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ABSTRACT 

Centrifugal pumps (CPs) are critical components in many industries. Their continuous availability is necessary for sustained operation 

of a plant. They are, however, susceptible to seizures owing to reasons such as, fluid flow abnormalities and/or mechanical component 

failures. These flow abnormalities not only have a direct effect on the internal components of the CP but also indirectly affect the 

systems delivering to or receiving flow from it. Consequently, it is crucial to recognize these faults and estimate their severity, so as to 

(a) curb the progression of the same and (b) improve the longevity of the CP system. The present work shows the development of a

robust algorithm based on support vector machines (SVM) to classify multiple CP faults, such as suction and discharge blockages

(with varying severities), impeller defects, pitted cover plate faults and dry runs in time-frequency domain using continuous wavelet

transform (CWT) analysis. For the sake of classification, the CP vibration data and motor line-current data are generated for each of

these faults experimentally. Furthermore, in industrial setting, CP signatures are susceptible to noise corruption due to other operating

equipment in the premises. Hence, to assess the versatility of the developed methodology, the generated experimental data is further

corrupted with 5%, 10% and 25% additive white Gaussian noise and used to test the algorithm. The prediction performance results

thus obtained are compared to show their promise.

INTRODUCTION 

The understanding of dynamics of critical rotating machines is important to ensure smooth running of the industries using them. Some 
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of the modern techniques of dynamic analysis of rotors are given in ref. (Tiwari, 2017). One of the critical rotating machines is a 

centrifugal pump (CP). CPs find wide applications, ranging from industries to domestic households owing to their versatile operation, 

simple design and low cost. It is estimated that a conventional chemical plant uses as many CPs as its employee headcount (Hennecke, 

2000). Any untimely failure of a CP may hinder the process flow of the plant. Also, it is estimated that, 20 percent of the total energy 

produced around the world is utilized in driving CPs (Hart, 2002). Therefore, a continuous and efficient working of CPs is necessary 

for a sustained plant operation, improved personnel safety and enhanced monetary returns.  

The important questions, however, are – Why does a CP fail? What are the mechanisms of failure? How to prevent or curb the failure? 

The CP commonly fails due to mechanical failures or due to fluid flow abnormalities or due to a combination of both of these. The 

details of some of the common modes of CP failure are given in Figure 1. Mechanical failures include the failure of bearings, seals, 

CP internal surfaces, impeller damages, unbalances, misalignments, etc. On the other hand, fluid flow abnormalities include, the flow 

re-circulations (suction, discharge), cavitation, fluid containing entrapped gas, dry-run, etc.  Nonetheless, the authors have found that 

the mechanical and hydraulic CP faults are not independent of each other, and therefore, one fault can lead to the occurrence or 

amplification of the other (Janani & Tiwari, 2017). They form a vicious fault cycle as shown in Figure 2.  Hence, it is essential that the 

faults are recognized in their formative stages, so that remedial measures may be timely initiated.      

Figure 1. Different modes of CP failure 

Figure 2. CP vicious fault cycle 

In this study, an algorithm is developed to classify the complex CP fault combinations, as shown in Table 1. The faults considered 

include healthy pump (HP) condition, suction blockages (SB), discharge blockages (DB), impeller faults (IF), pitted cover-plate fault 

(PC), dry-run faults and their combinations as shown in Table 1.  



Copyright© 2018 by Turbomachinery Laboratory, Texas A&M Engineering Experiment Station 

Table 1. Faults considered in the proposed work 

Fault  combination Suction Blockage (SB) Discharge Blockage (DB) Impeller Fault (IF) Pitted Cover plate Fault (PC) 

Healthy CP Absent Absent Absent Absent 

Only SB Present Absent Absent Absent 

Only DB Absent Present Absent Absent 

Only IF Absent Absent Present Absent 

Only PC Absent Absent Absent Present 

Both IF and SB Present Absent Present Absent 

Both IF and DB Absent Present Present Absent 

Both PC and SB Present Absent Absent Present 

Both PC and DB Absent Present Absent Present 

Dry run Present Absent Absent Absent 

Both Dry run and IF Present Absent Present Absent 

Both Dry run and PC Present Absent Absent Present 

A suction blockage (SB) may occur when there is an unwanted obstruction in the CP inlet pipe cross sectional area, because of, (a) 

clogging of the inlet pipe due to fluid impurities or (b) damages of pipe surfaces.  Figure 3 shows an obstruction caused by sea weeds 

in the strainer of a vertical pump in a sea-water lift application. The obstruction to suction flow results in a cavitation like damage in 

the CP due to the pressure drop at the inlet of CP. 

Figure 3. A sea-water lift pump with submerged motor, delivering approximately 140 m
3
 sea water through a head of 14 bar suffering 

a strainer blockage fault 

The pressure side (outlet) of the CP is generally throttled to get the required flow rate. This throttling can be considered as a discharge 

blockage (DB). It refers to running the CP at part load. With the throttling of the outlet, there is a decrease in flow rate and an increase 

of load on the impeller vanes.  This may also result in flow reversal (recirculation), which results in pressure pulsations and cavitation 

like damage. 

Most CPs are designed to operate when primed. In some cases, however, the operators do not realize the drying up of the sump or 

absence of priming fluid. Such cases are called as dry run conditions. If a CP is dry run, it results in excessive heat generation 

resulting in bearing and seal failures, and high vibrations.  

