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Abstract

The aim of this paper is to prove characterization theorems for field homomorphisms. More

precisely, the main result investigates the following problem. Let n ∈ N be arbitrary, K a field

and f1, . . . , fn : K→ C additive functions. Suppose further that equation

n∑

i=1

f
qi

i

(
xpi
)
= 0 (x ∈ K)

is also satisfied. Then the functions f1, . . . , fn are linear combinations of field homomorphisms

from K to C.

Dedicated to the 70th birthday of Professor Miklós Laczkovich

1 Introduction

The main purpose of this work is to put the previous investigations into a unified framework and

to prove characterization theorems for field homomorphisms. The problem to be studied reads as

follows.

Let n ∈ N be arbitrary, K a field and let f1, . . . , fn : K → C be additive functions. Suppose

further that we are given natural numbers p1, . . . , pn, q1, . . . , qn so that

pi , p j for i , j

qi , q j for i , j

1 < pi · qi = N for i = 1, . . . , n.

(C )

Suppose also that equation
n∑

i=1

f
qi

i
(xpi) = 0 (1)

is satisfied. Throughout this paper we always assume that the field K has characteristic 0 (about the

problem on other fields we refer to Open problem 4 in Section 5). In what follows, we show that

equation (1) along with condition (C ) is suitable to characterize homomorphisms acting between

the fields K and C.

Remark 1. Obviously, solving functional equation (1) is meaningful without condition (C ). At the

same time, we have to point out that without this condition we cannot expect in general that all the

solutions are linear combinations of homomorphisms, or it can happen that the general problem can

be reduced to the above formulated problem.
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Indeed, if conditions

1 < pi · qi = N for i = 1, . . . , n

are not satisfied, then the homogeneous terms of the same degree can be collected together, provided

that K is of characteristic zero (in such a situation we have Q ⊂ K). To show this, assume that

piqi = N1 i = 1, . . . , k1

piqi = N2 i = k1 + 1, . . . , k2

...

piqi = N j+1 i = k j + 1, . . . , n

where the positive integers N1, . . . ,N j+1 are different. Let r ∈ Q and x ∈ K be arbitrary and substitute

rx in place of x in equation (1) to get

0 =

n∑

i=1

f
qi

i
((rx)pi ) =

n∑

i=1

rpiqi f
qi

i
(xpi)

= rN1

k1∑

i=1

f
qi

i
(xpi) + rN2

k2∑

i=k1+1

f
qi

i
(xpi) + · · · + rN j+1

n∑

i=k j+1

f
qi

i
(xpi) .

Observe that the right hand side of this identity is a polynomial of r for any fixed x ∈ K, that has

infinitely many zeros. This yields however that this polynomial cannot be nonzero, providing that

all of its coefficients have to be zero, i.e.,

k1∑

i=1

f
qi

i
(xpi) = 0

k2∑

i=k1+1

f
qi

i
(xpi) = 0

...
n∑

i=k j+1

f
qi

i
(xpi) = 0

This means that in such a situation the original problem can be split into several problems, where

condition (C ) already holds.

On the other hand, if condition

pi , p j for i , j

qi , q j for i , j

is not satisfied then in general we cannot expect that the solutions are linear combinations of field

homomorphisms. Namely, in such a situation arbitrary additive functions can occur as solution,

even in the simplest cases.

To see this, let p, q ∈ N be arbitrarily fixed and let a : K → C be an arbitrary additive function.

Furthermore, assume that for the complex constants α1, . . . , αn, identity

α
q

1
+ · · · + αq

n = 0

holds and consider the additive functions

fi(x) = αia(x) (x ∈ K) .
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Clearly, equation
n∑

i=1

fi(xp)q
= 0

is fulfilled for all x ∈ K. At the same time, in general we cannot state that any of these functions is

a linear combination of field homomorphisms.

2 Theoretical background

In this section we collect some results concerning multiadditive functions, polynomials and expo-

nential polynomials and differential operators. This collection highlights the main theoretical ideas

that we follow subsequently.

2.1 The symmetrization method

Definition 1. Let G, S be commutative semigroups, n ∈ N and let A : Gn → S be a function. We

say that A is n-additive if it is a homomorphism of G into S in each variable. If n = 1 or n = 2 then

the function A is simply termed to be additive or biadditive, respectively.

The diagonalization or trace of an n-additive function A : Gn → S is defined as

A∗(x) = A (x, . . . , x) (x ∈ G) .

As a direct consequence of the definition each n-additive function A : Gn → S satisfies

A(x1, . . . , xi−1, kxi, xi+1, . . . , xn) = kA(x1, . . . , xi−1, xi, xi+1, . . . , xn) (x1, . . . , xn ∈ G)

for all i = 1, . . . , n, where k ∈ N is arbitrary. The same identity holds for any k ∈ Z provided that G

and S are groups, and for k ∈ Q, provided that G and S are linear spaces over the rationals. For the

diagonalization of A we have

A∗(kx) = knA∗(x) (x ∈ G) .

One of the most important theoretical results concerning multiadditive functions is the so-called

Polarization formula, that briefly expresses that every n-additive symmetric function is uniquely

determined by its diagonalization under some conditions on the domain as well as on the range.

Suppose that G is a commutative semigroup and S is a commutative group. The action of the

difference operator ∆ on a function f : G → S is defined by the formula

∆y f (x) = f (x + y) − f (x);

note that the addition in the argument of the function is the operation of the semigroup G and the

subtraction means the inverse of the operation of the group S .

Theorem 1 (Polarization formula). Suppose that G is a commutative semigroup, S is a commutative

group, n ∈ N and n ≥ 1. If A : Gn → S is a symmetric, n-additive function, then for all x, y1, . . . , ym ∈
G we have

∆y1,...,ym
A∗(x) =

{

0 if m > n

n!A(y1, . . . , ym) if m = n.

Corollary 1. Suppose that G is a commutative semigroup, S is a commutative group, n ∈ N and

n ≥ 1. If A : Gn → S is a symmetric, n-additive function, then for all x, y ∈ G

∆
n
yA
∗(x) = n!A∗(y).
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Lemma 1. Let n ∈ N, n ≥ 1 and suppose that the multiplication by n! is surjective in the commu-

tative semigroup G or injective in the commutative group S . Then for any symmetric, n-additive

function A : Gn → S , A∗ ≡ 0 implies that A is identically zero, as well.

The polarization formula plays the central role in the investigation of functional equations char-

acterizing homomorphisms.

2.2 Polynomial and exponential functions

In what follows (G, ·) is assumed to be a commutative group.

Definition 2. Polynomials are elements of the algebra generated by additive functions over G.

Namely, if n is a positive integer, P : Cn → C is a (classical) complex polynomial in n variables

and ak : G → C (k = 1, . . . , n) are additive functions, then the function

x 7−→ P(a1(x), . . . , an(x))

is a polynomial and, also conversely, every polynomial can be represented in such a form.

Remark 2. We recall that elements of Nn for any positive integer n are called (n-dimensional) multi-

indices. Addition, multiplication and inequalities between multi-indices of the same dimension are

defined component-wise. Further, we define xα for any n-dimensional multi-index α and for any

x = (x1, . . . , xn) in Cn by

xα =

n∏

i=1

x
αi

i

where we always adopt the convention 00
= 0. We also use the notation |α| = α1 + · · · + αn. With

these notations any polynomial of degree at most N on the commutative semigroup G has the form

p(x) =
∑

|α|≤N

cαa(x)α (x ∈ G) ,

where cα ∈ C and a : G → Cn is an additive function. Furthermore, the homogeneous term of degree

k of p is
∑

|α|=k

cαa(x)α.

Lemma 2 (Lemma 2.7 of [13]). Let G be a commutative group, n be a positive integer and let

a = (a1, . . . , an) ,

where a1, . . . , an are linearly independent complex valued additive functions defined on G. Then the

monomials {aα} for different multi-indices are linearly independent.

Definition 3. A function m : G → C is called an exponential function if it satisfies

m(xy) = m(x)m(y) (x, y ∈ G) .

