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Resumo

Virios sistemas orientados a objetos, tais como Lucene, Tomcat, Javac tem seus respectivos
projetos (designs) documentados usando classes-chave, definidas como sendo classes impor-
tantes/centrais para compreender o projeto de sistemas orientados a objetos. Considerando este
fato, e considerando que geralmente a arquitetura ndo € formalmente documentada para auxil-
iar os desenvolvedores a entenderem e avaliarem o projeto do software, € proposta Keecle, uma
abordagem baseada em andlise dindmica e estética para detecc@o de classes-chave de maneira
semi-automdtica. E proposta a aplicagio de mecanismos de filtragem no espaco de busca dos
dados dinamicos, para obter um conjunto reduzido de classes-chave. A abordagem é avali-
ada com quatorze sistemas de cédigo aberto e proprietdrios, a fim de verificar se as classes
encontradas correspondem as classes-chave definidas na documentacao ou definidas pelos de-
senvolvedores. Os resultados foram analisados em termos de precisdo e recall e sdo superiores
as abordagens da literatura. O papel das classes-chave para avaliar o projeto também foi in-
vestigado. Foi avaliado se a organizagdo das classes-chave em um grafo de dependéncias, o
qual destaca relagdes de dependéncia explicitas no cddigo fonte, € um mecanismo adequado
para avaliar o design. Foi analisado estatisticamente, se classes-chave sdo mais propensas a
bad smells, e se tipos especificos de bad smells estdo associados a diferentes niveis de métricas
de coesdo e acoplamento. Além disso, a propriedade (ownership) das classes-chave foi anal-
isada, indicando concentracdo em um conjunto reduzido de desenvolvedores. Por fim, foram
conduzidos um estudo experimental com estudantes € um survey com desenvolvedores para
avaliar a documentagdo baseada em classes-chave. Os resultados demonstram que a documen-
tacdo baseada em classes-chave apresenta resultados que indicam a viabilidade de uso como
documentag¢do complementar a existente ou como documentagdo principal em ambientes onde

a documentacao nio esté disponivel.

Palavras-chave: engenharia reversa, classes-chave, design, smells, experimento, anélise dinamica.






Abstract

Several object-oriented systems, such as Lucene, Tomcat, Javac have their respective design
documented using key-classes, defined as important/central classes to understand the object-
oriented design. Considering this fact, and considering that, in general, software architecture
is not formally documented to help developers understanding and assessing software design,
Keecle is proposed as an approach based on dynamic and static analysis for detection of key
classes in a semi-automatic way. The application of filtering mechanisms on the search space
of the dynamic data is proposed in order to obtain a reduced set of key classes. The approach
is evaluated with fourteen proprietary and open source systems in order to verify that the found
classes correspond to the key classes of the ground-truth, which is defined from the documenta-
tion or defined by the developers. The results were analyzed in terms of precision and recall, and
have shown to be superior to the state-of-the-art approach. The role of key classes in assessing
design has also been investigated. The organization of the key classes in a dependency graph,
which highlights explicit dependency relations in the source code, was evaluated to be adequate
for design comprehension and assessment. Key classes were evaluated whether they are more
prone to bad smells, and whether specific types of bad smells are associated with different levels
of cohesion and coupling metrics. In addition, the ownership of key classes was shown to be
more concentrated in a reduced set of developers. Finally, we conducted an experimental study
with students and a survey with developers to evaluate documentation based on key classes.
The results indicate that the documentation based on key classes are a feasible alternative for
use as complementary documentation to the existing one, or for use as main documentation in

environments where documentation is not available.

Keywords: reverse engineering, key-classes, design, smells, dynamic analysis, experiment.
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CHAPTER

Introduction

Software evolution is especially important during the system development process. In general,
software systems constantly change to meet new requirements, to fix bugs, to optimize source

code, to integrate new features, etc.

In this context, program comprehension has an important role during software maintenance.
In order to timely change applications with quality, developers need to understand the design
and the current implementation as well. Understanding is facilitated when the developer is the
owner or an expert of the respective system, or when there is adequate supporting documenta-

tion.

However, due to the pressure on developers to deliver new software releases quickly and
with low cost, documentation is, in general, neither available nor updated. In this context, the
opportunity for the use of reverse engineering techniques is open. Reverse engineering is an
alternative to study source code, when there is no other source of reliable information. There
are two techniques to perform reverse engineering: static analysis and dynamic analysis. Static
analysis can provide a complete description of the system, because it can be applied to the
complete source code of a program. However, it does not capture important behavioral events
for understanding the software architecture because execution scenarios of the application are
not considered (CORNELISSEN et al., 2009). On the other hand, dynamic analysis relies on
the system properties captured during its execution. Dynamic data, often in the form of exe-
cution traces, is collected using strategies that configure scenarios related to only those parts
of interest for the analysis. Execution traces capture the actual behavior of the system and can
have a tree-based structure, that can be used in software design understanding strategies (COR-
NELISSEN et al., 2009). Several works have used dynamic analysis to recover architectural
views (WALKER et al., 2000), identify design patterns (HEUZEROTH et al., 2003a), features
(EISENBARTH; KOSCHKE; SIMON, 2003) (GREEVY; DUCASSE, 2005) and architectural
styles (YAN et al., 2004). These approaches had to deal with the challenges related to the trace
size to prevent significant effort from developers when analyzing and understanding the trace
data.
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In the context of reverse engineering, software architecture reconstruction plays an important
role. In general, software architecture is documented in a package based structure, because it
is easier to map architectural components to actual artifacts. However, quite often this is not
the best architectural organization (GARCIA et al., 2013). Moreover when the architectural
documentation is available, it is often outdated because of phenonema, such as architectural
drift or erosion (TAYLOR; MEDVIDOVIC; DASHOFY, 2009). To alleviate these problems,
several architecture recovery techniques have already been proposed, nevertheless there are
still problems that hinder the use of those techniques (DUCASSE; POLLET, 2009a)(SARTIPI,
2003)(ASTUDILLO; VALDES; BECERRA, 2012).

A recent study performed a comparative analysis to measure the accuracy of the recovery
techniques use by six different architectures by use of eight ground-truth architectures, and
this study indicated that the limitations concerning these techniques are related to accuracy,
to the conditions under which techniques succeed or fail, to the number and size of selected
systems, etc., (GARCIA et al., 2013). For instance, the average accuracy using the MoJoFM
measure was 45% (WEN; TZERPOS, 2004). An apparently successful approach that combined
dynamic and static analysis for software clustering showed an MojoFM accuracy of 87.83%
(PATEL; HAMOU-LHADJ; RILLING, 2009). However, this approach was evaluated only
with the Weka' sofware and most of the retrieved components consisted of classes from the
same package, which may not be a general representative of software architectures, as reported
in (GARCIA et al., 2013). Dynamic analysis has been used with static analysis to provide

relevant information of behavioral aspects during the software architecture reconstruction.

Cornelissen et al, (2009) analyzed 176 articles related to dynamic analysis applied to differ-
ent areas of software engineering, such as feature location, bug detection, architectural recon-
struction, etc. In that study, 13 articles used dynamic analysis for software architecture recov-
ery. Summing up, large architectural components extraction from the source code is complex,
and still suffers from a low accuracy of performance (GARCIA; IVKOVIC; MEDVIDOVIC,
2013a). The available tools require significant developer effort to understand the retrieved in-

formation, limiting the use of such tools.

A recent study has highlighted the importance of producing documentation containing ar-
chitectural description on open-source projects and emphasizes the main problems found in the
current documentation (ROBILLARD; MEDVIDOVIC, 2016). This work highlighted a case
study involving the analysis of architectural documentation of 18 source code softwares. Each
invited contributor re-documented the architecture of a system on a limited number of pages
and adopted their own criteria for producing the document. Subsequently, the authors of that
paper reviewed the documentations and concluded that there was no uniform criterion for docu-
menting a software application. So, this contributes for creating a gap between the creators and
consumers because of the manual nature of its creation (ROBILLARD et al., 2017).

1 http://www.cs.waikato.ac.nz/ml/weka/documentation.html
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Alternatively, we have observed that several real-world systems such as such as Lucene?,
Tomcat® and Javac* use some few classes to document its architectural design, an example is
shown on Figure 1. In this way, an alternative would be a documentation based on key classes.
In this context, key classes are defined as being the core classes to comprehend the object-
oriented design. So, a documentation based on key classes would be an alternative to substitute

or complement design documentation.

As a motivating example to show the importance of a design documentation based on key
classes to understand and assess design can be taken from the documentation of Lucene’, shown

in Figure 1.

Among the classes referenced in that documentation, an interesting one is the IndexWriter
class. This class has the worst rates for cohesion and coupling metrics considered: RFC,
LCOM, CBO and DIT (CHIDAMBER; KEMERER, 1994). The RFC metric indicated that
this class has 458 points of execution, with a lack of cohesion (LCOM metric) equals to 9414,
and the coupling between object classes (CBO metric) equals to 48. The values were recovered
using cOPE tool (KAKARONTZAS et al., 2013) and indicate that IndexWriter is a complex
class and has the occurrence of smells. Five kinds of smells were detected: AntiSingleton,

ClassDataShouldBePrivate, ComplexClass, LongParameterList and SpaghettiCode.

IndexFiles
As we discussed in the previous walk-through, the IndexFiles class creates a Lucene Index. Let's take a look at how it does this.
o S P —

The main() method parses the command-line parameters, then in preparation for instantiating ndexWriter}opens a®irectory; and instantiates@EandardAnalyzéband ZidexWriterConfigy

— — — 1 —
The value of the -index command-line parameter is the name of the filesystem directory where all index information should be stored. If IndexFiles is invoked with a relative path given in the -index command-line parameter,
or if the -index command-line parameter is not given, causing the default relative index path "index" to be used, the index path will be created as a subdirectory of the current working directory (if it does not already exist).
On some platforms, the index path may be created in a different directory (such as the user's home directory).
The -docs command-line parameter value is the location of the directory containing files to be indexed.
The -update command-line parameter tells IndexFiles not to delete the index if it already exists. When -update is not given, IndexFiles will first wipe the slate clean before indexing any documents.

. . - . . T . . . .
Lucene Directorys are used by the IndexWriter to store information in the index. In addition to the(FSDirectoryimplementation we are using, there are several other Directory subclasses that can write to RAM, to
databases, etc. T -

Lucene Analyzers are processing pipelines that break up text into indexed tokens, a.k.a. terms, and optionally perform other operations on these tokens, e.g. downcasing, synonym insertion, filtering out unwanted tokens,
etc. The Analyzer we are using is StandardAnalyzer, which creates tokens using the Word Break rules from the Unicode Text Segmentation algorithm specified in Unicode Standard Annex #29; converts tokens to lowercase;
and then filters out stopwords. Stopwords are common language words such as articles (a, an, the, ete.) and other tokens that may have less value for searching. It should be noted that there are different rules for every

language, and you should use the proper analyzer for each. Lucene currently provides Analyzers for a number of different languages (see the javadocs under lucene/analysis/common/src/java/org/apache/lucene/analysis).

The IndexWriterConfig instance holds all configuration for IndexWriter. For example, we set the OpenMode to use here based on the value of the -update command-line parameter.

Looking further down in the file, after IndexWriter is instantiated, you should see the indexDoes() code. This recursive function crawls the directories and creates Document objects. The Document is simply a data object to
represent the text content from the file as well as its creation time and location. These instances are added to the IndexWriter. If the -update command-line parameter is given, the IndexWriterConfig OpenMode will be set to
OpenMode .CREATE_OR_APPEND, and rather than adding documents to the index, the IndexWriter will update them in the index by attempting to find an already-indexed document with the same identifier (in our case, the
file path serves as the identifier); deleting it from the index if it exists; and then adding the new document to the index.

Searching Files

S T L
The SearchFiles class is quite simple. It primarily collaborates with amﬁxﬁw@(which isused in the@dexFi]es;lass as well) and a@gery?a rser) The query parser is constructed with an
analyzer used to interpret your query text in the same way the documents are interpreted: finding word boundaries, downcasing, and re?ﬂﬁfn?useless words like 'a’, "ari"and the. The Query object contains the results from
the QueryParser which is passed to the searcher. Note that it's also possible to programmatically construct a rich Query object without using the query parser. The query parser just enables decoding the Lucene query

syntax into the correspundingﬁ:;y‘ ‘pbject.
N

SearchFiles uses the IndexSearcher.search(query,n) method that returns TopbDocs with max n hits. The results are printed in pages, sorted by score (i.e. relevance).

Figure 1 — Lucene Overview using a Documentation based on Key Classes.

To better understand the problem with IndexWriter, we located 65 open issues® associated

with design problems involving this class, and noticed that all of these have an Unresolved status

https://lucene.apache.org/core/6_5_1/demo/overview-summary.html
https://tomcat.apache.org/tomcat-5.5-doc/architecture/overview.html
http://openjdk.java.net/groups/compiler/doc/compilation-overview/
https://lucene.apache.org/core/
https://issues.apache.org/jira/issues/?jql=project%20%3D%20LUCENE

(= NV B VS A )
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since 2009. The discussions’ threads on those issues demonstrate the concern of the developers

with this class indicating the need for refactoring.

So, IndexWriter is a key class for understanding and assessing design. However, we also can
not neglect the possibility of non-key classes with similar design problems. A non-key class
may also have structural design problems indicated by software metrics, but because non-key
classes are, by definition, not critical to understand and assess design, they would not require
higher priority. Nonetheless, because of the controlling nature of the key classes, they are

expected to be more prone to present structural problems compared to non-key classes.

The advantage of knowing the key classes of an application, allows the developer to get a
concrete overview of the system organization. Because key classes are likely to be directly
related to design, if there are any design problems in these classes, those problems are likely to
be more critical. This enables the developer to perform a design assessment focused on those

classes and possibly, point out new design decisions during maintenance activities.

According to this example on IndexWriter, our objective is to use a reduced set of key classes
to understand how to use the information conveyed in those structural and social properties to

improve architectural knowledge and design assessment.

In order to find automatically the key classes in a system, there is already an approach pro-
posed by Zaidman and Demeyer (ZAIDMAN; DEMEYER, 2008) to identify the most impor-
tant classes in a system - the key classes. They characterized the key classes as typically pos-
sessing a lot of “control” within the application. In order to find these “controller classes", they
presented a detection approach that is based on dynamic coupling and webmining, obtaining
precision of around 50%. Other recent approaches have been proposed (DING; LI; HE, 2016),
(MEYER; SIY; BHOWMICK, 2014) and (SORA, 2015). Moreover, these authors did not re-
port on concrete evidence that the awareness of them is a useful information for developers,

leaving a gap for further investigation.

So, in this thesis, instead of trying to improve the current techniques for recovering archi-
tectural components for design understanding and assessment, we build on the idea that several
architectural documentation are organized around the description of few classes. Thus, we pro-
pose, Keecle’, a semi-automatic way for finding key classes considered as important classes to
understand and assess the design in object-oriented systems. It is intended to be an alternative
way to provide architectural knowledge, where the concepts of the key classes would be likely

mapped to those that are central to comprehend the software architecture.

