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Abstract

The main purpose of this work is to provide the general solutions of a class of linear functional equa-
tions. Let n ≥ 2 be an arbitrarily fixed integer, let further X and Y be linear spaces over the field K and let
αi, βi ∈ K, i = 1, . . . , n be arbitrarily fixed constants. We will describe all those functions f , fi, j : X×Y → K,
i, j = 1, . . . , n that fulfill functional equation

f

 n∑
i=1

αixi,

n∑
i=1

βiyi

 =

n∑
i, j=1

fi, j(xi, y j) (xi ∈ X, yi ∈ Y, i = 1, . . . , n) .

Additionally, necessary and sufficient conditions will also be given that guarantee the solutions to be non-
trivial.

Dedicated to Professor János Aczél on the occasion of his 95th birthday.

1 Introduction
As János Aczél wrote in his famous and pioneering monograph [1]: ‘Functional equations have a long history
and occur almost everywhere. Their influence and applications can be felt in every field, and all fields benefit
from their contact, use, and technique.’ Almost the same can be said about the class of linear functional
equations. This area is one of the most investigated topic in this field, several authors studied this class, see
e.g. [2, 3, 4, 5, 6, 7, 8, 9, 10, 14, 18, 19, 20].

The main purpose of this paper is to describe the general solutions of a class of linear functional equations.
More precisely, we are interested in the following problem. Let n ≥ 2 be an arbitrarily fixed integer, let further
X and Y be linear spaces over the field K and let αi, βi ∈ K, i = 1, . . . , n be arbitrarily fixed constants. Assume
further that for the functions f , fi, j : X × Y → K, i, j = 1, . . . , n, functional equation

f

 n∑
i=1

αixi,

n∑
i=1

βiyi

 =

n∑
i, j=1

fi, j(xi, y j) (xi ∈ X, yi ∈ Y, i = 1, . . . , n) (1)

is fulfilled.
This equation belongs to the class of linear functional equations, that was thoroughly investigated by

L. Székelyhidi in [15, 16, 17]. For the sake of completeness, here we briefly recall the main results from
Székelyhidi [15].

Definition 1. If G, S are groups and n is a positive integer, then a function A : Gn → S is said to be n-additive
if it is a homomorphism in each variable. Let F : Gn → S be a function, then the function ϕ : G → S defined
by

ϕ(x) = F(x, . . . , x) (x ∈ G)

is said to be the diagonal of F and it is denoted by diag(F). Further, let

Ak(x, y) = A(x, . . . , x︸  ︷︷  ︸
k times

, y, . . . , y︸  ︷︷  ︸
n − k times

) (x, y ∈ G) .
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Remark. Let G, S be groups, n be a positive integer and A : Gn → S be an n-additive function. Then for all
k ∈ Z and for arbitrary i ∈ {1, . . . , n} we have

A (x1, . . . , xi−1, kxi, xi+1, . . . , xn) = kA (x1, . . . , xi−1, xi, xi+1, . . . , xn) (x1, . . . , xn ∈ G) .

For a function f , rng( f ) denotes the range of f .

Definition 2. Let G, S be Abelian groups, let n be a non-negative integer. The function f : G → S is said to
be of degree n, if there exist functions fi : G → S and homomorphisms ϕi, ψi : G → G such that

rng(ϕi) ⊂ rng(ψi) (i = 1, 2, . . . , n + 1) (R1)

and functional equation

f (x) +

n+1∑
i=1

fi (ϕi(x) + ψi(y)) = 0 (x, y ∈ G) (2)

holds.

Definition 3. Let G, S be Abelian groups, let n be a non-negative integer. The function f : G → S is called
a (generalized) polynomial degree n, if for all k = 0, 1, . . . , n there exists a k-additive mapping Ak : Gk → S
such that

f =

n∑
k=0

diag(Ak),

where 0-additive functions are to be understood constant functions.

Theorem 1 (Theorem 3.6 of [15]). Let G, S be Abelian groups and suppose that G is divisible. Let n be a
non-negative integer. The function f : G → S is of degree n if and only if it is a polynomial of degree n.

Theorem 2 (Theorem 3.9 of [15]). Let G, S be Abelian groups and suppose that G is divisible and S is torsion
free. Let n ∈ N be a non-negative integer and let ϕi, ψi be homomorphisms of G onto itself such that

rng
(
ψ j ◦ ψ

−1
i − ϕ j ◦ ϕ

−1
i

)
= G (i , j, i, j = 1, . . . , n + 1) . (R2)

The functions fi : G → S (i = 0, 1, . . . , n + 1) satisfy functional equation

f0(x) +

n+1∑
i=1

fi (ϕi(x) + ψi(y)) = 0 (x, y ∈ G)

if and only if for all k = 0, 1, . . . , n and i = 0, 1, . . . , n + 1 there exist symmetric k-additive functions A(i)
k : Gk →

S such that

fi =

n∑
k=0

diag
(
A(i)

k

)
(i = 0, 1, . . . , n + 1)

and the equations

A(0)
k, j(x, 0) +

n+1∑
i=1

A(i)
k, j (ϕi(x), ψi(y)) = 0 (x, y ∈ G)

hold for all j = 0, 1, . . . , n and k = j, j + 1, . . . , n.

Observe that equation (1) can be reduced to the form (2). Indeed, suppose that n = 2 (or substitute zero in
place of the variables except a distinguished pair) and consider the following family of homomorphisms

ϕα,β(x, y) =

(
α 0
0 β

)
·

(
x
y

)
(x ∈ X, y ∈ Y, α, β ∈ K) .
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With these notations (1) can be re-written as

f
(
ϕα1,β1(u) + ϕα2,β2(v)

)
=

f1,1(ϕ1,1(u) + ϕ0,0(v)) + f1,2(ϕ1,0(u) + ϕ0,1(v)) + f2,1(ϕ0,1(u) + ϕ1,0(v)) + f2,2(ϕ0,0(u) + ϕ1,1(v))
(u, v ∈ X × Y) .

At the same time (as it can be seen in the following subsection), we cannot state that the functions involved
are polynomials. This is because the fact that the homomorphisms ϕα,β defined above in general do not fulfill
range condition (R1), neither fulfill range condition (R2). What is more, they are injective if and only if
α, β , 0 and in such a situation ϕ−1

α,β = ϕα−1,β−1 . Notice that equation (1) involves the projections ϕ1,0, ϕ0,1 and
ϕ0,0. None of these are injective. This shows that Theorems 1 and 2 cannot be applied in our situation.

2 Special cases of the original equation

2.1 The one-variable sub-case
In this sub-case let n ∈ N, n ≥ 2 be arbitrarily fixed, X be a linear space over the field K and suppose that for
the functions f , f1, . . . , fn : X → K functional equation

f

 n∑
i=1

αixi

 =

n∑
i=1

fi(xi) (x1, . . . , xn ∈ X) (3)

holds with certain constants α1, . . . , αn ∈ K.
Observe that without loss of generality

f (0) = f1(0) = . . . = fn(0) = 0 (∗)

can be assumed. Otherwise we consider the functions

f̃ (x) = f (x) − f (0)
f̃1(x) = f1(x) − f1(0)

...

f̃n(x) = fn(x) − fn(0)

(x ∈ X) .

They clearly vanish at zero and they also fulfill the above functional equation. Therefore from now on we
always suppose that (∗) holds.

As we will see, the solutions of equation (3) heavily depend on whether or not there are zeros among the
parameters α1, . . . , αn. We may (and also do) assume that these parameters are arranged in the following way:
there exists a non-negative integer k ≤ n such that αi , 0 for i = 1, . . . , k, but αi = 0 for all i = k + 1, . . . , n.

Proposition 1. Let n ∈ N, n ≥ 2 be arbitrarily fixed, X be a linear space over the field K and suppose that
for the functions f , f1, . . . , fn : X → C functional equation (3) holds with certain constants α1, . . . , αn ∈ K and
assume that (∗) is also satisfied. Suppose further that αi , 0 for i = 1, . . . , k, but αi = 0 for all i = k + 1, . . . , n.
Then

(i) in case k = 0, all the functions f1, . . . , fn are identically zero and f : X → C is any function fulfilling
f (0) = 0,

(ii) in case k = 1, all the functions f2, . . . , fn are identically zero and f , f1 : X → C are any functions
vanishing at zero and fulfilling

f (α1x) = f1(x) (x ∈ X) ,

(iii) otherwise, there exists an additive function χ : X → C such that

f (x) = χ(x) and fi(x) = χ(αix) for i = 1, . . . , k

and the functions fk+1, . . . , fn are identically zero.
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Conversely, the mappings f , f1, . . . , fn : X → C vanish at zero and they also fulfill (3).

Proof. In case k = 0 equation (3) reduces to

n∑
i=1

fi(xi) = 0 (x1, . . . , xn ∈ X) .

Since we have independent variables, this immediately yields that the involved functions have to be constant
functions. In view of (∗) this means that they have to be identically zero and the only information we get for
the function f is that f (0) = 0.

In case k ≥ 1, our equation can be written as

f

 k∑
i=1

αixi

 =

n∑
j=1

f j(x j) (x1, . . . , xn ∈ X) .

