increased length of ls as a percentage of le, i.e.

d = 100
(
ls
le
− 1
)
. (4.5)

Thus, a value for d of 10 means that the measured segment was 10% longer than

the Euclidian distance between the segments two ends.

4.5 JFilamentAnalyser

The image processing and analysis techniques described in the preceding sections

have been implemented in a Java application called JFilamentAnalyser. It is de-

signed to be a general purpose tool for analysis of filamentous microbes, but has

currently only been used on our Streptomyces dataset.

4.5.1 Basic use of the tool

The application’s user interface is divided into two panels - a large scrollable window

on the left-hand side is used for display of microscope images, while a narrower panel

on the right-hand side displays organism biometrics (Figure 4.12). Upon initially

starting the application, the user can load previously analysed images, or select

the ‘Wizard’ icon to process a new image (Figure 4.13). The wizard takes the

user quickly through five steps to turn a microscope image into a fully analysed

bacterirum. Most of the time, the user can just click the ‘Next’ button to move

through each stage of the wizard, but occasionally some user intervention may be

required to ensure better results. The five steps are as follows:
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Figure 4.12: JFilamentAnalyser running: The toolbar at the top of the screen
provides a number of options for editing the skeleton, changing the location of
branch points and tip points and zooming in to the image. A drop down menu to
the right of the toolbar allows the user to select a different channel image to view,
with the skeleton displayed on top of it.

Figure 4.13: The filament wizard: The user is taken through five steps to complete
the analysis of a microscope image. Usually each step just requires a click of the
‘Next’ icon, though parameters can be changed if necessary.

57



Image Processing

1. Selection of the image and specification of microscope objective: we

use a naming standard for microscope images which includes the magnification.

If this convention is followed, the software will automatically select the correct

objective.

2. Selection of cropping zone, pre-processing and background removal:

the user can drag a selection box around the portion of the image containing

the bacterium they wish to analyse. The software will perform this crop on

all channel images. The user can also select whether to perform background

removal and has a choice of three different preprocessing filters - by default,

the Gaussian filter is selected.

3. Selection of segmentation threshold: the software picks an initial thresh-

old value, but the user is able to drag a slider to adjust this.

4. Removal of artefacts and skeletonization: the user is able to click on any

objects that survived segmentation, but are not part of the mycelia - these

will then be removed by the software. The user can also chose whether to run

one or both of the skeletonization algorithms. By default, both skeletonization

algorithms are selected.

5. Point identification: the skeleton is shown and tip points and branch points

are automatically identified. The user clicks ‘Next’ to complete the wizard

process and return to the main analysis window.

The processing involved in each step happens very quickly. Most stages take

under a second to process, though skeletonization can take 3 or 4 seconds for com-

plicated structures. Thus, it is very easy to complete the whole wizard process

in under a minute for more straightforward structures and a few minutes for very

complicated or poor quality images.

When the wizard has completed, results are saved into a filament data file and

the newly analysed image is shown in the main window, overlaid by the skeleton,

tip points and branch points. Biometrics and statistics can be generated by clicking

on the ‘Analyse’ button in the toolbar and results of this analysis are shown in the

scrolling lists to the right of the main window. These statistics may be saved, or
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appended, to a set of comma separated value (CSV) files, the formats of which are

described in Appendix C.

Other tools in the toolbar allow the image to be zoomed in or out, the skeleton

to be edited manually, tip points to be added or removed, branch points added or

removed and spore points added or removed.

4.5.2 Overview of software design

The software adopts an object-oriented design and is written in Java. Figure 4.14

uses UML notation [78] to show the interaction between the main classes. Imple-

mentations of all algorithms were carried out by the author, with the exception of

the rolling ball algorithm for background removal and the Zhang and Suen skele-

tonization algorithm. The former is implemented using a class provided by the open

source ImageJ library, while the latter implementation is taken from [64]. A brief

overview of the other main classes follows.

The class JFilamentAnalyser is the entry point for the application and provides

most of the GUI functionality. The class FilamentFile is used to represent the

contents of a filament file - specifically, the co-ordinates of all skeleton points, branch

points, tip points and spore points. The class OrganismData represents all generated

biometrics and statistics and provides methods to write these to a file.

The JFilamentAnalyser class passes filament file point lists to a number of other

classes which perform analysis. PrimaryFilamentFinder not only locates the primary

filament, but classifies all filaments according to branching order. SegmentLength-

Finder measures the length of every segment using the arclength calculation de-

scribed in Section 4.3.7. EmergingBranchFinder locates emerging branches.

The FilamentWizard class provides the GUI components of the filament wiz-

ard and uses a number of other classes to perform image processing and analy-

sis. Cropper performs a crop on a file or series of files. MeanFilter, MedianFilter

and GaussianFilter provide the pre-processing filters their names suggest. Back-

groundRemover and ThresholdSegment provide methods to carry out the rolling

ball algorithm and threshold segmentation respectively. LineThinner implements

the two skeletonization algorithms, and provides methods to call one or both of
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them. All the image processing algorithms operate on the standard Java Buffered-

Image class, which provides easy pixel-by-pixel manipulation of images.

The BranchPointFinder class implements the algorithms to locate not only branch

points, but also tip points. Skeleton points, tip points, branch points and spore

points are stored in a FilamentFile object, which is written to disc before passing

back to the main JFilamentAnalyser class for biometrics and statistics gathering.

Appendix C provides further details on the design of JFilamentAnalyser, includ-

ing descriptions of the file formats used to hold filament data and statistics.

4.6 Discussion

In this chapter, we have outlined the processing steps necessary to perform semi-

automatic analysis of microscope images of young filamentous microbes. We have

described algorithms involved in pre-processing, background removal, segmentation,

skeletonization and the automatic location of branch points and tip points. We have

described algorithms used for locating apical branches, newly emerging tips, for the

classification of branching order and for computing biometrics from these quantities.

We have also introduced a software tool, JFilamentAnalyser, in which we have

implemented the algorithms described and which is capable of performing supervised

automatic analysis of filamentous structures. In the next chapter, we present the

results of the analysis of around 2,200 bacterial images carried out using this tool.
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Figure 4.14: Class diagram, in UML notation, of JFilamentAnalyser.

61



Chapter 5

Experimental Results

5.1 Summary

In the previous chapter, we described a collection of image processing algorithms for

carrying out semi-automatic analysis of microscope images of growing Streptomyces

coelicolor bacteria, that we have implemented in a software tool called JFilament-

Analyser. We used this tool to analyse a data set consisting of thousands of images

we obtained according to the experimental procedures described in Chapter 3. In

this chapter, we summarise the results of the analysis and present a range of graphs

and statistics which together form a quantitative description of the morphological

differences between wild-type and mutant bacteria.

In Section 5.2, we begin by presenting a summary of the data that we generated.

In Section 5.3, we describe some qualitative observations on the differences between

the bacteria. In Section 5.4 and the following sections, we describe our quantitative

results in detail, examining specific statistics and biometrics individually. Where

comparable data has already been published, we compare our results with these.

However, to date, there has been a lack of quantitative work on Streptomyces mor-

phology and we believe much of the data presented here is unique.

5.2 The data

Table 5.1 summarises the time-series experiments carried out and the number of

images analysed in each experiment. In total, nearly 2,200 images were analysed.
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Number of images
Date Bacteria Media 8hrs 10hrs 12hrs 14hrs 16hrs 18hrs Total

18 Mar 08 wild-type MMM 53 57 68 74 60 32 344
29 May 08 wild-type MMM 40 40 40 40 40 200
11 Jun 08 wild-type SFM 25 40 40 40 145
20 Jun 08 wild-type SFM 40 40 40 24 144
29 May 08 ∆scy MMM 40 40 40 40 40 200
2 Jul 08 ∆scy MMM 40 40 40 40 21 181

11 Jun 08 ∆scy SFM 18 13 40 40 111
20 Jun 08 ∆scy SFM 40 40 30 23 133
2 Jul 08 ∆scy SFM 40 40 40 120
10 Jul 08 ∆filP MMM 40 41 40 40 161
17 Jul 08 ∆filP SFM 40 40 40 30 150
10 Jul 08 ∆scy-filP MMM 40 40 40 23 143
17 Jul 08 ∆scy-filP SFM 40 40 40 22 144

Table 5.1: Details of the experimental data sets, showing the number of images
collected at each time point.

For those combinations of media and bacteria where we carried out repeat runs,

we have combined the results of the original and repeat runs. Thus, there are eight

sets of results presented, consisting of four bacterial strains, each grown on two types

of media. Further sets of results are contained in Appendix D.

5.3 Qualitative observations

When grown on MMM medium, images of wild-type and the mutant strains appear

superficially similar, though the statistics in the sections that follow highlight some

significant differences. However, when grown on SFM, differences between the wild-

type and the mutants are much more obvious (Figure 5.1). Most significantly, the

∆scy and ∆scy-filP mutants appear to show a large number of short, aborted,

branches, possible apical branching and generally more compact structures than

the wild-type. The ∆filP mutant also shows a markedly different morphology to

the wild-type, with more curling and overlapping hyphae. This observation is in

agreement with the description given in the publication that originally identified

filP [4]. In it, Bagchi et al. describe a ‘characteristic distorted morphology’ for

a ∆filP mutant grown on cover slips in solid media, where a wild-type grew in a

‘straight fashion’ under the same conditions.
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Figure 5.1: Fluorescence images of S. coelicolor on SFM medium: (a) Wild-type.
(b) and (c) ∆scy mutant. Note appearance of aborted tips (arrows) and apical
branching (asterisk). (d) ∆filP mutant, which has a curlier appearance than the
wild-type with some overlapping filaments. (e) The ∆scy-filP mutant.
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5.4 Total hyphal length

The Total Hyphal Length (THL) is the sum of all filament lengths for a single

bacterium. Figure 5.2 provides natural log graphs of total hyphal length against

time for all eight sets of data. Error bars provide an indication of the standard

error.

The number of measurements used to define each point on the graph is high, so

error bars on individual points are small. However, there are only a few time points,

which makes finding a good linear fit difficult. Thus, there is quite a wide interval on

the 95% confidence bounds of the linear fit for some data sets (Table 5.2). Despite

this, there appears to be quite a good linear fit to most points of each graph, which

indicates exponential growth. This observation is in support of the prevailing view,

outlined in Chapter 2, that Streptomyces exhibits an exponential increase in overall

biomass, at least in the early stages of colony growth [11].

Our data for the wild-type on MMM is in good agreement with that from Allan

and Prosser [2], who also used S. coelicolor and a minimal media. Their data shows

an almost identical growth rate for the same stage of growth. This is remarkable,

considering that they were only monitoring the growth of a single spore, while our

data covers several hundred.

On both media, the growth rate (as indicated by the gradient, Table 5.2) is

highest for the wild-type, followed by ∆scy , ∆filP and ∆scy-filP . However, the

growth rates of wild-type and the ∆scy mutant, particularly on MMM, are very

similar. This is perhaps surprising and, if not attributed to errors in data or fitting,

suggests that the ∆scy mutant doesn’t have an overall physiological defect, but one

that affects only morphological patterning.

MMM SFM
wild-type ∆filP ∆scy ∆scy-filP wild-type ∆filP ∆scy ∆scy-filP

Lower 0.40 0.14 0.34 0.16 0.17 0.05 -0.27 0.00
Gradient 0.47 0.31 0.44 0.28 0.46 0.25 0.35 0.21

Upper 0.54 0.48 0.54 0.40 0.74 0.45 0.98 0.43

G (mins) 88.49 134.16 94.52 148.53 90.41 166.36 118.83 198.04

Table 5.2: Summary table for total hyphal length graph. Lower and upper bounds
refer to the lower and upper 95% confidence bounds of the linear fit. G is the
generation time, in minutes.
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Figure 5.2: Graphs of natural log of total hyphal length against time. Plot points
represent mean values of total hyphal length for the corresponding time point and
error bars indicate standard error. Lines are linear fits of the data points.
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5.5 Generation time

In rod-shaped or spherical bacteria, the generation time is the time taken for a

bacterial cell to double. The generation time, G, is given by

G =
t ln 2

lnB − lnB0

where B is the number of bacteria at time t and B0 is the number of bacteria at

time t = 0. Filamentous bacteria such as Streptomyces do not divide to form distinct

cells, but we can still approximate the doubling time by replacing the number of cells

with the total hyphal length. Thus, we can use the gradient, m, of the fit lines in

Figure 5.2 to calculate the generation time of our samples. We substitute m for

lnB − lnB0 and set t = 1, giving

G =
ln 2
m

.

Table 5.2 lists values of G for the eight bacteria/media combinations. It is

difficult to compare these results to published data, as differences in bacterial strains

or medium composition can have a big effect. However, figures of around 80-120

minutes are common for wild-type Streptomyces coelicolor grown on minimal media

[20, 35].

5.6 Number of tips

Figure 5.3 provides graphs of number of tips against total hyphal length for the eight

bacteria and media combinations. Linear fit lines are included, with 95% confidence

bounds marked with dashed lines. For clarity, Figure 5.4 provides overlaid plots,

allowing easier comparison of different experiments.

In all experiments, we observe a linear increase in the number of growing tips,

which accounts for the exponential increase in overall hyphal length. As with the

total hyphal length data, we find a close fit between our wild-type on MMM data

and the Allan and Prosser data [2].
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Figure 5.3: Graphs of number of tips against total hyphal length. Solid lines are
linear fits, dotted lines represent the 95% confidence bounds for the fits.
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We note the following observations:

• On MMM, the ∆filP mutant produces the most tips, followed by wild-type,

then ∆scy-filP and the ∆scy mutant.

• On SFM, the ∆scy mutant produces the most tips, followed by the ∆scy-filP

mutant, the ∆filP and wild-type produces the fewest.

• wild-type and the ∆filP mutant produce more tips on MMM than on SFM.

• The ∆scy and ∆scy-filP mutants produce more tips on SFM than on MMM.

5.7 Segment lengths

Figure 5.5 shows histograms of internal segment lengths for the eight sets of data.

Internal segment lengths are all filament sections which are bounded by two branch

points, but not segments which contain a tip point at either end. Thus, these

segments are fixed in size and do not grow with the extension of the growing tips.

The histograms are composed of data from all time points. Table 5.3 provides a

numerical summary of the histogram data, providing mean values and chi-squared

comparisons of the distributions. Finally, Figure 5.6 summarises the data as a box

plot.

The frequency distribution we found for wild-type on MMM is very similar to

that described by Allan and Prosser [2], who also used S. coelicolor and a mini-

mal media. However, the results in [2] were based on considerably less repeats and

much less sophisticated measurement. More recently, Jyothikumar et al. reported

an average distance between branches of 7.63 µm for growth of S. coelicolor on a

minimal media [38]. This is similar to our mean value of 8.40 µm and the small dif-

ference is almost certainly explained through slightly differing medium composition

and experimental conditions.

