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Abstract 

Kerogen is a micro-porous amorphous solid, which consist the major component of the organic 

matter scattered in the potentially lucrative shale formations hosting shale gas. Deeper 

understanding of the way kerogen porosity characteristics affect the transport properties of 

hosted gas is important for the optimal design of the extraction process. In this work, we employ 

molecular simulation techniques in order to investigate the role of porosity on the adsorption 

and transport behavior of shale gas in overmature type II kerogen found at many currently 

productive shales. To account for the wide range of porosity characteristics present in the real 

system, a large set of 60 kerogen structures that exhibit a diverse set of void space attributes 

was used. Grand Canonical Monte Carlo (GCMC) simulations were performed for the study 

of the adsorption of CH4, C2H6, n-C4H10 and CO2 at 298.15 K and 398.15 K and a variety of 
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pressures. The amount adsorbed is found to correlate linearly with the porosity of the kerogen. 

Furthermore, the adsorption of a quaternary mixture of CH4, C2H6, CO2 and N2 was 

investigated in the same conditions, indicating that the composition resembling that of the shale 

gas is achieved under higher temperature and pressure values, i.e. conditions closer to these 

prevailing in the hosting shale field. The diffusion of CH4, C2H6 and CO2, both as pure 

components and as components of the quaternary mixture, was investigated using equilibrium 

Molecular Dynamics (MD) simulations at temperatures of 298.15 and 398.15 K and pressures 

of 1 and 250 atm. In addition to the effect of temperature and pressure, the importance of 

limiting pore diameter (LPD), maximum pore diameter (MPD), accessible volume (Vacc) and 

accessible surface (Sacc) on the observed adsorbed amount and diffusion coefficient was 

revealed by qualitative relationships. The diffusion across the models was found to be 

anisotropic and the maximum component of the diffusion coefficient to correlate linearly with 

LPD, indicating that the controlling step of the transport process is the crossing of the limiting 

pore region. Finally, the transport behavior of the pure compounds was compared with their 

transport properties when in mixture and it was found that the diffusion coefficient of each 

compound in the mixture is similar to the corresponding one in pure. This observation agrees 

with earlier studies in different kerogen models comprising wider pores that have revealed 

negligible cross-correlation Onsager coefficients. 

1. Introduction 

Unconventional oil and gas refers to oil and gas found in reservoirs of low permeability. As 

a consequence of this situation, ingenious engineering techniques are necessary for the 

extraction of unconventional hydrocarbons in an economically and environmentally 

sustainable way. Two revolutionary techniques that have enabled the commercial exploitation 

of unconventional reservoirs are: i) the hydraulic fracturing or “fracking” and ii) the extended 
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horizontal drilling. Among the various unconventional sources of oil and gas (such as tight gas, 

oil sands etc.), shale gas (SG) formations have attracted a lot of attention over the past decades. 

Currently, USA is probably the only major shale gas producer around the world with a 

remarkably sharp increase of the shale gas produced in the country since 2004 and very 

optimistic forecast for further increase in the near future. The Barnett shale in Texas1 is the 

most famous example of successful commercially exploited shale.  

SG refers to natural gas (NG) stored in shale formations, i.e. clay minerals that host nodules 

of organic matter that are capable of generating NG. The gas is primarily located either in 

adsorbed or dissolved form in the organic matter. Kerogen, the main component of the organic 

matter, is usually defined as the insoluble –in common organic solvents– part of shales. It is 

essentially a poly-disperse mixture of macromolecules whose exact chemical composition is 

unknown and only a few characteristics are determined (e.g. relative number of H and C, % 

nitrogen, the part of it which is pyrrolic etc.).2 For a detailed description of kerogens, the 

interested reader is referred to the relevant literature such as the review article of 

Vandenbrouke.3 

SG is chemically indistinguishable from conventional NG, having all its advantages over 

other fossil fuels (e.g. coal) such as lower CO2, NOx and sulphur combustion emissions.4 When 

it is compared to other alternative sources of energy (e.g. solar or wind) it can be potentially 

more viable financially. Other factors that contribute to the importance of SG to modern 

societies are the suppressed NG prices because of its abundance and the increase of the 

production of SG. This fact in turn results in benefits for the environment. The decreased NG 

price has made the replacement of coal with NG possible in heavily polluting industrial 

activities, such as the electricity production. Lastly, SG producing regions experience 

important economic and industrial development with multiple benefits to the public, such as 
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the creation of new employment positions. A detailed discussion on the topic can be found in 

the review of Sovacool.5 

Despite the various benefits that the development of SG industry has, SG has also raised 

concerns associated with its environmental impact. While downstream processing of SG has 

similar environmental footprint to conventional NG, a life cycle assessment of its 

environmental impact revealed that it may have 50% higher greenhouse gas (GHG) emissions 

than conventional NG, measured as the fraction of CH4 produced that ends up to the 

atmosphere,6,7 although other studies have shown comparable GHG emissions to conventional 

NG.8 This discrepancy is attributed primarily to the CH4 emitted with flow-back fluids and 

during the drilling of the wells.6,7 The public is also concerned about increased seismic activity 

in regions neighboring SG extraction wells that may be related to hydraulic fracturing.9 Last 

but not least, the possibility of contamination of water by CH4 or naturally occurring 

radioactive materials is not considered negligible.10,11  

While it is recognized that potential environmental hazards should be predicted and 

prevented as in every industrial activity, this is not the only issue that needs to be addressed. It 

is well known that every shale is unique, and therefore each one requires its own production 

design. To make things more complex, the design of a fracturing process may require 

amendments within the same well because of variation of the geological characteristics.12 

Finally, the productivity of SG reservoirs decays very fast requiring re-stimulation, and usually 

the expected ultimate recovery (EUR) of gas does not exceed 50.4,12 It is evident that there is 

substantial room for improvement on SG extraction technology, targeting both its 

environmental impact and its performance. 