With the substitution
x1 = . . . = xk = 0

we obtain that

0 =

n∑
j=k+1

f j(x j) (xk+1, . . . , xn ∈ X) ,

which (similarly as above) yields that the functions fk+1, . . . , fn are identically zero. Using this, the functions
f , f1, . . . , fk fulfill

f

 k∑
i=1

αixi

 =

k∑
i=1

fi(xi) (x1, . . . , xk ∈ X) . (4)

If k = 1, this is nothing but
f (α1x) = f1(x) (x ∈ X) ,

showing that in this case there is nothing to prove.
Assume that k ≥ 2 and let i, j ∈ {1, . . . , k} be different integers. Then equation (4) with xl = 0 for

l ∈ {1, . . . , k} \ {i, j} is
f (αixi + α jx j) = fi(xi) + f j(x j)

(
xi, x j ∈ X

)
,

which, after introducing the functions

f̃l(x) = fl

(
x
αl

)
(x ∈ X, l = 1, . . . , k)

can be reduced to the system of Pexider equations

f (xi + x j) = f̃i(xi) + f̃ j(x j)
(
xi, x j ∈ X, i, j ∈ {1, . . . , k} , i , j

)
.

This means that there exists an additive function χ : X → C such that

f (x) = χ(x) and fi(x) = χ(αix) for i = 1, . . . , k.

�

3 The two-variable case with n = 2

In this section we will focus on functional equation

f (α1 x1 + α2 x2, β1 y1 + β2 y2)
= f1,1(x1, y1) + f1,2(x1, y2) + f2,1(x2, y1) + f2,2(x2, y2) (x1, x2 ∈ X, y1, y2 ∈ Y) , (5)
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where f , f1,1, f1,2, f2,1, f2,2 : X×Y → K denote the unknown functions and α1, α2, β1, β2 ∈ K are given constants.
Observe that without loss of generality

f (0, 0) = fi, j(0, 0) = 0

can be supposed. Otherwise we consider the functions

f̃ (x, y) = f (x, y) − f (0, 0)
f̃i, j(x, y) = fi, j(x, y) − fi, j(0, 0)

(x ∈ X, y ∈ Y) .

They clearly vanish at the point (0, 0) and they also fulfill the same functional equation. Similarly as previously,
from now on we always suppose that all the involved functions vanish at the point (0, 0).

This section will be divided into two parts. At the first one, we will consider the so-called degenerate cases,
where at least one of the parameters α1, α2, β1, β2 is zero. After that the non-degenerate case will follow, that
is, when none of the above parameters are zero.

3.1 Degenerate cases
3.1.1 The homogeneous case α1 = α2 = β1 = β2 = 0

In case α1 = α2 = β1 = β2 = 0 equation (5) reduces to

f1,1(x1, y1) + f1,2(x1, y2) + f2,1(x2, y1) + f2,2(x2, y2) = 0 (x1, x2 ∈ X, y1, y2 ∈ Y) .

Proposition 2. Let X and Y be linear spaces over the field K and f1,1, f1,2, f2,1, f2,2 : X × Y → K be functions
such that

f1,1(x1, y1) + f1,2(x1, y2) + f2,1(x2, y1) + f2,2(x2, y2) = 0 (x1, x2 ∈ X, y1, y2 ∈ Y) . (6)

Then and only then for all i, j = 1, 2 there exist functions χi, j : X → K and ζi, j : Y → K vanishing at 0 such
that

fi, j(x, z) = χi, j(x) + ζi, j(z) (x ∈ X, z ∈ Y, i, j = 1, 2)

as well as
χ1,2(x) + χ1,1(x) = 0
χ2,2(x) + χ2,1(x) = 0
ζ2,1(z) + ζ1,1(z) = 0
ζ2,2(z) + ζ1,2(z) = 0

(x ∈ X, z ∈ Y) .

Proof. For i, j ∈ {1, 2} let us define the functions χi, j : X → K and ζi, j : Y → K through

χi, j(x) = fi, j(x, 0) and ζi, j(z) = fi, j(0, z) (x ∈ X, z ∈ Y) .

With the notation

E(x1, x2, y1, y2) = f1,1(x1, y1) + f1,2(x1, y2) + f2,1(x2, y1) + f2,2(x2, y2) (x1, x2 ∈ X, y1, y2 ∈ Y) ,

identities
E(x, 0, 0, 0) = 0
E(0, x, 0, 0) = 0
E(0, 0, z, 0) = 0
E(0, 0, 0, z) = 0

(x ∈ X, z ∈ Y)

give that
χ1,2(x) + χ1,1(x) = 0
χ2,2(x) + χ2,1(x) = 0
ζ2,1(z) + ζ1,1(z) = 0
ζ2,2(z) + ζ1,2(z) = 0

(x ∈ X, z ∈ Y) .
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Moreover, equations
E(x1, 0, y1, 0) = 0
E(0, x2, y1, 0) = 0
E(x1, 0, 0, y2) = 0
E(0, x2, 0, y2) = 0

(x1, x2 ∈ X, y1, y2 ∈ Y)

yield that
fi, j(x, z) = χi, j(x) + ζi, j(z) (x ∈ X, z ∈ Y, i, j = 1, 2) ,

where we used the previously proved identities, too. �

3.1.2 The case α1 = α2 = β1 = 0 and β2 , 0

In such a situation (5) reduces to

f (0, β2y2) = f1,1(x1, y1) + f1,2(x1, y2) + f2,1(x2, y1) + f2,2(x2, y2) (x1, x2 ∈ X, y1, y2 ∈ Y) .

Obviously, β2 = 1 can be assumed, otherwise we consider the functions f̃1,2, f̃2,2 : X × Y → K defined
through

f̃1,2(x, z) = f1,2

(
x, z

β2

)
f̃2,2(x, z) = f2,2

(
x, z

β2

) (x ∈ X, z ∈ Y) .

Proposition 3. Let X and Y be linear spaces over the field K and f , f1,1, f1,2, f2,1, f2,2 : X ×Y → K be functions
such that

f (0, y2) = f1,1(x1, y1) + f1,2(x1, y2) + f2,1(x2, y1) + f2,2(x2, y2) (x1, x2 ∈ X, y1, y2 ∈ Y) .

Then and only then for all i, j = 1, 2 there exist functions χi, j : X → K and ζi, j : Y → K vanishing at 0 such
that

fi, j(x, z) = χi, j(x) + ζi, j(z) (x ∈ X, z ∈ Y, i, j = 1, 2)

as well as
χ1,2(x) + χ1,1(x) = 0
χ2,2(x) + χ2,1(x) = 0
ζ2,1(z) + ζ1,1(z) = 0
ζ2,2(z) + ζ1,2(z) = f (0, z)

(x ∈ X, z ∈ Y) .

Proof. For i, j ∈ {1, 2} let us define the functions χi, j : X → K and ζi, j : Y → K through

χi, j(x) = fi, j(x, 0) and ζi, j(z) = fi, j(0, z) (x ∈ X, z ∈ Y) .

Furthermore, let

E(x1, x2, y1, y2)
= f (0, y2) − f1,1(x1, y1) − f1,2(x1, y2) − f2,1(x2, y1) − f2,2(x2, y2) (x1, x2 ∈ X, y1, y2 ∈ Y)

to obtain the following system of equations

E(x1, 0, y1, 0) = 0
E(x1, 0, 0, y2) = 0
E(0, x2, y1, 0) = 0
E(0, x2, 0, y2) = 0

(x1, x2 ∈ X, y1, y2 ∈ Y) ,

or equivalently

f1,1(x1, y1) + f1,2(x1, 0) + f2,1(0, y1) = 0
f1,2(x1, y2) + f1,1(x1, 0) + f2,2(0, y2) = f (0, y2)
f2,1(x2, y1) + f2,2(x2, 0) + f1,1(0, y1) = 0
f2,2(x2, y2) + f2,1(x2, 0) + f1,2(0, y2) = f (0, y2)

(x1, x2 ∈ X, y1, y2 ∈ Y) .
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Finally, the system of equations

E(x1, 0, 0, 0) = 0
E(0, x2, 0, 0) = 0
E(0, 0, y1, 0) = 0
E(0, 0, 0, y2) = 0

(x1, x2 ∈ X, y1, y2 ∈ Y)

yields that
f1,2(x1, 0) + f1,1(x1, 0) = 0
f2,2(x2, 0) + f2,1(x2, 0) = 0
f2,1(0, y1) + f1,1(0, y1) = 0
f2,2(0, y2) + f1,2(0, y2) = f (0, y2)

(x1, x2 ∈ X, y1, y2 ∈ Y) ,

which in view of the above definitions completes the proof. �

3.1.3 The case α1, α2 , 0 and β1, β2 = 0

In such a situation (5) implies that

f (α1x1 + α2x2, 0) = f1,1(x1, 0) + f1,2(x1, 0) + f2,1(x2, 0) + f2,2(x2, 0) (x1, x2 ∈ X)

because the left hand side does not depend on y1 and y2.
Obviously, α1, α2 = 1 can be assumed, otherwise we consider the functions f̃1,2, f̃2,2 : X × Y → K defined

through
f̃1,1(x, z) = f1,1

(
x
α1
, z

)
f̃1,2(x, z) = f1,2

(
x
α1
, z

)
f̃2,1(x, z) = f2,1

(
x
α2
, z

)
f̃2,2(x, z) = f2,2

(
x
α2
, z

) (x ∈ X, z ∈ Y) .

Proposition 4. Let X and Y be linear spaces over the field K and f , f1,1, f1,2, f2,1, f2,2 : X ×Y → K be functions
such that

f (x1 + x2, 0) = f1,1(x1, 0) + f1,2(x1, 0) + f2,1(x2, 0) + f2,2(x2, 0) (x1, x2 ∈ X) .

