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Abstract: Optimizing an experimental design is a complex task when a model is required for indirect
reconstruction of physical parameters from the sensor readings. In this work, a formulation is
proposed to unify the probabilistic reconstruction of mechanical parameters and an optimization
problem. An information-theoretic framework combined with a new metric of information density
is formulated providing several comparative advantages: (i) a straightforward way to extend
the formulation to incorporate additional concurrent models, as well as new unknowns such as
experimental design parameters in a probabilistic way; (ii) the model causality required by Bayes’
theorem is overridden, allowing generalization of contingent models; and (iii) a simpler formulation
that avoids the characteristic complex denominator of Bayes’ theorem when reconstructing model
parameters. The first step allows the solving of multiple-model reconstructions. Further extensions
could be easily extracted, such as robust model reconstruction, or adding alternative dimensions to
the problem to accommodate future needs.

Keywords: inverse problem; inference Bayesian updating; model-class selection; stochastic inverse
problem; probability logic; experimental design

1. Introduction

Inverse problems are used in various fields, including medical imaging, nondestructive testing,
mathematical finance, astronomy, geophysics, or sub-surface prospecting, whenever interrogating
phenomena or properties of a system that cannot be readily quantified. The inverse problem can be
defined in opposition to the forward problem. Given a physical system, the forward problem consists
of using an idealized model of that system to predict the outcome of possible experiments. In contrast,
the inverse problem is posed to interrogate or reconstruct an unknown part of the system given an
observed set of output data.

This reconstruction problem was historically first solved in a deterministic way, providing
a unique answer to the unknown parameters [1–3]. However, if the degree of certainty and reliability
of the parameters is relevant, a probabilistic approach is required. This was introduced using the
framework of Bayesian statistics by Cox and Jaynes [4] based on Cox’s postulates [5], and still being
developed [6–13]. Its central idea is that the unknown is defined as a probability density function
over the model parameters to be reconstructed, and this probability is updated with the experimental
information and linked with a model through Bayes’ theorem. An alternative theoretical framework
was posed by Tarantola [14] based on the idea of conjunction of states of information (theoretical,
experimental, and prior information, generally on model parameters). The axioms of probability
theory apply to different situations: the Bayesian perspective is the traditional statistical analysis
of random phenomena, whereas the information states criterion is the description of (more or less)
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subjective states of information on a system. However, the collection of applications successfully
solved by Ensemble Kalman Filter-type algorithms (EnKF) are not directly solvable by the proposed
formulation, at least without profound adaptations.

Furthermore, its delicate formulation poses difficulties when modifying and extending it to solve
real-world needs. To overcome this, we propose an information-theoretic reconstruction framework,
which is built on a new metric of information density that drops Cox’s normalization in favor of
simplifications. This metric is used with the concept of combining information density functions from
two independent sources: (i) experimental measurements and (ii) mathematical models, over the
same data (observations and model parameters) with the aim of finding which ones are all plausible
at the same time. This new framework ultimately allows the straightforward solving of problems
combining multiple concurrent models, or conveniently solve as experimental design, sensor design
and placement problems in specific cases as in the ultrasonics testing in a probabilistic way, which only
recently has been computed from the Bayesian perspective [15–18]. Beyond this, new dimensions can
be defined into the problem to accommodate future needs. Moreover, models are not required to be
causal, paving the way to contingent models such as stochastic associations, for instance, whose scope
extends to applications such as image reconstruction, face recognition or complex physics-based model
parameters reconstruction.

The next section details and formalizes the procedure to solve the problem, whose components
are reorganized and outlined in Figure 1.
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Figure 1. Conceptual framework of the basic information-theoretic probabilistic inverse problem.

As follows. The two mentioned starting ingredients at the top are an experiment performed
to capture some measurements, in box 1, and, in box 2, an idealization of the experimental system
made throughout a model, which allows simulation of the measurements, but depends on the model
parameters, which are the unknowns of the problem. In box 3, to treat the observations from box 1 in an
uncertain way, they are described by means of the concept of information density over the theoretically
possible space of observations, formally defined in Sections 2.1 and 2.2. In box 4, the pairs of values of
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sought model parameters and simulated observations are analogously defined by means of their joint
information density. In box 5, both sources of information, experiment and model, are combined as
described in Section 2.2. In box 6, the probabilistic reconstruction answer is yielded as described in
Section 2.4.