Oil and gas industry and academia have devoted significant research efforts over the last 

years, trying to tackle the problems related to SG exploitation. Common experimental 

techniques used on shale or kerogen samples include γ ray log,1,13 resistivity measurements,13 
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speed of sound, adsorption experiments,14 neutron scattering,15 X-ray diffraction, vitrinite 

reflectance,1 Rock-Eval pyrolysis etc.16 Information acquired by these experiments includes 

shale field composition in different clays and other minerals, total porosity, pore structure 

characterization, adsorption isotherms, total organic carbon (TOC), and kerogen density, 

among others.  

Although this broad variety of experimental techniques enables the identification of the most 

promising shale fields for commercial exploitation, and allows the design of the production 

processes, it does nοt provide insight to the underlying molecular and macroscopic phenomena 

crucial for production that are related to length and time scales inaccessible to experiment. 

Molecular simulation has proven highly valuable towards this direction for the oil and gas 

industry.17–19 With the boost of SG production in the USA, there is a rapidly growing interest 

in modelling several complex chemical systems, such as clays and kerogen. The majority of 

work related to clays focuses on different types of fluids in slit type mineral micro and meso 

pores.20–24 On the other hand, the research effort on kerogens focuses in the creation of realistic 

kerogen models where the adsorption of fluids of interest to SG technology and their 

transportation properties can be studied. In the pioneering work of Behar and Vandenbrouke,25 

realistic 2D models of three types of kerogens at different maturation stages were presented for 

the first time. Many other attempts employing different computational techniques, from 

ab initio to classical molecular simulations and strategies for creating realistic kerogen models 

have followed in the succeeding years.26–31 Two methods that have recently gained popularity 

are the hybrid reverse Monte Carlo (HRMC) simulation method and a class of methods that 

are based on the assumption that kerogen consists of a single representative molecular model. 

The HRMC method is a reverse MC method employing a reactive force field aiming to 

reproduce an experimentally known property, such as the radial distribution function. The 

methods that are based on representative molecular models assume that kerogen consists of 
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well-defined molecules of rather low molecular weight. A number of this representative 

“kerogen molecules” is placed in a simulation box with or without other lighter compounds. 

Then, based on a cooling protocol, the system assumes realistic densities.  

Models that have been created with the representative molecule approach were used to study 

adsorption of CH4,
29,32 CH4/C2H6 mixtures,33 a CH4/C2H6/C3H8 ternary mixture and CO2.

32 In 

a very interesting article, Ho et al.34 created type II kerogen models based on a previously 

published “kerogen molecule”, representative of currently active shale fields. They studied 

adsorption of CH4 using GCMC and modelled desorption via equilibrium Molecular Dynamics 

(MD) simulations using classical force fields. In these latter simulations, CH4 molecules were 

removed during a MD simulation when they were entering a pre-specified region in structures. 

In this way, they approached the problems of rapidly decreasing productivity that is commonly 

observed in shale reservoirs, and the significant amount of CH4 that cannot be extracted from 

the shales.  

Apart from the study of adsorption, the transport properties of several hydrocarbons have 

been studied, shedding light to many aspects of diffusion in the ultra-confined kerogen 

environment. Collell et al.31 studied the transport properties of light hydrocarbons in twenty 

models of organic matter dispersed in shales composed of kerogen and other lighter 

compounds. They proved that diffusion of CH4, C2H6, C3H8, n-C4H10, n-C8H18 and CO2 is 

slowed down in kerogen by comparison to the corresponding diffusion coefficients of the bulk 

compounds. Then, focusing on one of the twenty models, they further studied the transport 

properties by means of both equilibrium and non-equilibrium MD.35 This study proved that 

cross-correlation Onsager coefficients are negligible compared to their auto-correlation 

counterparts, indicating that the diffusion of each compound is not affected by the presence of 

other compounds. Furthermore, they observed that the diffusion of the light normal 

hydrocarbons scale as the inverse of their carbon number. Falk et al.36 focused on the study of 
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n-alkanes transport along a single kerogen model constructed by means of a HRMC scheme. 

Based on their work, they developed the free volume theory of fluid transport in ultra-confined 

environment. They proved that macroscopic hydrodynamics are not valid in the micropores of 

kerogen. Then, based on the fluctuation dissipation theorem and observations about the scaling 

of observed diffusion coefficients with respect to the loading of the structures and the size of 

the hydrocarbons, they formulated expressions relating the diffusion coefficient and permeance 

to the free volume accessible to diffusing molecules. The free volume theory of diffusion of 

pure compounds has also been extended to mixtures.37 The extension was based on the 

observation of negligible correlation of the motion of molecules of different species of the 

mixture but also negligible correlation between the motions of the molecules of the same 

species.  

The objective of this work is the investigation of qualitative relationships between the 

porosity of kerogen and the adsorption and diffusion coefficient of light hydrocarbons and shale 

gas. A large number of pre-constructed kerogen models exhibiting a wide variety of porosity 

characteristics were used. These models comprise pores spanning the whole spectrum of 

micropores from diameters of 2 to 23 Å. The porosity was studied with a Voronoi based 

algorithm developed earlier by us.38 Here, porosity was characterized based on the limiting 

pore diameter (LPD), the maximum pore diameter (MPD), the accessible volume (Vacc) and the 

accessible surface (Sacc). The gases that were studied are CH4, C2H6, n-C4H10, CO2 and a SG 

type mixture composed of CH4, C2H6, CO2 and N2. Adsorption and diffusion were studied 

using GCMC and equilibrium MD simulations respectively. Finally, the observed diffusion 

coefficient of the mixture components was compared with the diffusion coefficient of the 

corresponding pure components.   
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2. Molecular simulation methods  

2.1. Kerogen models 

We studied adsorption and diffusion in bulk kerogen models developed earlier.38 These are 

models of over-mature type II kerogen that were constructed under the assumption that kerogen 

consists of a single type of molecular units and thus ignoring the true poly-disperse nature of 

kerogen. The molecular unit used, named II-D, has been published earlier,28 and it was 

constructed based on experimental data from the Duvernay shale.2 Apart from these 

experimental data that we implicitly used, no other prior knowledge was used for the 

construction of these models. Although this simplification fails to completely describe the 

complex molecular architecture of real kerogen, it is a necessary simplification in order to 

render the problem of construction bulk kerogen models feasible. In addition to that, these 

models have a microporosity that captures the main characteristics of the real material and 

predict sufficiently accurately properties such as density and porosity. Furthermore, it is 

anticipated that having the correct porosity would be adequate to study adsorption and diffusion 

given that the II-D model respects a set of important characteristics of the chemistry of the real 

material and therefore in the more realistic polydisperse mixtures similar gas-kerogen 

interactions are expected.     