Then and only then there exists an additive function χ : X → K such that

f (x, 0) = χ(x)
f1,1(x, 0) + f1,2(x, 0) = χ(x)
f2,1(x, 0) + f2,2(x, 0) = χ(x)

(x ∈ X) .

Proof. Consider the functions χ, ϕ, ψ : X → K defined through

χ(x) = f (x, 0)
ϕ(x) = f1,1(x, 0) + f1,2(x, 0)
ψ(x) = f2,1(x, 0) + f2,2(x, 0)

(x ∈ X)

to get the following Pexider equation

χ(x1 + x2) = ϕ(x1) + ψ(x2) (x1, x2 ∈ X) .

Since all the functions χ, ϕ, ψ vanish at zero, we get that ϕ ≡ ψ ≡ χ and the function χ has to be additive. �

To finish the discussion of equation (5) in this special case, apply Proposition 2 to the functions

f̃i, j(x, y) = fi, j(x, y) − fi, j(x, 0), (x ∈ X, y ∈ Y)

where fi, j(x, 0) are given in Proposition 4.
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3.1.4 The case α1, β1 , 0 and α2, β2 = 0

In such a situation (5) implies that

f (α1x1, β1y1) = f1,1(x1, y1) + f1,2(x1, 0) + f2,1(0, y1) (x1 ∈ X, y1 ∈ Y)

because the left hand side does not depend on x2 and y2.
Obviously, due to similar reasons as previously, α1, β1 = 1 can be assumed. The proof of the following

proposition is a straightforward calculation, so we omit it.

Proposition 5. Let X and Y be linear spaces over the field K and f , f1,1, f1,2, f2,1 : X × Y → K be functions.
Functional equation

f (x1, y1) = f1,1(x1, y1) + f1,2(x1, 0) + f2,1(0, y1) (x1 ∈ X, y1 ∈ Y) .

is fulfilled if and only if there exist functions χ : X → K and ζ : Y → K such that

f1,2(x, 0) = χ(x)
f2,1(0, z) = ζ(z)

f (x, z) − f1,1(x, z) = χ(x) + ζ(z)
(x ∈ X, z ∈ Y) .

To finish the discussion of equation (5) in this special case, apply Proposition 2 to the functions

f̃1,1(x, y) = 0,
f̃1,2(x, y) = f1,2(x, y) − f1,2(x, 0),
f̃2,1(x, y) = f2,1(x, y) − f2,1(0, y),
f̃2,2(x, y) = f2,2(x, y),

(x ∈ X, y ∈ Y) ,

where f1,2(x, 0) and f2,1(0, y) were determined in Proposition 5.

3.1.5 The case α1, α2, β1 , 0 and β2 = 0

In such a situation (5) implies that

f (α1x1 + α2x2, β1y1) = f1,1(x1, y1) + f1,2(x1, 0) + f2,1(x2, y1) + f2,2(x2, 0) (x1 ∈ X, y1 ∈ Y) ,

because the left hand side does not depend on y2.
Obviously, due to similar reasons as previously, α1, α2, β1 = 1 can be assumed.

Proposition 6. Let X and Y be linear spaces over the field K and f , f1,1, f1,2, f2,1, f2,2 : X×Y → K be functions.
Functional equation

f (x1 + x2, y1) = f1,1(x1, y1) + f1,2(x1, 0) + f2,1(x2, y1) + f2,2(x2, 0) (x1, x2 ∈ X, y1 ∈ Y)

is fulfilled if and only if there exist a mapping A : X×Y → K additive in its first variable and there are functions
χ, χ1,1, χ2,1 : X → K and ζ, ζ1,1, ζ2,1 : Y → K vanishing at zero so that χ is additive and

f (x, z) = A(x, z) + χ(x) + ζ(z)
f1,1(x, z) = A(x, z) + χ1,1(x) + ζ1,1(z)
f2,1(x, z) = A(x, z) + χ2,1(x) + ζ2,1(z)

(x ∈ X, z ∈ Y)

and also
χ(x) = f (x, 0)

χ1,1(x) = f1,1(x, 0)
χ2,1(x) = f2,1(x, 0)
ζ(z) = ζ1,1(z) + ζ2,1(z)

f1,2(x, 0) = χ(x) − χ1,1(x)
f2,2(x, 0) = χ(x) − χ2,1(x)

(x ∈ X, z ∈ Y)

hold.
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Proof. With the substitution y1 = 0 our equation yields that

f (x1 + x2, 0) = f1,1(x1, 0) + f1,2(x1, 0) + f2,1(x2, 0) + f2,2(x2, 0) (x1, x2 ∈ X, ) .

From this we immediately get that

f̃ (x1 + x2, y1) = f̃1,1(x1, y1) + f̃2,1(x2, y1) (x1, x2 ∈ X, y1 ∈ Y) ,

where the functions f̃ , f̃1,1, f̃2,1 : X × Y → K are defined by

f̃ (x, y) = f (x, y) − f (x, 0)
f̃1,1(x, y) = f1,1(x, y) − f1,1(x, 0)
f̃2,1(x, y) = f2,1(x, y) − f2,1(x, 0)

(x ∈ X, y ∈ Y) .

This means that the functions f̃ , f̃1,1, f̃2,1 fulfill a Pexider equation on X for any fixed y ∈ Y . Thus there exists
a mapping A : X × Y → K additive in its first variable and functions ζ, ζ1,1, ζ2,1 : Y → K so that

ζ(z) = ζ1,1(z) + ζ2,1(z) (z ∈ Y)

and
f̃ (x, z) = A(x, z) + ζ(z)

f̃1,1(x, z) = A(x, z) + ζ1,1(z)
f̃2,1(x, z) = A(x, z) + ζ2,2(z)

(x ∈ X, z ∈ Y) .

In terms of the functions f , f1,1, f2,1 this means that

f (x, z) = A(x, z) + χ(x) + ζ(z)
f1,1(x, z) = A(x, z) + χ1,1(x) + ζ1,1(z)
f2,1(x, z) = A(x, z) + χ2,1(x) + ζ2,2(z)

(x ∈ X, z ∈ Y) ,

where
χ(x) = f (x, 0)

χ1,1(x) = f1,1(x, 0)
χ2,1(x) = f2,1(x, 0)

(x ∈ X) .

Observe that χ is additive. Indeed, using the above the forms of f , f1,1 and f2,2, our equation with y1 = 0 and
the fact that A is additive in its first variable, we obtain that

χ(x1 + x2) = χ1,1(x1) + f1,2(x1, 0) + χ2,1(x2) + f2,2(x2, 0) (x1, x2 ∈ X) ,

that is, χ fulfills a Pexider equation. Since χ(0) = 0, this means that χ has to be additive. Thus, using again
the form of the functions f , f1,1, f2,1 and our equation with x2 = 0, we get that

f1,2(x, 0) = χ(x) − χ1,1(x) (x ∈ X) .

Similarly, our equation with x1 = 0 implies that

f2,2(x, 0) = χ(x) − χ2,1(x) (x ∈ X) .

�

To finish the discussion of equation (5) in this special case, apply Proposition 2 to the functions

f̃1,1(x, y) = 0,
f̃1,2(x, y) = f1,2(x, y) − f1,2(x, 0),
f̃2,1(x, y) = 0,
f̃2,2(x, y) = f2,2(x, y) − f2,2(x, 0),

(x ∈ X, y ∈ Y)

where f1,2(x, 0) and f2,2(x, 0) are given in Proposition 6.
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3.2 The non-degenerate case
After making clear the degenerate cases, now we can focus on the case α1, α2, β1, β2 , 0 and provide the
general solution of the functional equation

f (α1 x1 + α2 x2, β1 y1 + β2 y2)
= f1,1(x1, y1) + f1,2(x1, y2) + f2,1(x2, y1) + f2,2(x2, y2) (x1, x2 ∈ X, y1, y2 ∈ Y) ,

where f , f1,1, f1,2, f2,1, f2,2 : X×Y → K denote the unknown functions and α1, α2, β1, β2 ∈ K are given constants.
Obviously, it is enough to consider the case α1 = α2 = β1 = β2 = 1, that is, to consider the following

functional equation

f (x1 + x2, y1 + y2) = f1,1(x1, y1) + f1,2(x1, y2) + f2,1(x2, y1) + f2,2(x2, y2) (x1, x2 ∈ X, y1, y2 ∈ Y) .

In this subsection we always assume that the characteristic of the field K is different from 2.

Proposition 7. Let X and Y be linear spaces over the field K. Then the functions f , f1,1, f1,2, f2,1, f2,2 : X×Y →
K satisfy functional equation

f (x1 + x2, y1 + y2) = f1,1(x1, y1) + f1,2(x1, y2) + f2,1(x2, y1) + f2,2(x2, y2) (x1, x2 ∈ X, y1, y2 ∈ Y) . (7)

if and only if
f (x, z) = A(x, z) + χ(x) + ζ(z)

fi, j(x, z) = A(x, z) + χi, j(x) + ζi, j(z) (x ∈ X, z ∈ Z) ,

where the mapping A : X × Y → K is a bi-additive function and for i, j ∈ {1, 2} χ, χi, j : X → K as well as
ζ, ζi, j : Y → K are functions such that χ and ζ are additive functions and χi, j and ζi, j vanish at the point (0, 0)
and

χ(x) = χ1,1(x) + χ1,2(x) = χ2,1(x) + χ2,2(x)
ζ(z) = ζ1,1(z) + ζ2,1(z) = ζ1,2(z) + ζ2,2(z) (x ∈ X, z ∈ Y)

are also fulfilled.