For finding and evaluating key classes, our approach combines dynamic and static analyses.
Dynamic analysis is used to capture and filter execution traces in order to find the key classes.
Static analysis is used to provide more evidence that key classes, especially those recovered by

Keecle, are an important means to understand and to assess software design.

7 Kee has the same sound of “key” and “Cle” is a contracted sound for “cl”as
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Newcomer contributors face several barriers between the time they decide to engage a new
project and the time their first contribution is accepted (STEINMACHER et al., 2016). Two
important classes of identified barriers are documentation problems and technical hurdles. The
first is related to, among others, the outdated or non-existent documentation, and the second is
related to, among others, code/architecture hurdles, which include bad code/design and cogni-
tive problems during program/design comprehension. In this context, we propose also a docu-

mentation based on key classes to aid newcomers.

1.1 Objectives and Contributions

Considering our motivation for finding key classes with potential properties to comprehend and
assess design, this work aims at proposing and evaluating a technique that extracts key classes,
which supposedly give an initial understanding of the software design regarding structural and
ownership properties. This objective can be organized in more specific objectives that would

together achieve the overall goal of our work as follows:

e to propose a novel technique to identify key classes of a software system that can be
provided for developers as a high-level overview to help understand important structure

and relations of the software;

e to provide an empirical evaluation of the technique using open source and proprietary

systems, aiming at outperforming the state-of-art techniques.

e to organize the key classes into a high-level overview that could help in a supplementary
documentation. The goal is to investigate whether dependency graphs produces a degree
of adherence with the documentation. This degree of adherence can benefit developers
in cases where the software documentation is not available, or it complementing current

documentation.

e to analyze the presence of specific bad smells in key classes and if there is any relationship

with the cohesion and coupling metrics.

e to evaluate the ownership pattern on key classes. The goal is to understand the notion
of responsibility of the developers on key classes. Finally, we evaluate the frequency of

commits to define the level of ownership and analyze their relationship to key classes.

e to evaluate the role of semi-automatically detected key classes for understanding design.
Experimental study with human subjects are aimed to evaluate quantitatively and quali-

tatively the value added by key classes on the comprehension of software design.
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1.2 Hypotheses

Considering the motivation and objectives, we formulated a set of hypothesis related to tech-
nique to find the key classes, to their organization in terms of dependency graphs, to the study
regarding social and structural properties and whether a documentation based on key classes can
complement/replace a traditional documentation and overall help developers during the design

assessment. These hypotheses are described following.

e H1) A reduced set of key classes can be obtained from reverse engineering techniques

using dynamic analysis.

Argumentation: The key classes presented important properties in previous studies which
showed that such classes have strong control over the application (ZAIDMAN; DE-
MEYER, 2008). When we consider an execution trace tree, supposedly those key classes
should be at the highest levels of the tree. If these nodes are at the highest levels of the
tree, have stronger control over the application, as all other method calls will be controlled
by those upper level nodes. So, classes in those upper level nodes would have a higher

chance of being a key class. This hypothesis will be verified in Chapter 3.

e H2) Key classes organized in a dependency graph is a strategy that complements the
available documentation, showing important dependency relationships, and it also sup-

port undocumented environments.

Argumentation: The dependency graph structure may reveal a distinct reality compared
to the actual documentation. In general, human-written documentation shows a simplified
situation that does not necessarily match source code. The dependency graph of the key
classes can display undesirable dependencies. On the dependency graph, can occur any
dependency (cyclic dependency) that breaks this rule violating of the structure of the
system. These dependencies are not always avoidable, so warnings may help developers

to get them under control. This hypothesis will be investigate in Chapter 4.

e H3) Key classes are more prone to low cohesion with high coupling, and this fact can be
associated with the high occurrence of bad smells on key classes in relation to non-key

classes.

Argumentation: Key classes are intrinsically related to design, as they have a strong con-
trol over the software. This situation would be more likely to influence the quality of
the code. So, we investigate if there is any association of source code to the occurrence
of bad smells. Moreover, to understand how key classes may impact design quality, we
investigate if classical indicators for assessing modularity (coupling and cohesion) have
distinct levels in key classes when compared to non-key classes, hence, investigate the
relation between coupling and cohesion indicators and the occurrence of smells. This

hypothesis will be investigated in Chapter 4.
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e H4) The ownership pattern of the key classes is different when compared to non-key

classes.

Argumentation: The key classes are important classes of the system as already mentioned
and therefore the distribution of developers work on those classes in relation to other
classes would be more likely distinct compared to non-key classes. This hypothesis will

be investigated in Chapter 4.

e HS) Design documentation based on key classes can complement existing documentation

or be a replacement for it.

Argumentation: The set of key classes highlights classes that are important from the
design viewpoint and therefore may serve as basis for the representation a general orga-
nization of the system. Because documentation based on key classes is produced using
dynamic analysis, providing a straight relation to the actual behavior of the software
would benefit cognitive activities, and therefore would benefit more accurate solutions

during comprehension activities. This hypothesis will be investigated in Chapter 5.

e H6) A documentation based on key classes helps newcomers to understand an applica-

tion.

Argumentation: Documentation based on key classes is more likely to be simple and
straightforward, because the set of key classes may be chosen to be small. The rationale
is that a small set of key classes can guide the analysis of the design more quickly rather
than navigating on all available source files, in case when documentation is not available.

This hypothesis will be investigated in Chapter 5.

1.3 Thesis Outline

Thesis statement:

The set of key classes detected by Keecle is an adequate source of information for producing

documentation to effectively help developers to understand and assess design.

The structure of this thesis is organized in the following chapters:

e Chapter 2 provides basic concepts of architecture recovery, reverse engineering, program

comprehension, bad smells, metrics of software that assist in the proposed solution.

e Chapter 3 presents Keecle, a semi-automatic proposal for the recovery of keys classes.
Initially, an overview of Keecle approach using dynamic analysis is presented, describing
how execution traces are captured, compressed, transformed into more compact subtrees,
and also how the key classes are mined from those subtrees. Following on, the study
settings to evaluate the accuracy regarding the Keecle approach and the evaluation results.

Finally, a discussion is made considering threats to validity.
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e Chapter 4 we present the study setting for analyzing properties of key classes in a struc-
tural and social context and present the results concerning those properties considering

static analysis:

— A studied property is the likelihood of key classes association to bad smells. First,
we analyze the proneness of the occurrence of bad smells (BROWN et al., 1998) in
key classes compared to the rest of the classes. Also, we analyze if the occurrence
of specific bad smells are associated to different levels in cohesion and coupling

metrics.

— We propose a mechanism to organize key classes in a dependency graph to explicitly
complement and visualize undesired dependencies, since they can affect the struc-
ture of the project, these class dependencies are typically neither documented nor
complete. We performed a comparative study to analyze the degree of adherence be-
tween produced output and actual documentation focusing on circular dependencies
to assess design.

— Another studied property is related to the ownership of key class, and thus has a
social context. We evaluated the distribution of key classes among developers to

understand how ownership compares to non-key classes.

e Chapter 5 presents the experimental evaluation of the proposed approach, experimental
design, results, discussions and conclusions. Two studies were conducted to evaluate
quantitatively and qualitatively the value added by key classes on the comprehension of

software design.

— In the first study, students (potential newcomers in Open Source Systems - OSS)
were surveyed in order to evaluate the useful of key classes as a starting point for

comprehending an application.

— In the second study, expert developers were surveyed in order to evaluate the role of
key classes and whether a documentation based on key classes can complement or

replace a traditional documentation.

e Chapter 6 presents related work, highlighting state of the art based on this thesis.

e Chapter 7 presents the conclusion of this study and proposed future work.

1.4 Publications

From this thesis, we have published the following work:

e Vale, L. N. and Maia, M. A. Keecle: Mining key architecturally relevant classes using dy-
namic analysis. Software Maintenance and Evolution (ICSME), 2015 IEEE International
Conference on. Pages 566-570. ERA Track.
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e Vale, L. N. and Maia, M. A. On the Properties of Design-Relevant Classes for Design
Anomaly Assessment. Program Comprehension (ICPC), 2017 IEEE/ACM International
Conference on. Pages 332-335. ERA Track.
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CHAPTER

Background

In this chapter, we present fundamental concepts related to this thesis. We introduce concepts
of architecture recovery (Section 2.1). Next, a presentation is given of reverse engineering
concepts in particular for dynamic and static analyses (Section 2.2). In Section 2.3, we present
concepts concerning program comprehension, since our approach retrieves data as initial knowl-
edge of the software architecture. In Section 2.4 Naive Bayes technique is presented because
it is classification model used in the algorithm that select key classes. In sequence, in Section
2.5, measures traditional such as recall and precision are presented to calculate the accuracy
of this approach. Following this, in Section 2.6 we introduce concepts on bad smells, because
we will analyze the prevalence of smells in key classes. Finally, metrics from (CHIDAMBER;

KEMERER, 1994) are presented for evaluating the complexity of the key classes.

2.1 Architecture Recovery

Architecture emphasizes the global organization of the system, and distinct definitions are given
to software architecture in the literature. Among them, we highlight two related to our object
of study: Architecture is a set of principal design decisions about a software system (TAY-
LOR; MEDVIDOVIC; DASHOFY, 2009). The software architecture of a program or comput-
ing system is the structure or structures of the system, which comprise of software elements,
the externally visible properties of those elements, and the relationships among them (BASS;
CLEMENTS; KAZMAN, 1998). Software architecture is a very important topic due to the

understanding, analysis, reusability, evolution and management of legacy systems.

Large organizations have in general a significant base of legacy systems. These systems
represent a high development effort over a long period, and as such bring with them a wealth
of knowledge about the business, which often can not be obtained from any other source of
information available in the organization. Understanding these systems and their structural
organization have been the constant concern of software engineers. According to (KAZMAN;

CARRIERE, 1999) the development of software rarely begins from zero. It is usually restricted
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by compatibility, or the use of legacy systems. In this case, it is necessary to find alternative

techniques to retrieve relevant information from legacy systems such as architecture recovery .

Architecture recovery is a process by which higher levels of abstraction are identified and
extracted from existing software systems (DUCASSE; POLLET, 2009b). Architecture recovery
and reengineering to handle legacy code is critical for large and complex systems. Architecture
recovery deals with the issues of recovering the past design decisions that have been taken by
the experts during the development of a system. These are decisions that have been lost due to
some reasons: they have never been documented, or when they were documented they were not

frequently revised.

In order to support the software architecture recovery, various techniques, methods and tools
have been proposed in the literature. A recent study (DUCASSE; POLLET, 2009b) presented
a state of the art of software architecture reconstruction approaches. Reverse engineering is

commonly used in these situations and therefore it is described in the next section.

2.2 Reverse Engineering

Reverse engineering is an essential technique in the architecture reconstruction process, as it
enables the understanding of the system through the identification of components and its rela-

tionships, creating abstractions from this information (MULLER et al., 2000).

The software system code is the source of information that is most accessible, reliable and
available when other artifacts are missing or out of date. In this case, reverse engineering is
a process of examination and understanding software, to recapture or recreate the design and
understand the requirements currently implemented by the software, presenting them in a higher
level of abstraction (CHIKOFSKY; CROSS, 1990).

The information is extracted from the source code, helping us to understand the system (e.g.,
dependency relationships) and to find out specific problems in the system (e.g., violation of
rules, duplicated code, smells, complexity of the code, etc.). Reverse engineering tools deal
primarily with two tasks. The first task is to analyze source code and extract an abstract model
from the source, whereas the second is to carry out some exploratory operations in this abstract

model.

There are variations in the strategies concerning reverse engineering: static and dynamic

analyses both used that will be detailed in the next subsections.

2.2.1 Dynamic Analysis

Dynamic analysis is used to extract representations that reflect system behavior at runtime.

These representations consist of traces that are event logs generated by the program execution.
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This technique has the potential to provide a precise view of a software system because it

displays the actual behavior of the system.

The information collected at runtime facilitates for the understanding of dynamic architec-
tural views of the system. Jerding and Rugaber reported on a study which claims that the
dynamic models are essential for understanding architecture (JERDING; RUGABER, 1997).
In other words, the understanding of a system architecture requires the identification of its
components and the means by which interaction between such occurs in order to achieve the
goals. The information may have details ranging from classes to architectural high-level views.
Among the benefits of dynamic analysis are the availability of information, and, in the context
of object-oriented software, exposure of the identities of objects. Data capture in a system ex-
ecution occurs through interpretation (e.g., using the Java virtual machine) or instrumentation,

these data collected during the dynamic analysis of the system are named execution traces.

We used a tool to capture execution traces proposed by Sobreira and Maia (2008). In this
paper a visual tool to analyze the intersection of feature elements and source code elements
from different matrix perspectives was proposed. To identify where the specified features are
located in the execution trace, the developer must inform during the execution of the scenario
when a feature starts and when it ends. They developed an instrumentation tool that asks the
developer to inform a label to mark the beginning a new feature, immediately before triggering
the scenario activity corresponding to a feature. When the execution of that feature ends, the
developer must inform such event. This process has to be repeated until the developer executes
all planned scenario. The result is an execution trace file for each thread started within the
execution of the whole scenario. Each line of each trace file describes a method call completely
qualified and its respective timestamp indicating when the method has started. The complete
qualification of the method call is important to understand which class and which package has
participated in the execution of each feature. The captured data have properties that make it

possible to analyze it for various purposes as pointed out by Cornelissen et al. (2009).

However, one problem faced by dynamic analysis is the volume of the events extracted
during software execution. In general, the data tend to be very large due to the existence of loops
and recursion, making handling and analysis difficult. In order to contribute to the solution of
this problem, one can considered the techniques of (HAMOU-LHADJ; LETHBRIDGE; FU,
2004) that dedicate compression of the volume of traces, making the understanding of structure

easier.

Therefore, dynamic analysis has advantages that make its use beneficial. Among such ad-
vantages for example, are information accuracy on the system behavior and a goal-oriented
strategy given the definition of execution scenarios, allowing for the selection of software parts
of interest for analysis. As limitations of the technique, there is the problem of covering the
system in the number of classes captured, due to the chosen execution scenarios. There is a dif-

ficulty in choosing which scenarios would capture all elements of interest. Another limitation
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is the amount of data that affect the performance and effort of humans in dealing with the data.

From the point of view of software architecture understanding, derived representations of
dynamic data have been used such for obtaining sequence diagrams (PAUW et al., 2002a),
(SYSTA; KOSKIMIES; MULLER, 2001). Other approaches motivate the use of dynamic anal-
ysis for architectural recovery as shown in (HEUZEROTH et al., 2003b) and (HEUZEROTH;
HOLL; LOWE, 2002) to design pattern detection and representation of relevant architecturally
rules studied by (KOSKINEN; KETTUNEN; SYSTA, 2006).

In this work, we have used dynamic analysis to capture trace trees as we hypothesize that

their upper level nodes are more likely to represent key classes.