Furthermore, on an exponential polynomial we mean a linear combination of functions of the form

p · m, where p is a polynomial and m is an exponential function.

It is worth to note that an exponential function is either nowhere zero or everywhere zero.

The following lemma will be useful in the proof of Theorem 9.

Lemma 3 (Lemma 6. of [10]). Let G be an Abelian group, and let V be a translation invariant

linear subspace of all complex-valued functions defined on G. Suppose that
∑n

i=1 pi · mi ∈ V, where

p1, . . . , pn : G → C are nonzero polynomials and m1, . . . ,mn : G → C are distinct exponentials for

every i = 1, . . . , n. Then pi · mi ∈ V and mi ∈ V for every i = 1, . . . , n.
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2.2.1 Algebraic independence

As a remarkable ingredient of our argument, we recall a theorem of Reich and Schwaiger [11]. The

original statement was formulated for functions defined on C (with respect to addition).

Theorem 2. Let k, l,N be positive integers such that k, l ≤ N. Let m1, . . . ,mk : C → C be distinct

nonconstant exponential functions, a1, . . . , al : C → C additive functions that are linearly indepen-

dent over C. Then the functions m1, . . . ,mk, a1, . . . , al are algebraically independent over C.

In particular, Let Ps : Cl → C be a classical complex polynomial of l variables for all multi-index s

satisfying |s| ≤ N. Then the identity

∑

s : |s|≤N

Ps(a1, . . . , al)m
s1

1
· · ·msk

k
= 0 (2)

implies that all polynomials Ps vanish identically (|s| ≤ N).

Now we just focus on the last part of the statement. Most of the original argument works without

changes for functions defined on any Abelian group. For an arbitrary field K we denote K× (resp.

K+) the multiplicative (resp. additive) group of K.

(A) Let G be an Abelian group. If the additive functions a1, . . . , al : G → C are linearly independent

over C, then any system of terms a
s1

1
· · · asl

l
are also linearly independent over C for different

nonzero multi-indices (s1, . . . , sl) ∈ Nl. Note that s1 = · · · = sl = 0 provides the constant

functions. This statement is nothing but Lemma 2.

(B) Nonconstant exponentials m1, . . . ,mk : G → C are algebraically independent if and only if

m
s1

1
· · ·msk

k
, 1 for any (s1, . . . , sk) ∈ Nk. The latter is not necessarily holds in general. Indeed,

for the n-ordered cyclic group Zn (with respect to addition) the statement is not true since ϕn ≡ 1

for every character ϕ : Zn → C.

In our case, when G = K× and the functions are additive on K+ the analogue holds. Obvi-

ously, exponential functions on K× that are additive on K+ are the field homomorphisms of K.

Therefore none of them are constant.

Let ϕ1, . . . , ϕk be field homomorphisms. To show that ϕs1

1
· · ·ϕsk

k
, 1 for any nonzero multi-

index (s1, . . . , sk) ∈ Nk is enough to find a witness element h , 0 ∈ K such that ϕs1

1
· · ·ϕsk

k
(h) ,

1. As a special case (J′ = ∅) we get it from the following statement.

Lemma 4. ([8, Lemma 3.3]) Let K be a field of characteristic 0, let ϕ1, . . . , ϕk : K → C be

distinct homomorphisms for a positive integer k. Then there exists an element 0 , h ∈ K such

that ∏

j∈J

ϕ j(h) ,
∏

j′∈J′

ϕ j′(h),

whenever J and J′ are distinct multisets of the elements 1, . . . , k.

(C) Combining these facts and using Lemma 2 or following the argument of [11, Theorem 6.]

we get that if a1, . . . , al are linearly independent and m1, . . . ,mk are nonconstant exponential

functions, then equation (2) holds if and only if every Ps(a1, . . . , al) · ms1

1
· · ·msk

k
= 0 for all

s = (s1, . . . , sk), |s| ≤ N.

Applying (A)-(C) we get the following statement.

5



Theorem 3. LetK be a field of characteristic 0 and k, l,N be positive integers such that k, l ≤ N. Let

m1, . . . ,mk : K× → C be distinct exponential functions that are additive on K+, let a1, . . . , al : K
× →

C be additive functions that are linearly independent over C and let Ps : Cl → C be classical

complex polynomials of l variables for all |s| ≤ N. Then the equation

∑

s : |s|≤N

Ps(a1, . . . , al)m
s1

1
· · ·msk

k
= 0 (3)

implies that all polynomials Ps vanish identically (|s| ≤ N).

2.3 Levi-Cività equations

As we will see in the next section, the so-called Levi-Cività functional equation will have a distin-

guished role in our investigations. Thus, below the most important statements will be summarized.

Here we follow the notations and the terminology of L. Székelyhidi [13], [14].

Theorem 4 (Theorem 10.1 of [13]). Any finite dimensional translation invariant linear space of

continuous complex valued functions on a topological Abelian group is spanned by exponential

polynomials.

In view of this theorem, if (G, ·) is an Abelian group, then any function f : G → C satisfying the

so-called Levi-Cività functional equation, that is,

f (x · y) =

n∑

i=1

gi(x)hi(y) (x, y ∈ G) (4)

for some positive integer n and functions gi, hi : G → C (i = 1, . . . , n), is an exponential polynomial

of order at most n. Indeed, equation (4) expresses the fact that all the translates of the function f

belong to the same finite dimensional translation invariant linear space, namely

τy f ∈ lin (g1, . . . , gn)

holds for all y ∈ G.

Obviously, if the functions h1, . . . , hn are linearly independent, then g1, . . . , gn are linear com-

binations of the translates of f , hence they are exponential polynomials of order at most n, too.

Moreover, they are built up from the same additive and exponential functions as the function f .

Before presenting the solutions of equation (4), we introduce some notions.

Remark 3. Let k, n, n1, . . . , nk be positive integers with n = n1 + · · · + nk and let for j = 1, . . . , k

the complex polynomials P j,Qi, j of n j − 1 variables and of degree at most n j − 1 be given, i =

1, . . . , n; j = 1, . . . , k. For any j = 1, . . . , k and for arbitrary multi-indices I j =

(

i1, . . . , in j−1

)

and

J j =

(

j1, . . . , jn j−1

)

we define the n j × n j matrix M j(P; I j, J j) and the n j × n matrix N j(Q; I j) as

follows: for any choice of p, q = 0, 1, . . . , n j − 1 the (n j − p, n j − q) element of M j(P; I j, J j) is given

by

M j(P; I j, J j)(n j−p,n j−q) =






1
p!q!
∂i1 · · ·∂ip

∂ j1 · · ·∂ jq P j (0, . . . , 0) for p + q < n j

0 otherwise

and for any choice of p = 1, 2, . . . , n j, q = 1, 2, . . . , n the (p, q) element of N j(Q; I j) is given by

N j(Q; I j)p,q =
1

(n j − p)!
∂i1 · · · ∂in j−p

Qq,p(0, . . . , 0).
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Then let us define the n × n block matrices M (P; I1, . . . , Ik, J1, . . . , Jk) and N (Q; I1, . . . , Ik) by

M (P; I1, . . . , Ik, J1, . . . , Jk) =





M1(P, I1, J1) 0 . . . 0

0 M2(P, I2, J2) 0 . . .
... 0

. . .
...

...
... Mk(P, Ik, Jk)





and

N (Q; I1, . . . , Ik) =





N1(Q; I1)
...

Nk(Q; Ik)





.

The idea of using Levi-Cività equations rely on Theorem 10.4 of [13] which is the following.

