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Resumo

Vários sistemas orientados a objetos, tais como Lucene, Tomcat, Javac tem seus respectivos

projetos (designs) documentados usando classes-chave, definidas como sendo classes impor-

tantes/centrais para compreender o projeto de sistemas orientados a objetos. Considerando este

fato, e considerando que geralmente a arquitetura não é formalmente documentada para auxil-

iar os desenvolvedores a entenderem e avaliarem o projeto do software, é proposta Keecle, uma

abordagem baseada em análise dinâmica e estática para detecção de classes-chave de maneira

semi-automática. É proposta a aplicação de mecanismos de filtragem no espaço de busca dos

dados dinâmicos, para obter um conjunto reduzido de classes-chave. A abordagem é avali-

ada com quatorze sistemas de código aberto e proprietários, a fim de verificar se as classes

encontradas correspondem às classes-chave definidas na documentação ou definidas pelos de-

senvolvedores. Os resultados foram analisados em termos de precisão e recall e são superiores

às abordagens da literatura. O papel das classes-chave para avaliar o projeto também foi in-

vestigado. Foi avaliado se a organização das classes-chave em um grafo de dependências, o

qual destaca relações de dependência explícitas no código fonte, é um mecanismo adequado

para avaliar o design. Foi analisado estatisticamente, se classes-chave são mais propensas a

bad smells, e se tipos específicos de bad smells estão associados a diferentes níveis de métricas

de coesão e acoplamento. Além disso, a propriedade (ownership) das classes-chave foi anal-

isada, indicando concentração em um conjunto reduzido de desenvolvedores. Por fim, foram

conduzidos um estudo experimental com estudantes e um survey com desenvolvedores para

avaliar a documentação baseada em classes-chave. Os resultados demonstram que a documen-

tação baseada em classes-chave apresenta resultados que indicam a viabilidade de uso como

documentação complementar à existente ou como documentação principal em ambientes onde

a documentação não está disponível.

Palavras-chave: engenharia reversa, classes-chave, design, smells, experimento, análise dinâmica.





Abstract

Several object-oriented systems, such as Lucene, Tomcat, Javac have their respective design

documented using key-classes, defined as important/central classes to understand the object-

oriented design. Considering this fact, and considering that, in general, software architecture

is not formally documented to help developers understanding and assessing software design,

Keecle is proposed as an approach based on dynamic and static analysis for detection of key

classes in a semi-automatic way. The application of filtering mechanisms on the search space

of the dynamic data is proposed in order to obtain a reduced set of key classes. The approach

is evaluated with fourteen proprietary and open source systems in order to verify that the found

classes correspond to the key classes of the ground-truth, which is defined from the documenta-

tion or defined by the developers. The results were analyzed in terms of precision and recall, and

have shown to be superior to the state-of-the-art approach. The role of key classes in assessing

design has also been investigated. The organization of the key classes in a dependency graph,

which highlights explicit dependency relations in the source code, was evaluated to be adequate

for design comprehension and assessment. Key classes were evaluated whether they are more

prone to bad smells, and whether specific types of bad smells are associated with different levels

of cohesion and coupling metrics. In addition, the ownership of key classes was shown to be

more concentrated in a reduced set of developers. Finally, we conducted an experimental study

with students and a survey with developers to evaluate documentation based on key classes.

The results indicate that the documentation based on key classes are a feasible alternative for

use as complementary documentation to the existing one, or for use as main documentation in

environments where documentation is not available.

Keywords: reverse engineering, key-classes, design, smells, dynamic analysis, experiment.
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Chapter1

Introduction

Software evolution is especially important during the system development process. In general,

software systems constantly change to meet new requirements, to fix bugs, to optimize source

code, to integrate new features, etc.

In this context, program comprehension has an important role during software maintenance.

In order to timely change applications with quality, developers need to understand the design

and the current implementation as well. Understanding is facilitated when the developer is the

owner or an expert of the respective system, or when there is adequate supporting documenta-

tion.

However, due to the pressure on developers to deliver new software releases quickly and

with low cost, documentation is, in general, neither available nor updated. In this context, the

opportunity for the use of reverse engineering techniques is open. Reverse engineering is an

alternative to study source code, when there is no other source of reliable information. There

are two techniques to perform reverse engineering: static analysis and dynamic analysis. Static

analysis can provide a complete description of the system, because it can be applied to the

complete source code of a program. However, it does not capture important behavioral events

for understanding the software architecture because execution scenarios of the application are

not considered (CORNELISSEN et al., 2009). On the other hand, dynamic analysis relies on

the system properties captured during its execution. Dynamic data, often in the form of exe-

cution traces, is collected using strategies that configure scenarios related to only those parts

of interest for the analysis. Execution traces capture the actual behavior of the system and can

have a tree-based structure, that can be used in software design understanding strategies (COR-

NELISSEN et al., 2009). Several works have used dynamic analysis to recover architectural

views (WALKER et al., 2000), identify design patterns (HEUZEROTH et al., 2003a), features

(EISENBARTH; KOSCHKE; SIMON, 2003) (GREEVY; DUCASSE, 2005) and architectural

styles (YAN et al., 2004). These approaches had to deal with the challenges related to the trace

size to prevent significant effort from developers when analyzing and understanding the trace

data.
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In the context of reverse engineering, software architecture reconstruction plays an important

role. In general, software architecture is documented in a package based structure, because it

is easier to map architectural components to actual artifacts. However, quite often this is not

the best architectural organization (GARCIA et al., 2013). Moreover when the architectural

documentation is available, it is often outdated because of phenonema, such as architectural

drift or erosion (TAYLOR; MEDVIDOVIC̀; DASHOFY, 2009). To alleviate these problems,

several architecture recovery techniques have already been proposed, nevertheless there are

still problems that hinder the use of those techniques (DUCASSE; POLLET, 2009a)(SARTIPI,

2003)(ASTUDILLO; VALDES; BECERRA, 2012).

A recent study performed a comparative analysis to measure the accuracy of the recovery

techniques use by six different architectures by use of eight ground-truth architectures, and

this study indicated that the limitations concerning these techniques are related to accuracy,

to the conditions under which techniques succeed or fail, to the number and size of selected

systems, etc., (GARCIA et al., 2013). For instance, the average accuracy using the MoJoFM

measure was 45% (WEN; TZERPOS, 2004). An apparently successful approach that combined

dynamic and static analysis for software clustering showed an MojoFM accuracy of 87.83%

(PATEL; HAMOU-LHADJ; RILLING, 2009). However, this approach was evaluated only

with the Weka1 sofware and most of the retrieved components consisted of classes from the

same package, which may not be a general representative of software architectures, as reported

in (GARCIA et al., 2013). Dynamic analysis has been used with static analysis to provide

relevant information of behavioral aspects during the software architecture reconstruction.

Cornelissen et al, (2009) analyzed 176 articles related to dynamic analysis applied to differ-

ent areas of software engineering, such as feature location, bug detection, architectural recon-

struction, etc. In that study, 13 articles used dynamic analysis for software architecture recov-

ery. Summing up, large architectural components extraction from the source code is complex,

and still suffers from a low accuracy of performance (GARCIA; IVKOVIC; MEDVIDOVIC̀,

2013a). The available tools require significant developer effort to understand the retrieved in-

formation, limiting the use of such tools.

A recent study has highlighted the importance of producing documentation containing ar-

chitectural description on open-source projects and emphasizes the main problems found in the

current documentation (ROBILLARD; MEDVIDOVIC̀, 2016). This work highlighted a case

study involving the analysis of architectural documentation of 18 source code softwares. Each

invited contributor re-documented the architecture of a system on a limited number of pages

and adopted their own criteria for producing the document. Subsequently, the authors of that

paper reviewed the documentations and concluded that there was no uniform criterion for docu-

menting a software application. So, this contributes for creating a gap between the creators and

consumers because of the manual nature of its creation (ROBILLARD et al., 2017).

1 http://www.cs.waikato.ac.nz/ml/weka/documentation.html
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since 2009. The discussions’ threads on those issues demonstrate the concern of the developers

with this class indicating the need for refactoring.

So, IndexWriter is a key class for understanding and assessing design. However, we also can

not neglect the possibility of non-key classes with similar design problems. A non-key class

may also have structural design problems indicated by software metrics, but because non-key

classes are, by definition, not critical to understand and assess design, they would not require

higher priority. Nonetheless, because of the controlling nature of the key classes, they are

expected to be more prone to present structural problems compared to non-key classes.

The advantage of knowing the key classes of an application, allows the developer to get a

concrete overview of the system organization. Because key classes are likely to be directly

related to design, if there are any design problems in these classes, those problems are likely to

be more critical. This enables the developer to perform a design assessment focused on those

classes and possibly, point out new design decisions during maintenance activities.

According to this example on IndexWriter, our objective is to use a reduced set of key classes

to understand how to use the information conveyed in those structural and social properties to

improve architectural knowledge and design assessment.

In order to find automatically the key classes in a system, there is already an approach pro-

posed by Zaidman and Demeyer (ZAIDMAN; DEMEYER, 2008) to identify the most impor-

tant classes in a system - the key classes. They characterized the key classes as typically pos-

sessing a lot of “control” within the application. In order to find these “controller classes", they

presented a detection approach that is based on dynamic coupling and webmining, obtaining

precision of around 50%. Other recent approaches have been proposed (DING; LI; HE, 2016),

(MEYER; SIY; BHOWMICK, 2014) and (SORA, 2015). Moreover, these authors did not re-

port on concrete evidence that the awareness of them is a useful information for developers,

leaving a gap for further investigation.

So, in this thesis, instead of trying to improve the current techniques for recovering archi-

tectural components for design understanding and assessment, we build on the idea that several

architectural documentation are organized around the description of few classes. Thus, we pro-

pose, Keecle7, a semi-automatic way for finding key classes considered as important classes to

understand and assess the design in object-oriented systems. It is intended to be an alternative

way to provide architectural knowledge, where the concepts of the key classes would be likely

mapped to those that are central to comprehend the software architecture.

For finding and evaluating key classes, our approach combines dynamic and static analyses.

Dynamic analysis is used to capture and filter execution traces in order to find the key classes.

Static analysis is used to provide more evidence that key classes, especially those recovered by

Keecle, are an important means to understand and to assess software design.

7 Kee has the same sound of “key” and “Cle” is a contracted sound for “cl”as
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Newcomer contributors face several barriers between the time they decide to engage a new

project and the time their first contribution is accepted (STEINMACHER et al., 2016). Two

important classes of identified barriers are documentation problems and technical hurdles. The

first is related to, among others, the outdated or non-existent documentation, and the second is

related to, among others, code/architecture hurdles, which include bad code/design and cogni-

tive problems during program/design comprehension. In this context, we propose also a docu-

mentation based on key classes to aid newcomers.

1.1 Objectives and Contributions

Considering our motivation for finding key classes with potential properties to comprehend and

assess design, this work aims at proposing and evaluating a technique that extracts key classes,

which supposedly give an initial understanding of the software design regarding structural and

ownership properties. This objective can be organized in more specific objectives that would

together achieve the overall goal of our work as follows:

• to propose a novel technique to identify key classes of a software system that can be

provided for developers as a high-level overview to help understand important structure

and relations of the software;

• to provide an empirical evaluation of the technique using open source and proprietary

systems, aiming at outperforming the state-of-art techniques.

• to organize the key classes into a high-level overview that could help in a supplementary

documentation. The goal is to investigate whether dependency graphs produces a degree

of adherence with the documentation. This degree of adherence can benefit developers

in cases where the software documentation is not available, or it complementing current

documentation.

• to analyze the presence of specific bad smells in key classes and if there is any relationship

with the cohesion and coupling metrics.

• to evaluate the ownership pattern on key classes. The goal is to understand the notion

of responsibility of the developers on key classes. Finally, we evaluate the frequency of

commits to define the level of ownership and analyze their relationship to key classes.

• to evaluate the role of semi-automatically detected key classes for understanding design.

Experimental study with human subjects are aimed to evaluate quantitatively and quali-

tatively the value added by key classes on the comprehension of software design.
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1.2 Hypotheses

Considering the motivation and objectives, we formulated a set of hypothesis related to tech-

nique to find the key classes, to their organization in terms of dependency graphs, to the study

regarding social and structural properties and whether a documentation based on key classes can

complement/replace a traditional documentation and overall help developers during the design

assessment. These hypotheses are described following.

• H1) A reduced set of key classes can be obtained from reverse engineering techniques

using dynamic analysis.

Argumentation: The key classes presented important properties in previous studies which

showed that such classes have strong control over the application (ZAIDMAN; DE-

MEYER, 2008). When we consider an execution trace tree, supposedly those key classes

should be at the highest levels of the tree. If these nodes are at the highest levels of the

tree, have stronger control over the application, as all other method calls will be controlled

by those upper level nodes. So, classes in those upper level nodes would have a higher

chance of being a key class. This hypothesis will be verified in Chapter 3.

• H2) Key classes organized in a dependency graph is a strategy that complements the

available documentation, showing important dependency relationships, and it also sup-

port undocumented environments.

Argumentation: The dependency graph structure may reveal a distinct reality compared

to the actual documentation. In general, human-written documentation shows a simplified

situation that does not necessarily match source code. The dependency graph of the key

classes can display undesirable dependencies. On the dependency graph, can occur any

dependency (cyclic dependency) that breaks this rule violating of the structure of the

system. These dependencies are not always avoidable, so warnings may help developers

to get them under control. This hypothesis will be investigate in Chapter 4.

• H3) Key classes are more prone to low cohesion with high coupling, and this fact can be

associated with the high occurrence of bad smells on key classes in relation to non-key

classes.

Argumentation: Key classes are intrinsically related to design, as they have a strong con-

trol over the software. This situation would be more likely to influence the quality of

the code. So, we investigate if there is any association of source code to the occurrence

of bad smells. Moreover, to understand how key classes may impact design quality, we

investigate if classical indicators for assessing modularity (coupling and cohesion) have

distinct levels in key classes when compared to non-key classes, hence, investigate the

relation between coupling and cohesion indicators and the occurrence of smells. This

hypothesis will be investigated in Chapter 4.
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• H4) The ownership pattern of the key classes is different when compared to non-key

classes.

Argumentation: The key classes are important classes of the system as already mentioned

and therefore the distribution of developers work on those classes in relation to other

classes would be more likely distinct compared to non-key classes. This hypothesis will

be investigated in Chapter 4.

• H5) Design documentation based on key classes can complement existing documentation

or be a replacement for it.

Argumentation: The set of key classes highlights classes that are important from the

design viewpoint and therefore may serve as basis for the representation a general orga-

nization of the system. Because documentation based on key classes is produced using

dynamic analysis, providing a straight relation to the actual behavior of the software

would benefit cognitive activities, and therefore would benefit more accurate solutions

during comprehension activities. This hypothesis will be investigated in Chapter 5.

• H6) A documentation based on key classes helps newcomers to understand an applica-

tion.

Argumentation: Documentation based on key classes is more likely to be simple and

straightforward, because the set of key classes may be chosen to be small. The rationale

is that a small set of key classes can guide the analysis of the design more quickly rather

than navigating on all available source files, in case when documentation is not available.

This hypothesis will be investigated in Chapter 5.

1.3 Thesis Outline

Thesis statement:

The set of key classes detected by Keecle is an adequate source of information for producing

documentation to effectively help developers to understand and assess design.

The structure of this thesis is organized in the following chapters:

• Chapter 2 provides basic concepts of architecture recovery, reverse engineering, program

comprehension, bad smells, metrics of software that assist in the proposed solution.

• Chapter 3 presents Keecle, a semi-automatic proposal for the recovery of keys classes.

Initially, an overview of Keecle approach using dynamic analysis is presented, describing

how execution traces are captured, compressed, transformed into more compact subtrees,

and also how the key classes are mined from those subtrees. Following on, the study

settings to evaluate the accuracy regarding the Keecle approach and the evaluation results.

Finally, a discussion is made considering threats to validity.
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• Chapter 4 we present the study setting for analyzing properties of key classes in a struc-

tural and social context and present the results concerning those properties considering

static analysis:

– A studied property is the likelihood of key classes association to bad smells. First,

we analyze the proneness of the occurrence of bad smells (BROWN et al., 1998) in

key classes compared to the rest of the classes. Also, we analyze if the occurrence

of specific bad smells are associated to different levels in cohesion and coupling

metrics.