2.2.2 Static Analysis

The code static analysis does not consider the inputs of a program, instead, static information
is derived from artifacts that can be classes, interfaces, methods and variables and relationships

that can be extension between classes or interfaces, calls between methods, etc.

Static analysis can insure a complete coverage of the program branches (CHESS; MC-
GRAW, 2004), used APIs, program dependencies, or the configuration files explored. Static
analysis refers to different methodologies, including model checking and model provers, to ver-
ify execution paths of a program without actually executing it (PISTOIA et al., 2007). Unlike
manual review, which relies on the tedious examination of sequences of the concrete or sym-
bolic execution program, static code analyzers can capture comprehensive and accurate models
of the software, like for instance an abstract representation of all the execution paths to be

covered.

Struture101! is a tool used in our approach to obtain dependency graphs from key classes
in a static context. We choose that due to increased number of features that are performed and
through such being able to report a greater number of dependencies between classes compared
to other available tools as shown in the study by (PRULIT; KPPE; BRINKKEMPER, 2013). It
is free for use on open source projects. It is used to analyze, monitor and control the software
architectures. The code-base are compressed and are organized into higher-level abstractions
(functions, classes, files, packages, jars, etc.), and the dependencies that emerge through this
organization. It is based on diagram to define modules. The rules and violations are shown in

these diagrams, with textual reports provided.

We have used static analysis to retrieve dependency graphs that were used to organize the
keys classes, making explicit dependency relationships that are omitted in the documentation,

1n Some cases.

' https://structure101.com/
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2.3 Program Comprehension

Program comprehension is characterized by theories aimed at providing rich explanations about
how programmers comprehend software, as well as tools that are used to assist in comprehen-

sion tasks.

Understanding software internal processes requires the investigation of its artifacts, such as
the source code and documentation to achieve a sufficient level of knowledge. However, most
programmers spend more than 50% of their time just to understand the source code (MAALE]J
et al., 2014).

There are several theories that elaborate explanations regarding how programmers compre-
hend programs to collaborate through knowledge and experience, providing data on how the
tools and methods of comprehension programs could be improved. In this sense, a lot of tools
that exploit the features distinct to the programs and programmer’s abilities emerged (STOREY,
2005).

In general, program comprehension tools are classified according to three main categories:
extraction, analysis and presentation. Tools in the context of extraction include analyzers and
instruments to collect data. The analysis tools perform static and dynamic analysis to support
activities such as clustering, feature location, domain analysis, calculations, etc. Finally, pre-
sentation tools include code editors, browsers, hypertext and views. Integrated development
environments and software reverse engineering, usually have some features of each said cate-

gory. The supported feature set is determined by tool purpose or the research focus.

One difficulty encountered is related to how to classify such tools, i.e. how to find the
main motivation of these tools, according to the different features they possess. For example,
the Rigi system (MULLER; KLASHINSKY, 1988) supports multiple views, cross-references
(cross-cutting) and queries to support understanding (bottom-up) (SHNEIDERMAN; MAYER,
1979). Bootom-up implementation refers to permit low-level code to be generated first in an
attempt to in an attempt to build up to the goal. This process, referred to as "working forward"
or "reformulating the givens," where the "givens" include the permissible statements of the

language.

Besides the approach (bottom-up) to comprehend programs, another approach that is used is
the top-down. Top-down implementation refers to comprehend of the internal semantics for a
problem requiring that the highest (most general) levels be set first, followed by more detailed
analysis, (from the general goal to the specifics) is one technique used by humans in prob-
lem solving. (BROOKS, 1983) based on hypothesis generation and verification (MURPHY;
NOTKIN; SULLIVAN, 1995). Another tool is the Bauhaus (EISENBARTH; KOSCHKE; SI-
MON, 2001) which has features to support clustering (identifying components) and analysis
concepts. The SHRIMP tool(STOREY, 2003) provides a meta-model for navigation support

integrated that for allows frequent changes between the strategies. Finally, the CodeCrawler
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tool (LANZA; DUCASSE, 2001) uses metrics visualization to support the understanding of

systems and to identify gaps and other architectural features.
Strategies to improve quality of comprehension tools are described below.

Recommendation Systems. One way to improve the quality of comprehension tools is
to enhance the user interface aspects, (e.g., create intelligent tools with any domain or user’s
knowledge). Recommendation systems are used to guide the navigation on the software. Ex-
amples that use this technology include Mylar (KERSTEN; MURPHY, 2005). Mylar uses an
interest model to filter out non-relevant files in the Eclipse IDE. NavTracks provides recom-
mendation files that are related to those who were selected by the user. Deline et al. also
discuss a system to improve navigation (DELINE et al., 2005). The FEAT tool suggests using
a graph (explicitly created by the programmer) to improve navigation efficiency and improve
understanding (ROBILLARD; MURPHY, 2003).

Adaptive Interfaces. Another area of research includes adaptive interfaces. Software tools
typically have many features that can be complex, not only for novice users, but also for expe-
rienced users. The volume of displayed information can be reduced through the use of adaptive
interfaces. The idea is that user interface adapts itself to suit different types of users and tasks.
Adaptive interfaces are common in Windows applications, as Word. The Eclipse IDE has sev-
eral views for novice users (as Gild and Penumbra (STOREY et al., 2003)). Visual Studio has
the express configuration for novice users. However, none of these conventional tools have the

ability to self adapt or be easily adapted from novice user to experienced users.

Software Visualization. In the field of software visualization tools, these have been the
subject of a lot of research over the past few years. Many views, most based on graphs, have
been proposed to support comprehension tasks. Some examples include the research tools
Seesoft (BALL; EICK, 1996), Bloom (REISS, 2001), Rigi(WONG et al., 1995), (PENNY,
1993), sv3D (MARCUS; FENG; MALETIC, 2003), and CodeCrawler (LANZA; DUCASSE,
2001).

Collaborative Support. Software teams are growing in size and becoming more distributed.
In this sense, collaboration tools that support distributed software development activities are
crucial. Collaborative software engineering tools have been proposed, such as Jazz and Augur
(HUPFER et al., 2004) (FROEHLICH; DOURISH, 2004). There are also some tools deployed
in the industry, such as CollabNet, but they are simple tools to support communication and col-
laboration, such as version control, email and instant message. Current tools focused industry
have advanced collaboration features such as shared editors for example. Although collabora-
tive tools for software engineering have been a research topic for several years, there has been
a lack of adoption of many of these approaches, such as common editors in the industry and
lack of empirical work on the benefits of these tools. The work of O’Reilly et al. (O’REILLY;
BUSTARD; MORROW, 2005) proposed a command console based on a room to share views

of the coordination team.
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Many of the techniques of program comprehension are intended to assist developers to con-
duct for example, software evolution activities. However, comprehension of software applica-
tions is often hampered by the lack of documentation. Also, when there is documentation, there
is no assurance that it is up to date or complete (LETHBRIDGE; SINGER; FORWARD, 2003).
In these cases, the code is the main source for reliable information extraction. Several tech-
niques have been proposed to facilitate the understanding of software systems from the source
(CORNELISSEN et al., 2009). However, there is still no widely accepted approach that allows
for a quick understanding of the implementation of a software feature.

In our approach program comprehension aligned with reverse engineering help to under-
stand software behavior from the analysis of data generated during program execution. Tools
for the system analysis of object-oriented execution traces were proposed (PAUW et al., 2002b),
(RICHNER; DUCASSE, 2002). However, many of these tools suffer from the problem related
to trace sizes, requiring significant effort from developers to visualize and understand the avail-
able data. In order to filter out irrelevant data for the proposed analysis, we can rely on classifi-
cation algorithms. We use Naive Bayes classification algorithm as an alternative to reduce the

amount of trace data.

2.4 C(lassification Techniques - Naive Bayes

Data mining is a process that uses algorithms to analyze in an effective way large database for

extracting knowledge. One of the most useful data mining tasks is called classification.

Classification is the process of finding, via machine learning, a model that describes different
data classes (HAN, 2005). The model is derived based on the analysis of training data (i.e., data
objects for which the class labels are known). The model is used to predict the class label of
objects for which the the class label is unknown. The purpose of the classification to label
automatically new instances of the database with a particular class or function by applying a
model. This model is based on the value of the attributes of the instances of training. Several
classifiers have been proposed in recent years. Some use decision trees to label records. Other

algorithms based on artificial neural networks use probabilistic models (Bayesian) or rules.

Naive Bayes (HAN, 2005) is a classification technique based on Bayes’ theorem with an
assumption of independence among predictors. It assumes that the presence of a particular
feature in a class is unrelated to the presence of any other feature. For example, a fruit may
be considered to be an orange if it is orange color and round. Even if these features depend
on each other or upon the existence of the other features, all of these properties independently

contribute to the probability that this fruit is an orange.

Bayes theorem provides a way of calculating posterior probability P(c|x) from P(c), P(x)

and P(x|c). Consider the equation P(clx):%. Where:
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P(c|x) is the posterior probability of class (c, target) given predictor (x, attributes);

P(c) is the prior probability of class;

P(x|c) is the likelihood which is the probability of predictor given class;

P(x) is the prior probability of predictor.

A Naive Bayes algorithm works converting the data set into a frequency table. Next, creates
Likelihood table by finding the probabilities. Finally, Naive Bayesian equation to calculate
the posterior probability for each class. The class with the highest posterior probability is the

outcome of prediction.

In our approach, Naive Bayes computes the probability P(c|d) of a trace subtree belonging
to a particular class from the a priori probability P(c) to be a subtree of this class and the
conditional probabilities P(t,)|c of each feature t, that occurs in a subtree of the same class.
The goal of the algorithm is to find the best class C,,q, for a subtree maximizing the posteriori

probability.

The classification function accepts as parameters, test subtrees, the set of classes and esti-
mated probabilities in training. For each class a posteriori probability is calculated by adding
the logarithm of the priori probability with the logarithms of the conditional probabilities of
each subtree of the test set. The subtree is then labeled with the class that receives the highest

posteriori probability.

2.5 Recall and Precision

In this work, we will use recall and precision measures to evaluate the effectiveness of the

approach in terms of number of key classes recovered.

Precision and recall are the basic measures used in evaluating strategies such as search. In
this case, there is a set of records in the database which is relevant to the search topic. So,

records are assumed to be either relevant or irrelevant.

Recall is the ratio of the number of relevant records retrieved to the total number of relevant
records in the database. It is usually expressed as a percentage. So, the equation Recall=-2-+100%.

A+B
Where:

e A: number of relevant records retrieved;

e B: number of relevant records not retrieved;

Precision is the ratio of the number of relevant records retrieved to the total number of
irrelevant and relevant records retrieved. It is usually expressed as a percentage. So, the equation

Recall= ﬁ %¥100%. Where:
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e A: number of relevant records retrieved;

e C: number of irrelevant records retrieved;

A measure that combines precision and recall is the harmonic mean of precision and recall,

the traditional F-measure or balanced F-score: F=2sx£ecalelrecision . 100,
ecall+Precision

This measure is approximately the average of the two when they are close, and is more
generally the harmonic mean, which, for the case of two numbers, coincides with the square of

the geometric mean divided by the arithmetic mean.

2.6 Bad Smells

Code smells is one of the concepts that limits the code quality. A code smell (MaNTYL4;
LASSENIUS, 2006) dues not necessarily mean that software components contain bugs, but
indicates potential weaknesses in the project that can slow down development, increasing the
risk of errors or failures in the future. Common examples of bad smell code consists of code
clones, very long classes and methods, very long parameter list, complex control structures,

dependencies between components, etc.

The study of (BROOKS, 1995) describes how the properties of software (complexity, con-
formity, changeability, and invisibility) make its design an “essential” difficulty. Good design
practices are fundamental requisites to address this difficulty and accordingly smells that can

manifest as a result of design decisions.

Smells are certain structures in the design that indicate violation of fundamental design prin-
ciples and negatively impact design quality (FOWLER et al., 1999). So, a designer has to
analyze the smells found in a design, determine the problems underlying the smells, and then

identify the required refactoring to address the problems.

Technical debt is the term used to define wrong design decisions (FOWLER et al., 1999). So,
one of the indicators of technical debt is poor software quality. For example software appears
complex and hard to comprehend, and has “changeability”, “extensibility”, “reliability” and
“reusability” that is seen as detrimental. To improve software quality and reduce technical debt
is discovering and addressing smells in a design software. So, there are design factors that can
cause a smell to occur and thus it is necessary to take care of smells because it negatively impact

software quality, and poor software quality indicates a technical debt.

Since smells may have an impact on design quality, it is important to understand smells and
how they are introduced into software design. We would like to point out that since design
smells contribute to technical debt, there is some overlap in the causes of design smells and
technical debt.

There are distinct kinds of smells reported in the literature (FOWLER et al., 1999). Several
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tools are available for detecting smells in source code (FONTANA et al., 2011). In our approach
we have used DECOR (MOHA et al., 2010) as it is considered one of the state-of-art tools for
detecting smells and can detect a large number of smell kinds (TUFANO et al., 2015). Next,
we want to investigate if bad smells are associated with a lower cohesion and higher coupling

on key classes.

2.7 Software Metrics

Programming complexity (or software complexity) is a term to describe the interactions be-
tween a number of entities. As the number of entities increases, the number of interactions
between them would increase exponentially. Higher levels of complexity in software increase
the risk of unintentionally interfering with interactions, and so increases the chance of introduc-

ing defects when making changes.

Software metrics are defined by measuring some property of a software portion or its spec-
ifications. Software metrics provide quantitative methods for assessing software quality, and
can be used as proxies to characterize how difficult a program is to comprehend and work with
(DEBBARMA et al., 2013). Software metric is a measurement, usually using numerical ratings,
to quantify some characteristics or attributes of a software entity. (CHIDAMBER; KEMERER,
1994) presented a metrics suite for object oriented design. Some of the metrics are considered
and described in our approach as they are more related to analysis of cohesion and coupling to

measure the complexity of classes and methods.

e CBO - Coupling between object classes. The coupling between object classes (CBO)
metric represents the number of classes coupled to a given class (efferent couplings and
afferent couplings). This coupling can occur through method calls, field accesses, inheri-

tance, arguments, return types, and exceptions.

e RFC - Response for a Class. The metric called the response for a class (RFC) measures
the number of different methods that can be executed when an object of that class receives

a message (when a method is invoked for that object).

e LCOM - Lack of cohesion in methods. A class’s lack of cohesion in methods (LCOM)
metric counts the sets of methods in a class that are not related through the sharing of some
of the class’s fields. Although, LCOM has been criticized on how it actually represents

cohesion, it can be analyzed under its own definition.

e Ca - Afferent couplings. A class’s afferent couplings is a measure of how many other
classes use the specific class. Coupling has the same definition in context of Ca as that

used for calculating CBO.
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2.8 Concluding Remarks

In this chapter, we provided the background necessary to comprehend the approach that will be

presented in this thesis.

In Section 2.1 we reviewed the importance of architecture recovery because we aim to use

these concepts to motivate the key classes recovery in an application.

