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ABSTRACT 

In this paper, the authors will describe how Air Liquide launched an international program to monitor and assess equipment asset                    
health, resulting in a positive step-change in availability and reliability worldwide. Using predictive analytics, potential asset failures                 
may be identified and appropriate intervention planned. Intervention prior to failure averts a possible reliability incident, adverse                 
customer impact, and costly “emergency” maintenance activities. 

INTRODUCTION 

Air Liquide is a worldwide organization producing industrial gases such as oxygen, nitrogen, argon, and hydrogen for industrial                  
customers. Our business model results in many small facilities often located within our industrial customers sites. Subject matter                  
experts may be located several hundred miles from the equipment in his or her scope of support. Having this “many mini”                     
organization presents challenges with coordinating any worldwide initiative. The team is able to overcome these challenges by                 
coordinating the people, processes, and tools required for success. Over 1500 models were deployed in over 30 countries in the first                     
six months of the project. The purpose of this paper is to share successful practices that intelligently apply new digital tools to achieve                       
acceptance in the organization. 

Evaluating the root cause of unreliability in our network has underscored the potential for applying new analytical tools to asset health.                     
Mechanical failure was clearly the primary contributor to the cost of unreliability, followed by instrumentation and electrical failure.                  
Understanding the true value of a predictive tool helped the organization accept and embrace the changes necessary to take advantage                    
of predictive data. 

PREDICTIVE ALGORITHMS 

Predictive analysis (Nishchol 2012) is an advanced branch of data engineering which generally predicts some occurrence or                 
probability. The process involves an analysis of historic data and based on that analysis to predict the future occurrences or events                     
using Predictive Analytics modeling techniques. The form of these predictive models varies depending on the data they are using. In                    
the following paragraphs, we detail the two main Predictive modeling approaches to detect abnormal events: Anomaly detection and                  
Fault recognition.  

Anomaly detection 
In anomaly detection (Chandola 2007), a model is built using ‘good/normal’ operating data that typically represents a wide range of                    
operation. Each new point is evaluated against the model, and if the residuals are outside statistical limits, the point is considered as an                       
outlier and the process could be seen as drifting outside its normal operating region. Anomaly detection is an unsupervised learning                    
problem: it is the task of finding hidden patterns in unlabeled data. It determines that something unusual is occurring when conditions                     
deviate from “normal” conditions of operation. Anomaly detection tasks are relevant when there are a large number of negative                   
samples (normal operations) and a few positive samples (failure data). They work best when the failure is due to several factors, all of                       
which cannot be modeled beforehand. For predictive maintenance of machines, anomaly detection tasks are the most relevant.                 
Examples of mathematical concepts for unsupervised learning include PCA (Principal component analysis), SOM (Self organizing               
maps), Neural Networks, k-means clustering etc.  

● Pros: This method can generally detect the potential (and unknown) failures
● Cons: The definition of the “normal” condition can be challenging (in particular for new processes). Moreover, when an                 

anomaly is detected, you do not know what it is: equipment failure, new “normal” condition or a sensor fault?

Fault recognition
Fault recognition captures the faint but precise sensor patterns from the very beginning of machine degradation and captures the                   
stronger patterns as the condition develops and the machine operation deteriorates towards failure. Once the pattern of a fault signature                    
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pattern is captured, it can be used as a monitoring profile, and if the pattern ever emerges again, you will now know exactly what is                         
happening, and an immediate warning can prompt action well before damage. Fault recognition is a supervised learning problem  the                    
task of inferring a function from labeled training data. In supervised learning, each example is a pair consisting of an input object                      
(typically a vector) and a desired output value (also called the supervisory signal). If outputs/supervisors/KPIs cannot be naturally                  
identified in the data, then an artificial one is created. Examples of artificial outputs are (i) time to failure or (ii) likelihood of failure in                         
a given time period. Supervised learning tasks are meaningful when there are a large number of both positive and negative samples in                      
the data (equal likelihood of good or bad data). They also work best when future positive samples (e.g. time to failure) are likely to                        
have similar characteristics of the positive samples in the learning data. Such assumptions are unlikely for the monitoring tasks we are                     
looking to accomplish, where all the faults cannot be expected to have the same root cause. Supervised learning methodologies include                    
linear regression, decision trees, partial least squares, Bayesian networks, neural networks etc. 