Theorem 5. Let G be an Abelian group, n be a positive integer and f , gi, hi : G → C (i = 1, . . . , n) be

functions so that both the sets {g1, . . . , gn} and {h1, . . . , hn} are linearly independent. The functions

f , gi, hi : G → C (i = 1, . . . , n) form a non-degenerate solution of equation (4) if and only if

(a) there exist positive integers k, n1, . . . , nk with n1 + · · · + nk = n;

(b) there exist different nonzero complex exponentials m1, . . . ,mk;

(c) for all j = 1, . . . , k there exists linearly independent sets of complex additive functions

{

a j,1, . . . , a j,n j−1

}

;

(d) there exist polynomials P j,Qi, j,Ri, j : C
n j−1 → C for all i = 1, . . . , n; j = 1, . . . , k in n j − 1

complex variables and of degree at most n j − 1;

so that we have

f (x) =

k∑

j=1

P j

(

a j,1(x), . . . , a j,n j−1(x)
)

m j(x)

gi(x) =

k∑

j=1

Qi, j

(

a j,1(x), . . . , a j,n j−1(x)
)

m j(x)

and

hi(x) =

k∑

j=1

Ri, j

(

a j,1(x), . . . , a j,n j−1(x)
)

m j(x)

for all i = 1, . . . , n. Furthermore,

M (P; I1, . . . , Ik, J1, . . . , Jk) = N (Q; I1, . . . , Ik) N (R; J1, . . . , Jk)
T

holds for any choice of the multi-indices I j, J j ∈ Nn j−1 ( j = 1, . . . , k), here T denotes the transpose

of a matrix.

In [12] E. Shulman used some techniques and results from representation theory to investigate

a multivariate extension of the Levi-Cività equation. In order to quote her results, we need the

following notions.
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Remark 4. The notion of exponential polynomials can be formulated not only in the framework of

the theory of functional equations but also in that of representation theory. This point of view can

be really useful in many cases. Let G be a (not necessarily commutative) topological group and

C (G) be the set of all continuous complex valued functions on G. A function f ∈ C (G) is called an

exponential polynomial function (or a matrix function) if there is a continuous representation π of

G on a finite-dimensional topological space X such that

f (g) = 〈π(g)x, y〉 (g ∈ G) ,

where x ∈ X and y ∈ X∗.

The minimal dimension of such representations is called the degree or the order of the exponen-

tial polynomial.

Furthermore, f ∈ C (G) is an exponential polynomial of degree less that n if it is contained in an

invariant subspace L ⊂ C (G) with dim (L ) ≤ n.

Definition 4. Let G be a group. We say that f : G → C is a local exponential polynomial if its

restriction to any finitely generated subgroup H ⊂ G is an exponential polynomial on H.

A function f ∈ C (G) is an almost exponential polynomial if for any finite subset E of G, there is

a finite-dimensional subspace LE ⊂ C (G), containing f and invariant for all operators τg as g runs

through E, where

τg f (h) = f (hg) (h ∈ G) .

Remark 5. It is an immediate consequence of the above definitions that any exponential polynomial

is an almost exponential polynomial. Furthermore, if f is an almost exponential polynomial, then

it is a local exponential polynomial, too. Clearly, for finitely generated topological groups all these

three notions coincide. At the same time, in general these notions are different, even in case of

discrete commutative groups, see [12].

Definition 5. Let G be a group and n ∈ N, n ≥ 2. A function F : Gn → C is said to be decomposable

if it can be written as a finite sum of products F1 · · ·Fk, where all Fi depend on disjoint sets of

variables.

Remark 6. Without the loss of generality we can suppose that k = 2 in the above definition, that is,

decomposable functions are those mappings that can be written in the form

F(x1, . . . , xn) =
∑

E

∑

j

AE
j BE

j

where E runs through all non-void proper subsets of {1, . . . , n} and for each E and j the function AE
j

depends only on variables xi with i ∈ E, while BE
j

depends only on the variables xi with i < E.

Theorem 6. Let G be a group and f ∈ C (G) and n ∈ N, n ≥ 2 be fixed. If the mapping

Gn ∋ (x1, . . . , xn) 7−→ f (x1 · · · xn)

is decomposable then f is an almost exponential polynomial function.

2.4 Derivations and differential operators

Similarly as before, K denotes a field and K× stands for the multiplicative subgroup of K.

In this subsection we introduce differential operators acting on fields which have important role

in our investigation.

8



Definition 6. A derivation on K is a map d : K→ K such that equations

d(x + y) = d(x) + d(y) and d(xy) = d(x)y + xd(y) (5)

are fulfilled for every x, y ∈ K.

We say that the map D : K→ C is a differential operator of order m if D can be represented as

D =

M∑

j=1

c jd j,1 ◦ . . . ◦ d j,k j
, (6)

where c j ∈ C and di, j are derivations on K and k j ≤ m which fulfilled as equality for some j. If k = 0

then we interpret d1 ◦ . . . ◦ dk as the identity function id on K.

Remark 7. Since the compositions d1 ◦ . . .◦ dk span a linear space over C, without loss of generality

we may assume that each term of (6) are linearly independent. Equivalently we may fix a basis B

of compositions. We also fix that the identity map is id in B. We note that a differential operator of

order n contains a composition of length n.

If a function m is additive on K and exponential on K×, then m is clearly a field homomorphism.

In our case this can be extended to C as an automorphism of C by [9, Theorem 14.5.1]. Now we

concentrate on the subfields of C that has finite transcendence degree over Q.

Lemma 5. Let K ⊂ C be field of finite transcendence degree and ϕ : K→ C an injective homomor-

phism. Then there exists an automorphism ψ of C such that ψ|K = ϕ.

Further relations are presented between the exponential polynomials defined onK× and differen-

tial operators on K. The connection was first realized in [6] and the connection between the degrees

and orders was settled in [7]. Clearly every differential operator is additive on K and this additional

property is a substantial part of the following statement.

Theorem 7. Suppose that the transcendence degree of the field K over Q is finite. Let f : K→ C be

additive, and let m be an exponential on K×. Let ϕ be an extension of m to C as an automorphism

of C. Then the following are equivalent.

(i) f = p · m on K×, where p is a local polynomial on K×.

(ii) f = p · m on K×, where p is an almost polynomial on K×.

(iii) f = p · m on K×, where p is a polynomial on K×.

(iv) There exists a unique differential operator D on K such that f = ϕ ◦ D on K.

In this case, p is a polynomial of degree n if and only if D is a differential operator of order n.

Proof. The equivalence of (i), (iii) and (iv) follows from [6, Theorem 4.2]. Remark 5 implies the

equivalence of (ii) with the others. The last part of the statement follows from [7, Corollary 1.1.]. �

3 Preparatory statements

At first glance equation (1) itself seem not really restrictive for the functions f1, . . . , fn. At the

same time, our results show that these additive functions are in fact very special, i.e., they are

linear combinations of field homomorphisms from the field K to C. This is caused by the additivity

assumption on the involved functions, and this is the property that can effectively be combined

with the theory of (exponential) polynomials on semigroups. More precisely, with the aid of the

following lemma, we will be able to broaden the number of the variables appearing in equation (1)

from one to N.

9



Lemma 6. Let n ∈ N be arbitrary, K a field, f1, . . . , fn : K→ C additive functions. Suppose further

that we are given natural numbers p1, . . . , pn, q1, . . . , qn such that they fulfill condition (C ). If

n∑

i=1

f
qi

i
(xpi) = 0 (7)

is satisfied for any x ∈ K, then we also have

n∑

i=1

1

N!

∑

σ∈SN

fi

(

xσ(1) · · · xσ(pi)

)

· · · fi

(

xσ(N−pi+1) · · · xσ(N)

)

= 0 (8)

for any x1, . . . , xN ∈ K, here SN denotes the symmetric group of order N.

Proof. Suppose that n ∈ N, K is a field, f1, . . . , fn : K → C are additive functions and define the

function F : KN → C through

F(x1, . . . , xN) =

n∑

i=1

1

N!

∑

σ∈SN

fi

(

xσ(1) · · · xσ(pi)

)

· · · fi

(

xσ(N−pi+1) · · · xσ(N)

)

(x1, . . . , xN ∈ K) .

It is clear that F is a symmetric function, moreover, due to the additivity of the functions f1, . . . , fn,

it is N-additive. Furthermore, in view of equation (7),

F(x, . . . , x) =

n∑

i=1

f
qi

i
(xpi) = 0 (x ∈ K) .