In Section 2.2 was emphasized the use of reverse engineering as a widely used solution for
software architecture recovery. In the context of reverse engineering, we are going to propose
an approach that combines static and dynamic analysis. We highlight the main differences
between the two because we aim to use their concepts and the finality of both concerning the

development of our technique.

In Section 2.3 our main goal is to recover and understand important code elements. We
reported problems that limit software comprehension. In our approach, we developed several
data filtering mechanisms to reduce the effort of comprehension. We highlight software visual-
ization techniques because we aim to use these concepts to present a visual organization of key

classes emphasizing dependency relationships.

In Section 2.4 we reviewed a brief explanation about Naive Bayes concepts because it is used

for classification of key subtrees.

In Section 2.5 we reviewed recall and precision because we aim to use these concepts to

evaluate our approach.

In Section 2.6 and Section 2.7 we reviewed fundamentals of bad smells and software metrics
because we aim to use these concepts to investigate structural problems that may exist in key

classes.

In the next chapter, we describe Keecle for recovering key classes. We present the phases to

extract key classes and the results achieved in 14 real-world Java systems.
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CHAPTER

Keecle — Mining Key Classes Using
Dynamic Analysis

The cost and effort needed to understand and adapt internal elements of software systems is
related to the investigation of artifacts such as source code and documentation. Moreover, in
many cases, documentation concerning design decisions is missing, or when it exists, it is nei-
ther updated nor complete. In that case, developers are required to analyze the source code,
which is the only source of reliable information to understand the software architecture. Tradi-
tionally, software architectures are documented in a package based structure, since it is easier
to map to actual artifacts. However, quite often this is not the best architectural organization
(GARCIA et al., 2013), and when the architectural documentation is available, it is often out-
dated because of phenonema, such as, architectural drift or erosion (TAYLOR; MEDVIDOVIC;
DASHOFY, 2009). To alleviate these problems, several architecture reconstruction techniques
have been proposed (DUCASSE; POLLET, 2009a), but a number of problems hinder the use
of these techniques.

In a work that closely relates to ours, Zaidman and Demeyer (ZAIDMAN; DEMEYER,
2008) proposed a technique which can identify the most important classes in a system—the key
classes. They characterized these key classes as typically having a lot of “control” within the
application. In order to find these “controller classes", they presented a detection approach that
is based on dynamic coupling and webmining, obtaining a precision of around 50%. In our
approach, the concept of “key classes" can be mapped to those that are central for defining the
meaning of an architectural design. In this chapter we present the approach to mine key classes

and results in terms of recall and precision.

3.1 Outline of the Approach

Our goal is to provide an approach with higher accuracy that recovers execution trace subtrees

whose roots are calls to methods for those key classes. Our hypothesis is that architectural
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components can be matched to subtrees of execution traces that have a larger number of distinct
method calls, which are typically near to the main tree root, i.e., they are low-depth nodes in

the method call tree.

Several processes are used to implement this approach: capture traces; compress traces;
discard identical subtrees; and filter the architectural relevant classes using Naive Bayes classi-

fication algorithm.

The contributions of this chapter are twofold:

e we propose Keecle, a novel technique for the identification of architecturally relevant
classes of a software system that can be provided for developers as a high-level overview

to help understanding and maintenance activities;

e we provide an empirical evaluation of Keecle using open source and proprietary systems
showing that it outperforms previous work, and also the generality of the approach along

a consistent adequate accuracy.

3.2 The proposed approach

In general, architectural components are difficult to identify in large systems from source code
with high accuracy (GARCIA; IVKOVIC; MEDVIDOVIC, 2013a). Then, we propose to semi-
automatically identify architecturally relevant classes named as key classes in execution trace
trees, claiming for an alternative way to understand the software architecture from a reduced set
of key classes. Tahvildari and Kontogiannis (TAHVILDAR; KONTOGIANNIS, 2004) defined

key classes as:

“... the classes that implement the key concepts of a system. Usually, these most important
concepts of a system are implemented by very few key classes, which can be characterized by
a number of properties. These classes which we called key classes manage a large amount of

other classes or use them in order to implement their functionality.”

Their idea that very few key classes implement the concepts of a system motivated us to
match this notion of key classes with those classes that are typically used by developers to
explain a software architecture. These classes in general have strong control over the system
and rely on other classes to implement software features. Our hypothesis is that key classes can
be automatically identified from call trees constructed during the system execution, where the
tree nodes are method calls. The key classes are expected to be near the roots (or subroots) of
large execution trace subtrees that contain a large number of method calls (nodes) from distinct
classes and packages, because there are dependency relationships distinct and important that

denotes a strong control on the software from those roots.

Figure 2 provides an overview of the proposed approach, aided by a set of tools, organized

into three phases which are presented in the following subsections.
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Trace Extractor
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Source Code
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Phase 1
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Level-analysis
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Figure 2 — Overview of the approach.

3.2.1 Phase 1 - Capturing Traces

In this work, we use the term feature as a functionality that can be described from the user
point of view or as an observable behavior of the system that can be triggered by the user
(EISENBARTH; KOSCHKE; SIMON, 2003). Whenever developers aim at comprehending
software internals, we expect that they already know their main features. Our approach, as
any other based on dynamic analysis, requires choosing features that are expected to cover
all components of target system. In this case, our approach suggests the selection of the most
representative features of the system, and it is part of the approach use to verify if those selected

features are able to capture the key classes.

The target system is instrumented with Trace Extractor (SOBREIRA; MAIA, 2008), an
AspectlJ-based tool to collect the executed methods. During the execution scenario of each
feature, trace files are created for each triggered thread. Each line of the trace file corresponds
to a method call, which has the name of the qualified method and the corresponding level in the

call stack that enables to construct a method call tree — a Trace Tree.

3.2.2 Phase 2 - Reducing the Size of the Traces

In this section, we present the three steps conducted in the trace reduction process. Algorithm 1

is the pseudocode for extracting reduced subtrees from execution traces.
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Algorithm 1: Trace Reduction Process for a Set of Trace File TF
Input: A set of trace files TF;

1 init
2 subTreeList « TraceCompressor(TF)
3 halfDepth <« maxDepth(subTreeList) + 2
4 NISubtreeExtractor(subTreeList,greatestSubTree(subTreeList), 1,halfDepth)
5 IdenticalSubtreeFilter(subTreeList)
6 return subTreeList
7 function NISubtreeExtractor(subTreeList, greatestST, maxExpandedLevel, halfDepth)
8 if (maxExpandedLevel < halfDepth) then
9 subTreeList.remove(greatestST)
10 subTreeList.add(greatestST.children())
11 if (maxExpandedLevel < subTreeTarget.level + 1) then
12 L maxExpandedLevel « greatestST.level + 1
13 NISubtreeExtractor(subTreeList, greatestSubTree(subTreeList),
14 maxExpandedLevel, halfDepth)

3.22.1 Compressing Traces

In the second phase, traces are compressed removing parts that are identical, typically because
of loops or recursion in method calls (HAMOU-LHADJ; LETHBRIDGE; FU, 2004). So, the
expected result of this compression is that the resulting larger subtrees contain more calls to
distinct methods, instead of an absolute higher number of calls that could represent high number

of calls to a few distinct methods.

3.2.2.2  Extracting Non-intersecting Trace Subtrees

Our rationale is that the root node of a subtree or subroots near to the root are more likely to
indicate a key class that helps to understand an architecture. Moreover, nodes near the leaves
of the subtree are more likely to represent fine-grained, not architecturally relevant actions,

although we agree that exceptions may occur.

Trace Tree Bootstrap, start
Level 1 Level 1
LogFactory LogFaclory,
getLog Level 2 Level 2
CatalinaProperties, tandardServer; ’ Digester, <init> Expanding StandardServer, !
loadProperties AR MemoryUserDataBase, level3  Sublree B setStatelnternal @ DLgiijslt:r, Level 3
LifecycleSupport, j MemoryRole, LifecycleSupport, g~ Registry; 9
oot AN S S . .. L i/ Alisaniiosty AN Araiack, Lovel4
NamingContextlisténer,” \ianagedBean, Digester, NamllnfgC'or}IeétLls}ener, ‘ManagedBean,  Registry, <init>
lifecycleEvent createMBean endElement Level 5 fiecycletven createMBean ~  finganagedBean Level 5
LogFactory, Registry, LogFactory @
getinstance findManagedBean Level 6 getlnstance Level 6
Subtree A Subtree B (Target) Subtree C Subtree D Subtree E

Figure 3 — Extracting code elements (subtrees) from execution traces.

The proposed method is based on the extraction of large subtrees without a non-proxy root.

Proxy roots are those with only one child (method call) or important children (large subtrees)
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and other non-important children (small subtrees). For each level, a set of subtrees’ roots are

analyzed based on their size and the size of their children.

The subtree recursive analysis process descends the trace tree, identifying and extracting
subtrees. Algorithm 1 selects firstly the largest subtrees to try and split it in smaller subtrees.
The recursive process ends when there is a subtree with a root in the level that corresponds to
half of the original trace tree depth (50%). When half the level corresponds to a non-integer
value, the value is rounded up to a higher value. Initially, we tested different stopping criteria
(25%, 50%, 75% and 100%). In our preliminary results, we observed that capturing roots
by selecting stopping criteria between 100% or 75%, we can have key classes referring to
initialization of the system. Meanwhile, the roots extracted considering 50% stopping criteria
are more specialized representing different parts (components) of the system design. However,
depending on the developer’s level of interest, the tool can be calibrated to extract roots that
cover different aspects of the system. This choice for stop-criterion (50%) also was based on
the observation that subtrees of interest: typically large and with roots or subroots near to the

original tree root.

Figure 3 shows an example of this extracting process (considering stopping criteria 50%).
It shows a trace tree where nodes are method calls. The trace tree has size 20 and contains
six levels. In this case, the limit for the expansion process is at level 3, because of the defined

threshold of half the maximum height.

Starting from the root Bootstrap.start, three child subtrees are identified with sizes: 2, 10
and 7 respectively, from the left to right on level 2. The first subtree (green subtree) has root
LogFactory.getLog, which we named as subtree A. The second subtree (red subtree) has root
Catalina.start, and was named as subtree B. The third subtree (blue subtree) has root LogFac-

tory.getLog, and we named as subtree C.

The roots of the new subtrees are on level 2, then the extraction process continues on level
3. The algorithm chooses the largest subtree to split it into smaller subtrees, namely the subtree
B with size 10. When subtree B is split, two new subtrees are analyzed (subtree D and E).
Subtree D (orange subtree) has root StandardServer.setStatelnternal with size 7, and the subtree
E (purple subtree) has root Digester. <init>, with size 2. Subtree D and E have roots that are on
level 3 of the trace tree, so the extraction process ends with four selected subtrees (A, C, D and
E).

3.2.2.3 Filtering Identical Subtrees

Subtrees that are identical to each other are filtered out to reduce the amount of information
to be analyzed. This situation occurs because algorithm that removes loops may not remove
all possible loops. When the discarding process of the identical subtrees is finished, we have a
limited and less complex set of subtrees that are organized in terms of features and its threads

according to the execution scenario.
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3.2.3 Phase 3- Classifying Trace Subtrees

The previous process is expected to reduce significantly the number of method calls for analysis.
However in some cases, this number is still relatively high, due to the number of features or the
complexity of the target system being high. So, we propose a classification mechanism based
on a set of observable attributes of the remaining subtrees aiming at selecting the most relevant

subtrees representing the key classes.

3.2.3.1 Defining the Attributes

In order to obtain an accurate classification in supervised learning, it is important to choose

relevant attributes to filter desired subtrees.

In order to construct the classifier, we manually created a training and testing set, analyzing
the resulting subtrees returned in the previous phase. We defined five attributes for classification

of trace subtrees:

Size of subtrees: Larger subtrees are more likely to provide/consume different and important
services. A relevant subtree would likely to have size that is larger than the mean size of the
subtrees system’s. In particular, the attribute related to size, seems to be most discriminative

because the others could be somewhat dependent on it.

Distance of the subtree to the main root: subtrees near to the root of the original tree tend

to represent more higher-level abstractions.

Number of distinct packages: a subtree with high package variability represents a notion

or distinct relationships and are not strongly adherent to the package-based structure.

Number of distinct classes: a subtree that contains many distinct classes suggests that it

encapsulates more varied responsibilities.

Number of distinct methods: the presence of distinct methods, in the same way as distinct

classes in a subtree could be a sign of coarse-grain responsibility.

3.2.3.2 Classifying Subtrees

We aim at classifying subtrees into two categories: key and non-key candidates. Even if this
classification process could have been applied in earlier stages of the approach, it seemed more
coherent to apply it after the removal of redundant calls, to have less noise in the tree topology
for the classification. This is due to the fact that we are interested in the variability of packages,
classes and methods of a tree and not only in the absolute size where repetitive calls would be
a noise for the classification process. For each subject system, we extract the attribute values of
all subtrees. A candidate subtree should possesses roots that can become a key class. The size
of this candidate must be superior or equal to the average of the size of all subtrees. For the

training data, we generated distinct training groups, the data were extracted from subtrees of
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the softwares in exception to the target system data in order to test the target systems, as shown
in the Table 1 (leave-one-out strategy). In our experiments, the evaluation was performed using
with two classifiers available on Weka software: Naive Bayes and Neural Networks (using
backpropagation). The two classifiers had very similar results in terms of correctly classified
instances (99.3% and 96.5%, respectively). So, we used Naive Bayes because it was able to

select more subtrees.

Table 1 — Training and testing data.

Training Data Testing Data
Instances Target System  Instances
473 JMeter 377
475 Ant 9
415 Lucene 69
495 Tomcat 167
633 JavaCC 11
473 Javac 29
1.219 Financial 387
1.219 Service Order 6.227
475 Scholar 257
1.219 PDFBox 839
1.219 JEdit 1.038
302 Xerces 109
302 Log4j 83
633 Jetty 486

3.2.3.3 Selecting the Key Classes based on Level-Analysis

After defining the key subtrees, the final process is to select the key classes from the key sub-
trees. Although, the subtree root is a good candidate for a key class, there might be other key
classes in subtrees, depending on the interest of the developer in understanding the architecture

with more or less details.

One question associated with the proposed technique is how to determine a target of k key
classes that the approach needs to retrieve. In a real comprehension activity, developers do not
know the best value of I, as in fact there is no best value, as it depends on how much detail
the developer wants to comprehend. Typically, they would want to begin with less detail (less
classes) and then increase the number of classes as the comprehension process evolves. So, it
is reasonable that our approach can rely on an input parameter k indicating the target number
of classes. We defined that the number of roots found by the algorithm has to be equal to the
number of key classes (k) that the developer expects to find.

However let us suppose we have a target of k key classes to be retrieved by the approach,
and the classifier has returned k — 1 key subtrees. The number of roots is less than Ik target
classes, so the algorithm would descend one more level in the tree until the number of nodes
is greater than or equal to the number of key classes. However, when we descend to the next
level, we increase substantially the number of classes, and, of course there would be a large gap
between the desired and provided level of details would be affected. As this process can have

a cumulative characteristic, i.e., for each covered level of the subtrees, it increases the number
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of recovered roots (roots and subroots). In these situations, when there is a difference at most
two units until the number of roots found in relation to the number of key classes, our approach
stops descending. In (ZAIDMAN; DEMEYER, 2008), the authors also use this kind parameter
and return as a result the percentage of the ranked classes.