The pitted cover (PC) and impeller faults (IFs) can be caused due to manufacturing errors and/or cavitation like damages. Whenever 

the smooth passage of fluid inside the CP is hindered, it results in pseudo-fluid flow recirculation (Janani & Tiwari, 2017).  

From the previous discussions, it is clear that the causes of SB, DB, IF, PC and dry run faults are independent. However, a persistent 

existence of one fault can introduce or accelerate the growth of the other. Moreover, owing to the dissimilar causes of each of them 

they can even occur concurrently and can cause CPs catastrophic failure. Hence, fault combinations are chosen such that the acutest 
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conditions may be depicted. In addition, it even helps in understanding the robustness of the developed methodology to identify co-

existing as well as independent CP faults. 

 

The traditional plant maintenance techniques rely on strategies, like periodic plant maintenance or failure maintenance. The major 

disadvantages of these practices are,  

(i) inability in identifying potential failure modes,  

(ii) delayed fault detection leading to fault propagation and system failure, and  

(iii) halt in the process flow of plant while maintaining it.  

 

Therefore, the modern maintenance strategies rely on the intelligent maintenance of the plants. According to this strategy, various 

operating parameters of critical systems of the plant are continuously acquired and fed to the designed artificial intelligence algorithm. 

If any deviation of the parameter from that of the standard operation is observed, the respective failure mode is identified and the 

system operator is cautioned about it, so that appropriate measures can be taken to curb the fault growth. In general, vibration studies 

help to capture the intricate dynamics of the systems (Venkatachalam, 2014).  Also, the variation on the load on the CP (due to the 

fault) changes the current signature of the motor. Therefore, in this paper vibration and motor line-current signatures are used to 

identify CP faults. 

 

Most of the previous fault classification studies of CPs considered the mechanical and flow related faults independent of one another.  

 In one of the works, the noise spectrum was used to diagnose the incipient cavitation fault in a CP (Chudina, 2003).  

 Kallesoe et al. proposed a model based technique for the diagnosis of CP faults (Kallesoe et al., 2006). This fault detection 

algorithm was based on a combination of structural analysis, observer design and analytical redundancy relation. The faults 

considered were clogging of CP, bearing faults, cavitation and dry run.  

 Sakthivel et al. classified six faults on the CP, including the normal CP, bearing, impeller and seal faults, the combination of 

impeller and bearing faults, and cavitation (Sakthivel et al., 2012). A fuzzy inference system based on rough set rules was 

developed. The performance of this classifier was compared to that of a fuzzy-ant miner and multi-layer perceptron based 

classifiers.   

 Muralidharan and Sugumaran presented a CP fault diagnosis technique based on decision tree algorithm and continuous 

wavelet transform (CWT) analysis to classify faults such as cavitation, bearing defects, and a combination of impeller and 

bearing faults (Muralidharan & Sugumaran, 2013). In another work, the same authors team presented the CP fault diagnosis 

using support vector machine (SVM) algorithm (Muralidharan et al., 2014).  

 Sakthivel et al. demonstrated that dimensionality reduction techniques such as the PCA helps in improving the CP fault 

classification accuracy (Sakthivel et al., 2014). They tested the method with Naïve Bayes and Bayes Net classifiers.  

 Bordoloi and Tiwari presented an SVM based classification methodology to detect different stages of suction blockages in a 

CP (Bordoloi & Tiwari, 2017).  

 Ebrahim & Javidan presented a CWT and SVM based method to classify seal and impeller faults on the CP (Ebrahimi & 

Javidan, 2017).  

 Alabied et al. presented a classification method based on intrinsic time-scale decomposition of motor current signals for the 

fault diagnosis of CPs (Alabied et al., 2017). The faults considered were bearing inner and outer race fault and impeller 

defects. 

 

Most of the researchers considered independent existence of the mechanical and hydraulic faults. However, Perovic et al. took this 

problem into consideration and tried to classify cavitation faults, discharge blockage faults, impeller defects and both discharge 

blockage and impeller defects (Perovic et al., 2001). Janani & Tiwari also considered suction blockage faults and impeller defects, 

together (Janani & Tiwari, 2017). But, in both of the aforementioned studies, when fault combinations were taken the classification 

accuracies obtained were very low. This is because it is very challenging to identify the complex fault interactions accurately. Hence, a 

reliable classifier needs to be designed so as to classify independent as well as coexisting faults. 

 

There are many artificial intelligence (AI) techniques that have been previously investigated to detect CP faults, including artificial 

neural networks, decision trees, rough sets, deep learning, support vector machines, etc. Basic ANNs work very well when large fault 

database and experienced personnel are available. However, they suffer from local minima traps. Unlike the other AI techniques, the 

SVM works on the structural risk minimization principle and has a well-established mathematical definition (Vapnik, 1995, Widodo & 

Yang, 2007). Therefore, it is expected to give better learning performance as it can arrive at the near global minima. It works fine with 

less fault data. Due to the advantages offered by the SVM, it would be used as the AI technique to develop the fault classification 

methodology. 