The models that we used for this study consisted of 50 II-D molecules and were constructed 

based on a staged cooling protocol in which a system of density of 0.01 g cm-3 is brought to 

realistic densities by successive MD simulations at the isothermal-isobaric NPT ensemble that 

result in equilibration of the system at progressively low temperature38. The initial temperature 

of this cooling protocol was 1100 K and the final was 298.15 K. In addition to the six structures 

constructed this way, a number of structures were created with the aid of a number of Lennard-

Jones (LJ) dummy particles of varying size. The LJ dummy particle(s) were included in the 

structure during the staged cooling procedure. Finally, they are removed and kerogen is 
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equilibrated with a new MD simulation. The LJ dummy particle(s) were used to control 

induction of porosity in the model. The number of LJ particles was varied between 1 and 3, 

while their diameter was varied from 15 Å to 40 Å. The force field used for the construction of 

these models was a general Amber force field (GAFF)39 with ab initio (HF/6-31G*) derived 

atomic point charges.40  

In the study of adsorption, all the available models comprising 50 II-D molecules were used 

which is a collection of overall 60 kerogen configurations. The study of transport properties 

was limited to a subset of these structures that was expected to allow easier diffusion. These 

are the 24 models that were constructed with 3 x 20 Å, 1 x 30 Å, 2 x 30 Å and 1 x 40 Å LJ 

dummy particle(s) set-ups. In this notation, 2 x 30 Å for example, refers to structures 

constructed with the aid of two LJ dummy particles each one with 30 Å diameter. In all cases, 

the configuration of kerogen used was the final configuration of the MD simulations of our 

previous work.38 Since the kerogen structures are of statistical nature, most of their properties 

present a broad distribution and therefore a kerogen sample cannot be described by a sole 

configuration but rather an ensemble of characteristic configurations that needs to be used. A 

detailed characterization of the porosity of these structures is also available in our earlier 

article.38 While none of these models can describe sufficiently kerogen on their own, each one 

has individual porosity characteristics (e.g. pore size distribution, accessible surface area) that 

are present in real kerogen, and all together offer a sample for the study of the whole spectrum 

of micropores (up to 23 Å) that is known to exist in kerogen.   

2.2. Gases under study 

SG consists of light hydrocarbons, predominantly CH4, and other gases such as N2, CO2, H2S 

etc. As in the case of the conventional NG, the composition of SG varies significantly from 

reservoir to reservoir, even for different wells of the same reservoir.41 In general, the CH4 is 

the dominant component of SG with composition that varies from 50 % to over 95 %.41,42 Given 
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the difficulty of direct quantitative comparison of the simulation results with experimental data, 

as a consequence of the inherent diversity of the real material, a realistic target could only be 

the acquisition of qualitative information based on molecular modelling. As a result, SG was 

modelled as a mixture of four components, CH4, C2H6, CO2 and N2, with a molar composition 

of 85 %, 7 %, 4 % and 4 %, respectively. In addition, CH4, C2H6, CO2 and n-C4H10 were studied 

as pure gases confined in kerogen.  

The TraPPE-UA force field43,44 was used to model all gases. This force field has been widely 

used in a variety of applications45–48 and it predicts accurately the physical properties of 

hydrocarbons and CH4, in particular.49,50 A rigid united atom model was used for CH4 and 

C2H6, while the model for n-C4H10 comprises two flexible bond angles and a flexible torsion 

angle. Among the various models for CO2,
49 we chose to use the TraPPE linear rigid model, in 

order to ensure compatibility between the models for the other gases. Furthermore, this model 

is among the most accurate and simple CO2 models. Finally, parameterization of the same force 

field was used for N2. The cut off distance used for the calculation of van der Waals (vdW) 

interactions was 14 Å, while Coulombic interactions were calculated using the Ewald 

summation method. 

2.3. Monte Carlo simulation of adsorption 

The GCMC simulation technique was used to study the adsorption of the gases into the 

complex network of micropores spanning the kerogens.51 These simulations were performed 

using Cassandra,52 a general purpose open source Monte Carlo (MC) simulation software. In 

the GCMC technique, the confined system is under constant temperature and volume and is 

assumed to be in equilibrium with a reservoir containing the gas under study at certain 

temperature and pressure conditions. Since the gas under confinement is in equilibrium with 

the reservoir, the chemical potential of the confined gas is equal to the chemical potential of 
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the bulk gas of the reservoir. The chemical potential of the gases were calculated using the 

following protocol:  

i. A system of 500 molecules of the gas was prepared using the Amorphous Builder 53 

utility of the Scienomics MAPS platform.54  

ii. This system was then fast equilibrated by MD at the isothermal isobaric (NPT) 

ensemble51 using the LAMMPS simulation package.55  

iii. The equilibrated structure was simulated by MC simulation at the NPT ensemble 

using Towhee software.56,57 During this simulation, the chemical potential was 

calculated using the Widom test particle insertion method.58 Calculations were 

performed at both 298.15 and 398.15 K at and pressures up to 250 atm as detailed in 

Table 1 for each gas studied.  