This scheme solves the basic form of the reconstruction inverse problem, assuming a single
model and a predetermined way of measuring. However, the formulation proposed below has the
strength of being easily extended to solve practical problems explained in Section 2.3, where the former
assumptions need not be made.

In this work we propose a new technique to optimize the experimental design of a testing
system or sensor and illustrate it for the particular case of characterizing a viscoelastic material,
step by step. First, the information-theoretic inverse problem framework is formulated, then,
the practical method is detailed describing the process of parametrization, the operation with discrete
observation data or signals, and two key extensions: to hypothesis testing and to experimental design
optimization. The proposal is illustrated with a practical example to reconstruct a mechanical model
from a tensile testing.

2. Theory

2.1. Definition of Basic Variables

Assuming that the two sources of information are the experimental observations and an idealized
model that simulates observations for given model parameters, two basic variables stem from this
premise: observations and model parameters.

The observations O are, in the most general case, vectors compounding a set of signals oi(t),
but may also be a single signal, analog or digitally sampled, sets of values, or even a single
measurement value. Although a unique space of observations O can be defined to contain all possible
observations, depending on their origin they can be either observed Oo = {oo

i (t)} or modeled
Om = {om

i (t)}. Examples of observations may be ultrasonic or seismic recorded signals, optical,
X-ray or thermographic images, or any measurement based on any physical magnitude used to
interrogate the system under study.

The model parametersM are analogously a set of diverse physical parameters, which define
a manifold H. They are the input of the mathematical model that simulates the experimental behavior
and its measurable by an output. They may stand for damage parameters, pathology or sought
mechanical properties, for instance, that feed models that simulate the observations described above.
In the numerical example in Section 4, combining three sources of information is tested: model-based
forecast, observation, and experimental design parameters for its optimization.

2.2. Definition of Information Density and Its Operations

To treat this dataO andM in an uncertain way, we do not define univocal values, but information
densities over them. The information density f (x) over either of them (x for generality) is defined from
the conception of Cox [5] as a degree of belief or certainty that the values of x are plausible. Therefore,
the probabilities that are established as a consequence of this logical framework are objective and
the logical relations in that axiomatization [19,20]. They can be understood as states of knowledge,
in contrast to the physical propensity of a phenomenon. A more detailed discussion is provided in [21].
The present definition of information density is compatible with either the evidential, logical and even
subjective theoretical frameworks described in [21].

In particular, we formally define the information density f (x) of an event or value x as
a nonnegative real f (x) ∈ R+ that is zero ( f (x) = 0) when its value is impossible, and the larger the
more plausible. Two logical inference operations introduce a structure to the space of all probability
distributions. Starting from the and and or operator definition for Boolean logic (which can adopt the
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values of true or false, without intermediate degrees of certainty), over two probability distributions
Pa and Pb that may represent two different sources of information a and b about the same events,

Pa Pb Pa and Pb Pa or Pb

false false false false
false true false true
true false false true
true true true true

the simplest logical operations over information densities f that fulfill these axioms are,

{ f1 or f2} = f1 + f2

{ f1 and f2} = f1 f2
(1)

Note that the normalization requirement of either Kolmogorov axioms or Cox’s postulates
(Kolmogorov axioms state that the probability P of any events A, B satisfy [22],

1. Non-negativity: P(A) ≥ 0.
2. Finite additivity: P(A ∪ B) = P(A) + P(B) ∀ A, B|A ∩ B = ∅.
3. Normalization: P(Ω) = 1.)

is not imposed here, which will strongly simplify the formulation, as shown later. In particular,
dropping the normalization axiom in the definition of the information density f simplifies the final
formulation in comparison with the Bayesian inverse problem as well as theory of Tarantola.

A main cornerstone of this formulation is that the relationship between the model parameters and
the observations provided by a model need not to be an implication due to a cause-effect, which requires
to define the conditional probability of Bayesian statistics. Instead, just the conjunction of information
densities needs to be defined, in which the causality between model and observations may be inverted
or even not exist, as further discussed in [21]. These two characteristics define the relationship between
model and observation. One uses probability as logic, and alternative one interprets it as information
content. They will be shown below to allow the solving of reconstruction problems with multiple
concurrent models, also paving the way to contingent models such as stochastic associations, as well as
experimental design and placement problems, in a simple and straightforward way, both conceptually
and computationally.

Therefore, we define the information contents that come from the observations as f o(O), and that
provided by the model as f m(O,M), in the sense that the model couples values of model parameters
M with observations O, yielding degrees of certainty f when the fed values in the model is fulfilled
or not with a range of degrees of plausibility.

