
Evaluation of Diagnosis Methods in

PCA-based Multivariate Statistical Process

Control
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Abstract

Multivariate Statistical Process Control (MSPC) based on Principal Component

Analysis (PCA) is a well-known methodology in chemometrics that is aimed at test-

ing whether an industrial process is under Normal Operation Conditions (NOC).

As a part of the methodology, once an anomalous behaviour is detected, the root

causes need to be diagnosed to troubleshoot the problem and/or avoid it in the

future. While there have been a number of developments in diagnosis in the past

decades, no sound method for comparing existing approaches has been proposed.

In this paper, we propose such a procedure and use it to compare several diagnosis

methods using randomly simulated data and from realistic data sources. This is a

general comparative approach that takes into account factors that have not previ-

ously been considered in the literature. The results show that univariate diagnosis

is more reliable than its multivariate counterpart.
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1 Introduction

Multivariate Statistical Process Control (MSPC) based on multivariate meth-

ods such as Principal Component Analysis (PCA) is a well-known methodol-

ogy in the chemometrics domain. This methodology is based on decomposing

the data collected from a process into a model and the residual sub-space.

Decomposed data are then used to compute a pair of statistics, namely the

D-statistic for the model space and the Q-statistic for the residual space. The

D-statistic and the Q-statistic are monitored in a pair of Shewhart charts [1]

where certain control limits are defined. Anomalous events are detected when

these statistics exceed the control limits for a given number of consecutive

sampling times in either of the charts [2][3].

Once an anomaly is detected, the related variables should be identified. This

process is termed the diagnosis of the fault, and it helps the analysts to identify

the root cause of the anomaly so that problems within the process are timely

identified and can be corrected. This is why diagnosis is an essential part of

MSPC [4]. Despite this relevance and the existence of alternative techniques,

no investigation has compared the performance of these methods.

There are several papers in the literature related to diagnosis methods in

MSPC. These works introduce new contributions and provide limited com-

parisons with various reference methods. Some examples are Contribution

Plots (CP) [4][5][6], Reconstruction-Based Contributions (RBC ) [7][8], Di-

agonal Contributions (DC ) [8] and Relative Contributions (RC ) [8]. Several

variations of Reconstruction-Based Contributions can be found in the litera-
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ture [9][10][11]. All the preceding methods are based on computing the contri-

butions of the variables to the statistics used in PCA-MSPC. An alternative

approach is pursued by the observation-based Missing-data method for Ex-

ploratory Data Analysis (oMEDA) [12], which computes the contributions of

the variables to the scores in a given sub-space instead of the contributions to

the statistics.

Alcala and Qin [8] present an analysis of Contribution Plots, Reconstruction-

Based Contributions and Diagonal Contributions methods. These authors pro-

vide a generalization on Contribution Plots, named Complete Decomposition

Contributions (CDC) and Partial Decomposition Contribution (PDC). The

general expression is called General Decomposition Contribution (GDC).

In [7], the authors perform a Monte Carlo simulation to build a process model

to validate the RBC proposal. The experiment is performed using only one

data structure given by that simulation. The same structure is also used in [8],

and [13][14]. The authors in works [13][14] analyse the smearing effect on Con-

tribution Plots based methods. Similar approaches are followed in [9][10][11].

This reduced structure, and the apparent lack of consideration of the variety

of parameters that could affect the diagnosis, such as the number of variables

and the variation in the selected PCs, compromises the generality of the re-

sults.

An alternative approach to traditional diagnosis methods was presented in

[15]. This is based on the study of the correlation between variables. By ana-

lyzing changes on the correlations they are able to identify the variables more

frequently involved in a fault. The work includes two cases of study based

on an artificial network and on the simulation of a Continuous Stirred-Tank

Reactor (CSTR) system. The authors study a wide range of data sets and

perform a Montecarlo simulation to estimate calibration curves.
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Other data driven approaches suggest the application of causal maps to iden-

tify the root causes of an anomalous observation. The authors present an

evaluation of the methods proposed in their works, including several cases of

study on a Tennessee Eastman plant simulation [16][17].

In general, multivariate diagnosis methods suffer from the smearing prob-

lem: misdiagnosis owing to the spread of the contribution from the variables

affected by an anomaly to those not affected by it [14][18]. The smearing

problem is mainly a result of the correlation between variables that is taken

into account when the contributions are computed from the statistics, and

the original values of the variables need to be retrieved from only a few val-

ues, corresponding to the calculated scores. This turns the considered system

into a non-determined system. When a problem occurs and alters the normal

value of a variable, even while keeping the remaining variables under control,

it causes contamination in other contributions. After detecting the first high

contributions in the residual, the model is no longer valid and the scores and

residuals cannot be verified [18]. This problem results in a more complex diag-

nosis process and reinforces the necessity of a comprehensive study comparing

these techniques.

In this paper, we present a methodology that enables consideration of the

different factors that might influence the performance of diagnosis methods,

providing a comparison framework. The methodology has been validated con-

sidering different parameters that are varied across a number of synthetic

simulations and realistic experiments. Three multivariate diagnosis methods

have been included: CP, RBC, and oMEDA. Additionally, we propose a direct

univariate diagnosis method derived from the oMEDA expression. We term

this method Univariate-Squared (U-Squared).

The rest of the paper is organized as follows. In Section 2, the notation used
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in this paper is presented. In Section 3, the bases of MSPC, PCA, anomaly

detection and diagnosis methods are introduced, and the Univariate-Squared

method is presented as an alternative for diagnosis. Section 4 introduces a

new methodology for the experimental comparison of diagnosis methods. In

Section 5, this methodology is applied to several simulated and real data sets

and the results are discussed. Finally, in Section 6, the main ideas and contri-

butions of this investigation are summarized.

