
Fusing Information from Tickets and Alerts to Improve
the Incident Resolution Process

Saeed Salaha, Gabriel Maciá-Fernándeza, Jesús E. Dı́az-Verdejoa,∗

aDpt. Signal Theory, Telematics and Communications - CITIC
University of Granada

c/ Periodista Daniel Saucedo Aranda, s/n 18071 Granada (Spain)

Abstract

In the context of network incident monitoring, alerts are useful notifications
that provide IT management staff with information about incidents. They are
usually triggered in an automatic manner by network equipment and monitor-
ing systems, thus containing only technical information available to the systems
that are generating them. On the other hand, ticketing systems play a different
role in this context. Tickets represent the business point of view of incidents.
They are usually generated by human intervention and contain enriched se-
mantic information about ongoing and past incidents. In this article, our main
hypothesis is that incorporating tickets information into the alert correlation
process will be beneficial to the incident resolution life-cycle in terms of accu-
racy, timing, and overall incident’s description. We propose a methodology to
validate this hypothesis and suggest a solution to the main challenges that ap-
pear. The proposed correlation approach is based on the time alignment of the
events (alerts and tickets) that affect common elements in the network. For this
we use real alert and ticket datasets obtained from a large telecommunications
network. The results have shown that using ticket information enhances the
incident resolution process, mainly by reducing and aggregating a higher per-
centage of alerts compared with standard alert correlation systems that only use
alerts as the main source of information. Finally, we also show the applicability
and usability of this model by applying it to a case study where we analyze the
performance of the management staff.

Keywords: Quality of Service; Data Analysis; Network Management Systems;
Alert Correlation; Ticket-Alert Correlation

∗Corresponding author
Email addresses: sasalah@staff.alquds.edu (Saeed Salah), gmacia@ugr.es (Gabriel

Maciá-Fernández), jedv@ugr.es (Jesús E. Dı́az-Verdejo)

Preprint submitted to Information Fusion December 16, 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio Institucional Universidad de Granada

https://core.ac.uk/display/195922257?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1. Introduction

Nowadays, IT Service Management (ITSM) [1] tasks constitute a heavy bur-
den on the management staff of modern telecommunication networks, as these
networks become larger and more complex in terms of the diversity and the
criticality of the services that they offer to customers. In addition to that, IT
management is now a business-oriented service rather than just a process for
network/systems management. This means that IT services are adopted accord-
ing to their contributions to the required business processes. For this reason,
network experts are always trying to find efficient strategies to quickly solve
network incidents and improve the network uptime to comply with committed
Service Level Agreement (SLA).

ITSM adopts the Information Technology Infrastructure Library (ITIL) frame-
work [2], which is a widely accepted industry standard that is defined as the
best practice in managing information technology services and providing infras-
tructure, development and operations for identifying, planning, delivering and
supporting IT services for business. Incident Management (IM) is one of the
main processes defined in ITIL. Citing the ITIL terminology, an incident can be
defined as “an unplanned interruption of an IT service or reduction in the qual-
ity of an IT service. Failure of a configuration item that has not yet impacted
service is also an incident” [3].

Typically, alerts are the main source of information used by management
staff to derive the existence of incidents. Alerts in the network are collected by
monitoring systems, which are intended to warn staff in network operation and
management centers. The sensitivity of today’s monitoring systems leads a huge
amount of alerts being triggered per day, which overwhelms management staff.
This issue makes it advisable to use and develop additional systems to reduce
this quantity of alerts. Alerts correlation [4, 5, 6, 7] is the primary technique
employed to handle this problem.

Alternately, Incident Ticketing Systems (ITSs), also known as Service Desks
as referred to by the ITIL terminology, are a primary tool used by management
staff to track and report ongoing and resolved incidents. ITSs store records
called tickets, which can be created either automatically by an ITS in response
to receiving alerts or manually by humans. In the latter case, tickets can be
created from two different sources: (1) by the help desk staff in response to
receiving customers calls regarding some problems in the resources, and (2) by
the management staff, from the observed alerts but also from other symptoms
and even due to some feedback from other technicians at different locations.

Although many of the records in ITSs contain semantically rich information
related to incidents, to the best of our knowledge, only limited efforts have been
devoted to the inclusion of this information in the alert correlation procedure
[8, 9]. As the bulk of the tickets in ITSs are created manually, they are ideal can-
didates for the addition of further semantic information and human knowledge,
both from the management staff and from the users of the services (through
help desk staff), into the alert correlation procedure.

It is worth mentioning that in this work we are not concerned with specific

2

algorithms to extract information from natural language in tickets but to show
that they contain additional information that can be used to correlate them
with alerts. In our experiments we show that the approach works even with
a quite simplistic approach. As it will be shown later, both datasets have
some specificities that make this correlation hard to be performed. Yet, despite
these specificities, both sources of information intersect in several ways, as they
contain technical information about ongoing incidents, including human-expert
information in tickets. In the case study we present, every ticket is characterized
by several tenths of features, and we show that only some of them containing
technical information that is useful for the alert-ticket correlation process.

The potential benefits from this are threefold: i) from the IT user perspec-
tive, the proposed methodology can enhance the user expectations regarding IT
service quality by speeding up the incident resolution process; ii) from the IT
management perspective, better event correlation rates would be obtained, i.e.,
a larger and more reliable reduction in the number of alerts. This last benefit
enhances the incident detection accuracy and reduces False Positives (FPs). Fi-
nally, iii) from the decision making perspective, managers would receive more
accurate information with regard to the real incidents that occur in the network
and their descriptions. This potentially improves incident management cycles,
as it provides a more accurate feedback on the Quality of Service (QoS) in the
incident management process, and shows how the different teams involved in
the process behave.

In this article, our main contribution is to show that incorporating the infor-
mation found in tickets into the alert correlation system significantly improves
the correlation of the events, and thus the overall incident resolution process.
For this, we propose a methodology to correlate tickets and alerts (events in
the system) based on an intentionally simple algorithm, as our purpose is to
show that even with a simple correlation criterion, the contribution of tickets to
the correlation process is beneficial for both management and decision making
processes. The proposed correlation approach is based on the time alignment
of the events (alerts and tickets) that affect common elements in the network.
Thus, the algorithm groups together all the events related to the same incident
in what we call representative events, that summarize all the information from
the grouped elements. Ideally, at the end of the algorithm execution, a single
representative event per incident is provided.

We evaluate the proposal with a real dataset from a company that is in charge
of the operation and management of a corporate network that provides services
to a regional government. The network serves millions of habitants from many
public sectors, such as education, health and civil, among others, and includes
a help desk center that generates tickets directly from end users complaints.
Furthermore, we show the applicability and usefulness of the proposed solution
by applying it in two scenarios: first, in the alert correlation process, especially
for reducing and aggregating a larger number of related alerts. Second, in
assessing the performance of the management staff in terms of their speed,
accuracy and the efficiency achieved by the different management groups in the
entire incident resolution process.

3

gmacia
Resaltado
that

gmacia
Resaltado
contain

The structure of the article is as follows. First, a review of the related work is
summarized in Section 2. Then, a basic model for event correlation is presented
in Section 3. Based on this model, a complete system for ticket-alert correlation
is proposed and discussed in Section 4. A thorough explanations of the proposed
ticket-alert correlation model, the arising challenges and the suggested solutions
are provided in Section 5. The correlation model is experimentally tested and
evaluated through a case study utilizing the dataset taken from a real manage-
ment company in Section 6. Some applications of the proposed model are listed
in Section 7. Finally, in Section 8, we draw various conclusions and provide
insights into further works.

2. Related work

Despite the large amount of research effort that has been carried out in
the alert correlation field [10, 11, 12, 13, 14, 15], this is still an active research
area in both NMS and IT security. This is mainly because the efficiency and
robustness of the used models and the proposed algorithms vary from system
to system, but none of them have thus far succeeded in providing an optimal
solution to this problem in terms of reducing the number of alerts to a single
alert per incident [16, 17, 18].

The information considered during the alert correlation process can derive
from many different sources of information [19], e.g., topological information
that provides an accurate representation of the monitored network as a set of
links and nodes [20, 21]. In particular, the representation of the location of
nodes and the connectivity and direction of the existing links are of particu-
lar relevance. Network topology information usually contains extensive details
about the network and equipment structure, such as switches, routers, and
servers; configuration parameters, such as IP addresses and their matchings to
names, subnets or virtual LANs; and host information, such as OS type and
open services.

Many of the alert correlation techniques adopt expert rules and similarity-
based correlation methods [22, 23, 24, 25, 26], aiming to reduce the total number
of alerts by aggregating them using their similarities. The main assumption
behind similarity-based techniques is that similar alerts tend to have the same
root causes or similar effects on the monitored system. How to define similarity
measures is a critical performance issue for such techniques. To answer this
question, several similarity measures have been used by many researchers [27,
28, 29]. The aim is to define a suitable similarity function for each attribute
observed in the alerts because attributes may have different weights and effects
on the overall correlation process.

Some authors have applied data mining methods for alert correlation analy-
sis, such as association rules mining [30, 31, 32, 33], incremental frequent mining
[34], and sequential pattern mining [35, 36]. Their aim is to automate the process
of finding meaningful activities and interesting features from training datasets
and build a knowledgebase that can be used for the alert correlation process in

4

real-time. The main drawback of this approach is the heavy load imposed on
the system to build models that dynamically adapt to new conditions.

Alternately, some research efforts, such as those in [37, 38, 39], have noted the
importance of ticket correlation for incident resolution, claiming that the latter
can be extended with advanced functions to enhance the incident resolution
process, as the information in the tickets is related to incidents generated by
events that have already been identified as network failures, and as such, some
related alerts should exist. Other efforts, such as those in [40, 41, 42], use ITSs
for several purposes, such as studying and characterizing the nature and causes
of routing changes and the observed instability. In these references, the authors
use simple ticket preprocessing operations to reduce the total number of tickets
before correlating them. However, they do not deeply analyze the ITS, and the
correlation of the tickets is not targeted at reaching one ticket per incident.

In another research line, A. F. AlEroud and G. Karabatis [43] proposed an
intrusion detection model that leverages contextual information to create attack
prediction models driven by database and graph mining techniques. The pro-
posed approach automatically identifies and queries flows to generate semantic
links among alerts raised in response to suspicious activities. It consists of two
main phases: the preprocessing phase, which leverages previous flows to create
a flow classification model, called Semantic Link Network (SLN); and the pre-
diction phase, which occurs at run-time and takes incoming flows as inputs, and
produces an initial prediction of whether they are suspicious or benign. Despite
the main contribution of our work not being targeted at modeling the process
associated to an attack, considering context-aware correlation approaches like
the one presented in this work has some beneficial outcomes to our approach
and might be used as an insight for future improvements or a confirmation on
the existence of profitable semantic information.