The origin of the uncertainties is, therefore, incorporated into the interpretation of probability as
a measure of relative plausibility of the various possibilities obtained from the available information.
This interpretation is not well known in the engineering community where there is a wide-spread
belief that probability only applies to aleatory uncertainty (inherent randomness in nature) and not
to epistemic uncertainty (missing information). Jaynes [4] noted that the assumption of inherent
randomness is an example of what he called the Mind-Projection Fallacy: our uncertainty is ascribed
to an inherent property of nature, or, more generally, our models of reality are confused with reality.

The interpretation of the final inferred model probability can be used either to identify a set
of plausible values, or to find the most probable one (expected, i.e., that with maximal information
density, argmax f (M)), or, following Tarantola [14], just to falsify inconsistent models (those with low
f ), since according to Poppers falsationism [23], that is the only thing we can assert.



Sensors 2018, 18, 2984 5 of 17

2.3. Definition of Extended Variables

The first extension that this framework allows is the case when several models can be combined.
The model forecast may therefore also depend on the hypothesis we assume about the model physics,
which in turn implies distinct sets of model parameters for each hypothesis. This brings in the
hypothesis H within a set H (which is usually a discrete manifold, but not necessarily) as a new
uncertain variable, which conditions the number of unknowns and therefore the model complexity.
For instance, decisions can be made on whether some model parameters are known from literature
or treated as unknowns to be sought. Alternatively, models can be added or removed in hierarchical
combinations (for instance as multiscale models) or in parallel, as illustrated and clarified in the
numerical example at the end of this work.

This extension to consider several hypotheses on the model or models is included in box 2 of
the flow chart in Figure 2 by multiplying the possible models and making them dependent on the
hypothesisH.

On the other hand, in real practice, the way the system is interrogated must be decided.
This implies a problem of sensor optimization and even in experiments for large-scale [24–27], in the
wide sense of sensors, either as positioning, their internal design, any measurement filtering or
signal processing aimed at extracting the signal parts with most useful information while minimal
noise, or the measurement domains (time, frequency, phase, cepstrum, etc.). This gives rise to a set
of sensor parameters S within a manifold of possible values S, which become the variables to
optimize. The sensor placement optimization procedure will be described and illustrated in detail in
a future work.

This extension to consider the design of the interrogation system is included in boxes 1 and 2 of
the flow chart in Figure 2 by splitting the experiment into the system and the sensor that captures its
response, which depends on the experimental design parameters S .

BothH and S are analogously defined in a probabilistic sense by means of information densities
defined over their spacesH and S , yielding the information contents provided by the observations
as f o(O,S), and those provided by each concurrent model n as f mn(O,M,H,S), or, in the case of
a single model, just f m(O,M,H,S).

Analogously to the extension to H and S , further dimensions could be easily extended to the
formulation, to accommodate future needs.

2.4. Information Theory Inverse Problem

Recall the flow chart in Figure 1 and focus on the concept of information density functions f ,
which are combined using the logical and operator [21,28,29]. Then, we have two or more sources
of information (probabilistic propositions) to infer information about the model parameters M.
We introduce, i) a source from experimental observations of the system f o, and ii) a source from
a mathematical model of the system f m, in this case, the probabilistic logic conjunction operator
allows computation of the information state that the system parameters fulfill both propositions
simultaneously, { f o and f m}, as,

f (O,M,H,S) = { f o(O,M,H,S) and f m(O,M,H,S)}
= f o(O,M,H,S) f m(O,M,H,S) (2)

Note that the simultaneity of the propositions relieves the causality requirement of the Bayesian
framework. Following the basics of the scientific method for physical sciences, hypotheses are proposed
that explain the observations, which, in our case, are materialized as models that try to be predictive.
The next step is the hypothesis validation by confronting those predictions against the observations,
which is here formulated with the aim of partial degrees of certainty as the conjunction of certainty of
predictions being true at the same time as observations. This is parallel and therefore consistent with
hypothesis testing.
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In addition, multiple models can be combined, following Figure 2. If several models (m1, m2, ...)
provide information, the joint information can be generalized as,

f (O,M,H,S) = { f o and f m1 and f m2 and . . .} (3)

= f o(O,M,H,S) f m1(O,M,H,S) f m2(O,M,H,S) . . .