The ∆scy and ∆scy-filP mutants show large differences in the distribution of

segment lengths on the two different media and this is also reflected in the chi-

squared p-values. On MMM, we see wider distributions, with a mean of 12.87 µm

for the ∆scy mutant and 12.92 µm for the ∆scy-filP mutant. On SFM, there is a
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Figure 5.5: Histograms of internal segment lengths, bin size 1 µm. Graphs plotted
on % scale to aid comparison, with absolute counts also indicated. Distributions
for wild-type and ∆filP vary little between SFM and MMM. However, distributions
for ∆scy and ∆scy-filP show notable differences on the two media, with a tendency
towards much shorter segment lengths on SFM and longer lengths on MMM.
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Number of Mean two tailed Significant?
Bacteria Media segments (µm) χ2 p-value (p < 0.05)
wild-type MMM 2935 8.40
wild-type SFM 517 7.43 8.18 1.0000 No

∆filP MMM 1254 6.25 18.14 0.9988 No
∆filP SFM 440 6.33 31.96 0.8136 No
∆scy MMM 677 12.87 68.67 0.0032 Yes
∆scy SFM 2382 4.15 129.13 0.0001 Yes

∆scy-filP MMM 431 12.92 68.50 0.0033 Yes
∆scy-filP SFM 1194 5.20 94.02 0.0001 Yes

Table 5.3: Summary table for segment length histogram, showing number of
segment lengths measured, mean segment length and chi-squared comparisons be-
tween the wild-type on MMM distribution and each of the other experimentally
derived distributions. For the chi-squared test, the number of bins equates to 40
degrees of freedom and we use the convention of assuming statistical significance
when p < 0.5.
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Figure 5.6: Segment length box plot: red lines indicated median values, the edges
of the box are the 25th and 75th percentiles, and the whiskers extend to the most
extreme data points not considered outliers. Plot produced with standard Matlab
boxplot function.
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narrower distribution and at shorter lengths, with mean segment lengths of 4.15 µm

and 5.20 µm for ∆scy and ∆scy-filP respectively. In contrast, the wild-type and the

∆filP mutant yield similar segment length distributions on MMM and SFM.

Comparing the histograms of the wild-type and the mutants, we note that the

∆scy and ∆scy-filP mutants display longer segment lengths than the wild-type and

∆filP mutants when grown on MMM, but shorter segment lengths when grown on

SFM.

5.8 Germ tubes

All the bacterial strains we examined began growth with one initial germ tube

emerging from the spore and, after a delay, this was usually followed by a second

germ tube. Figure 5.7 shows graphs of the percentage of bacteria with 2 or more

germ tubes, as a function of total hyphal length.

When grown on MMM, we observe that a much lower percentage of ∆scy and

∆scy-filP mutant bacteria produce two germ tubes. Around half of ∆scy spores

develop only a single germ tube, even after prolonged growth. However, on SFM,

the ∆scy spores appear to develop two germ tubes faster than the wild-type, though

the difference between them is much less pronounced than it is on MMM.

For the wild-type, at THL less than 150µm (younger samples), we observe a

lower percentage of bacteria with 2 or more germ tubes on SFM than on MMM.

At higher THL (older samples), we observe around 80% of bacteria with 2 or more

germ tubes on MMM and around 90% on SFM. Therefore, it appears that the

wild-type bacteria is slower to initiate a second germ tube on SFM than it is on

MMM, but that it does do so eventually. A similar phenomenon is observed with

the ∆filP bacteria. There may be an advantage in initiating a second germ tube

earlier in poorer media because the new germ tube would provide less competition

for scarce nutrients around the site of the initial germ tube than would a lateral

branch. Additionally, a second germ tube heading in an opposite direction would

enable the search for richer nutrients to be broadened.

Our software detected a number of instances of 3 and 4 germ tubes from a single

spore (Table 5.4). As discussed in Chapter 2, there is some disagreement in the
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Figure 5.7: Graphs showing the percentage of bacteria with 2 or more germ
tubes at given total hyphal lengths. The numbers in each bar show the number of
bacteria of the given length represented by the bar.
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% of bacteria (count) with
Bacteria Media 1 2 3 4
wild-type MMM 32.54 (177) 64.71 (347) 2.76 (20) 0.00 (0)
wild-type SFM 48.44 (140) 48.44 (140) 3.11 (9) 0.00 (0)

∆filP MMM 29.81 (48) 68.94 (111) 1.24 (2) 0.00 (0)
∆filP SFM 29.73 (44) 66.22 (98) 4.05 (6) 0.00 (0)
∆scy MMM 56.43 (215) 41.21 (157) 1.84 (7) 0.52 (2)
∆scy SFM 37.36 (136) 55.22 (200) 6.87 (26) 0.55 (2)

∆scy-filP MMM 64.34 (92) 35.66 (51) 0.00 (0) 0.00 (0)
∆scy-filP SFM 35.92 (51) 55.63 (79) 8.45 (12) 0.00 (0)

Table 5.4: Table showing percentage (with actual count in brackets) of bacteria
with 1, 2, 3 and 4 germ tubes.

Figure 5.8: DIC and fluorescent images of spores with 3 and 4 germ tubes: (a)
wild-type on MMM, with 3 germ tubes. (b) ∆scy on SFM with apparently 4 germ
tubes.

published literature as to whether more than 2 germ tubes are ever formed in S.

coelicolor. We reviewed the specimens in our dataset flagged as having 3 or 4 germ

tubes and, whilst some may simply be early branches on existing germ tubes, it does

appear that there are some circumstances (around 2%) where 3 germ tubes form in

the wild-type (Figure 5.8a). Significantly, in the ∆scy and ∆scy-filP mutants, we

found possible cases of 4 germ tubes (Figure 5.8b), while the overall percentage of

spores with 3 or 4 germ tubes in these mutants is over twice that of the wild-type.

5.9 Apical branching

As described in Section 4.4.3, we identify apical branches by looking for two or more

emerging branches, which share the same branch point. Figure 5.9 provides graphs
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showing the number of apical branches as a percentage of all emerging (less than 2

µm) branches and Table 5.5 provides summary data.

It is generally understood that wild-type S. coelicolor only branches sub-apically.

Although our data lists apical branching percentages of up to 6% for the wild-

type, we believe the majority of these are simply branches close to the tip that

are misidentified. We therefore see insufficient evidence to reassess the orthodoxy.

However, with the ∆scy and ∆scy-filP mutants, there does appear to be a significant

amount of apical branching which becomes apparent when grown on SFM (Figure

5.10). It seems likely that the scy gene has some involvement in the selection of

branching sites and one of the effects of its removal is the apical branching behaviour

we have observed.

5.10 Emerging tips

Newly emerging tips are located according to the algorithm given in Section 4.4.2,

in which we defined the following two symbols (Figure 4.9):

• Lt is the distance from the site of the emerging child tip to the tip of the parent

filament.

• Lb is the distance from the site of the emerging child tip to the previous branch

of the parent filament.

We now introduce two further measures:

• Ltb is the distance from the parent filament tip to the previous branch, equal

to Lt + Lb.

• Rtb is the ratio Lt/Ltb and provides a measure of how far along the parent

filament a new filament emerges.

Figure 5.11 shows histograms of Ltb. This provides an indication of the length

that tip segments reach before a tip forms somewhere along the length. Table 5.6

provides chi-squared comparisons between the histogram distributions on MMM and

SFM, suggesting statistical significance in each case. Table 5.7 provides a summary

of mean values and standard error. The table also provides values for the longest
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Figure 5.9: Graphs of apical branches as a percentage of newly emerging branches.
The percentage scale is chosen to allow easy comparison, while figures within bars
indicate the number of branches represented by the bar.

Total No. of No. of Apical % Apical % of
no. of emerging apical of all emerging

Bacteria Media branches branches branches branches branches
wild-type MMM 2087 682 46 2.20 6.74
wild-type SFM 1086 197 10 0.92 5.08

∆filP MMM 1279 625 100 7.82 16.00
∆filP SFM 776 260 14 1.80 5.38
∆scy MMM 1005 151 2 0.20 1.32
∆scy SFM 3370 2125 662 19.64 31.15

∆scy-filP MMM 473 100 4 0.85 4.00
∆scy-filP SFM 1440 873 208 14.44 23.83

Table 5.5: Summary table for apical branching data, giving total numbers of
branches, numbers of apical branches and percentage of apical branches.

Figure 5.10: Example images of apical branching: Fluorescent (top) and DIC
(bottom) microscope images showing apparent apical branching of ∆scy mutant
on SFM.
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degrees of two tailed Significant?
Bacteria χ2 freedom p-value (p < 0.05)
wild-type 25.54 6 0.0003 Yes

∆filP 65.81 5 < 0.0001 Yes
∆scy 734.72 11 < 0.0001 Yes

∆scy-filP 176.47 10 < 0.0001 Yes

Table 5.6: Chi-squared test results for the histograms in Figure 5.11, comparing
the MMM histograms with those for the same bacteria on SFM. We adopt the
convention of assuming statistical significance when p < 0.5.

Number Mean Longest 95% of tips
Bacteria Media of tips (µm) (µm) below (µm)
wild-type MMM 492 22.16 69.13 46.71
wild-type SFM 97 28.06 54.39 47.29

∆filP MMM 302 14.80 51.58 38.69
∆filP SFM 109 22.69 42.77 39.10
∆scy MMM 63 50.34 110.81 97.25
∆scy SFM 778 7.62 67.58 23.12

∆scy-filP MMM 57 38.82 121.12 77.62
∆scy-filP SFM 345 13.24 67.12 42.61

Table 5.7: Table showing mean distance from parent tip to previous branch, the
longest distance from parent tip to previous branch, and the length below which
we find 95% of measurements.

segment length found that contains an emerging tip. The significance of this is that,

in our experiments, we found the tip segment never grew beyond this length without

generating a new lateral branch.

For wild-type, our data shows a slightly longer mean length when grown on

SFM than on MMM. The same is true for the ∆filP mutant. However, for the ∆scy

mutant, we find the opposite is the case - a much shorter mean length on SFM than

on MMM - and the difference between the two media is much more apparent than

with the wild-type. The ∆scy-filP mutant displays the same behaviour as the ∆scy

mutant, though the SFM peak is not as tall.

Figure 5.12 shows histograms of the ratio Rtb which gives a distribution of the

location of emerging tips along the parent filament. Table 5.8 provides a summary of

mean values. The graphs show significant differences in the observed distributions.

For wild-type on MMM, we observe a lower probability of a tip emerging in the first

and last 10%, but a relatively even distribution elsewhere. However, on SFM, there

is a clear tendency for new tips to emerge towards the previous branch and away

from the tip. The ∆filP mutant displays similar behaviour to the wild-type.
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Figure 5.11: Histograms of distances from parent tip to parent previous branch
point for emerging tips, with bin size 10 µm. Graphs plotted on % scale to aid
comparison, with absolute counts also indicated.
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Figure 5.12: Histograms of branch position, relative to parent filament tip and
previous branch points, with bin size 10 µm. Graphs plotted on % scale to aid
comparison, with absolute counts also indicated.

80



Experimental Results

Number Mean two tailed Significant?
Bacteria Media of tips (µm) χ2 p-value (p < 0.05)
wild-type MMM 492 51.07
wild-type SFM 97 68.15 82.70 < 0.0001 Yes

∆filP MMM 302 46.85 9.33 0.4074 No
∆filP SFM 109 65.74 55.22 < 0.0001 Yes
∆scy MMM 63 66.18 59.01 < 0.0001 Yes
∆scy SFM 778 36.05 50.14 < 0.0001 Yes

∆scy-filP MMM 345 43.12 50.19 < 0.0001 Yes
∆scy-filP SFM 57 53.32 38.98 < 0.0001 Yes

Table 5.8: Table showing the mean position of an emerging tip, expressed as a
percentage of the distance between the previous branch and the growing tip (0=cur-
rent tip, 100=previous branch). The table also provides chi-squared comparisons of
the wild-type on MMM distribution and each of the other experimentally derived
distributions shown in Figure 5.12. The 10 histogram bins equate to 9 degrees of
freedom and we adopt the convention of assuming statistical significance when p
< 0.5.

For the ∆scy mutant, we see a preference towards the previous branch on MMM,

but a bias towards the growing tip on SFM. The ∆scy-filP mutant behaves similarly.

Combining the data in Figures 5.11 and 5.12, it is possible to make the following

general observations.

• For wild-type grown on MMM, the majority of new tips appear when the apical

filament segment is in the range 5-45µm. The new branch is equally likely to

appear anywhere along the middle four fifths of the segment length.

• For wild-type grown on SFM, the majority of new tips also appear when the

apical filament segment is in the range 5-45µm. However, new tips tend to be

located far from the parent tip.

• For the ∆scy mutant grown on MMM, the apical filament section can grow

quite long - up to 100µm - before new branches are initiated. New tips tend

to be located far from the parent tip.

• For the ∆scy mutant grown on SFM, almost all tips appear when the apical

filament segment is less than 20µm long and around two thirds appear at less

than 5µm. The new branch is likely to appear near to the parent tip.

Histograms of the distances from emerging tips to the parent’s tip and previous

branch are provided in Appendix D. The appendix also contains histograms for the

first emerging tip - that is, the first branch to form on the primary germ tube.
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5.11 Mean depth

As described in Section 4.4.1, the organism depth provides a measure of the branch-

ing complexity of the bacteria. An organism with only primary filaments has a depth

of 1, one with primary and secondary filaments has a depth of 2, and so on. Figure

5.13 provides graphs of mean depth against total hyphal length.

Though not always pronounced, there are some subtle differences between the

different experiments:

• On MMM, the ∆scy and ∆scy-filP mutants display a lower mean depth (and

hence lower level of complexity) than the wild-type and ∆filP mutants.

• On MMM, both the wild type and ∆filP mutant appear to display slightly

higher mean depth (and hence greater complexity) than on SFM. With the

∆scy and ∆scy-filP mutants, the opposite is the case - greater depth on SFM

than on MMM.

5.12 Mean distance to centre

The mean distance to centre is a measure that allows the area covered by the bac-

teria to be quantified so as to understand if colony observations at the macroscopic

level are explained by, or mirrored in, the early microscopic growth. An alterna-

tive measure, the bounding box area, was also investigated and results for this are

provided in Appendix D.

The mean distance to centre of a filamentous organism is found by calculating

the mean distance from each tip to the centre of the organism. The co-ordinates of

the centre of the organism, xc and yc are found by averaging the tip co-ordinates of

the N tips:

xc =
1
N

N∑
i=1

xi ,

yc =
1
N

N∑
i=1

yi .
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Figure 5.13: Graphs showing mean depth against total hyphal length. Missing
bars indicate insufficient data available to plot.
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Thus, the mean distance to centre, dmean is

dmean =
1
N

N∑
i=1

√
(xi − xc)2 + (yi − yc)2 .

Figure 5.14 shows scatter plots of mean distance to centre for all bacteria. A

line of best fit has been plotted according to the equation

y = a
√
x ,

where a is a constant for each bacteria/media combination chosen by the fitting

algorithm (Table 5.9). We might expect this square root relationship because Strep-

tomyces forms round colonies and the mean distance to centre can be thought of as

the radius of a circular colony of area πr2.

Figure 5.15 displays the fit lines from Figure 5.14 overlaid, allowing easier com-

parison of data for MMM and SFM. We note that on SFM, the ∆scy , ∆filP and

∆scy-filP mutants forms more compact structures than the wild-type. This differ-

ence is also apparent when the bacteria are allowed to grow to colony size (Figure

5.16). On MMM, the ∆filP mutant forms more compact structures than the wild-

type, but the ∆scy mutant forms less compact structures.

5.13 Segment deviation

The segment deviation measure was created to quantify the degree of curliness ob-

served in ∆filP hyphae (Section 5.3) and to understand if the other mutants also

displayed this behaviour. The deviation of every segment was calculated by our soft-

ware according to the method described in Section 4.4.5, which defines the deviation

as the ratio of measured segment length to the Euclidian distance between the start

and end of the segment. Figure 5.17 provides histograms of the segment deviations

and Table 5.10 provides a summary of mean values for each experiment, as well as

the percentage of segments which show a deviation below 10%.