To the best of our knowledge, despite its potential for obtaining various
useful statistical measures to study the nature of incidents and their effects on
network stability [44, 45], no efforts have been devoted to the use of informa-
tion from the tickets in the alert correlation process itself (joint correlation),
targeted at increasing the percentage of reduction in the number of alerts and
the significance of the resulting events.

Finally, despite the availability of a large number of monitoring tools such
as Logstash [46], Splunk [47], and Sumo Logic [48], which are mainly designed
to assist in storing and analyzing log files from the point of view facilitating
the management process, we did not find specific solutions to the challenges
described in this article.

In summary, the aim of this work is different than that of the cited refer-
ences. The proposed method is expected to produce a final set of incidents that
more accurately represent the real incidents in the network when compared with
standard alert correlation systems that only use the alerts as the main source
of information.

5

Acronym/symbol Description
FOD Forward Offset Delay
BOD Backward Offset Delay
SoI Start of incident
EoI End of incident
AR Representative alert
TR Representative ticket
AP Set of alerts after preprocessing
TP Set of tickets after preprocessing
AC Set of alerts after correlation
TC Set of tickets after correlation
Di Event i-th description
Ei Set of affected elements for event i-th
I Set of incidents

tCT
ei

Event i-th creation time

tRT
ei

Event i-th resolution time

eR Representative event
Iactual Number of real incidents
IA Number of incidents extracted from alert dataset
IT Number of incidents extracted from ticket dataset
tCT Ticket creation time
tRT Ticket resolution time

Table 1: List of acronyms and symbols with their descriptions.

3. Basic model for event correlation

Before discussing the ticket-alert correlation process in more detail, we in-
troduce various terminologies in this section and provide a brief overview of
the basic event correlation model that we use as a basic building block for the
correlation process. As will be shown, this basic model is intentionally simple
because its main purpose is just to serve as a basic criterion upon which our
ticket-alert correlation proposal is built. As previously discussed, the main goal
of this article is showing that even when the underlying correlation algorithm is
simple, the contribution of tickets to the alert correlation process is substantial.

In a first step, we consider both the appearance of alerts in the NMS and the
generation of tickets in the ITS system as generic events. This way, whenever
an incident takes place in a monitored network, a set of different events related
to that incident appear. Let us denote as I (see Table 1 for a summary of the
notation) the set of m different events (e.g., alerts or tickets) that appear as a
consequence of an incident occurring in a network: I = {e1, e2, ..., em}.

Every event ei has a different duration, spanning from the instant of its
creation or appearance, which we call the event creation time, tCTei , to the instant
at which this event finishes or is resolved, which we call the event resolution time,
tRTei .

In addition, every event ei is associated with one or more elements of the
network, which we call the affected elements of that event. For example, in a
“node down” alert, the node of the network that has gone down is the affected
element of that event. Note that an event could have several affected elements.
For example, if a ticket is created due to the failure of several nodes in a network,
all of them are really the affected elements for that event. In general, we will
say that every event ei will have a set of affected elements, Ei, which is a list

6

time

time

time

time
Representative Event ()

1
e

i
e

m
e

R
e

ei Duration

em Duration

e1 Duration

eRDuration

CT

e
t
1

CT

e
m

t

RT

e
i

tCT

e
i

t

RT

e
t
1

RT

e
m

t

CT

e

CT

e
tt

R 1

= RT

e

RT

e
mR

tt =

Incident

SoI EoI

FOD BOD

time

Figure 1: Correlation of m events belonging to the same incident into a representative event.

of the different identifiers of the network elements, applications, services, etc.
affected by the incident described in that event. An identifier here could be an
IP address, a node name, a service name, etc.

Furthermore, every event ei is also specified by an event description, Di,
which is usually a free text field describing the event, its effects on the network,
and/or the root cause of its appearance.

Normally, when an incident occurs in a network, many different alerts and
tickets (events in general) are generated. Here, it is desirable that an ideal event
correlation algorithm provides a single event for this incident that contains all
of the semantic information extracted from the set of related alerts and tickets.
Thus, we are first interested in the correlation of all the events that belong
to an incident I so that a single event can represent the entire incident. We
refer to this single event as the representative event for incident I, eR. To be
coherent with the description of the set I, the duration of the event eR should
span from the earliest event creation time from the events in I to the last event
resolution time observed in the set of events for that incident. Figure 1 shows
an example of this definition, where a set of m events belonging to the incident
I are represented by a single representative event eR.

Note that in realistic scenarios, the duration of the representative event
might not match the real incident duration, mainly due to the fact that when
the incident starts, a delay could occur before the first event appears; and the
same could occur when the incident finishes, that is, it would be usual to have
a delay between the end of the incident and the closing (resolution) of a ticket.
Thus, we define a Forward Offset Delay, FOD, as the delay between the real

7

start of the incident (SoI) and the time at which the first event appears. In
addition, we define a Backward Offset Delay, BOD, i.e., the delay between the
real end of the incident (EoI) xand the closing time of all the related events.
Note that BOD could take a negative value in the case that the last event ends
before the incident. As an example, if we consider the events to be tickets that
are manually created and closed by a member of the management staff, it could
happen that the member believed an incident had finished while it was actually
still active. In this case, the member would close the ticket (the end of the
event), thus assigning to BOD a negative value. These two measures will be
relevant for the proper handling of events that occur near in time, as they are
related to the time misalignments between the real incident and its perceived
effects. We consider them in the ticket-alert correlation algorithm proposed in
Section 5.

3.1. Tickets vs. alerts

Despite the fact that we generally consider both tickets and alerts as events,
it is important to highlight that there are relevant differences among them and,
thus, some challenges appear when trying to combine both.

The main difference between alerts and tickets appears in the nature of the
information they contain, mainly due to the own management process. Alerts
are automatically triggered by network equipments and systems and, thus, they
incorporate automated information. On the other hand, tickets are normally
generated by humans, either when a service desk call is received, or when the
management staff receives any kind of notification about ongoing incidents. This
implies that tickets will incorporate human expert knowledge, while alerts will
not. Note that even in the case that tickets are automatically generated when
alerts arrive, operators are usually allowed to add expert information.

While it is expected that alerts should be usually associated with tickets, in
realistic scenarios we may have alerts without related tickets and vice versa. To
clarify this point consider an example from the intrusion detection field where a
Web server is a victim of a low-rate denial of service (DoS) attack [49, 50]. This
type of attacks succeeds to defeat application servers only by sending them low-
rate traffic in an intelligent way, and can easily bypass detection mechanisms,
so no alert is generated by these traffic monitoring systems. In this case, as no
alert is created in the system, the incident could remain undetected even when
using alert correlation. Yet in this scenario, any Web user might denounce the
unavailability of the Web server by calling the service desk. There, an operator
would open a corresponding ticket. As a result, we do not expect to have related
alerts for every created ticket. In this regard, we have explored real datasets
(see Section 6) and found some relevant properties that strongly suggest that
they are separated sources with different information.

Furthermore, as tickets and alerts are generated following different processes,
they contain different information. Some of the challenges that appear when
dealing with the information in both tickets and alerts are:

8

• Information structure: Information contained in alerts is usually struc-
tured. This is due to the fact that it is automatically generated by the
monitoring systems. On the other hand, many of the information con-
tained in tickets is not structured, as it is manually generated and main-
tained by humans.

• Timing information: Alerts are automatically triggered by monitoring sys-
tems that are reactive enough to quickly respond and rapidly generate
alerts. Thus, the delay between the beginning of an incident and the first
alert creation time is almost negligible. Whereas, in ITS, and especially
for those tickets that need human intervention, a perceivable and even
significant delay in ticket creation can appear. Thus, these timing offsets
introduce a real challenge when trying to correlate alerts and tickets. As
it will be shown in Section 5, we argue that alerts contain more accurate
timing information about incident lifetimes than tickets.

• Semantic information: Since a ticket contains many free text fields, ticket
creators and those that manage them feel free to describe the incident,
its possible causes and the solutions applied to solve it in more detail.
Therefore, tickets are expected to provide better information than alerts
with regard to identifying and describing the actual incidents that occur
in a network.

• Preprocessing steps: Both datasets may contain duplicated or redundant
records. The processes applied to filter and remove these records are dif-
ferent as they present different field types, even including non-structured
data in the case of tickets. Furthermore, unlike the alert dataset, the
ticketing system is a multipurpose system that can be used not only for
incident resolution, but also to register informative data for administra-
tive issues such as scheduled maintenance or system update. This implies
different preprocessing criteria and constitutes a big challenge when trying
to filter out alerts and tickets not directly related to incidents.

As will be shown in Section 5, applying the basic event correlation model that
follows for both tickets and alerts is not straightforward, and the proposed
correlation algorithm considers these challenges in its design.

3.2. Basic correlation method

Suppose now that we have a set of m events and that we do not have any
information about the incidents they are related to. We are interested in ob-
taining the same number of representative events as that of the incidents that
originated those events. To achieve this in this basic model for event correlation,
we assume the following hypothesis:

Two events that (i) have a similar description or have an affected
element in common, i.e., are related to the same network nodes,
and (ii) happen simultaneously in time will likely belong to the same
incident.

9

Mathematically, the first condition, i.e., the similarity in the description or
the affected elements of two events ei and ej , can be described by the following
expression:

{Ei ∩ Ej} 6= φ OR {Di ∩Dj} 6= φ (1)

while the second condition, i.e., the simultaneous occurrence of two events ei
and ej , is given by{

tCTei ≤ t
CT
ej ≤ t

RT
ei

}
OR

{
tCTej ≤ t

CT
ei ≤ t

RT
ej

}
= true (2)

Note that the conditions Ei ∩ Ej and Di ∩ Dj represent the intersection
of two text-free fields. Although there exist many alternatives to determine a
metric to decide if an intersection is present [51], we have opted for a very simple
model to justify that, even in these conditions, the inclusion of tickets provides
benefits. In case of the condition Ei ∩Ej , as will be detailed in Section 6, every
list Ei is built by mining text-free fields and searching node identifiers present
in a predefined list. Thus, two fields Ei and Ej intersect when they contain
at least one identifier in common. Regarding the condition Di ∩ Dj , we have
included this condition in the model for the sake of completeness. However,
to make our approach as simple as possible, we do not truly apply it in our
experiments such that no comparison of free text fields regarding descriptions is
conducted at all. That said, a more advanced algorithm could be selected from
the proposed solutions for text mining in the literature [51].