Note that these models may possibly relate different subsets of model parameters, or just represent
competing hypothesized imperfect models relating the same parameters in an attempt to make robust
predictions in the case none of the available models perfectly predict observations.

f (O)
o

Optimal sensor design

max H(S)

p

M

Noise

estimate

C   

Tested 

specimen
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Hypothesis rank
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Figure 2. Flow chart of the complete information-theoretic probabilistic inverse problem. The abbreviation
“inf. dens.” is referred to information density.

Assuming that the experimental information on observations is carried out with sensors that
are independent of techniques to infer experimental information on model parameters, and the same
is true for model hypothesis and experimental designs, the joint density can be split as the product
f o(O,M,H,S) = f o(O) f o(M) f o(H) f o(S). Note that f o(M) = 1 is the noninformative density
function or constant. This is not true for the model information f m, since it relates observations and
model. In the case of the observational world, as opposed to the simulations, superscripted by m,
f o(S) which usually is no information (noninformative uniform distribution). However, depending
on the experimental design, the observations may be of different size or even nature (for instance
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measuring at different points or even measuring velocities instead of displacements, for instance),
which makes f o(O) dependent on S in the sense that the structure of O changes, but not that the
information density on S modifies the information density on O.

The reconstructed probability for the model parametersM providing the model hypothesisHj
and experimental design Sl is obtained from the joint probability f (O,M,H,S) in Equation (3) by
extracting the marginal probability for all possible observations O ∈ O and provided the model
hypothesisHk ∈ H is assumed to be true ( f o(H = Hk) = 1) and one experimental design Sl ∈ S as,

f (M)
∣∣
H=Hk ,S=Sl

= k1

∫
O

f o(O) f o(M) f m(O,M,Hk,Sl)dO (4)

where k1 is a normalization constant that replaces the dropped model hypothesis probability, which can
be removed since f is unscaled. Note that here, ’marginal probability’ is defined in the loose sense
of dropping the scaling. The assumption of no prior knowledge about the model parameters is
represented by the noninformative distribution, i.e., an arbitrary constant in the assumed case of
Jeffrey’s parameters f o(M) = 1, leaving,

f (M)
∣∣
H=Hk ,S=Sl

=
∫
O

f o(O) f m(O,M,Hk,Sl)dO (5)

3. Method

3.1. Model Parametrization

The mathematical model of the experimental system maps a set of model parameters M to
simulated observations O, following some idealizations, in turn based on some hypothesis H and
interrogation system design S . Note that this mapping can range from a cause-effect physical
relationship to just a contingent stochastic association.

The present inverse problem formulation requires that the model parameters are of Jeffrey’s type,
which have the characteristic of being positive and as popular as their inverses [14]. If parameters are
of Jeffrey’s type, the present formulation can be shown to be equivalent to the Bayesian framework
except for a constant, which is detailed later in Section 3.6. The benefits are that all noninformative
densities are constant and therefore dropped from the formulation. This assumption is required for the
definition above of the logical operators and and or, as well as for defining noninformative densities as
constants f o = 1 to be fully correct.

Many model parameters are non-Jeffreys, which is evident in the following example. If two
materials with different elasticities (for instance of twice Young’s modulus) are compared in terms of
their stiffness and compliance (its inverse), different distances are obtained. Since there is no reason
to prefer one over the other, the definition of their distance should be independent of the choice,
which can be attained through a logarithmic change of variable [30,31]. This change of variables is
completed with a mapping from m̃i ∈ [0, 1] to a predefined range of physically reasonable values
mi ∈ [minf

i , msup
i ], to improve numerical stability, as,

m̃i =

ln
(

mi
minf

i

)
ln
(

msup
i

minf
i

) mi = minf
i e

m̃i ln

(
m

sup
i

minf
i

)
(6)

3.2. Particularization for Set of Discrete Observations with Gaussian Uncertainties

Observations are usually assumed to follow a Gaussian distribution O ∼ N (E[Oo], Co) whose
mean is that of the experimental observations Oo and whose covariance matrix Co quantifies the
measurement error noise [32–34]. Likewise, the numerical errors from model m may also be assumed
Gaussian O ∼ N (Om, Cm) centered at the numerically computed ones E[Om] = O(H), where E[Om]
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is the m-dimensional mean vector of O, with covariance matrix Cm. However, the numerical errors are
oftentimes negligible compared to the experimental ones. The density fulfilling both propositions f o

and f m is similar with the likelihood density under Gaussian assumption with O ∼ N (Om, Cm + Co).
Recall that the observationsO are a discrete vectorO = {oi}, i ∈ [1...Ni], and that the assumptions

