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1.	
  Introduction	
  
 Is it instructive to model some physical process as a computational process or, more 

generally, as one that processes information? That it would be so is an hypothesis that needs to 

be tested case by case. Sometimes it will be very instructive. Shannon’s information theory 

applied to communication channels is a striking success. There can be failures, however. This 

chapter will describe a lingering and striking failure.  

 A Maxwell’s demon is a device that can reduce the thermodynamic entropy of a closed 

system, in violation of the Second Law of Thermodynamics, by means of molecular-scale 

manipulations. The received view since the mid-twentieth century is that such a device must fail 

for reasons most instructively captured by theories of information and computation. This 

received view of the demon’s exorcism, I will argue here, is misdirected and mistaken. 

 First, there are many proposals for Maxwell’s demons in which there is no obvious 

computation or information processing. As a result, the exorcism of the received view cannot be 

applied to them. It is no general exorcism. 

 Second, the received view depends variously on dubious principles, Szilard’s Principle 

and Landauer’s principle. They are at best interesting speculations in need of precise grounding; 

or, at worst, mistakes propped up by repeated misapplications of thermal physics. 
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 Third, prior to the emergence of the received view, we already had a serviceable and 

generally applicable exorcism that made no use of notions of information or computation. In 

1912, Smoluchowski had argued cogently that efforts to reverse the second law by manipulations 

at molecular scales will fail since they will be disturbed fatally by the very thermal fluctuations 

they seek to exploit. 

 Finally, I shall show here that the long-entrenched focus on information and 

computation-theoretic notions has distracted both supporters and opponents of the received view 

from a simpler exorcism, even stronger than Smoluchowski’s arguments of 1912. A simple 

specification of what a Maxwell’s demon must do turns out to be incompatible with the classical 

Liouville theorem of statistical physics or its quantum counterpart. Hence the demon must fail; 

and its failure is established without any recourse to notions of information or computation. The 

exorcism does not even require serious engagement with the notion of thermodynamic entropy. 

 The early Sections 2, 3 and 4 below will review Maxwell’s invention of his demon, its 

naturalization with the discovery of fluctuation phenomena and Smoluchowski’s argument that 

these same fluctuations defeat the demon. In Section 5, I will report on the appearance of the 

idea that an intelligent demon may need special accommodations. Sections 6 and 7 trace briefly 

how the ensuing idea of a naturalized, intelligent demon came to dominate the Maxwell’s demon 

literature, with exorcisms focusing first on a supposed entropy cost in acquiring information and 

then in erasing it. This is, I will argue, a failing literature. 

 In Sections 8 and 9, I will report a new, stronger and simpler exorcism based on the 

contradiction between what the demon must do and Liouville’s theorem of statistical physics. 

The exorcism reported is limited to classical physics. Sections 10, 11 and 12 will show a closely 

analogous exorcism using the quantum analog of Liouville’s theorem.1 

2.	
  Maxwell’s	
  Fictional	
  Demon	
  
 Maxwell [1871, pp. 308-309] unveiled his demon in print in 1871. He used it to make a 

point about the character of the second law of thermodynamics. We cannot reverse the second 

                                                
1 The content of Sections 11 and 12 can also be found in Norton [2014]. I thank Joshua Rosaler 

and Leah Henderson for helpful discussion of the quantum material. 
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law, Maxwell sought to establish, merely because we have no access to individual molecules. 

Instead we must treat molecular systems en masse. To make his point, he imagined a quite 

fictitious being who could access molecules individually. By carefully opening and closing a 

door in a dividing wall as the molecules of a gas approached it, this demonic being could 

accumulate slow molecules on one side and fast molecules on the other. The first side cools 

while the second warms, yet no work is done. The normal course of thermal processes is 

reversed, in contradiction with the second law.2 

3.	
  Fluctuations	
  Bring	
  Naturalized	
  Demons	
  
 A major change in the demon’s role came with the recognition in the early twentieth 

century that thermal fluctuations are microscopically observable. They could no longer be 

dismissed as an artifact of molecular theory of no practical import. They realize, it was 

concluded, a microscopic violation of the second law of thermodynamics, which could at best 

hold only for time-averaged quantities. The celebrated example is Einstein’s [1905] analysis of 

Brownian motion. The larger movements of the Brownian particle arise through a transfer of the 

heat energy of the surrounding water into the particle’s kinetic energy. It might then be converted 

to gravitational potential energy, a form of work energy, if the motion lifts the particle vertically. 

This is a momentary, microscopic violation of the second law of thermodynamics: ambient heat 

energy has been fully converted to work. 

 Maxwell had given no account of just how his demon might be constituted. Since the 

point was that his demon was fictional and intended to display vividly what we cannot do, there 

was no need for it. With the new recognition about thermal fluctuations, Maxwell’s demon was 

moved from the realm of impossible fiction to a candidate physical possibility. If momentary, 

microscopic violations of the second law are possible, might we devise a real machine that can 

accumulate them and eventually lead to macroscopic violations of the second law? Such a 

machine would be a naturalized Maxwell’s demon. That is, it would be one whose workings 

conform with the known natural laws of microscopic systems. 