● Pros: Provide simultaneously Predictive and Prescriptive information
● Cons: A given failure can be detected only if it occurred in the past with a similar signature. Thus, this method performance                     

may be limited when failures are rare or varied.

Fault detection algorithms may provides an automatic diagnostic and may be considered as more prescriptive compared to anomaly                  
detection. However, the implementation of a fault diagnostic approach requires a large number of failure records. The most important                   
rotating equipment, such as main air compressors, used in air separation units, are often tailor-made machines specific to each plant.                    
For each type of machine, an exhaustive record of all pattern of failure is not available.  

Several softwares based on anomaly detection algorithms are commercially available. The Air Liquide R&D department analysed                
several of them and rated them on mathematical, engineering and business criteria such as: 

● Data Selection: What sources of realtime and historical data does the tool require? What engineering knowledge of the asset                  
is imparted into processing the data? How much historical data does the tool require?

● Predictive Modeling: How accurate and robust are the mathematical techniques used to build a model of the desired                 
operation?

● Statistical Analysis: How robust are the statistical techniques used to detect a deviation from desired operation?
● Preventive Action: Once an event is detected, what are the mechanisms to provide notification and alerts, from early                 

warnings to recommendations for action?
● Maturity: Is the tool well referenced within the process industry? How is the vendor innovating? Is support available                 

worldwide?

This benchmark showed that the mathematical core of the software is not a significant differentiating criteria for an industrial                   
application. No significant differences were observed between the softwares on their sensitivity to detect a deviation. Differentiating                 
factors include: 

● Connectivity to the existing data historian and IT architecture
● Ease of data cleaning
● the possibility to deploy models from a template reference library
● the robustness of the associated expert system to provide pre-diagnostic, and
● the catch management system

These factors may be considered more or less important, depending on the needs and the organization of the user company. 

Existing plant control systems supervise equipment performance based on instrumentation for single metrics such as pressure,                
temperature, vibration, etc. Low and high alarm setpoints are based on risk assessment and equipment design. However, daily                  
operation is generally more restrictive than the entire allowable range. The predictive analytics tool is able to define a historical                    
relationship between all the metrics describing asset health for each piece of equipment. When those relationships change, this may                   
be an early precursor to failure, despite the fact that the alarm limits have not been breached. The Figure 1 explains in a simplified way                         
the operating principle of the tool.  
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Figure 1. 2-Dimensional Correlation between Operating Parameters and Clustering of Historical Data 

The correlation between two operating parameters of a compressor (oil temperature and bearing temperature) over one year of                  
operation is shown with the green dots. In this example, the bearing temperature is increasing linearly with the oil temperature. For                     
example, if the oil temperature is 47°C, the bearing temperature should be about 58°C based on historical data. The dashed red square                      
in Figure 1 represents the typical low and high alarm setpoint implemented in the plant control system. Any operating point contained                     
in this area is considered by the plant control system as a safe operating condition. An actual operating point, for example the red                       
triangle in Figure 1 (oil temperature of 47°C and bearing temperature of 67°C), may be considered as a safe operating condition from                      
the plant control system, despite the fact that it is clearly outside the pattern described by the historical data. The software is creating a                        
model through a clusterization of the historical operating points. The clusters are schematically represented in blue in Figure 1. This                    
model is stored in a database and is considered as the reference behavior of the machine. In real time, the tool will compare the actual                         
operating point to the model prediction. When the actual operating condition falls inside a cluster, the machine behavior is considered                    
as normal and no alarm is generated. When the actual operating condition falls out of a cluster, an alarm which is proportional to the                        
distance d between the actual operating point and the nearest cluster is generated. This simplified example considers only two                   
correlated parameters but the tool is actually able to create a model from several correlated parameters. Typically, the mechanical                   
behavior of a air compressor rotor can be depicted by a model that includes the following parameters: vibrations, bearing                   
temperatures, oil temperature, compressor load and discharge pressure. The dimensionless distance d calculated in n dimensions for a                  
model with n parameters is the overhaul deviation of the actual operating conditions compared to the model built from historical                    
operating conditions.  