made above are valid for every sample i. In addition, considering the compound probability of the
information of the sensors and all instants of time is the product of each one individually, it supposes
independence of information, and this product is equivalent to a sum within the exponential and the
Gaussian distribution that allows an explicit expression of probability densities,

f o(oi(t)) = k2 exp


−1

2

∫ Ni

∑
i,j=1

(oi(t)− oo
i (t))(

Co
ij

)−1 (
oj(t)− oo

j (t)
)

dt

 (7)

f m(oi(t),M,Hk,Sl) = k3 exp


−1

2

∫ Ni

∑
i,j=1

(oi(t)− oi(t,M,Hk,Sl))(
Cm

ij

)−1 (
oj(t)− oj(t,M,Hk,Sl)

)
dt

 (8)

⇒ f (M)
∣∣
H=Hk ,S=Sl

= k4 exp

−J(M,Hk ,Sl)︷ ︸︸ ︷
−1

2

∫ Ni

∑
i,j=1

(oi(t,M,Hk,Sl)− oo
i (t))(

Co
ij+ Cm

ij

)−1 (
oj(t,M,Hk,Sl)− oo

j (t)
)

dt

 (9)

The term J(M,Hk,Sl) corresponds to a misfit function between model and observations,

f (M)
∣∣
H=Hk ,S=Sl

= k4e−J(M,Hk ,Sl) (10)

The mode criterion can be adopted as it finds the most probable model parameter. Finally,
if classical probability densities f̂ (M)

∣∣
H=Hk ,S=Sl

= k5e−J(M,Hk ,Sl) are desired, the constant k6 is
derived by imposing the theorem of total probability since the latter is defined by normalization to 1 as,∫

M
f̂ (M)

∣∣
H=Hk ,S=Sl

dM = 1 = k5 I, I =
∫
M

e−J(M,Hk ,Sl)dM ⇒ k5 =
1
I

(11)

3.3. Extension to Model Hypothesis Selection

As introduced above, the probabilistic nature of the reconstruction is partly motivated by the fact
that the model itself may not necessarily reproduce or fully explain the experimental setup. If several
models (or hypothesis within the model) are candidates based on different hypothesisHk about the
system, the previous probabilistic formulation of the inverse problem also provides information to
rank them. The underlying idea is the following: if the model hypothesis is considered to be an
uncertain discrete variable, its probability can eventually be extracted as a marginal probability from
Equation (3). The probability of each hypothesis will therefore have the sense of degree of certainty of
being true in the sense that the probabilistic conjunction of certainty (or information) provided by the
experimental measurements and model are coherent [9,11].

The goal is to find the probability f (H), understood as a measure of plausibility of a model
hypothesisH [13], or in other words, the information gain it provides, or how much can be learned
by using the hypothesized model. It is simply derived as the marginal probability of the posterior
probability f (O,M,H,S) defined in Equation (3),

f (H)
∣∣
S=Sl

=
∫
O

∫
M

f (O,M,H,Sl)dMdO (12)
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= k6 f o(H)
∫
O

∫
M

f o(O) f o(M) f m(O,M,H,Sl)dMdO

If no prior information is provided by the user about the hypothesis then f o(H) = 1. Furthermore,
this procedure involves the same integral as that for the constant k5, i.e., allowing to reuse the integral
defined in Equation (11),

f (H)
∣∣
S=Sl

= k6 f o(H)
∫
M

f (M)
∣∣
H=Hk ,Sl

dM = k6 I (13)

where the normalization constant k6 comes from grouping previous constants that multiply and it can
be solved from the theorem of total probability over all hypothesis H = {Hk} to obtain probabilities,
∑H p(Hk) = 1.

Note that multiple dimensions of the problem can be coupled to try to solve problems such as
robust parameter reconstruction [35], for instance, or others defined in future needs. The procedure for
robust parameter reconstruction would imply a first step where the hypothesis plausibility f (H)

∣∣
S=Sl

is computed using Equation (13), followed by a second step where the model parameters plausibility
f (M) is computed using an alternative derivation of Equation (5) without restricting to a particular
hypothesisHk, but rather incorporating all of them, by,

f (M)
∣∣
S=Sl

= ∑
H

∫
O

f o(O) f (Hk)
∣∣
S=Sl

f m(O,M,Hk,Sl)dO (14)

Note that the space of hypothesis is discrete, so rather than integrating over it, a sum is formulated.