– We propose a mechanism to organize key classes in a dependency graph to explicitly

complement and visualize undesired dependencies, since they can affect the struc-

ture of the project, these class dependencies are typically neither documented nor

complete. We performed a comparative study to analyze the degree of adherence be-

tween produced output and actual documentation focusing on circular dependencies

to assess design.

– Another studied property is related to the ownership of key class, and thus has a

social context. We evaluated the distribution of key classes among developers to

understand how ownership compares to non-key classes.

• Chapter 5 presents the experimental evaluation of the proposed approach, experimental

design, results, discussions and conclusions. Two studies were conducted to evaluate

quantitatively and qualitatively the value added by key classes on the comprehension of

software design.

– In the first study, students (potential newcomers in Open Source Systems - OSS)

were surveyed in order to evaluate the useful of key classes as a starting point for

comprehending an application.

– In the second study, expert developers were surveyed in order to evaluate the role of

key classes and whether a documentation based on key classes can complement or

replace a traditional documentation.

• Chapter 6 presents related work, highlighting state of the art based on this thesis.

• Chapter 7 presents the conclusion of this study and proposed future work.

1.4 Publications

From this thesis, we have published the following work:

• Vale, L. N. and Maia, M. A. Keecle: Mining key architecturally relevant classes using dy-

namic analysis. Software Maintenance and Evolution (ICSME), 2015 IEEE International

Conference on. Pages 566–570. ERA Track.
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• Vale, L. N. and Maia, M. A. On the Properties of Design-Relevant Classes for Design

Anomaly Assessment. Program Comprehension (ICPC), 2017 IEEE/ACM International

Conference on. Pages 332-335. ERA Track.
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Chapter2

Background

In this chapter, we present fundamental concepts related to this thesis. We introduce concepts

of architecture recovery (Section 2.1). Next, a presentation is given of reverse engineering

concepts in particular for dynamic and static analyses (Section 2.2). In Section 2.3, we present

concepts concerning program comprehension, since our approach retrieves data as initial knowl-

edge of the software architecture. In Section 2.4 Naïve Bayes technique is presented because

it is classification model used in the algorithm that select key classes. In sequence, in Section

2.5, measures traditional such as recall and precision are presented to calculate the accuracy

of this approach. Following this, in Section 2.6 we introduce concepts on bad smells, because

we will analyze the prevalence of smells in key classes. Finally, metrics from (CHIDAMBER;

KEMERER, 1994) are presented for evaluating the complexity of the key classes.

2.1 Architecture Recovery

Architecture emphasizes the global organization of the system, and distinct definitions are given

to software architecture in the literature. Among them, we highlight two related to our object

of study: Architecture is a set of principal design decisions about a software system (TAY-

LOR; MEDVIDOVIC̀; DASHOFY, 2009). The software architecture of a program or comput-

ing system is the structure or structures of the system, which comprise of software elements,

the externally visible properties of those elements, and the relationships among them (BASS;

CLEMENTS; KAZMAN, 1998). Software architecture is a very important topic due to the

understanding, analysis, reusability, evolution and management of legacy systems.

Large organizations have in general a significant base of legacy systems. These systems

represent a high development effort over a long period, and as such bring with them a wealth

of knowledge about the business, which often can not be obtained from any other source of

information available in the organization. Understanding these systems and their structural

organization have been the constant concern of software engineers. According to (KAZMAN;

CARRIÈRE, 1999) the development of software rarely begins from zero. It is usually restricted
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by compatibility, or the use of legacy systems. In this case, it is necessary to find alternative

techniques to retrieve relevant information from legacy systems such as architecture recovery .

Architecture recovery is a process by which higher levels of abstraction are identified and

extracted from existing software systems (DUCASSE; POLLET, 2009b). Architecture recovery

and reengineering to handle legacy code is critical for large and complex systems. Architecture

recovery deals with the issues of recovering the past design decisions that have been taken by

the experts during the development of a system. These are decisions that have been lost due to

some reasons: they have never been documented, or when they were documented they were not

frequently revised.

In order to support the software architecture recovery, various techniques, methods and tools

have been proposed in the literature. A recent study (DUCASSE; POLLET, 2009b) presented

a state of the art of software architecture reconstruction approaches. Reverse engineering is

commonly used in these situations and therefore it is described in the next section.

2.2 Reverse Engineering

Reverse engineering is an essential technique in the architecture reconstruction process, as it

enables the understanding of the system through the identification of components and its rela-

tionships, creating abstractions from this information (MÜLLER et al., 2000).

The software system code is the source of information that is most accessible, reliable and

available when other artifacts are missing or out of date. In this case, reverse engineering is

a process of examination and understanding software, to recapture or recreate the design and

understand the requirements currently implemented by the software, presenting them in a higher

level of abstraction (CHIKOFSKY; CROSS, 1990).

The information is extracted from the source code, helping us to understand the system (e.g.,

dependency relationships) and to find out specific problems in the system (e.g., violation of

rules, duplicated code, smells, complexity of the code, etc.). Reverse engineering tools deal

primarily with two tasks. The first task is to analyze source code and extract an abstract model

from the source, whereas the second is to carry out some exploratory operations in this abstract

model.

There are variations in the strategies concerning reverse engineering: static and dynamic

analyses both used that will be detailed in the next subsections.

2.2.1 Dynamic Analysis

Dynamic analysis is used to extract representations that reflect system behavior at runtime.

These representations consist of traces that are event logs generated by the program execution.
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This technique has the potential to provide a precise view of a software system because it

displays the actual behavior of the system.

The information collected at runtime facilitates for the understanding of dynamic architec-

tural views of the system. Jerding and Rugaber reported on a study which claims that the

dynamic models are essential for understanding architecture (JERDING; RUGABER, 1997).

In other words, the understanding of a system architecture requires the identification of its

components and the means by which interaction between such occurs in order to achieve the

goals. The information may have details ranging from classes to architectural high-level views.

Among the benefits of dynamic analysis are the availability of information, and, in the context

of object-oriented software, exposure of the identities of objects. Data capture in a system ex-

ecution occurs through interpretation (e.g., using the Java virtual machine) or instrumentation,

these data collected during the dynamic analysis of the system are named execution traces.

We used a tool to capture execution traces proposed by Sobreira and Maia (2008). In this

paper a visual tool to analyze the intersection of feature elements and source code elements

from different matrix perspectives was proposed. To identify where the specified features are

located in the execution trace, the developer must inform during the execution of the scenario

when a feature starts and when it ends. They developed an instrumentation tool that asks the

developer to inform a label to mark the beginning a new feature, immediately before triggering

the scenario activity corresponding to a feature. When the execution of that feature ends, the

developer must inform such event. This process has to be repeated until the developer executes

all planned scenario. The result is an execution trace file for each thread started within the

execution of the whole scenario. Each line of each trace file describes a method call completely

qualified and its respective timestamp indicating when the method has started. The complete

qualification of the method call is important to understand which class and which package has

participated in the execution of each feature. The captured data have properties that make it

possible to analyze it for various purposes as pointed out by Cornelissen et al. (2009).

However, one problem faced by dynamic analysis is the volume of the events extracted

during software execution. In general, the data tend to be very large due to the existence of loops

and recursion, making handling and analysis difficult. In order to contribute to the solution of

this problem, one can considered the techniques of (HAMOU-LHADJ; LETHBRIDGE; FU,

2004) that dedicate compression of the volume of traces, making the understanding of structure

easier.

Therefore, dynamic analysis has advantages that make its use beneficial. Among such ad-

vantages for example, are information accuracy on the system behavior and a goal-oriented

strategy given the definition of execution scenarios, allowing for the selection of software parts

of interest for analysis. As limitations of the technique, there is the problem of covering the

system in the number of classes captured, due to the chosen execution scenarios. There is a dif-

ficulty in choosing which scenarios would capture all elements of interest. Another limitation



40 Chapter 2. Background

is the amount of data that affect the performance and effort of humans in dealing with the data.

From the point of view of software architecture understanding, derived representations of

dynamic data have been used such for obtaining sequence diagrams (PAUW et al., 2002a),

(SYSTÄ; KOSKIMIES; MÜLLER, 2001). Other approaches motivate the use of dynamic anal-

ysis for architectural recovery as shown in (HEUZEROTH et al., 2003b) and (HEUZEROTH;

HOLL; LOWE, 2002) to design pattern detection and representation of relevant architecturally

rules studied by (KOSKINEN; KETTUNEN; SYSTA, 2006).

In this work, we have used dynamic analysis to capture trace trees as we hypothesize that

their upper level nodes are more likely to represent key classes.

2.2.2 Static Analysis

The code static analysis does not consider the inputs of a program, instead, static information

is derived from artifacts that can be classes, interfaces, methods and variables and relationships

that can be extension between classes or interfaces, calls between methods, etc.

Static analysis can insure a complete coverage of the program branches (CHESS; MC-

GRAW, 2004), used APIs, program dependencies, or the configuration files explored. Static

analysis refers to different methodologies, including model checking and model provers, to ver-

ify execution paths of a program without actually executing it (PISTOIA et al., 2007). Unlike

manual review, which relies on the tedious examination of sequences of the concrete or sym-

bolic execution program, static code analyzers can capture comprehensive and accurate models

of the software, like for instance an abstract representation of all the execution paths to be

covered.

Struture1011 is a tool used in our approach to obtain dependency graphs from key classes

in a static context. We choose that due to increased number of features that are performed and

through such being able to report a greater number of dependencies between classes compared

to other available tools as shown in the study by (PRUIJT; KP̈PE; BRINKKEMPER, 2013). It

is free for use on open source projects. It is used to analyze, monitor and control the software

architectures. The code-base are compressed and are organized into higher-level abstractions

(functions, classes, files, packages, jars, etc.), and the dependencies that emerge through this

organization. It is based on diagram to define modules. The rules and violations are shown in

these diagrams, with textual reports provided.

We have used static analysis to retrieve dependency graphs that were used to organize the

keys classes, making explicit dependency relationships that are omitted in the documentation,

in some cases.

1 https://structure101.com/
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2.3 Program Comprehension

Program comprehension is characterized by theories aimed at providing rich explanations about

how programmers comprehend software, as well as tools that are used to assist in comprehen-

sion tasks.

Understanding software internal processes requires the investigation of its artifacts, such as

the source code and documentation to achieve a sufficient level of knowledge. However, most

programmers spend more than 50% of their time just to understand the source code (MAALEJ

et al., 2014).

There are several theories that elaborate explanations regarding how programmers compre-

hend programs to collaborate through knowledge and experience, providing data on how the

tools and methods of comprehension programs could be improved. In this sense, a lot of tools

that exploit the features distinct to the programs and programmer’s abilities emerged (STOREY,

2005).

In general, program comprehension tools are classified according to three main categories:

extraction, analysis and presentation. Tools in the context of extraction include analyzers and

instruments to collect data. The analysis tools perform static and dynamic analysis to support

activities such as clustering, feature location, domain analysis, calculations, etc. Finally, pre-

sentation tools include code editors, browsers, hypertext and views. Integrated development

environments and software reverse engineering, usually have some features of each said cate-

gory. The supported feature set is determined by tool purpose or the research focus.

One difficulty encountered is related to how to classify such tools, i.e. how to find the

main motivation of these tools, according to the different features they possess. For example,

the Rigi system (MÜLLER; KLASHINSKY, 1988) supports multiple views, cross-references

(cross-cutting) and queries to support understanding (bottom-up) (SHNEIDERMAN; MAYER,

1979). Bootom-up implementation refers to permit low-level code to be generated first in an

attempt to in an attempt to build up to the goal. This process, referred to as "working forward"

or "reformulating the givens," where the "givens" include the permissible statements of the

language.

Besides the approach (bottom-up) to comprehend programs, another approach that is used is

the top-down. Top-down implementation refers to comprehend of the internal semantics for a

problem requiring that the highest (most general) levels be set first, followed by more detailed

analysis, (from the general goal to the specifics) is one technique used by humans in prob-

lem solving. (BROOKS, 1983) based on hypothesis generation and verification (MURPHY;

NOTKIN; SULLIVAN, 1995). Another tool is the Bauhaus (EISENBARTH; KOSCHKE; SI-

MON, 2001) which has features to support clustering (identifying components) and analysis

concepts. The SHRIMP tool(STOREY, 2003) provides a meta-model for navigation support

integrated that for allows frequent changes between the strategies. Finally, the CodeCrawler
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tool (LANZA; DUCASSE, 2001) uses metrics visualization to support the understanding of

systems and to identify gaps and other architectural features.

Strategies to improve quality of comprehension tools are described below.

Recommendation Systems. One way to improve the quality of comprehension tools is

to enhance the user interface aspects, (e.g., create intelligent tools with any domain or user’s

knowledge). Recommendation systems are used to guide the navigation on the software. Ex-

amples that use this technology include Mylar (KERSTEN; MURPHY, 2005). Mylar uses an

interest model to filter out non-relevant files in the Eclipse IDE. NavTracks provides recom-

mendation files that are related to those who were selected by the user. Deline et al. also

discuss a system to improve navigation (DELINE et al., 2005). The FEAT tool suggests using

a graph (explicitly created by the programmer) to improve navigation efficiency and improve

understanding (ROBILLARD; MURPHY, 2003).

Adaptive Interfaces. Another area of research includes adaptive interfaces. Software tools

typically have many features that can be complex, not only for novice users, but also for expe-

rienced users. The volume of displayed information can be reduced through the use of adaptive

interfaces. The idea is that user interface adapts itself to suit different types of users and tasks.

Adaptive interfaces are common in Windows applications, as Word. The Eclipse IDE has sev-

eral views for novice users (as Gild and Penumbra (STOREY et al., 2003)). Visual Studio has

the express configuration for novice users. However, none of these conventional tools have the

ability to self adapt or be easily adapted from novice user to experienced users.

Software Visualization. In the field of software visualization tools, these have been the

subject of a lot of research over the past few years. Many views, most based on graphs, have

been proposed to support comprehension tasks. Some examples include the research tools

Seesoft (BALL; EICK, 1996), Bloom (REISS, 2001), Rigi(WONG et al., 1995), (PENNY,

1993), sv3D (MARCUS; FENG; MALETIC, 2003), and CodeCrawler (LANZA; DUCASSE,

2001).

Collaborative Support. Software teams are growing in size and becoming more distributed.

In this sense, collaboration tools that support distributed software development activities are

crucial. Collaborative software engineering tools have been proposed, such as Jazz and Augur

(HUPFER et al., 2004) (FROEHLICH; DOURISH, 2004). There are also some tools deployed

in the industry, such as CollabNet, but they are simple tools to support communication and col-

laboration, such as version control, email and instant message. Current tools focused industry

have advanced collaboration features such as shared editors for example. Although collabora-

tive tools for software engineering have been a research topic for several years, there has been

a lack of adoption of many of these approaches, such as common editors in the industry and

lack of empirical work on the benefits of these tools. The work of O’Reilly et al. (O’REILLY;

BUSTARD; MORROW, 2005) proposed a command console based on a room to share views

of the coordination team.
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Many of the techniques of program comprehension are intended to assist developers to con-

duct for example, software evolution activities. However, comprehension of software applica-

tions is often hampered by the lack of documentation. Also, when there is documentation, there

is no assurance that it is up to date or complete (LETHBRIDGE; SINGER; FORWARD, 2003).

In these cases, the code is the main source for reliable information extraction. Several tech-

niques have been proposed to facilitate the understanding of software systems from the source

(CORNELISSEN et al., 2009). However, there is still no widely accepted approach that allows

for a quick understanding of the implementation of a software feature.

In our approach program comprehension aligned with reverse engineering help to under-

stand software behavior from the analysis of data generated during program execution. Tools

for the system analysis of object-oriented execution traces were proposed (PAUW et al., 2002b),

(RICHNER; DUCASSE, 2002). However, many of these tools suffer from the problem related

to trace sizes, requiring significant effort from developers to visualize and understand the avail-

able data. In order to filter out irrelevant data for the proposed analysis, we can rely on classifi-

cation algorithms. We use Naïve Bayes classification algorithm as an alternative to reduce the

amount of trace data.

2.4 Classification Techniques - Naïve Bayes

Data mining is a process that uses algorithms to analyze in an effective way large database for

extracting knowledge. One of the most useful data mining tasks is called classification.