But, to alleviate the above mentioned problem, we proposed a strategy that ranks candidate
roots. Suppose for example, that there are three candidate subtrees, and the developer wants to
retrieve only one key class (k = 1). To determine which root of the subtree will be selected as
the key class, we used a ranking algorithm to determine an order of relevance of the discriminant
attributes of the trees. In this context, the ranker method available in Weka' classified attributes

assigning weights to these in the order shown in Table 2.

Initially, we constructed a data set containing the values of the attributes extracted from the
subtrees of the target systems. For each subtree, the value for each attribute is recovered, and
respective weights are shown in Table 2. The weights of each attribute indicate the relevance
order that will be considered during the subtree selection process in the Algorithm 2. These
weights were automatically obtained using GainRatioAttributeEval an attribute evaluators in
Weka, and, in sequence it was used ranker search method sorts attributes according to their

evaluation in Weka.

We present the algorithm 2 is the pseudocode describing this process based on level analysis.
The function extractKeyClasses evaluates the subtrees traces classified by naiveBayesClassifier

to find candidates roots or subroots for key classes.

In the algorithm 2, the subtree with highest value has its root extracted to define a key class,
and new subtrees will be extracted from this subtrees through the expansion method NISubtree-

Extractor.

Table 2 — Relevance of attributes.

Attribute Relevance
size of subtrees 1
number of distinct methods 0.24
number of distinct classes 0.22
number of distinct packages 0.15
distance of the subtree to the main root 0.02

3.3 Study Setting for Evaluating Keecle

In this section, we present the subject systems used to evaluate Keecle and their respective
execution scenarios to extract execution traces. The ground-truth key classes considered in this

evaluation used one of the following criteria:

e They were retrieved from (ZAIDMAN; DEMEYER, 2008) - Target systems: JMeter and
Ant;

http://www.cs.waikato.ac.nz/ml/weka/documentation.html

1
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Algorithm 2: Process to select the key classes from the key subtrees based on level
analysis.

Input:
A set of trace subtrees subtreeList;
The target number of key classes fk;

1 init
2 SBClassified «— naiveBayesClassifier(subtreeList); [* set of subtrees classified */
3 extractKeyClasses(SBClassified, k);
4 return SBClassified;
5 function extractKeyClasses(SBClassified, k)
6 depthSubtree « 1;
7 higherWeight « 0;
8 auxHigherWeight < 0;
9 tempSubtree « null;
10 while listRoots.size() < k do
11 foreach SBClassified; in SBClassified do
12 auxHigherWeight < 1*sizeOfSubtree + 0,24*numberOfDistinctMethods +
0,22*numberOfDistinctClasses + 0,15*numberOfDistinctPackages + 0,02*DistanceOfRoot;
13 if (auxHigherWeight > higherWeight) then
14 higherWeight « auxHigherWeigh;
15 L tempSubtree « SBClassified;
16 listRoots.add(extractRoot(tempSubtree, depthSubtree));
17 SBClassified.add(NISubtreeExtractor(SBClassified, tempSubtree, depthSubtree, 0));
18 depthSubtree<« depthSubtree+1;
19 higherWeight « 0;

e They were retrieved from available documentation - Target systems: Lucene, Tomcat,

Javac, JavaCC, Jetty, Xerces and Log4j;

e They were retrieved from developers - Target systems: PDFBox, Financial, Service Order
and Scholar. In this situation, developers classified a initial list of classes candidate to be
a key class that our approach recovered. The number of classes was guide by number of
relevant features or asking to the developers. For the proprietary systems, developers did
not mention missed key classes, but because we agreed to find 10 key classes, and, for
to PDFBox we considered the relevant features which cover more than half of the total
number of classes in the system. In sequence, using a Likert scale (from -2: Strongly
disagree to 2: Strongly agree) developers specified their level of agreement on a class
to be key or non-key. A class is considered key class if it is classified as Strongly agree
or agree and has Weighted average > 1. After the classification we asked the following
question: Is there any class missing in the set of key classes that you consider relevant in
the design/architecture level? The PDFBox developer indicated more five potential key
classes such as PDFStreamEngine, PDFont, PDFontLike, COSBase and PDStream. For
the proprietary systems, developers did not mention missing key classes, but because the
agreed target was to find 10 key classes. After the developers specified the ground-truth,
we applied Keecle again to find classes according to ground-truth, and consequently it

was possible to calculate recall and precision.

For JEdit, we did not obtain ground-truth, but it was considered in our study in reason of

reasonable recall and precision obtained from other systems studied. So, the approach gave us
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a margin of safety that allowed us to consider JEdit in our analysis.

Our approach requires as input the target number of classes to be recovered. This number
is arbitrary: the higher the number, the higher the level of detail that developers are willing to
obtain. For evaluation purposes, a fair condition was to adopt the number of classes defined in
the ground-truth. Zaidman and Demeyer (2008) have chosen to retrieve 15% of the classes as

the ground-truth.
We considered the following open source systems in the Java programing language:

Tomcat* 7.0: is a Java web server that matches the implementation of JavaServer and Javaservlet
technologies with approximately 163 KLLOC; The execution scenario was loading and running
an application. The application is a sample application available in the distribution®. The ex-
ecution of that application consisted in starting the server, load Tomcat localhost, deploy the

application and perform a simple test of the application.

Lucene* 3.0.2: is a software with a search API for document indexing with approximately
49 KLOC; For Lucene, the execution scenario consisted of indexing files and searching through

use of this index. The files used were an arbitrary simple set of text files.

JavaCC3 (Java Compiler Compiler) 6.1: is a tool for generating parser to use in Java ap-
plications with approximately 43 KLOC. For JavaCC, the selected execution scenario was to

generate a parser for a basic arithmetric expression grammar and its syntactic tree generator.

Javac® (Java programming language compiler) 1.5: is a compiler that reads source files
written in the Java programming language, and compiles them into class files. The execution

scenario was the compilation of a simple HelloWorld.java.

JMeter’ 2.0.1: is a Java application designed to load test functional behavior and measure
performance with approximately 22.234 KLOC. For JMeter, the execution scenario was the
same as used in Zaidman and Demeyer (2008), that is testing a HTTP (HyperText Transfer
Protocol) connection for an arbitrary site.

Anf® 1.6.1: is a Java library and command-line tool whose mission is to drive processes
described in build files as targets and extension points dependent upon each other. The main
known usage of Ant is the build of Java applications with approximately 98.681 KLOC. The

execution scenario was same used in Zaidman and Demeyer (2008), that is build Ant itself.

Xerces® 2.11.0: a Native Interface (XNI), it is a framework for communicating a "streaming"

document information set and constructing generic parser configurations. Thus it is a processor

http://tomcat.apache.org/

Available at https://tomcat.apache.org/tomcat-6.0-doc/appdev/sample/
http://lucene.apache.org/

https://javacc.org/

http://openjdk.java.net

http://jmeter.apache.org/

http://ant.apache.org/

http://xerces.apache.org/
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for parsing, validating, serializing and manipulating XML with approximately 141 KLOC. The

execution scenarios were the running the samples available on the the documentation.

Log4j'° 2.3: creates and maintains open-source software related to the logging of application
behavior and released at no charge to the public with approximately 54 KLOC. The execution
scenarios were the running the samples available on the the documentation. The execution

scenario was to log a debug or error message in a Java application.

Jetty'!: provides a Web server and javax.servlet container, plus support for HTTP/2, Web-
Socket, OSGi, JMX, JNDI, JAAS and many other integrations, with approximately 472 KLOC.

The execution scenario was to start a server.

PDFBox"?: it is an open source Java tool for working with PDF documents, with approx-
imately 116464 KLOC. We considered 13 features obtained from the present examples in the

application source code.

JEdit'® 5.4.0: it is a mature programmer’s text editor with approximately 130 KLOC. The
execution scenarios were to exercise 10 basic and usual features such as working with files

(save, open and creating files), editing text and source code, etc.

For next systems described, we omitted their real names because they are proprietaries ap-

plications of a Brazilian software development company.

Financial: it is a proprietary software that control the capital movement of a company with
approximately 36.702 KLOC. We considered 10 features indicated by application owner, for
instance management tuition, employee control, enrollment payment management, cash flow

control, etc.

Scholar: it is a proprietary software that manages educational routine on regular schools
with approximately 59427 KLOc. We considered 10 features indicated by application owner,
for instance issuance of the school report card, issuance of school records, disciplines control,

etc.

Service Order: it is a proprietary software that provides services, bringing agility and orga-
nization to a company with approximately 558534 KLOC. We considered 10 features indicated
by application owner, for instance creation general reports, service orders (open, closed or all),

etc.

The choice of those systems was guided by system relevance and the architectural docu-
mentation availability and interest of the developers to collaborate. From the analysis of the
documentation or selection of the developers, we obtain a set of key classes that match the

architecture that will be used to evaluate the approach in terms of recall and precision. Table

0
1

https://logging.apache.org/log4j
http://www.eclipse.org/jetty/ 9.3.10
https://pdfbox.apache.org/ 2.0.7
http://www.jedit.org/
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3 shows the list of recovered classes by Keecle (consider Kc= Key class, v'=Key class and

x=non-Key class) and the set of missed key classes during the performance of Keecle.

Lucene has 12 key classes identified in the documentation, shown in Table 3. The set of key
classes covers nine different packages. The names of classes Analyzer and StandardAnalyzer
suggest that they should belong to the same component. Although these classes are dependent
on each other, they provide distinct services for the two features of Lucene and then were

maintained in separate packages.

Table 3 lists the six main key classes of Tomcat. Tomcat is a complex application with many
features, suggesting the presence of many components. In the documentation is organized
into main components (represented by key classes) and the subcomponents nested in the main
components. This organization of Tomcat with subcomponents reinforces our decision on how
to choose the target number of classes the approach would return. We could have chosen to
consider only the main components (as we did) or also to include subcomponents. We decided
for only these six main components, to assess the ability of the approach in detecting the most
important few key classes. All key classes except Connector class belong to the same package.

But each of these classes provide specific services for each component.

For Javac, we identified 17 key classes distributed into seven different packages. Some of
these classes, such as MemberEnter class are representative of a secondary component relative

to Enter class, because it consists of a phase performed by the Enter class.

For JavaCC, identification of the 16 key classes shown in Table 3 was also guided by analysis
of the documentation. Classes are only in two distinct packages: parser and jjtree. Each class
represents a distinct component, because they provide services to several other components
such as tokenization, management of error messages, the construction of syntax tree and parser,

etc.

For Xerces, a ground-truth of 6 key classes (interfaces) was shown in the documentation.
These classes belongs only to two xni and parser packages. These classes can be viewed as a

pipeline in which information flows from a scanner, then to a validator, and then to the parser.

For Log4j presents a ground-truth of 10 key classes (concrete and interfaces), as shown on
the documentation. These classes belongs to four config, lookup, core and layout packages.
Basically, applications using the Log4j 2 will request a Logger with a specific name from the
LogManager. The LogManager will locate the appropriate LoggerContext and then obtain the
Logger from it. If the Logger must be created it will be associated with the LoggerConfig
that contains either: the same name as the Logger; the name of a parent package, or; the root
LoggerConfig. LoggerConfig objects are created from Logger declarations in the configuration.

The LoggerConfig is associated with the Appenders that actually deliver the LogEvents.

Jetty presents a ground-truth of 13 key classes (classes and interfaces), as shown on the

documentation these classes belongs to seven security, handler, session, thread, ssl, nio and
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Table 3 — List of Recovered Classes by Keecle and List of Missed Classes.

Ant JMeter Javac Lucene
Recovered Classes Kc Recovered Classes Kc Recovered Classes Kc Recovered Classes Kc
Task v TestElement v Gen v IndexWriter v
IntrospectionHelper v' Sampler v TransTypes v' StandardAnalyzer v
ProjectHelper2$ElementHandler v*  ThreadGroup v'  Enter v" SegmentInfos X
RuntimeConfigurable v’ JMeter x  ParserFactory x  NIOFSDirectory v
DirectoryScanner x  PreCompiler v Attr V' TermQuery v
UnknownElement v’ TestPlan v' MemberEnter v' FreqProxTermsWriter x
ProjectHelper V' TestPlanGui V' JCTree$JCCompilationUnit v SegmentInfos X
SelectSelector x  TestCompiler v' Symbol$ClassSymbol x  FileDocument v
Target V' JMeterThread V' Type$ClassType x  FieldInfos X
- - JMeterTreeModel v' Check v' IndexSearcher v
- - SampleResult V' JavaCompiler v/ IndexReader X
- - AssertionGui x  Lower v' TermInfosReader X
- - StandardJMeterEngine v*  Symtab X - -
- - JavaSampler v' Todo v oo -
# key classes — 10 14 17 12
Missed Key Classes
Ant JMeter Javac Lucene
Project JMeterGuiComponent JavacProcessingEnvironment IndexFiles
Main AbstractAction TreeMaker SearchFiles
- - SourceCompleter TopDocs
- - Scanner QueryParser
- - ClassWriter -
B - Parser -
- - Flow -
JavaCC Tomcat Jetty Xerces Logdj
Recovered Classes Kc Recovered Classes Kc Recovered Classes Kc Recovered Classes Kec Recovered Classes Ke
Main (package parser) v' StandardEngine v' SessionHandler v' DeferredElementNSImpl x  XMLConfigurationFactory X
Main (package jjtree) V' StandardService v’ Server v DOMParser v’ Logger v
JJTreeParser v’ Catalina x  RequestLogHandler x  DOMConfigurationImpl v' ConfigurationFactory$Factory y
Token V' StandardServer V' Connector v XMLNSDocumentScannerImpl V' DefaultConfiguration v
JavaFileGenerator x  Boostrap x  WebAppDeployer x  XMLEntityScanner V' PatternParser X
JavaFile x  StandardHost v MovedContextHandler v' XlncludeAwareParserConfiguration y  NullConfiguration v
OutputFile X - - ContextHandlerCollection v - - Logger (package core) v
JavaCCParser v oo - ServletHandler$CachedChain v - - PatternLayout X
ParseGen X - - HashLoginService X - ConfigurationFactory X
JavaCharStream v - - DefaultServlet X - - AbstractAppender v
LexGen v - - XmlConfiguration X
JTreeParserTokenManager v/ - - SelectChannelConnector v
JJTreeParserConstants voo- - - -
ParseEngine X - - X - -
JavaCodeGenerator vooo- - X - -
JJTree v - - X B -
# key classes — 16 6 13 6 10
Missed Key Classes
Javace Tomcat Jetty Xerces Logdj
NonTerminal StandardContext ThreadPool XMLComponentManager LoggerConfig
ParseException (package parser) Connector HashLoginService XMLComponent Filter
Node - SslConnector - StrLookup
JavaCCParserTokenManager - SecurityHandler - StrSubstitutor
ParseException (package jjtree)
PDFBox Financial Scholar Service Order
Recovered Classes Kc Recovered Classes Kc Recovered Classes Kc Recovered Classes Kc
PDFParser v' LancamentoContas v GerarMatricula V' CadastroOrdemServico v
FontFileFinder x  RelBoletoPago x  LancarFrequencias v" MovMovimentacaoviewld  x
PDDocument V' CadastroMovimentacaoCheque v~  SaidaAntecipada V' CadastroGrupoprodutolF v
PDAnnotationTextMarkup y  ConRecibo v' CadMatrizDisciplina v'  WinOS v
PDPageContentStream V' AlterarBoleto v" MntDiario v WSMovltensmovimentacao  x
PDFontDescriptor V' ToolBarTesoura v' WinEscolar v" PGCFactory v
COSWriter V' WinTesoura V' CriarHorario v WSEmpresa v
COSDocument v' CadastroFinFluxoCaixa v' VerFaltas v oo -
TrueTypeFont v oo - EntradaPosHorario viooo- -
PDGraphicsState X - - - - - -
PDPage v - - - -
PDFTextStripper v - - - -
FontFormat X - - - - -
PDMetaData v oo - - - -
# key classes — 14 8 9 7
Missed Key Classes
PDFBox Financial Scholar Service Order
PDFont TableConsultaReciboRenderer - CadastroParceiro
PDFontLike - SisParametro
COSTree - -

PDTree
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server packages. Basically, Jetty is the plumbing between a collection of Connector‘s that
accept connections and a collection of Handlers that service requests from the connections and

produce responses, with threads from a thread pool doing the work.