2 Notation

In this paper, these notation criteria are followed: scalars are specified with

lowercase letters, vectors with bold lowercase letters and matrices with bold

uppercase letters. If there is no explicit specification, vectors are row vectors

by default. Transposed matrices are indicated with an apostrophe. Constants

are specified with uppercase letters. Equations presenting matrix and vectorial

products and sums of scalars are used indistinctly throughout the paper for

clarity.

3 Diagnosis in PCA-MSPC

3.1 PCA-MSPC

MSPC is a methodology to distinguish common from special causes of varia-

tion in a process. Essentially, this means discriminating between events that

are considered normal in the process and those that seldom occur, i.e., those
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that are due to an abnormal event. PCA-MSPC is performed using a pair of

complementary statistics that enable the indirect monitoring of a high num-

ber of variables. The statistics are computed from the PCA decomposition of

calibration data to build a model of normal operation [4][5][6]. This method-

ology is applied to detect whether the behaviour of the incoming data from a

process fit the previously calibrated model.

MSPC is applied in two steps:

• phase I) It consists of detecting, diagnosing and correcting for special causes

of variation in the process, so that only common causes of variation remain.

In many cases, e.g. [6], phase I is limited to the removal of outliers, under

the belief that the rest of collected data represent an stable process.

• phase II) It is performed on new incoming data from the process to detect

excursions from the NOCs in a timely manner. When an anomaly is de-

tected, diagnosis is performed to identify its causes and classify its nature

[6][19][20].

3.2 PCA-based model

Given an N ×M data matrix, with N the number of observations and M the

number of variables, PCA identifies the sub-space with maximum variance

in the M -dimensional variables space. With PCA, the original variables are

linearly transformed into principal components (PCs). From the PCs, the first

A components are selected, capturing most percentage of the variance. The

PCA model can be expressed as follows [4][5]:

X = TA ·P′A + E (1)
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with TA the score matrix of size N ×A, PA the loading matrix of size M ×A,

and E, the residual matrix of size N ×M , corresponding to the variance not

captured by the PCA model.

The scores for a new observation, tnew, are computed by projecting the row

vector corresponding to that observation, xnew, onto the model subspace:

tnew = xnew ·PA (2)

Once the scores have been computed, the residuals, enew, are calculated:

enew = xnew − tnew ·P′A (3)

3.3 Anomaly detection

Both scores and residuals are monitored in the MSPC system using two statis-

tics, namely, the D-statistic (D), and the Q-statistic, (Q).

The D-statistic is computed to monitor the model subspace [4][5][18].

Dnew =
A∑
a=1

(tnewa

sa

)2
=

A∑
a=1

(tnewa )2

λa
(4)

where tnewa and s2a are, respectively, the score for the ath component and the

sample variance of this score. The variances of the principal components are

the eigenvalues, λa, of Λ = 1
N−1 ·T

′
A ·TA. Where Λ is a diagonal matrix with

the A first eigenvalues of 1
N−1 ·X

′ ·X.
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To monitor the residual, the Q-statistic is calculated as:

Qnew =
M∑
m=1

(enewm )2 (5)

where enewm is the residual value of the new observation corresponding to the

mth variable.

If any of the statistics corresponding to a new observation is greater than a

threshold, termed Upper Control Limit (UCL), this observation is identified

as anomalous. The scores are linear combinations of the original variables;

therefore, according to the Central Limit Theorem, they are supposed to follow

an approximately Normal distribution [6]. As a consequence, the D-statistic

times a constant in phase I follows a beta distribution [3]:

D ∼ (N − 1)2

N
BA/2,(N−A−1)/2 (6)

Therefore, the corresponding Upper Control Limit (UCL) for the D-statistic

at significance level α is given by:

UCL(D)α =
(N − 1)2

N
B(A/2,(N−A−1)/2),α (7)

For new incoming data in phase II, the D-statistic times a constant follows an

F distribution [3]:

D ∼ A · (N2 − 1)

N · (N − A)
FA,(N−A) (8)

And the corresponding UCL at significance level α is given by:
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UCL(D)α =
A · (N2 − 1)

N · (N − A)
F(A,(N−A)),α (9)

Several procedures can be used to determine the UCL for the Q-statistic.

Again, the residuals can be assumed to follow a multivariate normal distribu-

tion. Jackson and Mudholkar showed in [2] that an approximate critical value

at significance level α is given by:

UCL(Q)α = θ1 ·

zα
√

2θ2h20

θ1
+ 1 +

θ2h0(h0 − 1)

θ21


1
h0

(10)

where θn =
∑rank(X)
a=A+1 (λa)

n, with rank(X) the rank of the matrix of data X

and λa the eigenvalues of matrix 1
N−1 ·E

′ ·E, with E the matrix of residuals;

h0 = 1− 2θ1θ3
3θ22

; and zα is the 100 · (1− α)% standardized normal percentile.

Alternatively, the approximation based on the weighted chi-squared distribu-

tion proposed by Box can be used [21]. Control limits for the Q-statistic that

distinguish phase I and phase II can also be found in [19].

To achieve adequate performance of the monitoring charts in phase II, it is

highly recommended to readjust the control limits using the calibration data

on a leave-one-out basis [22][23]. The limits are raised or lowered so that the

Overall Type I (OTI) risk equals the imposed significance level α. Following

the definition in [6], the OTI is the percentage of false alarms in the NOC

calibration observations:

OTI = 100 · nf
N

% (11)

where nf is the number of false alarms (i.e., single observations where the
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statistic computed surpasses the control limit) in the NOC calibration data.

3.4 Diagnosis methods

In this paper, three existing multivariate methods are selected for compari-

son. Additionally, a fourth method, corresponding to a univariate approach,

is included:

i) Contribution Plots (CP). This is currently the most accepted approach for

diagnosis in PCA-MSPC [4][5][6][18].