Classification is the process of finding, via machine learning, a model that describes different

data classes (HAN, 2005). The model is derived based on the analysis of training data (i.e., data

objects for which the class labels are known). The model is used to predict the class label of

objects for which the the class label is unknown. The purpose of the classification to label

automatically new instances of the database with a particular class or function by applying a

model. This model is based on the value of the attributes of the instances of training. Several

classifiers have been proposed in recent years. Some use decision trees to label records. Other

algorithms based on artificial neural networks use probabilistic models (Bayesian) or rules.

Naïve Bayes (HAN, 2005) is a classification technique based on Bayes’ theorem with an

assumption of independence among predictors. It assumes that the presence of a particular

feature in a class is unrelated to the presence of any other feature. For example, a fruit may

be considered to be an orange if it is orange color and round. Even if these features depend

on each other or upon the existence of the other features, all of these properties independently

contribute to the probability that this fruit is an orange.

Bayes theorem provides a way of calculating posterior probability P(c|x) from P(c), P(x)

and P(x |c). Consider the equation P(c|x)=P(c|x)P(c)
P(x) . Where:
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• P(c|x) is the posterior probability of class (c, target) given predictor (x , attributes);

• P(c) is the prior probability of class;

• P(x |c) is the likelihood which is the probability of predictor given class;

• P(x) is the prior probability of predictor.

A Naive Bayes algorithm works converting the data set into a frequency table. Next, creates

Likelihood table by finding the probabilities. Finally, Naive Bayesian equation to calculate

the posterior probability for each class. The class with the highest posterior probability is the

outcome of prediction.

In our approach, Naive Bayes computes the probability P(c|d) of a trace subtree belonging

to a particular class from the a priori probability P(c) to be a subtree of this class and the

conditional probabilities P(tk)|c of each feature tk that occurs in a subtree of the same class.

The goal of the algorithm is to find the best class Cmap for a subtree maximizing the posteriori

probability.

The classification function accepts as parameters, test subtrees, the set of classes and esti-

mated probabilities in training. For each class a posteriori probability is calculated by adding

the logarithm of the priori probability with the logarithms of the conditional probabilities of

each subtree of the test set. The subtree is then labeled with the class that receives the highest

posteriori probability.

2.5 Recall and Precision

In this work, we will use recall and precision measures to evaluate the effectiveness of the

approach in terms of number of key classes recovered.

Precision and recall are the basic measures used in evaluating strategies such as search. In

this case, there is a set of records in the database which is relevant to the search topic. So,

records are assumed to be either relevant or irrelevant.

Recall is the ratio of the number of relevant records retrieved to the total number of relevant

records in the database. It is usually expressed as a percentage. So, the equation Recall= A

A+B
∗100%.

Where:

• A: number of relevant records retrieved;

• B: number of relevant records not retrieved;

Precision is the ratio of the number of relevant records retrieved to the total number of

irrelevant and relevant records retrieved. It is usually expressed as a percentage. So, the equation

Recall= A

A+C
∗100%. Where:
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• A: number of relevant records retrieved;

• C: number of irrelevant records retrieved;

A measure that combines precision and recall is the harmonic mean of precision and recall,

the traditional F-measure or balanced F-score: F=2∗ Recall∗Precision

Recall+Precision
∗100%.

This measure is approximately the average of the two when they are close, and is more

generally the harmonic mean, which, for the case of two numbers, coincides with the square of

the geometric mean divided by the arithmetic mean.

2.6 Bad Smells

Code smells is one of the concepts that limits the code quality. A code smell (MäNTYLä;

LASSENIUS, 2006) dues not necessarily mean that software components contain bugs, but

indicates potential weaknesses in the project that can slow down development, increasing the

risk of errors or failures in the future. Common examples of bad smell code consists of code

clones, very long classes and methods, very long parameter list, complex control structures,

dependencies between components, etc.

The study of (BROOKS, 1995) describes how the properties of software (complexity, con-

formity, changeability, and invisibility) make its design an “essential” difficulty. Good design

practices are fundamental requisites to address this difficulty and accordingly smells that can

manifest as a result of design decisions.

Smells are certain structures in the design that indicate violation of fundamental design prin-

ciples and negatively impact design quality (FOWLER et al., 1999). So, a designer has to

analyze the smells found in a design, determine the problems underlying the smells, and then

identify the required refactoring to address the problems.

Technical debt is the term used to define wrong design decisions (FOWLER et al., 1999). So,

one of the indicators of technical debt is poor software quality. For example software appears

complex and hard to comprehend, and has “changeability”, “extensibility”, “reliability” and

“reusability” that is seen as detrimental. To improve software quality and reduce technical debt

is discovering and addressing smells in a design software. So, there are design factors that can

cause a smell to occur and thus it is necessary to take care of smells because it negatively impact

software quality, and poor software quality indicates a technical debt.

Since smells may have an impact on design quality, it is important to understand smells and

how they are introduced into software design. We would like to point out that since design

smells contribute to technical debt, there is some overlap in the causes of design smells and

technical debt.

There are distinct kinds of smells reported in the literature (FOWLER et al., 1999). Several
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tools are available for detecting smells in source code (FONTANA et al., 2011). In our approach

we have used DECOR (MOHA et al., 2010) as it is considered one of the state-of-art tools for

detecting smells and can detect a large number of smell kinds (TUFANO et al., 2015). Next,

we want to investigate if bad smells are associated with a lower cohesion and higher coupling

on key classes.

2.7 Software Metrics

Programming complexity (or software complexity) is a term to describe the interactions be-

tween a number of entities. As the number of entities increases, the number of interactions

between them would increase exponentially. Higher levels of complexity in software increase

the risk of unintentionally interfering with interactions, and so increases the chance of introduc-

ing defects when making changes.

Software metrics are defined by measuring some property of a software portion or its spec-

ifications. Software metrics provide quantitative methods for assessing software quality, and

can be used as proxies to characterize how difficult a program is to comprehend and work with

(DEBBARMA et al., 2013). Software metric is a measurement, usually using numerical ratings,

to quantify some characteristics or attributes of a software entity. (CHIDAMBER; KEMERER,

1994) presented a metrics suite for object oriented design. Some of the metrics are considered

and described in our approach as they are more related to analysis of cohesion and coupling to

measure the complexity of classes and methods.

• CBO - Coupling between object classes. The coupling between object classes (CBO)

metric represents the number of classes coupled to a given class (efferent couplings and

afferent couplings). This coupling can occur through method calls, field accesses, inheri-

tance, arguments, return types, and exceptions.

• RFC - Response for a Class. The metric called the response for a class (RFC) measures

the number of different methods that can be executed when an object of that class receives

a message (when a method is invoked for that object).

• LCOM - Lack of cohesion in methods. A class’s lack of cohesion in methods (LCOM)

metric counts the sets of methods in a class that are not related through the sharing of some

of the class’s fields. Although, LCOM has been criticized on how it actually represents

cohesion, it can be analyzed under its own definition.

• Ca - Afferent couplings. A class’s afferent couplings is a measure of how many other

classes use the specific class. Coupling has the same definition in context of Ca as that

used for calculating CBO.



2.8. Concluding Remarks 47

2.8 Concluding Remarks

In this chapter, we provided the background necessary to comprehend the approach that will be

presented in this thesis.

In Section 2.1 we reviewed the importance of architecture recovery because we aim to use

these concepts to motivate the key classes recovery in an application.

In Section 2.2 was emphasized the use of reverse engineering as a widely used solution for

software architecture recovery. In the context of reverse engineering, we are going to propose

an approach that combines static and dynamic analysis. We highlight the main differences

between the two because we aim to use their concepts and the finality of both concerning the

development of our technique.

In Section 2.3 our main goal is to recover and understand important code elements. We

reported problems that limit software comprehension. In our approach, we developed several

data filtering mechanisms to reduce the effort of comprehension. We highlight software visual-

ization techniques because we aim to use these concepts to present a visual organization of key

classes emphasizing dependency relationships.

In Section 2.4 we reviewed a brief explanation about Naïve Bayes concepts because it is used

for classification of key subtrees.

In Section 2.5 we reviewed recall and precision because we aim to use these concepts to

evaluate our approach.

In Section 2.6 and Section 2.7 we reviewed fundamentals of bad smells and software metrics

because we aim to use these concepts to investigate structural problems that may exist in key

classes.

In the next chapter, we describe Keecle for recovering key classes. We present the phases to

extract key classes and the results achieved in 14 real-world Java systems.
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Chapter3

Keecle – Mining Key Classes Using

Dynamic Analysis

The cost and effort needed to understand and adapt internal elements of software systems is

related to the investigation of artifacts such as source code and documentation. Moreover, in

many cases, documentation concerning design decisions is missing, or when it exists, it is nei-

ther updated nor complete. In that case, developers are required to analyze the source code,

which is the only source of reliable information to understand the software architecture. Tradi-

tionally, software architectures are documented in a package based structure, since it is easier

to map to actual artifacts. However, quite often this is not the best architectural organization

(GARCIA et al., 2013), and when the architectural documentation is available, it is often out-

dated because of phenonema, such as, architectural drift or erosion (TAYLOR; MEDVIDOVIC̀;

DASHOFY, 2009). To alleviate these problems, several architecture reconstruction techniques

have been proposed (DUCASSE; POLLET, 2009a), but a number of problems hinder the use

of these techniques.

In a work that closely relates to ours, Zaidman and Demeyer (ZAIDMAN; DEMEYER,

2008) proposed a technique which can identify the most important classes in a system—the key

classes. They characterized these key classes as typically having a lot of “control” within the

application. In order to find these “controller classes", they presented a detection approach that

is based on dynamic coupling and webmining, obtaining a precision of around 50%. In our

approach, the concept of “key classes" can be mapped to those that are central for defining the

meaning of an architectural design. In this chapter we present the approach to mine key classes

and results in terms of recall and precision.

3.1 Outline of the Approach

Our goal is to provide an approach with higher accuracy that recovers execution trace subtrees

whose roots are calls to methods for those key classes. Our hypothesis is that architectural
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components can be matched to subtrees of execution traces that have a larger number of distinct

method calls, which are typically near to the main tree root, i.e., they are low-depth nodes in

the method call tree.

Several processes are used to implement this approach: capture traces; compress traces;

discard identical subtrees; and filter the architectural relevant classes using Naïve Bayes classi-

fication algorithm.

The contributions of this chapter are twofold:

• we propose Keecle, a novel technique for the identification of architecturally relevant

classes of a software system that can be provided for developers as a high-level overview

to help understanding and maintenance activities;

• we provide an empirical evaluation of Keecle using open source and proprietary systems

showing that it outperforms previous work, and also the generality of the approach along

a consistent adequate accuracy.

3.2 The proposed approach

In general, architectural components are difficult to identify in large systems from source code

with high accuracy (GARCIA; IVKOVIC; MEDVIDOVIC̀, 2013a). Then, we propose to semi-

automatically identify architecturally relevant classes named as key classes in execution trace

trees, claiming for an alternative way to understand the software architecture from a reduced set

of key classes. Tahvildari and Kontogiannis (TAHVILDAR; KONTOGIANNIS, 2004) defined

key classes as:

“... the classes that implement the key concepts of a system. Usually, these most important

concepts of a system are implemented by very few key classes, which can be characterized by

a number of properties. These classes which we called key classes manage a large amount of

other classes or use them in order to implement their functionality.”

Their idea that very few key classes implement the concepts of a system motivated us to

match this notion of key classes with those classes that are typically used by developers to

explain a software architecture. These classes in general have strong control over the system

and rely on other classes to implement software features. Our hypothesis is that key classes can

be automatically identified from call trees constructed during the system execution, where the

tree nodes are method calls. The key classes are expected to be near the roots (or subroots) of

large execution trace subtrees that contain a large number of method calls (nodes) from distinct

classes and packages, because there are dependency relationships distinct and important that

denotes a strong control on the software from those roots.

Figure 2 provides an overview of the proposed approach, aided by a set of tools, organized

into three phases which are presented in the following subsections.
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Figure 2 – Overview of the approach.

3.2.1 Phase 1 - Capturing Traces

In this work, we use the term feature as a functionality that can be described from the user

point of view or as an observable behavior of the system that can be triggered by the user

(EISENBARTH; KOSCHKE; SIMON, 2003). Whenever developers aim at comprehending

software internals, we expect that they already know their main features. Our approach, as

any other based on dynamic analysis, requires choosing features that are expected to cover

all components of target system. In this case, our approach suggests the selection of the most

representative features of the system, and it is part of the approach use to verify if those selected

features are able to capture the key classes.

The target system is instrumented with Trace Extractor (SOBREIRA; MAIA, 2008), an

AspectJ-based tool to collect the executed methods. During the execution scenario of each

feature, trace files are created for each triggered thread. Each line of the trace file corresponds

to a method call, which has the name of the qualified method and the corresponding level in the

call stack that enables to construct a method call tree – a Trace Tree.

3.2.2 Phase 2 - Reducing the Size of the Traces

In this section, we present the three steps conducted in the trace reduction process. Algorithm 1

is the pseudocode for extracting reduced subtrees from execution traces.



52 Chapter 3. Keecle – Mining Key Classes Using Dynamic Analysis

Algorithm 1: Trace Reduction Process for a Set of Trace File TF
Input: A set of trace files TF;

1 init
2 subTreeList ← TraceCompressor(TF )
3 halfDepth ← maxDepth(subTreeList) ÷ 2

4 NISubtreeExtractor(subTreeList,greatestSubTree(subTreeList),1,halfDepth)
5 IdenticalSubtreeFilter(subTreeList)
6 return subTreeList

7 function NISubtreeExtractor(subTreeList, greatestST, maxExpandedLevel, halfDepth)
8 if (maxExpandedLevel < halfDepth) then
9 subTreeList.remove(greatestST )

10 subTreeList.add(greatestST.children())
11 if (maxExpandedLevel < subTreeTarget.level + 1) then
12 maxExpandedLevel ← greatestST.level + 1

13 NISubtreeExtractor(subTreeList, greatestSubTree(subTreeList),
14 maxExpandedLevel, halfDepth)

3.2.2.1 Compressing Traces

In the second phase, traces are compressed removing parts that are identical, typically because

of loops or recursion in method calls (HAMOU-LHADJ; LETHBRIDGE; FU, 2004). So, the

expected result of this compression is that the resulting larger subtrees contain more calls to

distinct methods, instead of an absolute higher number of calls that could represent high number

of calls to a few distinct methods.

3.2.2.2 Extracting Non-intersecting Trace Subtrees

Our rationale is that the root node of a subtree or subroots near to the root are more likely to

indicate a key class that helps to understand an architecture. Moreover, nodes near the leaves

of the subtree are more likely to represent fine-grained, not architecturally relevant actions,

although we agree that exceptions may occur.

Figure 3 – Extracting code elements (subtrees) from execution traces.

The proposed method is based on the extraction of large subtrees without a non-proxy root.

Proxy roots are those with only one child (method call) or important children (large subtrees)
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and other non-important children (small subtrees). For each level, a set of subtrees’ roots are

analyzed based on their size and the size of their children.

The subtree recursive analysis process descends the trace tree, identifying and extracting

subtrees. Algorithm 1 selects firstly the largest subtrees to try and split it in smaller subtrees.

The recursive process ends when there is a subtree with a root in the level that corresponds to

half of the original trace tree depth (50%). When half the level corresponds to a non-integer

value, the value is rounded up to a higher value. Initially, we tested different stopping criteria

(25%, 50%, 75% and 100%). In our preliminary results, we observed that capturing roots

by selecting stopping criteria between 100% or 75%, we can have key classes referring to

initialization of the system. Meanwhile, the roots extracted considering 50% stopping criteria

are more specialized representing different parts (components) of the system design. However,

depending on the developer’s level of interest, the tool can be calibrated to extract roots that

cover different aspects of the system. This choice for stop-criterion (50%) also was based on

the observation that subtrees of interest: typically large and with roots or subroots near to the

original tree root.

Figure 3 shows an example of this extracting process (considering stopping criteria 50%).

It shows a trace tree where nodes are method calls. The trace tree has size 20 and contains

six levels. In this case, the limit for the expansion process is at level 3, because of the defined

threshold of half the maximum height.