                                                
2 For an account of Maxwell’s original proposal and conception, see Myrvold [2011]. 
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 What followed were numerous proposals for naturalized Maxwell’s demons of simple 

design. Some were intended to be realized in the laboratory. Such was Svedberg’s [1907] colloid 

demon. In it, the Brownian motion of electrically charged colloid particles would lead them to 

radiate their thermal energy, which would be trapped in a carefully designed system of casings. 

The colloid would spontaneously cool, while the casing heated. Smolucholwski’s [1912] paper 

contained a range of more schematic proposals. One was a one-way valve that would allow gas 

molecules to pass in one direction but not the other. This one-way transport was effected by a 

hole with a ring of hairs; or by a valve with a flapper. 

 This last proposal entered later literature in modified form as the Smoluchowski trapdoor. 

In his original thought experiment, Maxwell employed a fictional demon to open and close the 

door in the dividing wall of the chamber. Smoluchowski’s trapdoor was an automatic device. It 

was lightly spring-loaded and configured so that molecules moving in one direction would flip it 

open and pass; whereas molecules moving in the opposite direction would slam it shut and be 

obstructed. For more discussion of these proposals, including what would later become 

Feynman’s “ratchet and pawl” demon, see Norton [2013, §2]. 

4.	
  Fluctuations	
  Defeat	
  Maxwell’s	
  Demon	
  
 The main point of Smoluchowski’s analysis was that all these proposals for Maxwell’s 

demons fail. For they are machines operating at molecular scales where fluctuation phenomena 

dominate. In each case, some fluctuation-driven process would reverse the normal course of 

thermal processes. The individual molecular collisions that flip open the valve flapper or the 

Smoluchowski trapdoor are pressure fluctuations in the gas. Smoluchowski then showed that, for 

each case, there was a second fluctuation process that undid the anti-entropic gains of the first. In 

the case of the Smoluchowski trapdoor, if the device is to operate as intended, the flapper must 

be so light that collisions with individual molecules can open it. But such a light flapper will 

have its own fluctuating thermal energy, which will lead it to flap about randomly, allowing 

molecules to pass in both directions. On average there is no accumulation of violations of the 

second law. 

 Smoluchowski made his case by examining many examples of candidate mechanisms 

and showing that they all failed in the same way. The analysis provided no principled proof of 
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the generalization that all demon proposals must fail this way. However once one sees the one 

mode of failure repeated again and again, in the range of examples treated by Smoluchowski, the 

generalization is hard to resist. 

 There is another way to see that fluctuations are a formidable obstacle to efforts to realize 

a Maxwell’s demon. Such a demonic device will operate at molecular scales and will be 

composed of a series of steps, each of which must be brought to completion before the next can 

start. In recent work [Norton 2011, §7; 2013; Part II], I have shown that the completion of any 

single process at molecular scales, no matter how simple or complicated, intelligently directed or 

otherwise, involves dissipation. For any such process must overcome the thermal fluctuations 

that disrupt its orderly execution. They can only be overcome by the dissipative creation of 

entropy, if completion is to be assured, even just probabilistically. The quantities of entropy 

involved are great enough to swamp the entropy reduction envisaged in the operation of a 

Maxwell demon. 

 These considerations of fluctuations are not a deductive proof from first principles of the 

impossibility of a Maxwell’s demon. However they make it quite plausible that a molecular-scale 

demon cannot overcome the disrupting effects of thermal fluctuations. They give us a simple and 

proven recipe for demonstrating the failure of any new proposal for a Maxwell’s demon: look for 

the neglected effects of fluctuations. 

5.	
  The	
  Distraction	
  of	
  Intelligent	
  Intervention	
  
 Smoluchowski’s 1912 verdict on the possibility of a naturalized Maxwell’s demon 

provides a resolution that is still illuminating today. Naturalized demons will likely fail because 

thermal fluctuations will disrupt their intended operations. Smoluchowski’s paper was delivered 

as a lecture at the 84th Naturforscherversammlung (Meeting of Natural Scientists) in Münster. 

The discussion that followed is reported at the end of the journal printing of Smoluchowski’s 

lecture. In it, Kaufmann directed a quite awkward question to Smoluchowski: 

Kaufmann: The lecturer has indicated why presumably also no mathematical 

selection [among molecules of different speed] that contradicts the second law can 

be brought about by means of an automatic valve. The relations are otherwise for a 

valve with something like a sliding bar, whose motion requires no work in theory. 
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Then there is an intelligence operating the valve and ensuring that the opening and 

closing is in the right moment; I believe that, for Brownian molecular motion, 

something like this is practically achievable. Then the second law would be violated 

by the participation of an intelligent creature. [This is] a conclusion that one 

possibly could regard as proof, in the sense of the neo-vitalistic conception, that the 

physico-chemical laws alone are not sufficient for the explanation of biological and 

psychic occurrences. 