Proof. Assume that the functions f , f1,1, f1,2, f2,1, f2,2 : X×Y → K fulfill functional equation (7) for any x1, x2 ∈

X and y1, y2 ∈ Y . With the substitution y2 = 0 we obtain that

f (x2 + x1, y1) = f2,1(x2, y1) + f2,2(x2, 0) + f1,1(x1, y1) + f1,2(x1, 0) (x1, x2 ∈ X, y1 ∈ Y) ,

which immediately implies that

f (x2 + x1, y1) = f̃2,1(x2, y1) + f̃1,1(x1, y1) (x1, x2 ∈ X, y1 ∈ Y) ,

where the functions f̃1,1, f̃2,1 are defined by

f̃1,1(x, z) = f1,1(x, z) + f1,2(x, 0)
f̃2,1(x, z) = f2,1(x, z) + f2,2(x, 0)

(x ∈ X, z ∈ Y) .

This means that there exists a function A(1) : X × Y → K which is additive in its first variable and a function
ζ : Y → K vanishing at zero such that

f (x, z) = A(1)(x, z) + ζ(z) (x ∈ X, z ∈ Y) .

Substituting this form into equation (7), with x2 = 0 and with a similar argument we receive that

A(1)(x, z) = A(x, z) + χ(x) (x ∈ X, z ∈ Y) ,

where A : X × Y → K is a bi-additive mapping and χ : X → K is a function that vanishes at zero.
All in all this means that

f (x, z) = A(x, z) + χ(x) + ζ(z) (x ∈ X, z ∈ Y) .
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Additionally, equation (7), first with y1 = y2 = 0 yields that χ has to be additive and secondly, with x1 = x2 = 0
we receive that the function ζ also has to be additive, too.

Define the functions F1,1, F1,2, F2,1, F2,2 on X × Y through

F1,1(x, z) = f1,1(x, z) − A(x, z) −
χ(x)

2
−
ζ(z)

2

F1,2(x, z) = f1,2(x, z) − A(x, z) −
χ(x)

2
−
ζ(z)

2

F2,1(x, z) = f2,1(x, z) − A(x, z) −
χ(x)

2
−
ζ(z)

2

F2,2(x, z) = f2,2(x, z) − A(x, z) −
χ(x)

2
−
ζ(z)

2

(x ∈ X, z ∈ Y)

to deduce that they fulfill functional equation (6). Due to Proposition 2, for all i, j = 1, 2 there exist functions
χ̃i, j : X → K and ζ̃i, j : Y → K vanishing at zero such that

Fi, j(x, z) = χ̃i, j(x) + ζ̃i, j(z) (x ∈ X, z ∈ Y, i, j = 1, 2) ,

that is, for the functions fi, j we have

fi, j(x, z) = A(x, z) + χi, j(x) + ζi, j(z) (i, j ∈ {1, 2} , x ∈ X, z ∈ Y) .

Finally, using the equations in Proposition 2 for the functions χ̃i, j and ζ̃i, j, identities

f (x, 0) = χ(x) = f1,1(x, 0) + f1,2(x, 0) = χ1,1(x) + χ1,2(x)
f (x, 0) = χ(x) = f2,1(x, 0) + f2,2(x, 0) = χ2,1(x) + χ2,2(x)
f (0, z) = ζ(z) = f1,1(0, z) + f2,1(0, z) = ζ1,1(z) + ζ2,1(z)
f (0, z) = ζ(z) = f1,2(0, z) + f2,2(0, z) = ζ1,2(z) + ζ2,2(z)

(x ∈ X, z ∈ Y)

complete the proof. �

3.3 Related equations
3.3.1 The functional equation of bi-additivity

As a trivial consequence of the results of the previous section we get the following.

Corollary 1. Let X and Y be linear spaces over the field K with char(K) , 2. The mapping f : X × Y → K
fulfills the functional equation of bi-additivity, that is,

f (x1 + x2, y1 + y2) = f (x1, y1) + f (x1, y2) + f (x2, y1) + f (x2, y2) (x1, x2 ∈ X, y1, y2 ∈ Y)

if and only if f is bi-additive.

3.3.2 The rectangle equation

Let X and Y be linear spaces over the field K and let f : X × Y → K be a function.
Then functional equation

f (x + u, y + v) + f (x + u, y − v) + f (x − u, y + v) + f (x − u, y − v) = 4 f (x, y) (x, y ∈ X, u, v ∈ Y) ,

or equivalently (provided that char(K) , 2)

4 f
( x1 + x2

2
,
y1 + y2

2

)
= f (x1, y1) + f (x1, y2) + f (x2, y1) + f (x2, y2) (x1, x2 ∈ X, y1, y2 ∈ Y) .

is called the rectangle equation.
Indeed, both the above equations express the following: the value of f at the center of any rectangle, with

parallel sides to the coordinate axes, equals the mean of the values of f at the vertices.
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y2

y1

x1 x2

( x1+x2
2 ,

y1+y2
2

)

x

y

This equation as well as its generalization were investigated (among others) in [2, 5, 14].
With the aid of the results of the previous section, we obtain the following straightaway.

Proposition 8. Let X and Y be linear spaces over the field K with char(K) , 2 and f : X × Y → K be a
function. The function f fulfills the rectangle equation, i.e.,

4 f
( x1 + x2

2
,
y1 + y2

2

)
= f (x1, y1) + f (x1, y2) + f (x2, y1) + f (x2, y2) (x1, x2 ∈ X, y1, y2 ∈ Y) ,

if and only if there exists a bi-additive mapping A : X×Y → K and additive functions χ : X → K and ζ : Y → K
such that

f (x, z) = A(x, z) + χ(x) + ζ(z) (x ∈ X, z ∈ Y) .

Remark. In case char(K) = 2, the rectangle equation reduces to equation

f (x + u, y + v) + f (x + u, y − v) + f (x − u, y + v) + f (x − u, y − v) = 0 (x, y ∈ X, u, v ∈ Y) ,

or equivalently

f (x1, y1) + f (x1, y2) + f (x2, y1) + f (x2, y2) = 0 (x1, x2 ∈ X, y1, y2 ∈ Y) .

Thus, Proposition 2 yields that there exist functions χ : X → K and ζ : Y → K such that

f (x, y) = χ(x) + ζ(y) (x ∈ X, y ∈ Y) .

The Cauchy equation on X × Y

Proposition 9. Let X and Y be linear spaces over the field K and f , g, h : X × Y → K be functions. Then
functional equation

f (x1 + x2, y1 + y2) = g(x1, y1) + h(x2, y2) (x1, x2 ∈ X, y1, y2 ∈ Y) (8)

holds if and only if there exist additive functions χ : X → K, ζ : Y → K such that

f (x, y) = χ(x) + ζ(z)
g(x, y) = χ(x) + ζ(z)
h(x, y) = χ(x) + ζ(z)

(x ∈ X, z ∈ Y) .
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4 On the reduction of equations with n > 2 to the two-variable case
In this section we intend to investigate the following problem. Let X and Y be linear spaces over the field
K, let further αi, βi ∈ K, i = 1, . . . , n be arbitrarily fixed constants. Assume further that for the functions
f , fi, j : X × Y → K, i, j = 1, . . . , n, functional equation

f

 n∑
i=1

αixi,

n∑
i=1

βiyi

 =

n∑
i, j=1

fi, j(xi, y j) (xi ∈ X, yi ∈ Y, i = 1, . . . , n) (9)

is fulfilled.
We will show that in case n > 2, the results of the previous section can be applied. Indeed, let λ, κ, µ, ν ∈

{1, . . . , n} such that λ , κ and µ , ν, but otherwise arbitrary. In this case equation (9) with the substitutions

xi = 0 if i , λ, κ and y j = 0 if j , µ, ν

yields that

f
(
αλxλ + ακxκ, βµyµ + βνyν

)
= fλ,µ(xλ, yµ) + fλ,ν(xλ, yν) + fκ,µ(xκ, yµ) + fκ,ν(xκ, yν)

+
∑
j,µ,ν

fλ, j(xλ, 0) +
∑
j,µ,ν

fκ, j(xκ, 0) +
∑
i,λ,κ

fi,µ(0, yµ) +
∑
i,λ,κ

fi,ν(0, yν)

for any xλ, xκ ∈ X and yµ, yν ∈ Y . Consider the functions f̃λ,µ, f̃κ,ν : X × Y → K defined by

f̃λ,µ(x, z) = fλ,µ(x, z) +
∑
j,µ,ν

fλ, j(x, 0) +
∑
i,λ,κ

fi,µ(0, z) (x ∈ X, z ∈ Y)

and
f̃κ,ν(x, z) = fκ,ν(x, z) +

∑
j,µ,ν

fκ, j(x, 0) +
∑
i,λ,κ

fi,ν(0, z) (x ∈ X, z ∈ Y)

to receive that

f
(
αλxλ + ακxκ, βµyµ + βνyν

)
= f̃λ,µ(xλ, yµ) + fλ,ν(xλ, yν) + fκ,µ(xκ, yµ) + f̃κ,ν(xκ, yν) (10)

is satisfied for any xλ, xκ ∈ X and yµ, yν ∈ Y . This equation can however be handled with the aid of the results
of Section 3.