On both MMM and SFM, we find that the ∆filP mutant displays a wider distri-

bution and larger mean value for segment deviation than the wild-type. Only around
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Figure 5.14: Scatter plots of mean distance to centre against total hyphal length.
Solid curves are fits to the equation y = a

√
x, dotted lines show 95% bounds.
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Figure 5.15: Comparison of mean distance to centre curves for MMM and SFM.
Note, on MMM, the ∆scy and ∆scy-filP lines overlap.

MMM SFM
wild-type ∆filP ∆scy ∆scy-filP wild-type ∆filP ∆scy ∆scy-filP

Lower bound 1.63 1.38 1.98 1.95 1.63 1.22 1.13 1.25
a 1.65 1.42 2.02 2.02 1.68 1.26 1.16 1.30

Upper bound 1.68 1.45 2.07 2.09 1.72 1.31 1.18 1.35

Table 5.9: Values for the fitting constant, a, for the distance to centre graph, as
well as lower and upper 95% confidence bounds.

Figure 5.16: Images of colonies grown on SFM for 6 days. The ∆scy and ∆scy-filP
mutants show much more compact colonies than the wild-type and ∆filP mutant.
(Images provided by Neil Holmes)
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% with % with
Bacteria Media d̄ d < 10 d̄n dn < 2
wild-type MMM 8.76 74.24 2.36 74.72
wild-type SFM 8.43 77.37 2.63 72.73

∆filP MMM 12.35 53.59 4.31 52.39
∆filP SFM 14.20 52.27 4.93 49.09
∆scy MMM 9.69 72.53 2.16 85.23
∆scy SFM 9.34 72.38 5.67 42.57

∆scy-filP MMM 10.07 73.09 2.06 84.69
∆scy-filP SFM 9.97 70.10 5.20 46.57

Table 5.10: Summary table for segment deviation: d̄ is the mean segment devia-
tion percentage, d̄n is the normalised mean segment deviation percentage.

50% of segments have a deviation under 10% for ∆filP , compared with around 75%

of segments in the wild-type. This indicates that the ∆filP segments are not as

straight as the wild-type, something that supports the qualitative observation in

Section 5.3 and in [4].

The deviation behaviour of the ∆scy and ∆scy-filP mutants is similar and seems

unaffected by medium. Both have a mean deviation of 9-10% and around 70% of

segments display a deviation below 10% on both media. This is only a slightly higher

mean deviation than the wild-type, which is perhaps surprising given the relatively

disturbed morphology of ∆scy on SFM. We wondered if the lower segment lengths

of ∆scy on SFM could be obscuring an instability in the straightness of segments.

We therefore decided to calculate the normalised deviation - that is, the deviation

per unit length. This is achieved by simply dividing each segment deviation by the

measured length of the segment. A histogram of normalised deviations is provided

in Figure 5.18, with summary values in Table 5.10.

As well as emphasising the behaviour of the ∆filP mutant, the normalised data

shows that the ∆scy and ∆scy-filP mutants do indeed display different behaviour

on SFM than to the wild-type on either medium. If segments were able to grow to

the length of wild-type segments, the data suggests they would display greater levels

of deviation than the wild-type filaments. This could be indicative of instability in

the hyphal wall or in the mechanisms of tip polarity.
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Figure 5.17: Histograms of segment deviation, created using all internal segment
length measurements. The deviation is expressed as a percentage of the Euclidian
distance. Thus a segment with a deviation of 10% is 1.1 times the length of the
Euclidian distance between the two ends of the segment.
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Figure 5.18: Histograms of normalised segment deviation, created using all in-
ternal segment length measurements. To normalise, each segment’s calculated de-
viation percentage is divided by the length (in µm) of the segment.
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Mean two tailed Significant?
Bacteria Media (µm) χ2 p-value (p < 0.04)
wild-type MMM 43.83
wild-type SFM 29.56 31.98 0.7431 No

∆filP MMM 29.40 32.52 0.7205 No
∆filP SFM 21.59 94.52 0.0001 Yes
∆scy MMM 48.51 4.96 1.0000 No
∆scy SFM 17.01 190.43 0.0001 Yes

∆scy-filP MMM 49.33 18.85 0.9961 No
∆scy-filP SFM 22.66 100.88 0.0001 Yes

Table 5.11: Summary table for pairwise distance histograms, showing mean dis-
tance and chi-squared comparisons between the wild-type on MMM distribution
and each of the other experimentally derived distributions. For the chi-squared test,
the number of bins equates to 38 degrees of freedom and we use the convention of
assuming statistical significance when p < 0.5.

5.14 Pairwise distances

For a given bacteria, the pairwise distance histogram is obtained by measuring the

Euclidian (straight line) distance from each tip to every other tip (Section 5.14)

and plotting a distribution of these values. The histograms of all samples within a

dataset are combined to produce an overall histogram for a given bacteria growing on

a given media. Such histograms provide a glimpse into the overall compactness of the

bacterial morphology. A tall, narrow, peak at short lengths indicates tips are close

to each other and segment lengths are small, while a wider peak indicates a range

of segment lengths and tips not as closely spaced. Figure 5.19 shows histograms for

all bacteria/media combinations and Table 5.11 provides summary data.

The graphs indicate that all the bacteria formed more compact colonies on SFM

than on MMM - shown by a narrower peak towards the lower end of the graph. This

result provides support for the observations reported in Chapter 2 that Streptomyces

branch less frequently in poorer media, as their tips search out richer sources of

nutrients [61]. For the ∆scy mutant, we see a slightly more spread out morphology

than the wild-type on MMM, but a more compact morphology on SFM, something

which we would expect given the segment length data in Section 5.7.
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Figure 5.19: Histograms of pairwise distances, with bin size 5 µm.
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5.15 Discussion

Though some attempts at quantitive analysis of the early growth and morphology of

wild-type S. coelicolor have been reported in the past, we believe the work presented

here represents the most comprehensive work to date. As well as quantifying the

morphology of the wild-type, we have analysed three cytoskeletal mutants with the

aim of shedding light on the function of the scy and filP genes.

Our experimental results have demonstrated that the removal of the scy gene

has a significant effect on the morphology of S. coelicolor. The results show that the

removal of the filP gene also has a noticeable effect, but it is much less significant

than the removal of scy. Thus, we find that for many metrics, the wild-type and

the ∆filP mutant display similar profiles and the ∆scy and ∆scy-filP mutants also

display similar profiles.

The differences in the morphologies of the wild-type and mutants are most ap-

parent when the bacteria are grown on SFM media. Here, we find that the ∆scy

mutant forms much more compact structures than the wild-type, with more frequent

branching and hence shorter segment lengths. The relative positioning of branches

varies considerably between the ∆scy mutant and the wild-type. The ∆scy mutant

also displays apical branching when grown on SFM, but not on MMM. There is

evidence of curlier hyphae in both the ∆filP and ∆scy mutants, though it is more

easily observed in ∆filP due to it’s longer segment lengths.

The results contained within this chapter are interesting in and of themselves, as

a quantitative description of early hyphal morphology. Some of the results provide

support for observations which are apparent from manual examination of microscope

images, but many are not immediately obvious and provide new morphological in-

sights. The data is also useful as a means of assessing the ability of models to capture

Streptomyces growth. In the next chapter, we describe three different models that

we have developed to help better understand the data presented in this chapter.
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Modelling

6.1 Summary

In Chapters 3 to 5, we presented details of our experimental work, image processing

and statistics gathering. The techniques described were used to gather a large set

of experimental data and to produce a quantitative description of the early stage

growth, branching and morphology of Streptomyces coelicolor and three knockout

mutants. Of particular interest to us was the ∆scy mutant, because of our group’s

involvement in the identification of the scy gene.

In parallel with the experimental work, we have created models of Streptomyces

growth, as such models provide further insights into our experimental data and allow

us to explore hypotheses about the internal mechanisms of early stage growth and

branching. In this chapter, we describe the development of our models and the

results they have produced to date.

The chapter begins with a review of previous work, describing published models

of Streptomyces growth. We also describe some more general models of filamentous

organisms, as well as relevant models of filamentous fungi that are pertinent to this

thesis.

We then move on to describe three different models of Streptomyces growth which

we have developed through the course of this work. The first adopts a mathemat-

ical formulation to describe the balance of three different types of hyphal element

(Section 6.3). The second model uses an agent-based approach to provide a spatial
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representation of Streptomyces growth, with a simple set of probabilistic rules used

to determine growth and branching of filaments (Section 6.4). The last model is

mechanistic and assumes that tip extension and branching is driven by the trans-

port of a key wall building component which is manufactured at chromosome sites

(Section 6.5).

6.2 Previous models

6.2.1 Types of Model

Though the number of specialised models of Streptomyces is limited, several models

of filamentous fungi and generic filamentous microbes have been published. These

models range in scale from models of single hyphal tips [5, 25, 79] up to models of

large colony dynamics in industrial bioreactors [52, 57]. Useful reviews of models

of filamentous microorganisms are provided by Bezzi and Ciliberto [7] and Nielsen

[62].

In the discussion that follows, we have divided previous models into three classes.

We call the first class quantity models because they seek to study the evolution of

important quantities on the scale of a whole colony. These quantities can include

the total hyphal length, the biomass, or the ratios of different types of hyphal ele-

ment. As such, these models do not seek to provide a spatial representation of the

developing mycelia.

The second class of models is those that deal solely with tip extension or tip

shape. These models are not concerned with septation or branching, but seek only

to model the chemical or mechanical processes involved in the extension of tips.

This class includes models of 3-dimensional tip shape, as well as 1-dimensional and

2-dimensional models of the growth of individual hyphae.

The final class of models are those that attempt to model whole colonies, includ-

ing tip extension and branching. These models are often implemented as simulations

that provide a spatial representation of the development of the colony over time.
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6.2.2 Quantity models

Nielsen [61] describes a two-part model of filamentous growth composed of what

the author calls a morphology part and a population part. The morphology part

identifies three morphological forms - apical cells, sub-apical cells and hyphal cells -

and provides a set of equations to describe the processes of transition from one form

to another within a filament. The population part is based around three differential

equations describing the average properties of the hyphal elements. These are:

• The hyphal element balance - or rate of change of total number of hyphal

elements with time.

• The hyphal mass balance - or rate of change of average hyphal mass with time.

• The balance for actively growing tips - or rate of change of number of actively

growing tips with time.

The model is applied to the simulation of fungi and also to Strepromyces hygro-

scopicus grown in liquid culture. In the later case, model parameters were fitted

to previously published experimental data. Simulation plots of hyphal growth unit

length, hyphal growth unit volume and hyphal diameter are compared favourably

with the experimental data.

Liu et al. build on the Nielsen model in order to apply it to industrial fermen-

tation processes [52]. They note that an advanced culture of filamentous micro-

organisms contains several types of hyphae. Examples are newly formed hyphae

containing only the apical compartment, small hyphae containing the apical and

subapical compartment, old hyphae that contain only the hyphal compartment.

Each of these different types of hyphae display different modes of growth and rate of

metabolism. The authors modified the morphological component of Nielsen’s model

in order to take account of these different types of hyphae.

The final model, which incorporates branching, substrate consumption and prod-

uct formation, is used to simulate the batch fermentation process of streptomycin

production. The model predicts high-level time-based parameters, such as mycelial

concentration, substrate concentration and product concentration, but, like Nielsen’s
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model, does not provide for spatial modelling or graphic representation of the grow-

ing organism.

Other related models of fungal growth include those of Christiansen et al. [12],

Ferret et al. [16] and Grimm et al. [30].

6.2.3 Models of tip extension

Goriely and Tabor [25] describe a model of Streptomyces tip growth in which the

cell wall is modelled as a stretchable and growing elastic membrane. The model only

captures tip shape, without considering sporulation, branching or septation, but it

is able to recreate realistic, experimentally observed, 3-dimensional tip profiles.

In fungi, the Vesicle Supply Centre (VSC) model of Bartnicki-Garcia et al. [5]

has gained much support. This model proposes that vesicles (self-contained packages

of wall building material) are manufactured throughout the hyphae and transported

first to the Spitzenkörper (described in Section 2.3), which acts as an organisational

hub. From here, vesicles are released to fuse with the cell membrane at the site of the

growing tip. A number of computer implementations of this model in 2-dimensions

[5] and 3-dimensions [22, 81] have been published. These provide visualisations of the

growing tip, but are not yet able to model complete branching filamentous structures.

Such a model does not easily transfer to Streptomyces because, as it is currently

understood, it has no Spitzenkörper or vesicles. However, it is conceivable that

there are other mechanisms of tip organisation and wall building material transport

which parallel the fungal mechanism.

Sugden et al. describe a 1-dimensional model of hyphal growth (but not branch-

ing) of filamentous fungi [79], which models vesicle transport to the tip with the

use of a statistical mechanical method called Totally Asymmetric Simple Exclusion

Process (TASEP). In this model, the filament is pictured as a lattice of sites which

can be either occupied or empty. Particles hop in one direction, without overtak-

ing, towards the tip and once at the tip, they act to extend it. The model is able

to capture in a limited way some of the observed growth properties of the fungus

Neurospora crassa.
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6.2.4 Models of colonies

Yang et al. describe a colony model composed of a deterministic part and a random

part, which they applied to fungi and bacteria [85]. The deterministic part models

hyphal tip extension and septation, while branching is modelled as a random process.

The key components of the model are as follows:

• Tip extension is assumed to be driven by a ‘key component’ which is produced

along the hypha and diffuses towards the tip. The tip extends by an amount

proportional to the flow of the key component into the tip.

• Septation is modelled as a process that depends on the amount of nuclear

material in a segment - once this reaches a critical concentration, septation

occurs and the segment is divided. The key component is unable to flow

through septa boundaries.

• Choice of branching sites is random, but normally distributed around septa

with predetermined standard deviation. Branching is timed to occur after

septation with a delay set to be a normally distributed random value.

The authors were able to apply their model to grow 2-dimensional virtual bac-

teria. Values for the thirteen model parameters were obtained from previous exper-

imental data for S. tendae published in the PhD thesis of Reichl (1990). Plots of

total hyphal length and number of branches against time show close fits between

simulation and experimental data, though this is perhaps unsurprising considering

the model parameters include experimentally derived values for linear extension rate

and branching parameters.

At the largest scale, filamentous organisms may produce pellets - densely packed

networks of hyphae. Meyerhoff et al. describes a pellet growth model [57], based on

the earlier work of Yang et al. [85] and applied to the fungus Penicillium chryso-

genum. The model is extended to take into account substrate limitations, oxygen

depletion and shearing effects - these are not significant effects in younger mycelia,

but become much more important factors when considering pellet morphology.

Laszlo and Silman describe a set of simple cellular automata models of fungal

growth which produces realistic growth patterns at a macroscopic level, without
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Figure 6.1: Frames from a single run of our own implementation of the Laszlo
and Silman cellular automata, reported in [48].

modelling individual hyphae [48]. The model represents the growth medium as a

two-dimensional grid of squares which can be either occupied or unoccupied. In the

simplest version of the model, at each tick of the clock, every unoccupied square in

the grid is evaluated according to a set of probabilistic rules which are dependent

on the number of neighbours in the 8-neighbourhood around the square:

• If there is 1 neighbour, then there is a 1
8 probability that the empty square

will become occupied.

• If there are 2 neighbours, then there is a 1
4 probability that the empty square

will become occupied.

• If there are 3 neighbours, then there is a 1
2 probability that the empty square

will become occupied.