Starting from the root Bootstrap.start, three child subtrees are identified with sizes: 2, 10

and 7 respectively, from the left to right on level 2. The first subtree (green subtree) has root

LogFactory.getLog, which we named as subtree A. The second subtree (red subtree) has root

Catalina.start, and was named as subtree B. The third subtree (blue subtree) has root LogFac-

tory.getLog, and we named as subtree C.

The roots of the new subtrees are on level 2, then the extraction process continues on level

3. The algorithm chooses the largest subtree to split it into smaller subtrees, namely the subtree

B with size 10. When subtree B is split, two new subtrees are analyzed (subtree D and E).

Subtree D (orange subtree) has root StandardServer.setStateInternal with size 7, and the subtree

E (purple subtree) has root Digester.<init>, with size 2. Subtree D and E have roots that are on

level 3 of the trace tree, so the extraction process ends with four selected subtrees (A, C, D and

E).

3.2.2.3 Filtering Identical Subtrees

Subtrees that are identical to each other are filtered out to reduce the amount of information

to be analyzed. This situation occurs because algorithm that removes loops may not remove

all possible loops. When the discarding process of the identical subtrees is finished, we have a

limited and less complex set of subtrees that are organized in terms of features and its threads

according to the execution scenario.
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3.2.3 Phase 3- Classifying Trace Subtrees

The previous process is expected to reduce significantly the number of method calls for analysis.

However in some cases, this number is still relatively high, due to the number of features or the

complexity of the target system being high. So, we propose a classification mechanism based

on a set of observable attributes of the remaining subtrees aiming at selecting the most relevant

subtrees representing the key classes.

3.2.3.1 Defining the Attributes

In order to obtain an accurate classification in supervised learning, it is important to choose

relevant attributes to filter desired subtrees.

In order to construct the classifier, we manually created a training and testing set, analyzing

the resulting subtrees returned in the previous phase. We defined five attributes for classification

of trace subtrees:

Size of subtrees: Larger subtrees are more likely to provide/consume different and important

services. A relevant subtree would likely to have size that is larger than the mean size of the

subtrees system’s. In particular, the attribute related to size, seems to be most discriminative

because the others could be somewhat dependent on it.

Distance of the subtree to the main root: subtrees near to the root of the original tree tend

to represent more higher-level abstractions.

Number of distinct packages: a subtree with high package variability represents a notion

or distinct relationships and are not strongly adherent to the package-based structure.

Number of distinct classes: a subtree that contains many distinct classes suggests that it

encapsulates more varied responsibilities.

Number of distinct methods: the presence of distinct methods, in the same way as distinct

classes in a subtree could be a sign of coarse-grain responsibility.

3.2.3.2 Classifying Subtrees

We aim at classifying subtrees into two categories: key and non-key candidates. Even if this

classification process could have been applied in earlier stages of the approach, it seemed more

coherent to apply it after the removal of redundant calls, to have less noise in the tree topology

for the classification. This is due to the fact that we are interested in the variability of packages,

classes and methods of a tree and not only in the absolute size where repetitive calls would be

a noise for the classification process. For each subject system, we extract the attribute values of

all subtrees. A candidate subtree should possesses roots that can become a key class. The size

of this candidate must be superior or equal to the average of the size of all subtrees. For the

training data, we generated distinct training groups, the data were extracted from subtrees of
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the softwares in exception to the target system data in order to test the target systems, as shown

in the Table 1 (leave-one-out strategy). In our experiments, the evaluation was performed using

with two classifiers available on Weka software: Naïve Bayes and Neural Networks (using

backpropagation). The two classifiers had very similar results in terms of correctly classified

instances (99.3% and 96.5%, respectively). So, we used Naïve Bayes because it was able to

select more subtrees.

Table 1 – Training and testing data.

Training Data Testing Data

Instances Target System Instances

473 JMeter 377
475 Ant 9
415 Lucene 69
495 Tomcat 167
633 JavaCC 11
473 Javac 29
1.219 Financial 387
1.219 Service Order 6.227
475 Scholar 257
1.219 PDFBox 839
1.219 JEdit 1.038
302 Xerces 109
302 Log4j 83
633 Jetty 486

3.2.3.3 Selecting the Key Classes based on Level-Analysis

After defining the key subtrees, the final process is to select the key classes from the key sub-

trees. Although, the subtree root is a good candidate for a key class, there might be other key

classes in subtrees, depending on the interest of the developer in understanding the architecture

with more or less details.

One question associated with the proposed technique is how to determine a target of k key

classes that the approach needs to retrieve. In a real comprehension activity, developers do not

know the best value of k, as in fact there is no best value, as it depends on how much detail

the developer wants to comprehend. Typically, they would want to begin with less detail (less

classes) and then increase the number of classes as the comprehension process evolves. So, it

is reasonable that our approach can rely on an input parameter k indicating the target number

of classes. We defined that the number of roots found by the algorithm has to be equal to the

number of key classes (k) that the developer expects to find.

However let us suppose we have a target of k key classes to be retrieved by the approach,

and the classifier has returned k − 1 key subtrees. The number of roots is less than k target

classes, so the algorithm would descend one more level in the tree until the number of nodes

is greater than or equal to the number of key classes. However, when we descend to the next

level, we increase substantially the number of classes, and, of course there would be a large gap

between the desired and provided level of details would be affected. As this process can have

a cumulative characteristic, i.e., for each covered level of the subtrees, it increases the number
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of recovered roots (roots and subroots). In these situations, when there is a difference at most

two units until the number of roots found in relation to the number of key classes, our approach

stops descending. In (ZAIDMAN; DEMEYER, 2008), the authors also use this kind parameter

and return as a result the percentage of the ranked classes.

But, to alleviate the above mentioned problem, we proposed a strategy that ranks candidate

roots. Suppose for example, that there are three candidate subtrees, and the developer wants to

retrieve only one key class (k = 1). To determine which root of the subtree will be selected as

the key class, we used a ranking algorithm to determine an order of relevance of the discriminant

attributes of the trees. In this context, the ranker method available in Weka1 classified attributes

assigning weights to these in the order shown in Table 2.

Initially, we constructed a data set containing the values of the attributes extracted from the

subtrees of the target systems. For each subtree, the value for each attribute is recovered, and

respective weights are shown in Table 2. The weights of each attribute indicate the relevance

order that will be considered during the subtree selection process in the Algorithm 2. These

weights were automatically obtained using GainRatioAttributeEval an attribute evaluators in

Weka, and, in sequence it was used ranker search method sorts attributes according to their

evaluation in Weka.

We present the algorithm 2 is the pseudocode describing this process based on level analysis.

The function extractKeyClasses evaluates the subtrees traces classified by naiveBayesClassifier

to find candidates roots or subroots for key classes.

In the algorithm 2, the subtree with highest value has its root extracted to define a key class,

and new subtrees will be extracted from this subtrees through the expansion method NISubtree-

Extractor.

Table 2 – Relevance of attributes.
Attribute Relevance

size of subtrees 1
number of distinct methods 0.24
number of distinct classes 0.22
number of distinct packages 0.15
distance of the subtree to the main root 0.02

3.3 Study Setting for Evaluating Keecle

In this section, we present the subject systems used to evaluate Keecle and their respective

execution scenarios to extract execution traces. The ground-truth key classes considered in this

evaluation used one of the following criteria:

• They were retrieved from (ZAIDMAN; DEMEYER, 2008) - Target systems: JMeter and

Ant;
1 http://www.cs.waikato.ac.nz/ml/weka/documentation.html
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Algorithm 2: Process to select the key classes from the key subtrees based on level
analysis.

Input:
A set of trace subtrees subtreeList;
The target number of key classes k;

1 init
2 SBClassified ← naiveBayesClassifier(subtreeList); /* set of subtrees classified */
3 extractKeyClasses(SBClassified, k);
4 return SBClassified;

5 function extractKeyClasses(SBClassified, k)
6 depthSubtree← 1;
7 higherWeight← 0;
8 auxHigherWeight← 0;
9 tempSubtree← null;

10 while listRoots.size() < k do
11 foreach SBClassifiedi in SBClassified do
12 auxHigherWeight← 1*sizeOfSubtree + 0,24*numberOfDistinctMethods +

0,22*numberOfDistinctClasses + 0,15*numberOfDistinctPackages + 0,02*DistanceOfRoot;
13 if (auxHigherWeight > higherWeight) then
14 higherWeight← auxHigherWeigh;
15 tempSubtree← SBClassified;

16 listRoots.add(extractRoot(tempSubtree, depthSubtree));
17 SBClassified.add(NISubtreeExtractor(SBClassified, tempSubtree, depthSubtree, 0));
18 depthSubtree← depthSubtree+1;
19 higherWeight← 0;

• They were retrieved from available documentation - Target systems: Lucene, Tomcat,

Javac, JavaCC, Jetty, Xerces and Log4j;

• They were retrieved from developers - Target systems: PDFBox, Financial, Service Order

and Scholar. In this situation, developers classified a initial list of classes candidate to be

a key class that our approach recovered. The number of classes was guide by number of

relevant features or asking to the developers. For the proprietary systems, developers did

not mention missed key classes, but because we agreed to find 10 key classes, and, for

to PDFBox we considered the relevant features which cover more than half of the total

number of classes in the system. In sequence, using a Likert scale (from -2: Strongly

disagree to 2: Strongly agree) developers specified their level of agreement on a class

to be key or non-key. A class is considered key class if it is classified as Strongly agree

or agree and has Weighted average ≥ 1. After the classification we asked the following

question: Is there any class missing in the set of key classes that you consider relevant in

the design/architecture level? The PDFBox developer indicated more five potential key

classes such as PDFStreamEngine, PDFont, PDFontLike, COSBase and PDStream. For

the proprietary systems, developers did not mention missing key classes, but because the

agreed target was to find 10 key classes. After the developers specified the ground-truth,

we applied Keecle again to find classes according to ground-truth, and consequently it

was possible to calculate recall and precision.

For JEdit, we did not obtain ground-truth, but it was considered in our study in reason of

reasonable recall and precision obtained from other systems studied. So, the approach gave us
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a margin of safety that allowed us to consider JEdit in our analysis.

Our approach requires as input the target number of classes to be recovered. This number

is arbitrary: the higher the number, the higher the level of detail that developers are willing to

obtain. For evaluation purposes, a fair condition was to adopt the number of classes defined in

the ground-truth. Zaidman and Demeyer (2008) have chosen to retrieve 15% of the classes as

the ground-truth.

We considered the following open source systems in the Java programing language:

Tomcat2 7.0: is a Java web server that matches the implementation of JavaServer and Javaservlet

technologies with approximately 163 KLOC; The execution scenario was loading and running

an application. The application is a sample application available in the distribution3. The ex-

ecution of that application consisted in starting the server, load Tomcat localhost, deploy the

application and perform a simple test of the application.

Lucene4 3.0.2: is a software with a search API for document indexing with approximately

49 KLOC; For Lucene, the execution scenario consisted of indexing files and searching through

use of this index. The files used were an arbitrary simple set of text files.

JavaCC5 (Java Compiler Compiler) 6.1: is a tool for generating parser to use in Java ap-

plications with approximately 43 KLOC. For JavaCC, the selected execution scenario was to

generate a parser for a basic arithmetric expression grammar and its syntactic tree generator.

Javac6 (Java programming language compiler) 1.5: is a compiler that reads source files

written in the Java programming language, and compiles them into class files. The execution

scenario was the compilation of a simple HelloWorld.java.

JMeter7 2.0.1: is a Java application designed to load test functional behavior and measure

performance with approximately 22.234 KLOC. For JMeter, the execution scenario was the

same as used in Zaidman and Demeyer (2008), that is testing a HTTP (HyperText Transfer

Protocol) connection for an arbitrary site.

Ant8 1.6.1: is a Java library and command-line tool whose mission is to drive processes

described in build files as targets and extension points dependent upon each other. The main

known usage of Ant is the build of Java applications with approximately 98.681 KLOC. The

execution scenario was same used in Zaidman and Demeyer (2008), that is build Ant itself.

Xerces9 2.11.0: a Native Interface (XNI), it is a framework for communicating a "streaming"

document information set and constructing generic parser configurations. Thus it is a processor

2 http://tomcat.apache.org/
3 Available at https://tomcat.apache.org/tomcat-6.0-doc/appdev/sample/
4 http://lucene.apache.org/
5 https://javacc.org/
6 http://openjdk.java.net
7 http://jmeter.apache.org/
8 http://ant.apache.org/
9 http://xerces.apache.org/
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for parsing, validating, serializing and manipulating XML with approximately 141 KLOC. The

execution scenarios were the running the samples available on the the documentation.

Log4j10 2.3: creates and maintains open-source software related to the logging of application

behavior and released at no charge to the public with approximately 54 KLOC. The execution

scenarios were the running the samples available on the the documentation. The execution

scenario was to log a debug or error message in a Java application.

Jetty11: provides a Web server and javax.servlet container, plus support for HTTP/2, Web-

Socket, OSGi, JMX, JNDI, JAAS and many other integrations, with approximately 472 KLOC.

The execution scenario was to start a server.

PDFBox12: it is an open source Java tool for working with PDF documents, with approx-

imately 116464 KLOC. We considered 13 features obtained from the present examples in the

application source code.

JEdit13 5.4.0: it is a mature programmer’s text editor with approximately 130 KLOC. The

execution scenarios were to exercise 10 basic and usual features such as working with files

(save, open and creating files), editing text and source code, etc.

For next systems described, we omitted their real names because they are proprietaries ap-

plications of a Brazilian software development company.

Financial: it is a proprietary software that control the capital movement of a company with

approximately 36.702 KLOC. We considered 10 features indicated by application owner, for

instance management tuition, employee control, enrollment payment management, cash flow

control, etc.

Scholar: it is a proprietary software that manages educational routine on regular schools

with approximately 59427 KLOc. We considered 10 features indicated by application owner,

for instance issuance of the school report card, issuance of school records, disciplines control,

etc.

Service Order: it is a proprietary software that provides services, bringing agility and orga-

nization to a company with approximately 558534 KLOC. We considered 10 features indicated

by application owner, for instance creation general reports, service orders (open, closed or all),

etc.

The choice of those systems was guided by system relevance and the architectural docu-

mentation availability and interest of the developers to collaborate. From the analysis of the

documentation or selection of the developers, we obtain a set of key classes that match the

architecture that will be used to evaluate the approach in terms of recall and precision. Table

10 https://logging.apache.org/log4j
11 http://www.eclipse.org/jetty/ 9.3.10
12 https://pdfbox.apache.org/ 2.0.7
13 http://www.jedit.org/
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3 shows the list of recovered classes by Keecle (consider Kc= Key class, X=Key class and

χ=non-Key class) and the set of missed key classes during the performance of Keecle.

Lucene has 12 key classes identified in the documentation, shown in Table 3. The set of key

classes covers nine different packages. The names of classes Analyzer and StandardAnalyzer

suggest that they should belong to the same component. Although these classes are dependent

on each other, they provide distinct services for the two features of Lucene and then were

maintained in separate packages.

Table 3 lists the six main key classes of Tomcat. Tomcat is a complex application with many

features, suggesting the presence of many components. In the documentation is organized

into main components (represented by key classes) and the subcomponents nested in the main

components. This organization of Tomcat with subcomponents reinforces our decision on how

to choose the target number of classes the approach would return. We could have chosen to

consider only the main components (as we did) or also to include subcomponents. We decided

for only these six main components, to assess the ability of the approach in detecting the most

important few key classes. All key classes except Connector class belong to the same package.

But each of these classes provide specific services for each component.

For Javac, we identified 17 key classes distributed into seven different packages. Some of

these classes, such as MemberEnter class are representative of a secondary component relative

to Enter class, because it consists of a phase performed by the Enter class.

For JavaCC, identification of the 16 key classes shown in Table 3 was also guided by analysis

of the documentation. Classes are only in two distinct packages: parser and jjtree. Each class

represents a distinct component, because they provide services to several other components

such as tokenization, management of error messages, the construction of syntax tree and parser,

etc.

For Xerces, a ground-truth of 6 key classes (interfaces) was shown in the documentation.

These classes belongs only to two xni and parser packages. These classes can be viewed as a

pipeline in which information flows from a scanner, then to a validator, and then to the parser.

For Log4j presents a ground-truth of 10 key classes (concrete and interfaces), as shown on

the documentation. These classes belongs to four config, lookup, core and layout packages.