This is the sort of question any speaker dreads. Smoluchowski had just based his lecture on the 

presumption that a Maxwell’s demon is naturalized, that is, it is subject to the normal physico-

chemical laws. Then the demon will fail. Now he is asked to contemplate the case of a neo-

vitalist demon; that is, an intelligence whose actions are not governed by those laws but is 

animated by some kind of vital force. It is even suggested that this might lead to an experiment 

that vindicates vitalism. The suggestion is far-fetched. If an intelligent organism—a human, for 

example—accumulates microscopic violations of the second law in Brownian motion in a real 

laboratory experiment, one must also account for the entropy created in the organism’s 

metabolism. To ignore it through some vitalist commitment would make the vitalist 

interpretation of the experimental result circular. 

 Smoluchowski gives the best reply he can muster: 

Lecturer: What was said in the lecture certainly pertains only to automatic devices, 

and there is certainly no doubt that an intelligent being, for whom physical 

phenomena are transparent, could bring about processes that contradict the second 

law. Indeed Maxwell has already proven this with his demon.  

This grants the tacit presumption of the question: that a vitalistic demon, were there such a thing, 

could succeed. However Smoluchowski then awkwardly reminds the questioner of the 

background assumption of Smoluchowski’s entire analysis. He continued: 

However intelligence extends beyond the boundaries of physics. On the other hand, 

it is not to be ruled out that the activity of intelligence, the mechanical operation of 

the latter, is connected with the expenditure of work and the dissipation of energy 

and that perhaps after all a compensation still takes place. 

Intelligence, presumably in the abstract, disembodied sense, is something that lies outside 

physics. But intelligence that can act in the world will do it through a physical system and this is 
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still a system that will be governed by the familiar laws. The wording is hesitant—it should not 

be ruled out. However I attribute the hesitancy merely to the politeness required to respond to a 

question clearly outside the scope of the speaker’s talk.  

6.	
  Szilard’s	
  Principle	
  
 What happens if the intervening demon is an intelligence unconstrained by normal 

physico-chemical laws? This was a question best left to die quietly. If one allows such an 

intelligence, then no physical law is secure. If, however, the intelligence is embodied in a 

physical system, then Smoluchowski has already provided a quite serviceable answer: whether 

the system is intelligent or not, thermal fluctuations will likely preclude its operation. The 

question of an intelligent intervening demon is a distraction, since all demonic intervention will 

fail. 

 Unfortunately Leo Szilard was unable to resist the temptation of pursuing the distracting 

question. His 1929 “On the Decrease of Entropy in a Thermodynamic System by the 

Intervention of Intelligent Beings” responded directly to Smoluchowski’s work and quoted 

liberally from it. It initiated a decline in the literature on Maxwell’s demon from which we have 

still to recover. 

 The details of Szilard’s analysis are quite complicated and even obscure. See Earman and 

Norton [1998, §7] for a review. What survived into the ensuing literature were a few ideas in a 

form somewhat simpler than Szilard’s formulation. The most important idea was that one need 

not provide physical details of the mechanism that animates the intelligent demon. All one needs 

to know is that its operation requires the gaining of information. The mere fact of gaining 

information, however it is done, creates enough entropy to defeat the demon.  

 To illustrate the point, Szilard introduced an ingeniously simplified arrangement in which 

the demon cyclically manipulates a one-molecule gas. Each cycle requires the demon to discern 

whether the molecule is trapped on the left or the right side of a partition. This discerning—in 

later literature the gaining of one bit of information—was, Szilard asserted, necessarily a 

dissipative process that creates entropy and protects the second law from violation. 

 How much entropy does this gaining of information create? If the second law is to be 

protected, then the process must create at least k log 2 of thermodynamic entropy for each bit of 
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information gained, where k is Boltzmann’s constant. This principle was later called “Szilard’s 

principle” [Earman and Norton, 1999]. That this amount suffices to protect the second law was 

assured by the expedient of working backwards. Assume that the second law is preserved and 

compute from that assumption how much entropy must be created. Szilard’s principle ensues. 

While Szilard and others after him did try to justify the principle by examining particular 

detection processes, working backwards remained the simplest and most general justification. 

 The principle in this form supported a flourishing literature in the 1950s. It proclaimed a 

deep truth in the connection between information and thermodynamic entropy. This insight, it 

assured us, explains why a Maxwell demon must fail, even though its core claim of Szilard’s 

principle was commonly derived by circular reasoning from the very presumption that a 

Maxwell’s demon must fail. 

 For a synoptic discussion of this new literature and the ensuing literature in the 

thermodynamics of computation, and for reproductions of key papers, see Leff and Rex [2003]. 