Therefore, the polarization formula immediately yields that the mapping F is identically zero on

KN . �

Equation (1) with two unknown functions

At first we will investigate the case when n = 2. This case was also studied by F. Halter–Koch and

L. Reich in a special situation (when n = p and m = q) in [2, 3, 4].

Proposition 1. Let n,m, p, q ∈ N be arbitrarily fixed so that n · m = p · q > 1 and m , p. Let K be

a field and suppose that for additive functions f , g : K→ C the functional equation

f m (xn) = gp (xq) (x ∈ K) (9)

is fulfilled. Then, and only then there exists a homomorphism ϕ : K→ C so that

f (x) = f (1) · ϕ(x) and g(x) = g(1) · ϕ(x)

furthermore, we also have f (1)m − g(1)p
= 0.

Proof. Let N = n ·m = p ·q. According to Lemma 6 we have that the symmetric N-additive function

F : KN → C defined by

F (x1, . . . , xN) =
1

N!

∑

σ∈SN

[

f
(

xσ(1) · · · xσ(n)

) · · · f (xσ(N−n+1) · · · xσ(N)

)

−g
(

xσ(1) · · · xσ(q)

)

· · · g
(

xσ(N−q+1) · · · xσ(N)

)]

(x1, . . . , xN ∈ K)

10



is identically zero due to the fact that

F (x, . . . , x) = f m(xn) − gp(xq) = 0 (x ∈ K) .

From this we get F(1, 1, 1, . . . , 1) = 0 which implies

f m(1) − gp(1) = 0. (10)

By appropriate substitution, F(x, 1, 1, . . . , 1) = 0 clearly follows for any x ∈ K, or equivalently

f m−1(1) f (x) − gp−1(1)g(x) = 0 (x ∈ K) . (11)

If gp−1(1) = 0 and f m−1(1) , 0, then f ≡ 0 would follow, which is impossible. A similar

argument shows that f m−1(1) = 0 and gp−1(1) , 0 is also impossible. This means that either

gp−1(1) , 0 and f m−1(1) , 0 or gp−1(1) = 0 and f m−1(1) = 0.

If gp−1(1) , 0 and f m−1(1) , 0 then

F(x, y, 1, . . . , 1) = 0 (x, y ∈ K) ,

implies that there exist constants c1, c2, d1, d2 ∈ Q so that c1 + c2 = d1 + d2 = 1 and c1 , d1 (since

p , m) such that

c1 f m−1(1) f (xy)+c2 f m−2(1) f (x) f (y)−d1g
p−1(1)g(xy)−d2g

p−2(1)g(x)g(y) = 0 (x, y ∈ K) . (12)

Applying equations (10) and (11) we get that

gp−2(1)g(x)g(y) =
(gp−1(1)g(x))(gp−1(1)g(y))

gp(1)
=

( f m−1(1) f (x))( f m−1(1) f (y))

f m(1)
= f m−2(1) f (x) f (y),

and we can eliminate g from equation (12)

c1 f m−1(1) f (xy) + c2 f m−2(1) f (x) f (y) − d1 f m−1(1) f (xy) − d2 f m−2(1) f (x) f (y) =

(c1 − d1) f m−1(1) f (xy) + (c2 − d2) f m−2(1) f (x) f (y) = 0.

Since c1 + c2 = d1 + d2 = 1, c1 , d1 and f (1) , 0, it follows that c1 − d1 = −(c2 − d2) , 0 and the

last expression can be reduced to

f (1) f (xy) = f (x) f (y).

Taking ϕ(x) = f (x)/ f (1) for all x ∈ K, we get that ϕ(xy) = ϕ(x)ϕ(y) (i.e. ϕ is multiplicative). Also

ϕ is additive since f is additive. Thus ϕ is an injective homomorphism of K. A similar argument

shows that g(x) = g(1)ψ(x), where ψ is an injective homomorphism of K. Substituting this into

equation (9), we get that

f m(1)ϕN
= gp(1)ψN .

Using equation (10) and a symmetrization process, φ = ψ follows and we get

f (x) = f (1)ϕ(x) and g(x) = g(1)ϕ(x) (x ∈ K)

with a certain homomorphism ϕ : K→ C and f (1)m − g(1)n
= 0.

Finally, if g(1)q−1
= 0 and f (1)m−1

= 0, then g(1) = f (1) = 0 and we have two alternatives.

Either f ≡ 0 and g ≡ 0 or at least one of them is non-identically zero, say f . 0.

The first case clearly yields a solution to equation (1).

Now we show that the latter case is not possible. Without loss of generality we may assume that

m < p. Then

0 = F(x, . . . x
︸ ︷︷ ︸

m

, 1, . . . , 1) = C · f (x)m,

for some positive constant C. Indeed each other summand stemming from f contain at least one

term of f (1) in the product, similarly each product of g’s contains g(1). Therefore f (x) = 0 for all

x ∈ K, contradicting our assumption.

�
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4 Main results

Firstly we show that every solution of equation (1) is an almost exponential polynomial of the group

K×.

Theorem 8. Let n ∈ N be arbitrary, K a field, f1, . . . , fn : K → C additive functions. Suppose

further that we are given natural numbers p1, . . . , pn, q1, . . . , qn so that they fulfill condition (C ). If

n∑

i=1

f
qi

i
(xpi) = 0 (13)

holds for all x ∈ K, then the functions f1, . . . , fn : K→ C are almost exponential polynomials of the

Abelian group K×.

Proof. Suppose that the conditions are satisfied, then due to Lemma 6, we have that the mapping

F : KN → C defined by

F(x1, . . . , xN) =

n∑

i=1

1

N!

∑

σ∈SN

fi

(

xσ(1) · · · xσ(pi)

)

· · · fi

(

xσ(N−pi+1) · · · xσ(N)

)

(x1, . . . , xN ∈ K)

is identically zero.

From this we immediately conclude that for any x ∈ K

F(x, 1, . . . , 1) = 0

holds, that is,
n∑

i=1

fi(x) f
qi−1

i
(1) = 0 (x ∈ K) . (14)

Again, due to the fact that F has to be identically zero, we also have

F(x, y, 1, . . . , 1) = 0 (x, y ∈ K) ,

i.e.,
n∑

i=1

[

ci fi(xy) + di fi(x) fi(y)
]

= 0 (x, y ∈ K) (15)

with certain constants ci, di ∈ C.

Without the loss of generality we can (and we also do) assume that the parameters q1, . . . , qn are

arranged in a strictly increasing order, that is,

q1 < q2 < · · · < qn

holds and (due to condition (C )) we have that

p1 > p2 > · · · > pn

is also fulfilled.

We will show by induction on n that all the mappings f1, . . . , fn are almost exponential polyno-

mials. Since the multiadditive mapping F is identically zero on KN , we have that

∑

σ∈SN

f1

(

xσ(1) · · · xσ(p1)

)

· · · f1

(

xσ(N−p1+1) · · · xσ(N)

)

= −
n∑

i=2

∑

σ∈SN

fi

(

xσ(1) · · · xσ(pi)

)

· · · fi

(

xσ(N−pi+1) · · · xσ(N)

)

(x1, . . . , xN ∈ K)

12



Let us keep all the variables xp1+1, . . . , xN be fixed, while the others are arbitrary. Then the above

identity yields that either f1 is identically zero or f1 is decomposable. Due to Theorem 6, in any

cases we have that f1 is an almost exponential polynomial function. Therefore, for any finitely

generated subgroup H ⊂ K×, the function f1|H is an exponential polynomial. In other words for any

finitely generated subgroup H ⊂ K×, the mapping f1|H is not only decomposable but also fulfills a

certain multivariate Levi-Cività functional equation.

Assume now that there exists a natural number k with k ≤ n−1 so that all the mappings f1, . . . , fk

are almost exponential polynomials. Then, again due to the fact that F ≡ 0, we have that

∑

σ∈SN

fk+1

(

xσ(1) · · · xσ(pk+1)

)

· · · fk+1

(

xσ(N−pk+1+1) · · · xσ(N)

)

= −
k∑

i=1

∑

σ∈SN

fi

(

xσ(1) · · · xσ(pi)

)

· · · fi

(

xσ(N−pi+1) · · · xσ(N)

)

−
n∑

i=k+2

∑

σ∈SN

fi

(

xσ(1) · · · xσ(pi)

)

· · · fi

(

xσ(N−pi+1) · · · xσ(N)

)

(x1, . . . , xN ∈ K) .