 

The data acquired from the CP can be used in one of the three domains, i.e. in time or frequency or time-frequency domains. The 

advantages or disadvantages of each of these domains rely on the behavior of the fault. In other words, it depends on the type of signal 
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the fault produces. For example, a bubble explosion produces a short-lived transient signal, a rotor crack or an unbalance produces a 

stationary-periodic signal. Hence, the selection of the domain plays an important role in the way the fault is interpreted and captured. 

Thus, this has a direct effect on the fault classification accuracy obtained. In the present study, a continuous wavelet transform (CWT) 

approach is used to pre-process the time-domain signal to accommodate both mechanical faults (which produce periodic stationary 

signals) and flow related faults (which produce short lived transient signals). 

 

In this paper, the working of a developed methodology to classify distinct independent as well as co-existing mechanical and flow 

related faults of CPs is demonstrated. The baseline signals are corrupted with additive white Gaussian noise. Further, to check the 

robustness of the methodology the training and testing of the algorithm is done at various operating speeds and the performance is 

presented. The paper is structured as follows. Firstly, the CP lab experimentation set-up and fault types considered and combinations 

are explained. Next, the details of the proposed CP fault classification methodology are presented. Later on, the performance of the 

classification methodology is discussed, followed by the conclusions.  

 

CENTRIFUGAL PUMP FAULT DIAGNOSIS EXPERIMENTAL SET-UP  
 

The experimentation is performed on a machine fault simulator (MFS) setup, as shown in Figure 4. A 0.5 hp CP is mounted on the 

MFS and is pulley driven by a variable speed induction motor. Two tri-axial accelerometers and three motor line-current probes are 

used to collect the vibration and motor load variation data, respectively.  One of the accelerometers is mounted on the CP casing and 

the second is mounted on the bearing housing location. To configure the data collection a data-acquisition system is used.  

 

 

Figure 4.    CP fault identification set-up. Two accelerometers are mounted one each on the CP casing and the bearing housing 

location. The motor line current is collected using line-current probes. 

The faults are synthetically created on the CPs. Three configurations of CPs are used for this purpose. Their details are shown in Table 

2. On each of these CP configurations, suction and discharge blockages are given, externally, using a mechanical modulating valve at 

the inlet and outlet of the CP, respectively. 

          Table 2. Three CP configurations 

CP  Type Good impeller Good cover plate 

Healthy CP Present Present 

CP with impeller faults Absent Present 

CP with pitted cover plate faults Present Absent 

 

These three faults are shown in Figure 5. The mechanical modulating valve can be adjusted to give the desired amount of flow 

restriction on the suction and discharge of the CP.  The impeller is artificially given two through–through grooves on each of its vanes 

as impeller faults. The orientation and location of these grooves are arbitrary. The cover plate of the CP is given randomly placed pits.  

 

A total of 33 conditions are considered on the CP. They are,  

(i) healthy pump (HP) (not a fault),  

(ii) suction blockage faults (SBk),  

(iii) discharge blockage faults (DBk),  

(iv) impeller defects (IF),  

(v) impeller defects in addition to suction blockages (IFSBk),  

(vi) impeller defects in addition to discharge blockages (IFDBk),  

(vii) pitted cover plate faults (PC),  

(viii) pitted cover plate faults in addition to suction blockages (PCSBk),  
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(ix) pitted cover plate faults in addition to discharge blockages (PCDBk) and  

(x) dry run faults for all the CP configurations (SB5, IFSB5, PCSB5).  

 

Here, SBk and DBk denote (k/6)
th 

of suction blockage and discharge blockage, respectively, k = 1, 2, 3, 4, 5.  When the CP is given 

(5/6)
th 

flow restriction on the suction side there is almost no fluid in the CP (priming fluid), hence this case may be considered as a 

‘dry run’ condition. A sample of the collected raw time-domain data for various faults is shown in Figure 6 and power spectrum data 

(frequency domain) collected for various faults is shown in Figure 7. Of these thirty-three faults investigated, the classification 

performance of fifteen faults is presented in this paper. They are chosen so as to approximately depict the lowest and highest severity 

levels of each fault. These are HP, SB2, SB5, DB1, DB5, IF, IFSB2, IFSB5, IFDB1, IFDB5, PC, PCSB2, PCSB5, PCDB1, and 

PCDB5. 

 

 

Figure 5.    Faults administered on the CP, (a) mechanically modulated valve to stage different levels of suction blockages and 

discharge blockages, (b) impeller defects, (c) pits on the CP cover plate.  

 

 

Figure 6.    Raw time-domain data for various CP faults, healthy pump (HP), impeller faults (IF), combination of impeller faults and 

suction blockage level 2 (IFSB2), pitted cover plate faults (PC), combination of pitted cover plate faults with suction blockage level 2 

(PCSB2), dry run (SB5), discharge blockage level 5 (DB5). 

Some of the experimental observations made are: 

• Suction blockage up to SB2 does not change the flow pattern in a CP. However, there is bubble formation observed between 

the SB2 and SB3 levels. The intensity of bubble formation and the size of bubbles keep increasing with the increase in the 

blockage severity. 
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• The presence of impeller defects or cover plate faults (even without any suction/ discharge blockage) causes bubble 

formation.  

• The presence of discharge blockage reduces the pump discharge significantly and increases the vibrations. 