The contribution of the mth variable to the D-statistic, cDm, is obtained from

the following expression:

cDm = tnew ·Λ−1 · p′m · xnewm (12)

where pm is the vector in the mth row of the loading matrix for the A selected

PCs, and Λ = 1
n−1 ·T

′
A ·TA is a diagonal matrix with the A first eigenvalues

of 1
n−1 ·X

′ ·X.

The contribution of the mth variable to the Q-statistic, cQm, corresponding to

the residual, is calculated applying

cQm = (xnewm − pm · t′new)2 (13)

ii) Reconstruction-Based Contributions (RBC). This is a popular method that

follows an alternative approach to compute the contributions of the variables

to a given statistic [7][8]. It is based on the work of Dunia et al. [24].

The contribution rbcDm to the D-statistic, corresponding to the model, is cal-
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culated from the expression

rbcDm =
(im ·DA · x′new)2

dmm
(14)

where DA = PA · Λ−1 · P′A, im stands for the mth row vector of the identity

matrix, I , with size M×M , and dmm is the mth element in the main diagonal

of matrix DA.

The contribution rbcQm to the Q-statistic, corresponding to the residual, is

obtained from

rbcQm =
(im ·CR · x′new)2

cRmm
(15)

with CR = PR ·P′R, where PR is the loading matrix with the residual compo-

nents from A + 1 to the rank of the data, and cRmm is the mth element in the

main diagonal of matrix CR.

iii) observation-based Missing-data method for Exploratory Data Analysis (oMEDA).

This is a method that was originally designed for exploratory data analysis

to compute the contribution of a variable to specific artefacts, such as clus-

ters or outliers, in the scores distribution [12]. Unlike the previous methods,

it uses the same expression for the model and residual sub-spaces and it does

not compute the contributions to the statistics. Moreover, it simultaneously

considers all the observations in the data matrix.

Let us consider the column vector, xm, containing each observation in the data

matrix for the mth variable:

xm = x̂m(Z) + em(Z) (16)

where x̂m(Z) is the estimated value of xm in a given sub-space Z and em(Z)

is the corresponding residual. Then, oMEDA follows:

dZm = 2 · x′m ·D · |x̂m(Z)| − x̂′m ·D · |x̂m(Z)| (17)
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that can be re-expressed only in terms of xm obtaining the estimated value,

x̂m(Z), from Equation (16) as follows:

dZm = (x′m + e′m(Z)) ·D · |xm − em(Z)| (18)

where D = d·d′

‖d‖2 and d is a dummy column vector with non-zero values in

positions corresponding to the observations to be studied 1 . In this paper, we

are interested in the diagnosis of one observation, which is possible by using

d = 1, which in turn means, D = 1. Then, the expressions corresponding to

the two sub-spaces under study can be obtained by substituying D = 1 in

Equation (18):

dDm = (xnewm + enewm ) · |xnewm − enewm | (19)

where Z = D refers to the model sub-space, i. e., the corresponding to the

selected PCs; and

dQm = (xnewm + x̂newm ) · |xnewm − x̂newm | (20)

where Z = Q, refers to the residual sub-space, i.e., the corresponding to the

non-selected PCs.

Note that the superscripts D and Q are used to maintain the consistency with

the terminology used in the previously studied diagnosis methods.

1 The way of selecting the possible non-zero values is out of the scope of this work,

for further details we recommend to follow the original paper [12].
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iv) Univariate-Squared (U-Squared). The correlation structure in the model

may not hold for a detected anomaly and therefore the division in model/residuals

found for calibration data may not be optimum for diagnosis. If this occurs,

one can consider that it makes no sense to calculate the contribution of the

variables to each statistic separately. Under this hypothesis, it might be inter-

esting to take into account the full variable space for diagnosis. The fact that

oMEDA is equally computed for the model and residual subspaces makes its

extension to the complete variable space possible. Thus, setting Z = D + Q

and using Equations (19) and (20) we obtain:

um = dD+Qm = xnewm · |xnewm | (21)

which is equivalent to um = sign(xnewm ) · (xnewm )2.

Note that this expression, which we have called Univariate-Squared, corre-

sponds to a univariate approach because it considers only the original value

of each variable and not the scores. Similar approaches have been analysed

elsewhere [13][14] but their proficiency has not been proven through a general

comparison.

The univariate proposal contrasts with the accepted trend in PCA-based

MSPC diagnosis: it adopts a univariate approach although a multivariate de-

tection has been previously applied. This method does not suffer from the

smearing problem, as the correlation, which is the main cause of the smearing

[13] [14][18], does not affect to the computation. To assess U-Squared and to

check whether the univariate approach is valid for diagnosis in MSPC, we have

included this method in the comparative.
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4 A methodology for the comparison of diagnosis methods

A comprehensive comparison methodology should meet several requirements:

• Generation of anomalies with known diagnosis. It must be known what

variables are affected by the anomaly prior to the comparison to check

whether the diagnosis methods correctly identify these variables.

• Definition of a metric to evaluate the diagnosis performance. Having a mea-

sure that indicates how much the known anomalous variables stand out from

the non-affected variables enables assessment of the diagnosis ability of each

evaluated method.

• Evaluation of factors affecting the diagnosis. The parameters that might

have an impact on the methods under consideration must be identified and

should be assessed when a comparison is conducted.

• Extraction of low uncertainty results. Varying the affecting previously iden-

tified parameters and repeating the configuration for different observations

or models is one way to obtain sufficiently large experiments, minimizing

the uncertainty.

We have developed an MSPC-based methodology to compare diagnosis meth-

ods based on these requirements.