7.	
  Landauer’s	
  Principle	
  
 The success of this last exorcism was short-lived. It was replaced within a few decades by 

a modified version that drew on computational notions. The modified version retained the idea 

that one should abstract away all of the details of the demon’s constitution excepting its 

treatment of information. But now the unavoidable dissipative step was not the acquiring of 

information. It was the erasure of information. To function, a demon must remember what it has 

learned. In the case of Szilard’s example, the demon must remember that the molecule was 

trapped on the left or the right side of the partition; and that memory must be captured in some 

physical change in the demon. To complete the thermodynamic cycle, the demon’s memory must 

be returned to its initial state. That return is the moment of dissipation. The erasure of this one bit 

of information is associated with k log 2 of thermodynamic entropy, which is just the amount 

needed to protect the second law. The statement of this erasure cost is “Landauer’s principle,” 

drawn from the work of Rolf Landauer [1961]. It is the central result of what soon came to be 

known as the “thermodynamics of computation.” 

 The new computation-theoretic exorcism was laid out in Bennett [1982, §5]. In order to 

secure its primacy, the new exorcism needed to overturn the old exorcism. Its proponents, we 
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were now told, had simply erred in attaching the necessity of dissipation to information 

acquisition. All the clever arguments and manipulations of the old exorcism were deceptive 

mirages. Bennett [1982, §5, 1987] sketched new thought experiments in which information about 

the states of target systems could be gained by processes claimed to be thermodynamically 

reversible. 

 This computation-theoretic exorcism has now settled in as the standard in the literature. 

Although there have been amendments offered that draw on notions of complexity and quantum 

theory,3 the basic ideas of the exorcism have survived with some stability. One might be excused 

for taking this stability as a sign of cogency. Alas, the computation-theoretic exorcism of the 

1980s was no improvement on the fragile information-theoretic exorcism of the 1950s. It had 

merely rearranged some of its parts. 

 To begin, the essential problem remains. There are many proposal for Maxwell’s demon 

in which there is no overt collection of information and no overt computation that employs a 

memory that must be erased. These processes, for example, are simply not present in the 

canonical Smoluchowski trapdoor or Feynman’s ratchet and pawl demon. Therefore, neither 

information-theoretic nor computation-theoretic exorcism can touch them. However 

Smoluchowski’s original, thermal fluctuation based exorcism applies to them and all the rest. 

 Second, the information-theoretic exorcism had been supported by ingenious thought 

experiments that illustrated how gaining information is thermodynamically costly. In a thought 

experiment reminiscent of the celebrated Heisenberg microscope of the quantum uncertainty 

principle, Brillouin [1950] had computed that dissipation compatible with Szilard’s principle 

must occur, if a photon with energy above the thermal background is used to locate a particle. In 

spite of the luminaries of physics like Brillouin who had supported them, these thought 

experiments were all misleading and mistaken, we were now told. The trouble was that the 

thought experiments that replaced them were no better. Bennett’s [1982, §5, 1987] illustrations 

of devices that could gain information dissipationlessly all required devices of delicate 

sensitivity. It takes only the most cursory of inspections to see that their operations would be 

fatally disrupted by thermal fluctuations, just as Smoluchowski envisaged. (See Norton, 2011, 

§7.3.) One defective set of thought experiments had merely been replaced by another. 

                                                
3 See Earman and Norton [1999] for further discussion. 
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 Finally, the computation-theoretic exorcisms draw on Landauer’s principle. When 

Landauer [1961] introduced the principle, it was little more than a promising speculation, 

supported by a sketchy plausibility argument. Over half a century later, one might imagine that 

this would be sufficient time to place the principle on a more secure foundation. This has not 

happened. It is not for want of trying. However, as I have documented in detail elsewhere 

(Norton, 2005, 2011 and summarized in Norton 2013, §3.5), the now burgeoning literature on 

Landauer’s principle persists in committing repeatedly a small set of interconnected errors in 

thermal analysis. 

8.	
  Asking	
  the	
  Right	
  Question	
  
 These failed traditions are driven by the belief that a successful exorcism of Maxwell’s 

demon abstracts away all details of the demon’s operation, other than its processing of 

information. As the discussion of the previous sections illustrates, this belief has presided over a 

descent into a feckless, convoluted and confused literature. As long as the attention of authors in 

the field, proponents and critics alike, remains focused on information processing, this descent is 

likely to continue. Here, ruefully and regretfully, I include much of my own writing over more 

than a decade on the topic. At best I have been able to show what does not work in exorcising the 

demon. What I should have asked is what does work. 

 Let us start again. Let us set aside information and computation-theoretic notions and 

take stock of what we know. We have known since Smoluchowski’s work of 1912 that 

disruptions by fluctuations presents a formidable barrier to all efforts to realize a Maxwell’s 

demon. We now also have strong empirical indications of the impossibility of such a demon. 