• If there are 4 or more neighbours, the square is considered overcrowded, so

there is a 0 probability that it will become occupied.

Using this very simple set of rules, surprisingly realistic looking colonies emerge.

Figure 6.1 shows the results of our own implementation of this model.
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The authors suggest a number of modifications to increase the sophistication of the

model:

• Ageing can be introduced by making unoccupied sites which border occupied

sites unavailable for expansion after a while. This could be used as a way to

model nutrient depletion or growth inhibitors.

• The initial model allows simultaneous growth on multiple empty sides, which is

unrealistic. The authors introduce a concept from particle physics cellular au-

tomata models, where unoccupied sites cycle through eight stages representing

the eight directions of growth. Only when the direction of the unoccupied site

matches that of its occupied neighbour can the empty site become occupied.

• The idea of spore production is implemented by allowing the occupied sites to

move through a number of states representing levels of maturity from young

vegetative hyphae through to spore-producing aerial hyphae.

Other relevant models of filamentous fungi colonies include those of Lejeune and

Baron [49], Moore et al. [59] and Soddell et al. [75].

6.3 A population balance model

6.3.1 Model description

One of our earliest approaches to modelling Streptomyces growth was to develop a

non-spatial population dynamics model. In Section 6.2.2, we described some similar

types of model that have been developed for fungi and, in one instance, applied

to S. hygroscopicus grown in liquid culture. However, growth on solid media is

different to that in liquid culture and S. coelicolor has different growth properties

to S. hygroscopicus. In addition to these limitations, we also wanted a model which

could be directly compared to our experimental data.

Our model consists of a set of ordinary differential equations (ODEs) to represent

the balance of three types of hyphal element:

• Growing hyphal tips, T .

• Stable subapical hyphal segments which will not exhibit lateral branching, W .
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• Subapical hyphal segments which could either become a new lateral branch or

become a stable hyphal segment, P .

We assume each tip grows at the same constant velocity, v, so that the rate of

change of colony length L is given by

dL

dt
= vT .

Integrating this equation with respect to t gives

L =
∫ τ

0
vT (t)dt .

Now, there are two types of transition that occur as the organism grows:

• P-to-T transitions occur when P-type segments (the subapical segments) turn

into T-type segments (growing hyphal tips) because of the initiation of a new

lateral branch.

• P-to-W transitions occur when P-type segments turn into stable W-type seg-

ments, either because of age or because of lateral branches initiated closer to

the tip.

We define c to be the P -to-T conversion rate and α to be the P -to-W conversion

rate. We also introduce a tip death rate, d. Using these definitions, we can define

three equations for the rate of change of the three types of hyphal section:

dT

dt
= cP − dT ,

dW

dt
= αP ,

dP

dt
= vT − cP − αP .

Tip death only becomes a factor in more mature colonies, where depletion of

nutrients and proximity of filaments causes tips to stop growing. Because we are

interested in understanding the growth of young bacteria, we set d = 0. We can
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then obtain the following analytic expressions for T , P and W :
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, (6.3)

where

β = 4c+ (c+ α)2 . (6.4)

Note that this model suggests that the parameters α and c should be constant

across a given species of bacteria grown under specified conditions. If this were

the case, we could potentially use these parameters as a means of classifying the

differences between different bacterial strains.

6.3.2 Model results

We obtained values for the model parameters α and c by fitting our experimental

data to Equation 6.2. For each experiment, we plotted a scatter graph of W against

t and used the Matlab curve fitting toolbox [53] to find values of α and c that

produced the closest fit to the data.

For each bacterium, the value for W was calculated as the sum of all internal

segment lengths - that is, the total hyphal length excluding tip segments (Figure

6.2). The value to use for time, t, is less straightforward to capture - though we do

record data at 2-hourly time points, the bacteria are not sufficiently synchronised to

accurately know how long they have been growing. Therefore, we used the primary

filament length for the x-axis, as this value is proportional to the length of time the

organism has been growing and appears to be a more reliable measure.

Figure 6.3 shows an example curve fit - in this instance, for one of the wild-type

on MMM experiments. Curve fits for all experiments are provided in Appendix E,

while Table 6.1 provides values for α and c for all experiments, along with the 95%

confidence bounds.

In order to understand the parameter space that emerged from the fitting, we
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Internal segment
Tip segment

Figure 6.2: The sum of internal segment lengths includes all segment lengths
apart from tip segments. In this diagram of an example bacterium, the internal
segment lengths are those shaded yellow, while tip segments are entirely black.

95% Confidence 95% Confidence
Date Bacteria Media α Lower Upper c Lower Upper

18 Mar 08 M145 MMM 0.0297 0.0230 0.0365 0.0009 0.0008 0.0010
29 May 08 M145 MMM 0.0456 0.0317 0.0594 0.0018 0.0017 0.0019
11 Jun 08 M145 SFM 0.0080 0.0055 0.0104 0.0013 0.0006 0.0019
20 Jun 08 M145 SFM 0.0095 0.0065 0.0125 0.0020 0.0014 0.0026
29 May 08 ∆scy MMM 0.0086 0.0063 0.0109 0.0008 0.0006 0.0009
2 Jul 08 ∆scy MMM 0.0041 0.0032 0.0049 0.0005 0.0004 0.0006

11 Jun 08 ∆scy SFM 0.2392 0.1172 0.3612 0.0240 0.0192 0.0288
20 Jun 08 ∆scy SFM 2.0000 -13.3181 17.3179 0.0132 -0.0813 0.1077
2 Jul 08 ∆scy SFM 0.3421 -0.0724 0.7566 -0.0001 -0.0016 0.0013
10 Jul 08 ∆filP MMM 0.0646 0.0394 0.0898 0.0009 0.0008 0.0011
17 Jul 08 ∆filP SFM 0.0084 0.0067 0.0100 0.0004 0.0004 0.0005
10 Jul 08 ∆scy-filP MMM 0.0133 0.0097 0.0169 0.0025 0.0020 0.0031
17 Jul 08 ∆scy-filP SFM 0.0690 0.0362 0.1017 0.0005 0.0003 0.0008

Table 6.1: Model fit parameters.

produced a scatter plot with α along the x-axis and c along the y-axis (Figure 6.4).

If our population balance model is capable of capturing differences between the

bacterial strains, we would expect to see experiments that use the same bacterial

strain and medium occupying a similar area of parameter space. We would also

expect to see different bacterial strains occupying different areas of parameter space.

Examining Figure 6.4, we observe that both experiments for the wild-type on

SFM are located very close to each other, as are both experiments for the ∆scy mu-

tant on MMM. The wild-type on MMM experiments are not quite as close together,

but are still in the same region of parameter space. However, there are currently too

few experiments to draw firm conclusions. Further experimental data would allow
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Figure 6.3: Example model fit: a graph of internal segment length against pri-
mary filament length for 18 March 2008 M145 on MMM data. Red line shows best
fit curve, dashed lines show 95% confidence intervals.
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Figure 6.4: Graph of population balance model fit parameters, α and c. The
bottom graph shows results for all experiments except the ∆scy mutant, which
can be seen in the top graph. Shaded areas show the 95% confidence bounds.
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Model fit Simple fit Closest
Date Bacteria Media RMSE RMSE Fit

18 Mar 08 M145 MMM 32.83 33.30 Model
29 May 08 M145 MMM 28.87 29.29 Model
11 Jun 08 M145 SFM 6.36 6.51 Model
20 Jun 08 M145 SFM 12.88 13.00 Model
29 May 08 ∆scy MMM 19.15 19.35 Model
2 Jul 08 ∆scy MMM 16.65 16.81 Model

11 Jun 08 ∆scy SFM 11.70 11.84 Model
20 Jun 08 ∆scy SFM 22.10 21.94 Simple
2 Jul 08 ∆scy SFM 15.46 15.65 Model
10 Jul 08 ∆filP MMM 29.30 30.09 Model
17 Jul 08 ∆filP SFM 22.14 22.38 Model
10 Jul 08 ∆scy-filP MMM 14.08 14.13 Model
17 Jul 08 ∆scy-filP SFM 27.46 27.42 Simple

Table 6.2: Comparison of root mean squared error between model fit and simple
exponential fit.

us to determine if clusters develop, which could mean the model would have a useful

role in classification of bacteria.

Perhaps surprisingly, the ∆scy mutant on SFM experiments are not obviously

clustered together and are far apart in parameter space. Indeed, the ∆scy on SFM

experiments are located quite some distance away from all the other experiments,

having much higher values of α and c. These high values are probably a reflection

of the ∆scy mutant’s significantly increased level of branching.

6.3.3 Evaluation of model

The fact that we found that model parameters for different bacteria occupy broadly

distinct parts of parameter space is encouraging. However, this in itself is not

necessarily an indication of how well the model is capturing reality. To try to assess

this, we fitted a simple exponential function to the experimental data and compared

the fits with those obtained for our model. We used the function

y = γ(ebx − 1) ,

where γ and b are constants and the curve of the function passes through the origin.

We compared the root mean squared error (RMSE) of the model fit and the simple

exponential fit, to see which fitted the data most closely (Table 6.2).
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In all but two cases (one of the ∆scy on SFM experiments and the ∆scy-filP on

SFM experiment), we found the model gave a closer fit to the experimental data

than the simple function. However, the RMSE in the simple fit was smaller than

we would have expected in comparison to the model RMSE. This could be because

the data is so noisy that it is not possible to get a significantly closer fit for so few

parameters. Adding more parameters to the model would likely produce closer fits

to this experimental data, but may just end up producing a closer fit to the noise.

Instead of revising our population balance model, we decided instead to move

on to examine different kinds of model. The next section describes a probabilistic

agent-based model of Streptomyces. In some ways, it can be viewed as an evolution

of the population balance model, as it captures spatially the probabilistic branching

behaviour described in the population balance equations.

6.4 An agent-based model

6.4.1 Model description

Based predominantly on observation of growing bacteria, we created a probabilistic

spatial model of Streptomyces growth using an agent-based approach. As far as we

are aware, this is the first instance of agent-based techniques being applied to the

modelling of filamentous microbes.

Agent-based models represent a system as a set of independent, semi-autonomous

agents which operate and interact according to a precise set of rules. From these

individually defined microscopic behaviours, it is possible to explore emergent macro-

scopic phenomena.

The concept of agent-based modelling is a loose one and there are no strict

definitions of what constitutes an agent. When constructing an agent-based model

of Streptomyces bacteria, there are a range of approaches to structuring the model.

These include treating each individual septa-separated cell as an agent or treating

individual sub-cellular components as agents. In our model, the agents are defined

as individual filaments, with new agents created when child filaments are formed

by lateral branching. Each filament obeys a set of rules which govern its nutrient
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consumption, growth and branching.

We imagine our bacteria growing in a virtual Petri dish on a substrate which

provides them with the nutrients needed for their extension. We define the substrate

as a 2-dimensional array of pixels, with each pixel possessing a nutrient concentration

ranging from 0 to 127. To start with, the substrate is populated randomly, so that

each pixel has a concentration somewhere between 100 and the maximum value.

Over time, as the bacteria consumes nutrients, the substrate gets depleted and the

strength value falls toward zero.

Each filament agent maintains an internal list of the following:

• the pixels making up its total length;

• the co-ordinates of its tip;

• a growth rate;

• a direction of growth.

A cycle of the model involves four phases: filament extension, nutrient depletion,

filament branching and germ tube initiation.

Filament extension: During the filament extension phase, each filament ex-

tends its tip by an increment equivalent to its growth rate. However, the tip does not

necessarily continue in its current direction of growth. In choosing where to extend

the tip, the filament examines the location one unit ahead and also 10 degrees to

the left and the right of this location. The filament grows into the location where

the substrate concentration is strongest and the direction of growth is then adjusted

accordingly. This rule was implemented in an attempt to model the autotropism

behaviour described in Section 2.3, which prevents filaments from growing into one

another. We discuss whether or not this succeeded in Section 6.4.2.

If the substrate concentration is zero at all three potential growth locations, then

the filament ceases growing altogether.

Nutrient depletion: Once the tip has extended, the substrate concentration

at the new tip location is reduced to model the consumption of nutrients by the

bacterium. We define a circle of radius r around the tip and reduce the concentration
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at any location within that radius by an amount

∆S =
r − d
r

,

where d is the distance from the centre of the circle. Thus, for example, the con-

centration at the centre is reduced by 1 unit, the concentration at half radius by 0.5

and the concentration at the edge of the circle by zero.

Branching: At the start of each cycle, there is a chance that a filament will

begin a child branch. Assuming the filament has reached a minimum length, the

model determines whether a branch will occur according to a simple probability.

If a new branch is initiated, its position is chosen randomly according to a normal

distribution about the central position between the current tip and the last branch.

However, a branch position parameter allows the position probability function to

be skewed towards the branch or the tip. The initial direction of the new branch is

chosen to be perpendicular to the parent filament, but with a random variation of

up to 5 degrees. The side of branch, left or right of the parent filament, is chosen

randomly with equal probability either side.

Germ tube initiation: Each simulation starts with a single germ tube. How-

ever, after a minimum time has elapsed, there is a probability that a second germ

tube will be initiated.

Table 6.3 provides a complete list of the model parameters. We have implemented

the model in a Java application which allows adjustment of these parameters and

very quick growth of virtual bacteria. Figure 6.5 shows some example runs of the

model.

Parameter Description
LB Minimum length before branch
α Branch probability
b Branch position parameter
R Nutrient consumption radius
tg Second germ tube delay
γ Second germ tube probability

Table 6.3: Agent-based model parameters.
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(a) (b)

Figure 6.5: Two example runs of the model described in Section 6.4. The intensity
of the grey background pixels shows substrate strength, ranging from black (no
substrate left) to light grey (no depletion).

6.4.2 Model results

As can be seen from Figure 6.5, the agent-based model grows virtual bacteria which

display morphologies reminiscent of the microscope images of Streptomyces shown

in previous chapters.

Our attempts at modelling autotropism by using the nutrient depletion to influ-

ence the direction of filament growth appear successful. In 6.5b, it is clearly possible

to see filaments which have, in effect, steered away from nearby filaments. This is

even more obvious when watching the growing virtual bacteria. Biologically, the

mechanisms of autotropism are unclear and it is possible that it is achieved through

the secretion of chemical signals rather than the sensing of nutrient depletion. How-

ever, the way we have modelled nutrient depletion is very similar to how we might

model chemical signalling and so it seems reasonable to assume that the results

would be the same.

In order to see how well our agent-based model can capture the differences

between the bacterial strains, we used our experimental data to derive values for

the model parameters. This involved a brute-force approach in which the software

stepped through a range of different values for the parameters, grew 20 virtual bac-

teria for each parameter set and compared the resulting virtual bacteria with each

experimental data set. In order to perform the comparison, we generated pairwise

distance histograms (Section 5.14) for each set of virtual bacteria and calculated

the root mean squared error (RMSE) compared to the eight experimentally derived
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pairwise distance histograms. For reasons of efficiency, we restricted our search of

parameter space to a few discrete values for each parameter (Table 6.4). Even so,

this involved 4,320 combinations of parameters, 86,400 virtual bacteria grown and

six days of processing by a dual core PC.