The chemical potential obtained was validated by GCMC simulations at an initially empty 

box performed using Cassandra software. Finally, GCMC simulations of the gases adsorption 

in all the selected kerogen models were performed with Cassandra, using the validated values 

of chemical potential as input.  

In all the MD simulations performed in this study an integration time step of 1 fs was used, 

while pressure and temperature were controlled by a Nosé-Hoover barostat and thermostat, 

respectively.59,60 In all the GCMC simulations, equilibration of the gas was achieved by 

insertion, deletion, and translation moves for every molecule. For CO2 and N2, rotation about 

the center of mass was also used, while for n-C4H10 bond angle bending and torsion rotation 

moves were used for the equilibration of the internal molecular geometry. The distribution of 

the number of moves performed in every simulation was uniform. The MC trajectories 

generated for the pure gases were 2 × 106 steps long, while for SG mixture 4 × 106 steps were 

performed.  
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In all the GCMC simulations, the kerogen matrix was kept rigid. In principle, MC moves for 

the equilibration of the conformation of kerogen are necessary for the simultaneous 

equilibration of the whole system (kerogen and gas). These moves are difficult to implement 

given the complex structure of the II-D molecule. An alternative for the equilibration of the 

system is a combined GCMC and MD simulation, where an MD simulation is performed and 

is paused periodically in order to perform a short GCMC simulation. The gas that was added 

during the GCMC simulation is then removed before restarting the MD simulation. Here, we 

performed two test case runs of this type hybrid scheme one at 298.15 K and 20 atm and one 

at 398.15 K and 1 atm with CH4 being the only exchanged species during the GCMC. It was 

found that the difference in the adsorbed amount between the two different simulation schemes 

is smaller than the difference of the adsorbed amount between different kerogen models 

constructed in a similar manner i.e. same number and size of LJ dummy particles (see 

Supporting Information, pg. 32). Therefore, the use of a rigid matrix in the GCMC simulation 

is justified.  

2.4. Study of diffusion of gases in kerogen  

Transport of CH4, C2H6, CO2 and their mixture (SG) along the network of kerogen 

micropores was studied by equilibrium MD simulations. In all these simulations the 

assumption of rigid kerogen is relaxed. The pressures considered were 1 atm and 250 atm at 

the temperatures examined in GCMC simulations of adsorption, namely 298.15 K and 398.15 

K. The configuration of each GCMC trajectory whose number of adsorbed molecules of gas 

was closer to the trajectory average was selected as initial configuration for the diffusion 

studies.  The protocol followed for the estimation of the diffusion coefficient is:  

a. A short NPT MD run of 0.5 ns was performed with LAMMPS to relax the system. 

This is necessary in order to avoid stresses associated with the assumption of rigidly 

fixed kerogen during the GCMC simulation.  
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b. A 0.1 ns NVT MD run, also performed with LAMMPS, with isotropic progressive 

compression/decompression of the simulation box in order to reach its average size 

estimated at step (a), brought the system to its equilibrium density.  

c. A 60 ns NVT MD simulation was performed using the GROMACS61–63 simulation 

package for the estimation of the self-diffusion coefficient of the gases in kerogen.  

In all the previously mentioned MD simulations, the integration time step was set to 1 fs. A 

Nosé-Hoover thermostat was used to control temperature in all runs and a similar barostat 

controls pressure in the NPT run of step (a).  

The self-diffusion coefficient,D𝑖,𝑑
𝑠 , of compound 𝑖 along direction 𝑑 = 𝑥, 𝑦, 𝑧 was calculated 

using the Einstein relationship51 that correlates D𝑖,𝑑
𝑠  with the mean squared displacement of the 

molecules:  

 

 

D𝑖,𝑑
𝑠 =

1

2𝑁𝑖
∑

〈(𝑟𝑖𝑗
𝑑(𝑡 + 𝛥𝑡) − 𝑟𝑖𝑗

𝑑(𝑡))
2

〉

𝛥𝑡

𝑁𝑖

𝑗=1

 (1) 

 

where 𝑟𝑖𝑗
𝑑(𝑡) is the 𝑑-component of the position vector of 𝑗th molecule of compound 𝑖 of the 

gas, 𝑁𝑖 is the number of molecules of the 𝑖th compound and the angle brackets indicate an 

average over all possible displacements 𝑟𝑖𝑗
𝑑(𝑡 + 𝛥𝑡) − 𝑟𝑖𝑗

𝑑(𝑡) along direction 𝑑 corresponding 

to time interval 𝛥𝑡 (i.e. displacements starting from different initial time 𝑡) that can be 

calculated from the generated MD trajectory. The diffusion coefficient of compound 𝑖 across 

the three dimensional space, D𝑖
𝑠, was then calculated as an arithmetic average of the three 

component of the diffusion coefficient, D𝑖,𝑑
𝑠 , 𝑑 = 𝑥, 𝑦, 𝑧. The choice of self-diffusion 

coefficient seems the appropriate choice for the study of transport of SG in kerogen. Earlier 

studies have revealed negligible cross-correlation Onsager coefficients35,37 of mixtures but also 
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negligible correlation of the velocities of the molecules of the same species. Therefore all the 

necessary information about the diffusion of the molecules is indeed included in the self-

diffusion coefficients, D𝑖,𝑑
𝑠 .    

3. Results and Discussion 

3.1. Adsorption 

The excess adsorption isotherms at 298.15 K of CH4, C2H6, n-C4H10 and CO2 in type II 

kerogen that was constructed without the use of LJ dummy particles are shown in Figure 1. 