Nanotechnology has given us abilities to manipulate individual atoms far beyond anything 

Maxwell or Smoluchowski could have imagined. In 2013, scientists at IBM made a stop motion 

video of a stick figure boy playing with a ball.4 The figures were drawn by lining up individual 

carbon monoxide molecules on a copper surface in a scanning tunneling microscope. Even with 

such prodigious capacities to manipulate individual molecules, no fully successful Maxwell’s 

demon has been made. Rather all work at nanoscales struggles to overcome thermal fluctuations. 

                                                
4 http://www-03.ibm.com/press/us/en/pressrelease/40970.wss 
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They are the nemesis of nanoscience, just as Smoluchowski argued. The molecules of the IBM 

stop motion video were cooled to -268C to suppress fluctuations.  

 There have been other empirical clues. The biochemistry of a cell involves molecular 

processes of comparable refinement. The operation of a ribosome in a cell is a marvel of 

miniaturized molecular machinery. It was brought into being by the creative powers of evolution. 

Yet these same prodigious powers have failed to construct a demonic device in the cell, in spite 

of the obvious advantage to the cell of a process that converts ambient heat energy to useful 

work. 

 With some reasonable expectation that a Maxwell’s demon is impossible, let us ask the 

question that has been neglected: is there a simpler way to demonstrate the impossibility of a 

Maxwell’s demon that avoids the convolutions of the present literature? 

9.	
  A	
  Better	
  Exorcism	
  
 It came as a sobering surprise when I found recently [Norton, 2013, §4] that there is a 

very simple exorcism of Maxwell’s demon that requires only elementary notions from statistical 

physics. There is no need for notions of information or computation or erasure, or tendentious 

principles like Szilard’s or Landauer’s. One need not even mention the ever-troublesome notion 

of entropy. The exorcism shows that a description of what a Maxwell’s demon must do is 

incompatible with Liouville’s theorem of statistical physics. 

 Here, in brief, is how it works. When presented with a target thermal system such as a gas 

in a vessel, a Maxwell’s demon is presumed able to drive the system away from its normal state 

of thermal equilibrium into what would otherwise be judged a disequilibrated state, were there 

no interaction with the demon, and for the system state to remain so. For example, Maxwell’s 

original demon or the Smoluchowski trapdoor takes a gas at uniform temperature and separates 

the hotter, faster molecules from the slower, colder ones. Once its work is done, we have the 

disequilibrated gas, with the hotter part on one side of a partition and the colder part on the other 

side. To ensure that there is no compensating hidden thermal dissipation or degradation in the 

demon itself or any supporting systems it uses, we require that the demon and these supporting 

systems are returned to their original states at the end of the process. Such a process reverses the 

second law of thermodynamics. 
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 If we redescribe this process in the context of standard statistical physics, we quickly see 

that it is impossible. In that context, systems are presumed to be governed by Hamilton’s 

equations, versions of which cover virtually all physical theories considered. The state of a 

system is fixed by determining a large number of generalized position and momentum variables. 

These variables are the coordinates of a space, known as a phase space. The state of a 

Hamiltonian system at one moment corresponds to a single point in the phase space. As the state 

changes, it traces a trajectory in the phase space. 

 A closed system will revert spontaneously to equilibrium states. For example, a gas 

confined in an isolated vessel will evolve to a state of uniform pressure, temperature and density. 

These equilibrium states occupy virtually all of the system’s phase space. The non-equilbrium 

states with non-uniformities occupy only a tiny fraction of the volume of the phase space. This 

difference of volumes is the rough and ready explanation for why closed thermal systems revert 

to their equilibrium states. As the phase point of the system migrates in time through the phase 

space, it almost always ends up in the much larger part of phase space where equilibrium 

systems are found. The non-equilibrium states are mere temporary intermediates on the way to 

equilibrium. 

 When we couple a Maxwell’s demon and its support systems to some target system in 

thermal equilibrium, we form a larger system with its own, larger phase space. If the demon 

operates as intended, the target system will evolve from an equilibrated to a disequilibrated, 

intermediate state, while the demon and its support systems revert to their original states. (Since 

the supposition of successful action of the demon upsets the normal notions of equilibrium and 

disequilibrium, henceforth these disequilibrated states will be labeled more neutrally 

“intermediate states.”) This evolution is required to happen no matter which the equilibrium 

microstate of the target system; or at least for most of the equilibrium microstates of the target 

system. That is, the operation of the demon must compress the phase space volume of the target 

system down to a very much smaller volume, while leaving the phase space volume of the 

demon and supporting systems unchanged. The overall effect is that the successful operation of 

the demon must compress phase space of the combined system. 

 The combined system is governed by Hamilton’s equations. An early and easily gained 

property of such systems is Liouville’s theorem. It states that time evolution leaves phase space 

volumes unchanged. That is, if we select some set of states forming a volume in the phase space, 
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over time, as the systems evolves, the set of states occupied will move around the phase space. 

However the volume that they occupy in phase space remains unchanged. 

 In sum, the successful operation of a Maxwell’s demon must compress phase space. 

Liouville’s theorem of statistical physics asserts that this is impossible. Therefore a Maxwell’s 

demon is impossible. 