 

It is witnessed experimentally that the fault manifestation (or the physical behavior of the fault) changes enormously with the 

changing operating speed of the CP. But, the developed method should be robust to the varying conditions of the CP. Hence, data 

from various operating speeds of the CP have been collected and the algorithm is tested with data from each of the speeds. The CP is 

therefore run from 30 to 65 Hz speed in steps of 5 Hz.  

 

 

Figure 7.    Raw frequency-domain data for various CP faults, healthy pump (HP), impeller faults (IF), combination of impeller faults 

and suction blockage level 2 (IFSB2), pitted cover plate faults (PC), combination of pitted cover plate faults with suction blockage 

level 2 (PCSB2), dry run (SB5), discharge blockage level 5 (DB5). 

 

The data is sampled at two different sampling rates,  

(i) 20 kHz sampling rate and 2000 sampling points per dataset which gives a Nyquist frequency of 10 kHz and data resolution of 

10 Hz in frequency domain, 300 non-overlapping datasets acquired. 

(ii) 5 kHz sampling rate with 5000 sampling points per dataset which gives a Nyquist frequency of 2.5 kHz and data resolution of 

1 Hz in frequency domain, 150 non-overlapping datasets acquired.  

 

These two sampling rates are chosen so as to demonstrate the role of data sampling resolution on the ease of identifying the CP system 

faults. Figure 8 shows the feature mapping of different faults derived from time-domain CP fault data. In the figure the x-axis is mean 

value and y-axis is reciprocal of standard deviation. It can be seen that with low-frequency resolution data sampling (Figure 8(a)) there 

is a lot of overlap of feature values for different fault conditions, however, when a higher-frequency resolution data sampling (Figure 

8(b)) is chosen the faults form distinct clusters. This is because more intricate fault information is captured (especially the fault 

transients produced by the flow instabilities).  

 

CENTRIFUGAL PUMP FAULT CLASSIFICATION METHODOLOGY 
 

In general, the characteristic frequencies of faults that have stationary periodic fault signatures can be captured using the power 

spectrum or the fast Fourier transform (FFT) apprach. However, hydraulic faults produce transient signals. FFT considers the signal to 

be stationary and so may not be able to capture the transients in a signal. Therefore, while dealing with a combination of mechanical 

and hydraulic faults, a time-frequency domain analysis may be useful.  
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A brief description of continuous wavelet transform (CWT), support vector machine (SVM) algorithm and the fault classification 

methodology is presented in this section. The detailed account on CWT can be seen in ref. (Führ, 2005, Young, 2012) and that of  

SVM can be seen in ref. (Vapnik, 1995, Vapnik, 1999, Widodo & Yang, 2007).  

Figure 8.    (a) Reciprocal of standard deviation (σ
 -1

) versus mean (μ) value for low frequency resolution data, (b) Reciprocal of 

standard deviation versus mean value for low frequency resolution data. Healthy pump (HP), suction blockage level 3 (SB3), 

discharge blockage level 3 (DB3), impeller fault (IF), combination of impeller fault and suction blockage level 3 (IFSB3), 

combination of impeller fault and discharge blockage level 3 (IFDB3), pitted cover fault (PC), combination of pitted cover fault and 

suction blockage level 3 (PCSB3), combination of pitted cover fault and discharge blockage level 3 (PCDB3) 

 

Continuous Wavelet Transform (CWT) 

 

Projection of a time signal onto wavelet basis functions is called ‘wavelet transform’.  It is a time-frequency signal analysis method, 

which is widely being researched in recent years. In Fourier transform sine and cosine functions are used as the basis functions, these 

functions are global in time domain but are localized in frequency domain. However, in wavelet transform, ‘wavelet’ functions which 

are localized both in time and frequency domains are used. That is, wavelets are short lived functions. The choice of the mother 

wavelet is very important, to obtain the correct features from the signal. In the present work a wavelet from the biorthogonal family of 

wavelets, bior 3.3 has been chosen. The wavelet and scale functions of bior 3.3 are shown in Figures 9(left) and 9(right), respectively. 

 

               
 

Figure 9.    Amplitude versus time, (left) bior 3.3 wavelet function, (right) bior 3.3 scaling function 

Support Vector Machine (SVM) Classifier 

 

The SVM is essentially a non-probabilistic, binary classifier. In a binary data classification, as the name suggests there are two classes 

(types) of data, as shown in Figure 10(a). The circles represent data of class-1 and the triangles represent data of class-2. The objective 

of a classifier is to segregate the two classes of data and SVM uses a line to separate the two types of data. There could be infinite 

(a) 

 

(b) 
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orientations of  a line that can separate these two classes of data (shown by dashed lines in Figure 10 (a)). But, the SVM constructs a 

hyper plane that maximizes the margin between the two classes of data, thereby dividing them into positive class (class-1) and 

negative class (class-2), as shown in Figure 10(b). The data points nearest to the plane, which divides the two classes of data are 

coloured black in Figure 10 (b). These are called support vectors,  represented as xn.  The margin may be given as ||w||
-2

, where w is a 

vector normal to the hyper plane. Hence, in the linearly separable case, the given data input vector xi (i = 1, 2… M), where, M is the 

number of samples, for finding the optimal hyper plane, can be solved using the following constraint equations,  

            

 
2

1

1
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2

M

i

i

Cw   (1) 

 Subject to,    ( ) 1i i iy bw x   (2) 

 
where, i = 1, 2, …, M and yi takes the values +1 or -1 for the positive and negative classes, respectively, C is the error penalty and ξi 

accounts to the noise in slack variables. 