The excess adsorption, 𝑎ex, is defined as the amount of gas adsorbed that exceeds the amount 

of gas that would fill the pores if the density under confinement was the same as that of the 

bulk gas.32 It is calculated as:  

 

 𝑎ex = 𝑎 − 𝜌𝑔𝑎𝑠
𝑏 ∙ 𝑉𝑎𝑐𝑐 (2) 

 

where 𝑎 is the absolute adsorbed amount, and 𝜌𝑔𝑎𝑠
𝑏  is the density of the bulk gas as it is 

calculated during the equilibrium MC run of step (iii) of the algorithm described in section 2.3. 

𝑉𝑎𝑐𝑐 is the volume of kerogen accessible to CH4 that was calculated previously.38 The calculated 

𝜌𝑔𝑎𝑠
𝑏  and 𝑉𝑎𝑐𝑐 values can be found in the Supporting Information (Tables S3 and S4 

respectively). The isotherms presented in Figure 1 were calculated as the average of the six 

trajectory averages that were generated by GCMC simulations in different kerogen models 

using a similar construction strategy (i.e. number and size of LJ particle), while the confidence 

intervals are the corresponding standard deviations.  

In general, at the high pressure region the excess adsorbed amount of CH4 is larger than the 

excess adsorbed amount of C2H6, while the adsorbed amount of n-C4H10 is the lowest. This is 

consistent with the intuitive expectation that at high pressure where the pores are practically 
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completely filled, higher amounts of the smaller molecules could be adsorbed. Nevertheless, 

in all pressures, the amount of the adsorbed CO2 is higher than the rest of the gases examined 

although is of size larger than CH4. This is an indication of noticeably stronger interactions of 

CO2 with kerogen compared to the hydrocarbons. Saturation of n-C4H10 is practically 

immediately achieved at very low pressure, while the system is saturated in C2H6 at much lower 

pressure compared to CH4. As it is shown in Figure 1b, even at a pressure as low as 0.1 atm, 

the system is already saturated with n-C4H10. The average statistical uncertainty with respect 

to the calculated average 𝑎ex value is 8 % for CH4 with values not exceeding 15%, 10% for 

C2H6 with maximum value of 18 %, 12 % for n-C4H10 with maximum value of 23 % and finally 

9 % for CO2 with uncertainty not exceeding 16 %. The adsorption isotherms on the other 

kerogen models constructed with the aid of LJ particles (as shown in the Supporting 

Information Figures S1-S8) have similar qualitative characteristics. 

Figure 2 shows the excess adsorption, 𝑎ex, isotherms of the pure CH4, C2H6, C4H10 and CO2 

at 398.15 K. Comparing to Figure 1, it is evident that the amount of n-C4H10 adsorbed is not 

significantly affected by the increase in temperature remaining around 1 mmol g-1 for any 

pressure. On the other hand, a similar comparison of Figures 1 and 2 reveals that the excess 

adsorbed amount of CH4, C2H6, and CO2 decreases at each pressure with increasing 

temperature. The higher decrease is observed at the lowest pressure and the lower decrease 

observed for the higher pressure. More specifically, the % relative decrease 

𝑎ex(298.15 K)−𝑎ex(398.15 K)

𝑎ex(298.15 K)
 is approximately 80 % at 1 atm and 20 % at 250 atm for CH4, 60 % at 

1 atm and 5 % at 250 atm for C2H6, and 75 % at 1 atm and 5 % at 250 atm for CO2. At 398.15 

K, saturation is achieved at higher pressures for CH4, C2H6, and CO2 with excess adsorption 

isotherms that have not reached their maximum. Finally, one can observe the wider range of 

pressures that the isotherm of C2H6 remains above the isotherm of CH4. 
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The effect of the LJ dummy particles on adsorption (more and larger LJ dummy particles 

increases the porosity of kerogen) can be identified from Figure 3 where the loading, 𝑎, is 

presented as function of the % porosity of the kerogen calculated as: 

 

 
% porosity =  

𝑉𝑎𝑐𝑐

𝑉
∙ 100 (3) 

 

where 𝑉 is the volume of kerogen which is equal to the cubic simulation box and 𝑉𝑎𝑐𝑐 the CH4 

accessible volume. The amount of adsorbed gas is a linear (increasing in all cases apart from 

the case of 1 atm for CH4 and CO2) function of the accessible volume. This linear trend of the 

adsorption with respect to porosity is observed at both high and low pressures. The increase of 

pressure increases the slope of the linear trend line for CH4, C2H6, and CO2. For n-C4H10, there 

is no significant pressure dependence of the data, since kerogen saturation is observed at low 

pressures (Figure 1). Therefore, only a single pressure (1 atm) is depicted in Figure 3. It should 

be pointed out that for CH4 and CO2 at 1 atm, the dependence of adsorbed amount on accessible 

volume is negligible (the differences between the observed loadings are comparable to the 

uncertainties of their values) but slightly negative, which may be explained by partial coverage 

of the surface of the pores by the gas molecules. Another contributing reason for this might be 

a reduction of the gas/wall interactions at wider pores.65  

Adsorption of the SG mixture at four sets of temperature and pressure conditions reveals that 

confinement has a considerable effect on mixture composition, 𝑥𝑖
c, with 𝑖 =

CH4, C2H6, CO2, N2, which strongly deviates from the bulk mixture composition that it is in 

equilibrium with. This deviation is quantified via the following expression:  
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Δ(𝑃, 𝑇) = √〈(〈∑
𝑥𝑖

c

𝑥𝑖
b

𝑖∈C

〉# run − 1)

2

〉LJP (4) 

 

In equation (4), the set C = {CH4, C2H6, CO2, N2} is the set of the compounds composing SG. 