10.	
  Classical	
  or	
  Quantum?	
  
 The exorcism just sketched informally was developed formally in Norton [2013, §4] and 

the main derivations will be reproduced again below. There is a weakness is this exorcism. The 

processes involved occur at molecular scales, where the quantum mechanical properties of 

systems can be important. Yet the exorcism employs classical physics. 

 The remaining analysis below rectifies this weakness. The bulk of the original analysis 

remains the same and an analogous result of comparable simplicity is recovered. All that is 

needed is to substitute quantum analogs for those parts of the argument that depend essentially 

on classical physics. The main substitution is to replace the conservation of phase volume of 

classical physics by its analog in quantum theory, the conservation of dimension of a subspace in 

a many-dimensional Hilbert space. This substitution will be described in Section 11 below. The 

following section will then list the premises of the classical exorcism along with their quantum 

counterparts. 

11.	
  Conservation	
  of	
  Volumes	
  
 The statistical treatment of thermal systems in classical and quantum contexts is 

sufficiently close for it to be possible to develop the relevant results in parallel, as in the two 

columns below. Corresponding results are matched roughly horizontally. 

 

Classical Hamiltonian Dynamics 

The state of a system is specified by 2n 

coordinates, the canonical momenta p1, …, 

pn and the canonical configuration space 

Quantum Statistical Mechanics 

The system state |ψ(t)> is a vector in an n 

dimensional Hilbert space, with orthonormal 

basis vectors |e1>, …, |en>. The time evolution of 
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coordinates q1, …, qn of the classical phase 

space Γ. The time evolution of the system is 

governed by Hamilton’s equations: 

€ 

˙ p i =
dpi

dt
= −

∂H
∂qi

  

€ 

˙ q i =
dqi

dt
=
∂H
∂pi

   i = 1, …, n    

(1a)  

where H(q1, …, qn, p1, …, pn) is the 

system’s Hamiltonian. 

the system is governed by Schroedinger’s 

equation: 

  

€ 

i! d
dt

|ψ(t) >  = H |ψ(t) >

−i! d
dt

<ψ(t) |  =<ψ(t) | H
            (1b) 

where H is the system Hamiltonian. 

Classical Liouville Equation 

If f(qi, pi,t) is a time dependent function 

defined on the phase space, then the total 

time derivative of f, taken along a trajectory 

(qi(t), pi(t)) that satisfies Hamilton’s 

equations, is: 

€ 

df
dt

=
∂f
∂t

+
∂f
∂qi

dqi (t)
dt

+
∂f
∂pi

dpi (t)
dt

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

i=1

n
∑  

€ 

=
∂f
∂t

+
∂f
∂qi

∂H
∂pi

−
∂f
∂pi

∂H
∂qi

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

i=1

n
∑ =

∂f
∂t

+{ f ,H} 

Set f equal to a probability density ρ(qi, pi,t) 

that flows as a conserved fluid with the 

Hamiltonian trajectories. Now ρ satisfies the 

equation of continuity:5 

Quantum Liouville Equation 

In place of the classical probability density ρ, we 

have the density operator ρ, which is a positive, 

linear operator on the Hilbert space of unit trace. 

It may be written in general as:6 

€ 

ρ(t) = pαα
∑ |ψα (t) ><ψα (t) | 

where 

€ 

pαα
∑ =1 for some set {|ψα>} of state 

vectors, which need not be orthogonal. This 

operator represents a “mixed state,” that is a 

situation in which just one of the states in the set 

{|ψα>} is present, but we do not know which, and 

our uncertainty is expressed as the ignorance 

probability pα. 

                                                
5 Since 

€ 

∂
∂qi

(ρ ˙ q i )+
∂
∂pi

(ρ ˙ p i )
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

i=1

n
∑ = ρ

∂ ˙ q i
∂qi

+
∂˙ p i
∂pi

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

i=1

n
∑ +

∂ρ
∂qi

˙ q i +
∂ρ
∂pi

˙ p i
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

i=1

n
∑  

Using Hamilton’s equations (1a), the first term on the right vanishes since 

€ 

∂ ˙ q i
∂qi

+
∂˙ p i
∂pi

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

i=1

n
∑ =

∂ 2H
∂qi∂pi

−
∂ 2H
∂pi∂qi

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

i=1

n
∑  = 0 and the second term is 
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€ 

0 =
∂ρ
∂t

+
∂
∂qi

(ρ ˙ q i )+
∂
∂pi

(ρ˙ p i )
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

i=1

n
∑  

   

€ 

=
∂ρ
∂t

+{ρ,H}  

Combining with the expression for the total 

derivative dρ/dt, we recover the classical 

Liouville equation 

€ 

dρ
dt

= 0                           (2a) 

It asserts that the probability density in 

phase space evolves in time so that it 

remains constant as we move with a phase 

point along the trajectory determined by 

Hamilton’s equations. 