In our basic correlation algorithm, if the above two rules are fulfilled by any
group of events, we conclude that they are all related to the same incident,
and we simply aggregate them into one representative event, eR, having the
following properties (see Figure 1):

tCTeR = min
i∈{1,m}

{tCTei } (3)

tRTeR = max
i∈{1,m}

{tRTei } (4)

EeR =

m⋃
i=1

Ei (5)

DeR =

m⋃
i=1

Di (6)

Note that we join all of the descriptions Di of the different events and the
set of event-affected elements, Ei, as we consider that any information in one
of the events in an incident will complement the information provided in other
events in the same incident.

10

Alert

correlation

Alert

database

Alert

correlation

model

R
T

C
T

C
AR

A Alert

preprocessing

Ticket

correlation

Ticket

database

Ticket

correlation

model

Set of incidents

(SI)

Ticket - Alert

correlation

Ticket - alerts

correlation

model

Ticket correlation module

Alert correlation module

Ticket-alert correlation module

Alert

preprocessing

Ticket

preprocessing

P
A

P
T

Figure 2: Proposed architecture for the ticket-alert correlation system.

4. Ticket-alert correlation system

Figure 2 shows the proposed ticket-alert correlation system. It mainly con-
sists of three modules: a module for ticket correlation, another for alert corre-
lation and the last for ticket-alert joint correlation.

The ticket correlation module is represented in the upper part of the figure.
A set of raw tickets, TR, obtained from the ITS is entered as an input to the
ticket preprocessing phase to normalize and extract only relevant tickets, as will
be explained next. The resulting processed set, TP , is then passed through a
ticket correlation phase, which, based on the basic model for event correlation
explained in Section 3, produces a new set of representative tickets, TC . Every
representative ticket, which is ideally expected to represent a single incident,
contains the summary of a group of correlated tickets.

The lower part of Figure 2 represents the alert correlation module. Here,
a set of raw alerts, AR, usually triggered by a monitoring system, is entered
as input to an alert preprocessing phase to normalize and extract only relevant
alerts, as will be explained next. The resulting processed set, AP , is then
passed through an alert correlation phase, also based on the basic model for
event correlation (Section 3), to produce a new set, AC , which is the final set of
representative alerts. Every representative alert is expected to ideally represent
a single incident, containing a summary of the information provided by a group
of correlated alerts.

Finally, the right-hand side of Figure 2 represents the ticket-alert correlation
module. Here, the outputs of the alert and ticket correlation modules, AC and
TC , are entered as inputs, and the processing is performed according to the
correlation model presented in Section 5. The aim is to produce a final set

11

of incidents, I, that will more accurately represent the real incidents in the
network compared with methods that only account for alert correlation. In
the following subsections, we provide a more detailed discussion regarding each
module separately.

4.1. Ticket correlation module

The inputs for this module are the tickets obtained from an ITS database.
ITSs are considered essential tools for tracking resolution activities associated
with incidents in corporate networks. Each record in an ITS represents a ticket
that has information related to an incident. Normally, an incident is perceived
by the management staff by observing events generated by monitoring software
or by receiving customers’ complaints. These events, called tickets, contain
information such as Node IDs (affected elements in our basic event correlation
model), which are identifiers of the main network element/s or service/s affected
by the incident reported in the ticket; ticket timestamps, such as ticket creation
and resolution times; and incident description fields (descriptions in our basic
event correlation model), such as an incident summary, a worklog history and
a solution description containing all the procedures used to solve the incident.
Tickets may also contain fields storing administrative information, such as the
management groups involved in the resolution process, along with their contact
information, among things.

In this module, the tickets are first introduced in a ticket preprocessing phase.
The aim is to extract only relevant tickets, or tickets related to real network
incidents. It is worth noting here that ITSs are used as dual-task systems:
they can be used for purposes other than registering incidents’ lifecycles. For
example, they are normally used to record other administrative and maintenance
tasks, e.g., programmed work in the network or availability of a new software
release. Therefore, because not all tickets are created as a consequence of actual
network incidents, we might say that some tickets are informative. Thus, we
first normalize the data and obtain in a proper format the different tickets’
fields that are relevant from the point of view of incident solving and remove
the remaining information in every ticket. Second, we discard malformed tickets,
that is, tickets having some incoherent values, as well as informative tickets. To
discern which tickets are informative, a common method is to use a pre-defined
list of keywords and pattern-matching techniques.

The output of the ticket preprocessing phase is fed as an input to the ticket
correlation phase. This process is well studied in our previous work [52]. Essen-
tially, we apply our basic event correlation algorithm (see Section 3) with several
adaptations. In a first step, we obtain the main affected element of every ticket,
usually clearly stated in a field called “Node ID” in ticketing systems, and make
the correlation considering all the tickets that have only this affected element.
In a second step, we obtain more information regarding affected elements from
other tickets’ fields related to the description of the incident, such as worklogs
and solution descriptions. In [52], we show that this leads to a considerable im-
provement in the incident resolution process in terms of accuracy, timing, and
incident description.

12

4.2. Alert correlation module

Alerts are usually generated by network elements and obtained by manage-
ment platforms, e.g., syslog or HP OpenView, using management protocols,
such as SNMP. Each alert is a short message with a specific textual format
defined by equipment vendors and is generated as an external manifestation of
a potential failure or disorder occurring in a piece of equipment of the managed
network or system. Typically, alerts contain the same relevant information as
that described in our basic model presented in Section 3, such as i) affected
element identifier, e.g., node ID and interface ID, ii) the timing information
of the alert, i.e., the creation and resolution times, and iii) a description of the
fault, i.e., the root cause and the severity of the alert. Moreover, alerts may
provide information with different detail levels, such as specific data regarding
the status of the devices and their configurations or higher level details with
aggregated information gathered from several alerts.

Alerts are first passed to a preprocessing phase, with the aim of selecting
only relevant alerts: alerts related to relevant incidents. It is worth mentioning
here that today’s monitoring systems trigger a huge amount of so-called normal-
behavior alerts in response to daily operational tasks that are not really related
to real network incidents, i.e., maintenance activities, software updates, etc.
Thus, to filter nonrelevant alerts, we use a pre-defined list of keywords and
some pattern matching techniques. In the experimental section we provide
more details about this process.

The output of the preprocessing phase is fed into an alert correlation phase.
Here, a similar approach to that followed in the ticket correlation phase is uti-
lized: we use the basic event correlation model (Section 3) in two steps. First,
we only consider alerts that are related to a single affected element, and in a sec-
ond step, we incorporate those alerts that are related to a list of several affected
elements. These last alerts are normally generated by intermediate network el-
ements that really correlate several of them and generate a new alert with the
summarized information.

Note that this module is very similar to the ticket correlation module. It is
remarkable to say that traditionally, this is the only module that has been im-
plemented in network alert correlation systems, and a large amount of research
effort has been devoted to studying it [5, 7, 9, 10, 19]. In our case, we are not
as interested in refining this module as in evaluating whether the incorporation
of tickets’ information would improve the alert correlation process. For this
reason, and for ease, we have opted for this implementation.

4.3. Ticket-alert correlation module

This module works with the information provided by both the alert and
ticket correlation modules. As previously explained, we are mainly interested
in evaluating whether introducing this module would result in a benefit in the
correlation process.

Our intuition is that the tickets can introduce relevant information in the
procedure, incorporating human knowledge and significance to the events. An

13

time

time

time

1
R

A
3

R
A

2
R

A

durationA
R
1

durationA
R
3

durationA
R
2

Incident duration

Incident

T
R

T
R

duration

Figure 3: Example of alert aggregation using the proposed model.

example of a scenario revealing this is depicted in Figure 3. In the first timeline,
we can observe the result from an alert correlation process, where three clusters
of alerts are summarized in three representative alerts: AR1, AR2 and AR3.
The second timeline represents the output from the ticket correlation process,
where a single representative ticket, TR, has been obtained. The third timeline
represents the duration of the incident that generated the different events (alerts
and tickets).

Note that the alerts in this incident appear intermittently, which makes the
correlation process consider that they are not overlapped in time and are thus
not likely to belong to the same incident. However, the existence of tickets
makes it possible to observe the concurrence in time between the three groups
of alerts and tickets, thus allowing the correlation of all of them to represent a
single incident.

We can further clarify this example by using a real scenario with alerts and
tickets taken from the dataset that we analyze below in Section 6. Figure 4
shows the set of alerts after preprocessing (24 alerts) that are considered in this
example. These alerts are triggered by two different network nodes, namely
NIX1-FORTIGATE and AVPN-CEIC-039, with 20 and 4 alerts, respectively.
The basic alert correlation operations that we applied here are able to group
this set of alerts into five clusters (3 for NIX1-FORTIGATE, and 2 for AVPN-
CEIC-039) based on the timing and some topological information (basically
Node ID). The first 13 alerts are overlapped in time and have the same common
Node ID (NIX1-FORTIGATE). Thus, they are grouped into one representative
alert aggregating all of them (Cluster # 1). The next 5 are also grouped into
a single “event” that represents this group (Cluster # 2); finally, the last 2
are treated in the same way (Cluster # 3). Regarding the alerts generated by
node AVPN-CEIC-039, the correlation methods generate 2 clusters (# 4 and
5). The output after alert correlation would be composed of five groups

14

gmacia
Resaltado
method

gmacia
Resaltado
generates

gmacia
Resaltado
Thus, the

Figure 4: A snapshot of the set of alerts considered in the example.

of aggregated alerts. Figure 5 shows the corresponding ticket for this set of
alerts after preprocessing and extracting the useful features. As we will discuss
in Section 6, it is worth noting that in the ticketing system we are considering
every ticket is characterized by 273 different fields. Thus, only the relevant fields
are shown in Figure 5. Observing the ticket, it is clear that this information
intersects with that from alerts in several fields, e.g., Node ID, Description,
Interface ID, and timing information.

Therefore, as a primer solution, we could use these fields to correlate both
sources of information as shown in Figure 6. In this figure, we draw over time
the ticket and the considered 24 alerts. In the upper timeline we draw the ticket
lifetime considering both creation and resolution times. In the second timeline
we draw the 24 alerts and show their overlapping periods and the five created
clusters (having 13, 5, and 2 alerts for NIX1-FORTIGATE; and 2, 2 alerts for
AVPN-CEIC-039) after applying the basic event correlation model (see Section
3.2. Basic correlation method). Without considering ticket information, the
basic event correlation model will create five uncorrelated clusters of alerts (at
least with this correlation algorithm) despite being related to the same incident.
This is due to the fact that in real scenarios like the example it is usual to
have unpredictable time gaps between alerts that make it hard to guess their
relationships, Besides, its hard to correlate alerts coming from different network
nodes. In our case, incorporating the ticket information we observe that the five
alert clusters overlap with the ticket, and consequently we can consider that they
belong to the same incident. The final number of events to be considered in this
example would be reduced to 1 instead of 5 which supports the idea that using

15

gmacia
Resaltado
considered ticketing system,

gmacia
Tachado

gmacia
Tachado

gmacia
Resaltado
would

gmacia
Tachado

gmacia
Resaltado
. (dot)

gmacia
Resaltado
it is

gmacia
Resaltado
by incorporating

gmacia
Resaltado
is then

gmacia
Resaltado
5, (comma)

Figure 5: A snapshot of the ticket considered in the example.

the ticket makes it possible to correlate them together (see incident timeline in
Figure 6).