Basically, applications using the Log4j 2 will request a Logger with a specific name from the

LogManager. The LogManager will locate the appropriate LoggerContext and then obtain the

Logger from it. If the Logger must be created it will be associated with the LoggerConfig

that contains either: the same name as the Logger; the name of a parent package, or; the root

LoggerConfig. LoggerConfig objects are created from Logger declarations in the configuration.

The LoggerConfig is associated with the Appenders that actually deliver the LogEvents.

Jetty presents a ground-truth of 13 key classes (classes and interfaces), as shown on the

documentation these classes belongs to seven security, handler, session, thread, ssl, nio and
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Table 3 – List of Recovered Classes by Keecle and List of Missed Classes.

Ant JMeter Javac Lucene

Recovered Classes Kc Recovered Classes Kc Recovered Classes Kc Recovered Classes Kc

Task X TestElement X Gen X IndexWriter X

IntrospectionHelper X Sampler X TransTypes X StandardAnalyzer X

ProjectHelper2$ElementHandler X ThreadGroup X Enter X SegmentInfos χ

RuntimeConfigurable X JMeter χ ParserFactory χ NIOFSDirectory X

DirectoryScanner χ PreCompiler X Attr X TermQuery X

UnknownElement X TestPlan X MemberEnter X FreqProxTermsWriter χ

ProjectHelper X TestPlanGui X JCTree$JCCompilationUnit X SegmentInfos χ

SelectSelector χ TestCompiler X Symbol$ClassSymbol χ FileDocument X

Target X JMeterThread X Type$ClassType χ FieldInfos χ

- - JMeterTreeModel X Check X IndexSearcher X

- - SampleResult X JavaCompiler X IndexReader χ

- - AssertionGui χ Lower X TermInfosReader χ

- - StandardJMeterEngine X Symtab χ - -
- - JavaSampler X Todo X - -
# key classes → 10 14 17 12

Missed Key Classes

Ant JMeter Javac Lucene

Project JMeterGuiComponent JavacProcessingEnvironment IndexFiles
Main AbstractAction TreeMaker SearchFiles

- - SourceCompleter TopDocs
- - Scanner QueryParser
- - ClassWriter -
- - Parser -
- - Flow -

JavaCC Tomcat Jetty Xerces Log4j

Recovered Classes Kc Recovered Classes Kc Recovered Classes Kc Recovered Classes Kc Recovered Classes Kc

Main (package parser) X StandardEngine X SessionHandler X DeferredElementNSImpl χ XMLConfigurationFactory χ

Main (package jjtree) X StandardService X Server X DOMParser X Logger X

JJTreeParser X Catalina χ RequestLogHandler χ DOMConfigurationImpl X ConfigurationFactory$Factory χ

Token X StandardServer X Connector X XMLNSDocumentScannerImpl X DefaultConfiguration X

JavaFileGenerator χ Boostrap χ WebAppDeployer χ XMLEntityScanner X PatternParser χ

JavaFile χ StandardHost X MovedContextHandler X XIncludeAwareParserConfiguration χ NullConfiguration X

OutputFile χ - - ContextHandlerCollection X - - Logger (package core) X

JavaCCParser X - - ServletHandler$CachedChain X - - PatternLayout χ

ParseGen χ - - HashLoginService χ - - ConfigurationFactory χ

JavaCharStream X - - DefaultServlet χ - - AbstractAppender X

LexGen X - - XmlConfiguration χ

JJTreeParserTokenManager X - - SelectChannelConnector X

JJTreeParserConstants X - - - -
ParseEngine χ - - χ - -
JavaCodeGenerator X - - χ - -
JJTree X - - χ - -
# key classes → 16 6 13 6 10

Missed Key Classes

Javacc Tomcat Jetty Xerces Log4j

NonTerminal StandardContext ThreadPool XMLComponentManager LoggerConfig
ParseException (package parser) Connector HashLoginService XMLComponent Filter

Node - SslConnector - StrLookup
JavaCCParserTokenManager - SecurityHandler - StrSubstitutor

ParseException (package jjtree)

PDFBox Financial Scholar Service Order

Recovered Classes Kc Recovered Classes Kc Recovered Classes Kc Recovered Classes Kc

PDFParser X LancamentoContas X GerarMatricula X CadastroOrdemServico X

FontFileFinder χ RelBoletoPago χ LancarFrequencias X MovMovimentacaoviewId χ

PDDocument X CadastroMovimentacaoCheque X SaidaAntecipada X CadastroGrupoprodutoIF X

PDAnnotationTextMarkup χ ConRecibo X CadMatrizDisciplina X WinOS X

PDPageContentStream X AlterarBoleto X MntDiario X WSMovItensmovimentacao χ

PDFontDescriptor X ToolBarTesoura X WinEscolar X PGCFactory X

COSWriter X WinTesoura X CriarHorario X WSEmpresa X

COSDocument X CadastroFinFluxoCaixa X VerFaltas X - -
TrueTypeFont X - - EntradaPosHorario X - -
PDGraphicsState χ - - - - - -
PDPage X - - - - -
PDFTextStripper X - - - - -
FontFormat χ - - - - -
PDMetaData X - - - - -
# key classes → 14 8 9 7

Missed Key Classes

PDFBox Financial Scholar Service Order

PDFont TableConsultaReciboRenderer - CadastroParceiro
PDFontLike - SisParametro

COSTree - -
PDTree - -
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server packages. Basically, Jetty is the plumbing between a collection of Connector‘s that

accept connections and a collection of Handlers that service requests from the connections and

produce responses, with threads from a thread pool doing the work.

PDFBox presents a ground-truth of 14 key classes (classes and interfaces) which were clas-

sified by the developer as being a key class. The key class set belongs to distinct packages such

as text, cos, font, pdmodel, pdfparser, annotation, state and ttf. A PDF file is made up of a

sequence of bytes. These bytes, grouped into tokens, make up the basic objects upon which

higher level objects and structures, and the package cos plays this role. The organization of

these objects, how to they are read, and how to write them is defined in the file structure of the

PDF - pdfparser package is accountable for this function. Within the file structure basic objects

are used to create a document structure building higher level objects such as pages, bookmarks,

annotations using for instance pdmodel package.

Financial, presents a ground-truth of 8 key classes mentioned by developers. We recovered

8 classes from 8 distinct packages: movimentacao, relatorio, cheque, boleto, other, tesoura,

caixa and win. Each package represents important structures of the software and thus they can

show relevant aspects of the design.

Scholar is a small software and has few packages. It presents a ground-truth of 9 key classes

mentioned by the developers. We recovered 9 classes from 3 distinct packages: cadGeral, win

and escolar. win package contains classes to build Gui interfaces, cadGeral contains classes to

record data to the database and escolar is a package for general classes of the application.

Finally, Order Service, presents a ground-truth of 7 key classes mentioned by the developers.

We recovered 7 classes from os, bean, grupoproduto, dao, connection. Those packages contain

classes to establish connection with database, build, Guis, etc.

For Ant and JMeter, the key classes shown in the Table 3 were evaluated considered the

ground-truth available by Zaidman and Demeyer (2008). Ant application contains 10 key

classes from two distinct packages and JMeter contains 14 key classes from 10 distinct pack-

ages.

Noteworthy concept is related to abstract classes and interfaces. The execution traces capture

methods that were effectively called, and which are connected to an object. The class that

created this object should not be an abstract class or interface. In this context, if we have in

the documentation an abstract class or interface as a being key class and during the capture

of traces, a concrete class that extends or implements these situations is captured, so we will

consider these as a key class in the our results.
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3.4 Results on Recall and Precision

In this section, we present a quantitative evaluation of our approach based on the values of

precision and recall. In sequence, we describe the six phases shown on Table 4, and to which

extent the six phases reduce the call tree. Due to the fact that each phase filters trees, then they

may worsen recall.

• Ph1: total number of method calls in the traces file for each thread;

• Ph2-1: total number of method calls in the traces file for each thread after the compression

process for removing loops and recursion;

• Ph2-2 total number of key candidate subtrees obtained;

• Ph2-3: removing trace subtrees for which content is identical;

• Ph3-1: total number of subtrees obtained by classifying processes of the traces;

• Ph3-2: number of classes recovered (after possible expansion).

Table 4 – Reduction of Number of Calls by Phase.

Software Ph1 Ph2-1 Ph2-2 Ph2-3 Ph3-1 Ph3-2

JavaCC 42.548 7.535 274 29 9 16
Tomcat 12.5837 90.769 550 167 39 6
Javac 1.072.518 591 17 11 5 17
Ant 1.357.211 624.706 15 9 7 10
JMeter 192.140 73.404 2.301 377 38 14
Lucene 80.385 49.195 403 69 18 12
Xerces 239.629 15.939 154 109 44 6
Log4j 13.004 4.172 158 83 17 10
Jetty 62.067 22.200 1.073 486 41 13
JEdit 2.999.961 229.455 3.236 1.038 676 10
PDFBox 6.306.433 138.689 6.488 839 49 14
Service Order 8.858.043 2.777.662 35.861 6.227 123 7
Scholar 137.555 2.241 901 257 4 9
Financial 531.795 3.972 737 387 10 8

Table 5 (consider P=Precision and R=Recall) shows for each phase, the impact in recall

reduction, which is necessary to improve the precision. We can observe at column Ph1 that the

defined execution scenarios were incomplete, except for Tomcat, Scholar, Ant and Lucene, with

100% recall. Tomcat and Lucene had recall impact on the final phases. For other systems the

recall did not change during the phases. Furthermore, we can observe an expressive precision

improvement, specially in phase Ph3-2.

Finally, Table 6 shows the average for the attributes of each subtree for the applications. We

can note that in general, the subtrees are formed by method calls from different packages and

classes which reinforces the notion of that components seems to span different packages.

Table 7 presents a comparison of Keecle and the approach presented in Zaidman and De-

meyer (2008). For Ant and JMeter we preferred to use the values reported in their paper. For
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Table 5 – Recall (R) and Precision (P) for Phases of the Approach.

Software
Ph1 Ph2-1 Ph2-2 Ph2-3 Ph3-1 Ph3-2

R P R P R P R P R P R P

JavaCC 69% 0.026% 69% 0.14% 69% 4% 69% 38% 69% 69% 69% 69%
Tomcat 100% 0.004% 100% 0.006% 100% 1.09% 100% 3.59% 100% 15% 67% 67%
Javac 82% 0.0015% 82% 1.18% 76% 76% 76% 76% 59% 59% 59% 59%
Ant 100% 0.0007% 100% 0.0016% 100% 67% 100% 80% 80% 80% 80% 80%
JMeter 86% 0.006% 86% 0.017% 86% 0.5% 86% 3.18% 86% 3.15% 86% 86%
Lucene 100% 0.014% 100% 0.024% 83% 2.48% 83% 14% 83% 56% 50% 50%
Xerces 67% 0.001% 67% 0.025% 67% 2.6% 67% 3.7% 67% 9% 67% 67%
Log4j 60% 0.046% 60% 0.095% 60% 3.16% 60% 3.79% 60% 3% 50% 50%
Jetty 62% 0.012% 62% 0.036% 62% 0.7% 62% 1.6% 62% 20% 62% 62%
PDFBox 71% 0.00016% 71% 0.007% 71% 0.15% 71% 1.19% 71% 20% 71% 71%
Financial 89% 0.0013% 88% 0.18% 88% 0.94% 88% 1.8% 88% 70% 88% 88%
Scholar 100% 0.006% 100% 0.4% 100% 0.99% 100% 3.5% 100% 100% 100% 100%
Service Order 71% 0.00006% 71% 0.00018% 71% 0.013% 71% 0.08% 71% 4% 71% 71%

Table 6 – Average Attributes in Each Subtree.

Software Size Root Level # Packages # Classes # Methods

JavaCC 80.6 10.2 2.0 4.77 61.55
Tomcat 359 9.25 10.66 26.12 52.28
Javac 71.4 9.4 5.6 13.4 24
Ant 744 8.8 4.2 12.8 26.6
JMeter 117 6.10 8 15.22 29.79
Xerces 171.15 8.57 4.95 7 23.81
Log4j 35.17 9.82 4.59 10.88 22.59
Jetty 387.21 13.82 7.8 20.73 77.41
PDFBox 45.69 19.37 2.96 7.51 20.04
JEdit 79.67 17.96 3.65 9.66 29.75
Lucene 87 7.94 4.61 16.94 33.16
Financial 21.22 21.71 3.62 7.62 12.22
Scholar 33.5 4.5 3 23 24
Service Order 413 5.11 7.3 16.12 101.17

other systems, we reproduced their approach. The ranking tool of the classes was made avail-

able by the authors contacting via email, while the coupling algorithm was implemented by

the author of this thesis. In sequence, with the same execution traces used to evaluate Keecle.

We can observe that all F-measure values of Keecle outperformed the results in (ZAIDMAN;

DEMEYER, 2008).

JavaCC: As show in Table 4 at phase Ph1 , we observe that 42.548 method calls from in

a single thread were collected. JJTree (from jjtree and parser packages) and JavaCCParser-

TokenManager, Node and NonTerminal classes were not recovered during the capture of the

traces. This situation occurred because not all the actions of the features of JavaCC were ade-

quately exercised. In sequence, 7.535 method calls were obtained in phase Ph2-1. However, the

number of nodes was still high, and thus would require great effort during analysis. During the

extraction of trace subtrees process (Ph2-2), we obtained 274 subtrees. The next phase Ph2-3

consists of discarding, the subtrees which are identical to each other to discard one of them. The

phase Ph2-3 resulted in 29 subtrees. During the phase Ph3-1, 9 trace subtrees were classified as

shown in Table 8. The size of these 9 subtrees ranged from 79 to 100, and the call level of the

first root of each of the subtrees ranged from 5 to 19. Table 6 shows the average of the attributes

for each subtree. In order to performer the phase Ph3-2, our input parameter corresponds to 16
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Table 7 – Recall and Precision for the Phase Ph3-2 and (ZAIDMAN; DEMEYER, 2008)’s ap-
proach.

Software
#Classes

Doc

# Classes Recovered Recall (%) Precision(%) F-Measure(%)

Keecle (ZAIDMAN;
DEMEYER,
2008)

Keecle (ZAIDMAN;
DEMEYER,
2008)

Keecle (ZAIDMAN;
DEMEYER,
2008)

Keecle (ZAIDMAN;
DEMEYER,
2008)

Javacc 16 14 9 69% 25% 69% 44% 69% 32%
Tomcat 6 14 59 67% 83% 67% 8% 67% 15%
Javac 17 17 8 59% 6% 59% 13% 59% 8%
Ant 10 12 19 80% 90% 80% 47% 80% 62%
JMeter 14 14 28 86% 93% 86% 46% 86% 62%
Lucene 12 12 19 50% 16% 50% 11% 50% 13%
Jetty 13 13 20 62% 15% 62% 10% 62% 20%
Log4j 10 10 13 50% 10% 50% 8% 50% 9%
Xerces 6 6 5 67% 50% 67% 60% 67% 54%
PDFBox 14 14 21 71% 64% 71% 43% 71% 50%
Financial 8 8 29 88% 50% 88% 13.8% 88% 21%
Scholar 9 9 12 100% 22% 100% 9% 100% 12.8%
Service
Order

7 7 108 71% 43% 71% 2.8% 71% 5.25%

Mean 70.7 43.6 70.7 30.5 70.7 28

key classes applied to Algorithm 2. Table 3 shows the recovered and missed roots. Thus, the

recall and precision values were respectively 69% and 69%, the value for the F-measure was

equal to 69% as shown in Table 7.

Tomcat: As show in Table 8 on the phase Ph1, we observe that 125.837 method calls stored

in 4 threads were collected. During the phase Ph2-1 90.769 method calls were recorded. How-

ever, the number of nodes was still high, requiring high levels of effort to analysis. During the

extracting of trace subtrees process (Ph2-2), we obtained 550 subtrees. The next phase Ph2-3

consists of discarding, the subtrees which are identical to each other to discard one of them

resulting in 167 subtrees. Phase Ph2-3 resulted in 39 subtrees. During the PH3-1 StandardCon-

text and Connector were not classified. Table 3 shows the recovered roots. Thus, the recall and

precision values were respectively 67% and 67%, the value of F-measure was equal to 67% as

shown in Table 7.