3.4. Extension to Interrogation System Design

Recall that by interrogation system design, we may understand any mapping from experimental
output to recorded signals, which may range from experimental design parameters, the positioning
of the sensors, any measurement filtering aimed at extracting the signal parts with most useful
information while minimal noise, or the measurement domains (time, frequency, phase, cepstrum,
etc.), with the same goal.

This goal is formulated as finding the S that maximizes the information density f (S). It may be
more useful to understand it as maximizing the information entropy H(S) = p(S) log p(S), which is
a measure of the information contents [36]. The information density is again derived as the marginal
probability of the posterior probability f (O,M,H,S) defined in Equation (3), assuming no prior
information about the sensors nor model parameters,

f (S)
∣∣
H=Hk

=
∫
O

∫
M

f (O,M,Hk,S)dMdO (15)

=
∫
O

∫
M

f o(O) f m(O,M,Hk,S)dMdO

and can be interpreted as the information gain or a measure of what can be learned for every value of
S . Instead, the information theory community typically operates with information entropy (measured
in bits, nits or hartleys depending on whether the log base is 2, e or 10) which is readily obtained from
the probability, which in turn comes from normalizing the information density to fulfill the theorem of
total probability,

H(S) = p(S) log p(S) p(S) = k7 f (S)
∣∣∣∣∣ ∑

S

p(S) = 1 (16)

If a reliability or cost of failure related criterion is preferred for the sensor optimization,
the probability curve p(S) should be computed instead of the entropy, since p(S) is directly related to
the reliability R = 1− P(failure), whereas the cost efficiency can be attained by estimating the total
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probabilistic cost as the sum of the cost of sensors, that may depend on their configuration and number
S , and the cost of failure, which in turn depends on p(S).

3.5. Summary of Extended Framework

The variables and equations described above are organized in the flow-chart in Figure 2,
which details the concepts outlined in Figure 1, where the extensions are clearly marked. It starts from
the ingredients at the top and yields the answers at the bottom, from left to right.

In particular, note that, beyond the standard inverse problem goal of estimating the model
parameters (box 6), the framework delivers (i) the sensor information gain depending on its design,
which allows optimization of the experimental design or placement, and (ii) the plausibility of
alternative model hypothesis, which allows ranking and choosing among plausible mathematical
idealizations of the physical system. In addition, note that multiple models may be concurrently
adopted (unfolding of box 2), which provides practical solutions where multimodal, multiscale or
multiphysics are relevant.

3.6. Validation

A simple procedure to validate the provided formulation is to compare the model reconstruction
Equation (3) and the hypothesis ranking Equation (13) with those obtained using the Bayesian
framework by Beck [9,37],

pD(M) =
p(D|M,H)po(M|H)

p(D|H)

p(Hj|D,M) =
p(D|Hj,M)p(Hj|M)

p(D|M)

where D stands for the data,M the model parameters,H the model class, and po is the prior on the
model parameters [14], respectively. Note that all formulations imply the same computations except
for a computationally expensive constant, whose computation is typically omitted and adjusted using
the theorem of total probability, which coincides exactly with the proposed procedure when extended
to computing the posterior probability p by normalizing the information contents f . The computation
of the integral is here avoided for the model parameter reconstruction, and only needed for hypothesis
testing and experimental design optimization. The Bayesian concepts used in this study requires
Jeffrey’s type parameter, which is obtained through a logarithmic mapping, and is used combining
a priori information from two independent sources over the observations and model parameters,
to find the plausibility of them simultaneously.

4. Example

To illustrate the utility and effectiveness of the proposed method, a simple but nontrivial inverse
problem is solved. It consists of a tensile test where the sensor is a generic displacement sensor
characterized by its measurement error. The requested results are the constitutive nonlinear viscoelastic
mechanical constants of a quasi-incompressible soft tissue sample. However, the extended formulation
allows the easy ranking of the plausibility of several models detailed below, as well as optimizing the
interrogation system, also detailed later.

The following constitutive laws are hypothesized:

H1: Maxwell viscoelasticity that additively combines strains from damper of viscosity η and nonlinear
elastic spring described by shear modulus µ and nonlinearity of first order Landau-type A,
which relates shear stress σ and strain ε, with parameters constantsM = {µ, η,A} being the
output of the model governed by,
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ε = εNL elastic + εviscous,

{
σ = µεL elastic +Aε2

NL elastic
dεviscous

dt = σ
η

(17)

The strain is defined in the models depending on the constitutive assumption considered as,
εL elastic, εNL elastic and εviscous, or linear elastic strain, nonlinear elastic strain, and viscoelastic
strain, respectively. Note that ε is the strain tensor the subscript e.g., L elastic is referred to linear,
nonlinear, or viscoelastic part, respectively. This consideration is defined in the constitutive
equation that is useful to establish the different model hypothesis.