The selected predictive analytics software with pattern recognition compares current performance to historical data relationships. This                
is done on a set of metrics determined by subject matter experts for each class of machinery. It is important to create models that                        
include parameters that are sufficiently correlated, otherwise there is a risk to decrease the sensitivity of the tool. For a air centrifugal                      
compressor, it is recommended to create one model dedicated to the monitoring of the mechanical behavior and a second model                    
dedicated to monitoring performance.. Matrix mathematics determines an overall deviation from known data clusters derived from the                 
historical relationships between variables. When the deviation exceeds a set percentage on any metric, an alarm is registered and                   
evaluated by the analyst.  

THE IMPORTANCE OF THE ORGANIZATION 

Key roles in applying predictive analytics successfully include the Analyst, the Site Champion, and the Subject Matter Expert (SME).                   
In our organization, these roles are in different departments but must closely coordinate as a team for maximum success:  

● The Analyst deploys and monitors the software and reports through a centralized analytical organization to operations;
● The Site Champion assists the Analyst in deploying the model by ensuring the correct historian tags are selected for each                   

metric and supplying local information on equipment use. The Site Champion is an operations employee generally reporting                
to the local plant manager.

● The SME resolves equipment issues by diagnosing issues and planning intervention before a reliability issue can occur. The                 
Subject Matter Expert may report through a regional maintenance organization or a centralized team of experts.
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Figure 2 depicts the different steps required to first create and deploy and then maintain the models. Before creating the models, it is                       
important to prioritize the equipments of a fleet that has to be monitored. Several factors can be considered to define this strategy as  

● criticity of the equipment for the production,
● availability of spare parts,
● ageing of the equipment,
● installed instruments,
● maintenance strategy…

Once equipment has been selected, the list of required models has to be established. For a compressor, depending on the                    
instrumentation available and connected to the data historian, the models to be created can be: 

● A mechanical model to monitor vibration, axial displacements and bearing temperatures
● A performance model to monitor either the global efficiency of the machine or the individual compression stage efficiency
● A lube oil system model to monitor the efficiency of the oil cooling and the oil pressure regulation...

Figure 2. Deploying and Running a Predictive Analytics Tool 

Each model requires a number of parameters called metrics. Determining which metrics to use for each class of machinery is a                     
prerequisite to developing models. The input of the SME is required at this point to select the metrics for each model. To speed up the                         
deployment and make it more robust, it is possible to create a library of generic models that can be easily used by the analyst to                         
properly create the models without the support of the SME. These generic models are called a template. A template is a list of metrics                        
such as temperature/pressure/vibration/load that describe the behavior of a specific part of the asset as explained above. The metrics                   
used are defined for each type of asset and multiple templates may be used to monitor an asset. For instance, a air compressors                       
requires four templates to monitor the lube oil system, mechanical systems, performance, and the motor. When launching the                  
program, key subject matter experts were brought together to learn the software and develop these templates for major types of                    
equipment. Note that the template comes also with alarm thresholds specific to each metrics, some pre diagnostic scenarios and filters                    
to disable the model when the asset is in standby (for example). Each thresholds are associated with a persistence criteria. As the                      
predictive analytics approach is focusing on the identification of early precursor signal, a deviation to the reference behavior can be                    
confirmed during a given time before to generate an alarm. For models dedicated to the monitoring of the mechanical behavior of a                      
compressor, a persistence of three hours is implemented. The deviation shall remain continuously above the given threshold during                  
three hours before an alarm is effectively generated. The persistence is an effective criteria to reduce the number of false alarms                     
generated by the tool. Performance models are usually less critical for the integrity of the machine and the persistence can be increased                      
to a higher value to further reduce the number of false alarm. 

