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Abstract

This case study discusses the identification, troubleshooting, and correction of a
torsional instability in an electric motor-driven driveline with variable frequency
drive (VFD) for a high-pressure gas compressor test facility permanently installed at
SwRI. A torsional instability was identified on the gearbox high-speed shaft at speeds
when the VFD output (line) frequency met or exceeded the torsional natural
frequency of the train. The issue was resolved by changing to sensorless vector
control in the VFD instead of voltage/frequency control. In the literature, this change
was not observed to solve similar problems.



Reference Summary Solution

Kerkman et al, 2008.

Feese and Maxfield, 
2008. 

Feese, 2017.

ID fan coupling and motor shafts failed due to VFD
excitation of TNF at  all speeds where 1X EF > TNF. 

Identified cause: Distortion from PWM, bus voltage 
feedback, and carrier comparison. Operation in V/F 
mode was problematic.

Replaced VFD with new one with different 
parameters for duty cycle update, dead time 
compensation, bus voltage feedback 
filtering, and DC link choke to minimize non-
characteristic harmonics. 

Shimakawa and Kojo, 
2007.

Coupling failure due to torsional vibration. Caused by 
torsional frequency content in speed feedback signal.

Switch to V/F control mode with no speed 
feedback.

Kocur and Muench, 
2012.

Torsional failure of LNG compressor couplings due to 
combination of typical harmonics and white noise, 
amplified by feedback of VFD speed signal.

Require limits of white noise produced by 
VFDs, Speed feedback signals for VFD should 
be filtered. Consider notch filters around 
TNF.

Svetti et al., 2015. Electrical interactions with multiple turbo-generator 
trains on same electrical grid. Turbo-generator 
torsional oscillations -> grid voltage oscillations -> 
VFD current oscillations

Perform interaction studies for island 
networks with large VFDs and gas turbine 
generators. Tune VFD control settings. 

Literature on Sub-synchronous Torsional Interaction
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VFD EMD Compressor Facility used in Case Study

VFD controlled

4040 HP, 1800 rpm, 
60 Hz induction motor

single-stage, single-helical, 
7.792 gear ratio, 14,025 

rpm output speed gearbox

5-stage centrifugal 
compressor, max 
speed 16,500 rpm
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Discharge

6” Sch160

Suction

10” Sch80

Compressor Skid

Cooler

Control Valve

(not pictured) 6

Compressor Test Loop

Working fluid: Nitrogen



Instrumentation

90° XY

X-Y Proximity Probe Pairs

Proximity Probe

Accelerometers

Strain

Voltage & Current
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Torsional Rotordynamic Model

• Campbell diagrams show no interference with 1st mode with 
mechanical 1x and 2x energy orders (next slides)

• VFD non-integer excitation data not provided by VFD manufacturer

Predicted 1st Torsional Mode
38.6 Hz (2,315 cpm)
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Mode 3

Campbell Diagram: Low-Speed

Good separation from 
resonance conditions 

associated with 1x or 2x 
low-speed excitations Mode 2

Mode 1
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Campbell Diagram: High-Speed
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Drivetrain Commissioning

Mechanical Check-out:
Open Loop / Air

Full speed (14k rpm)

Low pressure (P1 = 30 psia)
Full speed

High pressure (P1 = 600 psia)
Part speed (9.5krpm)

High pressure
Full speed

(OEM present)
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Compressor Drive End Y
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The Issue: 

During high-pressure, 
high-speed testing, high 
vibrations were 
observed on the 
gearbox at the 
drivetrain’s torsional 
frequency (38 Hz) 
between the speeds of 
9,800 – 11,000 rpm.

Gearbox Low-Speed Shaft Accelerometer
38 Hz
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Gearbox Low-Speed Shaft Accelerometer

9,797rpm



Response observed on the gearbox shafts with proximity 
probe, but little response observed on the compressor shaft 

Gearbox High-Speed Shaft Proximity Probe

Compressor NDE Proximity Probe
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38 Hz



Additional Observations:
1. Audible noise during operation (steady state, 
accelerations, and decelerations) from gearbox 

No noise when deceleration occurred via 
emergency stop on VFD

2. Visual wear on gearbox teeth in post-test 
inspection
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Dynamic Torque Measurements
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𝑇 =
𝐺𝐽𝛾

𝑐
= 11,124 𝑁𝑚



Low Speed Coupling Measurements

• Measured dynamic torque 
was applied to the 
torsional model to 
determine stress at 
various critical locations in 
the machine. 

• The stress was plotted on 
a Goodman diagram to 
determine if low-cycle 
fatigue had occurred.
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Gearbox High-Speed Shaft Proximity Probe

Motor Current Monitoring: 11,400 rpm V/F Mode

Gearbox Low-Speed Shaft Accelerometer
(All three motor leads gave similar signals)

Motor Current Lead “u”

38 Hz

48 Hz – 2x low speed shaft running speed 

Sidebands at +/- 38 Hz (torsional frequency)

»  Suggests feedback in speed control
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VFD Operation Mode

Motor OEM was onsite to assist in changing VFD operation mode 
and related settings and to observe performance. 

Major Change: 
• Operate VFD in Sensorless Vector Mode opposed to V/F Mode
• Tuned settings (filter constants and gains) to improve 

performance (power availability and stability) without inducing 
response
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VFD Operational Mode: V/F

• V/F Mode is open loop speed control method

• There is a steady state relationship between speed reference and 
output frequency/voltage determined by parameterization. 

• Motor speed is free to seek motor/load-torque equilibrium within 
a slippage window around synchronous speed. 

• Choices of PWM frequency didn’t seem to provide any benefit 
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VFD Operational Mode: Sensorless Vector

• Sensorless vector mode is closed loop control 

• Provides various means of tuning with filter gains and constants 

• This operating mode also controls motor excitation precisely, 
which may be beneficial to the present issue, given the observed 
effects of adjusting the V/F characteristic.
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Change in Low-Speed Coupling Strain at 9,800 rpm
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V/F Mode Vector Mode



Gearbox High-Speed Shaft Proximity Probe

11,400 rpm V/F Mode

Gearbox Low-Speed Shaft Accelerometer

Motor Current Lead “u”

38 Hz

48 Hz – 2x low speed shaft running speed 

Sidebands at +/- 38 Hz 
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As shown earlier…



11,400 rpm Sensorless Vector Mode

Gearbox Low-Speed Shaft Accelerometer

Gearbox High-Speed Shaft Proximity Probe

Motor Current Lead “u”

Sidebands negligible
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38 Hz

48 Hz – 2x low speed shaft running speed 



Summary & Conclusions

• Torsional excitation and response of the compressor train was 
unrelated to integer and non-integer VFD harmonics

• Slip associated with speed control in V/F Mode suspected to cause 
torsional response

• Sensorless Vector Mode did not eliminate response, but 
significantly reduced the magnitude of the response

• Torsional vibration monitoring recommended to detect problems 
and avoid unanticipated coupling/shaft failures

• This solution differs from other instances in the literature 
• No ‘typical’ solution for all VFD-excited torsional vibrations; may 

need to involve VFD manufacturer and utilize coupled mechanical-
electrical dynamic model
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Thank you & Questions
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