4.1 Generating anomalies with known diagnosis

In this paper, we propose artificially generating anomalies by modifying NOC

observations to ensure that there are no other anomalies in the observation

except those introduced in this way. Let us consider an observation from the
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NOC matrix, x ∈ XNOC , i.e., an anomaly-free observation. We follow xalt =

x + r to obtain an anomalous observation, where

xalt,m =


xm, if xm ∈ ẋ,

χ · s, if xm ∈ x̃,

(22)

and s = sign(xm), and χ is the altered value of the observation for the pre-

viously selected set of variables, Ṽ, that makes either of the statistics, D or

Q, exceed its Upper Control Limit (UCL). x̃ are the variable(s) to be altered,

and ẋ are those that do not modify the original value.

We alter the original value of x by following Equation (22) until either of the

statistics is equal to the corresponding UCL multiplied by a given factor, K,

obtaining the anomalous observation, xalt. This can be done in several ways,

such as:

• Trial and error. We iteratively increase χ to modify the normal value of the

selected variables.

• Analytically. We use analytic expressions to compute a new value, χ, to

alter the selected variables.

The numeric approach can be computationally intensive, and for this reason,

we use the analytic expressions provided in Equations (25) and (26).

To derive the analytical expression, let us start by analyzing the equation

applied to compute the D-statistic, Dst = t ·Λ−1 · t′, where t is the score for

the observation, x, to be altered.

Considering that t = x · PA, the vector can be reordered into affected and

non-affected variables: xalt = [ẋ x̃] and their corresponding loading matrix:
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PA =


ṖA

P̃A

, where x̃ are the variable(s) to be altered, ẋ are those maintaining

their original values, and P̃A and ṖA are their loadings. A re-defined expression

for the D-statistic is:

Dst = (ẋ · ṖA + x̃ · P̃A) ·Λ−1 · (Ṗ′A · ẋ′ + P̃′A · x̃′) (23)

For fixed ẋ, solving the equation given by Dst = K · UCLD provides the

value for x̃ from the quadratic expression:

Dst = dD + x̃ · bD + x̃2 · aD = K · UCLD (24)

with dD = ẋ·ṖA·Λ−1·Ṗ′A·ẋ′, bD = s·(2·P̃A·Λ−1·Ṗ′A·ẋ′), aD = s·P̃A·Λ−1·P̃′A·s′,

and s is a vector containing the original sign of each variable in x. Finally,

the value for observation x after applying the alteration, xalt, is obtained by

replacing the variables to be altered with the result of solving Equation (24)

as a normal quadratic equation and selecting the solution that keeps the sign

in the discriminant:

x̃D = (−bD +
√

(bD)2 − 4 · aD · cD)/(2 · aD) (25)

where x̃D is the new value assigned to each selected variable for the altered

observation, xalt, and cD = dD −K ·UCLD.

Similarly, to alter a given observation, x, for the Q-statistic it is necessary to

replace the equation to solve, Qst = K ·UCLQ and to consider Qst = tR · t′R.

This makes dQ = ẋ · ṖR · Ṗ′R · ẋ′, cQ = dQ−K ·UCLQ, bQ = s · (2 · P̃R · Ṗ′R · ẋ′)

and aQ = s · P̃R · P̃′R · s′, where tR and PR stand for the score and the loadings
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in the residual. The resulting expression is:

x̃Q = (−bQ +
√

(bQ)2 − 4 · aQ · cQ)/(2 · aQ) (26)

Finally, the new value for the variables to be altered is:

χ = min(x̃D, x̃Q) (27)

4.2 Defining a metric for the diagnosis performance

By defining a ratio based on the relation between the contribution of the

anomalous variables and the contribution of the non-affected variables, it is

possible to assess and compare the diagnosis power of the methods. We propose

a metric calculated as the ratio between the average of the contributions from

these variables. We denote this ratio Diagnosis Goodness Ratio, γ.

γ =
µc̃

µċ

(28)

with µc̃ and µċ

µc̃ =

∑
x̃m∈x̃ |c(x̃m)|
V

(29)

µċ =

∑
ẋm∈ẋ |c(ẋm)|
M − V

(30)

where c(x̃m) are the contributions for the modified variables, c(ẋm) the contri-

butions for the non-affected variables in the altered observation, xalt = [ẋ x̃],

and V is the number of altered variables. The greater the ratio γ is, the better

17



the diagnosis power for the method. If the value of γ is close or equal to 1,

there is no diagnosis capability.

4.3 Evaluating factors affecting the diagnosis

Our goal is to evaluate how different factors could affect the diagnosis results.

Different parameters might be identified as relevant in a comparative study

and could then be varied along the scenarios to provide general results. We

consider the following factors:

• Selected PCs (pcs). How to select the number of PCs to build a PCA-model

remains an open problem because the number affects the quality of the

model [5][6][25][26].

• Number of variables to alter (V). The number of variables affected by an

anomaly is important for multivariate diagnosis and it can be varied during

the analysis. Note that the expressions proposed in Equations (25) and (26)

allow the alteration of any number of variables.

• Size of the calibration matrix (τ). This size is the relationship between the

number of variables (M) to be observed and the number of samples (N) to

be studied. We consider different types of matrices: Fat matrices, F , with

M > N ; Square matrices, S , with N ' M ; and Thin matrices, T , with

N > M .

We have selected parameters related both to the detection/diagnosis methods

(number of PCs), and also (meta)parameters related to the data under moni-

toring (type of the calibration matrix and number of variables to be altered).

Note that, to the best of our knowledge, these parameters have not been
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considered in previous comparisons.

4.4 Yielding low uncertainty results

We follow a Monte Carlo procedure to perform an experimental comparison

according to the identified needs, achieving low uncertainty results.

Let us call XNOC the NOC data set to be altered during the experiment.

A core algorithm, Algorithm 1, has been designed based on Sections 4.1, 4.2

and 4.3.