H2: Maxwell linear viscoelastic, with parameters constantsM = {µ, η},

ε = εL elastic + εviscous,

{
σ = µεL elastic
dεviscous

dt = σ
η

⇒ dε

dt
=

σ

η
+

1
µ

dσ

dt
(18)

H3: Linear elastic, with parameters constantsM = {µ},

σ = µε (19)

H4: Maxwell viscoelasticity with third order nonlinear elasticity, parameters constantsM = {µ, η,A,D}
governed by,

ε = εNL elastic + εviscous,

{
σ = µεL elastic +Aε2

NL elastic +Dε3
NL elastic

dεviscous
dt = σ

η

(20)

H5: modelH1 combined with a second phenomenological model that states that η = 3µ · t as dynamic
viscosity where t is time in seconds.

The test is defined as a stress-controlled loading and unloading test at constant velocity between
0 and 1 [MPa] and duration 2T = 2 [s]. It yields the simulated stress-strain curve in Figure 3,
where measurements are taken every 0.1 s.

To validate the capability of the method under fully controlled uncertainties, instead of real data,
the experiment was simulated from model H1 with µ = 1 [MPa], η = 10 [MPa·s] and A = 15 [kPa],
by adding Gaussian noise simulated with a significative standard deviation of 10 [kPa].

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Stress, σ [MPa]

0

0.05

0.1

0.15

0.2

0.25

S
tr

a
in

, 
ǫ

Figure 3. Example of stress control test. Each circle stands for a recorded measurement. The lower
branch is the loading curve, whereas the upper one is the unloading curve.
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The probabilistic inversion is carried out by joining the experimental information from the
experimental stress-strain curves O = {εo

i } with the models above.

4.1. Model Parameters Reconstruction

To answer the question of how much we can know about the values of the constitutive constants
M = {µ, η,A}, under hypothesis H1, the marginal probability density can be computed using
Equations (10) (a continuous formulation is introduced using integrals) and (21). because in this
example, the time dimension is discretized, which forces the use of Monte-Carlo approximation.
The results are shown in Figure 4.

The integral in Equation (11) is approximated computationally by a standard Monte Carlo
sampling, which approximates the integral of any integrand f (x) that depends on the parameters x
over a parameter subspace Ω using,

∫
Ω

f (x) =
1
N

N

∑
n=1

f (xi) (21)

where the integrand f (x) is evaluated at N random points xi ∈ Ω called samples. The precision
is controlled by the number of samples, here chosen as N = 216 points, which takes a few seconds
on a laptop. Note that, in each hypothesis, the physical parameters that are not present in the
formulation are not assigned value zero, but rather not assigned any preferential information density.
In other words, this is equivalent to assigning the noninformative (constant) information density
over the non-used models’ parameters. When numerically solving the problem, such parameters
are actually never assigned any value. The integral is only performed at the computation of the
model-class selection.
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Figure 4. Marginal plausibility maps of model parameters using the modelH1. The expected values
(p = 50% value) are marked, as well as their standard deviation bars.
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Considering that we only have 21 experimental data εo
i (21 circles in Figure 3) with a significative

simulated measurement error (10% Gaussian noise on each data), all parameters are successfully
estimated (squares with error bars on each plot of Figure 4), as well as their certainty and the shape of
the distribution function.

To answer the question of how coupled or entangled the unknown model parametersM = {µ, η,A}
are, visualizing the plausibility maps, which is aR3 → R function, would require a 4-dimensional plot.
Instead, we slice it in two 2D contour plots. The slices mean that the model parametersM = {µ, η,A}
are evaluated by moving two and by fixing the remaining parameters at the most probable values.
The contour plots are shown in Figure 5, where the optimal viscosity parameter η is 10 [MPa · s] and it
is marked with a plus sign in the plot.
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Figure 5. Plausibility maps of model parameters {µ, η} (left) and {µ,A} (right) given hypothesisH1.
Plus sign represents optimal shear modulus and viscosity (left) and shear modulus and Nonlinear
Elastic Constant A (right).