Figure 6.6 shows the best fit histograms obtained for each bacteria/media com-

binations and Table 6.5 lists the corresponding parameter values. Very close fits

are obtained for all bacteria on SFM and for the ∆filP mutant on MMM. For the

wild-type, ∆scy and ∆scy-filP mutants on MMM, our limited brute force search

failed to produce fits as close as for the SFM data. A more targeted search of pa-

rameter space may improve on this. Even so, there are clear differences between the

virtual bacteria generated with the wild-type on MMM parameter set and the ∆scy

on SFM parameter set (Figure 6.7)

The brute-force approach resulted in the same parameter values for ∆scy and

∆scy-filP on MMM and the same values for ∆scy and ∆scy-filP on SFM. This is

probably unsurprising given the similarity of the respective pairwise distance his-

tograms. We believe that a longer search of parameter space, or the use of different

histograms for comparison (eg. segment length, branch position) could result in

differences in the parameters.

The model parameter results highlight some of the differences we observed ex-

perimentally. The shorter segment lengths we observed in the ∆scy and ∆scy-filP

mutants (Section 5.7) are reflected in smaller values for LB, the minimum length

before branching. The tendency of new branches to appear towards the previous

branch for wild-type on SFM and ∆scy on MMM (Section 5.10) is reflected in a

branch position value of +20, though for ∆filP on SFM, which exhibits the same

pattern, the fitting process produces a neutral branch position value of 0. Finally,

the delayed secondary germ tube development of the ∆scy and ∆scy-filP on MMM

Parameter Description
LB 50, 100, 150, 200, 250, 300, 350, 400
α 0.01, 0.02, 0.05, 0.1, 0.2, 0.5
b -20, 0, +20
tg 50, 150, 250, 350, 450
γ 0.01, 0.02, 0.05, 0.1, 0.2, 0.5

Table 6.4: Agent-based model parameter search space.
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M145

MMM

SFM

ΔfilP Δscy Δscy-filP

Figure 6.6: Pairwise distance histograms showing best fit model data (coloured
bars) against corresponding experimental data (grey bars). Each model histogram
is generated by growing 20 virtual bacteria. Best fit parameters (Table 6.5) were
chosen using a brute-force search of parameter space.

Bacteria Media LB α b tg γ RMSE
M145 MMM 350 0.02 +20 50 0.01 1.46
M145 SFM 250 0.5 +20 50 0.05 0.53
∆filP MMM 250 0.05 +20 50 0.02 0.57
∆filP SFM 50 0.01 0 250 0.02 0.27
∆scy MMM 350 0.02 +20 50 0.01 1.77
∆scy SFM 150 0.02 0 450 0.2 1.23

∆scy-filP MMM 350 0.02 +20 50 0.01 1.66
∆scy-filP SFM 150 0.02 0 450 0.2 0.94

Table 6.5: Best fit parameters for the agent-based model. Parameters chosen
using a brute-force search of parameter space, with best fits determined by com-
parison of pairwise distance histograms. Positive values for branch position indicate
bias towards branch, negative values a bias towards tip.

(a) (b)

Figure 6.7: Results of varying agent-based model parameters: (a) Virtual bac-
terium grown using the model fit parameters for M145 on MMM. (b) Virtual bac-
terium grown using the model fit parameters for the ∆scy mutant. Both models
were run for the same length of time. Note the increased branching and more
compact structures displayed by the mutant.
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(Section 5.8) is reflected in a much lower value for γ, the second germ tube proba-

bility, than is found for SFM.

6.5 A mechanistic model of tip extension and branching

6.5.1 Overview

Our basic agent-based system was a phenomenological model which sought to cap-

ture the branching behaviour of Streptomyces through the application of a simple set

of rules which were determined through microscopic observation of the bacterium.

It was successful in so far as it was able to capture many of the observed differences

in growth between the bacteria - such as the more compact morphology of the ∆scy

mutant on SFM. However, we wish to move beyond a purely descriptive model and

to try to suggest a mechanism which could be responsible for the observed behaviour.

This led us to develop a more sophisticated model of tip extension and branching

based on ideas about the internal processes within filaments.

As discussed in Section 6.2.3, the Vesicle Supply Centre model of Bartnicki-

Garcia et al. [5] best reflects current understanding of fungal tip growth. Though

fungi and bacteria are fundamentally different, with the latter not possessing vesicles,

it is reasonable to conclude there must be some kind of analogous process taking

place in bacteria.

Our new system seeks to model the transport of a cell wall building component

through the bacterial filament as a reaction-diffusion system. We do not specify

the component, because very little is understood biologically. It may be that it

represents cell wall precursors, which are eventually converted into cell wall at the

tip. Or it may represent a collection of proteins that incorporate the cell wall

precursors at the tip. We therefore refer to it in the rest of this chapter as the

key component, adopting the terminology used by Yang et al. [85]. Whatever the

key component composition, our model views chromosomes as machinery which are

indirectly responsible for production of it.

The key component is transported towards the tip by a mixture of diffusion and

active transport. As it arrives at the tip, it is converted to cell wall material and,
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if enough has amassed, the tip is able to extend. The model also uses the build-up

of the key component further back in the hypha as a trigger for production of new

lateral branches.

The model consists of three parts. In Section 6.5.2, we derive a partial differential

equation to describe the transport of the key component through the filament and

to provide for production of it at chromosome sites. In Section 6.5.3, we describe

the system for movement and duplication of chromosomes. Finally, in Section 6.5.4,

we describe the rules implemented for tip extension and branching.

6.5.2 Transport of key component

In our model, we assume that the transport of the key component through the hypha

is achieved through a combination of diffusive and active transport processes. We

also assume that the production of the key component is dependent upon the number

of chromosomes and their location along the filament. Using these assumptions,

we now derive an equation to model the change in key component density due to

transport and production.

Consider a 1-dimensional filament with a key component density given by the

function ρ(x, t). Fick’s law [3] gives the change in density due to diffusion as

∂ρ

∂t
= D

∂2ρ

∂x2
,

where D is a diffusion coefficient.

In a diffusive system, the diffusion distance is proportional to the square root

of time (Figure 6.8). Given this, the relatively high growth rate of Streptomyces,

the long length of filaments and typical biological diffusion coefficients in the range

10−7 to 10−10 m2s−1 [21, 60, 73, 82], it is unlikely that diffusion alone could account

for sufficiently rapid transport of the key component along the whole length of the

filament. Therefore, we introduce an active transport term to the above equation,

giving
∂ρ

∂t
= D

∂2ρ

∂x2
− v ∂ρ

∂x
,

where v is the velocity. This equation is known as Burgers’ equation [8] and has
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Figure 6.8: Graphs comparing the transport speed of diffusive and active pro-
cesses. In diffusive processes, the diffusion distance is proportional to the square
root of time, so initially quick transport soon rapidly declines in speed, even for high
diffusion coefficient (D). This makes diffusive transport over longer distances an
extremely slow process. In contrast, an active transport process is able to maintain
speed, independent of distance.

been used to model many different kinds of flow, including that of liquids, gasses

and vehicle traffic. However, the new term models a flow at a steady velocity. It

is more likely that the active transport is dependent on key component density and

either increases or decreases depending on the local density. There are examples of

both of these relationships in nature. In eukaryotic cells, kinesin motors move along

microtubules to transport vesicles to the tip and in areas of high density, the speed

of transport is restricted because there are more vesicles to be transported than

there are kinesins [34, 84]. Conversely, in plant root hairs, PIN proteins are thought

to mediate transport of the growth hormone Auxin and this transport increases in

areas of greater PIN density [9, 29]. Furthermore, it is believed that production of

PINs is in turn regulated by Auxin, resulting in a positive feedback mechanism [51].

Returning to the equation above, to make the active transport dependent on

density, we rewrite it as follows:

∂ρ

∂t
= D

∂2ρ

∂x2
− v0v(ρ)

∂ρ

∂x
,

where

v(ρ) = 1 + ρ(x) , (6.5)

for a transport speed which increases with density, or

v(ρ) =
1

1 + ρ(x)
, (6.6)
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Figure 6.9: (a) Graphical representation of the function used to model the input
of the key component at chromosome sites. The width of the chromosome is equal
to 6σ. (b) Graphical representation of the chromosome repulsion energy function
used to prevent chromosomes occupying the same position.

for a transport speed which decreases with density. The constant v0 is chosen to be

the speed of transport of the key component when ρ(x) = 0.

In Streptomyces, there are reasons to believe that the tip exerts a form of polar

attraction. This is evidenced by experimental work which has imaged the build-up

of wall precursors at the tip [14]. It is believed that these precursors either travel

towards the tip, or that enzymes responsible for their production travel towards

the tip from the chromosomes where they are created. Additionally, the protein

DivIVA has been found to have an attraction to the curved surfaces of hyphal tips,

which could also provide a concentration gradient [50]. We express the tips polar

attraction as a modification to the transport velocity which is dependent upon a

local concentration gradient, yielding

∂ρ

∂t
= D

∂2ρ

∂x2
− v0e−λ(l−x)v(ρ)

∂ρ

∂x
, (6.7)

where l is the length of the filament and λ is a decay constant which allows controls

of the steepness of decay.

As stated in Section 6.5.1, we consider chromosomes to be the engines responsi-

ble for production of the key component. Each filament will have N(t) chromosomes

with centres located at positions x1,...,xN along the 1-dimensional hypha. We repre-

sent the key component production of each chromosome as a Gaussian distribution

centred around the chromosome centre (Figure 6.9a), given by

P (x) =
1√

2πσ2
e−

1
2σ2 (xi−x)2 ,
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where xi is the centre of the chromosome and σ is related to the chromosome width.

Because 99% of any Gaussian distribution is located within 3σ of its centre, we set

σ equal to

σ =
w

6
,

where w is the width of the chromosome. Thus, we introduce a new term into

equation 6.7 to sum the contributions of all N chromosomes, giving

∂ρ

∂t
= D

∂2ρ

∂x2
− v0e−λ(l−x)v(ρ)

∂ρ

∂x
+ ρ0

N∑
i=1

1√
2πσ2

e−
1

2σ2 (xi−x)2 , (6.8)

where ρ0 determines the rate of key component production.

6.5.3 Chromosome movement and replication

In the model, chromosomes move up and down the filament in a biased random walk.

In order to ensure two chromosomes do not occupy the same space, we represent the

space occupied by them with a repulsive force and use this to influence the walk.

Consider N chromosomes centred at position x1,...,xN along the 1-dimensional

hypha. We define a chromosome energy function, E(x), given by

E(x) =
N∑
i=1

R

|xi − x|
, (6.9)

where R determines the level of repulsion. Figure 6.9b provides a graph of the energy

function for a single chromosome.

For each chromosome, at every tick of the model clock, a possible move is selected

by picking, with equal probability, a neighbouring location on either side of the

current location. The decision on whether to accept the move is inspired by a

concept from statistical mechanics known as the Boltzmann factor, which calculates

the probability of a system under thermodynamic equilibrium moving into a given

state [31]. Our variation of the concept works as follows. The energy at the current

location, Ec, and at the proposed location, Ep, is calculated according to Equation

6.9. The difference in the two energies, ∆E is thus

∆E = Ep − Ec .
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If ∆E is less than zero, indicating that the proposed location is at a lower

energy than the current location, then the move is always accepted. However, if ∆E

is greater than zero, indicating that the proposed location is at a greater energy,

then the move is accepted with a probability given by

p = e
−∆E
E0 ,

where E0 is a constant chosen such that around half of all proposed moves in the

system are accepted. If this was a standard Boltzmann factor calculation, then

E0 = kBT , but for simplicity, we do not consider temperature to be significant. If a

move is not accepted, the chromosome stays where it is.

As the tip extends, chromosome duplication occurs. The biological reasons for

the timing of chromosome duplication are unclear, so, in our model, duplication

is tied to the overall chromosome density in the filament. Once this reduces to

a threshold level, a chromosome is picked at random for duplication. The new

chromosome is initially located at the same position as the original, but the repulsive

energy quickly causes a separation between the two.

6.5.4 Tip extension and branching

The filament grows by a unit length every time the the key component level close to

the tip reaches a threshold value. Before the tip extends, the key component level

at the tip is reduced to reflect the consumption necessary to build the new cell wall.

Lateral branches are initiated when there is a build-up of the key component

further back behind the tip. This will occur when the key component is being

produced faster than it can be transported to, and used by, the tip. Rather than

implement a simple threshold level, we generate a branch probability. For any

position, x, along the filament, the probability of a branch, p(x), is given by

p(x) = 1− e−
ρ(x)
ρ1 ,

where ρ(x) is the key component density at position x and ρ1 is a constant which

makes branching occur more or less frequently. More specifically, when ρ(x) = ρ1,
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Figure 6.10: (a) Graph of branch probability function, with the steepness of the
curve determined by the constant ρ1. (b) Graph of suppression function for an
example branch point, with the width of the curve determined by the constant x0.
Maximum suppression occurs at y = 0.

p(x) = 0.63. Thus ρ1 it is the key component density at which there is a 63% chance

of a branch forming at any given tick of the clock. Figure 6.10a provides a graphical

representation of the branch probability function.

In wild-type Streptomyces, new branches rarely form close to an existing lateral

branch. This can be seen in the segment length histograms for the wild-type, given

in Section 5.7, which have their peak at around 7 µm. It has been suggested that a

protein such a Scy, which localises to new tips and co-localises with DivIVA, might

perform a branch suppression function [39]. We model the (inverse) suppression

as an exponential function which is centred on the branch location (Figure 6.10b).

Thus, we can modify the equation for px to represent the (inverse) suppression,

giving

px =
(

1− e−
ρ(x)
ρ1

) N∏
i=1

1− e−x0(bi−x)2 , (6.10)

where bi is the location of the ith branch on this filament and x0 is a suppression

distance constant.

6.5.5 Implementation

In our implementation of the model, a filament is represented as an array of values

representing the key component level at each position within the hypha. At each

tick of the model, the following sequence of events occurs:

1. Chromosome copying - if the chromosome density has reached the threshold

value, make a new chromosome by selecting one of the current chromosomes,

at random, for duplication.
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Figure 6.11: In this figure, the diagram represents a filament F , its child C and
its parent P . After carrying out the modelling steps for filament F , position C1 is
set to equal the key component level at position F8 and position P5 is set to equal
the key component level at position F1.

2. Chromosome movement - each chromosome is evaluated for a move one

place up or down the hypha.

3. Branch initiation - we apply Equation 6.10 at each point to determine if a

new branch is to be initiated.

4. Tip extension - if the key component level at the tip has reached the threshold

value, then extend the tip.

5. Transport of the key component - the level at each position in the filament

is updated by evaluating Equation 6.8.

This basic model is easily extended to facilitate multiple filaments. In this sce-

nario, a sixth step is carried out for each filament to handle the transport of key

component between parent and child filaments. This is achieved by equalising the

key component density across connected filaments. Consider the example in Figure

6.11, which represents a filament F , its parent P and a child branch C. Locations C1

and F8 represent the same physical location, so after performing the key component

transport in F , we set the density at C1 to equal that at F8. Similarly, locations

P3 and F1 represent the same physical location, so the density at P3 is set to the

density at F1.

As well as the continual equalisation of branch points between parent and child

filaments, we apply a once-only depletion of nutrients in the parent filament at the

point of the branch. This is achieved by setting the the key component density at
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the branch point to half its level at the time the branch is initiated. In order to

avoid numerical instabilities, we spread the depletion over an area defined by an

exponentially decaying depletion function. Thus, we multiply the key component

by the factor
1
2
e−x1(bx−x)2 ,

where bx is the location of the branch and x1 is a constant which defines the depletion

width.

6.5.6 Numerical methods

Equation 6.8 is a non-linear partial differential equation which cannot be solved

analytically. It is also an initial value problem - we know the nutrient densities,

ρ(x), at time t = 0 and we wish to understand how these densities change over time.