The ensemble average composition of gas 𝑖 along the trajectory of the GCMC adsorption 

simulation in kerogen and along the NPT MC simulation trajectory used for the calculation of 

the chemical potential, is denoted as 𝑥𝑖
c and 𝑥𝑖

b, respectively. The bracket  〈 〉# run represents 

an average over the six runs (i.e. kerogen models) constructed with a similar LJ dummy 

particle(s) set up and the bracket 〈 〉LJP an average over the different LJ set ups considered 

here. The mole fractions, 𝑥𝑖
b, of the bulk system is 0.85, 0.07, 0.04, and 0.04 for CH4, C2H6, 

CO2, and N2, respectively, and independent of pressure and temperature. On the other hand, 𝑥𝑖
c 

was found to vary significantly as a function of pressure and temperature for every kerogen 

structure. In addition to this, the composition of the confined systems is considerably different 

for different structures of kerogen. As a consequence of this behavior, Δ= Δ(𝑃, 𝑇) is a function 

of the pressure and temperature conditions. It should also be noted that if the composition at 

certain conditions under confinement is the same as the bulk composition, Δ approaches zero. 

Figure 4 shows Δ for the various temperatures and pressures examined. Increasing the 

temperature and pressure leads to a composition under confinement which is closer on average 

(over the various examined structures) to the initially set bulk composition based on which the 

chemical potential (used for the GCMC adsorption simulations) was calculated. The effect of 

pressure on the composition under confinement is intuitively understood by the fact that the 

environment around a molecule under confinement (small distances with the other molecules) 

resembles more the environment around a molecule of the bulk under high pressure.  

3.2. Diffusion 
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Although kerogen is an amorphous material and therefore exhibits isotropic behavior, the 

diffusion of the gases in the length scale of our models is not isotropic. Due to their limited 

size, these models may include percolated pores, which allow diffusion along only one 

direction in the vast majority of the cases examined. In general, CH4 moves faster than C2H6 

and CO2, while C2H6 diffuses slightly faster than CO2. This ordering of the diffusion 

coefficients of the hydrocarbons is consistent with the intuitively expected trend, because of 

the relative size of the molecules. A comparison of the diffusion coefficients of CH4 and C2H6, 

DCH4

𝑠  and DC2H6

𝑠 , respectively, at 298.15 K and 1 atm is shown in Figure 5. The data are 

distributed around the straight line with slope 
1

2
 in agreement with the earlier published 

correlations35 stating that DC2H6

𝑠 ≈
 DCH4

𝑠

2
. The slope of the trend line fitted to the data is 0.4865 

very close to the theoretically expected value of 0.5.  

In an effort to study the characteristics of porosity that affect the mobility of gases inside the 

kerogen, the relationship between the diffusion coefficients and the porosity was examined. 

Figure 6 shows the maximum component of the diffusion coefficient: 

 

 𝐷𝑖
𝑠 = max

𝑑∈{𝑥,𝑦,𝑧}
D𝑖,𝑑

𝑠  (5) 

 

of the three pure gases studied at 298.15 K and 250 atm as function of the kerogen limiting and 

maximum pore diameter (LPD and MPD, respectively) for the 24 different kerogen structures 

considered. The limiting and maximum pore diameters were calculated as average of their 

instantaneous values for 11 configurations evenly selected along 1 ns of the of the NVT run of 

step (c) of the algorithm described in the subsection 2.4. The instantaneous values of the 

porosity characteristics of interest on each one of the 11 selected configuration of each MD run 

were calculated using a Voronoi tessellation based algorithm that we developed previously.38 
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It should be stressed out that pores are examined free of any diffusing gas so that the 

calculations are free of non-kerogen atoms. Therefore, during the calculation of the porosity 

characteristics the gas that was diffusing along kerogen was removed. The calculation of 

average LPD was limited to 1 ns of the NVT simulation, instead of the entire 60 ns run, in order 

to reduce the CPU cost that would otherwise render the calculation infeasible. 

Here, the focus is on the maximum component of the diffusion coefficient because of the 

anisotropic character of diffusion along our kerogen molecules, which takes place along one 

percolated direction. It is reasonable to expect that the maximum component of the diffusion 

is the one that describes the movement of the gases along this percolated direction. There is a 

strong, almost linear, correlation between the maximum component of diffusion coefficient 

and the limiting pore diameter, with increasing values as limiting pore diameter increases. The 

increased mobility of CH4 compared to C2H6 and CO2 is indicated by the higher slope of the 

trend line shown in Figure 6a, compared to the slope in Figure 6b and 6c. No correlation at all 

is observed between the maximum component of diffusion coefficient and the observed MPD, 

for all pure compounds.  

It is worth noting that a measurable diffusion coefficient is observed for structures whose 

LPD is much lower than the molecular diameter of the diffusion gases. This behavior is 

observed for all compounds, and suggests the existence of a gate opening mechanism that is 

capable to allow the movement of the gases. The dynamics of this mechanism should be faster 

than 1 ps, which is the time interval between the configurations selected for the study of 

porosity.  

Figure 7 shows the same diffusion coefficient components as a function of the CH4 accessible 

volume and surface (Vacc and Sacc, respectively). The Vacc and Sacc were calculated with a 

methodology similar to the methodology followed for the calculation of LPD and MPD of 

Figure 6. The maximum component of diffusion coefficient, 𝐷𝑖
𝑠, is less correlated to the 
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accessible volume and surface compared to its correlation to LPD. Although there is no specific 

functional form of such a trend, a non-specific increase of the diffusion with increasing volume 

and surface is observed. For the case of the diffusion coefficient as a function of the accessible 

surface, there is a dependence on Sacc up to approximately 12,000 Å2 while at higher values it 

disappears.  