 

Unfortunately, a linear classification of data is not always plausible. To handle such cases, the SVM transforms the data vectors into a 

complex dimensional feature space where the data can be linearly classified. This is done with the help of kernel functions. Kernel 

function returns the inner product of the feature space mappings of the original data points (Widodo & Yang, 2007). There are 

numerous predefined kernel functions available, viz. the linear, polynomial, Gaussian RBF, etc. The choice of a kernel functions and 

their parameters, plays a deciding role in the accuracy of classification obtained. Based on the literature (Azadeh et al., 2013), in the 

present work a Gaussian RBF kernel is used.   

 

In order to select optimum kernel parameters a h-fold cross-validation (CV) technique is adapted. According to this approach, the 

training data of the algorithm is distributed into ‘h’ sub sets. Among these h subsets, (h-1) subsets are used for training the algorithm 

and one is used for testing. This process is repeated for all the h sub-sets. From the repeated training and testing, those kernel and 

SVM parameters, which give the best classification accuracies are chosen. These are then used to train the final algorithm. This 

method helps better generalization of the algorithm. In the present work a 5-fold CV technique is employed. 
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Figure 10.   (a) Circles represent class-1 data and triangles represent class-2 data, dotted lines represent multiple orientations of lines 

that can separate the two classes of data, (b) SVM classifier with optimal orientation of hyperplane. 

As previously addressed, SVM is a binary data classifier. But what if there are more than two qualities of data?  To classify multi-class 

data (more than two types of data, ex: the case where we are trying to identify many faults on the CP), three approaches are used, they 

are, one versus one (OVO), one versus all (OVA), and direct acyclic graph (DAG) (Hsu et al., 2003). In all the three cases, the multi-

class classification model is converted to a number of binary classifications. In the present work OVO approach is used for the multi-

class fault classification. 

 

Fault classification methodology 

 

The raw data that is acquired from CP cannot be directly input to the SVM classifier. Useful statistical features that capture the fault 

characteristics at range of operating conditions of the CP are extracted from the raw data. The statistical features used in the present 

work are the standard deviation (σ), reciprocal of standard deviation (σ
 -1

), and root sum of squares (RSS). These features have been 

selected using the wrapper model, which is an accuracy based technique to select the best features. All of the features mentioned have 

standard mathematical definitions, except σ
 -1

. This feature was shown to be useful in the CP fault diagnosis by the authors in ref. 
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(Rapur & Tiwari, 2017, Rapur & Tiwari, 2018). 

 

To check the adaptability of the algorithm the signals generated from the experiments are corrupted using additive white Gaussian 

noise (AWGN). White refers to a uniform power signal across the wide frequency band for the information system. This noise has a 

Gaussian normal distribution with zero-mean. This model has been chosen to take into account noisy signals emerging in a broad 

frequency band. Also, in general any random process is estimated to have a Gaussian distribution of events. But, as the data is 

experimentally generated it has inherent noise. Nevertheless, noise has been added to: (a) understand how much more corruption of 

data can the algorithm handle, and (b) to simulate the real-world pump operation where the amount of noise interference would be 

much more than that in laboratory generated data. 

 

A noisy signal is, 

  

 0S S N   (3) 

 

where S0 represents the original raw signal and N signifies the signal-dependent noise. The amplitude of the noise is of Gaussian 

distribution and depends on the desired signal-to-noise ratio (SNR). The SNR in dB is defined as, 

 

 

2

10SNR 10log S

dB

N

A

A
  (4) 

 

where AS and AN  are, respectively, the amplitude of the signal and the noise. In the present work a noise of 5%, 10% and 25% are 

proposed to be added to corrupt the signal. This means that a SNRdB of 26.02, 20 and 12.041 are used. The amount of noise has been 

restricted to 25% because it is expected that the sensors will be positioned close to the CP and therefore further corruption of data is 

avoided. 

 

The raw data generated from the CP is collected, then, CWT coefficients are extracted from it up to scale 64. Then the aforementioned 

statistical features are extracted from these coefficients. Then, 50% of the data is randomly divided into training and the rest 50% into 

testing data. Using a 5-fold CV technique the best kernel and SVM parameters are selected. Once they are selected the classifier is 

ready. The test data is used to validate the algorithm. In case the data is corrupted, then the aforementioned algorithm may not be 

effective. The CWT coefficients and the features are directly extracted from the training data. The testing data is corrupted using the 

prescribed amount of noise (5%, 10% or 25% AWGN). From this corrupted data, CWT coefficients and statistical features are 

selected. A range of kernel and SVM parameters are given to the classification algorithm, the best combination is then selected 

parametrically. 

 

By now, it is clear that there needs to be a number that quantifies the extent of fault classification. To compute that a term called - 

classification accuracy (Ca) is defined. It is given as, 

 

 
Number of correctely classified data points

Total number of data points
aC    (5) 

 

Apart from Ca another term called overall classification accuracy (Oa) is defined. This is the average classification accuracy over the 

entire speed range. This gives a bird’s eye view about the performance of the classifier. 