PDFBox presents a ground-truth of 14 key classes (classes and interfaces) which were clas-
sified by the developer as being a key class. The key class set belongs to distinct packages such
as text, cos, font, pdmodel, pdfparser, annotation, state and ttf. A PDF file is made up of a
sequence of bytes. These bytes, grouped into tokens, make up the basic objects upon which
higher level objects and structures, and the package cos plays this role. The organization of
these objects, how to they are read, and how to write them is defined in the file structure of the
PDF - pdfparser package is accountable for this function. Within the file structure basic objects
are used to create a document structure building higher level objects such as pages, bookmarks,

annotations using for instance pdmodel package.

Financial, presents a ground-truth of 8 key classes mentioned by developers. We recovered
8 classes from 8 distinct packages: movimentacao, relatorio, cheque, boleto, other, tesoura,
caixa and win. Each package represents important structures of the software and thus they can

show relevant aspects of the design.

Scholar is a small software and has few packages. It presents a ground-truth of 9 key classes
mentioned by the developers. We recovered 9 classes from 3 distinct packages: cadGeral, win
and escolar. win package contains classes to build Gui interfaces, cadGeral contains classes to

record data to the database and escolar is a package for general classes of the application.

Finally, Order Service, presents a ground-truth of 7 key classes mentioned by the developers.
We recovered 7 classes from os, bean, grupoproduto, dao, connection. Those packages contain

classes to establish connection with database, build, Guis, etc.

For Ant and JMeter, the key classes shown in the Table 3 were evaluated considered the
ground-truth available by Zaidman and Demeyer (2008). Ant application contains 10 key
classes from two distinct packages and JMeter contains 14 key classes from 10 distinct pack-

ages.

Noteworthy concept is related to abstract classes and interfaces. The execution traces capture
methods that were effectively called, and which are connected to an object. The class that
created this object should not be an abstract class or interface. In this context, if we have in
the documentation an abstract class or interface as a being key class and during the capture
of traces, a concrete class that extends or implements these situations is captured, so we will

consider these as a key class in the our results.
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3.4 Results on Recall and Precision

In this section, we present a quantitative evaluation of our approach based on the values of
precision and recall. In sequence, we describe the six phases shown on Table 4, and to which
extent the six phases reduce the call tree. Due to the fact that each phase filters trees, then they

may worsen recall.

e Phl: total number of method calls in the traces file for each thread;

e Ph2-1: total number of method calls in the traces file for each thread after the compression

process for removing loops and recursion;
e Ph2-2 total number of key candidate subtrees obtained;
e Ph2-3: removing trace subtrees for which content is identical;
e Ph3-1: total number of subtrees obtained by classifying processes of the traces;

e Ph3-2: number of classes recovered (after possible expansion).

Table 4 — Reduction of Number of Calls by Phase.

Software Ph1 Ph2-1 Ph2-2  Ph2-3 Ph3-1 Ph3-2
JavaCC 42.548 7.535 274 29 9 16
Tomcat 12.5837 90.769 550 167 39 6
Javac 1.072.518 591 17 11 5 17
Ant 1.357.211 624.706 15 9 7 10
JMeter 192.140 73.404 2.301 371 38 14
Lucene 80.385 49.195 403 69 18 12
Xerces 239.629 15.939 154 109 44 6
Log4j 13.004 4.172 158 83 17 10
Jetty 62.067 22.200 1.073 486 41 13
JEdit 2.999.961 229.455 3.236 1.038 676 10
PDFBox 6.306.433 138.689 6.488 839 49 14
Service Order  8.858.043  2.777.662  35.861  6.227 123 7
Scholar 137.555 2.241 901 257 4 9
Financial 531.795 3.972 737 387 10 8

Table 5 (consider P=Precision and R=Recall) shows for each phase, the impact in recall
reduction, which is necessary to improve the precision. We can observe at column Phl that the
defined execution scenarios were incomplete, except for Tomcat, Scholar, Ant and Lucene, with
100% recall. Tomcat and Lucene had recall impact on the final phases. For other systems the
recall did not change during the phases. Furthermore, we can observe an expressive precision

improvement, specially in phase Ph3-2.

Finally, Table 6 shows the average for the attributes of each subtree for the applications. We
can note that in general, the subtrees are formed by method calls from different packages and

classes which reinforces the notion of that components seems to span different packages.

Table 7 presents a comparison of Keecle and the approach presented in Zaidman and De-

meyer (2008). For Ant and JMeter we preferred to use the values reported in their paper. For
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Table 5 — Recall (R) and Precision (P) for Phases of the Approach.

Software | Phi [ Ph2-1 [ Ph2-2 [ P23 [ Ph3-1_ |  Ph32
IR P R P R P R P R P R P
JavaCC 69% _ 0.026% 9% _ 0.14% 69% 4% 69%  38%  69%  69% _ 69% _ 69%
Tomeat 100% 0.004% _ 100% 0.006% __ 100% 1.09% _ 100% 3.59% 100% 15% _ 61% _ 61%
Tavac 82% _ 0.0015% _ 82% _ 1.18% 76%  16% _ 16% _ 16% _ 59% _ 59% _ 59% _ 59%
Ant 100% 0.0007% _ 100% 0.0016% _ 100% 67% 100% 80% _ 80% _ 80% _ 80% _ 80%
TMeter 86%  0.006% _ 86% _ 0.017% _ 86% _ 0.5% __ 86% _ 3.18% 86% _ 3.15% 86% _ 86%
Lucene 100% 0014% _ 100% 0.024% __ 83%  2.48% _ 83% _ 14% _ 83% _ 56% _ 50% _ 50%
Xerces 67% _ 0.001% _ 67% _ 0.025% __ 61% 26% _ 61% 31% 61% 9% _ 61%  61%
Logdj 60% _ 0.046% __ 60% _ 0.095% __ 60% _ 3.16% _ 60% _ 3.19% 60% 3% __ 50% _ 50%
Jetty 62% _ 0012% __ 62% _ 0.036% __ 62% _ 07% __ 62% _ 1.6% 2% _ 20% _ 62% _ 62%
PDFBox 71% _ 0.00016% 71% _ 0.007% __ 71% _ 0.15% _ 71% _ 1.19% 71% _ 20% _ 71% _ 11%
Financial 89% _ 0.0013% _ 88% _ 0.18% 88%  094% _ 83% _ 1.8% _ 88% _ 70% _ 88% _ 88%
Scholar 100% 0.006% _ 100% 0.4% 100% 0.99% _ 100% 3.5% _ 100% 100% _ 100% _ 100%
Service Order  71% _ 0.00006% 71% _ 0.00018% 71% _ 0013% 71% _ 008% 71% 4% __ 71% _ 11%

Table 6 — Average Attributes in Each Subtree.

Software Size Root Level  #Packages  # Classes  # Methods
JavaCC 80.6 10.2 2.0 4.77 61.55
Tomcat 359 9.25 10.66 26.12 52.28
Javac 71.4 9.4 5.6 13.4 24
Ant 744 8.8 4.2 12.8 26.6
JMeter 117 6.10 8 15.22 29.79
Xerces 171.15 8.57 4.95 7 23.81
Log4j 35.17 9.82 4.59 10.88 22.59
Jetty 387.21 13.82 7.8 20.73 77.41
PDFBox 45.69 19.37 2.96 7.51 20.04
JEdit 79.67 17.96 3.65 9.66 29.75
Lucene 87 7.94 4.61 16.94 33.16
Financial 21.22 21.71 3.62 7.62 12.22
Scholar 335 4.5 3 23 24
Service Order 413 5.11 7.3 16.12 101.17

other systems, we reproduced their approach. The ranking tool of the classes was made avail-
able by the authors contacting via email, while the coupling algorithm was implemented by
the author of this thesis. In sequence, with the same execution traces used to evaluate Keecle.
We can observe that all F-measure values of Keecle outperformed the results in (ZAIDMAN;
DEMEYER, 2008).

JavaCC: As show in Table 4 at phase Phl , we observe that 42.548 method calls from in
a single thread were collected. JJTree (from jjtree and parser packages) and JavaCCParser-
TokenManager, Node and NonTerminal classes were not recovered during the capture of the
traces. This situation occurred because not all the actions of the features of JavaCC were ade-
quately exercised. In sequence, 7.535 method calls were obtained in phase Ph2-1. However, the
number of nodes was still high, and thus would require great effort during analysis. During the
extraction of trace subtrees process (Ph2-2), we obtained 274 subtrees. The next phase Ph2-3
consists of discarding, the subtrees which are identical to each other to discard one of them. The
phase Ph2-3 resulted in 29 subtrees. During the phase Ph3-1, 9 trace subtrees were classified as
shown in Table 8. The size of these 9 subtrees ranged from 79 to 100, and the call level of the
first root of each of the subtrees ranged from 5 to 19. Table 6 shows the average of the attributes

for each subtree. In order to performer the phase Ph3-2, our input parameter corresponds to 16
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Table 7 — Recall and Precision for the Phase Ph3-2 and (ZAIDMAN; DEMEYER, 2008)’s ap-

proach.
Software #Classes # Classes Recovered Recall (%) Precision(%) F-Measure(%)
Doc Keecle | (ZAIDMAN; Keecle | (ZAIDMAN; Keecle | (ZAIDMAN; Keecle | (ZAIDMAN;

DEMEYER, DEMEYER, DEMEYER, DEMEYER,

2008) 2008) 2008) 2008)
Javacc 16 14 9 69% 25% 69% 44% 69% 32%
Tomcat 6 14 59 67% 83% 67% 8% 67% 15%
Javac 17 17 8 59% 6% 59% 13% 59% 8%
Ant 10 12 19 80% 90% 80% 47% 80% 62%
JMeter 14 14 28 86% 93% 86% 46% 86% 62%
Lucene 12 12 19 50% 16% 50% 11% 50% 13%
Jetty 13 13 20 62% 15% 62% 10% 62% 20%
Log4j 10 10 13 50% 10% 50% 8% 50% 9%
Xerces 6 6 5 67% 50% 67% 60% 67% 54%
PDFBox 14 14 21 71% 64% 71% 43% 71% 50%
Financial 8 8 29 88% 50% 88% 13.8% 88% 21%
Scholar 9 9 12 100% 22% 100% 9% 100% 12.8%
Service 7 7 108 71% 43% 71% 2.8% 71% 5.25%
Order

Mean 70.7 43.6 70.7 30.5 70.7 28

key classes applied to Algorithm 2. Table 3 shows the recovered and missed roots. Thus, the
recall and precision values were respectively 69% and 69%, the value for the F-measure was

equal to 69% as shown in Table 7.

Tomcat: As show in Table 8 on the phase Phl, we observe that 125.837 method calls stored
in 4 threads were collected. During the phase Ph2-1 90.769 method calls were recorded. How-
ever, the number of nodes was still high, requiring high levels of effort to analysis. During the
extracting of trace subtrees process (Ph2-2), we obtained 550 subtrees. The next phase Ph2-3
consists of discarding, the subtrees which are identical to each other to discard one of them
resulting in 167 subtrees. Phase Ph2-3 resulted in 39 subtrees. During the PH3-1 StandardCon-
text and Connector were not classified. Table 3 shows the recovered roots. Thus, the recall and
precision values were respectively 67% and 67%, the value of F-measure was equal to 67% as

shown in Table 7.

Javac: As shown on Table 4, we observe that phase Phl returns 1.072.518 method calls in a
single thread. Parser and SourceCompleter and Scanner classes were not recovered with the
selected execution scenario. Phase Ph2-1 as shown on Table 4, 591 method calls were recorded.
After phase (Ph2-2), 17 subtrees were obtained. The next phase Ph2-3 resulted in 11 subtrees.
The TreeMaker class (Table 3) was discarded during the extraction process in the phase Ph2-2.
During classifying trace subtrees, 5 trace subtrees were classified as shown on Table 4 - phase
Ph3-1. The size of those 5 subtrees ranged from 9 to 71, and the call level of the first root of
each of the subtrees ranged from 7 to 11. Table 6 shows the average number of attributes for
each subtree. In order to performer the phase Ph3-2, our input parameter corresponds to 17
key classes applied to Algorithm 2. JavacProcessingEnvironment class was not classified in
the phase Ph3-1. Table 3 shows the recovered and missed roots. Thus, the recall and precision

values were respectively 59% and 59%, the value for the F-measure was equal to 59% as shown
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in Table 7. Flow, Scanner and ClassWriter classes were not roots selected during the final

phase.
Ant:As show in Table 4 - phase Phl collected 1.357.211 method calls in 4 threads were

collected. Phase Ph2-1 as shown on Table 4, recovered 624.706 method calls were recorded.
However, the number of nodes was still high, requiring high levels of effort when analyzing.
During the extracting of trace subtrees process (Ph2-2), we obtained 15 subtrees. The next
phase Ph2-3 that discards, identical subtrees, resulted in 9 subtrees. During the process of
classifying trace subtrees in phase Ph3-1 7 trace subtrees were selected as shown in Table 4.
The size of these 7 subtrees ranged from 41 to 2.011, and the call level of the first root of each
of the subtrees ranged from 5 to 15. Table 6 shows the average for the attributes of each subtree.
Main and Project classes were not retrieved by the classifier. In order to perform phase Ph3-2,
our input parameter corresponds to 10 key classes applied on Algorithm 2. Table 3 shows the
recovered and missed roots. Thus, the recall and precision values were respectively 80% and

80%, the value of the F-measure was equal to 80% as shown in Table 7.