The relative correlation of the various relationships of the maximum component of the 

diffusion coefficient with porosity characteristics is quantified with the linear (Pearson’s) 

correlation coefficient: 

 

 
𝑅 =

𝑛 ∑(𝑥𝑖𝑦𝑖) − ∑ 𝑥𝑖 ∑ 𝑦𝑖

√𝑛 ∑ 𝑥𝑖
2 − (∑ 𝑥𝑖)2√𝑛 ∑ 𝑦𝑖

2 − (∑ 𝑦𝑖)2

 
(6) 

 

where 𝑥𝑖 represents the first set of data which in this case are the calculated 𝐷𝑖
𝑠, 𝑦𝑖 represents 

the sets of corresponding porosity data (LPD, MPD, Vacc and Sacc) and 𝑛 is the number of 

collected data points. When the two sets of data are linearly correlated 𝑅 takes the value of 1, 

while no correlation is indicated by a value of 0. Table 2 shows the correlation coefficients for 

the four pressure and temperature conditions examined. It is clear that in every case, the 

correlation coefficient between diffusion coefficient and MPD is the smallest, while correlation 

between LPD and diffusion is in general strong and in every case stronger than the correlation 

with the other porosity characteristics. The correlation between diffusion, accessible volume 

and accessible surface seems similar and generally looser than the correlation with LPD. As 

indicated by the correlation coefficients of Table 2, the relationship of 𝐷𝑖
𝑠 and porosity at 

398.15 K is expected to have qualitative behavior similar to corresponding functions at 298.15 

K shown in Figures 6 and 7. Figures showing the 𝐷𝑖
𝑠 as function of LPD, MPD, Vacc and Sacc at 

the other conditions examined, namely 298.16 K/1 atm, 398.15 K/1 atm and 398.15 K/250 atm, 
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for the all the studied gases are shown in the Supporting Information (Figures S9-S38). As a 

general remark, increase of the temperature from 298.15 K to 398.15 K for a given pressure 

results in an increase of the diffusion coefficient for every compound up to a factor of two. 

Diffusion of the gas mixture in kerogen was examined using NVT MD simulation data. The 

amount of N2 was not sufficient to allow meaningful statistical analysis and it was omitted. 

Figure 8 shows the three diffusion coefficient components (along x, y and z direction) of each 

of the three remaining compounds (i.e. CH4, C2H6 and CO2) as a function of the corresponding 

diffusion coefficient components in pure at 298.15 K and 250 atm. Data points are positioned 

around the x = y line indicating practically that the diffusion coefficient of every gas remains 

unchanged between pure and mixture conditions. This finding agrees with earlier studies that 

have revealed that the motions of the molecules in the confined environment of the pores of 

kerogen are not correlated.35,37 Given that all the components of the self-diffusion coefficient 

of a compound are essentially unaffected by the presence of the molecules of different 

compounds, it is reasonable to assume that in general the diffusion mechanism remains the 

same in the mixture as in the pure state. This behavior does not appear to change with 

temperature as an equivalent behavior is also observed at 398.15 K (see Supporting Information 

Figures S30-S41), although the points are slightly more scattered around the y = x line. Note 

that at 398.15 K, the composition of the SG mixture examined differs from its composition at 

298.15 K (Figure 4). Furthermore, the composition of the mixture is different in different 

kerogen models even at the same temperature. Therefore, it seems that the equivalence between 

the diffusion mechanisms of either pure compounds or their mixture counterparts is not affected 

by the composition or temperature.  

In addition to the fact that D𝑖,𝑑
𝑠 , 𝑑 ∈ {x, y, z} of each mixture component 𝑖 is practically the 

same as the corresponding pure component D𝑖,𝑑
𝑠 , it should be pointed out that the composition 

of the diffusing gas has only a minor effect on the characteristics of the porosity of kerogen 



22 

 

(LPD, MPD, Vacc and Sacc). As a result, relationships between diffusion coefficients of the three 

primary components of the SG mixtures and the characteristics of porosity are expected to exist 

and be similar to the correlations shown in Figure 6 and Figure 7. Indeed, this is true and a 

similar behavior between the maximum component of diffusion coefficient as function of LPD, 

MPD, Vacc and Sacc is observed (see Supporting Information). This relationship between 

diffusion coefficients of the mixture and porosity is also indicated by the correlation 

coefficients of Table 2.  

4. Conclusion 

The adsorption and transport properties of a SG type mixture along over mature type II 

kerogen were investigated. A large number of kerogen structures that were constructed and 

extensively characterized in terms of their porosity in an earlier work were used. These bulk 

kerogen models were constructed under the assumption that kerogen consists of a single species 

of relatively small molecules. The porosity was imposed to these kerogen models and 

effectively controlled with the aid of LJ dummy particles. In this way, the set of kerogen 

structures used for the study of adsorption and transport properties comprise pores that exhibit 

a large variety of characteristics and span the whole spectrum of micropores.  

Adsorption of three hydrocarbons (CH4, C2H6 and n-C4H10) and CO2 was studied using 

GCMC at various temperature and pressure conditions, assuming that kerogen structure is not 

affected by the presence of gases in its pores. It was found that at high pressures more CO2 is 

adsorbed, followed by CH4, C2H6 and n-C4H10 for both temperatures (298.15 K and 398.15 K) 

where isotherms were generated. For the three hydrocarbons, this ordering is consistent with 

the relative size of the molecules. The fact that more CO2 is adsorbed was attributed to stronger 

kerogen/CO2 interactions. Temperature affects both the saturation pressure and the adsorbed 

amount at each pressure for all gases except n-C4H10. In general, saturation is achieved at higher 
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pressure with increasing temperature, while a smaller amount is adsorbed at every pressure at 

higher temperature. Finally, with regard to the dependence of adsorption to porosity, a linear 

relationship is found between the adsorbed gas amount and the CH4 accessible volume with 

the slope of the line increasing with increasing pressure. 

Furthermore, the adsorption of a SG type mixture composed of CH4, C2H6, CO2 and N2 was 

studied. It was found that the composition of the adsorbed mixture is significantly different 

than the bulk gas mixture composition, a difference which was quantified by the quantity 

Δ(𝑃, 𝑇). Increase of pressure and temperature resulted in a composition closer to the bulk gas 

composition. N2 amount in the adsorbed confined phase was negligible.  