The templates developed and tested by the SMEs were used by the Analysts and Site Champions to deploy the required models.                     
Working together, they identify the tags available in the historian server for each metric, mapping tag names to the appropriate metric.                     
Because this information is critical to program success, it was independently validated by both parties. The analyst then downloads                   
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historical data for all these tags to a server dedicated to the tool. The sampling frequency of the collected data depends on the process                        
behavior, but one sample every fifteen minutes collected over one year appears to be a reasonable approach. Once downloaded, the                    
data set has to be cleaned to remove non-standard operating conditions such as downtime, transient operating conditions during startup                   
and shutdown of the equipment, invalid data recorded in the historian server, unexplained operating conditions, data before the last                   
machine overhaul... The site champion has a key role in cleaning to explain specific operating conditions of the equipment to the                     
analyst and to inform him or her about relevant maintenance history, such as the last overhaul on the machine. The sensitivity of the                       
model is directly driven by the quality of the cleaning. Too much cleaning will lead to a high number of false alarms, while not                        
enough cleaning will mask some deviations and will delay alarming. The cleaned dataset is checked for mathematical correlation                  
between each metric in the template.  Data is placed in clusters to create the model.  

Once the profile is created, real-time monitoring begins. It means that on a regular basis, typically every 5 minutes, the tool will                      
compare the actual value of each parameter to the value predicted by the model. An alarm will be generated when the overall deviation                       
between actual and predicted values exceeds the threshold defined in the template. During the next two months, the profile is tested                     
against daily operation. A high number of false alarms occur during this period as the model is field-tested and adjusted. The model                      
may required additional data that are not yet present in the model such as extreme operating conditions, or possibly valid conditions                     
that were deleted during cleaning of the data set. This period is a critical time for the Analyst to learn the equipment and the models                         
and for the model to become robust enough to be credible with field personnel. A filter is added to cancel all alarms in the event the                          
equipment is not in use and delay alarming immediately after startup until normal operation can be expected. The senior experts                    
interact with the model to adjust the alarm threshold and the persistence required from a high deviation alert before an alarm is                      
generated. Avoid giving too much information - some of which may be unfounded - to the site at this time. After the tuning period of                         
the model, the number of false alarms is significantly reduced to an acceptable level that can be properly treated by the analyst,                      
typically one false alarm per equipment per month. 

After the model is deployed, if the present operation departs from historical norms, a deviation measure is calculated. If the deviation                     
exceeds the set limitation and meets the persistence requirement, an alarm is generated. The analyst determines, based on historical                   
trends and the information provided by the analytics, whether each alarm is most likely an instrument failure, a modeling issue with                     
our software, or a true equipment anomaly. The tool allows to identify the main parameters contributing to an observed deviation and                     
helps the Analyst to define a pre diagnostic explaining the deviation. The equipment anomalies are referred to the SME for further                     
study and possible intervention. The instrumentation issues are referred to the site, and modelling issues are handled by the analyst. A                     
flow chart demonstrating correct alarm management has been developed. One analyst is able to monitor approximately one hundred                  
assets using this tool. During the supervision phase, a close collaboration between the analyst, the site champion, the SME and the                     
maintenance team is mandatory to ensure the success of this approach. It is important to organize a weekly or bi-weekly call between                      
these stakeholders to review all the alarms, classify them (false alarm, instrument failure, mechanical catch, performance issue) and                  
define appropriate actions. It may take weeks or month before to act and fix an identified issue. Thus it is important to track all cases                         
that remain open over the weeks and ensure they are finally properly closed. Only the most relevant alarms should be communicated                     
to the operations personnel in order to not jeopardize the credibility of the methodology. On the other hand, a lack of collaboration and                       
exchange between the stakeholders will result in a high number of ignored alarms with the potential to miss real catches. Figure 3                      
shows the difference between the number of catch per month of an affiliate with a robust and mature organization (zone 1) and a                       
second affiliate (zone 2) of similar size where a dedicated analyst has not been officially assigned from the beginning of the                     
deployment. The analyst in the zone 2 was assigned in May 2017. One month after his assignment the number of catches significantly                      
increased, close to the level of the mature organization in zone 1. This example shows how organization is important for the                     
deployment of predictive analytics solutions.  