Let us keep all the variables xpk+1+1, . . . , xN be fixed, while the others are arbitrary. Then, in view of

Theorem 6, this equation yields that either fk+1 is identically zero or fk+1 is an almost exponential

polynomial, due to the fact that the first summand on the right-hand side is an almost exponential

polynomial by induction, while the other summand consists only of decomposable terms. �

Remark 8. Note that if

fi(x) = ai f (x) (x ∈ K)

holds for all i = 1, . . . , n with certain complex constants a1, . . . , an (assuming that at least one of

them is nonzero), then we immediately get that there exists a homomorphism ϕ : K→ C such that

fi(x) = fi(1)ϕ(x) (x ∈ K) .

Indeed, in this case equation (15) yields that

n∑

i=1

[

ciai f (xy) + dia
2
i f (x) f (y)

]

= 0 (x, y ∈ K) ,

that is, f satisfies the Pexider equation

α f (xy) = β f (x) f (y) (x, y ∈ K) .

This means that f is a constant multiple of a multiplicative function. Since f has to be additive too,

this multiplicative function has to be in fact a homomorphism. All in all, we have that the additive

function f : K→ C fulfills equation

n∑

i=1

a
qi

i
f (xpi)qi

= 0 (x ∈ K)

with certain complex constants a1, . . . , an if and only if there exists a homomorphism such that

f (x) = f (1)ϕ(x) (x ∈ K) ,

moreover we also have
n∑

i=1

a
qi

i
f (1)qi = 0.
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As a consequence of the previous statement and Theorem 3 we have the following.

Theorem 9. Let K ⊂ C be a field of finite transcendence degree over Q. Each additive solution of

equation (1) must be of the form

fi =

n−1∑

j=1

Pi, jϕ j,

where Pi, j’s are polynomials on K× and ϕ j : K→ C are field homomorphisms. Then

f̃i(x) = Pi, jϕ j(x) (x ∈ K, j = 1, . . . , n − 1) .

is also a solution of (1) and all f̃i are additive.

Proof. By Theorem 8, the solutions fi : K → C of (1) are almost exponential polynomials of the

Abelian group K×. Since K is a field of finite transcendence degree, by Remark 7 and Theorem 5 all

fi’s are exponential polynomials. Thus there are nonnegative integers k, l ≤ n − 1 and distinct (non-

constant) exponential functions m1, . . . ,mk : K× → C, further additive functions a1, . . . , al : G → C
that are linearly independent over C and classical complex polynomials Pi,1, . . . , Pi,k : Cl → C with

deg Pi, j ≤ n − 1 be such that

fi =

k∑

j=1

Pi, j(a1, . . . , al)m j. (16)

Substituting fi to (1), we have

0 =

n∑

i=1

f
qi

i
(xpi) =

n∑

i=1





k∑

j=1

Pi, j(a1, . . . , al)m j





qi

(xpi). (17)

Since m1, . . . ,mk are distinct (nonconstant) exponentials, the coefficients of the terms m
a1

1
· · ·mak

k

in the expansion must be 0. Taking all terms that contains only m j as an exponential in the product.

By this reduction, we get that
n∑

i=1

(Pi, jm j)
qi(xpi) = 0 (18)

holds for all j = 1, . . . , k.

The additive functions with respect to addition on K constitute a linear space that is translation

invariant with respect to multiplication on K×. By Lemma 3, we get that if
∑k

j=1(Pi, jm j) is additive

(with respect to addition on K), then Pi, j · m j and m j are additive for every j = 1, . . . , k. The

first implies that f̃i is additive. Since m j is additive on K that has finite transcendence degree and

multiplicative on K×, by Lemma 5 m j can be extended as an automorphism φ j of C. These imply

the statement.

�

Remark 9. It is worth to note that the role of homomorphism m lost its importance. By Theorem 9

for finding a solution of (1) it is enough to find all solutions of (18) separately for every j = 1, . . . , k.

Since N = p1q1 = · · · = pnqn and m j , 0, equation (18) is equivalent to

n∑

i=1

P
qi

i, j
(xpi ) = 0. (19)

Conversely, if (19) holds and Pi, j(x) · x is additive, then fi = Pi, jϕ is an additive solution of (18),

where ϕ is an arbitrary homomorphism.
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Remark 10. Our next aim is to prove Theorem 10. If we omit the condition of additivity of fi then

we can easily find solutions that are neither homomorphisms, nor differential operators as it can be

seen in Example 1.

Example 1. To illustrate this, let us consider the following equation on a field K.

f (x4) + g2(x2) + h4(x) = 0 (x ∈ K) , (20)

where f , g, h : K→ K denote the unknown (not necessarily additive) functions.

Let d : K→ K be a nontrivial derivation and define the function a : K× → K by

a(x) =
d(x)

x

(

x ∈ K×) .

Then a is an additive function on group K×.

Consider the functions f , g and h defined through

f (x) = −(20 + 4a(x) + a2(x))x,

g(x) = 2(1 + a(x))x,

h(x) = 2x,

that clearly provide a solution for (20). Indeed, using ak(xl) = lk · ak(x) for all l, k ∈ N we have

f (x4) = −(20 + 4a(x4) + a2(x4))x4
= −(20 + 16a(x) + 16a2(x))x4,

g2(x2) = (2(1 + a(x2)))2x4
= (4 + 16a(x) + 16a2(x))x4,

h4(x) = 16x4.

On the other hand, it does not satisfies (14). Clearly, f (1) = −20, g(1) = 2, h(1) = 2 and

f (x) + g(1)g(x) + h3(1)h(1) = (−20 − a(x) − a2(x) + 4 + 4a(x) + 8)x = −a2(x) + 3a(x) − 8 , 0.

This is caused by the fact that at least one of the function f , g and h is not additive. It is easy to

check that g and h are additive on K, but f is not.

Theorem 10. Let n ∈ N be arbitrary, K a field, f1, . . . , fn : K → C additive functions. Suppose

further that we are given natural numbers p1, . . . , pn, q1, . . . , qn such that they fulfill condition (C ).

If
n∑

i=1

f
qi

i
(xpi) = 0 (21)

holds for all x ∈ K, then there exist homomorphisms ϕ1, . . . , ϕn−1 : K → C and αi, j ∈ C (i =

1, . . . , n; j = 1, . . . , n − 1) so that

fi(x) =

n−1∑

j=1

αi, jϕ j(x) (x ∈ K) . (22)

Moreover αi, jϕ j gives also a solution of (21).

Proof. Let us assume first that K ⊂ C be a field of finite transcendence degree over Q. By Theorem

9 we can restrict our attention on the solutions fi = Pi · ϕ. Namely,

0 =

n∑

i=1

(Pi · ϕ)(xpi)qi = ϕ(xN) ·
n∑

i=1

P
pi

i
(xpi)qi (x ∈ K) .
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Clearly ϕ has no special role in the previous equation (see Remark 9), thus ϕ ≡ id can be

assumed along the proof. Therefore the solutions are fi = Pi · id. By Theorem 7 we can identify

fi = Pi · x with a derivation Di defined with (6), where the degree of Pi is the same as the order of

Di. Let us denote the maximal degree of all Pi by M. Note that Di can be uniquely written in terms

of the elements of the basis B defined as in Remark 7.

Let the elements of B be the functions x, d1, . . . , dk, . . . , di1 ◦· · ·◦dis
(x) that are linearly indepen-

dent over C for all i1, . . . , is < n. Since every composition is an additive function on K, by Theorem

2 we get that the elements of B are also algebraically independent.

Now fix i such that Di has maximal order M and qi is the smallest possible. Thus it contains a

term d j1 ◦ · · · ◦ d jM
∈ B. Then we have that

d j1 ◦ · · · ◦ d jM
(xpi) = pix

pi−1(d j1 ◦ · · · ◦ d jM
)(x) + pi(pi − 1)xpi−2d1(x)(d2 ◦ · · · ◦ d jM

)(x) + . . .