To solve numerically, we divide the spatial and temporal domains into discrete units

- size h for space and ∆t for time.

We need a way to compute the spatial derivatives and to move the initial value

problem forward in time. Examining first the temporal domain, we note that many

functions can be written in the form

f(t) = f(0) +
∫ t

0

df

dt
dt .

The integral may be approximated using the trapezium rule. For a sufficiently small

interval, ∆t, we shall use the approximation

f(t) ≈ f(0) +
N∑
i=0

df(i)
dt

∆t . (6.11)

The application of this approximation is known as Euler’s method. Given an

initial value, Euler’s method allows us to approximate a curve that satisfies a known

differential equation. To use Equation 6.11 to solve our model equation (Equation

6.8), we need to be able to numerically compute spatial derivatives. This we do

using finite difference formulae. These seek to approximate the derivative by using

two or more closely spaced values from a function to calculate its local gradient. If

we have a function, f(x), then the two point central difference at point x is given
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by
df

dx
≈ f(x+ h)− f(x− h)

2h
,

where h is the step size, or distance between neighbouring values. Selection of this

value is important and it is desirable to pick a value as small as possible without

chosing one so small that rounding errors are introduced or computation time is too

long. Figure 6.12 pictures three runs of the model using different step sizes which

illustrate the issues connected with selection of step size.

Note that care needs to be taken with approximation of end point derivatives

because at x = 0 we don’t know f(x− h), while at x = n (where n is the size of the

filament), we don’t know f(x+ h).

In our problem, at x = 0, if we set f(x − h) to be greater than f(x + h), then

the end point will in effect act as a key component producer. Alternatively, if we set

f(x− h) to be less than f(x+ h), then the end point will act as a sink. So, instead,

we set f(x− h) to be f(x+ h), so that the gradient is always zero at this point and

it neither contributes to, or subtracts from, the key component level.

The point x = n (where n is the size of the filament) represents the apex of the

tip and here we do want the key component to reduce. Therefore, we use a single

point approximation for the derivative as follows

df

dx
≈ f(x)− f(x− h)

h
.

Finally, we compute second derivatives using

d2f

dx2
≈ f(x+ h)− 2f(x) + f(x− h)

h2
.

6.5.7 Simulation results

In the preceding sections, we have derived a model which links the tip extension

and branching processes within Streptomyces to the movement through the filament

of a chromosome-produced key component by a combination of diffusive and active

transport. The model consists of a partial differential equation which expresses the

change in key component density due to transport and new production, along with
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(b) h=0.1 μm

(c) h=0.05 μm

(a) h=1 μm

Figure 6.12: The three images show three runs of the model, each with identical
parameters and random number generator seed, but with different step sizes: (a)
A step size of 1 µm is too large, resulting in numerical instabilities. (b) We used
a step size of 0.1 µm, small enough to remove numerical instabilities, but large
enough to reduce rounding errors and speed up processing time. (c) Smaller step
sizes run the risk of introducing rounding errors and may take too long to process.

121



Modelling

Figure 6.13: The Java implementation of the model running. The bottom part of
the image is given over to a graphical representation of the growing filament, with
chromosomes shown in red. The graph shows the concentration of key component
(blue line), as well as the levels of other important parameters, such as chromosome
production (red line) and tip extension time (green line).

rules for the movement and duplication of chromosomes and the creation of new

branches. We have also introduced techniques for solving the equations. We now

describe the results of running the simulation and the effect that parameter variation

has on these results.

A typical simulation run

The model was implemented in a Java application which provides graph traces of

the key component level, tip extension time, chromosome movement and a range of

other attributes as the simulation proceeds (Figure 6.13).

Figure 6.14 show graphs of a typical simulation run, from development of the

primary germ tube until initiation of the first branch. The key component density

(blue trace) builds gradually, as the tip extends. As the density increases, so the

probability of a branch also increases. When a branch occurs, the key component

density around the branch is depleted, resulting in a lower density behind the branch.

This means that it is much more likely that a second branch will occur between the

first branch and the tip - reflecting what is observed experimentally.

Initially, the tip extension time (green trace) starts off high, as the chromosomes

begin production of the key component and it is transported towards the tip. How-

ever, as the density of the key component increases and the number of producing

chromosomes increase, the tip extension time decreases until eventually reaching a
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Figure 6.14: A typical model run: The filament starts small and extension rate
is slow (top image). Gradually, the tip extends and the rate of extension increases
(middle image). The extension rate reaches a maximum and new branches are
initiated (bottom image). At the site of the branch, the key component level is
depleted.
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Figure 6.15: Example simulation run for the condition that active transport
speed decreases with increasing key component density. This results in a single
large key component density peak, increased tip extension times and less convincing
branching patterns.

relatively steady state. This same phenomenon has been observed experimentally,

with a time of between 2-4 hours needed for a germ tube to achieve a steady rate of

extension [2].

Two different approaches to active transport

Our model derivation allows for two approaches to active transport, depending on

whether we assume that the speed of transport increases or decreases with increasing

key component density. The figures presented so far are based on simulation runs

which adopt the first assumption. However, we also explored the model behaviour

under the assumption that transport speed decreases with increasing key component

density. This generally resulted in less convincing results, as illustrated in Figure

6.15. This figure was generated from a simulation run using the same parameter

set as for Figure 6.14, with the only difference being the change of active transport

condition. This results in a single large key component density peak, much increased

tip extension times, much closer branching and an increase in the number of branches

appearing before the previous branch. With changes to some model parameters, it

was possible to reduce problems, but unconvincing behaviour remained.

As a result, in the absence of any contrary biological evidence, the simulations

that follow are all based on the assumption that speed of transport increases with

increasing key component density. This assumption means that over time, the peaks
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(a)
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(c)
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Figure 6.16: Numerical instability created by active transport process: in (a) to
(c), a peak gradually builds. In (d) to (e), we can see the peak moving forward
faster than the trough until in (f), it overtakes causing a numerical instability.

catch up with the troughs and larger peaks consume shorter ones. This can some-

times mean that numerical instabilities occur as the top of a peak overtakes the

bottom (Figure 6.16). In nature, we observe this phenomenon in ocean waves as

they crash onto a beach. However, in our model, it presents a problem which is very

difficult to solve numerically. Initially we had wondered if the shocks that formed at

this point could be the trigger for branching activity, but we were unable to achieve

any convincing results under this assumption. We have therefore chosen to avoid

model parameters that create such instabilities. Although we acknowledge that this

could mean we are missing out on exploring a potentially important area of param-

eter space, we believe that the results presented in the next section suggest that

convincing solutions of the model are to be found in the parameter space which we

are able to access.

Comparison with experimental data

In order to compare the performance of the model with our experimental data, we

grew a set of 80 virtual bacteria and measured the segment lengths, the relative

position of each branch and the length of segments at the point of branch initiation.

We plotted histograms of these values and compared them with the distributions

obtained experimentally (given in Chapter 5). The model histograms are shown

along with the experimental ones in Figure 6.17 and the model parameters used are

given in Table 6.6.

The model segment length histogram shows a similar shaped distribution to the
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Parameter Description Value
D Diffusion coefficient 1× 10−4 µm2s−1

v0 Active transport speed constant 1× 10−5 µm2s−1

λ Concentration gradient decay constant 0.008
ρ0 Key component production rate 0.01
w Width of chromosome 2 µm
R Chromosome repulsion level 20
ρC Minimum chromosome density 0.33 per µm
E0 Energy constant 0.1
ρ1 Branching rate constant 1× 109

x0 Suppression distance constant 0.05
T Tip extension threshold 50

Table 6.6: Model parameters used for comparisons with experimental data.
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Figure 6.17: Comparison of model data with experimental data: The top graphs
show histograms for segment length, relative branch position and length of segment
at branch, obtained experimentally for the wild-type Streptomyces grown on MMM.
The middle set of graphs show histograms produced from 80 runs of the standard
model. The bottom set of graphs show another 80 runs of the model, but this
time the branching is set to an even probability throughout the filament instead of
linked to key component density.
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experimental one, with a steeper slope on one one side of the peak and a gentler

one on the other. The model branch position histogram also displays a similar

distribution to the experimental one, with very little in the first and last 10% and a

relatively even distribution in the central 80%. The histograms of length at branch

are also similarly shaped.

We wanted to get some idea if this fit to the experimental data could be attributed

to our model, or if a less sophisticated model of branching would lead to similar

distributions. Therefore, we set up a null hypothesis model, exactly the same as

the current model except that branch initiation was set to the same probability

throughout the filament length and not linked to key component density. We again

grew 80 virtual bacteria and generated histograms from the simulation results (also

Figure 6.17). These results show clearly different distributions to the standard model

and the experimental data. The segment length distributions and length at branch

distributions no longer have the same shape as the experimental data. As we would

expect, the branch position histogram shows an even distribution, with branches

equally likely at all positions. However, in both the experimental data and the

model data, we see slight dips at either end of the graph, something not captured

in the null hypothesis graphs.

Removal of suppression term

In Section 6.5.5, we introduced the branch suppression term by stating that a protein

such as Scy might be responsible for suppression of additional branches at existing

branching sites. We were therefore interested to see if removal of this aspect of the

model creates branching behaviour more like that seen in the ∆scy mutant.

Figure 6.18 shows histograms of segment length, relative branch position and

length of segment at branch for another 80 runs of the model, this time with the

branch suppression functionality removed. For comparison, the experimental data

for the ∆scy mutant on SFM is also shown. The removal of the suppression has a

significant effect on the model results, with a larger number of small branches leading

to a different shape for the segment length distribution. Additionally, the relative

branch position distribution is changed, with a slight bias towards tip branching.

127



Modelling

10

20

30

40

4 8 15 23 30 38 46 53 61 68 76

Segment length (μm)

0

4

8

12

16

20

24

28

32

5 15 25 35 45 55 65 75 85 95

Tip     % distance     Branch

0

10

20

30

40

50

60

70

80

8 16 32 48 64 80 96 112

Length at branch (μm)

0

10

20

30

40

0.20.81.4 2 2.63.23.84.4 5 5.6

Distance to parent tip (μm)

0

10

20

30

40

4 8 15 23 30 38 46 53 61 68 76

Model (no suppression)

%

0

4

8

12

16

20

24

28

32

5 15 25 35 45 55 65 75 85 95

Model (no suppression)

%

0

10

20

30

40

50

60

70

80

8 16 32 48 64 80 96 112

Model (no suppression)

%

0

5

10

15

20

25

30

35

40

0.2 1 1.6 2.4 3 3.6 4.4 5 5.6

Model (no suppression)

%

0

5

10

15

20

25

1 3 5 7 9 11 14 17 20 23 26 29

!scy on SFM

%

Segment length (μm)

0

4

8

12

16

20

24

28

32

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

!scy on SFM

%

Tip     % distance     Branch

0

10

20

30

40

50

60

70

80

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

1
1
0

1
2
0

!scy on SFM

%

distance (μm)

0

10

20

30

40

50

60

70

2

1
0

1
8

2
6

3
4

4
2

5
0

5
8

6
6

7
4

8
2

9
0

!scy on SFM

%

distance to parent tip (μm)

Figure 6.18: Effect of removal of suppression term from the model: The top three
graphs show histograms of segment length, relative branch position and length of
segment at branch for 80 runs of the model with the suppression term removed.
The bottom graphs show the corresponding experimentally obtained data for the
∆scy mutant grown on SFM media.

Both of these histograms take on similarly shaped distributions to those we found for

the ∆scy on SFM. This would seem to add plausibility to our suggestion that Scy has

some sort of inhibitory effect on branching. However, at this stage, the experimental

evidence is tentative and it is likely that there are many complex protein interactions

involved in determining and preventing new branch initiation.

6.6 Discussion

In this chapter, we have presented three different approaches to the modelling of

Streptomyces coelicolor growth and branching.

Our first approach was to use a set of population balance equations to model

the balance of three different types of hyphal element - static sections of filament,

branching filament sections and sections which will either branch or become static.

We were able to fit our experimental data to the model to obtain values for the

model parameters. Experiments using the same bacteria and media combination

occupied a similar area of parameter space to each other. By calculating the root

mean squared error of fit, we found the model usually resulted in a smaller error
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than fitting to a simple exponential function. However the difference in error was

not large and we suggested that a reason for this may be that the data used for the

fit is relatively noisy.

Our second model uses an agent-based approach to understand the spatial or-

ganisation of S. coelicolor. Simple rules govern the extension of tips and initiation

of new branches, yet realistic images of growing bacteria can be produced. We used

a brute-force approach to fit model parameters based on our experimental data.

While we were able to capture differences in the observed morphologies, the model

was unable to provide mechanistic insights.

With our final model, we made some suggestions about mechanisms that might

be at work within a growing filament and wanted to understand if these could be

responsible for producing the branching behaviour we observed. We model the

transport and production of a key component through the filament and determine

branching sites based on the density of this component. We found the model pro-

duced similar shape segment length distributions and branching site distributions to

experimentally obtained data for the wild-type bacteria. By removing a branch sup-

pression term from the model, we found it exhibited similar behaviour to the ∆scy

mutant, which provided support to the idea that Scy may be involved in selection

and suppression of branching sites.
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Chapter 7

Conclusions and Future Work

7.1 Summary

In the previous chapters, we have described our work analysing and modelling the

early stage morphology of the filamentous bacterium Streptomyces coelicolor. It is

an important bacterium and, despite its usefulness to medicine and industry, there

is still much to understand about the mechanisms of its growth and branching.

We have described laboratory techniques and image processing algorithms which

have enabled us to produce a thorough analysis of the morphology of wild-type S.

coelicolor and three mutant strains. As far as we are aware, this is the most compre-

hensive quantitative analysis of the wild-type bacterium and contributes significantly

to the understanding of its growth. Additionally, we have been able to compare the

analysis of the wild-type with the same analysis of mutants with the filP and scy

genes deactivated. This has enabled us to understand specific differences in mor-

phology and to provide evidence to support ideas about the function of these genes.

We have also described the design of a software tool, JFilamentAnalyser, for

providing semi-automatic analysis of filamentous microbes. We believe this tool will

be of long-term use to the Streptomyces community and will help to facilitate the

increased use of quantitative data in the description of mutant phenotypes.

In the previous chapter, we introduced three new models of Streptomyces growth.

With each of the models, we were able to link them to our experimental data and,

through parameter changes, we demonstrated that the models were able to quan-
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Figure 7.1: Three frames from a 40 minute long live imaging movie of S. coelicolor
growth. Extension of individual tips can clearly be seen. The arrows are positioned
at the same place in each frame and show the location of the tips in the first frame.

titatively capture some of the observed differences in the bacterial strains. Of the

three models, the mechanistic model of key component production and transport

offers great potential for further development.

7.2 Future work

7.2.1 Live imaging

All the experimental data presented in this thesis was obtained using the static

imaging techniques described in Chapter 3. Part of the staining process involves

fixing the bacteria, which means that images are only ever a snapshot at a moment

in time. Unlike static imaging, live imaging offers the prospect of watching an

individual bacterium as it grows and branches over time.

Techniques for live imaging of Streptomyces are not yet well established. Indeed

it was only during late 2008 that the first significant study of Streptomyces using

live imaging was published [38] and movies are still relatively rare and short. There

are many problems to be overcome, particularly around maintaining oxygen supply,

humidity and nutrient supply, while also allowing the microscope objective to be

close enough for useful images to be obtained.