If the state vectors | ψα(t)> evolve in time 

according to the Schroedinger equation (1b), the 

quantum Liouville equation follows:7 

  

€ 

i! dρ(t)
dt

= Hρ(t)−ρ(t)H = [H ,ρ(t)]        2(b) 

Alternatively, we can write the integral form of 

the Schroedinger equation with the unitary 

operator U(t) as 

  

€ 

|ψ(t) >  = exp −iHt /!( ) |ψ(0) >  =U(t) |ψ(0) >,
<ψ(t) |  =  <ψ(0) | exp iHt /!( )  =  <ψ(0) |U −1(t)

 

(1c) 

From it, we recover the integral form of the 

quantum Liouville equation:8 

€ 

ρ(t) =U(t)ρ(0)U −1(t)             2(c) 

 

 A quantum analog of classical phase space volume is the dimension of a subspace of the 

Hilbert space. It is measured by a trace operation. That is, the projection operator 

P = |e1><e1| + … + |em><em| 

projects onto an m dimensional subspace of the n dimensional Hilbert space, spanned by the 

orthonormal basis vectors |e1>, … , |em>, where m<n. We can recover the dimension of the 

subspace as 

€ 

Tr(P) = < ei | P | ei >  =  < e1 | e1 >( )2
+ ...+

i=1

n
∑  < em | em >( )2

= m  

                                                

€ 

∂ρ
∂qi

˙ q i +
∂ρ
∂pi

˙ p i
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

i=1

n
∑ =

∂ρ
∂qi

∂H
∂pi

−
∂ρ
∂pi

∂H
∂qi

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

i=1

n
∑ = {ρ, H} . 

6 For a proof, see Nielsen and Chuang [2000, Section 2.4.2]. 
7 Applying the Schroedinger equation to each |ψα><ψα| in the expression for ρ yields 

  

€ 

i! d
dt

|ψα (t) ><ψα (t) |( )
α

∑ = H |ψα (t) >( ) <ψα (t) |− |ψα (t) > <ψα (t) | H( )
α

∑ = Hρ −ρH . 

8 

€ 

ρ(t) = pαα
∑ |ψα (t) ><ψα (t) |  = pαU(t) |ψα (0) ><ψα (0) |

α
∑  U −1(t) =U(t)ρ(0)U −1(t)  
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Since the numbering of the basis vectors is arbitrary, the result holds for any subspace, which is 

closed under vector addition and scalar multiplication. 

 If the total dimension n of the Hilbert space is small, the dimension of a subspace is a 

coarse measure of size in comparison with the finer measurements provided by volume in a 

classical phase space. However, in the present application, the dimension of the Hilbert space is 

immense, with n at least the size of Avogadro’s number, that is, at least 1024. We need to assess 

the relative size of the thermal equilibrium states in the Hilbert space, in comparison with the 

non-equilibrium states. The equilibrium states are vastly more numerous than the non-

equilibrium states. Our measure need only be able to capture this difference for the exorcism to 

proceed. While the dimension of the subspaces in which the equilibrium and non-equilibrium 

states are found is a coarse measure, it is fully able to express the great difference in the size of 

the two. 

 We convert the forms (2a), (2b) and (2c) of the classical and quantum Liouville equation 

into expressions concerning conservation of volume by introducing analogous special cases of 

the probability density and density operator: 

 

Classical Hamiltonian Dynamics 

Consider a set of states that forms an 

integrable set S(0) in the phase space at time 0 

of phase volume V(0). Under Hamiltonian 

evolution, it will evolve into a new set S(t). 

Define a probability density that is uniform 

over S(0) and zero elsewhere. That is 

ρS(0)(qi, pi) = (1/V(0))  IS(0)(qi, pi) 

where IS(qi, pi) is the indicator function that is 

unity for phase points in the set S and zero 

otherwise.  

The classical Liouville equation (2a) tells us 

Quantum Statistical Mechanics 

The projection operator PS(0) projects onto a 

closed subspace S(0) of the Hilbert space. 

Since PS(0) is a projection operator, it is 

idempotent 

PS(0) = PS(0) PS(0) 

The dimension of the subspace onto which it 

projects is 

V(0) = Tr(PS(0)) 

The uniform density operator corresponding 

to PS(0) is 

ρS(0) = (1/V(0))  PS(0) 

                                                
9 dγ is the canonical phase space volume element dq1… dqndp1… dpn. 
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that the probability density remains constant 

in time along the trajectories of the time 

evolution. Hence if the initial probability 

density is a constant 1/V(0) everywhere inside 

the set S(0) and zero outside, the same will be 

true for the evolved set S(t). That is, the 

probability density will evolve to 

ρS(t)(qi, pi) = (1/V(0))  IS(t)(qi, pi) 

Since the new probability distribution must 

normalize to unity, we have9 

€ 

1= ρ
Γ
∫

S (t )
(qi , pi )  dγ = 1

V (0)   1
S( t)∫  dγ =

V (t)
V (0)

 

which entails that 

V(t) = V(0)                     (3a) 

Hence the phase volume of a set of points 

remains constant under Hamiltonian time 

evolution. 