5 The case of a single unknown function in the equation — existence
of non-trivial solutions

Let X and Y be linear spaces over the same field K and consider the following functional equation

f (α1 x1 + α2 x2, β1 y1 + β2 y2)
= γ1,1 f (x1, y1) + γ1,2 f (x1, y2) + γ2,1 f (x2, y1) + γ2,2 f (x2, y2) (x1, x2 ∈ X, y1, y2 ∈ Y) , (11)

where f : X ×Y → K denotes the unknown function and α1, α2, β1, β2 ∈ K and γ1,1, γ1,2, γ2,1, γ2,2 ∈ K are given
constants.

Recall that due to the linearity of the above equation we may (and we also do) suppose that

f (0, 0) = 0

holds. Otherwise the function

f̃ (x, y) = f (x, y) − f (0, 0) (x ∈ X, y ∈ Y)

13



can be considered. This function clearly vanishes at the point (0, 0) and it fulfills the same functional equation,
too.

Furthermore, the linearity of the investigated equation implies that the identically zero function is always
a solution. In this section we would like to study under what conditions admits equation (11) a non-identically
zero solution. Clearly, in every case the results of the previous sections can be applied with the choice

fi, j(x, y) = γi, j f (x, y) (x ∈ X, y ∈ Y) .

This means that the assumption that the function f is not identically zero will imply algebraic conditions for
the involved parameters α1, α2, β1, β2 ∈ K and γ1,1, γ1,2, γ2,1, γ2,2 ∈ K.

Similarly as before, first we consider the so-called degenerate cases.

5.1 Degenerate cases
5.1.1 The case α1 = α2 = β1 = β2 = 0

In case α1 = α2 = β1 = β2 = 0 equation (11) reduces to

γ1,1 f (x1, y1) + γ1,2 f (x1, y2) + γ2,1 f (x2, y1) + γ2,2 f (x2, y2) = 0 (x1, x2 ∈ X, y1, y2 ∈ Y) ,

where γi, j ∈ K for any i, j ∈ {1, 2}.

Proposition 10. Let X and Y be linear spaces over the field K, γi, j ∈ K be given constants such that not all of
them are zero and f : X × Y → K be a function such that

γ1,1 f (x1, y1) + γ1,2 f (x1, y2) + γ2,1 f (x2, y1) + γ2,2 f (x2, y2) = 0 (x1, x2 ∈ X, y1, y2 ∈ Y) . (12)

Then and only then there exist functions χ : X → K and ζ : Y → K vanishing at zero such that

f (x, z) = χ(x) + ζ(z) (x ∈ X, z ∈ Y) .

Furthermore

(i) either the following system of linear equations

γ1,1 + γ1,2 = 0
γ2,1 + γ2,2 = 0

is fulfilled or the function χ is identically zero.

(ii) either the following system of linear equations

γ1,1 + γ2,1 = 0
γ1,2 + γ2,2 = 0

is fulfilled or the function ζ is identically zero.

Proof. In view of Proposition 2 we get that there exist functions χ : X → K and ζ : Y → K vanishing at zero
such that

f (x, z) = χ(x) + ζ(z) (x ∈ X, z ∈ Y) .

Using this representation of the function f , equation (12) yields that

γ1,1 (χ(x1) + ζ(y1)) + γ1,2 (χ(x1) + ζ(y2)) + γ2,1 (χ((x2) + ζ(y1)) + γ2,2 (χ(x2) + ζ(y2)) = 0
(x1, x2 ∈ X, y1, y2 ∈ Y) ,

or equivalently

χ(x1)
(
γ1,1 + γ1,2

)
+ χ(x2)

(
γ2,1 + γ2,2

)
+ ζ(y1)

(
γ1,1 + γ2,1

)
+ ζ(y2)

(
γ1,2 + γ2,2

)
= 0

(x1, x2 ∈ X, y1, y2 ∈ Y) .
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Since we have independent variables we get that

γ1,1 + γ1,2 = 0
γ2,1 + γ2,2 = 0

is fulfilled or the function χ is identically zero. Similarly,

γ1,1 + γ2,1 = 0
γ1,2 + γ2,2 = 0

holds or the function ζ is identically zero. �

5.1.2 The case α1 = α2 = β1 = 0 and β2 , 0

In such a situation (11) reduces to

f (0, β2y2) = γ1,1 f (x1, y1) + γ1,2 f (x1, y2) + γ2,1 f (x2, y1) + γ2,2 f (x2, y2) (x1, x2 ∈ X, y1, y2 ∈ Y) .

In view of Proposition 3, the proof of the following proposition is straightforward and similar to that of
Proposition 10. The basic step is to consider f as the sum of single variable functions (Proposition 3) and
substitute such a special form of f into the functional equation.

Proposition 11. Let X and Y be linear spaces over the field K, β2, γi, j ∈ K be given constants such that not all
of them are zero, and f : X × Y → K be a function such that

f (0, β2y2) = γ1,1 f (x1, y1) + γ1,2 f (x1, y2) + γ2,1 f (x2, y1) + γ2,2 f (x2, y2) (x1, x2 ∈ X, y1, y2 ∈ Y) . (13)

Then and only then there exist functions χ : X → K and ζ : Y → K vanishing at zero such that

f (x, z) = χ(x) + ζ(z) (x ∈ X, z ∈ Y) .

Furthermore

(i) either the following system of linear equations

γ1,1 + γ1,2 = 0
γ2,1 + γ2,2 = 0

is fulfilled or the function χ is identically zero.

(ii) either the following system of equations

γ1,1 + γ2,1 = 0
ζ(β2z) =

(
γ1,2 + γ2,2

)
ζ(z) (z ∈ Y)

is fulfilled or the function ζ is identically zero.

5.1.3 The case α1, α2 , 0 and β1, β2 = 0

In such a situation (11) reduces to

f (α1x1 + α2x2, 0) = γ1,1 f (x1, y1) + γ1,2 f (x1, y2) + γ2,1 f (x2, y1) + γ2,2 f (x2, y2) (x1, x2 ∈ X, y1, y2 ∈ Y) .

As before, taking f as the sum of single variable functions (Proposition 4), substitute into the functional
equation.

Proposition 12. Let X and Y be linear spaces over the field K, α1, α2, γi, j ∈ K be given constants such that
not all of them are zero and f : X × Y → K be a function such that

f (α1x1 +α2x2, 0) = γ1,1 f (x1, y1) +γ1,2 f (x1, y2) +γ2,1 f (x2, y1) +γ2,2 f (x2, y2) (x1, x2 ∈ X, y1, y2 ∈ Y) . (14)

Then and only then there exists an additive function a : X → K and a function ζ : Y → K vanishing at zero
such that

f (x, y) = a(x) + ζ(y) (x ∈ X, y ∈ Y) .

Furthermore the above additive function a has to fulfill

a(α1x1 + α2x2) = (γ1,1 + γ1,2)a(x1) + (γ2,1 + γ2,2)a(x2)

for arbitrary x1, x2 ∈ X and for the mapping ζ alternative (ii) of Proposition 10 is fulfilled.
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5.1.4 The case α1, β1 , 0 and α2, β2 = 0

In such a situation (11) reduces to

f (α1x1, β1y1) = γ1,1 f (x1, y1) + γ1,2 f (x1, y2) + γ2,1 f (x2, y1) + γ2,2 f (x2, y2) (x1, x2 ∈ X, y1, y2 ∈ Y) .

To prove the following result, consider f as the sum of single variable functions (Proposition 5) and
substitute into the functional equation.

Proposition 13. Let X and Y be linear spaces over the field K, α1, α2, γi, j ∈ K be given constants and f : X ×
Y → K be a function such that

f (α1x1, β1y1) = γ1,1 f (x1, y1) + γ1,2 f (x1, y2) + γ2,1 f (x2, y1) + γ2,2 f (x2, y2) (x1, x2 ∈ X, y1, y2 ∈ Y) . (15)

Then and only then

(A) γ1,2, γ2,1, γ2,2 = 0 and f : X × Y → K is an arbitrary function fulfilling

f (α1x, β1y) = γ1,1 f (x, y) (x ∈ X, y ∈ Y) ,

(B) or there exist functions χ : X → K and ζ : Y → K vanishing at zero such that

f (x, y) = χ(x) + ζ(y) (x ∈ X, z ∈ Y) .

Furthermore the mappings χ and ζ also fulfill

χ(α1x) = (γ1,1 + γ1,2)χ(x)
ζ(β1z) = (γ1,1 + γ2,1)ζ(z) (x ∈ X, z ∈ Y)

and

(i) either
γ2,1 + γ2,2 = 0

or χ is identically zero;

(ii) either
γ1,2 + γ2,2 = 0

or ζ is identically zero.

5.1.5 The case α1, α2, β1 , 0 and β2 = 0

In such a situation (11) reduces to

f (α1x1 + α2x2, β1y1) = γ1,1 f (x1, y1) + γ1,2 f (x1, y2) + γ2,1 f (x2, y1) + γ2,2 f (x2, y2) (x1, x2 ∈ X, y1, y2 ∈ Y) .

Proposition 14. Let X and Y be linear spaces over the field K, α1, α2, β1, γi, j ∈ K, i, j = 1, 2 be given constants
and f : X × Y → K be a function such that

f (α1x1 + α2x2, β1y1)
= γ1,1 f (x1, y1) + γ1,2 f (x1, y2) + γ2,1 f (x2, y1) + γ2,2 f (x2, y2) (x1, x2 ∈ X, y1, y2 ∈ Y) . (16)

Then and only then there exists a mapping A : X × Y → K additive in its first variable, further there are
functions χ : X → K and ζ : Y → K vanishing at zero such that χ is additive and

f (x, y) = A(x, y) + χ(x) + ζ(y) (x ∈ X, y ∈ Y) .