During our experimental work, we started to develop our own techniques for live

imaging. These enabled us to produce short movies of approximately 40-60 minutes

in length and to watch individual tips extending (Figure 7.1). We believe that with

further development, our approach could be refined and longer movies should be

possible. There now follows a brief description of the method we adopted.
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Side view Overhead view

Microscope slide

Cellophane

Microscope objective

Growth media

Figure 7.2: Experimental setup for live imaging: a microscope slide with a central
well filled with liquid medium is used. A piece of cellophane with a bacterial sample
on it is placed on the slide resting on top of the media with access to the air.

Sample preparation

Samples are initially grown in a Petri dish before being transferred after early growth

to the microscope. As with static imaging, the Petri dish is filled with a medium

such as MMM and a slip of cellophane is placed on top of the medium. The plate is

covered and placed in an incubator at 30℃.

After a period of time, typically 5-10 hours, the Petri dish is removed and a

razor blade used to cut a small (approximately 2 cm × 1.5 cm) portion of the

cellophane away from the surface. The cellophane is then mounted on to a special

microscope slide which contains a small well in its centre (Figure 7.2). This well

is filled with clear liquid medium and the piece of cellophane rests on top of the

medium, supported by, and level with, the sides of the slide. The bacteria on the

cellophane should be able to continue to grow, as long as they have access to the

medium and to air. The cellophane is fixed with tape and the sample is then ready

for live imaging.

Microscopy

The slide is placed under the microscope objective, taking care not to make con-

tact between the sample and the objective. The need to avoid interference with

the sample makes it impossible to use oil-based objectives, as the oil prevents the

bacteria receiving the oxygen needed for growth. This makes good images difficult

to obtain and is further complicated by the fact that the microscope light has to be

transmitted through the liquid medium.
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As live imaging progresses, the medium in the well is gradually depleted due to

evaporation. Unless this is topped up, the bacteria will cease growing. Additionally,

the cellophane tends to droop into the well as the medium evaporates.

Live imaging outlook

Using these techniques, we were able to capture videos of up to an hour in length

and were able to watch the extension of individual hyphal tips. Image quality was

acceptable but suffered from constantly changing focus. We believe this was due to

evaporation of the liquid medium and the consequent drooping of the cellophane.

After around an hour, the bacteria seem to stop growing and we believe this is due

to a number of factors:

• Lack of access to nutrients, due to evaporation of liquid medium.

• Possible heat damage from the bright microscope light. This problem is re-

duced by shuttering while images are not being taken, but we suspected dam-

age was still occurring.

• Loss of humidity.

• Lack of control over temperature.

We have experimented with the use of an inverted microscope, but were not able

to substantially improve results. We believe that use of a temperature and humidity

controlled chamber should help to increase the lifespan of the bacteria and enable

longer videos to be captured. Additionally, identification of suitable fluorescent

markers which do not require fixing would improve things considerably.

7.2.2 Analysis and statistics

Our software, JFilamentAnalyser, has proven to be a very effective tool for analysis

of our experimental dataset of microscope images. We believe it could be a valuable

tool for use by the whole Streptomyces research community and perhaps by those

interested in other filamentous microbes.
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There are a number of enhancements that could be made to the software which

would increase its suitability for use by biologists. The following is a list of possible

changes.

• Statistics presentation - after batch analysis, the tool currently writes CSV

files of data, which the user has to manipulate using a spreadsheet or other

package such as Matlab. The tool could be enhanced to include the ability to

present histograms and tables of data without the need to use a third-party

application.

• Automatic identification of spore - currently this is selected manually.

• Unstained images - the image processing techniques are designed to work using

images that have been stained in a way which increases the contrast between

cell wall and background. However, there are some experiments where we may

not wish to stain the cell walls, so the image processing techniques could be

enhanced to work in such situations.

• Live imaging - as live imaging becomes more common, the tool will need to be

enhanced to cope with movies of growing bacteria. It could examine periodic

frames and present data to show how statistics are changing over time.

As well as these general changes, there are a number of additional biometrics

and statistics which it would be useful for the tool to measure. These include:

• Measurements of hyphal diameter.

• Do new branches form on the inside or outside of curves? This has been

commented on in [33], but it would be useful to quantify it.

• Is the branch nearest the tip always the shortest one? If so, this provides

evidence that new tips always form between tip and previous branch, as implied

in [45].

• Measurements of spore area.

• Identification of septa, in suitably stained images.
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• Measurements of chromosome area, in suitably stained images.

• A measure to differentiate between different morphologies - for example long,

thin versus wide, fat.

7.2.3 Modelling

Agent-based model

The agent-based model implements a naive scheme of nutrient consumption which

largely ignores the composition of the growth medium and its effect on bacterial

morphology and growth. The two media used in our experimental work had man-

nitol concentrations of 27.45 mM and 658.73 mM and, although there were other

compositional differences too, the availability of this sugar alcohol would likely play

a key part in explaining morphological differences such as the decreased length of

filament segments on the richer SFM media. It would be interesting to extend the

current model in two ways. Firstly, replacing the basic model of nutrient depletion

around the organism by a diffusion based model. The result would be a better

estimate of the nutrient concentration as neighbouring hyphae grow close to one

another. The second would be to drive cell growth rates by the total local nutrient

available to each cell. The result would be that as nutrient is consumed around each

cell so growth rates would reduce. In such a model, growth and branching would

be directly linked to the concentration of nutrients in the medium surrounding the

filaments and one would expect the morphology of a given genotype to be different

in the different media. There would be more branching and cells would be closer

together in media with high nutrient concentrations.

Some further experimental work could enable the hypothesis to be tested. This

might involve creating media with a mannitol concentration lying somewhere be-

tween MMM and SFM, as well as one with a higher concentration than SFM and

one with a lower concentration than MMM. Examining the total hyphal length,

segment lengths and number of branches for bacteria grown with such media could

provide support for the hypothesis and enable direct comparison with simulation re-

sults. It might also be possible to chemically buffer the concentration of nutrient by

having a high concentration of reactant that cannot be metabolised by the bacteria
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and an enzyme system that breaks it down to a metabolisable nutrient. By choosing

a suitable system it should be possible to effectively remove (or reduce) the diffusion

barrier and allow a dense pattern of cells to emerge.

Mechanistic model

We believe the mechanistic model of key component production and transport also

holds much promise. As well as further exploring the parameter space of the model

as it stands, there are a number of possible improvements that could be made:

• Merging with the agent-based model - because the agents are filaments, it

would be relatively easy to change their rules to obey extension and branching

according to the mechanistic model of key component transport. Partly this

would be a cosmetic change, providing a 2-D representation of the growing

virtual bacteria, but additionally this would incorporate substrate depletion

into the model.

• Modelling septa - currently, we do not model septa formation. This could

have a significant effect on the model, depending on the assumptions we make

about what happens as the key component reaches a septum. Would the

septa prevent movement of the component from one compartment to another,

or would some form of transport be allowed?

• Modelling other components - we have already suggested that Scy may have

a suppressing effect on new branches. But, as discussed in Chapter 2, the

protein DivIVA seems to have a role in selection of branching sites. It would

be possible to incorporate DivIVA aggregation into our model. Additionally,

it might be more realistic to model the build up of Scy, rather than having

instant suppression as in the current model.

7.3 Conclusion

Streptomyces coelicolor is a fascinating model organism with a complex lifecycle.

There is still much to discover about the mechanisms of its growth and branching

and the opportunity to study it for the last three years has been both challenging
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and rewarding. We hope that the work contained within this thesis will contribute

towards a better understanding of the bacterium’s early stage morphological devel-

opment. It will be interesting to see how models develop in the future, as research

sheds more light on the function of key proteins such as Scy, FilP, DivIA, and still

others that remain to be characterised.
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K. Flärdh. A missense mutation in ftsZ differentially affects vegetative and de-

velopmentally controlled cell division in Streptomyces coelicolor A3(2). Molec-

ular Microbiology, 47:645–656, 2003.

[28] D.I. Gray, G.W. Gooday, and J.I. Prosser. Apical hyphal extension in Strepto-

myces coelicolor A3(2). Journal of General Microbiology, 136:1077–1084, 1990.

140



Bibliography

[29] V.A. Grieneisen, J. Xu, A.F.M. Mareé, P. Hogeweg, and B. Scheres. Auxin
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Appendix A

Media Recipes

A.1 MMM - Minimal Medium Mannitol

The following ingredients are for making four 400 ml bottles:

L-asparagine 0.8 g 0.5 g/l 3.78 mM
K2HPO4 0.8 g 0.5 g/l 2.87 mM
MgSO4.7H2O 0.32 g 0.2 g/l 0.81 mM
FeSO4.7H2O 0.016 g 0.01 g/l 0.04 mM
Mannitol 8.0 g 5 g/l 27.45 mM
Deionized H2O 1 l
Agar 16 g 10 g/l

Procedure for making medium:

1. Weigh all chemicals using an analytical balance and dissolve in 1 litre of deion-

ized water.

2. Adjust pH to 7.0-7.2 by addition of small amounts of Phosphoric Acid.

3. Make solution up to 1.6 litres with deionized water.

4. Prepare 4 bottles and measure 4 g agar into each.

5. Decant 400 ml of solution into each bottle.

6. Sterilise in autoclave.

147



Media Recipes

A.2 SFM - Soya Flour Mannitol Medium

The following ingredients are for 500 ml bottles:

Mannitol 60 g 120 g/l 658.73 mM
Agar 6 g 12 g/l
Soya flour 6 g 12 g/l
Tap water 300 ml

Procedure for making medium:

1. Add 6 g of agar and soya flour to each bottle.

2. Dissolve mannitol in the tap water.

3. Add 300 ml of dissolved mannitol to each bottle.

4. Sterilise in autoclave.

5. Swirl contents of bottle

6. Autoclave for a second time.

A.3 LB - Lennox Broth Medium

The following ingredients are for making four 400 ml bottles:

Bacto tryptone 16 g 10 g/l
Yeast extract 8 g 5 g/l
NaCl 8 g 5 g/l 85.56 mM
Glucose 1.6 g 1 g/l 5.55 mM
Deionized H2O 1.6 l

Procedure for making medium:

1. Weigh all chemicals using an analytical balance and dissolve in 1.6 litres of

deionized water.

2. Prepare 4 bottles and measure 4 g agar into each.

3. Decant 400 ml of solution into each bottle.

4. Sterilise in autoclave.
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Appendix B

Skeletonization Algorithms

B.1 Terminology

In this appendix, we provide a more detailed definition of the two skeletonization

algorithms referred to in Chapter 4. The descriptions are based on those provided

in [86] and [87].

In the descriptions that follow, we assume that we have a monochrome image

represented by an m-by-n array of pixels, Pm,n, in which a pixel is either set (1) or

clear (0). In the case of the Zhou et al. algorithm only, there is also a corresponding

flag map, Qm,n, used to mark pixels for future removal.

When considering a single pixel, we use the symbol P0 to denote the pixel Pi,j

and the symbols P1, P2, P3, P4, P5, P6, P7 and P8 to denote the pixels in the 8-

neighbourhood around P0. In the Zhou et al. algorithm, the correponding locations

in the flag map are denoted by the symbols Q0 to Q8 (Figure B.1).

Q1 Q2 Q3

Q8 Q0 Q4

Q7 Q6 Q5

P1 P2 P3

P8 P0 P4

P7 P6 P5

(a) (b)

Figure B.1: Symbols used in the sksletonization algoritms: (a) Symbols used to
represent a pixel, P0, in the bitmap and its 8 neighbours. (b) For the Zhou et al.
algorithm, symbols used to represent corresponding positions in the flag map.
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0 0 1
1 P0 0
1 0 0

(b) (c)

A(P ) = 2
B(P ) = 3

0

0

1 0 1
0 P0 0
1 0 1

A(P ) = 4
B(P ) = 4

0

0

(a)

P1 P2 P3

P8 P0 P4

P7 P6 P5

Figure B.2: Calculation of A(P0) and B(P0): (a) A(P0) is the number of 01
patterns moving clockwise from P2 back round to P1, while B(P0) is the number
of set pixels in the 8-neighbourhood. (b) and (c) show example calculations.

B.2 Zhang and Suen algorithm

Zhang and Suen define the following two functions:

• A(P0) is the number of 01 patterns in the ordered set P2, ..., P8, P1 that are

the neighbours of P0 (Figure B.2).

• B(P0) is the number of set neighbours of pixel P0 in the 8-neighbourhood.

The algorithm proceeds as follows:

1. For each set pixel P in the bitmap do the following:

(a) Compute A(P ) and B(P ).

(b) Delete pixel P if the following conditions are all met:

• Condition 1: 2 ≤ B(P0) ≤ 6

• Condition 2: A(P0) = 1

• Condition 3: P2 ∗ P4 ∗ P6 = 0

• Condition 4: P4 ∗ P6 ∗ P8 = 0

(c) Or delete pixel P if the following conditions are all met:

• Condition 1: 2 ≤ B(P0) ≤ 6

• Condition 2: A(P0) = 1

• Condition 3: P2 ∗ P4 ∗ P8 = 0

• Condition 4: P2 ∗ P6 ∗ P8 = 0

2. Repeat until no pixel can be deleted.
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B.3 Zhou et al. algorithm

Unlike the previous algorithm, this one makes use of a flag map. To begin, every

position in the flag map Q is set to 1. During execution of the algorithm, a position

may be set to zero to indicate the corresponding pixel is flagged for deletion. Zhou

et al. define the following three functions:

• CN(P ) is the current neighbourhood function. It is the number of set pixels

in the 8-neighbourhood around pixel P .

CN(P0) =
8∑
i=1

Pi ×Qi (B.1)

where × denotes the logical ‘and’ operator and is included to indicate exclusion

of flagged pixels in Q from the count.

• PN(P ) is the previous neighbourhood function. It is the number of set pixels in

the 8-neighbourhood around pixel P on the previous iteration of the algorithm.

PN(P0) =
8∑
i=1

Pi (B.2)

• Trans(P ) is the “0→ 1” transition function, used to measure the connectivity

within the immediate neighbourhood of the pixel.

Trans(P0) =
8∑
i=1

count(Pi) (B.3)

where count(Pi) is 1 if (Pi ×Qi) = 0 and (Pi+1 ×Qi+1) = 1, or 0 otherwise.

and P9 = P1, Q9 = Q1.

The algorithm then proceeds as follows:
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1. For each set pixel P in the bitmap do the following:

(a) Count PN(P ), CN(P ) and Trans(P ).

(b) If P satisfies Condition 1 and (Condition 2 or Condition 3) of the following

conditions, then it is a boundary pixel, so flag it.

• Condition 1: (CN(P ) > 1) and (CN(P ) < 6)

• Condition 2: (Trans(P ) == 1)

• Condition 3: P and its neighbours match one of the templates in

Figure B.3

2. Delete the flagged pixels.

3. Repeat steps 1 and 2 until no pixel can be deleted.

? 1 0
0 1 1
0 0 0

0 1 0
0 1 1
0 0 ?

0 0 ?
0 1 1
0 1 0

0 0 0
0 1 1
? 1 0

0 0 0
1 1 0
0 1 ?

? 0 0
1 1 0
0 1 0

0 1 0
1 1 0
? 0 0

0 1 ?
1 1 0
0 0 0

Figure B.3: Templates used in the Zhou et al. algorithm: These represent special
cases which are not collected by conditions 1 and 2 of algorithm step 2. For each
location in the template marked with a 1 or 0, we must find the same value in
the corresponding position in P and its neighbours for the template to match.
Locations marked with ? may be either set or clear. If a template match is found,
the central pixel P can be removed without affecting connectivity.
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Appendix C

JFilamentAnalyser

C.1 Summary

This appendix contains additional information on the design and implementation of

the JFilamentAnalyer tool which was described briefly in Chapter 4.