Let us assume that M > 1. Since x, d j1 ◦ · · · ◦ d jM
(x) ∈ B and they are distinct, the coefficient of

xqi(pi−1)(d j1 ◦ · · · ◦ d jM
(x))qi (23)

uniquely determined and it must vanish. In Di(xpi)qi we have only the term of (23) with nonzero

coefficient. Since qi was minimal, D j(xp j)q j does not contain the product (23), if j , i. In such a

situation however this term cannot vanish, contradicting to the algebraic independence. This leads

to the fact that M = 1, i.e. every Di(x) = ci · x, for some complex constant ci.

This clearly implies in general that every solution can be written as

fi(x) =

n−1∑

j=1

ci, jϕ j(x),

for some constants ci, j ∈ C and field homomorphisms ϕ1, . . . ϕn−1 : K→ C.

Now letK be an arbitrary field of characteristic 0 and assume that the statement is not true. Then

by Theorem 8 there exist almost exponential polynomial solutions defined on K× such that

fi =

n−1∑

j=1

Pi, jϕ j .

n−1∑

j=1

αi, jϕ j.

Then there exists a finite set S ⊂ K which guarantees this. The field generated by S over Q is

isomorphic to field K ⊂ C of finite transcendence degree. Let us denote this isomorphism by

Φ : Q(S ) → K. The previous argument provides that fi ◦ Φ satisfy (22). Since Φ−1 is also an

isomorphism, fi satisfies (22), as well. This contradicts our assumption and finishes the proof. �

Remark 11. Here we note that the proof of Theorem 10 essentially uses the fact that the field K has

characteristic 0, that we assume throughout the whole paper.

The following example illustrates a special case when not all of fi are of the form c ·ϕ. Theorem

11 is devoted to show that this is in some sense the exceptional case.

Example 2. Let K be a field and f , g, h : K→ C be additive functions such that

f (x4) + g2(x2) + h4(x) = 0

holds for all x ∈ K. According to Theorem 8 define the 4-additive function F : K4 → C through

F(x1, x2, x3, x4) = f (x1x2x3x4) +
1

3
{g(x1x2)g(x3x4) + g(x1x3)g(x2x4)

+g(x1x4)g(x2x3)} + h(x1)h(x2)h(x3)h(x4) (x ∈ K) .
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The above equation yields that the trace of F is identically zero, thus F itself is identically zero, too.

From this we immediately get that

F(x, 1, 1, 1) = h3 (1) h (x) + g (1) g (x) + f (x) (x ∈ K) ,

that is, the functions f , g, h are linearly dependent. Using this, we also have that

0 = F(x, y, 1, 1) = −3h3 (1) h (xy) − 2g (1) g (xy) + 3h2 (1) h (x) h (y) + 2g (x) g (y)

has to be fulfilled by any x, y ∈ K.

Define the functions χ, ϕ1, ϕ2 : K→ C as

χ(x) = 3h(1)3h(x) + 2g(1)g(x)

ϕ1(x) =
√

3h(1)h(x)

ϕ2(x) =
√

2g(x)

(x ∈ K)

to obtain the Levi-Cività equation

χ(xy) = ϕ1(x)ϕ1(y) + ϕ2(x)ϕ2(y) (x, y ∈ K) .

Using Theorems 5 and 8, we deduce that there are homomorphisms ϕ1, ϕ2 : K→ C and complex

constants α1, α2, β1, β2, γ1, γ2 so that

g(x) = α1ϕ1(x) + α2ϕ2(x)

h(x) = β1ϕ1(x) + β2ϕ2(x)

f (x) = γ1ϕ1(x) + γ2ϕ2(x)

(x ∈ K) ,

where the above complex numbers will be determined from the functional equation.

Indeed, from one hand we have

− f (x4) = g2(x2) + h4(x) =
(

α1ϕ1(x2) + α2ϕ2(x2)
)2
+ (β1ϕ1(x) + β2ϕ2(x))4

= α1ϕ1(x)4
+ 2α1α2ϕ1(x)2ϕ2(x)2

+ α2
2ϕ2(x)4

+ β4
1ϕ1(x)4

+ 4β3
1β2ϕ1(x)3ϕ2(x) + 6β2

1β
2
2ϕ1(x)2ϕ2(x)2

+ 4β1β
3
2ϕ1(x)ϕ2(x)3

+ β4
2ϕ2(x)4

=

(

α2
1 + β

4
1

)

ϕ1(x)4
+

(

2α1α2 + 6β2
1β

2
2

)

ϕ1(x)2ϕ2(x)2
+

(

α2
2 + β

4
2

)

ϕ2(x)4

+ 4β3
1β2ϕ1(x)3ϕ2(x) + 4β1β

3
2ϕ1(x)ϕ2(x)3

for all x ∈ K.

On the other hand

− f (x4) = −γ1ϕ1(x4) − γ2ϕ2(x4) = −γ1ϕ1(x)4 − γ2ϕ2(x)4 (x ∈ K) .

Bearing in mind Theorem 2, after comparing the coefficients, we have especially that equations

α2
1
+ β4

1
= −γ1

α2
2 + β

4
2 = −γ2

α1α2 = 0

β1β2 = 0

have to be fulfilled. This yields however that

f (x) = −g(1)2ϕ1(x) − h4(1)ϕ2(x)

g(x) = g(1)ϕ1(x)

h(x) = h(1)ϕ2(x)

(x ∈ K) .
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Without the loss a generality we can (and we also do) assume that the parameters q1, . . . , qn are

arranged in a strictly increasing order, that is, q1 < q2 < · · · < qn holds.

Theorem 11. Let n ∈ N be arbitrary and K a field. Assume that there are given natural numbers

pi, qi (i = 1, . . . , n) so that condition (C ) is satisfied. Let f1, . . . , fn be additive solutions of

n∑

i=1

f
qi

i
(xpi) = 0 (24)

Then

fi =






ci, jϕ j if i > 1 or q1 , 1,
n−1∑

j=1

c1, jϕ j if i = 1 and q1 = 1,
(25)

where ϕ1, . . . ϕn−1 : K→ C are arbitrary field homomorphisms and

n−1∑

i=1

c
qi

i, j
= 0 for all j = 1, . . . , n.

Proof. By Theorem 10 every solution

fi(x) =

k∑

j=1

ci, jϕ j(x) (x ∈ K) ,

for some ci, j ∈ C thus the statement for f1 if q1 = 1 is trivial.

We show the rest of the statement by using a descending process as follows.

Introducing the formal variables x1 = ϕ1(x), . . . , xk = ϕk(x), equation (21) yields that

n∑

i=1

(

ci,1x
pi

1
+ . . . + ci,k x

pi

k

)qi

= 0. (26)

By the polynomial theorem

n∑

i=1

∑

Ji,1+...+Ji,k=qi

qi!

Ji,1! · . . . · Ji,k!
c

Ji,1

i,1
· . . . · cJi,k

i,k
· xJi,1 pi

1
· . . . · xJi,k pi

k
= 0. (27)

Since we have distinct homomorphisms it follows, by Theorem 3, that the coefficient of each mono-

mial term of the polynomial in equation (27) must be zero. Two addends belong to the same mono-

mial term if and only if

Ji,1 pi = J j,1 p j, . . . , Ji,k pi = J j,k p j.

If qi ≥ 2 then we choose the values Ji,1 = 1, Ji,2 = qi − 1, Ji,3 = . . . = Ji,k = 0. For each addend

belonging to the same monomial term

pi = J j,1 p j,

pi(qi − 1) = J j,2 p j,

J j,3 = . . . = J j,k = 0.

This means that p j divides pi or, in an equivalent way, qi divides q j. Without loss of generality

we can suppose that qi is the maximal among the possible powers. Therefore there is no any addend
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belonging to the same monomial term as x
pi

1
x

pi(qi−1)

2
. Since qi ≥ 2 it follows that ci,1 = 0 or ci,2 = 0.