Furthermore, we have that
ζ(β1y) = (γ1,1 + γ2,1)ζ(y) (y ∈ Y)

and also (
γ1,2 + γ2,2

)
ζ(y) = 0 (y ∈ Y) ,

yielding that γ1,2 + γ2,2 = 0 or ζ is identically zero. Additionally, the alternatives below also hold
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A) either γ1,2 and γ2,2 are zero, that is, equation (16) has the form

f (α1x1 + α2x2, β1y1) = γ1,1 f (x1, y1) + γ2,1 f (x2, y1) (x1, x2 ∈ X, y1 ∈ Y)

and the identities

A(α1x, β1y) + χ(α1x) = γ1,1A(x, y) + γ1,1χ(x) (x ∈ X, y ∈ Y)

and
A(α2x, β1y) + χ(α2x) = γ2,1A(x, y) + γ2,1χ(x) (x ∈ X, y ∈ Y)

have to hold.

B) or γ1,2 or γ2,2 do not vanish simultaneously and then the mapping A has a rather special form, namely
there exists an additive function a : X → K such that

A(x, y) = a(x) (x ∈ X)

and therefore
f (x, y) = a(x) + χ(x) + ζ(y) (x ∈ X, y ∈ Y)

where the identities
a(α1x) + χ(α1x) = γ1,1a(x) + γ1,1χ(x) (x ∈ X, y ∈ Y)

and
a(α2x) + χ(α2x) = γ2,1a(x) + γ2,1χ(x) (x ∈ X, y ∈ Y)

have to hold.

Proof. Using Proposition 6 we immediately get that there exists a mapping A : X × Y → K and there are
functions χ : X → K and ζ : Y → K vanishing at zero such that χ is additive and

f (x, y) = A(x, y) + χ(x) + ζ(y) (x ∈ X, y ∈ Y) .

Using that A is additive in its first variable and equation (16) we derive that

A(α1x1, β1y1) + A(α2x2, β1y1) + χ(α1x1 + α2x2) + ζ(β1y1)
= γ1,1A(x1, y1) + γ1,1χ(x1) + γ1,1ζ(y1) + γ1,2A(x1, y2) + γ1,2χ(x1) + γ1,2ζ(y2)
+ γ2,1A(x2, y1) + γ2,1χ(x2) + γ2,1ζ(y1) + γ2,2A(x2, y2) + γ2,2χ(x2) + γ2,2ζ(y2)

(x1, x2 ∈ X, y1, y2 ∈ Y) (17)

Observe that this equation with x1 = x2 = y1 = 0 implies that(
γ1,2 + γ2,2

)
ζ(y2) = 0 (y2 ∈ Y) ,

so γ1,2 + γ2,2 = 0 or the function ζ is identically zero. Similarly, equation (17) yields with x1 = x2 = y2 = 0
that

ζ(β1y1) = (γ1,1 + γ2,1)ζ(y1) (y1 ∈ Y) ,

here while proving the last two identities we used that χ(0) = ζ(0) = 0 (cf. the proof of Proposition 6) and the
fact that A(0, y) = 0 for all y ∈ Y due to that A is additive in its first variable. Put x2 = y1 = 0 into (17) to
receive that

A(α1x1, 0) + χ(α1x1) = γ1,1A(x1, 0) + γ1,1χ(x1) + γ1,2A(x1, y2) + γ1,2χ(x1) (x1, x2 ∈ X, y1, y2 ∈ Y)

or in other words,

−γ1,2A(x1, y2) = γ1,1A(x1, 0) + γ1,1χ(x1) + γ1,2χ(x1) − A(α1x1, 0) − χ(α1x1) (x1 ∈ X, y2 ∈ Y)

Similarly equation (17) with x1 = y1 = 0 yields that

A(α2x2, 0) + χ(α2x2) = γ2,1A(x2, 0) + γ2,1χ(x2) + γ2,2A(x2, y2) + γ2,2χ(x2) (x2 ∈ X, y2 ∈ Y)

or equivalently

−γ2,2A(x2, y2) = γ2,1A(x2, 0) + γ2,1χ(x2) + γ2,2χ(x2) − A(α2x2, 0) − χ(α2x2) (x2 ∈ X, y2 ∈ Y) .

From this latter two identities the following alternatives can be deduced
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A) either γ1,2 and γ2,2 are zero and equation (16) has the form

f (α1x1 + α2x2, β1y1) = γ1,1 f (x1, y1) + γ2,1 f (x2, y1) (x1, x2 ∈ X, y1 ∈ Y)

and the identities

A(α1x, β1y) + χ(α1x) = γ1,1A(x, y) + γ1,1χ(x) (x ∈ X, y ∈ Y)

as well as
A(α2x, β1y) + χ(α2x) = γ2,1A(x, y) + γ2,1χ(x) (x ∈ X, y ∈ Y)

follow immediately from (17) with x2 = y2 = 0 and x1 = y2 = 0, respectively.

B) or the two-variable mapping A can be represented as

A(x, y) = a(x) (x ∈ X, y ∈ Y) .

A being additive in its first variable, this is possible if and only if a : X → K is additive. This means that

f (x, y) = a(x) + χ(x) + ζ(y) (x ∈ X, y ∈ Y) .

Using this representation and equation (14) first with x2 = y2 = 0 and after that with x1 = y2 = 0 we get
the identities

a(α1x) + χ(α1x) = γ1,1a(x) + γ1,1χ(x) (x ∈ X, y ∈ Y)

and
a(α2x) + χ(α2x) = γ2,1a(x) + γ2,1χ(x) (x ∈ X, y ∈ Y) .

�

5.2 The non-degenerate case
In view of the above results, now we can focus on the case α1, α2, β1, β2 , 0 and investigate the existence of
nontrivial solutions of functional equation

f (α1 x1 + α2 x2, β1 y1 + β2 y2)
= γ1,1 f (x1, y1) + γ1,2 f (x1, y2) + γ2,1 f (x2, y1) + γ2,2 f (x2, y2) (x1, x2 ∈ X, y1, y2 ∈ Y) ,

where for i, j ∈ {1, 2}, the constants γi, j ∈ K are given.
Here we will make use of the results of Section 3.2, therefore (as in Section 3.2) we always assume that

the characteristic of the field K is different from 2. As a direct application of Proposition 7 we derive the
following.

Proposition 15. Let X and Y be linear spaces over the field K, αi, β j, γi, j ∈ K, i, j = 1, 2 be given constants
and f : X × Y → K be a function such that

f (α1 x1 + α2 x2, β1 y1 + β2 y2)
= γ1,1 f (x1, y1) + γ1,2 f (x1, y2) + γ2,1 f (x2, y1) + γ2,2 f (x2, y2) (x1, x2 ∈ X, y1, y2 ∈ Y) . (18)

Then and only then, there exist a bi-additive function A : X × Y → K and additive functions χ : X → K and
ζ : Y → K such that

f (x, z) = A(x, z) + χ(x) + ζ(z) (x ∈ X, z ∈ Y) .

Furthermore the following identities also have to be fulfilled

χ(α1x) =
(
γ1,1 + γ1,2

)
χ(x)

χ(α2x) =
(
γ2,1 + γ2,2

)
χ(x)

ζ(β1z) =
(
γ1,1 + γ2,1

)
ζ(z)

ζ(β2z) =
(
γ1,2 + γ2,2

)
ζ(z)

A(αix, β jz) = γi, jA(x, y)

(x ∈ X, z ∈ Y, i, j = 1, 2) .
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Remark. While investigating whether equation (11) admits or not a non-trivial solution we always got three
type of conditions. One of them is a purely algebraic condition, namely we have to check if the parameters γi, j

fulfill a system of homogeneous, linear equations.
The second type is about the existence of a non-trivial semi-homogeneous additive function. More pre-

cisely, this condition is always of the following form: let X be a linear space over the field K and let a : X → K
be an additive function such that

a(αx) = βa(x) (x ∈ X)

with certain fixed scalars α, β ∈ K. For which values of α and β will the function a be non-trivial (that is,
non-identically zero)? This question was firstly investigated in Daróczy [6] if X = K = R. These results
were later generalized and extended in the papers [7, 8, 9, 10, 14, 19, 20]. To the best of our knowledge, this
problem has not been investigated in case of fields with nonzero characteristic. To this we provide a solution
in Subsection 6.2.

Our third condition is similar to the second one, namely it concerns the non-triviality of a semi-homoge-
neous bi-additive function. The attached existence problem will also be discussed in the last section.

6 A necessary and sufficient condition for the existence of non-zero,
bi-additive semi-homogeneous mappings

According to the characteristic property

A(αix, β jy) = γi, jA(x, y) (x ∈ X, y ∈ Y, i, j = 1, 2)

of the bi-additive term in the solution (see Proposition 15), it is natural to investigate the problem of the
existence of such non-zero mapping over the field K.

Definition 4. Let X and Y be linear spaces over the field K. An additive function a : X → K is called semi-
homogeneous if there exist elements α, β ∈ K such that

a(αx) = βa(x) (x ∈ X) .

Similarly, a bi-additive function A : X × Y → K is called semi-homogeneous if there exist elements α, β
and γ in the field K such that

A(αx, βy) = γA(x, y) (x ∈ X, y ∈ Y). (19)

6.1 The case of fields with characteristic zero
In this subsection we restrict ourselves to the case of fields with zero characteristic. According to this, let K
be a field of characteristic zero. Then it is an extension of the field Q of the rationals and we can consider the
subfields Q(α) and Q(β) in K.