The core algorithm is repeated over Y experiments by considering every com-

bination of the parameters: the type of matrix (τ), the number of selected

PCs (pcs), the number of variables to be altered (V), and the randomly gen-

erated NOC observations (nobs). For each observation x, v random variables

are selected to obtain the set of variables Ṽ to be altered, where v varies in

the range {1 : V} and corresponds to the number of selected variables. Once

the anomaly is generated, it is introduced in these selected variables, produc-

ing xalt. Then, the statistics for the anomalous observation are computed, in

addition to the number of anomalies on each statistic (nDst and nQst), the

contributions and the ratios.

5 Experimental section

All the experiments have been implemented using Matlab R©. The MEDA-

Toolbox, a set of multivariate analysis tools for the exploration of data sets [12],

has been used to implement the studied methods and the proposed method-

ology.

19



Algorithm 1 Comparison of diagnosis methods - Core algorithm

1: procedure core–CMP–Methods

2: for each τ ∈ {T, S, F} do

3: for each pc ∈ pcs do

4: for v ∈ {1 : V} do

5: for each observation n ∈ {1 : nobs} do

6: x← XNOC(n)

7: xalt ← x // Anomalous observation is initialized to x

8: Ṽ← {ṽ1, ..., ṽv} // Select ṽv randomly

9: x̃D
Ṽ
← Anomaly generation Eq.(25)

10: x̃Q
Ṽ
← Anomaly generation Eq.(26)

11: χ← min{x̃D
Ṽ
, x̃Q

Ṽ
} Eq.(27)

12: xalt(Ṽ )← χ // Variables in Ṽ take the new value, χ

13: Compute Dst(xalt) and Qst(xalt)

14: Increase nDst if Dst >UCLD

15: Increase nQst if Qst >UCLQ

16: for each method do

17: Compute contributions

18: γ ← µc̃
µċ

// Ratio calculation

19: end for

20: end for

21: end for

22: end for

23: end for

24: end procedure
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To assess the performance of the selected methods, we have computed and

compared the corresponding ratios under a wide range of simulated situations

using simuleMV [27]. simuleMV is simulation software that generates random

data for a given level of correlation, δ ∈ {0, 9}, where 0 is applied when there

is no correlation and 9 is applied when the correlation is the maximum. The

software takes into account the number of observations, N , and the number

of variables, M , for the matrix to be simulated. simuleMV also enables the

generation of a data matrix based on a given covariance matrix.

The results have been validated using two data sets related to real fields of

activity: one obtained by simulating the Saccharomyces process (chemomet-

rics) [6][28] and the other using traffic data from a communications network

(networkmetrics) [29].

Note that the Monte Carlo approach allows the generation of anomalies that

cover a wide range of possibilities, both univariate and multivariate and both

holding/breaking the correlation structure in the model. Unlike in other re-

lated works [16][17][30][15] we skip the use of first principles models in the

anomaly generation procedure to avoid drawing conclusions that only hold

in very specific cases/processes. However, the results should be interpreted

considering that there is no theoretical warranty that all types of failure are

covered.

We have auto-scaled the data in all cases, as we assume that they come from

heterogeneous sources.
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τ N M δ Y pcs V nobs

Thin (T ) 100 10 {3, 6, 9} 10 {1, 2} {1, 2, 3} 100

Square (S ) 100 100 {3, 6, 9} 10 {1, 4} {1, 2, 3} 100

Fat (F ) 100 1000 {3, 6, 9} 10 {1, 11} {1, 2, 3} 100

Table 1

Parameters involved in the Monte Carlo Simulation - δ, N and M are parameters

in simuleMV

5.1 Simulation data sets

Table 1 shows the configuration for the experiment using the methodology

proposed in this paper.

• Three types of matrices - T (Thin) = 100 × 10, S (Square) = 100 × 100,

F (Fat) = 100× 1000 - are simulated.

• Three different correlation levels, δ, are considered for each type of matrix:

low = 3, normal = 6 and high = 9.

• Y = 10 different models are generated for each type of matrix and correla-

tion level.

• The number of selected PCs is: i) pcs = 1, and ii) the number of PCs that

captures the 75% of the total variance.

• The number of variables to be altered, V , is varied from 1 to 3.

• The number of random observations selected is nobs = N .

We distinguish between statisticsQ andD in the results because this difference

has traditionally been considered. According to the expressions defined in

Equations (25) and (26), the variables are altered until any of the statistics is
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K = 2 times its upper control limit. The core algorithm is applied iteratively

over the presented parameters.

5.1.1 Results

The comparison study includes an analysis of variance (ANOVA) performed

on the ratio values. A logarithmic transform is applied to the ratio outcomes

to smooth their positive skewness. The test includes the factors of the ex-

periment: correlation level (δ), selected PCs (pcs), number of affected vari-

ables (V), diagnosis method, type of matrix (τ), statistics, and first-order

interactions. The ANOVA result shows that all these factors and their corre-

sponding interactions, except the correlation level, are statistically significant

(p− value < 0.01).

We are also interested in identifying which of the studied factors are most

relevant. With this aim, the effect size

η2 = SS(f)/SS(total) (31)

has been computed, where SS(f) is the sum of squares of the evaluated factor,

f , according to the ANOVA decomposition, and SS(total) is the total sum of

squares. The most relevant parameters, sorted by η2, are the type of matrix

(τ), the statistic, and the diagnosis method. These parameters also present

strong interactions; thus, varying any of them has a considerable effect on the

other. This suggests that the comparison of the diagnosis methods should be

performed individually for each combination of statistic and type of matrix.

For that, we compute the least significant difference (LSD) plots, shown in

Fig. 1 when statistically significant differences are identified among the ap-

proaches. U-Squared is in most cases better than the other methods, except
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Fig. 1. ANOVA indicates that the results are significant for the selected parameters.

for Square matrices for the Q-statistic, where CP and RBC are better.