Note that the figure on the right reveals a strong correlation between the linear and nonlinear
shear moduli (usually considered in biomechanical characterization [38]), which is a factor for the
ill-conditioning of the inverse problem.

4.2. Model Hypothesis Ranking

To answer the question of how much we can trust the assumed physics among a set of candidates,
or which model complexity is best by assuming known or unknown physical constants, the model
hypothesis raking of the five hypothesis described above is computed using Equations (13) and (21)
in Figure 6.
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35%

3%

< 1%

35%

26%

Nonlinear viscoelastic

Linear viscoelastic

Linear elastic

3rd order viscoelastic

Combined models

Figure 6. Ranking of model hypothesis.

For clarity, the degrees of hypothesis reliability is presented in % by rescaling the information
density from Equation (13) as,

p(H = Hk) = k8 f (H = Hk)
∣∣
S=Sl

= k9

∫
M

e−J(M,Hk ,Sl)dM
∣∣ k9 =

1

∑k
∫
M e−J(M,Hk ,Sl)dM

(22)

As an example, the reconstruction of the nonlinear experimental data using the modelH2 and the
corresponding plausibility map contour plots are shown in Figure 7,
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Figure 7. Left: marginal plausibility maps of model parameters using the model H2. The expected
values (p = 50% value) are marked, as well as their standard deviation bars. Right: plausibility maps of
the model parameters using the modelH2.

Note that the reconstructed parameters are distant from the ones used for the simulation, which is
to be expected. The badness of the fitting is also quantified by its low plausibility shown in the ranking
in Figure 6.
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4.3. Interrogation System Optimization

Finally, the problem of sensor optimization is illustrated by solving the optimal testing duration
S = {T}, within a search range T ∈ [0.2, 5] s. Despite the CPU time for solving this low-dimensional
problem is quite small, in large-dimensional problems the computational time is expected to be large,
and scalability should be studied carefully. The entropy H is computed using Equations (16) and (21)
and yields the optimal testing configuration using duration T = 0.5 [s], as shown in Figure 8 sensor
information gain dependence on its design.
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Figure 8. Interrogation system optimization.

The case where some models are particular cases of others (for instance H2 is H1 with A = 0,
orH3 isH2 with η = ∞), will not yield the same plausibility, nor zero plausibility, contrarily to first
intuition. Note the model complexity is automatically penalized as the integral in Equation (13). It is
performed over a higher dimensionality since the model space has as many dimensions as parameters,
yielding smaller integrands. As Beck discusses [9,37], this is a mathematical version of Occam’s razor,
which prefers the simplest yet accurate model to observations.

5. Conclusions

This work presents a new framework to solve probabilistic inverse problems. The framework
inherits the ability to move away from the causality relationships of the Bayesian inference
formalism from Tarantola [7,14]. Dropping the Cox’s normalization was also done previously [21]
exceeding the limits of causality relationships and allowing for a straightforward formulation
and computation of realistic problems. This includes multiple concurrent models and stochastic
associations, by means of an information-theoretic framework to merge information sources, and
a measure of information density that drops Cox’s normalization in favor of strong simplifications,
which allows useful generalizations.

These simplifications that arise with the purpose of avoiding the extensive denominator that
appears in Bayes’ theorem when the parameters of the model are reconstructed. This metric
just requires that the parameters be of Jeffrey’s type, which is usually achievable just through
a logarithmic mapping, and is used with the concept of combining information density functions
from two independent sources: (i) experimental measurements and (ii) mathematical models, over
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the observations and model parameters, with the aim of finding which ones are all plausible at the
same time.

The derived formulation, beyond the typical estimate of model parameters in a probabilistic
way (which answers the question of how much can we know about their values), simplifies
a straightforward extension that delivers: (i) the sensor information gain depending on its design,
which provides a simpler approach to optimize the experimental design, sensor design or placement;
(ii) the plausibility of alternative model hypothesis (which answers the question of how much we can
trust the assumed physics among a set of candidates, or which model complexity is best by dropping
parameters); and (iii) facilitates multiple concurrent models, which provides practical solutions where
multimodal, multiscale or multiphysics are relevant. In addition to this, the framework overrides Bayes’
theorem’s requirement of a causal model, paving the way to contingent models such as stochastic
associations, for a start. Further extensions as regularization problems under this approach will be
considered in the future and could also be easily extracted, such as robust model reconstruction,
or adding new dimensions to the problem to accommodate future real-world needs.
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