We will also use the following.

Proposition 16. Let K be a field of characteristic zero. Then K is embeddable into C if and only if the
transcendence degree of the field extension K/Q is less than c.

Remark. From the previous proposition we immediately get that if K is finitely generated over Q, that is if
K = Q(α1, . . . , αn), then K is embeddable into C.

Theorem 3. Let K be a field of characteristic zero and suppose that X and Y are linear spaces over K. There
exists a non-zero bi-additive mapping A : X × Y → K satisfying (19) if and only if γ can be written as the
product of algebraically conjugated elements to α and β over Q, respectively.
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Proof. Suppose that γ can be written as the product of algebraically conjugated elements to α and β over
Q, respectively. This means that γ = δ1(α)δ2(β), where δ1 : Q(α) → K and δ2 : Q(β) → K are injective
homomorphisms. Taking X and Y as linear spaces over Q(α) and Q(β), respectively, we can write that

x =
∑
i∈I

pi(α)
qi(α)

xi and y =
∑
j∈J

r j(β)
s j(β)

y j,

where

(i) I and J are finite index sets such that |I| = k and |J| = l,

(ii) pi, qi ∈ Q[x] for any i ∈ I,

(iii) r j, s j ∈ Q[x] for any j ∈ J,

(iv) x1, . . . , xk belong to a basis of X as a linear space over Q(α),

(v) y1, . . . , yl belong to a basis of Y as a linear space over Q(β).

The mapping A is defined by the formula of the semi-linear extension

A(x, y) =

k∑
i=1

l∑
j=1

pi(δ1(α))
qi(δ1(α))

r j(δ2(β))
s j(δ2(β))

A(xi, y j)

and the values A(xi, y j) are not all zero.
Conversely, suppose that there exists a non-zero bi-additive mapping A : X × Y → K satisfying (19). Let

us fix elements x ∈ X and y ∈ Y such that A(x, y) , 0. Taking the field L = Q(α, β, A(x, y), γ) we can define
the bi-additive mapping B : L × L→ C as

B(u, v) = A(ux, vy) (u, v ∈ L) .

It can be easily seen that
B(αu, βv) = γB(u, v) (20)

is fulfilled for arbitrary u, v ∈ L.
Let L∗ denote the multiplicative subgroup of L and let G = L∗×L∗ be the group equipped with the pointwise

multiplication. Then, for any (u∗, v∗) ∈ G, the translate mapping, that is,

(τ(u∗,v∗)B)(u, v) = B(uu∗, vv∗)

also satisfies (20). Let V be the set of the restrictions of bi-additive mappings of the form B : L × L → C
satisfying (20). Then the set V is closed with respect to the uniform convergence on finite sets and the field L
is countable. Therefore V is a closed, translation invariant linear space, in other words, it is a variety over a
field of finite transcendence degree. From this we infer that spectral analysis holds in V , i.e., there exists an
exponential element in this variety, see Laczkovich–Székelyhidi [12]. An exponential element in this variety
is a bi-additive mapping M : L × L→ C satisfying (20) such that

M(uu∗, vv∗) = M(u, v)M(u∗, v∗).

Using the notations δ1(u) = M(u, 1) and δ2(v) = M(1, v), it follows that M(u, v) = δ1(u)δ2(v), where δ1 and δ2

are injective (field-) homomorphisms of L. Using property (20)

γM(u, v) = M(αu, βv) = δ1(α)δ2(β)M(u, v).

Therefore γ = δ1(α)δ2(β) as it was stated. �
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6.2 The case of finite fields of non-zero characteristic
If K is a field of characteristic different from zero then it is a field of prime characteristic. First of all we
collect those results from the theory of finite fields, that we intend to use subsequently. Here we rely on the
monograph Lidl–Niederreiter [13]. For any field K, there is a minimal subfield, namely the prime field of K,
which is the smallest subfield containing 1. It is isomorphic either to Q (if the characteristic is zero), or to a
finite field of prime order Zp (in case char(K) = p). Moreover, if p is a prime and n ∈ N is arbitrary then up to
an isomorphism there exists exactly one finite field of order q = pn. This field is nothing but the splitting field
of the polynomial xq − x over Zp. This field is denoted by GF(q).

Let now a : X → K be a semi-homogeneous additive function, that is, assume that for the additive function
a we have

a(αx) = βa(x) (x ∈ X) .

As we have seen in the proof of Theorem 3, the problem of the existence of semi-homogeneous mappings
defined on the linear space X can be reduced to the problem of the existence of semi-homogeneous mappings
defined on K. It can be easily seen that the additivity automatically implies the homogeneity with respect
to the multiplication by the elements of the prime field. By the argument of [18], it also follows that there
exists an automorphism between the extensions of the prime field with α and β, respectively, such that it maps
α into β. Conversely, such an automorphism allows us to use the technique of the semi-linear extension to
construct semi-homogeneous additive mappings. This criteria for the existence of semi-homogeneous additive
mappings does not depend on the characteristic of the fields but it is worth to investigate the problem of the
subfields in K in some special cases as follows.

Let ϕ : K→ K be an automorphism of K with ϕ(β) = α. Then

(ϕ ◦ a)(αx) = ϕ(β) · (ϕ ◦ a)(x) = α · (ϕ ◦ a)(x) (x ∈ X) .

This means that

(i) we have to guarantee the existence of an automorphism ϕ : GF(pn)→ GF(pn) for which

ϕ(β) = α

is satisfied;

(ii) we have to determine the homogeneity field (see Definition 6) of the additive mapping ϕ ◦ a : X → K.

Suppose that K ' GF(pn) for some prime p and n ∈ N.
To answer the above questions, for (i) we have to know the automorphism group of GF(pn), while for (ii)

we have to describe the sub-fields of GF(pn).

Definition 5. Let p be a prime and n ∈ N. By an automorphism ϕ of GF(pn) over GF(p) we mean an
automorphism of GF(pn) that fixes the elements of GF(p). More precisely, we require ϕ to be a one-to-one
mapping from GF(pn) onto itself with

ϕ(a + b) = ϕ(a) + ϕ(b)
ϕ(ab) = ϕ(a)ϕ(b) (a, b ∈ GF(pn))

and
ϕ(a) = a (a ∈ GF(p)) .

Theorem 4. Let p be a prime and n ∈ N. The distinct automorphisms of GF(pn) over GF(p) are exactly the
mappings ϕ0, ϕ1, . . . , ϕn−1 defined by

ϕ j(a) = ap j
(a ∈ GF(pn), j = 0, 1, . . . , n − 1) .

Remark. In other words, the above theorem says that the automorphism group of GF(pn) over GF(p) is a cyclic
group of order n generated by ϕ1.
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Let X be a linear space over the (not necessarily finite) field K and a : X → K be an additive function.
Then clearly, for any k ∈ Z we have

a(kx) = ka(x) (x ∈ X) .

Nevertheless, it may happen that a satisfies the same identity for all x ∈ X and for some α ∈ K \ Z, therefore
we introduce the following.

Definition 6. Let X be a linear space over the (not necessarily finite) field K and a : X → K be an additive
function and

Ha = {α ∈ K | a(αx) = αa(x) for all x ∈ X} .

This set is called the homogeneity field of the additive function a. Observe that this term is well-motivated,
since we have the following.

Although the following two statements are known in case K = R (see Kuczma [11]), for the sake of
completeness we present a short argument for them.

Proposition 17. Let X be a linear space over the field K and a : X → K be an additive function. Then Ha ⊂ K
is a field.

Proof. Let α, β ∈ Ha, then

a((α − β)x) = a(αx) − a(βx) = αa(x) − βa(x) = (α − β)a(x) (x ∈ X) ,

yielding that α − β ∈ Ha. Similarly, if β , 0, then

αa(x) = a(αx) = a
(
β
α

β
x
)

= βa
(
α

β
x
)

(x ∈ X) ,

from which
α

β
∈ Ha follows. �

In some sense, the converse is also true, namely we have the proposition below. The proof is based on
the existence of Hamel bases of linear spaces. Therefore, in any case it is needed, the Axiom of Choice is
supposed to hold.

Proposition 18. Let X be a linear space over the field K, let further L ⊂ K be a subfield of K. Then there
exists an additive function a : X → K such that Ha = L.

Proof. Let B be the Hamel basis of the linear space (X,L,+, ·), which (according to Corollary 4.2.1. of Kuczma
[11]) does exist. Fix c ∈ K \ {0} and define the function f : B→ K by

f (x) = c (x ∈ B) .

Making use of Theorem 4.3.1 of Kuczma [11], there exists a homomorphism a from (X,L,+, ·) to (K,L,+, ·)
such that we additionally have that a|B = f . Clearly, a is an additive function and

a(αx) = αa(x) (x ∈ X, α ∈ L) .

Thus L ⊂ Ha.
For the converse statement, let x ∈ X be arbitrary, then x =

∑n
i=1 λibi, where λi ∈ L and bi ∈ B for all

i = 1, . . . , n. Furthermore,

a(x) = a

 n∑
i=1

λibi

 =

n∑
i=1

λia(bi) =

n∑
i=1

λi f (bi) = c ·
n∑

i=1

λi ∈ c · L,

or equivalently, a(X) ⊂ c · L.
Let now α ∈ Ha and b0 ∈ B be arbitrary, then

a(αb0) = αa(b0) = α f (b0) = αc.