The above added illustrative example gives clear indicators of the beneficial
outcomes given to both technical and decision-making staff. For example, from
the point of view of efficiency, having a single incident with more information
might reduce the resolution time. From an audit perspective, having more
realistic information about the real incidents solved by management staff will
help in the decision-making process.

5. Ticket-alert correlation model

To apply the basic event correlation model suggested in Section 3 to correlate
both tickets and alerts, it is important to first understand the specificities of both
tickets and alerts (see Subsection 3.1) and then properly design a correlation
algorithm able to handle the associated challenges. In the following, we first
discuss the specific issues to be taken into account and then suggest our proposal
for the correlation algorithm.

• Tickets provide better semantic information than alerts

Although tickets can be automatically generated by the NMS (automatic
tickets), they are usually generated manually by the members of the staff,
either as a response to alerts or from customers’ complaints. Every ticket
represents a complete record of an incident to be used by the management
team during the incident management lifecycle.

16

gmacia
Resaltado
This

gmacia
Resaltado
indications

gmacia
Resaltado
provided

Figure 6: A graphical time representation of the alerts, the ticket, and the generated incident.

Normally, tickets contain more semantic information about the incidents
than alerts. First, every ticket contains many free text fields, which are
used by ticket creators and resolvers to clearly describe the incident, its
possible causes and the solutions applied to solve it. In alerts, these fields
are normally automatically generated by network facilities, and thus the
semantic information is very restricted to a list of possible values. Second,
tickets are generated by humans only when alert events are considered
so important that a record of an incident is needed. For example, the
appearance of alerts regarding non-production services, alerts generated
by low-priority nodes in a network, or warning alerts of low-priority should
not cause the creation of tickets, as these events should not be considered
as incidents.

Thus, tickets are expected to provide better information than alerts with
regard to identifying the actual number of incidents that occur in a net-
work. If we assume that the number of incidents derived from a ticket
correlation process is IT , the number of incidents noted by an alert corre-
lation process is IA, and the number of real incidents is Iactual, we expect
to have the following relation:

Iactual < IT << IA (7)

For this reason, we show in our correlation algorithm that we pay more
attention to tickets when deciding the number of incidents.

• Alerts provide better temporal information than tickets

In contrast with our higher confidence in the semantic information con-
tained in tickets, we claim that the temporal information found in them
is less trustworthy than that provided by alerts. This is because in the
ITS system, a large number of tickets are created or closed manually by
the management staff; thus, their responsiveness is not as fast as in the

17

Real incident

Events

(tickets + alerts)

Rep. Events

(perceived incidents)

SoIreal EoIperc.
SoIperc. EoIreal

FODFOD
BOD

Figure 7: Potential effects of FOD and BOD on the correlation results.

alert management system where alerts are generated automatically in a
few milliseconds when an event is perceived. Thus, to determine the be-
ginning and end times of an incident, we consider the timestamps provided
by alerts to be the best approximations.

Going back to Figure 2, in which we show the complete system, note
that instead of considering both tickets and alerts as general events and
applying our basic event correlation algorithm to the complete set, we
separate both into two processes. This will allow us to determine and
identify the number of different incidents (and their semantic information)
from the ticket correlation process and adjust their temporal information
from the feedback provided by the alert correlation process. In summary,
the output of ticket correlation is refined with the alert correlation output
to adjust the time information of the incidents noted by tickets.

• Dealing with border effects and the existence of consecutive incidents

As previously mentioned, it is expected to have some temporary misalign-
ments between the start and end of an incident and the opening and
closing times of the associated ticket(s) due to, presumably, human re-
sponse times. This effect has been included in the basic correlation model
through the parameters FOD and BOD. At first sight (Figure 7), the prob-
lem with these two delays is that it is possible to exclude or include events
related or not really related, respectively, to the ongoing incident in the
representative event and, therefore, in the incident as perceived after the
correlation process. As depicted in the example in Figure 7, depending on
whether the first event in the events line is an alert or a ticket, it is even
possible for the appearance of two different incidents at the beginning,
while two different incidents can be merged at the end. In contrast, it is
also possible for the staff members to prematurely close a ticket if they

18

I1 I2
Incidents

Events

Rep.events2
R
e

1
R
e

FOD
BOD

SoI1 EoI2EoI1 SoI2

Figure 8: Example showing the problem of directly applying the basic event correlation model
to two consecutive incidents.

have the perception that the problem is solved, thus making BOD nega-
tive. In this case, it is highly probable that another ticket truly related
to the same incident will appear after some delay. In fact, this is exactly
the former situation in the case that the first event in the event line is a
ticket.

To handle this situation, our main argument is that there is a high prob-
ability that potentially correlated events that occur in the proximities of
other representative events really belong to the same incident. This way,
the simultaneity condition –Eq. (2)– used to merge events is relaxed by
considering FOD and BOD as thresholds to consider alerts and tickets in
the proximity as included in the same incident.

From the point of view of the correlation method, the major impact is
expected to arise from the “orphan” alerts, that is, from that alerts at
the beginning or end of an incident that are not assigned to it due to the
border effects. Therefore, some experimental tuning is needed to estimate
the values for both FOD and BOD. Obviously, this is addressed in the
experimental setup.

Nevertheless, the scenario can become a bit more complex when consec-
utive incidents appear. The problem is how to discriminate between any
two consecutive incidents having some properties in common, i.e., how to
correctly separate events that could correspond to both incidents or even
decide that both incidents are the same and should be merged. To clarify
this point, we show an example in Figure 8. Here, we assume that we have
two truly consecutive incidents, I1 and I2, each one starting and ending
at the instants shown in the incidents timeline. We also have a sequence
of events, each one starting and ending as shown in the events timeline.
Furthermore, we assume that each of these events is related to either I1
or I2. If we apply the basic event correlation model suggested in Section
3, we obtain two representative events, eR1 and eR2, as shown in the third

19

timeline (Rep. events), which, at the same time, will be considered the
incidents from our point of view.

If we look carefully at this example, we observe that some events are dis-
carded from the correlation process and are not correlated simply because
they do not overlap with any other event. We can assume that the non-
overlapped events belong to other different incidents, in which case we
would have up to seven different incidents, far more than the actual two
incidents.

Thus, directly applying the basic event correlation model in this example
would lead to inaccuracies, especially when alert events are considered
because, as mentioned above, alerts may appear earlier than tickets and
might not overlap with them, and they may not be considered in the
correlation process.

In addition, note that there is another problem when consecutive incidents
are considered as in our example. We must select the specific incident,
if any, to which the events in between belong. In our example, there are
three events between eR1 and eR2 . The choice of assignment between
event-incident modifies the duration of both incidents, thus affecting the
accuracy of the system.

5.1. Ticket-alert correlation algorithm

To handle all of the above issues, we modify the basic correlation model to
consider non-overlapped subsets of tickets and alerts as explained before. As
shown in Figure 1, FOD and BOD will be used as extra delay thresholds so
that an event is correlated to a representative event, eR, that is active in the
time interval [tCT , tRT] if that event satisfies Eq. (1), that is, if it satisfies the
similarity criteria and is active in the interval

[tCT − FOD, tRT +BOD] (8)

Note that, with the expansion of the intervals with FOD and BOD, it might
happen that the extended intervals of two consecutive incidents sharing some
affected element overlap. In this case, two operations are considered: i) any
potentially related event falling in these intervals will be assigned to the nearest-
in-time representative event, and ii) the incidents will be merged only if, after
adding the in-between events, they are overlapping. Thus, extended intervals
are not considered valid for merging incidents simply based on the new limits.

It is obvious that the selection of the values of FOD and BOD directly
affects the performance of the correlation algorithm. In Section 6, we show how
to experimentally determine optimal values for these parameters and how they
affect the overall results.

In summary, we propose an algorithm (Listing 1) that starts from an empty
list of incidents and consists of two iterations. First, it takes every representative
ticket from the correlated tickets set, TC , each of which is considered to represent
different incidents. It is worth noting that as a result of the ticket correlation,

20

none of those tickets are overlapped in time. For each incident (or representative
ticket), the different model parameters are extracted (creation and resolution
times, affected elements and descriptions). Then, it searches for correlated
representative alerts. Thus, every representative ticket has a list of correlated
alerts assigned to it, and the temporary limits (SoI and EoI) of the incidents are
revisited according to the new information. Second, after extracting a tuple of
correlated tickets and alerts, in the second iteration, the algorithm takes every
correlated ticket and its associated list of correlated alerts and searches for other
tickets having at least one alert in common. The target of this step is to join the
representative tickets that resulted in being overlapped after adding the alerts
in the first step. All matched tickets are aggregated into a single one including
all the information from the entire group. Finally, SoI and EoI are determined
by, respectively, taking the first of the creation times of any of the alerts in the
correlated set or the ticket creation time (line 42) and the last of the resolution
times of any of the alerts or the ticket resolution time (line 43).

The final output is a set, SI , of k incidents, such that SI = {I1, I2, I3, . . . , Ik},
being a single incident I = {TC , AC , TE , TD}, where TC and AC are the subsets
of correlated tickets and alerts for this incident, respectively, TE is the list of
affected elements, and TD is the description of the incident. This set SI is
the estimation of the actual incidents represented by all the events (tickets and
alerts).

6. Experimental results

In this section we present the experimental assessment of the proposal using
datasets of tickets and alerts captured in a real production network. According
to the main target of the paper, our purpose is to check the usefulness of the
joint use of tickets and alerts in the event correlation procedures. For this,
we must tune the parameters related to the potential misalignments between
incidents, tickets, and alerts timing information, i.e. BOD and FOD, in order
to obtain the set of representative events for the available dataset.

On the other hand, two questions have to be addressed to assess the results:
(1) whether the original events combined in each representative event are really
associated to that representative, and (2) whether all the events associated to an
incident are included in the representative event. The answer to these questions
is not straightforward due to the lack of a ground truth to account for each class.
Therefore, we developed a strategy in three steps, as described in Subsection
6.2, to address these questions.