JMeter: As show on Table 4 at phase Phl, we observe that 192.140 method calls stored in 10
threads were collected. JMeterGuiComponent and AbstractAction classes were not recovered
during the capture of the traces because the feature of JMeter were not adequately exercised.
Phase Ph2-1 as shown on Table 4 collected 73.404 method calls were recorded. However, the
number of nodes was still high, requiring high levels of effort when analyzing. During the
extracting of trace subtrees process (Ph2-2), we obtained 2301 subtrees. The phase Ph2-3 that
discards, identical subtrees, resulted in 377 subtrees. During the process of classifying trace
subtrees, 38 trace subtrees were selected as shown on Table 4 - phase Ph3-1. The size of these
38 subtrees ranged from 32 to 433, and the call level of the first root of each of the subtrees
ranged from 2 to 12. Table 6 shows the average for the attributes of each subtree. In order to
perform Ph3-2 phase, our input parameter corresponds to 14 key classes applied on Algorithm
2. Table 3 shows the recovered and missed roots. Thus, the recall and precision values were

respectively 86% and 86%, the value of the F-measure was equal to 86% as shown in Table 7.

Lucene: As show on Table 4 - phase Phl, we observe that 80.385 method calls from in a
single thread were collected. Phase Ph2-1 shown on 4, 49.195 method calls were recorded.
During the extracting of trace subtrees process (Ph2-2), we obtained 403 subtrees. The Index-
Files and SearchFiles classes were roots discarded during the extracting process (Table 3). The
phase Ph2-3 that discards, identical subtrees, resulted in 69 subtrees. In the phase Ph3-1, 18
trace subtrees were classified as shown on Table 4. The size of the subtrees ranged from 46
to 252, and the call level of the first root of each of the subtrees ranged from 3 to 13. Table
6 shows the average for the attributes of each subtree. In order to performer the phase Ph3-2,
our input parameter corresponds to 12 key classes applied to Algorithm 2. Table 3 shows the
recovered and missed roots. Thus, the recall and precision values were respectively 50% and

50%, the value of the F-measure was equal to 50% as shown on Table 7. TopDocs class is a leaf
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node and QueryParser class was not a root selected.

Xerces: As show on Table 4 - phase Phl, we observe that 239.629 method calls from in
a single thread were collected. Phase Ph2-1 shown on 4, 15.939 method calls were recorded.
During the extracting of trace subtrees process (Ph2-2), we obtained 154 subtrees. The phase
Ph2-3 that discards, identical subtrees, resulted in 109 subtrees. In the phase Ph3-1, 44 trace
subtrees were classified as shown on Table 4. The size of the subtrees ranged from 32 to 5.135,
and the call level of the first root of each of the subtrees ranged from 3 to 9. Table 6 shows
the average for the attributes of each subtree. In order to performer the phase Ph3-2, our input
parameter corresponds to 6 key classes applied to Algorithm 2. Table 3 shows the recovered and
missed roots. Thus, the recall and precision values were respectively 67% and 67%, the value
of the F-measure was equal to 67% as shown on Table 7. Two interfaces were not captured
during execution traces: XMLComponent and XMLComponentManager. DOMParser class ex-
tends AbstractDOMParser class. This implements XMLDocumentHandler, XMLDTDHandler
and XMLDTDContentModelHandler. Finally, DOM ConfigurationImpl class implements XML-

ParserConfiguration.

Logd4j: As show on Table 4 - phase Phl, we observe that 13.004 method calls from in a
single thread were collected. Phase Ph2-1 shown on 4, 4.172 method calls were recorded.
During the extracting of trace subtrees process (Ph2-2), we obtained 158 subtrees. The Filter,
StrLookup interfaces and StrSubstitutor class did not have captured among the traced concrete
classes (Table 3). The phase Ph2-3 that discards, identical subtrees, resulted in 83 subtrees. In
the phase Ph3-1, 17 trace subtrees were classified as shown on Table 4. The size of the subtrees
ranged from 6 to 165, and the call level of the first root of each of the subtrees ranged from 2 to
16. Table 6 shows the average for the attributes of each subtree. In order to performer the phase
Ph3-2, our input parameter corresponds to 10 key classes applied to Algorithm 2, in this phase
LoggerConfig class was not classified. Table 3 shows the recovered and missed roots. Thus,
the recall and precision values were respectively 50% and 50%, the value of the F-measure was

equal to 50% as shown on Table 7.

Jetty: As show on Table 4 - phase Phl, we observe that 62.067 method calls from in a single
thread were collected. Phase Ph2-1 shown on 4, 22.200 method calls were recorded. During
the extracting of trace subtrees process (Ph2-2), we obtained 1.073 subtrees. The SsiConnector
interface did not have captured among the traced concrete classes (Table 3). The phase Ph2-3
that discards, identical subtrees, resulted in 486 subtrees. In the phase Ph3-1, 41 trace subtrees
were classified as shown on Table 4 in this phase was missed QueuedThreadPool a concrete
class that implements ThreadPool and HashLoginService class. The size of the subtrees ranged
from 1 to 2.006, and the call level of the first root of each of the subtrees ranged from 3 to 26.
Table 6 shows the average for the attributes of each subtree. In order to performer the phase
Ph3-2, our input parameter corresponds to 12 key classes applied to Algorithm 2 in this phase

SecurityHandler class was not selected. Table 3 shows the recovered and missed roots. Thus,
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the recall and precision values were respectively 62% and 62%, the value of the F-measure was

equal to 62% as shown on Table 7.

JEdit: As show on Table 4 - phase Phl, we observe that 2.999.961 method calls from in a
single thread were collected. Phase Ph2-1 shown on 4, 229.455 method calls were recorded.
During the extracting of trace subtrees process (Ph2-2), we obtained 3.236 subtrees. The XML-
ComponentManager and XMLParserConfiguration interfaces did not have captured among the
traced concrete classes (Table 3). The phase Ph2-3 that discards, identical subtrees, resulted
in 1.038 subtrees. In the phase Ph3-1, 676 trace subtrees were classified as shown on Table 4.
The size of the subtrees ranged from 2 to 235, and the call level of the first root of each of the
subtrees ranged from 1 to 49. Table 6 shows the average for the attributes of each subtree. In
order to performer the phase Ph3-2, our input parameter corresponds to 10 key classes applied

to Algorithm 2. Table 3 shows the recovered and missed roots.

PDFBox: As show on Table 4 - phase Phl, we observe that 6.306.433 method calls from in
a single thread were collected. Phase Ph2-1 shown on 4, 138.689 method calls were recorded.
During the extracting of trace subtrees process (Ph2-2), we obtained 6.488 subtrees. The PD-
Font abstract class and PDFontLike interface did not have captured among the traced concrete
classes (Table 3). The phase Ph2-3 that discards, identical subtrees, resulted in 839 subtrees. In
the phase Ph3-1, 49 trace subtrees were classified as shown on Table 4. The size of the subtrees
ranged from 1 to 2.006, and the call level of the first root of each of the subtrees ranged from
3 to 26. Table 6 shows the average for the attributes of each subtree. In order to performer the
phase Ph3-2, our input parameter corresponds to 14 key classes applied to Algorithm 2. Table
3 shows the recovered and missed roots. Thus, the recall and precision values were respectively
71% and 71%, the value of the F-measure was equal to 71% as shown on Table 7. Considering
abstract classes and interfaces captured by concrete classes we have: PDFTextStripper extends
PDFStremaEngine while PDMetaData class extends PDstream and finally COSDocument class
extends COSBase.

Financial: As show on Table 4 - phase Phl, we observe that 531.795 method calls from in
a single thread were collected. Phase Ph2-1 shown on 4, 3.972 method calls were recorded.
During the extracting of trace subtrees process (Ph2-2), we obtained 737 subtrees. The phase
Ph2-3 that discards, identical subtrees, resulted in 387 subtrees. In the phase Ph3-1, 10 trace
subtrees were classified as shown on Table 4. The size of the subtrees ranged from 17 to
71, and the call level of the first root of each of the subtrees ranged from 2 to 7. Table 6
shows the average for the attributes of each subtree. In order to performer the phase Ph3-
2, our input parameter corresponds to 8 key classes applied to Algorithm 2. Table 3 shows
the recovered and missed roots. Thus, the recall and precision values were respectively 89%
and 89%, the value of the F-measure was equal to 89% as shown on Table 7. In our results
TableConsultaReciboRenderer class was not recovered this is due to the algorithm that ranks

the relevant classes, during the selection of key classes.
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Scholar: As show on Table 4 - phase Phl, we observe that 137.555 method calls from in
a single thread were collected. Phase Ph2-1 shown on 4, 2.241 method calls were recorded.
During the extracting of trace subtrees process (Ph2-2), we obtained 901 subtrees. The phase
Ph2-3 that discards, identical subtrees, resulted in 257 subtrees. In the phase Ph3-1, 4 trace
subtrees were classified as shown on Table 4. The size of the subtrees ranged from 27 to 40,
and the call level of the first root of each of the subtrees ranged from 4 to 5. Table 6 shows
the average for the attributes of each subtree. In order to performer the phase Ph3-2, our input
parameter corresponds to 9 key classes applied to Algorithm 2. Table 3 shows the recovered
and missed roots. Thus, the recall and precision values were respectively 100% and 100%, the

value of the F-measure was equal to 100% as shown on Table 7.

Service Order: As show on Table 4 - phase Phl, we observe that 8.858.043 method calls
from in a single thread were collected. Phase Ph2-1 shown on 4, 2.777.662 method calls were
recorded. During the extracting of trace subtrees process (Ph2-2), we obtained 35.861 subtrees.
The phase Ph2-3 that discards, identical subtrees, resulted in 6.227 subtrees. In the phase Ph3-1,
123 trace subtrees were classified as shown on Table 4. The size of the subtrees ranged from
15 to 5824, and the call level of the first root of each of the subtrees ranged from 1 to 17.
Table 6 shows the average for the attributes of each subtree. In order to performer the phase
Ph3-2, our input parameter corresponds to 7 key classes applied to Algorithm 2. Table 3 shows
the recovered and missed roots. Thus, the recall and precision values were respectively 89%
and 89%, the value of the F-measure was equal to 89% as shown on Table 7. In our results
CadastroParceiro and SisParametro classes was not recovered this is due to the algorithm that

ranks the relevant classes, during the selection of key classes.

3.4.1 Summary of Results

Table 3 shows the list of recovered classes by Keecle (consider kc=key class) and Table 7 shows
the results for Keecle and Zaidman and Demeyer (2008), indicating the values of precision,

recall and the F-measure obtained for the systems.

An important concept to be mention concerns abstract classes and interfaces. The execution
traces capture methods that were effectively called, and which are connected to an object. The
class that created this object should not be an abstract class or interface. In this context, if we
have in the documentation an abstract class or interface as a key class and during the capture
of traces, a concrete class that extends or implements these situations was shown, so we will
consider abstract classes and interfaces in the our results. For instance, on Ant, the execution

traces captured 7ask, a concrete class that implements the TaskContainer.

In Lucene, NIOFSDirectory is a concrete class that extends FSDirectory an abstract class.
FSDirectory class extends Directory. TermQuery is a concrete class that extends Query an ab-
stract class.FileDocument class implements Document. StandardAnalyzer is a concrect class

that implements Analyzer. So, we considered in our results the Document, FSDirectory, Direc-
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tory, Analyzer and Query classes.

For JMeter, JMeterEngine is a interface. Keecle captured StandardJMeterEngine, a con-
crete class that implements the JMeterEngine. The same occured for TestPlan class that im-
plements ZestElement interface and JavaSampler class that implements ZestListener So, the

JMeterEngine, TestElement and TestListener were considered in our results.

The same situation is observed Xerces, Jetty and PDFBox. Xerces had the worst recall and

precision due to the small amount of key classes required and the best result is to Scholar.

3.5 Discussion

A fundamental characteristic of this approach is the goal of retrieving classes representing an
understanding architectural of a target system from subtrees of method calls extracted from
execution traces. The trace compression process, the trace subtree extraction and the elimination
of identical subtrees played a fundamental role because the volume of analyzable data could be
adequately reduced. This fact is particularly observed in relation to the number of method calls
in the experiment with Ant that was 1.357.211, after the compression process it was reduced to
624.706 and during the identical subtree removal process, only 9 subtrees remained. A similar
situation occurred with the number of subtrees of JMeter, which after identical subtrees removal

only 377 remained, compared to more than the previous two thousand.

An observed limitation is related to the loss of roots when the subtrees extraction process is
performed. This step was responsible, for example, for the low recall in the study with Javac.
In particular, the roots of interest of Javac (JavacProcessingEnvironment) located at level 9
and Lucene (SearchFiles and IndexFiles) classes located on level 1 of the trace tree, but due
to subtrees extraction process, these roots were eliminated. Another limitation is related to the
definition of adequate execution scenarios. Javac and JMeter for example, there was a reduction
of recall during the trace extraction process. The choice of the scenarios did not provide good

coverage of system classes, because the scenarios were simple.

The classification process on the other hand, was responsible for eliminating a significant
number of subtrees. In all experiments, for example, a large number of subtrees with granularity

equal to 1, 2 or 3. In this situation, the classifier was fundamental to eliminate those subtrees.

For the all considered systems in our experiment, we obtained an average for the values of
F-measure of 70.7%. In our experiments, we tend to observe balanced recall and precision
because our approach recovers a predefined number of key classes. Target systems contains
thousands of classes and our approach was effective in reducing the number of these classes.
Some systems such as Lucene, Jetty, Log4J, presented below-average recall and precision. One
possible explanation, would be the simple exercise execution scenarios were not enough to

cover all the ground-truth available in the documentation. As a future work, would be consider
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new features during the collect of execution traces.

The F-measure average of our approach when compared with the average accuracy of the
techniques presented in the work of (GARCIA; IVKOVIC; MEDVIDOVIC, 2013b), which
corresponds to 45% (MoJoFM metric (WEN; TZERPOS, 2004)), we see a slight improvement
in the final results, although it is not possible to directly compare the results due to different used
metrics. In the approach presented by Zaidman and Demeyer (ZAIDMAN; DEMEYER, 2008),
the case studies achieved F-measure (Mean) of 28%. Our approach achieved with those case
studies F-measure (Mean) of 70.7%. One possible explanation is that the approach retrieves an

exact number of key classes indicated by the user without affecting precision.

Finally, the information available in the documentation that allowed the listing of classes of
interest may not be in fact the main classes of architecture, since the system presents differ-
ent versions of code that are not necessarily directly reflected in the documented architecture.
Moreover, the list of those classes may not be definitive. Maybe, it would be acceptable for
developers to include other classes in that list. This situation is noted for example on PDFBox
software, because only one developer agreed to collaborate to classify the classes set as a key

or non-key class. In this case the ground-truth has a debatable degree of confidence.

3.5.1 Threats to Validity

Even with the careful planning and formal procedures applied during the execution of the ex-

periments, some threats should be considered in the evaluation of the results validity.