Senior management support is, of course, crucial to project success. While the senior managers were impressed with forecasts of                   
possible savings and return on investment, they became more convinced of predictive analytics capabilities once we tested our list of                    
metrics by backtesting actual past mechanical failures and calculated the significant potential savings.  

Historical data were to create the equipment “normal operation” definition some time before the failure occurred. Data for 6 months or                     
more prior to the failure was not considered. The model could then “fast forward” to the event as if the software had been monitoring                        
as the event unfolded. We noted both the date of warnings and alarms and the mathematical “root causes” of the high deviations                      
calculated when the equipment started to fail. Actually, in some cases of analyzed past failures, the tool provided early warning up to 9                       
months before the failure occurred on site. The subject matter experts who did these analysis were immediately convinced that                   
predictive science works, and the senior managers supported immediate rollout and implementation. In fact, we reached our three                  
year commitment within the first nine months of implementation. 
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Figure 3. Influence of the Organization on the Number of Catch per Month 

Software alone is not enough for successful implementation of digital tools. It has been demonstrated that the number of significant                    
catches rises when - and only when - the right organisation is established and supported by the management team. 

RESULTS 

Warnings and alarms from three different types of “catches” are presented below. This includes a mechanical equipment catch, a                   
malfunctioning instrumentation catch, and an equipment performance catch. Each catch demonstrates what was seen in the predictive                 
analytics tool with accompanying photographs from the field corresponding to each event. 

Mechanical catch: 

A 7.4MW motor-driven main air compressor (Integrally geared type) of an air separation unit showed a sudden increase in the                    
mechanical model overall deviation on February 26th, 2017. During the following days, the plant had an emergency shutdown and                   
after startup, the overall deviation continued increasing. The deviation was mainly resulting of the following components: a 8°C                  
decrease of the first stage bearing temperature, a 6µm p-p increase of the first stage vibration (Figure 4) and a 6°C increase of the                        
fourth stage bearing temperature. An oil analysis was recommended by the SME and showed high varnish content in the oil. An                     
external filtration system was implemented as temporary mitigation to reduce the short term risk of reaching the alarm level in the                     
plant control system. After a spectral vibration analysis, it was decided by the technical committee to stop the machine for bearing                     
inspection. Due to production obligations, the shutdown was postponed to November 2017. The inspection showed that one of the                   
pads in the upper half of the 1st stage bearing was damaged with the white metal torn off. The damaged bearing was replaced. The                        
bearings of other stages were found to be in good condition. They were thoroughly inspected, cleaned and reinstalled. Note that there                     
was no alarm from the plant control system at the time of the maintenance.  

In this case, the operations team received the first alarm eight months before the eventual shutdown and inspection of the compressor.                     
The analysis of precursor signals with a predictive analytics software avoided extensive damage on the compressor shaft and                  
significant production loss due to the unavailability of the compressor. 
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Figure 4. Evolution of the First Stage Vibration Deviation 

Figure 5. Observed Bearing Damages during Maintenance in November 2017 

Performance catch 

On June 8th, 2017 an alarm registered on the performance model of a 5.9MW booster air compressor model. The Analyst observed a                      
lower actual flow compared to the predicted one as shown in the Figure 6. In this case, the flowmeter is installed downstream of the                        
bypass line. It measures the flow effectively produced by the compressor to the plant. The observed average 5000Nm3/h reduction in                    
flow is corresponding to a leak or a recirculation internal to the the compressor system. Further investigation revealed a leak on the air                       
instrument supply to the anti-surge valve, resulting in a partially opening the recycle valve. Following the repair of the leak on June                      
11th, the actual measured flow came back to a normal value, i.e. between boundaries of the predicted flow. A leak of 5000Nm3/h                      
corresponds to unnecessary power consumption of 400 kWh.  
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Figure 6. Actual Measured Compressor Flow  (red) Compared to Lower (green) and Upper (blue) Boundaries of the Predicted Flow. 