As a part of the study of the results, we identify whether faults are detected

in the D-statistic, the Q-statistic or both. The percentage of detection for a

normal correlation level, δ = 6, is shown in Fig. 2. In general, the probability of

detecting an anomaly in the D-statistic increases with the number of affected

variables and the number of selected PCs whereas the percentage of detecting
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an anomaly in the Q-statistic is always greater than that of the D-statistic.

Though not shown in the figure, this trend has been observed to be greater

or equal when the correlation level is increased. We have also found that in

Square matrices with the maximum correlation level, the greatest probability

of detecting an anomaly occurs in the D-statistic, and it is very low in the

Q-statistic.

To study the distribution in the diagnosis results and to interpret the ANOVA

from a practical viewpoint, different plots have been produced using the Ad-

vance Blox Plot, aboxplot [31]. These plots include the mean value represented

by a circle, together with the quartiles and outliers. We have represented the

ratios, γ, for each type of matrix classified according to the statistic to which

the methods are applied. We have also differentiated the number of selected

PCs. Fig. 3 and 4 show the results for a normal correlation level, δ = 6. The

outcomes for anomalies detected in the D-statistic are on the left, while those

for the Q-statistic are on the right. Note that if an anomaly has been detected

in both Q and D, it is in both images. According to the observed percentages

of anomaly detection for each statistic, there are only a few or no anomalies in

the D-statistic when 1 PC is selected for the Square and Fat matrices. There-

fore, those with a detection percentage less than 5% are not considered and

only the ratios for the Q-statistic for Square and Fat matrices are shown in

Fig. 3 when 1 PC is selected.

The Univariate-Squared method is confirmed, in general, to be better or equiv-

alent to the other methods. From a pragmatic view, the difference is relevant

for the D-statistic and, for Thin matrices, also for the Q-statistic. Although

the differences in the Q-statistic are not important, applying U-Squared avoids

the smearing effect as it does not take into account the correlation between
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(a) Thin matrices (100x10)
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(b) Square matrices (100x100)
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(c) Fat matrices (100x1000)

Fig. 2. Percentage of detected anomalies by the statistics for 1 PC and for the

number of PCs that captures 75% of the total variance: 2 PCs, 4 PCs, and 11 PCs

for (a) Thin matrix (T), (b) Square matrix (S) and (c) Fat matrix (F) simulated

with correlation level δ = 6 (normal correlation)

variables. This makes the differences between the results more evident when

the number of PCs is increased, which is also the reason for the larger differ-

ences in the D-statistic.

The Reconstruction-Based Contributions method has a very low ratio when
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Fig. 3. Ratios, γ, for 1 PC for (a) Thin matrix (T), (b) Square matrix (S) and (c)

Fat matrix (F) simulated with correlation level δ = 6, corresponding to normal or

normal interdependence.

the diagnosis is performed for the D-statistic. In fact, when 1 PC is selected,

the ratio γ is always equal to 1, indicating a lack of diagnosis capability. This

result is mathematically proven in the Appendix of this paper by deriving the

RBC expression for the D-statistic.
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Fig. 4. Ratios, γ, for 2 PCs, 4 PCs, and 11 PCs for (a) Thin matrix (T), (b)

Square matrix (S) and (c) Fat matrix (F) simulated with correlation level δ = 6,

corresponding to normal or normal interdependence.

Finally, we have verified these results using mean-centered data. We have

found that although the ratios are generally lower than auto-scaling, the per-

formance of the methods is the same as when using auto-scaled data.
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τ N M Y pcs V nobs

Thin (T) 3000 11 1 {1, 2} {1, 2, 3} 3000

Square (S) 900 781 1 {1, 2} {1, 2, 3} 900

Fat (F) 30 1100 1 {1, 2} {1, 2, 3} 30

Table 2

Parameters involved in verification using Saccharomyces cerevisiae process data

5.2 Validating the results using realistic data sets

After performing the comparison with simulation data, we have tested whether

the results are consistent for data obtained from real applications. With this

aim, two additional data sources are considered: one data set obtained by

simulating the Saccharomyces process (chemometrics) [28] and the other cor-

responding to traffic data from a communications network (networkmetrics)

[29]. These data sources are considered because chemometrics is where PCA-

MSPC is most commonly applied [6][32][33] and networkmetrics is a growing

application area that uses a variation of MSPC, termed MSNM (Multivariate

Statistical Process Monitoring) [20] [34].

5.2.1 Saccharomyces

This test is based on the Saccharomyces cerevisiae batch process [22][28].

As the data are three-way, they have been unfolded for the application of

PCA-MSPC. Batch-wise, Variable-wise and Batch-Dynamic unfolding [35]

have been used to obtain Fat, Thin and Square matrices, respectively. The

parameters for the Monte Carlo experiment are shown in Table 2.
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These data have been altered in the same way as in the simulation section but

using only one replicate for each considered type of calibration matrix (Thin,

Square and Fat). The number of selected PCs is i) pcs = 1, and ii) pcs = 2,

i. e., the number of PCs that captures the 75% of the total variance. The

number of observations selected is nobs = N . The variables are altered until

either of the statistics is K = 2 times its control limit.

The comparative study includes, similarly to simuleMV, an ANOVA per-

formed on the ratio values. The test considers the factors of the experiment:

selected PCs (pcs), number of affected variables (V), diagnosis method, type of

matrix (τ), and statistics, as well as the first-order interactions. The ANOVA

result is consistent with that obtained using simuleMV as it shows that all

these factors and the corresponding interactions are statistically significant

(p− value < 0.01).