 

 

CENTRIFUGAL PUMP FAULT DIAGNOSIS PERFORMANCE 

 

Initially, the classification performance of the algorithm is tested using the baseline data. Here it must be noted that ‘baseline’ data 

does not mean that the data is free from noise. It only means that the experimental data is used as it is and no noise is added to it.  For 

this case, optimized kernels as well as SVM parameters are selected using a 5-fold cross-validation technique. The results of the 

classification are presented in Table 3.  

 

From the table, it can be seen that SB5, DB1, IFSB5, IFDB1, IFDB5, PCSB5, and PCDB5 faults are giving a 100% classification at 

all the CP running speeds. The classification accuracy is lowest at 40 Hz CP speed, and DB5 fault shows a misclassification of 10%. 

DB5 fault shows the least individual overall classification. Most of times, the data is misclassified into a fault case, which has close 

resemblance/ behaves similar to that of its original class. For example, SB2 (2/6
th

 suction blockage fault) is misclassified to the HP 
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condition.  This may be because SB2 closely behaves as the HP condition and thus feature values for both the faults may be close. The 

overall classification accuracy for the baseline condition is 99.53%.  

Next, the algorithm is trained with baseline data and tested with 5% AWGN (noise), 10% AWGN and 25% AWGN data independently. 

5% AWGN case gives an overall classification of 100%. The results of fault classification are shown in Table 4 (10% AWGN) and 

Table 5 (25% AWGN). To get a birds-eye view, the results classifications are compared with that of no-noise condition and are shown 

in Figure 11. It is interesting to observe that with the addition of white Gaussian noise the classification accuracy has not dropped 

significantly. The overall classification accuracies obtained for 5% AWGN, 10% AWGN and 25% AWGN are 100%, 99.9% and 

99.4%, respectively.  From the results shown for the baseline and corrupt data classification, it seems as if the addition of noise has 

improved the classification accuracy. But in an engineer’s perspective there is not much difference between 99.5% and 100% 

classification accuracy. The standard deviation feature plot for the baseline, 5% AWGN, 10% AWGN and 25% AWGN is plotted in 

Figure 12. It can be observed that the addition of noise of up to 10% does not shift the feature values much. However, with the 

addition of 25% AWGN noise there is a perceivable amount of shift in feature values.  Nevertheless, the selected features are versatile 

and do not differ considerably with the addition of noise. Thus, it explains the high classification percentage.  

Table 3. Results of classification for baseline data. 

Train/ Test 

Speed (Hz) 

Fault classification accuracy 

Ca 

H
P

 

S
B

2
 

S
B

5
 

D
B

1
 

D
B

5
 

IF
 

IF
S

B
2

 

IF
S

B
5

 

IF
D

B
1

 

IF
D

B
5

 

P
C

 

P
C

S
B

2
 

P
C

S
B

5
 

P
C

D
B

1
 

P
C

D
B

5
 

30 98 100 100 100 100 100 100 100 100 100 100 98 100 94 100 99.3 

35 98 100 100 100 100 100 100 100 100 100 100 100 100 98 100 99.7 

40 100 94 100 100 90 100 100 100 100 100 100 98 100 98 100 98. 7

45 98 100 100 100 98 100 100 100 100 100 98 100 100 98 100 99.5 

50 100 100 100 100 98 100 98 100 100 100 98 100 100 100 100 99.6 

55 100 100 100 100 100 100 100 100 100 100 100 100 100 98 100 99.9 

60 100 100 100 100 100 98 100 100 100 100 98 100 100 100 100 99.7 

65 100 100 100 100 100 98 100 100 100 100 100 100 100 100 100 99.9 

Healthy pump (HP), suction blockage level 2 (SB2), dry run (SB5), discharge blockage level 1 (DB1), discharge blockage level 5 (DB5), impeller fault (IF), 
combination of impeller fault and suction blockage level 2 (IFSB2), combination of impeller fault and dry run (IFSB5), combination of impeller fault and discharge 

blockage level 1 (IFDB1), combination of impeller fault and discharge blockage level 5, pitted cover fault (PC), combination of pitted cover fault and suction blockage 

level 2 (PCSB2), combination of pitted cover fault and dry run (PCSB5), combination of pitted cover fault and discharge blockage level 1 (PCDB1), combination of 
pitted cover fault and discharge blockage level 5 (PCDB5). 

Table 4. Results of classification for 10% AWGN data 

Train/ Test 

Speed (Hz) 

Fault classification accuracy 

Ca 
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S
B
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P
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1
 

P
C

D
B

5
 

30 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 

35 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 

40 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 

45 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 

50 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 

55 100 100 100 100 99.6 100 100 100 100 93.5 100 100 100 100 100 99.5 

60 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 

65 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 

Healthy pump (HP), suction blockage level 2 (SB2), dry run (SB5), discharge blockage level 1 (DB1), discharge blockage level 5 (DB5), impeller fault (IF), 

combination of impeller fault and suction blockage level 2 (IFSB2), combination of impeller fault and dry run (IFSB5), combination of impeller fault and discharge 
blockage level 1 (IFDB1), combination of impeller fault and discharge blockage level 5, pitted cover fault (PC), combination of pitted cover fault and suction blockage 

level 2 (PCSB2), combination of pitted cover fault and dry run (PCSB5), combination of pitted cover fault and discharge blockage level 1 (PCDB1), combination of 

pitted cover fault and discharge blockage level 5 (PCDB5). 
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Table 5. Results of classification for 25% AWGN data 