The use of predictive analytics can also enable significant savings in the maintenance budget and efficiency by confirming or                   
completing the technical and efficiency assessment through more precise data analysis. Thank to a detailed analysis using the                  
correlation between the parameters, it is possible to better understand the condition of an asset and determine maintenance                  
requirements predictively. For example, this analysis has been done on a 16MW single shaft air compressor before a scheduled turn                    
around. The analysis confirmed, along with the usual spectrum analysis, oil analysis, etc., that there was no significant wear on the                     
mechanical parts of the machine. The analysis of the performance model showed a slight decrease of the efficiency due to fouling of                      
both the rotor and heat exchangers. Opening the compressor to clean the rotor while the mechanical behavior is acceptable is a major                      
maintenance task with high associated costs compared to the expected power savings. It was decided to focus on the cleaning of heat                      
exchangers, as this task requires fewer resources with more results. Figure 7 shows the impact of heat exchanger cleaning on the                     
compressor performance. For a given opening of inlet guide vanes, the flow capacity increased allowing about 100kW in savings on                    
the power consumption for a minor investment. On the top of the power savings, the major overhaul of the compressor has been                      
postponed allowing a significant saving on the maintenance budget of the current year.  

Figure 7. Operating Data Before and After Cleaning of Heat Exchangers of the Compressor 
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Instrumentation catch: 

The present catch is related to an instrument failure detection that happened on an integral gear type air compressor. On December 8th,                      
2016 a discrepancy was observed between the predicted and actual values of the stage fourth bearing temperature, the actual                   
measurement showing a temperature increase of 20°F compared to the prediction (Figure 8). Over the next couple of days this                    
temperature rose to as high as 222 F° before stabilizing. Investigation discovered that the RTD was displaying a higher value in the                      
control room than the RTD resistance value measured in the field. It was concluded that the card of the plant control system was at                        
fault. The RTD card has been replaced. Further deviation of the measurement could have led at then end to a trip of the compressors                        
and of the plant. The unavailability of the plant for few hours has been avoided. 

Figure 8. Discrepancy between Bearing Temperature Actual (red) and Predicted (blue) Values 

LESSONS LEARNED: 

We have been able to prove that the software works and adds significant value to our operation providing early warning weeks and                      
even month before an alarm would have been generated in the plant control system. However, in this case, the ability to predict and                       
prevent reliability incidents requires a cultural shift that is more complex than the matrix math that drives our predictions. 

Change is always difficult for people and especially for large organizations with historical ways of working. Since “people support                   
what they help create”, we were careful to involve key subject matter experts who garnered the respect of the operations organization.                     
As they developed the templates for each type of asset and did the backtesting of real incidents, they realized they could have had                       
months to predict and prevent some of the crisis situations we previously thought unavoidable. They immediately realized the impact                   
on both their personal and professional lives and were eager to help us convince others to support the new methodology. 

An important aspect of our success was to value each catch in terms of avoided cost of unreliability. This exercise is interesting from                       
a return on investment perspective and has added motivation to speed adoption throughout our system. However, we do not want to                     
allocate resources to calculate a precise value for each catch, as this adds little value to our customers. Nor do we want to create                        
possible finger-pointing or useless friction arguing with operations on each nuance of each catch. 