Repeating the argument for arbitrary pair xk and xl we get that except at most one ci, j = 0. This

immediately implies equation (24).

Finally, condition
n∑

i=1

c
qi

i, j
= 0

clearly follows from Theorem 9. �

Example 3. Let K be a field. Illustrating the previous results we consider all additive solutions

f1, f2, f3, f4 : K→ C of

f 2
1 (x6) + f 3

2 (x4) + f 4
3 (x3) + f 6

4 (x2) = 0 (x ∈ K) . (28)

with fi(1) , 0 for i = 1, 2, 3, 4.

We distinguish two cases. If every fi is of the form ciϕ, then

c2
1 + c3

2 + c4
3 + c6

4 = 0

and ϕ can be any homomorphism.

If not, then there are two different field homomorphisms ϕ1, ϕ2 such that

fi = ciϕ1,

f j = c jϕ2.

for some 1 ≤ i , j ≤ 4.

Practically, the only possible option is that i1, i2 ∈ {1, 2, 3, 4} are such that

fi1 = ci1ϕ1,

fi2 = ci2ϕ1.

and for j1, j2 ∈ {1, 2, 3, 4} \ {i1, i2} we have

f j1 = c j1ϕ2,

f j2 = c j2ϕ2.

It also clearly follows that

c
qi1

i1
+ c

qi2

i2
= 0

c
q j1

j1
+ c

q j2

j2
= 0.

For instance, if i1 = 1, i2 = 2, j1 = 3, j4 = 4, then we get that

f1 = c1ϕ1,

f2 = c2ϕ1,

f3 = c3ϕ2,

f4 = c4ϕ4,

where c2
1
+ c3

2
= c4

3
+ c6

4
= 0 and ϕ1, ϕ2 : K→ C are arbitrary field homomorphisms.
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4.1 Summary

We can assume that 0 < q1 < q2 < · · · < qn. As a consequence of Theorem 11 we get that for

a given system of solutions fi of (21) the index set I = {1, . . . , n} can be decomposed into some

subsets I1, . . . ,Ik (k < n) such that
k⋃

j=1

I j = I

and
k⋂

j=1

I j =






∅ if q1 , 1

{1} if q1 = 1.

If q1 , 1, then for every I j ( j = 1, . . . , k < n) there exists injective homomorphisms ϕ j : K → C
such that fi = ciϕ j and

∑

i∈I j
c

qi

i
= 0. If q1 = 1, then f1 =

∑k
j=1 c1, jϕ j, fi = ciϕ j if 1 , i ∈ I j and

c1, j +

∑

i∈I j,i,1

c
qi

i
= 0.

Conversely, if there are given a partition I j ( j = 1, . . . , k) of {1, . . . , n} such that except maybe

element 1, the sets are disjoint, then for every field homomorphism ϕ1, . . . , ϕk : K → C we get a

solution of (21) as

fi =






ciϕ j if i ∈ I j and either i , 1 or q1 , 1
∑k

j=1 c1, jϕ j if q1 = 1 and i = 1,

where
∑

i∈+I j
c

qi

i
= 0 if q1 , 1, otherwise c1, j +

∑

i∈+I j,i,1 c
qi

i
= 0. Additionally, we get that for every

set I j the system of fi = ciϕ j (i ∈ I j), where ci satisfy the previous equation, is a solution of (21).

This is a sub-term of (21), thus it seems reasonable that we are just looking for solutions that do not

satisfies any partial equation of (21).

We say that the system of functions f1, . . . , fn form an irreducible solution if it does not satisfy

a sub-term of (21).

Corollary 2. Under the assumptions of Theorem 11, let f1, . . . , fn : K → C be additive irreducible

solutions of (21). Then for all i = 1, . . . , n,

fi(x) = ci · ϕ(x) (x ∈ K),

where ϕ : K→ C is an arbitrary field homomorphism and ci ∈ C satisfies

n∑

i=1

c
qi

i
= 0.

4.2 Special cases

The following statement which is only about the real-valued solutions, is an easy observation which

allows us to focus on the important cases henceforth.

Proposition 2. Let n ∈ N be arbitrary, K a field, f1, . . . , fn : K → R additive functions. Suppose

further that we are given natural numbers p1, . . . , pn, q1, . . . , qn so that they fulfill condition (C ). If

equation (1) is satisfied for all x ∈ K by the functions f1, . . . , fn and the parameters fulfill

qi = 2ki (i = 1, . . . , n)

with certain positive integers k1, . . . , kn, then all the functions f1, . . . , fn are identically zero.
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Proof. If the parameters fulfill

qi = 2ki (i = 1, . . . , n)

with certain positive integers k1, . . . , kn, then equation (1) can be rewritten as

n∑

i=1

(

f
ki

i
(xpi)
)2
= 0 (x ∈ K) ,

in other words, we received that the sum of nonnegative real numbers has to be zero, that implies

that all the summands has to be zero for all x ∈ K. Thus the functions f1, . . . , fn : K → R are

identically zero. �

As an application of the results above, first we study the case

fi(x) = ai · f (x) (x ∈ K, i = 1, . . . , n) ,

where a1, . . . , an are given complex numbers so that at least one of them is nonzero.

Theorem 12. Let n ∈ N be arbitrary, K a field. Assume that there are given natural numbers

p1, . . . , pn, q1, . . . , qn so that they fulfill condition (C ). The function f : K → C is an additive solu-

tion of
n∑

i=1

(ai · f )qi (xpi) = 0 (29)

if and only if

f (x) = c · ϕ(x), (30)

where ϕ : K→ C is a homomorphism and for the constant c equation

n∑

i=1

(c · ai)
qi = 0 (31)

also has to be satisfied.

According to a result of Darboux [1], the only function f : R → R that is additive and multi-

plicative is of the form

f (x) = 0 or f (x) = x (x ∈ R) .

From this, we get also that every homomorphism f : R→ C is of the form

f (x) = κ · x (x ∈ R) ,

where κ ∈ {0, 1}.

Corollary 3. Let n ∈ N be arbitrary and assume that there are given natural numbers p1, . . . , pn,

q1, . . . , qn so that they fulfill condition (C ). Let f1, . . . , fn : R→ C be additive solutions of (1). Then

and only then, there are complex numbers c1, . . . , cn with the property

n∑

i=1

c
qi

i
= 0

so that for all i = 1, . . . , n

fi(x) = ci · x (x ∈ R) .

The above corollary shows that for real functions every solution of equation (1) is automatically

continuous (in fact even analytic) without any regularity assumption.
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5 Open problems and perspectives

In the last section of our paper we list some open problems as well as we try to open up new

perspectives concerning the investigated problem.

Definition 7. Let (G,+) be an Abelian group and n ∈ N, a function f : G → C is termed to be a

(generalized) monomial of degree n if it fulfills the so-called monomial equation, that is,

∆
n
y f (x) = n! f (y) (x, y ∈ G) .

Remark 12. Obviously generalized monomials of degree 1 are nothing else but additive functions.

Furthermore, generalized monomials of degree 2 are solutions of the equation

∆
2
y f (x) = n! f (y) (x, y ∈ G) ,

which is equivalent to the so-called square norm equation, i.e.,

f (x + y) + f (x − y) = 2 f (x) + 2 f (y) (x, y ∈ G) .

In this case for the mapping f : G → C the term quadratic mapping is used as well.

Proposition 3. Let G be an Abelian group and n ∈ N. A function f : G → C is a generalized

monomial of degree n, if and only if, there exists a symmetric, n-additive function F : Gn → C so

that

f (x) = F(x, . . . , x) (x ∈ G) .

Open Problem 1 (Higher order generalized monomial solutions). In this paper we determined the

additive solutions of equation (1). It would be however interesting to determine the higher order

monomial solutions of the equation in question. More precisely, the following problem would also

be of interest. Let n, k ∈ N be arbitrary, K a field, f1, . . . , fn : K → C generalized monomials of

degree k. Suppose further that we are given natural numbers p1, . . . , pn, q1, . . . , qn so that

pi , p j for i , j

qi , q j for i , j

1 < pi · qi = N for i = 1, . . . , n

(C )

Suppose also that equation
n∑

i=1

f
qi

i
(xpi) = 0 (32)

is satisfied. Here the question is, whether we can say something more about these functions f1, . . .