6.1. Real scenario: dataset and preprocessing

The scenario considered is the network, event data and procedures handled
by a management company with which we are collaborating. This company is
in charge of the supervision, from a management point of view, of the operation
of the corporate network providing services to the regional government. Thus,
the supervised network serves millions of habitants from many public sectors,

21

Listing 1: Ticket-alert correlation algorithm.

1 procedure: TicketsAlertsCorrelation
2

3 Initialize: incidentList()=null, FOD, BOD
4 // First step: correlate alerts to tickets
5 loop // For each representative ticket
6 ticket = getNewRepresentativeTicket()
7 L = listOfAlerts(ticket)
8 TCT = getTicketCreationTime(ticket)
9 TRT = getTicketResolutionTime(ticket)

10 TE = getListAffectedElements(ticket)
11 TD = getListDescriptions(ticket)
12 loop // Searching for correlated alerts
13 alert = getNewIncidentAlert()
14 ACT = getAlertCreationTime (alert)
15 ART = getAlertResolutionTime(alert)
16 AE = getAlertAffectedElement(alert)
17 AD = getAlertDescription(alert)
18 if ((ACT ≥ TCT − FOD) AND (ART ≤ TRT + BOD))
19 AND ((AE ∈ TE) OR A(D∈ TD)):
20 L.add (alert)
21 end loop
22 SoI = min(getFirstCreationTimeAlerts(L i),TCT)
23 EoI = max(getLastResolutionTimeAlerts(L i),TRT)
24 end loop
25 // Second step: merge newly related tickets
26 for i=1 to m: // m number of correlated Tickets
27 ticket i = getCorrelatedTicket()
28 L i= getlistOfCorrelatedAlerts(ticket i)
29 TCT = getTicketCreationTime(ticket i)
30 TRT = getTicketResolutionTime(ticket i)
31 for j=i+1 to m: // get other correlated ticket
32 ticket j = getOtherCorrelatedTicket()
33 L j= getlistOfCorrelatedAlerts(ticket j)
34 if L j ∩ L i 6= φ:
35 L i.add(L j)
36 TE i.add(TE j)
37 TD i.add(TD j)
38 del ticket j, L j
39 CT = getTicketCreationTime(ticket)
40 RT = getTicketResolutionTime(ticket)
41 SoI = min(getFirstCreationTimeAlerts(L i), TCT , CT)
42 EoI = max(getLastResolutionTimeAlerts(L i), TRT , RT)
43 incidentList.add (SoI, EoI, TE i, TD i)
44 end procedure

such as education, health and civil. The topology of the network resembles the
organizational structure of the government and thus uses a hierarchical approach

As previously mentioned, the handling of alerts and tickets inside the com-
pany is performed by two different departments: a technical department, which
is in charge of the effective supervision of the network and, subsequently, the
alerts; and a service desk, which attends the requests and complaints from
customers. In what follows, we refer to the technical department as MS (Man-
agement Staff) and to the Service Desk as SD. Both departments have the
capability to create tickets, although, as previously mentioned, MS do it mainly
as a response to alerts generated by some network failures or after receiving
some feedback from other sources, whereas SD will create tickets from end-user
complaints. This is an important fact from the point of view of the current work,
as it is expected that many of the tickets created by MS have some pointers to
the alerts triggering them, while the tickets created by SD can provide richer

22

178274820965 CMA-COR-018-DP1 CMA-COR-018-DP1 NodeDown

2013-10-04 08:12:54 2013-10-15 15:54:02 0

Alert ID Root causeObject ID

Alert creation time
Alert resolution time Alert status

Figure 9: Example of an alert format taken from the alert dataset.

information regarding the ongoing incidents but no pointers to technical details
or alerts is expected.

The data gathered in this scenario are the set of alerts and tickets in the
system during a period of six months spanning from October 1, 2013, to the
end of March, 2014. It is important to note that no information regarding the
topology, apart from a list of nodes and links classified by MS as critical for the
operation of the network, is considered.

The information included in each alert is presented in a fixed structured
format (Figure 9), which is mapped to the elements in the model (Section 3).
It is relevant to mention that the affected element name (Object ID in the
alert dataset) presents a hierarchical structure that fits with the topological
counterpart. Alternately, tickets are far more complex because they also include
additional information related to incident tracking and solution and various free
text fields. Nevertheless, it is easy to map some of these fields to the elements
in the model.

A major inconvenience from this raw dataset that conditions the manner in
which the experiments are to be carried out is the lack of a “ground truth,”
i.e., a set of labeled incidents with their corresponding alerts and tickets is
not available. Furthermore, and as expected, we manually found that not all
of the tickets/alerts are related to real incidents and that some of the tickets
present incoherent or null values in relevant fields. These types of alerts/tickets
were removed during the preprocessing step, for which we set up some rules,
mainly based on keyword detection, after some consultations with the staff at
the company.

The lack of labeled data can introduce some confusion in the interpretation
of the results, as not all the real alerts are to generate tickets because the MS
can consider them nonrelevant at a given time. In fact, alerts in NMS are
usually classified according to their severity and/or criticality. Thus, not all of
the alerts present the same effects on the stability of the managed system, and
MS is prone to ignore or postpone the creation of a ticket for non-critical alerts,
especially if they are busy trying to solve an incident with higher priority. As
a consequence, even if the number of tickets was accurate, not all of the alerts
would be correlated to a ticket, i.e., to an incident, which could be interpreted
as a failure in the proposed method.

To address this situation, we have checked the performance of the correlation

23

Database Alerts Tickets
Total number of records 1703662 9612
Mean number of affected elements/record 1.15 1.42
Number of records after preprocessing 913042 8105
Number of relevant records 7436 520 (348 MS / 172 SD)
Number of representatives (before joint correlation) 3022 256 (194 MS/ 62 SD)
Mean number of records / repr. set 2.46 2.03

Table 2: Number of records in the dataset and results for the independent correlation of alerts
and tickets.

method with a special subset of events, that is, we only consider relevant inci-
dents. By relevant incidents, we refer to those that affect the operation of the
network in a critical way and that, consequently, must present associated tick-
ets. According to the company’s technical procedures, there are two situations
in which an alert should mandatorily trigger a ticket from MS: critical alerts,
which are those truly affecting critical elements, and massive alerts, which are
alerts automatically generated by the NMS as a response to a large number of
alerts from topologically related elements in the network. The first situation
is identified by using a list of network nodes (the critical ones) and the type
of critical alerts (i.e., NodeDown, InterfaceDown) such that a critical alert in a
critical node should generate a ticket by MS. Therefore, the main criterion for
measuring the performance of the proposed correlation procedure can be stated
as

All relevant alerts should be assigned to a ticket.

Thus, during the preprocessing phase the relevant alerts are extracted, and
the tickets related to critical nodes are identified. To correlate the tickets (Sec-
tion 4.1), we adopt the same methodologies proposed in our previous work [49]
to preprocess and correlate tickets that have the same root causes. As a re-
sult, a set of representative tickets, TC , arguably composed of a single ticket
per network incident, is obtained. For the alert database, the processed alerts
are entered into the correlation phase (Section 4.2), in which the proposed alert
correlation model is applied to obtain the set of representative alerts, AC . Sim-
ilar to the ticket case, a two-step procedure is used for alert correlation. In the
first step, the correlation is applied to critical alerts. Then, massive alerts are
also considered. Both datasets are the input for application of the ticket-alert
correlation model presented in Section 5.

Some relevant figures for both the tickets and the alerts used during the
phases previous to the joint ticket-alert correlation are provided in Table 2.
The first row ‘Total number of records’ represents the size of raw datasets taken
from the IT management company. ‘Mean number of affected elements/record’
provides the number of officeIDs found in each record. To extract this number,
we applied pattern matching methods to obtain the list of affected elements for
every event (ticket or alert). ‘Number of records after preprocessing’ represents
the remaining number of records after the preprocessing step, mainly filtering
out void/spamming events. ‘Number of relevant records’ gives the number of

24

records that contain at least one critical officeID. As previously explained, these
are the records used to assess the system. ‘Number of representatives (before
joint correlation)’ is the number of representative events in each correlated set
after the first step of the correlation, that is, before applying the ticket-alert
correlation module, i.e., the number of alerts/tickets considered independent.
Finally, the last row of the table provides the average number of records for
each representative one.

6.2. Evaluation of the system

The evaluation of the performance of the proposed method is not straightfor-
ward because, as previously stated, the dataset lacks a ground truth in which the
existing incidents are related to their corresponding alerts and tickets. Thus,
despite some figures of merit being obtained, a strategy to assess the results
should be designed. A trivial approach would be to manually label the dataset,
or a part of it, to properly check the obtained correlations. However, even if an
expert could manually handle that huge volume of data, the process would be
prone to errors because it is frequently difficult to determine, even for an experi-
enced manager, what the real incidents are from the limited information in the
alerts and tickets and whether they are related. Therefore, other approaches
should be explored.

Alternately, as explained in Section 5, it is necessary to consider some ”bor-
der effects” in the correlation procedure due to potential misalignments between
the real timing of an incident and its manifestation in tickets and alerts, prob-
ably due to the humans involved not being reactive enough. To handle this,
the model uses two tunable parameters: FOD, that is, the maximum accepted
time from the appearance of the first alert of an incident and its corresponding
ticket; and BOD, that is, the maximum accepted time from the end of the in-
cident and the closing of the ticket. Obviously, these two parameters should be
adjusted during the experimentation, which introduces an additional degree of
complexity for evaluating the proposal.

Therefore, we developed a strategy in three steps with different targets: first,
we assessed the precision of the correlation, in terms of the number of correctly
correlated elements; second, we analyzed the potential impact of varying FOD
and BOD, which is somehow related to the recall; and, finally, we manually
explored the reasons for portions of the alerts and tickets not being correlated.
The first step is related to question (1), while the second and third are related
to question (2).

6.2.1. Precision estimation

Once the alerts and the tickets have been independently correlated (see Ta-
ble 2), we proceeded with the joint correlation of the obtained representatives
for alerts and tickets. As previously mentioned, we assume that every critical
incident should be univocally related to a final representative ticket. Therefore,
in the next discussions, we refer to an incident as a representative ticket after
the joint correlation.

25

0

1

2

3

4

5

6

7

8

0
,0

2
5

0
,5 1 2 4 8

1
6

3
2

6
4

1
2

8

2
5

6

N
u

m
b

e
r

o
f

fa
ls

e
 p

o
si

ti
v
e

s

FOD in hours

Figure 10: Number of incorrectly correlated incidents (false positives) for different values of
FOD.

In this regard, given the set of representative events and the events (alerts
and/or tickets) associated to them, the precision of the correlation, P , can
defined as the rate between the number of events correctly associated to any
of the representative events (TP) against the total number of events associ-
ated to any of the representative events (TP + FP), being FP the number
of events incorrectly associated to any of the representative events, that is,
P = TP/(TP + FP).