Javac: As shown on Table 4, we observe that phase Ph1 returns 1.072.518 method calls in a

single thread. Parser and SourceCompleter and Scanner classes were not recovered with the

selected execution scenario. Phase Ph2-1 as shown on Table 4, 591 method calls were recorded.

After phase (Ph2-2), 17 subtrees were obtained. The next phase Ph2-3 resulted in 11 subtrees.

The TreeMaker class (Table 3) was discarded during the extraction process in the phase Ph2-2.

During classifying trace subtrees, 5 trace subtrees were classified as shown on Table 4 - phase

Ph3-1. The size of those 5 subtrees ranged from 9 to 71, and the call level of the first root of

each of the subtrees ranged from 7 to 11. Table 6 shows the average number of attributes for

each subtree. In order to performer the phase Ph3-2, our input parameter corresponds to 17

key classes applied to Algorithm 2. JavacProcessingEnvironment class was not classified in

the phase Ph3-1. Table 3 shows the recovered and missed roots. Thus, the recall and precision

values were respectively 59% and 59%, the value for the F-measure was equal to 59% as shown
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in Table 7. Flow, Scanner and ClassWriter classes were not roots selected during the final

phase.

Ant:As show in Table 4 - phase Ph1 collected 1.357.211 method calls in 4 threads were

collected. Phase Ph2-1 as shown on Table 4, recovered 624.706 method calls were recorded.

However, the number of nodes was still high, requiring high levels of effort when analyzing.

During the extracting of trace subtrees process (Ph2-2), we obtained 15 subtrees. The next

phase Ph2-3 that discards, identical subtrees, resulted in 9 subtrees. During the process of

classifying trace subtrees in phase Ph3-1 7 trace subtrees were selected as shown in Table 4.

The size of these 7 subtrees ranged from 41 to 2.011, and the call level of the first root of each

of the subtrees ranged from 5 to 15. Table 6 shows the average for the attributes of each subtree.

Main and Project classes were not retrieved by the classifier. In order to perform phase Ph3-2,

our input parameter corresponds to 10 key classes applied on Algorithm 2. Table 3 shows the

recovered and missed roots. Thus, the recall and precision values were respectively 80% and

80%, the value of the F-measure was equal to 80% as shown in Table 7.

JMeter: As show on Table 4 at phase Ph1, we observe that 192.140 method calls stored in 10

threads were collected. JMeterGuiComponent and AbstractAction classes were not recovered

during the capture of the traces because the feature of JMeter were not adequately exercised.

Phase Ph2-1 as shown on Table 4 collected 73.404 method calls were recorded. However, the

number of nodes was still high, requiring high levels of effort when analyzing. During the

extracting of trace subtrees process (Ph2-2), we obtained 2301 subtrees. The phase Ph2-3 that

discards, identical subtrees, resulted in 377 subtrees. During the process of classifying trace

subtrees, 38 trace subtrees were selected as shown on Table 4 - phase Ph3-1. The size of these

38 subtrees ranged from 32 to 433, and the call level of the first root of each of the subtrees

ranged from 2 to 12. Table 6 shows the average for the attributes of each subtree. In order to

perform Ph3-2 phase, our input parameter corresponds to 14 key classes applied on Algorithm

2. Table 3 shows the recovered and missed roots. Thus, the recall and precision values were

respectively 86% and 86%, the value of the F-measure was equal to 86% as shown in Table 7.

Lucene: As show on Table 4 - phase Ph1, we observe that 80.385 method calls from in a

single thread were collected. Phase Ph2-1 shown on 4, 49.195 method calls were recorded.

During the extracting of trace subtrees process (Ph2-2), we obtained 403 subtrees. The Index-

Files and SearchFiles classes were roots discarded during the extracting process (Table 3). The

phase Ph2-3 that discards, identical subtrees, resulted in 69 subtrees. In the phase Ph3-1, 18

trace subtrees were classified as shown on Table 4. The size of the subtrees ranged from 46

to 252, and the call level of the first root of each of the subtrees ranged from 3 to 13. Table

6 shows the average for the attributes of each subtree. In order to performer the phase Ph3-2,

our input parameter corresponds to 12 key classes applied to Algorithm 2. Table 3 shows the

recovered and missed roots. Thus, the recall and precision values were respectively 50% and

50%, the value of the F-measure was equal to 50% as shown on Table 7. TopDocs class is a leaf
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node and QueryParser class was not a root selected.

Xerces: As show on Table 4 - phase Ph1, we observe that 239.629 method calls from in

a single thread were collected. Phase Ph2-1 shown on 4, 15.939 method calls were recorded.

During the extracting of trace subtrees process (Ph2-2), we obtained 154 subtrees. The phase

Ph2-3 that discards, identical subtrees, resulted in 109 subtrees. In the phase Ph3-1, 44 trace

subtrees were classified as shown on Table 4. The size of the subtrees ranged from 32 to 5.135,

and the call level of the first root of each of the subtrees ranged from 3 to 9. Table 6 shows

the average for the attributes of each subtree. In order to performer the phase Ph3-2, our input

parameter corresponds to 6 key classes applied to Algorithm 2. Table 3 shows the recovered and

missed roots. Thus, the recall and precision values were respectively 67% and 67%, the value

of the F-measure was equal to 67% as shown on Table 7. Two interfaces were not captured

during execution traces: XMLComponent and XMLComponentManager. DOMParser class ex-

tends AbstractDOMParser class. This implements XMLDocumentHandler, XMLDTDHandler

and XMLDTDContentModelHandler. Finally, DOMConfigurationImpl class implements XML-

ParserConfiguration.

Log4j: As show on Table 4 - phase Ph1, we observe that 13.004 method calls from in a

single thread were collected. Phase Ph2-1 shown on 4, 4.172 method calls were recorded.

During the extracting of trace subtrees process (Ph2-2), we obtained 158 subtrees. The Filter,

StrLookup interfaces and StrSubstitutor class did not have captured among the traced concrete

classes (Table 3). The phase Ph2-3 that discards, identical subtrees, resulted in 83 subtrees. In

the phase Ph3-1, 17 trace subtrees were classified as shown on Table 4. The size of the subtrees

ranged from 6 to 165, and the call level of the first root of each of the subtrees ranged from 2 to

16. Table 6 shows the average for the attributes of each subtree. In order to performer the phase

Ph3-2, our input parameter corresponds to 10 key classes applied to Algorithm 2, in this phase

LoggerConfig class was not classified. Table 3 shows the recovered and missed roots. Thus,

the recall and precision values were respectively 50% and 50%, the value of the F-measure was

equal to 50% as shown on Table 7.

Jetty: As show on Table 4 - phase Ph1, we observe that 62.067 method calls from in a single

thread were collected. Phase Ph2-1 shown on 4, 22.200 method calls were recorded. During

the extracting of trace subtrees process (Ph2-2), we obtained 1.073 subtrees. The SslConnector

interface did not have captured among the traced concrete classes (Table 3). The phase Ph2-3

that discards, identical subtrees, resulted in 486 subtrees. In the phase Ph3-1, 41 trace subtrees

were classified as shown on Table 4 in this phase was missed QueuedThreadPool a concrete

class that implements ThreadPool and HashLoginService class. The size of the subtrees ranged

from 1 to 2.006, and the call level of the first root of each of the subtrees ranged from 3 to 26.

Table 6 shows the average for the attributes of each subtree. In order to performer the phase

Ph3-2, our input parameter corresponds to 12 key classes applied to Algorithm 2 in this phase

SecurityHandler class was not selected. Table 3 shows the recovered and missed roots. Thus,
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the recall and precision values were respectively 62% and 62%, the value of the F-measure was

equal to 62% as shown on Table 7.

JEdit: As show on Table 4 - phase Ph1, we observe that 2.999.961 method calls from in a

single thread were collected. Phase Ph2-1 shown on 4, 229.455 method calls were recorded.

During the extracting of trace subtrees process (Ph2-2), we obtained 3.236 subtrees. The XML-

ComponentManager and XMLParserConfiguration interfaces did not have captured among the

traced concrete classes (Table 3). The phase Ph2-3 that discards, identical subtrees, resulted

in 1.038 subtrees. In the phase Ph3-1, 676 trace subtrees were classified as shown on Table 4.

The size of the subtrees ranged from 2 to 235, and the call level of the first root of each of the

subtrees ranged from 1 to 49. Table 6 shows the average for the attributes of each subtree. In

order to performer the phase Ph3-2, our input parameter corresponds to 10 key classes applied

to Algorithm 2. Table 3 shows the recovered and missed roots.

PDFBox: As show on Table 4 - phase Ph1, we observe that 6.306.433 method calls from in

a single thread were collected. Phase Ph2-1 shown on 4, 138.689 method calls were recorded.

During the extracting of trace subtrees process (Ph2-2), we obtained 6.488 subtrees. The PD-

Font abstract class and PDFontLike interface did not have captured among the traced concrete

classes (Table 3). The phase Ph2-3 that discards, identical subtrees, resulted in 839 subtrees. In

the phase Ph3-1, 49 trace subtrees were classified as shown on Table 4. The size of the subtrees

ranged from 1 to 2.006, and the call level of the first root of each of the subtrees ranged from

3 to 26. Table 6 shows the average for the attributes of each subtree. In order to performer the

phase Ph3-2, our input parameter corresponds to 14 key classes applied to Algorithm 2. Table

3 shows the recovered and missed roots. Thus, the recall and precision values were respectively

71% and 71%, the value of the F-measure was equal to 71% as shown on Table 7. Considering

abstract classes and interfaces captured by concrete classes we have: PDFTextStripper extends

PDFStremaEngine while PDMetaData class extends PDstream and finally COSDocument class

extends COSBase.

Financial: As show on Table 4 - phase Ph1, we observe that 531.795 method calls from in

a single thread were collected. Phase Ph2-1 shown on 4, 3.972 method calls were recorded.

During the extracting of trace subtrees process (Ph2-2), we obtained 737 subtrees. The phase

Ph2-3 that discards, identical subtrees, resulted in 387 subtrees. In the phase Ph3-1, 10 trace

subtrees were classified as shown on Table 4. The size of the subtrees ranged from 17 to

71, and the call level of the first root of each of the subtrees ranged from 2 to 7. Table 6

shows the average for the attributes of each subtree. In order to performer the phase Ph3-

2, our input parameter corresponds to 8 key classes applied to Algorithm 2. Table 3 shows

the recovered and missed roots. Thus, the recall and precision values were respectively 89%

and 89%, the value of the F-measure was equal to 89% as shown on Table 7. In our results

TableConsultaReciboRenderer class was not recovered this is due to the algorithm that ranks

the relevant classes, during the selection of key classes.
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Scholar: As show on Table 4 - phase Ph1, we observe that 137.555 method calls from in

a single thread were collected. Phase Ph2-1 shown on 4, 2.241 method calls were recorded.

During the extracting of trace subtrees process (Ph2-2), we obtained 901 subtrees. The phase

Ph2-3 that discards, identical subtrees, resulted in 257 subtrees. In the phase Ph3-1, 4 trace

subtrees were classified as shown on Table 4. The size of the subtrees ranged from 27 to 40,

and the call level of the first root of each of the subtrees ranged from 4 to 5. Table 6 shows

the average for the attributes of each subtree. In order to performer the phase Ph3-2, our input

parameter corresponds to 9 key classes applied to Algorithm 2. Table 3 shows the recovered

and missed roots. Thus, the recall and precision values were respectively 100% and 100%, the

value of the F-measure was equal to 100% as shown on Table 7.

Service Order: As show on Table 4 - phase Ph1, we observe that 8.858.043 method calls

from in a single thread were collected. Phase Ph2-1 shown on 4, 2.777.662 method calls were

recorded. During the extracting of trace subtrees process (Ph2-2), we obtained 35.861 subtrees.

The phase Ph2-3 that discards, identical subtrees, resulted in 6.227 subtrees. In the phase Ph3-1,

123 trace subtrees were classified as shown on Table 4. The size of the subtrees ranged from

15 to 5824, and the call level of the first root of each of the subtrees ranged from 1 to 17.

Table 6 shows the average for the attributes of each subtree. In order to performer the phase

Ph3-2, our input parameter corresponds to 7 key classes applied to Algorithm 2. Table 3 shows

the recovered and missed roots. Thus, the recall and precision values were respectively 89%

and 89%, the value of the F-measure was equal to 89% as shown on Table 7. In our results

CadastroParceiro and SisParametro classes was not recovered this is due to the algorithm that

ranks the relevant classes, during the selection of key classes.

3.4.1 Summary of Results

Table 3 shows the list of recovered classes by Keecle (consider kc=key class) and Table 7 shows

the results for Keecle and Zaidman and Demeyer (2008), indicating the values of precision,

recall and the F-measure obtained for the systems.

An important concept to be mention concerns abstract classes and interfaces. The execution

traces capture methods that were effectively called, and which are connected to an object. The

class that created this object should not be an abstract class or interface. In this context, if we

have in the documentation an abstract class or interface as a key class and during the capture

of traces, a concrete class that extends or implements these situations was shown, so we will

consider abstract classes and interfaces in the our results. For instance, on Ant, the execution

traces captured Task, a concrete class that implements the TaskContainer.

In Lucene, NIOFSDirectory is a concrete class that extends FSDirectory an abstract class.

FSDirectory class extends Directory. TermQuery is a concrete class that extends Query an ab-

stract class.FileDocument class implements Document. StandardAnalyzer is a concrect class

that implements Analyzer. So, we considered in our results the Document, FSDirectory, Direc-
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tory, Analyzer and Query classes.

For JMeter, JMeterEngine is a interface. Keecle captured StandardJMeterEngine, a con-

crete class that implements the JMeterEngine. The same occured for TestPlan class that im-

plements TestElement interface and JavaSampler class that implements TestListener So, the

JMeterEngine, TestElement and TestListener were considered in our results.

The same situation is observed Xerces, Jetty and PDFBox. Xerces had the worst recall and

precision due to the small amount of key classes required and the best result is to Scholar.

3.5 Discussion

A fundamental characteristic of this approach is the goal of retrieving classes representing an

understanding architectural of a target system from subtrees of method calls extracted from

execution traces. The trace compression process, the trace subtree extraction and the elimination

of identical subtrees played a fundamental role because the volume of analyzable data could be

adequately reduced. This fact is particularly observed in relation to the number of method calls

in the experiment with Ant that was 1.357.211, after the compression process it was reduced to

624.706 and during the identical subtree removal process, only 9 subtrees remained. A similar

situation occurred with the number of subtrees of JMeter, which after identical subtrees removal

only 377 remained, compared to more than the previous two thousand.

An observed limitation is related to the loss of roots when the subtrees extraction process is

performed. This step was responsible, for example, for the low recall in the study with Javac.

In particular, the roots of interest of Javac (JavacProcessingEnvironment) located at level 9

and Lucene (SearchFiles and IndexFiles) classes located on level 1 of the trace tree, but due

to subtrees extraction process, these roots were eliminated. Another limitation is related to the

definition of adequate execution scenarios. Javac and JMeter for example, there was a reduction

of recall during the trace extraction process. The choice of the scenarios did not provide good

coverage of system classes, because the scenarios were simple.

The classification process on the other hand, was responsible for eliminating a significant

number of subtrees. In all experiments, for example, a large number of subtrees with granularity

equal to 1, 2 or 3. In this situation, the classifier was fundamental to eliminate those subtrees.

For the all considered systems in our experiment, we obtained an average for the values of

F-measure of 70.7%. In our experiments, we tend to observe balanced recall and precision

because our approach recovers a predefined number of key classes. Target systems contains

thousands of classes and our approach was effective in reducing the number of these classes.

Some systems such as Lucene, Jetty, Log4J, presented below-average recall and precision. One

possible explanation, would be the simple exercise execution scenarios were not enough to

cover all the ground-truth available in the documentation. As a future work, would be consider
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new features during the collect of execution traces.

The F-measure average of our approach when compared with the average accuracy of the

techniques presented in the work of (GARCIA; IVKOVIC; MEDVIDOVIC̀, 2013b), which

corresponds to 45% (MoJoFM metric (WEN; TZERPOS, 2004)), we see a slight improvement

in the final results, although it is not possible to directly compare the results due to different used

metrics. In the approach presented by Zaidman and Demeyer (ZAIDMAN; DEMEYER, 2008),

the case studies achieved F-measure (Mean) of 28%. Our approach achieved with those case

studies F-measure (Mean) of 70.7%. One possible explanation is that the approach retrieves an

exact number of key classes indicated by the user without affecting precision.