Train/ Test 

Speed (Hz) 

Fault classification accuracy 

Ca 
H

P
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IF
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P
C

S
B
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D
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1
 

P
C
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30 87.8 97.6 100 100 90.2 100 100 100 100 100 100 95.1 95.1 100 97.6 97.6 

35 100 100 100 100 100 100 100 100 100 100 100 100 100 87.8 100 99.2 

40 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 

45 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 

50 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 

55 100 100 100 100 99.7 100 100 100 100 93.5 100 95.1 100 97.6 100 99.1 

60 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 

65 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 

Healthy pump (HP), suction blockage level 2 (SB2), dry run (SB5), discharge blockage level 1 (DB1), discharge blockage level 5 (DB5), impeller fault (IF), 
combination of impeller fault and suction blockage level 2 (IFSB2), combination of impeller fault and dry run (IFSB5), combination of impeller fault and discharge 

blockage level 1 (IFDB1), combination of impeller fault and discharge blockage level 5, pitted cover fault (PC), combination of pitted cover fault and suction blockage 

level 2 (PCSB2), combination of pitted cover fault and dry run (PCSB5), combination of pitted cover fault and discharge blockage level 1 (PCDB1), combination of 
pitted cover fault and discharge blockage level 5 (PCDB5). 

 

To get an understanding of the competitiveness of the present work, the results of it are compared with some of the other state-of-art 

works in this field. Table 6 presents the comparison. From the table, it can be seen that not many researchers have taken into 

consideration the combined effect of the mechanical and hydraulic faults of the CP. The works have majorly been confined to a single 

operating CP speed, but in the present work eight CP operating speeds are considered. From the results discussed, it can be clearly 

seen that the fault manifestation changes with the operating CP speed. Therefore, taking into account a range of CP operating speeds is 

important. Also, it can be seen that very few researchers have worked with corrupted signals to identify the CP faults. But, in reality 

data can be never immune of noise (or external disturbance). Hence, this consideration is important. The methodology developed in 

this paper is very robust and could classify 15 faults at 8 operating speeds giving an overall classification accuracy of more than 99%. 

Therefore, the features identified and the methodology developed has practical applicability.  

 

 

Figure 11.    Comparison of results of classification for 5% AWGN, 10% AWGN, 25% AWGN and no-noise data. Additive white 

Gaussian noise (AWGN), healthy pump (HP), suction blockage level 2 (SB2), dry run (SB5), discharge blockage level 1 (DB1), 

discharge blockage level 5 (DB5), impeller fault (IF), combination of impeller fault and suction blockage level 2 (IFSB2), 

combination of impeller fault and dry run (IFSB5), combination of impeller fault and discharge blockage level 1 (IFDB1), 

combination of impeller fault and discharge blockage level 5, pitted cover fault (PC), combination of pitted cover fault and suction 

blockage level 2 (PCSB2), combination of pitted cover fault and dry run (PCSB5), combination of pitted cover fault and discharge 

blockage level 1 (PCDB1), combination of pitted cover fault and discharge blockage level 5 (PCDB5). 
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Figure 12.    Comparison of standard deviation feature for no-noise, 5% AWGN, 10% AWGN, 25% AWGN for HP fault at 30 Hz 

speed. 

Case study:  Seawater lifting vertical pump 

 

Problem statement:  The pump and motor are submerged 35 meters below the platform within a caisson (as shown in Figure 12) and 

there is no instrumentation fitted (other than sporadic visual indication of the motor current). Even total pump flow at deck level is not 

measured and pressure is controlled using an overboard spill. The pump fails frequently due to the blockage because of debris (as 

shown in Figure 3).  The design of the pumping system is such that the motor relies on the flow to provide for its cooling. The motor 

overheats causing damage to the windings. There is also pump pressure imbalance across its stages causing high thrust loads and 

failure of the shaft line, thrust bearing mounted within the motor. This allows the impeller to move axially, rub on the wear rings and 

then seize. 

Table 6. Comparison of present work with other state-of-art work in the field 

Paper/ Year Types of faults 
Domain 

used 
Features considered 

Classifiers/ best 

prediction 

accuracy 

Remarks 

(Sakthivel et 

al., 2010) 

Bearing faults, seal defects, 

impeller defects, combination of 

bearing and impeller faults and 

cavitation 

Time - 

domain 

Mean, standard error, 

median, standard 

deviation, sample 

variance, kurtosis, 

skewness, range, 

minimum, maximum 

and sum 

Decision tree and 

rough set fuzzy/ 

99.3% (decision 

tree fuzzy) 

1. Vibration signals used 

2. Algorithm tested at only 

one operating speed of the 

CP 

3. Single speed 

characterization 

(Azadeh et 

al., 2010)  
Two faults (no details of the faults 

mentioned) 

Time-

domain 

Flow, pressure, 

velocity, temperature, 

vibration 

SVM-GA, SVM-

PSO, ANN/ 93.3% 

(SVM-PSO, SVM-

GA, SVC) 

corrupted data 

1. Used algorithms to 

perform binary data 

classification of corrupted 

data. 