In a first step, we varied FOD from 0.025 to 256 hours, obtaining a slightly
different number of incidents for each value of FOD and different numbers of
alerts and tickets associated to each of the incidents. At this point, the problem
is to assess whether all of the alerts and tickets that have been correlated into
a representative ticket are truly related to that incident. Due to the lack of
a ground truth, validating these results is not straightforward. To overcome
this issue, we estimated the precision of the correlation by manually inspecting
many samples and applying the knowledge and rules of thumb provided by the
company management team, which helped us during this procedure. Further-
more, for the cases that were not sufficiently clear for us, we obtained additional
feedback from the company.

Consequently, for validation purposes, a set of 100 randomly chosen inci-
dent samples, together with their correlated tickets and alerts, is considered
and studied manually. The result of the analysis is depicted in Figure 10, which
shows the number of false positives, in terms of incidents for which we found
inappropriately assigned events, as a function of the value for FOD. It is rel-
evant to mention that for values of FOD between 2 and 16 hours, we found
that 99 of the 100 samples were undoubtedly classified as correctly correlated.
The remaining sample is not a clear case, as there is not enough information

26

Ticket lifetime 58.8 h
Incident lifetime 81.4 h
Number of rep. alerts/ sample 5.5
Number of alerts/rep. alert 4.8
Interval to previous potentially related ticket 33.3 h

Table 3: Mean values for some variables for the correlated subset (FOD=1 hour.).

in the ticket and the alerts to decide whether they are really related or not.
Thus, assuming the worst case, there is a single error in 100 samples, providing
an estimated value of 99% of a posteriori accuracy, that is, 99% of the found
correlations are correct at those operation points. This result suggests to using
a value of FOD lower than 2 hours. As will be noted in the next subsection,
the greater the value of FOD, the greater the percentage of correlated elements.
Therefore, we select 1 hour for FOD.

To confirm the validity of these results, we complemented the inspection with
another check. For this, we evaluated various indicators for the timings of the
incidents, as shown in Table 3. In this regard, as explained in Section 5, one of
the most conflictive cases for the correlation was related to consecutive incidents
affecting the same network elements. To be more confident about the results
and have insight into this particular case, we can consider the delay between
the first appeared alert for each incident and the closing time of the previous
ticket, if any, including any of the affected elements in the incident, that is, the
interval to the previous potentially related ticket. As shown in Table 3, the
mean value for this magnitude is 33.3 h., which is significantly greater than the
selected value for FOD. This can be interpreted as a clear indication that the
first appeared alert is related to the current incident and not to a previous one
for the selected FOD value of 1 hour.

6.2.2. Joint correlation results

Another relevant parameter to evaluate the performance of the system is the
recall, defined as recall = TP/(TP + FN), where TP is the number of events
that are correctly correlated to any representative event and FN is the number
of events that are incorrectly kept uncorrelated to any representative event.
Under the assumption that every relevant incident should generate at least one
ticket and that all the relevant alerts should be associated to an incident, FN
is equal to the number of alerts not being correlated to a representative event.

However, similar to the case of the estimation of the precision, both FOD
and BOD may play an important role in the percentage of correlated elements.
Simply stated, if FOD (or BOD) is sufficiently large, all of the alerts and tick-
ets related to a common element may end up correlated, thus providing an
artificially high value for the recall.

To evaluate this effect, a series of experiments were carried out by varying
the values of FOD and BOD. It is worth mentioning that these experiments
were made in parallel with those described in the previous subsection, all of
them mainly targeted at tuning the system. The percentage of alerts correlated

27

62

64

66

68

70

72

74

76

78

0
,0

2
5

0
,5 1 2 4 8

1
6

3
2

6
4

1
2

8

2
5

6

%
 o

f
co

rr
e

la
te

d
 a

le
rt

s

FOD and BOD (hours)

FOD

BOD

Figure 11: Percentage of correlated alerts at different values for FOD and BOD.

Alerts Tickets
Number of raw input elements 7436 348
Number of representatives (before joint correlation) 3022 194
Number of representatives correlated by joint correlation 1391 (46.0%) 154 (79.4%)
Number of raw elements correlated (after joint correlation) 5228 (70.3%) 294 (84.5%)

Table 4: Correlation results considering only tickets created by the MS group.

to incidents as a function of the values of FOD and BOD is presented in Figure
11. As shown and as expected, as FOD or BOD increases, the percentage of
correlated alerts does as well, which would imply that the greater FOD/BOD is,
the better the correlation is. However, this might be an erroneous conclusion,
as large values for FOD/BOD would merge together independent incidents in-
volving some common affected element. Alternately, having long delays is not
reasonable in ticket creation (FOD) for critical incidents. Regardless, the figure
shows that there is no relevant influence from the value of FOD in the results
for FOD below 64 hours. This was somehow expected because the delay in the
closing of the last ticket should be associated with a lack of related alerts, not
the presence of them. The behavior in relation to BOD is similar.

These results, together with the analysis of the tickets/alerts that resulted
in inappropriate merges (correlation errors), as described in the previous sub-
section, made us select FOD=BOD=1 hour.

The correlation results taking into account only the tickets created by MS
are listed in Table 4. As shown, approximately 80% of the representative tickets
and 46% of the representative alerts potentially related to relevant incidents are

28

0%

10%

20%

30%

40%

50%

60%

1 10 100 1000 10000 100000 1000000

%
 o

f
n

o
n

 c
o

rr
e

la
te

d

a

le
rt

s

Representative alert duration (mins)

Figure 12: Histogram for the duration of the non-correlated alerts.

correlated. Furthermore, if we consider the initial non-correlated tickets and
alerts, up to 70.3% of the alerts and 84.5% of the tickets are correlated. For the
tickets, this means that 84.5% of them are truly related to relevant incidents
(there exist associated critical alerts), which provides no further information on
the quality of the correlation itself, as the remaining 15.5% could be related
to the critical nodes they refer to but not to a critical episode. In fact, we
ended up with 40 tickets not correlated to any alert, which deserves a posterior
analysis. Alternately, having only 46.0% of the relevant representative alerts
be correlated to a ticket is, at first sight, not a very good result, although it
represents an advance that no other similar system has achieved. Therefore,
this result requires deeper analysis to find the potential causes for such a figure,
which is addressed next.

6.2.3. Analysis of the non-correlated alerts

Although the effectiveness of the proposed technique in terms of improperly
correlated events has been shown to be high –question (1)–, approximately half
of the representative relevant alerts are not assigned to a ticket –question (2)–
, which requires further analysis. According to the protocols in use at the
company, all of the considered alerts should have generated tickets from MS.
This incoherency can be initially attributed to the fact that the proposed method
is not accurate enough. However, an improper application of that policy or some
problems with the staff could also explain it. Therefore, we analyzed those non-
correlated alerts in search of some explanation for them not triggering tickets.
For this we considered two potentially influential factors: the alert durations
and inter-arrival delays of alerts having the same affected element.

The analysis of the duration of the non-correlated alerts provided the re-
sults shown in Figure 12. As a first conclusion, we observed that a significant

29

0%

10%

20%

30%

40%

50%

60%

[0-1] [1-2] [2-4] [4-8] [8-16] more

%
 o

f
n

o
n

 c
o

rr
e

la
te

d
 r

e
p

re
se

n
ta

ti
v

e
 a

le
rt

s

Interarrival delay (days)

Figure 13: Interarrival delay between consecutive non correlated alerts having the same af-
fected element.

percentage of them present a short duration, which also implies that they are
shown as active in the management console for a short time. This finding mo-
tivated us to further analyze those alerts. With the help of the MS, we reached
to the conclusion that a short duration alert can be considered irrelevant and
that the dedication of the staff to other tasks can also hide them, thus not gen-
erating tickets from MS. In fact, up to 64.3% of the uncorrelated alerts can be
attributed to this effect if we consider a threshold of 10 mins for their durations,
which seems reasonable for the MS.

To continue with the analysis, for alerts that have durations greater than
10 mins, we analyzed the inter-arrival delay between consecutive alerts having
the same affected element to see if they are created close in time or if there is
a time gap between them. Figure 13 shows the histogram of the inter-arrival
delays. We found that more than 80% of them were repeated within a period
greater than 2 days, that is, most of them appear and, despite its long or short
duration, no additional alert related to the same affected element appears in at
least two days. This means that the alert is scaling down in the list of active
alerts on the management console. Therefore, we conclude that the lack of an
associated ticket can be possibly attributed to the existence of a “window of
opportunity” for the creation of the tickets. Thus, if an alert does not trigger a
ticket within a given period and it is not repeated, it is likely it will not trigger
a ticket at all. After consultation, MS confirmed this observation.

Additionally, and besides the above conclusion for the last subset, we found
that approximately 68.8% of the non-correlated alerts included names for af-
fected elements not conforming to the naming conventions in use. After con-

30

70,3%

19,1%

10,6%

29,7%

Correlated < 10 min

2,12%

8,48%

> 2 days< 2 days

7,3%

3,3%

Not configuredConforming

Interarrival NamesCorrelated Duration

Figure 14: Distribution of the number of raw alerts among the different assessment criteria.

sulting with the staff, we were informed that these types of elements, despite
being classified as critical ones, have special functions that are not being used
by other nodes. Thus, the MS do not usually open tickets for those types of
affected elements. That is, we were initially provided with an inaccurate list of
critical nodes.

As a resume, Figure 14 summarizes the results from the assessment of both
correlated and non-correlated alerts. It is worth mentioning that if we accept
that alerts lasting less than 10 mins are prone to being ignored, only 10.6%
of the initial alerts remain uncorrelated due to unknown reason. Consider-
ing those with names conforming to the critical nodes list, the percentage of
non-correlated critical alerts is considerably reduced to 7.3% with the proposed
method.

6.2.4. Analysis of the non-correlated tickets

As shown in Table 4, there exist 40 representative tickets that are not corre-
lated to any representative alert after applying the joint correlation. This is an
unexpected result, as it is supposed that all these tickets are opened by techni-
cal staff as a response to abnormal events in critical nodes, which implies the
appearance of critical alerts. Similar to the alerts, these tickets have been found
to have some insights into the potential causes for them not being correlated.
In this analysis, the original dataset of alerts, as provided by the corporation, is
also considered to check for any potential problem during the preprocessing and
later phases of the procedures. Nevertheless, as in the previous cases, manual
inspection is not trivial because the available information from tickets and alerts
can be inconclusive or even incomplete.