Finally, the information available in the documentation that allowed the listing of classes of

interest may not be in fact the main classes of architecture, since the system presents differ-

ent versions of code that are not necessarily directly reflected in the documented architecture.

Moreover, the list of those classes may not be definitive. Maybe, it would be acceptable for

developers to include other classes in that list. This situation is noted for example on PDFBox

software, because only one developer agreed to collaborate to classify the classes set as a key

or non-key class. In this case the ground-truth has a debatable degree of confidence.

3.5.1 Threats to Validity

Even with the careful planning and formal procedures applied during the execution of the ex-

periments, some threats should be considered in the evaluation of the results validity.

External Validity: The representativeness of target systems. Although the 14 systems used

in the approach where some of them are well-known systems and used in other studies, factors

as the number, domain limit the generalization of our results. Other systems would generate

different obstacles to the use of the approach. Other threats to external validity refers to the Java

programming language, which was the only one considered in this study

Internal Validity: Although we have adopted a direct procedure to select the key classes

from the documentation, different interpretations could occur on the intention of the developer

to assume as class as a key one.

Construct Validity: We have used an internally constructed tool suite to run the approach.

Although, the tool has been tested and verified, there still may remain some undetected bug as

occurs with any software. There is no widely recognized and adopted tool support for this kind

of approach, so any other adopted solution would incur a similar threat. We tried to minimize

this threat checking the results in each phase.
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3.6 Concluding Remarks

In this thesis proposal, we have proposed an approach based on mining of method calls to

capture the notion of architecturally relevant classes. We evaluated Keecle with 14 open source

systems to retrieve a reduced number of architecturally relevant classes which enables an initial

understanding of the software architecture. Several phases were proposed to improve precision

and recall.

One of our goals was to show that we can deal effectively with the volume of traces data,

using compression techniques and removing irrelevant data. The evaluation, showed that the

approach produced encouraging values of recall and precision outperforming previous work in

the literature.

Next chapter, we are going to evaluate structural and ownership properties on key classes.
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Chapter4

Understanding Structural and Social

Properties of Key Classes

In the previous chapter, we have proposed Keecle, a dynamic analysis approach for detecting

key classes in a semi-automatic manner. In this chapter, we investigate some properties of key

classes. Several architectural descriptions of real systems are documented using key classes.

However, software documentation may have simplified descriptions from source code, without

a diagnosis of the structural problems that those classes may have.

Under this motivation, we investigate if key classes are more prone to bad smells than non-

key classes and if structural metrics of key classes can be associated to the occurrence of bad

smells. Next, we study whether organizing keys classes in a dependency graph structure can

reveal high level dependency relationships and to produce a degree of adherence with the avail-

able documentation. Finally, we analyze the ownership property of key classes.

4.1 Outline of the Study

Assessing design with all classes of the systems as a starting point is a difficult task. So, ar-

chitecture reconstruction approaches were proposed to retrieve architectural components to fa-

cilitate design assessment. However, these approaches are still difficult to apply and have low

accuracy (GARCIA; IVKOVIC; MEDVIDOVIC̀, 2013b). We have observed that several real-

world systems such as such as Lucene1, Tomcat2 and Javac3 use some few classes to document

its architectural design. So, instead of recovering architectural components, we have described

Keecle in the previous chapter, as a semi-automatic way for finding key classes considered as

important design classes in object-oriented systems.

Key classes are presumably those classes that implement concepts that the developer under-

1 https://lucene.apache.org/core/4_4_0/core/overview-summary.html
2 https://tomcat.apache.org/tomcat-5.5-doc/architecture/overview.html
3 http://openjdk.java.net/groups/compiler/doc/compilation-overview/
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stands as the most important ones to explain the system design. The automatic finding of key

classes was initially proposed by Zaidman and Demeyer (ZAIDMAN; DEMEYER, 2008), but

there is still no concrete evidence that the awareness of them is a useful information for devel-

opers. So, we in investigate the role of key classes as a starting point for understanding and

assessing software design.

To provide more evidence that key classes, especially those recovered by Keecle, can be a

useful source of information for understanding and assessing software design, in this chapter

we investigate structural and social properties of key classes:

• The first studied property is the likelihood of key classes association to bad smells. First,

we analyze the proneness of occurrence of bad smells in key classes compared to the rest

of the classes. Also, we analyze if the occurrence of specific bad smells are associated

with different levels in cohesion and coupling metrics.

• The second studied property is related to the occurrence on circular dependency of key

classes obtained from dependency relationships. We organize key classes in a dependency

graph to explicitly complement and visualize circular dependencies due to the fact these

they could affect the structure of the project. In addition we aim at evaluate whether

dependency graphs are adherent solutions in relation to available documentation. because

typically, these dependencies are neither documented nor complete.

• The third studied property is related to the ownership of key classes and thus has a social

context. We evaluate the distribution of key classes among developers to understand how

ownership compares to non-key classes.

The results of our study indicate that:

• Key classes manifest more often the presence of Complex Class code smell with respect

to non-key classes of a target system. This suggests that among those classes with design

anomaly symptoms, the design-relevant classes would be more likely to impact design

anomaly as a whole.

• Developers would benefit from additional information about complex dependency rela-

tionship, such as circular dependencies in key classes as being a warning to maintenance

activities in the future.

• Developers could prioritize code reviews of commits from ownership of the key classes

to improve the overall design of the system.

4.2 Code Smell and Metrics Assessment

Bad code smells (shortly “code smells” or “smells”) are related to poor implementation and poor

design choices, possibly hindering the software maintenance (BROWN et al., 1998). There
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are several tools available to detect code smells and whenever possible perform refactoring

operations.

Because key classes are presumably related to design, we investigate if there is any associa-

tion of key classes to higher occurrence of bad smells. Moreover, to understand it key classes

are critical for the design quality, we investigate if classical indicators for assessing modularity

(coupling and cohesion) have different levels in key classes compared to non-key classes. We

also investigate the interplay between these indicators and the occurrence of smells. For that,

we pose the following questions.

RQ1: Are key classes more prone to the occurrence of specific bad smells compared to non-key

classes? This question aims at investigating whether key classes are more prone to bad smells

and which kind of bad smells are more common in key classes.

All Java classes of the subject systems were submitted to DECOR for finding code smells.

We use DECOR (MOHA et al., 2010) because as it is considered a state-of-art tool for detecting

smells (TUFANO et al., 2015). The answer to that question is based on the analysis of the

the relative frequency of the several kinds of smell in key classes (kc) compared to non-key

classes (nkc) of the system and the gold set classes (gs) extracted from documentation or from

developers and compared to non-gold set classes (ngs), which is shown in Table 8. We consider

these different classes of groups for subsequent analysis of the results between the groups. So,

we can note similar results between kc and gs. Therefore, in a real situation in which the

documentation is not available or outdated, keecle provides significant results to the developer

to document the design.

The ComplexClass, LongMethod and LongParameterList smell kinds are the most frequent.

Complex classes are more prevalent in key classes across for most systems. But, key classes are

not going to naturally direct to the ComplexClass bad smell, because not all systems evaluated

show this specific smell. Finally, key classes may exist in higher percentage, but not necessarily

be the most complex. The Long Parameter List smell is not very prevalent considering the

universe of methods. Moreover, differently from the Complex Class smell, no sharp differences

were observed in key classes compared to non-key classes. The Long Method smell, similar

to the Long Parameter List is not very prevalent considering the universe of methods, possibly

indicating that although key classes seems to be more complex, their methods do not suffer

much from being long.

On the other hand, there are key classes with bad smells that may have an impact that will

affect some future bad-smells, such as key classes with RefusedParentBequest, SpeculativeG-

enerality, SpaghettiCode ect., and therefore should be resolved in the future during software

maintenance.
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Table 8 – Occurrence of smell in key classes (kc) and gold set (gs)

Bad Smell
#Occurrence %Occurrence # other classes % other classes

gs kc gs kc ngs nkc ngs nkc

JMeter

ComplexClass 5/14 7/17 0.357 0.412 88/769 86/769 0.114 0.111

LongParameterList 2/246 5/271 0.008 0.0185 119/5520 116/5249 0.021 0.022

LongMethod 4/246 4/271 0.016 0.0148 165/5520 165/5249 0.029 0.031

SpaghettiCode 1/17 1/17 0.059 0.059 5/769 5/769 0.006 0.006

AntiSingleton 1/17 1/17 0.059 0.059 35/769 35/769 0.045 0.045

Blob 0 0 0 0 4/769 4/769 0.005 0.005

LazyClass 0 0 0 0 14/769 14/769 0.018 0.018

ClassDataShouldBePrivate 0 0 0 0 11/769 11/769 0.014 0.014

Lucene

ComplexClass 5/12 8/12 0.417 0.471 210/2151 205/2151 0.098 0.091

LongMethod 3/702 8/501 0.004 0.016 281/10847 276/11048 0.026 0.025

LongParameterList 3/702 6/501 0.004 0.012 116/10847 113/11048 0.010 0.010

ClassDataShouldBePrivate 3/12 2/12 0.25 0.118 74/2151 75/2151 0.007 0.033

AntiSingleton 1/12 2/12 0.083 0.118 43/2151 40/2151 0.020 0.018

RefusedParentBequest 1/12 1/12 0.083 0.059 0 1/2151 0 0.000

SpaghettiCode 1/12 1/12 0.083 0.059 0 3/2151 0 0.001

BaseClassShouldBeAbstract 1/12 0 0.083 0 2/2151 3/2151 0 0.001

LazyClass 0 0 0 0 13/2151 13/2151 0.006 0.006

SpeculativeGenerality 0 0 0 0 3/2151 3/2151 0.001 0.001

ManyFieldAttrsButNotComplex 0 0 0 0 1/2151 1/2151 0.0004 0.0004

Ant

LongMethod 7/334 6/261 0.021 0.022 145/8703 146/8876 0.016 0.016

LongParamaterList 5/334 3/261 0.015 0.011 19/8703 21/8876 0.002 0.002

ComplexClass 4/10 3/10 0.4 0.3 88/1195 89/1193 0.073 0.048

RefusedParentBequest 1/10 1/10 0.1 0.1 0 4/1193 0.000 0.002

AntiSingleton 0 0 0 0 0/1195 3/1193 0 0.001

SpeculativeGenerality 0 0 0 0 0/1195 1/1193 0 0.000

ClassDataShouldBePrivate 0 0 0 0 0/1195 9/1193 0 0.005

LazyClass 0 0 0 0 0/1195 41/1193 0 0.022

BaseClassShouldBeAbstract 0 0 0 0 0/1195 4/1193 0 0.002

Javac

LongParamaterList 8/895 11/1321 0.009 0.008 96/7907 93/7481 0.012 0.012

ComplexClass 13/17 11/17 0.765 0.647 82/999 84/999 0.082 0.084

ClassDataShouldBePrivate 3/17 5/17 0.174 0.294 38/999 35/999 0.038 0.035

LongMethod 5/895 3/1321 0.006 0.002 79/7907 81/7481 0.011 0.011

AntiSingleton 0/17 1/17 0 0.059 16/999 15/999 0.016 0.015

BaseClassShouldBeAbstract 1/17 1/17 0.059 0.059 0 10/999 0 0.010

RefusedParentBequest 0 0 0 0 0 4/999 0 0.004

SpaghettiCode 0 0 0 0 0 4/999 0 0.004

LazyClass 0 0 0 0 0 22/999 0 0.022

ManyFieldAttrsButNotComplex 0 0 0 0 0 2/999 0 0.002

Scholar

LongMethod 4/612 4/612 0.006 0.006 6/4.401 6/4.401 0.001 0.001

LongParameterList 1/612 1/612 0.001 0.001 5/4.401 5/4.401 0.001 0.001

LazyClass 1/9 1/9 0.1 0.1 2/415 2/415 0.004 0.004

SpaghettiCode 1/9 1/9 0.1 0.1 6/415 6/415 0.014 0.014

AntiSingleton 1/9 1/9 0.1 0.1 0 0 0 0

ClassDataShouldBePrivate 1/9 1/9 0.1 0.1 2/415 2/415 0.004 0.004

ComplexClass 2/9 2/9 0.2 0.2 4/415 4/415 0.009 0.009

Financial

LongMethod 3/8 4/8 0.375 0.5 25/2011 24/2011 0.012 0.012

LongParameterList 3/8 3/8 0.375 0.375 12/2011 12/2011 0.005 0.005

LazyClass 1/8 1/8 0.125 0.125 13/122 13/122 0.107 0.107

ClassDataShouldBePrivate 1/8 1/8 0.125 0.125 2/122 2/122 0.016 0.016

Continued on next page
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Table 8 – Continued from previous page

Bad Smell
#Occurrence %Occurrence # other classes % other classes

gs kc gs kc ngs nkc ngs nkc

ComplexClass 2/8 3/8 0.25 0.375 20/122 19/122 0.16 0.15

Service Order

LongMethod 3/477 3/477 0.006 0.006 435/49.308 435/49.308 0.009 0.009

LongParameterList 3/477 4/477 0.006 0.006 221/49.308 220/49.308 0.004 0.004

AntiSingleton 1/7 1/7 0.14 0.14 64/3.354 64/3.354 0.019 0.019

ClassDataShouldBePrivate 1/7 1/7 0.14 0.14 64/3.354 64/3.354 0.019 0.019

ComplexClass 3/7 3/7 0.42 0.42 242/3.354 242/3.354 0.072 0.072

PDFBox

LongMethod 3/14 3/14 0.21 0.21 248/8.451 248/8.451 0.029 0.029

LongParameterList 2/14 2/14 0.14 0.14 80/8.451 80/8.451 0.009 0.009

ComplexClass 9/14 10/14 0.64 0.71 203/1.160 203/1.160 0.174 0.714

Xerces

RefusedParentBequest 0 1/6 0 0.17 90/887 90/887 0.101 0.101

LongMethod 0 3/96 0 0.03 57/8.455 60/8.156 0.006 0.007

Log4j

LongParameterList 3/218 2/450 0.013 0.004 65/9.746 66/9.514 0.007 0.007

LongMethod 0 1/450 0 0.002 86/9.746 85/9.514 0.009 0.009

SpeculativeGenerality 0 1/7 0 0.14 1/1.472 1/1.472 0.0007 0.0007

Jetty

LongMethod 1/137 1/115 0.007 0.009 116/12.230 116/12.252 0.009 0.009

LongParameterList 1/137 0 0.007 0 84/12.230 85/12.252 0.007 0.007

JEdit

MessageChains - 6/10 - 0.6 - 119/1.367 - 0.087

LongMethod - 1/678 - 0.001 - 53/6.584 - 0.008

RQ2: Are key classes different in terms of cohesion and coupling metrics compared to non-

key classes? This question aims at investigating usual indicators concerning the quality of

software projects, namely cohesion and coupling. We evaluated four cohesion and coupling

metrics comparing those metrics within two different groups: key and non-key classes. The

COPE (Component Adaptation Environment)(KAKARONTZAS et al., 2013) tool was used

to extract the metrics Ca (Afferent couplings), LCOM (Lack of cohesion in methods), RFC

(Response for a Class) and CBO (Coupling between object classes).

Figure 4 shows the distribution of the values of the cohesion and coupling metrics. We

conducted the Mann–Whitney–Wilcoxon test (OJA, 2011) on all metrics and the results confirm

significant differences between key classes and non-key classes (p < 0.05). However, there is

an interesting point to observe which is although the medians are significantly different, we can

observe that those metrics are not able to precisely define which classes should be considered

key classes because there is a significant number of non-key classes (generally the 25% upper

values) that are mostly coincident with the values for key classes. In other words, we observe

that key classes are in general more prone to worse metrics, however the inverse is not in general

true, i.e., a reasonable part of non-key classes (outliers) are also prone to worse metrics. On

Table 9 shows descriptive statistics and p-values of tests applied on key classes and the gold

set (documentation) to highlight the similarity of data for our purposes, i.e., using Keecle key

classes is as good as using gold set key classes, despite of minor differences.
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Table 9 – Statistic Tests between gold set (gs) and key classes (kc) on metrics

CBO RFC LCOM Ca
gs kc gs kc gs kc gs kc

Min. 0.000 0.000 0.00 0.00 0.00 0.00 0.000 0.000
1st Qu. 2.000 2.000 8.00 8.00 0.00 0.00 1.000 1.000
Median 5.000 5.000 20.00 19.00 5.00 4.00 2.000 1.000
Mean 7.385 7.215 33.98 33.51 233.00 226.06 5.081 4.881
3rd Qu. 9.000 9.000 39.00 38.00 39.00 35.25 4.000 4.000
Max. 218.000 218.000 1260.00 1260.00 215687 215687.00 743.000 743.000
p-value 2.2e−16 2.2e−16 2.2e−16 2.2e−16 2.2e−16 2.2e−16 2.2e−16 2.2e−16

RQ3: What kind of relationship can be found between cohesion/coupling metrics and bad

smells? We want to understand what kind of bad smells are mainly related to cohesion and cou-

pling. For instance, an hypothesis is that a bad smell large and complex key class is associated

with worse cohesion and coupling. Thus, the complexity associated with these key classes can

be related to the fact that classes are more involved in specific smells.