The effect size is also computed using Equation (31) to verify whether the

factors identified as relevant in the simulation are valid for the data set from

the Saccharmyces process simulation. The most relevant parameters are the

same as those in the simuleMV results: the type of matrix (τ), the statistic,

and the diagnosis method. These parameters also present similar strong inter-

actions. According to these results, the comparison is performed individually

for each combination of statistic and type of matrix for the diagnosis meth-

ods. We compute the least significant difference (LSD) plots when statistically

significant differences are identified among the approaches. The results are in

agreement with those from the simulation: U-Squared is in most cases better

than the other methods, except for the Q-statistic for Square matrices, where

CP and RBC are better. For the Q-statistic for Fat matrices, there is no dif-

ference in any of the methods.
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(a) Thin matix (1000x11)
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(b) Square matrix (300x781)
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(c) Fat matrix (10x1100)

Fig. 5. Percentage anomalies detected by the statistics for 1 PC and 2 PCs for (a)

Thin matrix (T), (b) Square matrix (S) and (c) Fat matrix (F) corresponding to

the Saccharomyces cerevisiae process simulation.

Fig. 5 shows the percentage of anomalies detected for each statistic. Compared

to the distribution of probabilities obtained using simuleMV, the probability

of detection only in the Q-statistic has decreased for each type of matrix.

There is a greater probability of detecting an anomaly in both statistics si-

multaneously, compared to the simulation results. Fig. 6 and Fig. 7 show the
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Fig. 6. Ratios, γ, for 1 PC for (a) Thin matrix (T), (b) Square matrix (S) and (c)

Fat matrix (F) corresponding to the Saccharomyces cerevisiae process simulation.

distribution of the ratios computed after applying the diagnosis methods. The

outcomes for anomalies detected in the D-statistic are on the left, whereas

those for the Q-statistic are on the right. Note that if an anomaly is detected

in both Q and D, it is included in both graphics. From a practical viewpoint,

the differences are more relevant for the D-statistic, and similarly to the sim-

ulated data results, these differences are more evident when the number of
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Fig. 7. Ratios, γ, for 2 PCs for (a) Thin matrix (T), (b) Square matrix (S) and (c)

Fat matrix (F) corresponding to the Saccharomyces cerevisiae process simulation.

PCs is increased. For the Q-statistic, the difference between U-Squared and

the other methods is not important, although it is a useful way to avoid the

smearing effect.

For this data set, RBC does not show good results for the D-statistic and

cannot be used for diagnosis when only 1 PC is selected.
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τ N M Y pcs V nobs

Fat (F) 501 24 1 {1, 2} {1, 2, 3} 1000

Table 3

Parameters involved in Verification using Network data

5.2.2 Communications Network Traffic

Data from a communications network have been also used in this study. The

full data set is the same as used in [29]. This data set has been split into two

sets: a calibration set, corresponding to one-third of the observations, cal, and

a test set with the remaining observations, X. The matrix cal contains N =

501 observations and M = 24 variables. X includes one hour with network

attacks and, in order to avoid polluted values, corresponding observations

have been removed. Additionally, only data below 50% of the UCL are used

to ensure the test data are NOC. The final data set, XNOC , has N = 303

observations and M = 24 variables. The type of matrix could be considered

a priori to be a Thin model, however, its rank is 10, imposed by the rows,

which is closer to a Fat or even a Square matrix with dimensions 10× 24.

The core algorithm is run using nobs = 1000 random observations for only

one type of matrix. The number of selected PCs is i) pcs = 1, and ii) pcs = 2,

i. e., the number of PCs that captures the 75% of the total variance. The

variables are altered until either of statistics is K = 2 times its control limit.

The configuration for the experiment is shown in Table 3.

ANOVA is performed on the ratio values to compare the results with those

from the simulated data. The test takes into account the factors of the experi-

ment: selected PCs (pcs), number of affected variables (V), diagnosis method,

and statistics, as well as their first-order interactions. Note that the type of
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(a) Communications Network Traffic

Fig. 8. Percentage anomalies detected by the statistics for 1 PC and 2 PCs corre-

sponding to Communications Network Traffic.
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Fig. 9. Ratios, γ, for 1 PC corresponding to Communications Network Traffic.

1 2 3

Variables

100

101

102

103

104

R
at

io
s

CP-Q
RBC-Q
oMEDA-Q
U-Squared

(a) Communications Network

Traffic - 2 PCs

Fig. 10. Ratios, γ, for 2 PCs corresponding to Communications Network Traffic.

matrix is not needed in this case. The result from the test is consistent with

that obtained using simuleMV and shows that all these factors and the cor-
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responding interactions are statistically significant (p− value < 0.01).

The effect size is also computed using Equation (31) to verify whether the

factors identified as relevant in the simulation are valid for the considered

communications network data set. The most relevant parameters are, sorted

by η2, the statistic, the diagnosis method, and the number of altered vari-

ables. These parameters are, without considering the type of matrix, the same

as those from the simulation and also present strong interactions. Using these

results, the comparison is performed individually for the diagnosis methods

for each statistic. We compute the LSD plots when statistically significant

differences are identified among the approaches. The results are in agreement

with those from Fat matrices in the simulation: U-Squared is better than the

other methods.

Fig. 8 shows the percentages of anomaly detection for each statistic. The prob-

ability of detection of an anomaly in only the Q-statistic is closer to that of

a Square matrix. Fig. 9 and 10 show the distribution of the ratios computed

after applying the diagnosis methods. According to the observed anomaly de-

tection percentages for each statistic, there are only a few or no anomalies in

the D-statistic. Therefore, those which have a detection percentage less than

5% are not considered, and only the ratios for the Q-statistic are shown in

Fig. 9 and 10. From a practical outlook, there are no significant differences

between U-Squared, CP and RBC, but U-Squared has the advantage of avoid-

ing the smearing effect.
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6 Conclusion

In this paper, we define a methodology to perform experimental comparisons

between different diagnosis methods. This methodology satisfies the require-

ments we previously identified for a comprehensive comparison: i) anomalies

with known diagnosis are generated from NOC data, ii) we define a way to

measure the diagnosis ability of each method, iii) factors that might affect the

diagnosis are identified, and iv) we perform a Monte Carlo procedure to obtain

low uncertainty results. We believe that this is a generic methodology, since

the Monte Carlo approach allows the generation of anomalies that cover a wide

range of possibilities, both univariate and multivariate and holding/breaking

the correlation structure in the model. However the results should be inter-

preted considering that there is no theoretical warranty that all types of failure

are covered.