On the other hand, since αb0 ∈ X, inclusion a(X) ⊂ c · L implies that there exists λ ∈ L such that a(αb0) = λc.
Since c was to be chosen nonzero, this means that α = λ ∈ L. Therefore Ha ⊂ L. �
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Theorem 5. Let p be a prime and n ∈ N. Then for all d|n, the field GF(pn) admits exactly one subfield
isomorphic to GL(pd) and GL(pn) has no other type of sub-fields. Furthermore, this subfield is the set of zeros
of the polynomial xpd

− x in GF(pn).

Finally, we provide necessary and sufficient conditions for the existence of non-zero, bi-additive semi-
homogeneous mappings.

The relations among the elements α, β and γ such that the semi-homogeneity equation (19) is satisfied for
some non-zero bi-additive mapping A : X × Y → K are more implicit as we will see in what follows.

Lemma 1. Let X and Y be linear spaces over the field K and let α, β, γ ∈ K be given non-zero elements. There
exists a not identically zero bi-additive mapping A : X×Y → K satisfying the semi-homogeneity equation (19)
if and only if there exists a not identically zero bi-additive mapping B : K × K→ K satisfying equation

B(αu, βv) = γB(u, v) (γ , 0) (21)

Proof. Suppose that A : X × Y → K satisfies the semi-homogeneity equation (19) and A(x, y) , 0 for a certain
element (x, y) ∈ X × Y . The bi-additive mapping B : K × K→ K defined by

B(u, v) = A(ux, vy) (u, v ∈ K)

obviously satisfies equation (21). Conversely, suppose that B : K×K→ K satisfies equation (21). Let
{
xµ

}
µ∈ΓX

and {yν}ν∈ΓY
be Hamel bases in X and Y , respectively. Taking the projections

π1
X : X × Y → K and π1

Y : X × Y → K

onto the first coordinate of the elements with respect to the given bases it follows that the mapping A : X×Y →
K defined by

A(x, y) = B(π1
X(x), π1

Y(y)) (x ∈ X, y ∈ Y)

fulfills (19). �

Remark. Note that there is no need any additional condition for the cardinality of the field K to prove Lemma
1.

From now on the results are strongly based on the cardinality condition for K being finite. Let K = GF(q),
where q = pn for some prime number p ∈ N and consider a (finite) basis b0, . . . , bn−1 of K over its prime field
Zp. It is clear that

(H) bi-additivity implies Zp-homogeneity for any bi-additive mapping B : K × K→ K.

Since the translation τi : K → K with respect to the multiplication by the ith element of the given basis (i =

0, . . . , n − 1), that is,
τi(x) = bi · x (x ∈ K)

is a linear transformation, we can consider its matrix representation Mi given by

τi(bk) =

n−1∑
j=0

m(i)
jkb j,

where for any possible indices we have m(i)
jk ∈ Zp. According to property (H), a simple calculation shows that

equation (21) is equivalent to

γB(bk, bl) =

n−1∑
i, j=0

αiβ j

n−1∑
r,s=0

m(i)
rkm( j)

sl B(br, bs),

where k, l = 0, . . . n − 1, α =

n−1∑
i=0

αibi and β =

n−1∑
j=0

β jb j with αi, β j ∈ Zp.
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Let Mn(K) be the linear space of matrices of order n over the field K and consider the linear mapping

Pα,β : Mn(K) 3 X 7→ Y = Pα,β(X), (22)

where

ykl =

n−1∑
i, j=0

αiβ j

n−1∑
r,s=0

m(i)
rkm( j)

sl xrs.

In a more compact form

Pα,β(X) =

n−1∑
i, j=0

αiβ j

(
M(i)

)T
XM( j).

Equation (21) is obviously satisfied if and only if 0 , γ ∈ K is an eigenvalue of Pα,β. The corresponding
(non-zero) eigenvector B ∈Mn(K) can be chosen as the matrix of a bi-linear mapping satisfying (21). To sum
up, we can formulate the following result as the answer for the problem of existence of non-identically zero
bi-additive mapping satisfying (19).

Theorem 6. Let K = GF(q), where q = pn for some prime number p and n ∈ N. Consider the polynomial

P(u, v, w) = det
(
Pu,v − w · id

)
(u, v, w ∈ K) ,

where id stands for the identity mapping of the linear space of matrices of order n over the field K. Then the
following assertions are equivalent

(i) there is a not identically zero bi-additive mapping satisfying the semi-homogeneity equation (21),

(ii) the characteristic polynomial of the linear operator Pα,β is reducible over the field K by one of its non-
zero roots,

(iii) P(α, β, γ) = 0.

Remark. If the elements α and β are given, then the possible γ’s are among the roots of the characteristic
polynomial Pα,β. The characteristic polynomial is independent of the choice of the basis b0, . . . , bn−1. Moreover
it is a polynomial over the prime field but the root γ belongs to K in general. Setting the variables α and β
free, the roots of the multivariate polynomial P is independent of the choice of the basis b0, . . . , bn−1. In other
words the algebraic variety

P(x, y, z) = 0

in K3 contains all possible triplets for the solution of the semi-homogeneity equation (19).

6.3 An example: the field GF(4)

The operations are summarized in the following tables:

+ 0 1 a 1 + a
0 0 1 a 1 + a
1 1 0 1 + a a
a a 1 + a 0 1

1 + a 1 + a a 1 0

and

· 0 1 a 1 + a
0 0 0 0 0
1 0 1 a 1 + a
a 0 a 1 + a 1

1 + a 0 1 + a 1 a

Since 4 = 22 it follows that GF(4) is a two-dimensional linear space over its prime field Z2. The basis we
are going to use in the following is b0 = 1, b1 = a. An easy computation shows that the translations τ0 and τ1

are represented by the matrices

M0 =

(
1 0
0 1

)
and M1 =

(
0 1
1 1

)
,

respectively. Choosing elements
α = α0 + α1 · a, β = β0 + β1 · a,
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where α0, α1, β0, β1 ∈ Z2, it follows that

Pα,β(X) = α0β0X + α0β1X
(
0 1
1 1

)
+ α1β0

(
0 1
1 1

)
X + α1β1

(
0 1
1 1

)
X

(
0 1
1 1

)
,

where X =

(
x00 x01

x10 x11

)
. Taking

Pα,β(X) =

(
y00 y01

y10 y11

)
,

a direct computation shows that

y00 = α0β0x00 + α0β1x01 + α1β0x10 + α1β1x11,

y01 = α0β0x01 + α0β1(x00 + x01) + α1β0x11 + α1β1(x10 + x11),

y10 = α0β0x10 + α0β1x11 + α1β0(x00 + x10) + α1β1(x01 + x11),

y11 = α0β0x11 + α0β1(x10 + x11) + α1β0(x01 + x11) + α1β1(x00 + x01 + x10 + x11).

Therefore Pα,β is represented by the matrix
α0β0 α0β1 α1β0 α1β1

α0β1 α0β0 + α0β1 α1β1 α1β0 + α1β1

α1β0 α1β1 α0β0 + α1β0 α0β1 + α1β1

α1β1 α1β0 + α1β1 α0β1 + α1β1 α0β0 + α0β1 + α1β0 + α1β1


with respect to the basis

B00 =

(
1 0
0 0

)
, B01 =

(
0 1
0 0

)
, B10 =

(
0 0
1 0

)
, B11 =

(
0 0
0 1

)
.

If α = 1 + a, i.e. α0 = α1 = 1 and β = a, i.e. β0 = 0, β1 = 1 then we have the matrix
0 1 0 1
1 1 1 1
0 1 0 0
1 1 0 0


and the characteristic polynomial is

P1+a,a(t) = (t − 1)2
·
(
1 + t + t2

)
.

This means that the possible choices are γ = 1, a or 1 + a, that is, if X and Y are linear spaces over the field
K = GF(4), then there exist not identically zero bi-additive mappings of the form A : X × Y → K such that

A((1 + a)x, ay) = A(x, y) (x ∈ X, y ∈ Y),

A((1 + a)x, ay) = aA(x, y) (x ∈ X, y ∈ Y),

or
A((1 + a)x, ay) = (1 + a)A(x, y) (x ∈ X, y ∈ Y).

Remark. GF(4) seems to be rich of semi-homogeneous biadditive functions in case of α = 1 + a and β = a. In
general, if α and β are fixed, then the characteristic polynomial is of degree n2, i.e. we have at most n2 different
possible values for λ. It is a polynomial dependence on n but the number of the elements in GF(pn) increases
exponentially. Therefore the probability of a randomly chosen element in K to be a possible value for λ tends
to zero.
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In this last section of the paper we investigated the existence of non-zero, bi-additive semi-homogeneous
mappings. If the field K is of characteristic zero or K is a finite field, we could provide necessary and sufficient
conditions. At the same time, there exist infinite fields of prime characteristic (for example, the field of all
rational functions over Z/pZ). Therefore, we end this paper with two open problems.

Open Problem 1. Let p be a prime and K be an infinite field of characteristic p. Further, let X be linear spaces
over K and a : X → K be an additive function. Find necessary and sufficient conditions for a to be a nontrivial,
semi-homogeneous additive mapping.

Open Problem 2. Let p be a prime and K be an infinite field of characteristic p. Further, let X and Y be linear
spaces over K and A : X × Y → K be a bi-additive function. Find necessary and sufficient conditions for A to
be a nontrivial, semi-homogeneous bi-additive mapping.
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