2. Single speed 

characterization 

Rapur J.S and 

R. Tiwari 

(current 

work) 

Suction blockages, Discharge 

blockages, impeller defects, 

impeller defects together with 

suction and discharge blockages, 

pitted cover plate faults, pitted 

cover plate together with suction 

and discharge blockages, dry run 

Time-

frequency 

domain 

Standard deviation, 

reciprocal of standard 

deviation, RMS, RSS  

SVM/ 99.5% 

(corrupt data), 

99.9% (baseline 

data) 

1. Vibration signals and 

motor line current used.  

2. Combined mechanical 

and hydraulic faults 

considered 

3. Corrupted data classified 

4. Multi speed 

characterization (8 speeds) 
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Electrode

StrainerDebris

Water  

Figure 12.    Schematic of seawater lift pump application 

Solution: The pump failure can be avoided if initial stages of the pump blockage can be identified with high precision. The pump at 

present is not monitored with any instrumentation. The only available signal reading is that of the motor current. The motor current 

varies with the changing load on the CP. In this application, a sporadic visual inspection based method is used to identify anomalies in 

the pump operation. However, a visual inspection based method has a few drawbacks, including, 

(1) Corruption of signal data which can cause variation in signal patterns, therefore appropriate signal filtering techniques need 

to be used, 

(2) Highly experienced professionals are required to accurately identify the fault condition,  

(3) It is highly involved to identify the faults at their formative stages, because they may not be able to give a clear indication of 

the fault characteristics. 

 

Therefore, to avoid any mishaps the CP can be frequently monitored using the algorithm developed in this paper. This monitoring can 

be done at two levels.  

1. When there is not enough fault history data available, the statistical parameters extracted from the motor current signal can be 

used to find the shift in their values, and thus attribute them to the anomalies. (Like shown in Figure 7) 

2. When enough data is recorded, the data could be fed to the algorithm developed in this paper to find the faults. The motor 

line current signature is stored at different operating conditions of the CP and can be used to train the algorithm. The real-

time current data may be then used to identify the commencement of the CP fault (in this case, a blockage fault). The data 

acquired from the CP in the faulty and non-faulty conditions needs to be given a class label. Once the class label is assigned, 

statistical features may be extracted from the faults. These features may be then used to train and test the SVM algorithm. 

This trained algorithm can be supplied with data from the CP at its current operating condition. Whenever the blockage starts 

the classifier gives an indication of the fault with almost 100% accuracy. This information can be supplied to the operator, so 

that necessary corrective actions may be initiated. 

 

The advantages of using such a method are, (1) does not incur any additional cost to the industry as the motor line current is already 

being measured (economically viable), (2) identifies inception of fault so that remedial action may be promptly initiated and (3) helps 

avoid frequent failures of the pump systems. There is also scope of automatic maintenance by using this method.  

 

This algorithm can also be applied in industries using corrosive/ erosive pumping fluids. Apart from the faults considered in this paper 

the prescribed methodology can be used to identify many other CP faults or faults in its ancillary components (like the bearings, seals, 

couplings etc.). Also, other signals like the noise spectrum, transient pressure signals, acoustic emission etc. can be used for fault 
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identification using the proposed methodology.  

 
CONCLUSIONS 
 

A unique flexible algorithm is proposed in this paper to classify multiple interdependent faults as well as independently existing faults 

on the CP using the CWT of vibration and motor current signals. A total of 33 faults are seeded on the CP including suction blockages 

(with varying severity), discharge blockages (with varying severity), impeller defects, impeller defects together with blockages, pitted 

cover plate faults, pitted cover plate faults together with blockages, dry run. The algorithm is tested for wide range of CP operations. 

Also, to account for the noise generated while handling the signals, the data is corrupted with 5%, 10% and 25% additive white 

Gaussian noise. The algorithm performed remarkably well in isolating various faults on the CP with great precision. In case the CP is 

directly driven by the motor, then it is expected that the performance would further improve with the line-current signals. The 

proposed methodology may be used by industry practitioners to detect various CP faults when fault history data is readily available. 

As a future scope, this algorithm may be tested with real-time industrial data. Also, the variance in manufacturing tolerances in pumps 

can be estimated and used as a noise, so that both the quality and reliability aspects of the CP can be considered simultaneously. 

Furthermore, a control loop may be designed so as to alarm the operator about the onset of fault so that immediate correction measure 

may be initiated. 

 
NOMENCLATURE 
 

AN Amplitude of the noise 

AS Amplitude of the signal 

C Error penalty 

Ca Percentage classification accuracy 

K Kernel function 

N Additive white Gaussian noise 

S Noisy signal 

SNRdB Signal to noise ratio in decibels  

So Original signal 

x   Data input vector 

 w Vector normal to hyper plane 
  Noise in slack variables 

  RBF penalty parameter 

σ Standard deviation 

σR  Reciprocal of standard deviation 

RMS Root mean square 

RSS Root sum of squares 

 
ABBREVIATIONS 
 

ANN Artificial neural network 

AWGN Additive white Gaussian noise 

CP Centrifugal pump 

CV Cross validation 

CWT Continuous wavelet transform 

DAG Direct acyclic graph 

DB Discharge blockage 

HP Healthy pump 

IF Impeller fault 

MFS
TM 

Machine fault simulator 

OAA One against all 

OAO One against one 

PC Pitted cover plate fault 

RBF Radial basis function 

SB Suction blockage 

SVM Support vector machine 
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