The manual analysis of these 40 tickets provided up to 9 different potential
causes (Figure 15):

1. Maintenance. These tickets are generated during maintenance operations
in some elements of the network, both programmed and un-programmed.
No associated alerts are found in the alert dataset, probably because they
are filtered out during the maintenance procedures.

31

0 2 4 6 8 10 12 14

TOO MUCH DELAY

USER INITIATED

HANDLING ERROR

NOT CRITICAL ALERT

NOT CRITICAL SEDE

BORDER

NO ALERT

MASSIVE

MAINTENANCE

NOT CRITICAL OFFICEID

Figure 15: Results from the analysis of the uncorrelated tickets.

2. Massive. These tickets are related to massive failures in ADSL connections
at critical officeIDs although no associated MASSIVE alert is present in
the alert dataset. The free text fields in the ticket refer to NodeIDs that
are not critical, and thus they are not included in the alert dataset.

3. No alert. No associated alert is found in the alert dataset for the ticket
duration or its vicinity, despite the NodeIDs being critical.

4. Border. Tickets generated at the beginning of the observation period (first
2 days) with no associated alert in the dataset. Some of them even refer
to alerts and previous tickets outside of the observation period.

5. Non-critical officeID. The value for the officeID refers to one of the non-
conforming names, so it should not be considered a critical officeID.

6. Non-critical alert. There exists at least one alert related to this ticket,
but it is not a critical reason. Thus, the alerts were removed during
preprocessing.

7. Handling error. The NodeID for this ticket is wrong. The incident is not
truly related to that NodeID.

8. User-initiated. Although these tickets come from MS, some of them are
generated as a response to phone calls from the technicians at different
locations. No alerts are observed, and most of them are related to internal
problems at the location, e.g., a local email server not responding.

9. Too much delay. There exist alerts potentially related to these tickets, but
they are placed outside the considered FOD or BOD.

As a result, we can conclude that 28 of these tickets (user-initiated, non-
critical alert, non-critical officeID, maintenance, handling error and massive)

32

Alerts Tickets
Number of raw input elements 7436 520
Number of representatives (before joint correlation) 3022 256
Number of raw elements correlated (after joint correlation) 5734 (77.1%) 436 (83.8%)
Number of representatives correlated 1683 (55.7%) 189 (73.8%)

Table 5: Correlation results for relevant tickets created by both the MS and SD groups.

should have been filtered out because they are not opened as a response to the
observation of critical alerts by the MS. Alternately, border tickets can obviously
be attributed to an experimental limitation related to the observation period.
Furthermore, the lack of correlation for the no alert class cannot be attributed
to the correlation method, as no related alerts are found. This could be due to a
problem with the acquisition of the alert dataset. Finally, the 2 tickets in the too
much delay class are clearly related to the limitations of the proposed method
to handle events when the creation of the tickets is not responsive enough.

In summary, from the set of 348 initial tickets, 2 are not properly correlated
by the proposed method due to its limitations, 38 are not correlated due to the
lack of related information in the alert dataset due to different reasons, and 308
are correctly correlated.

7. Applications

Finally, we discuss and evaluate two possible applications of the proposed
method. Two major contributions can be identified: improvement of alert cor-
relation, and provision of some insights into evaluating the efficiency of the
management team handling network incidents.

7.1. Alert reduction

The results regarding the capabilities of the ticket-alert correlation provided
in Section 6.2 are a clear indicator of the potentialities of the proposed method.
As shown in Table 4, there is a large reduction in the number of alert repre-
sentatives, that is, in the number of different alerts after alert clustering when
including the information from the tickets. In fact, 1391 of the initial 3022 repre-
sentative alerts after alert correlation are associated with 194 incidents; that is,
those 1391 representative alerts are merged into 194 representative ones through
the joint correlation, with an average of 7.17 representative alerts per incident.
Therefore, the final alert set to consider contains only 1825 alerts (those repre-
sentative alerts not correlated by joint correlation plus the 194 newly correlated
representatives), that is, half of the original correlated set and 1/4 of the origi-
nal number of alerts. Furthermore, the analysis of the alerts that could not be
correlated evidences a low confidence in their relevance.

These results confirm our intuition regarding related alerts not overlapped in
time (Figure 3) and the inclusion of additional relationships created by tickets.
Therefore, we conclude from this interesting finding that incorporating ticket

33

working shifts % of relevant alerts % of non-correlated alerts
MorS 50.6% 33.6%
AS 16.9% 29.9%
NS 32.5% 36.5%

Table 6: Distribution of the number of alerts over working shifts.

information into the alert correlation process will definitely help in reducing a
higher percentage of related alerts.

Nevertheless, it is important to note that we have not yet used the full
potentiality of the system, as the tickets from SD have not been used during
the assessment of the method. The information in these tickets can be far more
significant than that in the MS tickets because they incorporate the end users’
perceptions of the incident.

Alternately, if we consider the tickets related to both MS and SD, we might
check whether SD systems play an important role in the incident-solving process
by applying the correlation algorithm to tickets created by both the MS and SD
groups.

The results, shown in Table 5, evidence that the proposed correlation model
is able to correlate tickets from SD at a similar percentage as that for tickets from
MS and that the inclusion of these tickets improves the results. In particular,
there is a 6.8% increase in the percentage of raw correlated alerts, and more
importantly, the number of correlated incidents rises from 154 to 189. This
means that SD is not only creating redundant tickets, as would be a priori
expected, but also generating tickets for incidents not acknowledged by the
technical staff.

Therefore, we can conclude that: i) SD systems are meaningful to assist in
the incident-solving problem and are not just a call center for handling customer
calls and complaints; and ii) the proposed method is able to incorporate relevant
information, which is not available from any other source, into the correlation
process, thus improving the quality of the results and reducing the number of
elements in the output.

7.2. Measuring staff efficiency

A second good candidate application for our system is in providing some in-
sight into how to assist with and evaluate the efficiency of the management team
in the incident resolution process. The proposed system might help decision-
makers in answering several questions related to the quality of the management,
such as the following: How fast/accurate is the staff? Do all the working shifts
and management groups behave the same way?

As an example, consider the case in which the operator is interested in a
measure of the reaction time of the management team, a group of persons or
even an individual member of the staff in dealing with incidents; e.g., we need
to measure how much time the management team needs to open a ticket for an
ongoing incident. We can measure the delay between the first appeared alert
and the first ticket creation time of an incident. In this case, we obtained an

34

average value of 1.27 hours. However, if we need to measure how much time
the management team needs to close a ticket for an already resolved incident,
we can measure the delay between the first resolved alert and the last resolved
ticket related to an incident. In our case, the mean value for this magnitude is
132.3 hours, which is certainly a large value. Similarly, other measures from the
model can be used and interpreted.

Another example is related to the assessment of the performance of the work-
ing shifts. Because the number of persons in charge of the management uses is
not the same for all shifts and the workload is usually different, the analysis of
the correlated alerts and tickets for the different working shifts can reveal rele-
vant information. In particular, the analyzed company considers three working
shifts in a day: the morning shift (MorS), from 7:00 AM to 15:00 PM; the
afternoon shift (AS), from 15:00 PM to 23:00 PM; and the night shift (NS),
from 23:00 PM to 7:00 AM. Furthermore, the characteristics of the working
shifts change during weekends or holidays. The analysis of non-correlated rel-
evant alerts as a function of the working shift is summarized in Table 6. As
shown, there exist differences in the working shift regarding the distributions
of incidents (alerts) and the percentage of non-correlated alerts. During MorS
and AS shifts, the percentage of non-correlated alerts is not in consonance with
the percentage of existing alerts. In fact, it seems that AS is less responsive
to alerts than MorS and NS, which can imply a shortage in personnel. The
opposite occurs for RS.

8. Conclusions and future work

Our main contribution in this article is to show that leveraging the informa-
tion provided by incident tickets is relevant to increase the efficiency of the usual
incident management process in a corporate network. To achieve this target,
we have proposed a methodology to incorporate incident-related semantic infor-
mation, coming in the form of tickets created by users and management staff,
into an alert database that contains incident-related information from a network
perspective. Adding human knowledge and relevance into the process enhances
the quality of the discovery of incidents. Also, our findings showed that incor-
porating such types of information in the alert correlation process increase the
alert reduction rate, and consequently speed up the diagnosing process. Fur-
thermore, this rate is increased even more when considering tickets created by
Service Desk systems. At the same time, the proposed methodology is based
on simple elements and reasoning, making its application in a real NMS, by
both management staff and decision makers, almost straightforward. Finally,
we conclude that any new good solution for the alert correlation problem should
consider such kind of expert information in its design.

8.1. Limitations

Although the lightweight approach proposed here can relate alerts and tickets
together and hypothesize about possible relationships between them, it is limited

35

in several ways. First, the main assumption behind this approach is that it
correlates the timely overlapped tickets and/or alerts and does not cover the
non-overlapped sets beyond the time thresholds, BOD and FOD. Besides, the
approach treats any two simultaneous different incidents that affect a common
resource as a single one and thus a single representative event will be generated.
Second, the algorithm used for the initial alert correlation is really simple and
also based in temporary relationships and node identity similarities. This is
by choice, as the focus was on demonstrating that tickets can help to improve
the correlation. The proposed method can be easily adapted to consider any
of the available alert correlation methods for this module, and even for the
ticket correlation module, with the only limitation being that timestamps are
required at the output. Third, the similarity and filtering criteria used for alerts
and tickets depend on various rules and a list of human-provided keywords that
may depend on the considered network.

8.2. Future work

Once the relevance of including the tickets in the correlation procedures is
shown, the next steps should be targeted at improving the efficiency of the entire
system. For this, as noted in the previous paragraph, two major issues can be
addressed: improving the elementary correlation modules by using state-of-the-
art methods and including new sources of information, e.g., topological, that
complement the similarity function to set relationships between the events.

Acknowledgments

This work has been partially supported by Spanish MICINN through project
TIN2014-60346-R.

References

[1] Marilly, E., Martinot, O., Papini, H. and Goderis, D.: Service level agree-
ments: A main challenge for next generation networks. In Proc. of the
2nd European Conference on Universal Multiservice Networks (ECUMN),
297-304 (2002).

[2] The Office of Government Commerce (OGC). IT Infrastructure Library
(ITIL). Available at http://www.itil-officialsite.com/. [Online; Last ac-
cessed: 11-12-2016].

[3] The Office of Government Commerce (OGC). Service Operation, IT In-
frastructure Library version 3 (ITIL v3). Technical report, The Stationary
Office, 2007. [Online; Last accessed 11-12-2016]

[4] Jakobson, G. and Weissmann, M. D.: Alarm correlation. IEEE Network,
7(6), 52-59 (1993).