External Validity: The representativeness of target systems. Although the 14 systems used
in the approach where some of them are well-known systems and used in other studies, factors
as the number, domain limit the generalization of our results. Other systems would generate
different obstacles to the use of the approach. Other threats to external validity refers to the Java

programming language, which was the only one considered in this study

Internal Validity: Although we have adopted a direct procedure to select the key classes
from the documentation, different interpretations could occur on the intention of the developer

to assume as class as a key one.

Construct Validity: We have used an internally constructed tool suite to run the approach.
Although, the tool has been tested and verified, there still may remain some undetected bug as
occurs with any software. There is no widely recognized and adopted tool support for this kind
of approach, so any other adopted solution would incur a similar threat. We tried to minimize

this threat checking the results in each phase.
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3.6 Concluding Remarks

In this thesis proposal, we have proposed an approach based on mining of method calls to
capture the notion of architecturally relevant classes. We evaluated Keecle with 14 open source
systems to retrieve a reduced number of architecturally relevant classes which enables an initial
understanding of the software architecture. Several phases were proposed to improve precision

and recall.

One of our goals was to show that we can deal effectively with the volume of traces data,
using compression techniques and removing irrelevant data. The evaluation, showed that the
approach produced encouraging values of recall and precision outperforming previous work in

the literature.

Next chapter, we are going to evaluate structural and ownership properties on key classes.
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CHAPTER

Understanding Structural and Social
Properties of Key Classes

In the previous chapter, we have proposed Keecle, a dynamic analysis approach for detecting
key classes in a semi-automatic manner. In this chapter, we investigate some properties of key
classes. Several architectural descriptions of real systems are documented using key classes.
However, software documentation may have simplified descriptions from source code, without

a diagnosis of the structural problems that those classes may have.

Under this motivation, we investigate if key classes are more prone to bad smells than non-
key classes and if structural metrics of key classes can be associated to the occurrence of bad
smells. Next, we study whether organizing keys classes in a dependency graph structure can
reveal high level dependency relationships and to produce a degree of adherence with the avail-

able documentation. Finally, we analyze the ownership property of key classes.

4.1 Outline of the Study

Assessing design with all classes of the systems as a starting point is a difficult task. So, ar-
chitecture reconstruction approaches were proposed to retrieve architectural components to fa-
cilitate design assessment. However, these approaches are still difficult to apply and have low
accuracy (GARCIA; IVKOVIC; MEDVIDOVIC, 2013b). We have observed that several real-
world systems such as such as Lucene', Tomcat? and Javac® use some few classes to document
its architectural design. So, instead of recovering architectural components, we have described
Keecle in the previous chapter, as a semi-automatic way for finding key classes considered as

important design classes in object-oriented systems.

Key classes are presumably those classes that implement concepts that the developer under-

https://lucene.apache.org/core/4_4_0/core/overview-summary.html
https://tomcat.apache.org/tomcat-5.5-doc/architecture/overview.html
http://openjdk.java.net/groups/compiler/doc/compilation-overview/
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stands as the most important ones to explain the system design. The automatic finding of key
classes was initially proposed by Zaidman and Demeyer (ZAIDMAN; DEMEYER, 2008), but
there is still no concrete evidence that the awareness of them is a useful information for devel-
opers. So, we in investigate the role of key classes as a starting point for understanding and

assessing software design.

To provide more evidence that key classes, especially those recovered by Keecle, can be a
useful source of information for understanding and assessing software design, in this chapter

we investigate structural and social properties of key classes:

o The first studied property is the likelihood of key classes association to bad smells. First,
we analyze the proneness of occurrence of bad smells in key classes compared to the rest
of the classes. Also, we analyze if the occurrence of specific bad smells are associated

with different levels in cohesion and coupling metrics.

e The second studied property is related to the occurrence on circular dependency of key
classes obtained from dependency relationships. We organize key classes in a dependency
graph to explicitly complement and visualize circular dependencies due to the fact these
they could affect the structure of the project. In addition we aim at evaluate whether
dependency graphs are adherent solutions in relation to available documentation. because

typically, these dependencies are neither documented nor complete.

e The third studied property is related to the ownership of key classes and thus has a social
context. We evaluate the distribution of key classes among developers to understand how

ownership compares to non-key classes.
The results of our study indicate that:

e Key classes manifest more often the presence of Complex Class code smell with respect
to non-key classes of a target system. This suggests that among those classes with design
anomaly symptoms, the design-relevant classes would be more likely to impact design

anomaly as a whole.

e Developers would benefit from additional information about complex dependency rela-
tionship, such as circular dependencies in key classes as being a warning to maintenance

activities in the future.

e Developers could prioritize code reviews of commits from ownership of the key classes

to improve the overall design of the system.

4.2 Code Smell and Metrics Assessment

Bad code smells (shortly “code smells” or “smells”) are related to poor implementation and poor

design choices, possibly hindering the software maintenance (BROWN et al., 1998). There
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are several tools available to detect code smells and whenever possible perform refactoring

operations.

Because key classes are presumably related to design, we investigate if there is any associa-
tion of key classes to higher occurrence of bad smells. Moreover, to understand it key classes
are critical for the design quality, we investigate if classical indicators for assessing modularity
(coupling and cohesion) have different levels in key classes compared to non-key classes. We
also investigate the interplay between these indicators and the occurrence of smells. For that,
we pose the following questions.

RQ;: Are key classes more prone to the occurrence of specific bad smells compared to non-key
classes? This question aims at investigating whether key classes are more prone to bad smells

and which kind of bad smells are more common in key classes.

All Java classes of the subject systems were submitted to DECOR for finding code smells.
We use DECOR (MOHA et al., 2010) because as it is considered a state-of-art tool for detecting
smells (TUFANO et al., 2015). The answer to that question is based on the analysis of the
the relative frequency of the several kinds of smell in key classes (kc) compared to non-key
classes (nkc) of the system and the gold set classes (gs) extracted from documentation or from
developers and compared to non-gold set classes (ngs), which is shown in Table 8. We consider
these different classes of groups for subsequent analysis of the results between the groups. So,
we can note similar results between kc and gs. Therefore, in a real situation in which the
documentation is not available or outdated, keecle provides significant results to the developer

to document the design.

The ComplexClass, LongMethod and LongParameterList smell kinds are the most frequent.
Complex classes are more prevalent in key classes across for most systems. But, key classes are
not going to naturally direct to the ComplexClass bad smell, because not all systems evaluated
show this specific smell. Finally, key classes may exist in higher percentage, but not necessarily
be the most complex. The Long Parameter List smell is not very prevalent considering the
universe of methods. Moreover, differently from the Complex Class smell, no sharp differences
were observed in key classes compared to non-key classes. The Long Method smell, similar
to the Long Parameter List is not very prevalent considering the universe of methods, possibly
indicating that although key classes seems to be more complex, their methods do not suffer

much from being long.

On the other hand, there are key classes with bad smells that may have an impact that will
affect some future bad-smells, such as key classes with RefusedParentBequest, SpeculativeG-
enerality, SpaghettiCode ect., and therefore should be resolved in the future during software

maintenance.
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Table 8 — Occurrence of smell in key classes (kc) and gold set (gs)

B #Occurrence ‘ 9%Occurrence ‘ # other classes ‘ % other classes
ad Smell

gs ke gs ke ngs nkc ngs nkc
JMeter
ComplexClass 5/14 717 0.357 0.412 88/769 86/769 0.114 0.111
LongParameterList 2/246  5/271 0.008 0.0185  119/5520 116/5249 0.021 0.022
LongMethod 4/246  4/271 0.016 0.0148  165/5520 165/5249 0.029 0.031
SpaghettiCode /17 1/17 0.059  0.059 5/769 5/769 0.006 0.006
AntiSingleton 1/17 1/17 0.059  0.059 35/769 35/769 0.045 0.045
Blob 0 0 0 0 4/769 4/769 0.005 0.005
LazyClass 0 0 0 0 14/769 14/769 0.018 0.018
ClassDataShouldBePrivate 0 0 0 0 11/769 11/769 0.014 0.014
Lucene
ComplexClass 5/12 8/12 0417 0471 210/2151 205/2151 0.098 0.091
LongMethod 3/702  8/501 0.004 0.016 281/10847  276/11048  0.026 0.025
LongParameterList 3/702  6/501 0.004 0.012 116/10847 113/11048  0.010 0.010
ClassDataShouldBePrivate 3/12 2/12 0.25 0.118 74/2151 75/2151 0.007 0.033
AntiSingleton 1/12 2/12 0.083  0.118 43/2151 40/2151 0.020 0.018
RefusedParentBequest 1/12 1/12 0.083  0.059 0 1/2151 0 0.000
SpaghettiCode 1/12 1/12 0.083  0.059 0 3/2151 0 0.001
BaseClassShouldBeAbstract 1/12 0 0.083 0 2/2151 3/2151 0 0.001
LazyClass 0 0 0 0 13/2151 13/2151 0.006 0.006
SpeculativeGenerality 0 0 0 0 3/2151 3/2151 0.001 0.001
ManyFieldAttrsButNotComplex 0 0 0 0 1/2151 1/2151 0.0004  0.0004
Ant
LongMethod 7/334  6/261 0.021  0.022 145/8703 146/8876 0.016 0.016
LongParamaterList 5/334  3/261 0.015 0.011 19/8703 21/8876 0.002 0.002
ComplexClass 4/10 3/10 0.4 0.3 88/1195 89/1193 0.073 0.048
RefusedParentBequest 1/10 1/10 0.1 0.1 0 4/1193 0.000 0.002
AntiSingleton 0 0 0 0 0/1195 3/1193 0 0.001
SpeculativeGenerality 0 0 0 0 0/1195 1/1193 0 0.000
ClassDataShouldBePrivate 0 0 0 0 0/1195 9/1193 0 0.005
LazyClass 0 0 0 0 0/1195 41/1193 0 0.022
BaseClassShouldBeAbstract 0 0 0 0 0/1195 4/1193 0 0.002
Javac
LongParamaterList 8/895  11/1321  0.009  0.008 96/7907 93/7481 0.012 0.012
ComplexClass 13/17  11/17 0.765  0.647 82/999 84/999 0.082 0.084
ClassDataShouldBePrivate 3/17 5/17 0.174  0.294 38/999 35/999 0.038 0.035
LongMethod 5/895  3/1321 0.006  0.002 79/7907 81/7481 0.011 0.011
AntiSingleton 0/17 1/17 0 0.059 16/999 15/999 0.016 0.015
BaseClassShouldBeAbstract 1/17 1/17 0.059  0.059 0 10/999 0 0.010
RefusedParentBequest 0 0 0 0 0 4/999 0 0.004
SpaghettiCode 0 0 0 0 0 4/999 0 0.004
LazyClass 0 0 0 0 0 22/999 0 0.022
ManyFieldAttrsButNotComplex 0 0 0 0 0 2/999 0 0.002
Scholar
LongMethod 4/612  4/612 0.006  0.006 6/4.401 6/4.401 0.001 0.001
LongParameterList /612  1/612 0.001  0.001 5/4.401 5/4.401 0.001 0.001
LazyClass 1/9 1/9 0.1 0.1 2/415 2/415 0.004 0.004
SpaghettiCode 1/9 1/9 0.1 0.1 6/415 6/415 0.014 0.014
AntiSingleton 1/9 1/9 0.1 0.1 0 0 0 0
ClassDataShouldBePrivate 1/9 1/9 0.1 0.1 2/415 2/415 0.004 0.004
ComplexClass 2/9 2/9 0.2 0.2 4/415 4/415 0.009 0.009
Financial
LongMethod 3/8 4/8 0375 0.5 25/2011 24/2011 0.012 0.012
LongParameterList 3/8 3/8 0.375  0.375 12/2011 12/2011 0.005 0.005
LazyClass 1/8 1/8 0.125  0.125 13/122 13/122 0.107 0.107
ClassDataShouldBePrivate 1/8 1/8 0.125  0.125 2/122 2/122 0.016 0.016

Continued on next page
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Table 8 — Continued from previous page

B #Occurrence ‘ % Occurrence ‘ # other classes ‘ % other classes
ad Smell

gs ke gs ke ngs nkc ngs nkc
ComplexClass 2/8 3/8 0.25 0.375 20/122 19/122 0.16 0.15
Service Order
LongMethod 3/477  3/477 0.006  0.006 435/49.308  435/49.308  0.009 0.009
LongParameterList 3/477  4/477 0.006  0.006 221/49.308  220/49.308  0.004 0.004
AntiSingleton 1/7 1/7 0.14 0.14 64/3.354 64/3.354 0.019 0.019
ClassDataShouldBePrivate 1/7 1/7 0.14 0.14 64/3.354 64/3.354 0.019 0.019
ComplexClass 3/7 3/7 0.42 0.42 242/3.354 242/3.354 0.072 0.072
PDFBox
LongMethod 3/14 3/14 0.21 0.21 248/8.451 248/8.451 0.029 0.029
LongParameterList 2/14 2/14 0.14 0.14 80/8.451 80/8.451 0.009 0.009
ComplexClass 9/14 10/14 0.64 0.71 203/1.160 203/1.160 0.174 0.714
Xerces
RefusedParentBequest 0 1/6 0 0.17 90/887 90/887 0.101 0.101
LongMethod 0 3/96 0 0.03 57/8.455 60/8.156 0.006 0.007
Logdj
LongParameterList 3/218  2/450 0.013  0.004 65/9.746 66/9.514 0.007 0.007
LongMethod 0 1/450 0 0.002 86/9.746 85/9.514 0.009 0.009
SpeculativeGenerality 0 1/7 0 0.14 1/1.472 1/1.472 0.0007  0.0007
Jetty
LongMethod 1/137  1/115 0.007  0.009 116/12.230  116/12.252  0.009 0.009
LongParameterList 1/137 0 0.007 0 84/12.230 85/12.252 0.007 0.007
JEdit
MessageChains - 6/10 - 0.6 - 119/1.367 - 0.087
LongMethod - 1/678 - 0.001 - 53/6.584 - 0.008

RQ,: Are key classes different in terms of cohesion and coupling metrics compared to non-
key classes? This question aims at investigating usual indicators concerning the quality of
software projects, namely cohesion and coupling. We evaluated four cohesion and coupling
metrics comparing those metrics within two different groups: key and non-key classes. The
COPE (Component Adaptation Environment)(KAKARONTZAS et al., 2013) tool was used
to extract the metrics Ca (Afferent couplings), LCOM (Lack of cohesion in methods), RFC
(Response for a Class) and CBO (Coupling between object classes).

Figure 4 shows the distribution of the values of the cohesion and coupling metrics. We
conducted the Mann—Whitney—Wilcoxon test (OJA, 2011) on all metrics and the results confirm
significant differences between key classes and non-key classes (p < 0.05). However, there is
an interesting point to observe which is although the medians are significantly different, we can
observe that those metrics are not able to precisely define which classes should be considered
key classes because there is a significant number of non-key classes (generally the 25% upper
values) that are mostly coincident with the values for ke<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>