Over time, using the quantum Liouville 

equation (2c), this density operator will 

evolve to a new density operator 

ρ(t) = (1/V(0))  U(t) PS(0) U-1(t) 

= (1/V(0)) PS(t) 

where PS(t) = U(t) PS(0) U-1(t) is the 

projection operator to which PS(0) evolves10 

after t. We confirm that PS(t) is idempotent 

since 

PS(t) PS(t) = U(t) PS(0) U-1(t) U(t) PS(0) U-1(t) 

                = U(t) PS(0) PS(0) U-1(t) 

                 = U(t) PS(0) U-1(t)  = P S(t) 

and define S(t) as the subspace onto which it 

projects. Hence we can write  

ρ(t) = ρS(t) 

Finally, density operators have unit trace, so 

that  

1 = Tr(ρS(t)) = (1/V(0)) Tr(PS(t)) 

= V(t)/V(0) 

where V(t) is the dimension of S(t). It follows 

that 

V(t) = V(0)                     (3b) 

Hence the dimension of a subspace remains 

constant as the states in it evolve over time 

under the Schroedinger equation. 

 

                                                
10 The derivation of this rule of time evolution closely parallels that of the density operator in 

(2c). 
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The derivation of the quantum result (3b) was carried out in a way that emphasizes the analogy 

with the classical case. The same result can be attained more compactly merely by noting that the 

trace of a projection operator is invariant under Schroedinger time evolution:11 

V(t) = Tr(PS(t)) = Tr(U(t) PS(0) U-1(t)) = Tr(U-1(t)U(t) PS(0)) = Tr(PS(0)) = V(0) 

12.	
  Two	
  Versions	
  of	
  the	
  Exorcism	
  
 With the parallel results for the classical and quantum cases in hand, we can now restate 

the original assumptions of the classical exorcism, listed as (a)-(f) below. Quantum surrogates 

are needed only for (d)-(f) and are indicated on the right. 

(a) A Maxwell’s demon is a device that, when coupled with a 

thermal system in its equilibrium state, will, over time, 

assuredly or very likely lead the system to evolve to one of the 

intermediate states; and, when its operation is complete, the 

thermal system remains in the intermediate state.  

(b) The device returns to its initial state at the completion of the 

process; and it operates successfully for every microstate in 

that initial state. 

(c) The device and thermal system do not interact with any other 

systems.  

 

 

(classical) 

(d) The system evolves according to 

Hamilton’s equations (1a) with a time-

reversible, time-independent Hamiltonian. 

(quantum) 

(d’) The system evolves according to the 

Schroedinger equation (1b), (1c), with a 

time-reversible, time-independent 

Hamiltonian. 

(e) The equilibrium state upon which the (e’) The equilibrium state upon which the 

                                                
11 The third equality uses the invariance of trace under cyclic permuation: Tr(ABC) = Tr(CAB). 

The fourth uses unitarity U-1U = I. 
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demon will act occupies all but a tiny 

portion α of the thermal system’s phase 

space, V, where α is very close to zero. 

demon will act occupies all but a tiny 

subspace of dimension α’ of the thermal 

system’s Hilbert space, where the 

dimension α’ is much smaller than the 

dimension of the thermal system’s Hilbert 

space. 

(f) The intermediate states to which the 

demon drives the thermal system are all 

within the small remaining volume of 

phase space, αV. 

(f’) The intermediate states to which the 

demon drives the thermal system are all 

within the small remaining subspace of 

Hilbert space of dimension α’. 

 

 It is assumed in (e’) that the Hilbert space of the thermal system and, tacitly, of the 

demon have a finite, discrete basis. This is the generic behavior of systems such as these that are 

energetically bound, such as a gas completely confined to a chamber. 

 The analysis now proceeds as in Norton (2013, Section 4). In brief, according to the 

behavior specified in (a)-(c), a demon is expected to take a thermal system that we would, under 

non-demonic conditions, consider to be in thermal equilibrium and evolve it to an intermediate 

state, that is, one which we would under non-demonic conditions consider to be a non-

equilibrium state.  

 When coupled with the physical assumptions of (d)-(f)/(d’)-(f’) that behavior requires a 

massive compression of phase space volume or Hilbert space volume that contradicts the 

classical result of the conservation of phase space or the quantum analog for Hilbert subspace 

dimensions.  

 The key assumption is expressed in (e)/(e’). A thermal system that has attained 

equilibrium under non-demonic conditions occupies one of many states that all but completely 

fill the phase space or Hilbert space. The demon must operate successfully on all of these states, 

or nearly all of them. The intermediate states to which the demon should drive them must occupy 

the tiny, remaining part of the phase space or Hilbert space. Changes in the demon phase space 

or Hilbert space can be neglected, since the demon is assumed to return to its initial state.  
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