36

[5] Valeur, F., Vigna, G., Kruegel, C. and Kemmerer, R. A.: A comprehensive
Approach to Intrusion Detection Alert Correlation. IEEE Transactions on
Dependable and Secure Computing, 1(3), 146-169 (2004).

[6] Hu, J., Chen, H., Liu, T., Tseng, H., Lin, D., Yang, C. and C.E., Yeh.:
Implementation of alarm correlation system for hybrid networks based
upon the perfSONAR framework. In Proc. of the International Confer-
ence on Advanced Information Networking and Applications Workshops
(WAINA’10), 893–898 (2010).

[7] Kim, D. S., Shinbo, H. and Yokota, H.: An alarm correlation algorithm
for network management based on root cause analysis. In Proc. of the
13th International Conference on Advanced Communication Technology
(ICACT’11), 1233-1238 (2011).

[8] Lewis, L. and Dreo, G.: Extending trouble ticket systems to fault diagnos-
tics, IEEE Network, 7(6), 44-51 (1993).

[9] Costa, R., Cachulo, N. and Cortez, P.: An intelligent alarm manage-
ment system for large-scale telecommunication companies. In Proc. of the
14th Portuguese Conference on Artificial Intelligence (EPIA’09), 386-399
(2009).

[10] Holub, V., Parsons, T., O’Sullivan, P. and Murphy, J.: Run-time correla-
tion engine for system monitoring and testing. In Proc. of the 6th IEEE
International Conference on Autonomic Computing (ICAC-INDST ’09),
43-44 (2009).

[11] Klinger, S., Yemini, S., Yemini, Y., Ohsie, D. and Stolfo, S.: A coding
approach to event correlation. In Proc. of the 4th International Symposium
on Integrated Network Management, 266-277 (1996).

[12] Valdes, A. and Skinner, K.: Probabilistic alert correlation. In Proc. of the
4th International Symposium on Recent Advances in Intrusion Detection
(RAID), 54-68 (2001).

[13] Dadkhah, S., KhaliliShoja, M. R. and Taheri, H.: Alert correlation through
a multi components architecture. International Journal of Electrical and
Computer Engineering, 3(4), 46-466 (2013).

[14] Bateni, M. and Baraani, A.: Time window management for alert correla-
tion using context information and classification. International Journal of
Computer Network and Information Security (IJCNIS), 5(11), 9-16 (2013).

[15] Yu, J., Ramana Reddy, Y.V., Selliah, S., Kankanahalli, S., Reddy, S.
and Bharadwaj, V.: TRINETR: An intrusion detection alert manage-
ment systems. In Proc. of the 13th IEEE International Workshops on En-
abling Technologies: Infrastructure for Collaborative Enterprises (WET-
ICE), 235–240 (2004).

37

[16] Bellec, J.H. and Kechadi, M.T.: Towards a formal model for the network
alarm correlation problem. In Proc. of the 6th International Conference on
Simulation, Modeling and Optimization (SMO’06), 458-463 (2006).

[17] Salah, S., Maciá-Fernández, G. and Dı́az-Verdejo, J.E.: A model-based
survey of alert correlation techniques. Computer Networks, 57(5), 1289-
1317 (2013).

[18] Mirheidari, S.A., Arshad, S. and Jalili, R.: Alert correlation algorithms:
A survey and taxonomy. Lecture Notes in Computer Science, vol. 8300,
183-197 (2013).

[19] Chyssler, T., Nadjm-Tehrani, S., Burschka, S. and Burbeck, K.: Alarm
reduction and correlation in defense of IP networks. In Proc. of the 13th
IEEE Workshops on Enabling Technologies: Infrastructure for Collabora-
tive Enterprises (WETICE), 229-234 (2004).

[20] Calyam, P., Dhanapalan, M., Sridharan, M., Krishnamurthy, A. and Ram-
nath, R.: Topology-aware correlated network anomaly event detection and
diagnosis. Journal of Network and Systems Management, 22(2), 208-234
(2014).

[21] Yan, H., Breslau, L., Ge, Z., Massey, D., Pei, D. and Yates, J.: G-RCA: A
generic root cause analysis platform for service quality management in large
IP networks. IEEE/ACM Transactions on Networking, 20(6), 1734-1747
(2012).

[22] Jakobson, G. and Weissman. M. D.: Real-time telecommunication network
management: extending event correlation with temporal constraints. In
Proc. of the 4th International Symposium on Integrated Network Manage-
ment (IEEE/IFIP), 290-301 (1995).

[23] Ahmadinejad, S.H. and Jalili, S.: Alert correlation using correlation prob-
ability estimation and time windows. In Proc. of the International Con-
ference on Computer Technology and Development (ICCTD’09), vol. 2,
170-175 (2009).

[24] Julisch, K.: Clustering intrusion detection alarms to support root cause
analysis. ACM Transaction on Information and System Security, 6(4), 443-
471 (2003).

[25] Xiao, M., Yang, Y. and Du, Z.: Ontology based alarm correlation technol-
ogy in TD-SCDMA network. Journal of Computational Information Sys-
tems, 9(3), 933-940 (2013).

[26] Chen, Y. and Lee, J.: Autonomous mining for alarm correlation patterns
based on time-shift similarity clustering in manufacturing system. In Proc.
of the International Conference on Prognostics and Health Management
(PHM’11), 1-8 (2011).

38

[27] Lee, K., Kim, J., Kwon, K., Han, Y. and Kim, S.: DDoS attack detection
method using cluster analysis. Journal of Expert Systems with Applica-
tions, 34(3), 1659-1665(2008).

[28] Mynit, H.O. and Meesad, P.: Incremental learning algorithm based on
support vector machine with mahalanobis distance (ISVMM) for Intrusion
Prevention. In Proc. of the 2nd International Conference on Intelligent
Computation Technology and Automation, vol. 2, 25-28 (2009).

[29] Siraj, M., Marrof, M.A. and Hashim, S.Z.M.: Intelligent alert clustering
model for network intrusion analysis. International Journal of Advances in
Soft Computing and its Applications, vol. 1, 33-48 (2009).

[30] Li, T. and Li, X.: Novel alarm correlation analysis system based on asso-
ciation rules mining in telecommunication networks. Information Sciences,
180(16), 2960-2978(2010).

[31] Jian, W. and Ming, L. X.: A dynamic mining algorithm of association
rules for alarm correlation in communication networks. In Proc. of the
3rd IEEE/Create-Net International Conference on Communication System
Software and Middleware (COMSWARE’08), 799-802 (2008).

[32] Wu, J. and Li, X.: Communication network alarm correlation based on
multi-dimensional fuzzy association rules mining. In Proc. of the 2nd In-
ternational Conference on Electric Information and Control Engineering
(ICEICE’12), vol. 1, 439-443 (2012).

[33] Agrawal, R. and Srikant, R.: Fast algorithms for mining association rules.
In Proc. of the 20th International Conference on Very Large Databases,
487-499(1994).

[34] Sadoddin, R. and Ghorbani, A.: Real-time alert correlation using stream
data mining techniques. In Proc. of the 20th International Conference on
Innovative Applications of Artificial Intelligence, vol. 3, 1731-1737 (2008).

[35] Yamanishi, K. and Maruyama, Y.: Dynamic syslog mining for network
failure monitoring. In Proc. of the 11th ACM SIGKDD International Con-
ference on Knowledge Discovery in Data Mining, 499-508 (2005).

[36] Sizu, H. and Xianfei, Z.: Alarms association rules based on sequential
pattern mining algorithm. In Proc. of the 5th International Conference on
Fuzzy Systems and Knowledge Discovery, 556-560 (2008).

[37] Gabi Dreo and Robert Volta. Using master tickets as a storage for problem
solving expertise. In Proc. of the 4th IFIP/IEEE International Symposium
on Integrated Network Management IV, 328–340 (1995).

[38] Johnson, D.: NOC internal integrated trouble ticket system. Functional
Specification Wishlist. RFC 1297, 1992.

39

[39] Medem, A., Teixeira, R., Feamster, N. and Meulle, M.: Determining the
causes of intradomain routing changes. Technical report, UMIACS Univer-
sity (2009).

[40] Feamster, N. and Balakrishnan, H.: Detecting BGP configuration faults
with static analysis. In Proc. of the 2nd International Conference on Sym-
posium on Networked Systems Design and Implementation (NSDI), vol. 2,
43-56 (2005).

[41] Turner, D., Levchenko, K., Mogul, J.C., Savage, S. and Snoeren, A.C.: On
failure in managed enterprise networks. HP Labs, HPL-2012-101 (2012).

[42] Tang, L., Li, T., Shwartz, L., Pinel, F. and Grabarnik, G.: An integrated
framework for optimizing automatic monitoring systems in large IT infras-
tructures. In Proc. of the 19th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 1249-1257 (2013).

[43] AlEroud, A. F. and Karabatis, G.: Queryable semantics to detect cyber-
attacks: A flow-based detection approach. IEEE Transactions on Systems,
Man, and Cybernetics: Systems, PP(99), 1-17 (2016).

[44] Medem, A., Teixeira, R., Feamster, N. and Meulle, M.: Joint analy-
sis of network incidents and intradomain routing changes. In Proc. of the
International Conference on Network and Service Management (CNSM),
198-205 (2010).

[45] Potharaju, R., Jain, N. and Nita-Rotaru, C.: Juggling the jigsaw: towards
automated problem inference from network trouble tickets. In Proc. of the
10th USENIX Symposium on Networked Systems Design and Implemenen-
tation, 127-141 (2013).

[46] Logstash. Available at https://www.elastic.co/products/logstash. [Online;
Last accessed: 11-12-2016].

[47] Splunk. Available at https://www.splunk.com/. [Online; Last accessed: 11-
12-2016].

[48] Sumo Logic. Available at https://www.sumologic.com/. [Online; Last ac-
cessed: 11-12-2016].

[49] Maciá-Fernández, G., Dı́az-Verdejo, J.E., and Pedro Garćıa-Teodoro.
Mathematical model for low-rate DoS attacks against application servers.
IEEE Transactions on Information Forensics and Security. 4.3 (2009): 519-
529.

[50] Maciá-Fernández, G., Dı́az-Verdejo, J.E., and Pedro Garćıa-Teodoro. Eval-
uation of a low-rate DoS attack against application servers. Computers and
Security. 27.7 (2008): 335-354.

40

[51] Patel, F. N., Soni, N. R.: Text mining: A Brief survey. International Jour-
nal of Advanced Computer Research, 2(4), 243-248 (2012).

[52] Salah, S., Maciá-Fernández, G., Dı́az-Verdejo, J.E., Sánchez Casado, L.: A
model for incident tickets correlation in network management. Journal of
Network and Systems Management, 1(24), 57-91 (2016).

41