The diffusion of pure CH4, C2H6 and CO2 in kerogen was studied at four sets of temperature 

and pressure conditions, namely 298.15 K / 1atm, 298.15 K / 250 atm, 398.15 K / 1 atm and 

398.15 K / 250 atm using equilibrium MD simulation. Diffusion of the same compounds as 

parts of a quaternary mixture with the addition of N2 was also investigated for both 

temperatures of 298.15 K and 398.15 K but only at high pressure of 250 atm. The qualitative 

dependence of the observed diffusion coefficient to the LDP, MDP, Vacc and Sacc of kerogen 

porosity was investigated. The porosity characteristics were calculated along the NVT runs that 

were used for the study of diffusion. In general, CH4, which is the smallest molecule, diffuses 

faster than C2H6 and CO2 with the diffusion coefficient of CO2 being slightly smaller than the 

diffusion coefficient of C2H6. The diffusion coefficient of C2H6 was approximately half the 

diffusion coefficient of CH4 for every kerogen structure in agreement with previously 

published correlations. Increase of temperature results in faster diffusion. The maximum 

component of the self-diffusion coefficient was found to be linearly correlated with the LPD 

of the structures. The accessible volume and accessible surface were found to be less correlated 

to diffusion. The diffusion coefficient of each component in the SG type mixture is practically 

the same with the corresponding pure component diffusion coefficient. This manifests that the 
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diffusion of each compound remains unaltered by the presence of the molecules of other 

compounds. This observation is true for both temperatures examined. Given that the 

composition of the mixture under confinement is different for different kerogen structures and 

varies also as a function of temperature, this suggests that the diffusion mechanism stays 

unaltered in the mixture regardless of its composition. As a result, it may be sufficient when 

studying SG transport to focus on the pure components alone.  
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Tables 

 

Table 1. The pressure (atm) in which adsorption was studied using GCMC for the pure and 

mixed gases of interest in this work. 

CH4 C2H6 n-C4H10 CO2 
Shale gas 

mixture 

1 

20 

50 

100 

250 

0.5 

1 

5 

10 

15 

100 

250 

0.1 

0.25 

0.5 

0.75 

1 

100 

250 

1 

100 

250 

1 

250 
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Table 2. Correlation coefficient between maximum component of diffusion coefficient and four 

major characteristics of porosity (LPD, MPD, CH4 accessible volume Vacc, and CH4 accessible 

surface Sacc) for the four temperature and pressure conditions considered. 

298.15 Κ 1 atm 250 atm 

 
LPD MPD Vacc Sacc LPD MPD Vacc Sacc 

CH4 0.847 0.313 0.784 0.743 0.919 0.438 0.727 0.660 

C2H6 0.935 0.424 0.779 0.773 0.850 0.290 0.630 0.598 

CO2 0.877 0.450 0.791 0.753 0.896 0.412 0.646 0.655 

CH4 

in mixture 

 

0.946 0.407 0.724 0.654 

C2H6 

in mixture 
0.975 0.394 0.697 0.626 

CO2 

in mixture 
0.885 0.479 0.812 0.725 

398.15 Κ 1 atm 250 atm 

CH4 0.904 0.408 0.738 0.747 0.950 0.419 0.732 0.661 

C2H6 0.870 0.527 0.794 0.684 0.901 0.303 0.678 0.620 

CO2 0.757 0.316 0.676 0.741 0.955 0.489 0.749 0.638 

CH4 

in mixture 

 

0.962 0.365 0.678 0.594 

C2H6 

in mixture 
0.961 0.342 0.616 0.548 

CO2 

in mixture 
0.925 0.426 0.690 0.566 

 

  



36 

 

Figures 

 

 

  

   

Figure 1. Excess adsorption isotherms of CH4, C2H6, n-C4H10 and CO2 at 298.15 K to kerogen 

constructed without the aid of LJ dummy particles, (a) the whole scale from 0 atm to 250 atm 

is presented, (b) the pressure region up to 1 atm is presented. 
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Figure 2. Excess adsorption isotherms of CH4, C2H6, C4H10 and CO2 at 398.15 K to kerogen 

constructed without the aid of LJ dummy particles, (a) the whole scale from 0 atm to 250 atm 

is presented, (b) the pressure region up to 1 atm is presented. 
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Figure 3. Adsorbed amount of (a) CH4, C4H10 and (b) C2H6, CO2 on kerogen as function of % 

porosity of kerogen. 
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Figure 4. Quantity Δ for the shale mixture under confinement in kerogen as function of the four 

pressure and temperature conditions considered. 
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Figure 5. Diffusion coefficient of C2H6 against the diffusion coefficient of CH4 along the 

different structures considered at 298.15 K and 1 atm. The dashed line corresponds to 𝑦 = 0.5𝑥 

while the continuous line is a linear trend line fitted to the data, with a slope of 0.4865. 
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Figure 6. Maximum component of (a) CH4, (b) C2H6 and (c) CO2 diffusion coefficient (along 

kerogen) at 298.15 K and 250 atm as a function of the LPD (shown on the primary horizontal 
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axis) and MPD (shown on the secondary horizontal axis).  A linear trend line is fitted to the D 

vs LPD points. The statistical uncertainty for the D vs MPD points is the same as for the D vs 

LPD points. 
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Figure 7. Maximum component of (a) CH4, (b) C2H6 and (c) CO2 diffusion coefficient (along 

kerogen) at 298.15 K and 250 atm as a function of the CH4 accessible volume, Vacc, (shown on 

the primary horizontal axis) and CH4 accessible surface, Vacc, (shown on the secondary 
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horizontal axis) or kerogen. The statistical uncertainty for the D vs Sacc points is the same as 

for the D vs Vacc points. 
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Figure 8. (a) CH4, (b) C2H6 and (c) CO2 diffusion coefficient(along kerogen) components x 

(diamonds), y  (squares) and z (circles) in SG mixture versus the corresponding components of 
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pure compounds for the different kerogen structures at 298.15 K and 250 atm. Black line is the 

bisector of the angle defined by the vertical and horizontal axes. 
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