Section C.2 provides further description on the use of the application, along with

a number of screenshots of it running. Sections C.3 and C.4 provide descriptions of

the format of the various files used to store filament data and biometrics.

C.2 Use of the tool

Figure C.1 shows the initial screen presented to the user after loading JFilamant-

Analyser. After clicking on the Wizard icon in the toolbar, the user moves through

the screens shown in Figures C.2 to C.7.

Filament files (Section C.3) are used to store the location of all pixels that make

up the filament skeleton, as well as locations of all tip, branch and spore points.

Statistics and biometrics are not contained within filament files, but are contained

within a separate set of files (Section C.4). This separation is maintained for two

reasons. Firstly, it makes it easier to add new biometrics to the tool and to obtain the

results without repeating the initial supervised image processing steps. Secondly,

some statistics make most sense at an experiment level across multiple bacteria,

rather than at the level of an individual bacterium.

Because of the separation of filament file and statistics file, a batch tool is pro-
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vided, which allows the user to re-run the biometric and statistics gathering over a

series of filament files and to save the output into one set of statistics files. The dia-

log box for this is shown in Figure C.8. Typically the results from one experiment’s

microscope images will be stored in one set of statistics files.

C.3 Filament files

Once images have been processed through the filament Wizard, the skeleton and

point information is saved into a filament file with a .fil extension. This is a plain

text file made up of the following elements:

• A header - the first line contains the phrase FILAMENT ANNONTATION.

• A filename - the second line contains the filename of the image used to create

the filament file.

• X scaling factor - multiplier to turn pixels into microns, eg. XSCALING=0.07.

• Y scaling factor - for our microscope, always the same as the X scaling factor.

• Skeleton pixels - a complete list of the co-ordinates of all pixels in the skeleton

of the filament, beginning with the keyword PIXELS.

• Tip points - a list of the co-ordinates of all tip points, beginning with the

keyword TIP POINTS.

• Branch points - a list of the co-ordinates of all branch points, beginning with

the keyword JUNCTION POINTS.

• Spore point - the location of the spore point, beginning with the keyword

SPORES.

• An end tag - the keyword END indicates the end of the file.

An example file is shown in Figure C.9. The filament file only contains descrip-

tions of the points that make up the filament and not the biometrics and statistics

for a given filament. Instead, these are saved into a separate file, either by selecting

a menu option and specifying a filename, or by using the batch tool (C.8) which will
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Figure C.1: The initial screen presented to the user after loading JFilamentAnal-
yser. The toolbar at the top of the screen lets the user load a previously analysed
image, or to select the ‘Wizard’.

Figure C.2: Wizard step 1: The image is selected through a file browser dialog
and the microscope magnification can be selected through a drop down menu.
Clicking the Next icon moves to the next stage.
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Figure C.3: Wizard step 2: The user can chose a cropping area by dragging the
edges of the highlight rectangle. Pre-processing options are provided on the right
hand side, but the defaults are usually appropriate.

Figure C.4: Wizard step 3: The user selects the best segmentation threshold
by dragging the slider. The main image updates in real-time as the threshold is
changed.
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Figure C.5: Wizard step 4: Selection of skeletonization algorithms. It is usually
appropriate to keep the default values. Clicking the Next button moves to the next
stage.

Figure C.6: Wizard step 5: The last stage of the Wizard. Tip points and branch
points are highlighted. The user clicks the Next button if they are satisfied with
the results, or can go back to previous stages if necessary.
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Figure C.7: After the Wizard completes, the user is returned to the main screen
with the bacterium image loaded. The toolbar at the top of the screen provides
a number of tools for editing the skeleton, changing the location of branch points
and tip points and zooming in to the image. A drop down menu to the right of
the toolbar allows the user to select a different channel image to view, with the
skeleton overlaid on top.

Figure C.8: The batch processing dialog box. In batch mode, the software will
load a series of filament files, perform analysis and then append the results to a
single file.
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FILAMENT ANNOTATION
cropped_G180308 Slide 7 10hrs 100x-2008-0001_c1.png
XSCALING=0.07
YSCALING=0.07
PIXELS
64,34
65,34
...
92,219
92,220
TIP POINTS
69,35
92,220
100,89
JUNCTION POINTS
56,36
80,78
SPORES
56,36
END

Figure C.9: Example filament file. Note, skeleton pixels co-ordinates have been
truncated to fit figure.

generate statistics for a set of filament files. The separation of the statistics into a

separate file from the filament data allows the way statistics are calculated to be

changed, or new statistics added, without the need to reanalyse microscope images.

C.4 Statistics files

When the user selects the option to write statistics data, the results are saved into

a set of seven files. If the files already exist, results will be appended, otherwise a

new set of files will be created. The files created or appended are:

• Results.csv - the main results file, consists of 35 columns of data, each con-

taining a different biometric for the organism.

• Results segments.csv - a file containing the segment length data.

• Results subapical.csv - a file containing only subapical segment data.

• Results tips.csv - a file containing tip to nearest branch data.

• Results emergingtips.csv - a file containing emerging tip data.

• Results apicalbranch.csv - a file containing apical branch data.

• Results pairwise.csv - a file containing pairwise distance data.
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Hour,FilamentName,NumBranches,NumSporeBranches,NumTips,TotalHyphalLen,HGU,InternalLength,MeanSegme...
10,G020708 I070708 MMM dscy 10hrs 100x-2008-0025,0,1,1,28.05347593012471,28.05347593012471,0.0,28....
10,G020708 I070708 MMM dscy 10hrs 100x-2008-0026a,0,1,1,12.735135249860678,12.735135249860678,0.0,...
...
18,G020708 I140708 MMM dscy 18hrs 63x-2008-0051,7,2,9,173.10251251283339,19.23361250142593,68.5030...
18,G020708 I140708 MMM dscy 18hrs 63x-2008-0054,2,1,3,115.7346588711113,38.57821962370377,33.61205...

FilamentName,Hour,SegmentLen,DirectLen,SubApical,THL
G020708 I070708 MMM dscy 10hrs 100x-0025,10,28.05347593012471,23.29912377013565,0,28.05347593012471
G020708 I070708 MMM dscy 10hrs 100x-0026a,10,12.735135249860678,9.50487773145978,0,12.735135249860678
...
G020708 I140708 MMM dscy 18hrs 63x-0054,18,13.664756704809387,11.056549960995971,0,115.7346588711113
G020708 I140708 MMM dscy 18hrs 63x-0054,18,33.612052377532784,25.304496209172,1,115.7346588711113

(a)

(b)

Figure C.10: Example statistics files: (a) The main results file contains multiple
columns of biometrics, one line per organism. (b) The segments file contains length
measurements for all segments, so there are multiple lines per organism.

Typically, we would append all the results from one time series experiment into one

set of seven files, all sharing the same prefix - for example, 18Mar08 MMM scy Results.

The batch tool facilitates this by allowing the user to select a folder which is then

recursively scanned for filament files. Each file found is analysed and the results

appended to the statistics files. Generating statistics on a complete experimental

set of a few hundred images typically takes around 30-60 minutes. Unlike the initial

image processing stage, this process does not have to be supervised, so the computer

may be left unattended.

C.4.1 The main results file

This file consists of a header row, followed by one row of data for each image.

Figure C.10a shows an example section from a file, though it has been truncated

to fit. The first and second columns specify the hour point and image filename

respectively. The next 35 columns consist of various biometrics about the organism

- for example, number of tips, total hyphal length, length of primary filament and

so on.

C.4.2 The segments, tips and subapical files

The segments file (Figure C.10b) consists of a header row, followed by one row of

data for each segment described. Thus, for anything but the simplest structure, there

will be multiple rows of data per image. The file contains the following columns:
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• FilamentName - the filename of the filament file, minus the .fil extension.

• Hour - the hour number for a time series, or 0 if not known.

• SegmentLen - the length, in microns, of the segment.

• DirectLen - the direct Euclidian distance, in microns, from one end of the

segment to the other.

• SubApical - a flag field set to 1 if this is a subapical segment, or 0 if one of the

ends is a tip point.

• THL - the total hyphal length of the organism this segment was taken from.

The subapical file and the tips file are subsets of the segments file, containing

just the subapical and tip segments respectively. The only difference is the removal

of the SubApical flag field which is thus rendered redundant.

C.4.3 The emerging tips file

The emerging tips file consists of a header row, followed by zero or more rows of

data for each image. Each row contains information on one detected emerging tip.

The file contains the following columns:

• FilamentName - the filename of the filament file, minus the .fil extension.

• Hour - the hour number for a time series, or 0 if not known.

• EmergingBranchLen - the length of the emerging tip, in microns.

• DistanceToTip - the distance, in microns, from the point of emergence to the

tip of the parent filament.

• DistanceToBranch - the distance, in microns, from the point of emergence to

the previous node on the parent filament.

• IsFirst - a flag indicating if it is the first branch on a germ tube (1) or not (0).

• THL - the total hyphal length of the organism this segment was taken from.
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C.4.4 The apical branch file

The apical branch file consists of a header row, followed by zero or more rows of

data for each image. Each row contains information on one pair (or trio) of apical

tips that share the same branch point. The file contains the following columns:

• FilamentName - the filename of the filament file, minus the .fil extension.

• Hour - the hour number for a time series, or 0 if not known.

• THL - the total hyphal length of the organism this segment was taken from.

• NumTips - the number of tips that share the branch point.

• TipLength0..n - the length, in microns, of tip n.

C.4.5 The pairwise distance file

The pairwise file consists of a header row, followed by one row of data for each image.

The file consists of the following columns:

• FilamentName - the filename of the filament file, minus the .fil extension.

• Hour - the hour number for a time series, or 0 if not known.

• THL - the total hyphal length of the organism this segment was taken from.

• NumTips - the number of tips for this organism.

• NumItems - the number of items of pairwise data.

• Items - NumItems columns of pairwise distance data.
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Further Experimental Results

D.1 Bounding box area

The bounding box area is an alternative approach to the mean distance to centre

(Section 5.12) for understanding the extent of the area covered by the bacteria. We

define it to be the smallest rectangle capable of fitting the bacteria in its entirety.

Figure D.1 provides graphs of bounding box area against total hyphal length.

Unsurprisingly, the bounding box area follows a similar pattern to the mean

distance to centre (Section 5.12) and pairwise distances (Section 5.14), with the

compact nature of the ∆scy and ∆scy-filP mutants manifesting as smaller bounding

box areas than the wild-type on SFM.
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Figure D.1: Graph of bounding box area against total hyphal length.
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D.2 Emerging tips

Figure D.2 provides histograms of the distances from emerging tips to the parent’s

tip. Figure D.3 provides histograms of the distances from emerging tips to the

parent’s previous branch. Table D.1 provides summary data, including mean values.

Jyothikumar et al. reported that branches formed on average 10.94 µm behind

the tip [38] when growing S. coelicolor on a minimal medium. Though not an

identical medium, this results is similar to our own value of 12.21 µm when growing

on MMM.
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Figure D.2: Histograms of distances from emerging tips to the parent tip. Note
different scales used for M145, ∆filP and ∆scy, ∆scy-filP.
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Figure D.3: Histograms of distances from emerging tips to the parent filament’s
previous branch.
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Emerging tip to Emerging tip to
parent tip previous node

Mean Longest Mean Longest
Bacteria Media (µm) (µm) (µm) (µm)

M145 MMM 12.21 46.13 9.96 43.77
M145 SFM 19.92 42.27 8.14 41.53
∆filP MMM 8.13 40.66 6.67 39.11
∆filP SFM 15.48 33.22 7.21 28.56
∆scy MMM 34.69 88.18 15.65 61.04
∆scy SFM 3.24 49.58 4.37 33.30

∆scy-filP MMM 23.31 89.59 15.51 67.29
∆scy-filP SFM 7.10 53.57 6.14 37.75

Table D.1: Table showing mean and longest distances from emerging tip to pre-
vious branch and from emerging tip to parent tip.

D.3 First branch position

Figure D.4 provides histograms of the length of the germ tube at the point of emer-

gence of the first branch. As described in Section 4.4.2, our software looks for a

small tip (less than 1.5µm) connected to a branch point, which in turn is connected

to a spore point and a tip point. Figure D.5 provides histograms of relative position

of the new branch, calculated in the same manner as for the emerging tips graphs

in Section 5.10.

As we are only interested in the first branch, there is much less data available for

this graph than for the emerging tips histogram. Thus, there are some holes, where

data points are not available. Allowing for this, the graphs show a relatively similar

distribution to the emerging tip graphs, but with slightly more bias towards shorter

lengths for M145 on MMM.

D.4 Primary filament length

The length of the primary filament is calculated according to the method described

in Section 4.4.1. Figure D.6 provides graphs of primary filament length against total

hyphal length.

On MMM, M145 and the ∆filP mutant show similar rates of growth of the

primary filament, while the ∆scy and ∆scy-filP mutants show slightly faster rates

of growth. This may relate to the delayed onset of second germ tubes, described in
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Figure D.4: Histograms of germ tube length at point of first branch emergence.
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Figure D.5: Histograms of first branch position, relative to germ-tube length.

Section 5.8. On SFM, the ∆scy displays a lower rate of growth of primary filament

than the wild-type, though surprisingly, the ∆scy-filP mutant seems similar.

D.5 Primary filament branches

Figure D.7 provides graphs of the number of branches on the primary filament

against total hyphal length.

On MMM, we see substantially fewer branches on the primary filament for the

∆scy and ∆scy-filP mutants than for the wild-type and ∆filP mutant. This is the

same as was observed for the overall total number of branches in Section 5.6. On

SFM, the graphs seem slightly uncertain, with the ∆scy and ∆scy-filP mutants

displaying more branches at lower THL (less than 160 µm) and a similar number at
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Figure D.6: Graphs of primary filament length against total hyphal length.

higher THL. It may be that the rate of branching is slowed by the delayed develop-

ment of a second germ tube in the mutants (Section 5.8).
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Figure D.7: Graphs of number of branches on primary filament against total
hyphal length.

D.6 Tip to nearest branch

Figure D.8 shows histograms of distances from tips to their closest branch points.

Table D.2 provides a numerical summary of the histogram data, providing mean

values and standard error calculations.
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Figure D.8: Histograms of tip to nearest branch distances, with bin size 2 µm.

Number of Mean
Bacteria Media segments (µm)

M145 MMM 4342 7.74
M145 SFM 1189 13.38
∆filP MMM 1724 5.29
∆filP SFM 861 8.98
∆scy MMM 1502 20.22
∆scy SFM 3436 3.15

∆scy-filP MMM 746 17.30
∆scy-filP SFM 1617 4.79

Table D.2: Summary table for tip to nearest branch histogram.
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Appendix E

Model fitting results

E.1 Population balance model parameter fitting

Figures E.1 to E.4 show the graphs used to fit model parameters to the experimental

data.
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Figure E.1: Population balance model parameter fit graphs for M145 on MMM
and SFM.
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Model fitting results
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Figure E.2: Population balance model parameter fit graphs for ∆scy mutant on
MMM and SFM.
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Figure E.3: Population balance model parameter fit graphs for ∆filP mutant on
MMM and SFM.
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Model fitting results
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Figure E.4: Population balance model parameter fit graphs for ∆scy-filP mutant
on MMM and SFM.
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