, fn?

We remark that in case k ≥ 2, we do not know whether such ‘nice’ representation for the

functions f1, . . . , fn as in Theorem 8 can be expected.

At the same time, there are cases when the representation is ‘nice’ as well as previously. To see

this, let us consider the following problem. Assume that for the quadratic function f : K → C we

have

f (x2) = f (x)2 (x ∈ K) .

Since f is a generalized monomial of degree 2, there exists a symmetric bi-additive function F : K2

→ C so that

F(x, x) = f (x) (x ∈ K) .
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Define the symmetric 4-additive mapping F : K4 → C through

F (x1, x2, x3, x4) = F(x1x2, x3x4) + F(x1x3, x2x4) + F(x1x4, x2x3)

− F(x1, x2)F(x3, x4) − F(x1, x3)F(x2, x4) − F(x1, x4)F(x2, x3) (x1, x2, x3, x4 ∈ K) .

Since

F (x, x, x, x) = 3
(

F(x2, x2) − F(x, x)2
)

= 3
(

f (x2) − f (x)2
)

= 0 (x ∈ K) ,

the mapping F has to be identically zero on K4. Therefore, especially

0 = F (1, 1, 1, 1) = 3F(1, 1) − 3F(1, 1)2,

yielding that either F(1, 1) = 0 or F(1, 1) = 1. Moreover,

0 = F (x, 1, 1, 1) = 3F (x, 1) − 3F (1, 1) F (x, 1) (x ∈ K) ,

from which either F(1, 1) = 1 or F(x, 1) = 0 follows for any x ∈ K.

Using that

0 = F (x, x, 1, 1) = F(x2, 1) − F (1, 1) F (x, x) + 2F (x, x) − 2F2 (x, 1) (x ∈ K) ,

we obtain that

(F(1, 1) − 2) F (x, x) = F(x2, 1) − 2F2 (x, 1) (x ∈ K) .

Now, if F(1, 1) = 0, then according to the above identities F(x, 1) = 0 would follow for all x ∈ K.

Since F (x, x, 1, 1) = 0 is also fulfilled by any x ∈ K, this immediately implies that

−2 f (x) = −2F(x, x) = F(x2, 1) − F(x, 1)2
= 0 (x ∈ K) ,

i.e., f is identically zero.

In case F(1, 1) , 0, then necessarily F(1, 1) = 1 from which

−F(x, x) = F(x2, 1) − 2F(x, 1)2 (x ∈ K) .

Define the non-identically zero additive function a : K→ C by

a(x) = F(x, 1) (x ∈ K)

to get that

f (x) = F(x, x) = −F(x2, 1) + 2F(x, 1)2
= 2a(x)2 − a(x2) (x ∈ K) .

Since F (x, x, x, x) = 0 has to hold, the additive function a : K→ C has to fulfill identity

−a(x4) + a2(x2) + 4a2(x)a(x2) − 4a4(x) = 0 (x ∈ K)

too.

In what follows, we will show that the additive function a is of a rather special form.

Indeed,

0 = F (x, y, z, 1) (x, y, z ∈ K)

means that a has to fulfill equation

a(x)a(yz) + a(y)a(xz) + a(z)a(xy) = 2a(x)a(y)a(z) + a(xyz) (x, y, z ∈ K)
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Let now z∗ ∈ K be arbitrarily fixed to have

a(x)a(yz∗) + a(y)a(xz∗) + a(z∗)a(xy) = 2a(x)a(y)a(z∗) + a(xyz∗) (x, y, z ∈ K) .

Define the additive function A : K→ C by

A(x) = a(xz∗) − a(z∗)a(x) (x ∈ K)

to receive that

A(xy) = a(x)A(y) + a(y)A(x) (x, y ∈ K) ,

which is a special convolution type functional equation. Due to Theorem 12.2 of [13], we get that

(a) the function A is identically zero, implying that a has to be multiplicative. Note that a is additive,

too. Thus, for the quadratic mapping f : K → C there exists a homomorphism ϕ : K → C such

that

f (x) = ϕ(x)2 (x ∈ K) .

(b) or there exists multiplicative functions m1,m2 : K→ C and a complex constant α such that

a(x) =
m1(x) + m2(x)

2
(x ∈ K)

and

A(x) = α (m1(x) − m2(x)) (x ∈ K) .

Due to the additivity of a, in view of the definition of the mapping A, we get that A is additive,

too.

This however means that both the maps m1 + m2 and m1 − m2 are additive, from which the

additivity of m1 and m2 follows, yielding that they are in fact homomorphisms.

Since

F(x, x) = f (x) = 2a(x)2 − a(x2) (x ∈ K) ,

we obtain for the quadratic function f : K→ C that there exist homomorphisms ϕ1, ϕ2 : K→ C
such that

f (x) = ϕ1(x)ϕ2(x) (x ∈ K) .

Summing up, we received the following: identity

f (x2) = f (x)2 (x ∈ K)

holds for the quadratic function f : K → C if and only if there exists homomorphisms ϕ1, ϕ2 : K →
C such that

f (x) = ϕ1(x)ϕ2(x) (x ∈ K) .

Open Problem 2 (Not necessarily additive solutions). Motivated by the above open problem as well

as Remark 10, we can also pose the question below.

Let n ∈ N be arbitrary, K a field, f1, . . . , fn : K → C be generalized or exponential polynomials.

Suppose further that we are given natural numbers p1, . . . , pn, q1, . . . , qn so that they fulfill condition

(C ). Suppose also that equation
n∑

i=1

f
qi

i
(xpi) = 0 (33)

is satisfied.
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In Example 1 we gave a solution of consisting non-additive solutions of (20). Namely,

f (x) = −(20 + 4a(x) + a2(x))x,

g(x) = 2(1 + a(x))x,

h(x) = 2x

The functions f , g and h are exponential polynomial solutions of (20). Thus it is clear that Theorem

11 do not hold without additivity of f , g and h.

Again, the question is, how can we characterize (exponential) polynomial solutions of (33)?

Open Problem 3 (Solutions on rings and on fields of finite characteristic). As it already appears in

the definition of homomorphisms, the natural domain and also the natural range of the functions in

(20) are rings.

On the other hand, it is easy to see that there is no nontrivial field homomorphism from K to

C, if the characteristic of K is finite. The careful reader can also deduce using our methods, that

already (20) has no solution in this case. At the same time, it can be easily seen that the equation

has solutions if the functions fi : K → L are constant multiple of a field homomorphism where K

and L has the same characteristic.

According to this, the general question arises how the solutions of equation (1) look like in case

when the functions f1, . . . , fn are defined between (not necessarily commutative) rings?

Open Problem 4 (Regular solutions in case K = C). To pose our last open problem, here we recall

the following. Concerning homomorphisms, instead of R, in C the situation is completely different,

see Kestelman [5], since we have the following.

Proposition 4. The only continuous endomorphisms f : C→ C are f ≡ 0, f ≡ id or

f (x) = x (x ∈ C) .

These endomorphisms are referred to as trivial endomorphisms.

Concerning nontrivial endomorphisms we quote here the following.

Proposition 5. (i) There exist nontrivial automorphisms of C.

(ii) If f : C→ C is a nontrivial automorphism, then f |R is discontinuous.

(iii) If f : C → C is a nontrivial automorphism, then the closure of the set f (R) is the whole

complex plane.

(iv) If f : C→ C is a nontrivial automorphism, then f (R) is a proper subfield of C, card( f (R)) = c

and either the planar (Lebesgue) measure of f (R) is zero or f (R) ( C is a saturated non-

measurable set.

As we saw above the continuous endomorphisms of C are of really pleasant form. This im-

mediately implies that the continuous solutions of equation (1) in case K = C also have the same

beautiful structure.

Obviously, the continuity assumption can be weakened to guarantee the same result. At the same

time, our question is whether instead of a regularity assumption, an additional algebraic supposition

for the unknown functions would imply the same?
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