Three diagnosis methods of multivariate statistical processes control in the

industry are compared using the proposed methodology: Contribution Plots

(CP), Reconstruction Based Contributions (RBC) and observation-based Missing-

data method for Exploratory Data Analysis (oMEDA). A fourth method that

follow a univariate approach is also included, Univariate Squared (U-Squared),

with the following rationale: when an anomaly breaks the model of normal op-

eration, the decomposition into two subspaces is no longer valid so it makes

sense to consider the full variable space for diagnosis. This approach does not

suffer from the smearing problem, as the correlation between variables is not

considered. Applying oMEDA to the full variable space led us to derive the

U-Squared expression and to include it in the comparison.
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The analysis of variance performed as part of the study indicates that several

parameters are relevant to the diagnosis: the dimensions (rows × columns)

of the matrix, the diagnosis method, the statistic (D or Q), the number of

selected PCs and the number of affected variables. Corresponding least sig-

nificant difference (LSD) plots show that U-Squared is statistically significant

better than the other methods. Representing the results with box plots shows

these results are especially relevant for the D-statistic. This is because U-

squared is computed in the full variable space, avoiding the problems that

result from considering the correlation captured for the selected PCs after the

occurrence of an anomaly, i. e., the smearing of information among the vari-

ables.

The RBC method presents very low ratios for the D-statistic and we math-

ematically prove, in an Appendix to this paper, that this method does not

have diagnosis ability when 1 PC is selected in the D-statistic because all the

contributions have exactly the same value.

The comparison is validated using realistic data sets from a Saccharomyces

process simulation and from a communications network, and the results are

consistent with those obtained from the simulated data.

This study has led us to propose a mixed PCA-MSPC process in which de-

tection is performed using a multivariate approach but diagnosis is performed

via a univariate method.
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Appendix A. Mathematical demonstration of ratio = 1 when 1 PC

is selected for the D-statistic and RBC is applied

The RBC expression for the Hotelling’s T 2 is analysed here. T 2 = x′ ·DA · x,

with DA = PA · Λ−1A · P′A, is used to define the RBC expression for the D-

statistic in [7][8]. Following a similar derivation procedure as in [36], we can

define:

α̌Am =
A∑
a=1

p2m,a
Λa

(32)

β̌Av,m =
A∑
a=1

pv,a · pm,a
Λa

(33)

where pm,a is the loading of the variable m and the selected component a, Λa is

the element corresponding to the selected component a on the main diagonal

of ΛA, pv,m is the loading of variable v, and β̌v,m are the elements that do not

belong to the main diagonal of the matrix.

Let us consider now Equation (34) to be the expression in the D-statistic for

the variable m

im ·DA · x = α̌Am · xm +
∑
v 6=m

β̌Av,m · xv (34)

and

dm,m = i′m ·DA · im = α̌Am (35)

the element dm,m corresponding to the diagonal of the matrix DA. From equa-

tions (14) and (35):
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rbcDm = x′ ·DA · im · (i′m ·DA · im)−1 · i′m ·DA · x (36)

is the extended form of Equation (14) for RBC. By combining it with Equa-

tion (34), it can be re-written as follows:

rbcDm =
(α̌Am)2 · x2m +

∑
v 6=m(β̌Av,m)2 · x2v

α̌Am
+

2 · α̌Am · xm ·
∑
v 6=m β̌

A
v,m · xv

α̌Am
+

2 ·∑v 6=m
∑
w 6=v 6=m β̌

A
v,m · β̌Aw,m

α̌Am
(37)

By applying Equation (37) for 1 selected PC, and replacing α̌Am and β̌Av,m with

Equations (32) and (33), the Equation (38) is obtained:

rbcDm = ((
p2m,1
Λ1

)2 · x2m +
∑
v 6=m

(
pm,1 · pv,1

Λ1

)2 · x2v +

2 ·
p2m,1
Λ1

· xm ·
∑
v 6=m

pm,1 · pv,1
Λ1

· xv +

2 ·
∑
v 6=m

∑
w 6=v 6=m

p2m,1 · pv,1 · pw,1
Λ1

· xv · x′w) · 1

p2m,1/Λ1

(38)

By grouping and simplifying Equation (38) in Equations (39) and (40),

rbcD1PC
m =

1

Λ1

· p2m,1 · x2m +
1

Λ1

·
∑
v 6=m

p2v,1 · x2v +

2

Λ1

· xm ·
∑
v 6=m

pm,m · pv,1 · xv +

2

Λ1

·
∑
v 6=m

∑
w 6=v 6=m

pv,1 · pw,1 · xv · x′w (39)
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rbcD1PC
m =

1

Λ1

·
∑
v

p2v,1 · x2v +

2

Λ1

·
∑
v

∑
w 6=v

pv,1 · pw,1 · xv · x′w =

rbcD1PC
v (40)

it is shown that the RBC value for the expression in the D-statistic is exactly

the same for every variable, i. e., each variable has the same contribution,

which makes, according to Equation (28), the ratio γ = 1. This is translated

into a lack of diagnosis ability for RBC for the D-statistic if 1 PC is selected,

as it cannot be distinguished which variables are affected when there is an

anomaly.
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