Instead, we calculated averages from large databases for each type of catch, taking into account equipment spares, reduction in time                    
out of service, reduced expediting fees, and in some cases, less maintenance required overall as major incidents could often be avoided                     
when wear parts were damaged and replaced, averting a possible catastrophic event. Of course, the cost of performing the required                    
maintenance is subtracted from the calculation. Our catch values are conservative and it is generally considered that our total catch                    
value is a very conservative estimate. At the end of the year, our catch value represented approximately 50% of the overall reduction                      
in the reported cost of unreliability worldwide. 

With more than 150 actionned catches in our system, we can observe (Figure 9) that 54% are instrumentation, 34% are mechanical                     
and 12% are associated with equipment performance. However, the associated avoided cost are respectively 8%, 79%, and 33% of                   
total savings. 
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Figure 9. Distribution of Catch Categories in Term of Number of catch and Avoided Cost 

Keeping executive support for this on-going program is critical. Keeping the analysts focused and motivated to find new applications                   
and improve current practices is also a challenge.  We’ve been able to do this several ways: 

● Each geography keeps an alarm management spreadsheet. These sheets are hyperlinked to a web page showing the value of                  
catches each year.  Any change to catch value made on their tracking sheet is posted to the web within 5 minutes.

● Monthly “Flash” reports are issued for the “Catch of the Month” to highlight unusual applications or solid application of the                   
predictive toolkit. The analysts, site champions, and involved subject matter experts are recognized by name for this global                 
distribution.

● The annual report to executives showing the cost of unreliability showed a 50% step change that can only be explained by the                     
use of predictive analytics

Creating an internal user community allows communication with the analysts, and encourages them to discuss amongst themselves.                 
We had categories for software suggestions, discussion, new applications, and announcements. The analysts are able to coach each                  
other with new ideas. This is also a great place to recognize achievements for the program and for individuals making significant                     
contributions. 

For instance, one of our senior analysts has added a new analytical tool for testing template viability. For a new application, he                      
downloaded all the data available describing the asset status. As usual, he downloaded the historical data, removed non-standard                  
operating conditions. Distribution of each sensors measurement is displayed on Figure 10. 

Figure 10. Distribution of each data points after cleaning 
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Figure 11. Correlation Matrix Showing Correlations Measurement between each Parameters (value between -1 and 1). 

With the statistical computing language R, he calculated the correlation of each datapoint to the others and displayed the correlation                    
matrix shown in Figure 11. All the parameters used (pressure, flow, temperature, vibration, etc.) are listed on the diagonal. Above the                     
diagonal, the correlation measurements between parameters are displayed (value between -1 and 1). Below the diagonal, a visual                  
representation of the correlation between the parameters is showed. In blue, parameters are correlated, in red they are anti-correlated.                   
The intensity of the color represents the intensity of correlation. Datapoint are organised by cross-correlation. This visualisation is                  
very powerful to identify groups of correlated data, which are two in this case :  

● 1 : top left corner shows strong correlation coefficients, both positive and negative.
● 2 : bottom right corner : strong positive correlation coefficients

In this way, it was possible able to clearly draw the conclusion that for this equipment, there were two sets of correlated data. This                        
analysis is also useful to identify the driving metric, marked with a star on the figure (ex: power measurement for a motor). He was                        
able to create two templates with the correlating metrics in each to improve the accuracy of the predictive tool.  

CONCLUSIONS 

Predictive Analytics is part of the digital revolution with proven applicability in reducing unplanned downtime in industrial                 
applications. The Air Liquide experience shows that beyond the selecting software (which can be internally developed or                 
commercially available), a wide industrial deployment of predictive analytics solutions requires a strong methodology, organization               
and communication to make it successful, providing the expected reduction of unreliability events. Areas of continuing research                 
include water chemistry and cooling tower systems, static electrical equipment, electrical transformers, breakers, feeders, valve               
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“stiction”, and backup system readiness. 

The plant manager, our leadership and customers need even more information. They need to know there is an X% percent chance of                      
failure in the Y coming days. The presented tool and methodology are not yet prognostic - the mathematics has to be developed within                       
the software - but the authors believe a statistical approach utilizing a cross-linked database will be required to accomplish this goal. 
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