In Table 8 the code smells are basically at three main types: the LongMethod, LongPara-

materList and ComplexClass analyzed in RQ1. In particular, this is an expected result. Long

methods and complex class are related to lower cohesion in classes. Moreover, long parameter

lists and complex classes are also related to high coupling. So, addressing those bad smells

seems to be a natural way to improve these modularity indicators. Moreover, key classes seems

to have higher priority due to its higher impact on the overall design.

Summary of results: Key classes have proportionally more Complex class, Long Meth-

ods and Long Parameter List smells compared to non-key classes. Also, median values

for coupling and cohesion metrics for key classes are significantly worse than for non-key

classes. However, there is a significant number of non-key classes with bad smells and

poor metrics, so we suggest that prioritizing design assessment based on key classes anal-

ysis instead of based on ranked lists of poor-metric classes provides a more focused way

to find more relevant design anomalies supported by the design nature of key classes as

observed during structural properties analyzes.

4.3 Graph Dependency Assessment

Key classes could be used to enable developers focusing on the design of the target system.

An aspect we want to investigate is the possibility of establishing a design view using a de-

pendency graph on key classes, and if this structure is able to reveal important dependencies

of source code such as circular dependencies, which are considered problematic (ZIMMER-

MANN; NAGAPPAN, 2007). More specifically, the study aims at addressing the following

question:

RQ4: Does a dependency graph of key classes provides a meaningful view of the design? To

tackle this question, we propose to create a dependency graph of key classes and then analyze

the degree of adherence between produced output and actual documentation focusing on cir-
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recovers concrete key classes, for Lucene we also considered abstract classes and interfaces

which key classes extend or implement because the gold set have those kind of classes. In Javac

gold set there were only concrete classes.

[a]

org.apache.lucene.analysis.standard

org.apache.lucene.util

org.apache.lucene.analysis

org.apache.lucene.analysis.tokenattributes

org.apache.lucene.demo

org.apache.lucene.search

org.apache.lucene.index

org.apache.lucene.store

org.apache.lucene.document

org.apache.lucene.queryParser

org.apache.lucene

[b]
com.sun.tools.javac.tree

com.sun.tools.javac.comp

com.sun.tools.javac.util

com.sun.tools.javac.code

com.sun.tools.javac.main

com.sun.tools.javac.parser

com.sun.tools.javac.jvm

com.sun.tools.javac.file

com.sun.tools.javac.processing

com.sun.tools.javac

com.sun.tools.javac.api

com.sun.tools.javac.model

com.sun.tools.javac.sym

Figure 6 – Dependency graph. a) Dependency graph for Lucene. b) Dependency graph for
Javac.

Lucene has two main features: indexing and searching represented respectively by classes

IndexWriter and IndexSearch. Initially, documents are indexed to a subdirectory after

being processed to get indexed tokens. Then, the search for related documents can be performed

using queries.

Figure 7(a) represents the layered organization of Lucene dependencies obtained from Lucene’s

SourceForge repository documentation. This layered design will be used as the baseline for

comparison.

Figure 7(c) presents the dependency graph generated from static analysis that shows that

the dependency graph provides complementary information to Figure 7(a), because it is more

lower-level descending to the level of classes. We can observe that dependencies are im-

plicit in the documentation. So, in this example, the dependency graph will offer an addi-

tional support for documentation to make it more clear from the view point of the more depen-

dencies important in terms of key classes, in particular for circular dependency (FSDirectory

←→NIOFSDirectory). In situations where the documentation is not available, the automati-

cally produced graph can be useful to understand the organization of the key classes and their

dependencies.

Figure 7(b) presents a overview of the compilation process in Javac extracted from docu-

mentation. There are three main stages: parsing, processing and generate.

In summary, the six packages performing the main functions are:

- main package controlling the code handling process organized into stages.

8 http://lucene.sourceforge.net/talks/pisa/
9 http://openjdk.java.net/groups/compiler/doc/compilation-overview/
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- code package preparing the code files to be read and processed;

- tree package responsible for creating syntax trees;

- comp package creating class files;

- jvm package generating the bytecodes needed by a JVM;

- parser package responsible for the parsing algorithm.

In the dependency graph of the Figure 7(d) there are circular dependencies for example: (Attr

←→ MemberEnter; MemberEnter ←→ Enter and JCTree ←→ Symbol). We can observe that

the dependencies among the key classes are not as simple as one would expect. Nonetheless,

the suggested dependency graph helps to understand the details of dependencies at a still higher

level of abstraction.

Summary of results: Dependency graph of key classes is an alternative source of in-

formation to assess design because they show the implicit dependencies, show potential

inconsistencies between the code and the documentation and also reveal circular depen-

dencies when they exist. Although dependency graph of key classes may be more lower

level than human-written architectural documentation, they still are acceptably summa-

rized to be evaluated by the developer.

4.4 Ownership assessment

Human factors have been used to represent an important role in the quality of software compo-

nents, and thus in design (NAGAPPAN; MURPHY; BASILI, 2008),(PINZGER; NAGAPPAN;

MURPHY, 2008). One dimension of human factors is team collaboration with diverse responsi-

bility assignment. Ownership is a property that describes whether one person has responsibility

on a software component. Actually, to achieve a concrete proxy for ownership, we consider

ownership as the proportion of number of commits in a class, i.e., the main owner is the one

with highest number of commits. Under this definition, we may have classes with strong own-

ership, or classes where ownership is distributed among several developers.

Table 10 – Number of commits in key classes/non-key classes and number of developers.

System # Commits # Developers

kc nkc

Ant 935 13220 91
JMeter 1085 10474 43
PDFBox 708 5727 18
Javac 279 2347 437
Lucene 705 48384 144
Jetty 557 11788 157
Tomcat 2707 14295 39
JavaCC 550 186 17
Xerces 2630 2855 26
Log4J 277 7091 60
JEdit 2249 6099 57

Understanding the ownership pattern, if any, depending on the type of class may reveal the

level of responsibility placed upon the design of the core developers (GELDENHUYS, 2010).
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We rely on the frequency of commits to define the ownership level and analyze its relationship

to key classes. We also investigate the degree of heterogeneity, i.e., if commits in key classes are

performed by a higher or lower number of developers compared to non-key classes. To perform

this analysis some data was gathered:

(1) The number of commits performed by each developer on classes (ownership level): From

the analysis of the results in Figure 8, we observe that ownership of the main developer (the one

with the highest number of commits) of key classes is in general lower compared to non-key

classes. In fact, the Mann–Whitney–Wilcoxon test showed significant differences between the

medians of the two groups (p < 0.05). Ant, Jetty, Log4j and Lucene, the number of commits

for key classes tends to be less concentrated in a principal developer around 30% of commits

and PDFBox and Log4j around 40% of commits. Finally, Javac, JavaCC, JEDit, JMeter and

Tomcat in relation to previous groups, the number of commits for key classes tends to be more

concentrated in a principal developer around from 60% to 80% of commits. This is an indication

that responsibility in key classes tends to be less concentrated in a principal developer. This

analysis does not mean that there is not a principal developer that conceived the class structure.

The result shows that other developers are also working on key classes instead of leaving the

work to just one person.

(2) The number of commits performed only by two main owners: In Table 11 the relative

ownership was calculated only with commits performed by the two main owners (we removed

the real names of the developers). Noteworthy here is that the top-2 main owners of classes

respond for almost all commits. For Lucene, we noted that only two main owners respond for

almost 99% of all commits in key classes, whereas the same top-2 owners respond for only 60%

of commits in non-key classes. Ant had a similar pattern as Lucene. In JMeter there is sensible

difference, and in Javac the main owner in non-key classes responds for almost all commits of

main owners. Interestingly, Javac has one additional main owner responding for around 10%

of main owner commits in key classes. For other systems we can observe regular distribution

of commits. In Tomcat and Log4j the same top-2 owners respond to key classes and non-key

classes.

For gold set classes, Javac has similar distribution of commits between two owners for kc and

gs sets. For both nkc and ngs sets, the distribution is identical. For other systems the situation

was similar to key classes.

(3) The number of developers who have committed on each class: Table 10 characterizes

the systems in terms of number of commits in key classes/non-key classes and the number of

distinct developers. A complementary analysis shown in the Figure 9 indicates that the number

of the developers that work in key classes is higher when compared to non-key classes. In fact,

this result is consistent with the previous result on ownership: because there are in general more

developers working on key classes, the ownership of the main owner of them tends to be lower.

A possible explanation for this is because there are many non-key classes that have less
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Table 11 – % of commits from owners of key classes (kc) and gold set (gs)

Software Type Developer %commits Software Type Developer %commits

JMeter Xerceskc
SB 98.01

kc
MGR 29.08

MS 1.99 HL 18.7

nkc
SB 94.90

nkc
MGR 28.9

PM 2.58 SDG 16.17

gs
SB 97.52

gs
HL 25.6

MS 2.47 MRG 24.4

ngs
SB 95.12

ngs
MGR 28.9

PM 1.89 SDG 15.9

Lucene Tomcatkc
MM 53.60

kc
MKT 72.9

RM 45.36 KK 10.7

nkc
RM 48.20

nkc
MKT 71.3

MM 13.03 KK 8.7

gs
MM 89.18

gs
MKT 76.4

RM 9.05 KK 6.9

ngs
RM 40.69

ngs
MKT 71.1

MM 18.18 KK 8.8

Ant JavaCCkc
SB 66.43

kc
PC 28.9

PD 28.76 SR 26.9

nkc
PD 36.50

nkc
PC 32.8

SB 33.54 SR 20.9

gs
SB 57.7

gs
PC 32.3

SB 38.37 TC 20.3

ngs
PD 35.88

ngs
PC 31.4

SB 33.65 SR 23.4

Javac PDFBoxkc
kT 78.60

kc
PC 32.8

MC 11.25 AL 24.62

nkc
kT 98.84

nkc
TH 27.3

JJ 0.39 JH 20.2

gs
kT 84.64

gs
TH 31.7

MC 8.07 AL 25.9

ngs
kT 98.84

ngs
TH 27.4

JJ 0.39 JH 20.2

Jetty Log4jkc
GW 31.53

kc
GG 25.4

GWi 25.2 RG 25.11

nkc
JE 25.8

nkc
GG 30.3

GW 19 RG 23.3

gs
GW 30.06

gs
RG 28.2

GWi 25.04 GG 28.1

ngs
PD 35.88

ngs
GG 30.22

GW 19.1 RG 23.11

Despite all classes having a specific role in a system, there are classes that are more important

than others, and are more like to have impact in software design. We identified those classes as

key classes.

We also have shown that key classes have properties that help developers to assess the over-

all design and possibly indicate the critical parts of the system that need attention in order to

improve that overall design quality. However, we need to mention that the set of key classes

recovered of Keecle is not definitive, mainly because of two points. First, the listing of key

classes is sensible to target number of key classes k defined by the user. If the user wants to

manage more detail, a higher k is selected. On the other hand, a lower k may be selected to

assess just a few key classes. The other point is that the set of key classes may vary between

different versions of the system. In this study, we applied the approach to a particular version

of the target systems, so the set of key classes may not be same compared to other versions
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Table 12 – Statistic test between gold set (gs) and key class (kc) on owner and number of de-
veloper

Owner NDeveloper
gs kc gs kc

Min. 11.00 11.00 1.000 1.000
1st Qu. 34.00 50.00 2.000 1.000
Median 50.00 66.00 3.000 2.000
Mean 57.34 67.64 6.958 3.143
3rd Qu. 78.00 100.00 7.000 4.000
Max. 100.00 100.00 34.000 33.000
p-value 3.511e−10 2.2e−16 2.2e−16 2.2e−16

because of design evolution. To analyze design evolution based on key classes, different values

for k should be analyzed based on the assumption that as the size of systems tend to grow so

would be the set of key classes.

The fact that key classes tend to present more structural anomalies compared to other classes

can be linked to the strong control that those classes have on the application. In general, key

classes are able to manage important features of the software, being this fact a possible reason

to increase their general complexity, smell occurrence and dependency violations. The latter is

observed when we analyze key classes in a dependency graph. In particular, Javac may have

presented a higher number of dependency violations because of the large number of key classes.

Lucene showed the worst values of LCOM metric, which can be related to the large number of

classes containing the Long Method smell. On the other hand, in Ant only four smell kinds

were detected, which can be related to the low structural complexity identified by the metrics.

A recent study highlighted the importance of producing documentation containing design

description on open-source projects and emphasizes the main problems found in the current

documentation (ROBILLARD; MEDVIDOVIC̀, 2016). Keecle identifies design key classes,

and organize them into dependency graphs and diagnoses the main problems of the class keys.

As a motivating example to highlight the importance of that diagnosis, Keecle recovered the

IndexWriter key class in Lucene. We identified that this class has the worst LCOM value com-

pared to all system classes (LCOM=9414). The RFC value is 458 and the coupling between

object classes (CBO metric) is equal to 48. These values indicated that IndexWriter is a complex

class and because of that, it has the corresponding kind of smells: ComplexClass, AntiSingleton,

ClassDataShouldBePrivate, LongParameterList and SpaghettiCode. We conducted an analysis

to associate these problems with discussion threads related to IndexWriter available in Lucene

issue tracker5. We found 65 open issues associated with design problems. We searched for

issues related to the terms “refactoring”, “cohesion”, “coupling” and “design” and filtered them

with Unresolved status since 2009. In particular, we found the (Lucene-2026 “Refactoring of

IndexWriter”) issue indicating apply refactoring in IndexWriter and several solutions were pro-

posed, but none were was carried out. Refactoring activities is difficult as they can impact other

classes (FOWLER et al., 1999)(CHAPARRO et al., 2014). This particular issue for IndexWriter

5 https://issues.apache.org/jira/issues/?jql=project%20%3D%20LUCENE
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may remain unresolved, but at least we could quickly report on this situation and the informa-

tion of dependency of IndexWriter with other key classe may prevent other problems being

continually inserted.

In contrast, the QueryParser class was not selected as a key class by Keecle. Analyzing

the structural properties of this class it is the third class with the highest lack of cohesion

(LCOM=2658) between all system classes. In sequence, the value to other metrics were: Ca=1;

RFC=181; CBO=39. DECOR detected three kind of smells: BaseClassShouldBeAbstract,

ClassDataShouldBePrivate and ComplexClass. Although a class with smells is a problem for

the code structure, there are some categories of smells, which are more deeply studied than oth-

ers and those significantly decrease a class design quality. In this case the most relevant smells

in QueryParser are ComplexClass and ClassDataShouldBePrivate. In contrast to IndexWriter

that has five detected worst smells, four of them critical (ClassDataShouldBePrivate, Complex-

Class, LongParameterList and SpaghettiCode) because they are the most frequent and persistent

bad smells) (TUFANO et al., 2015)(CHARALAMPIDOU; AMPATZOGLOU; AVGERIOU,

2015). When we evaluate the issues of QueryParser we found only 13 open issues and Un-

resolved resolutions since 2012. In other words, IndexWriter seems to have more impact on

design compared to QueryParser, and thus should require great priority from developers.

Another similar situation involving LCOM metric is related to cohesion deltas. For under-

standing the evolution aspects, we analyzed PDFBox. We recovered the LCOM of key classes

from 12 releases of that software as shown on Figure 10. In particular we can note that LCOM

of key classes is noticeably higher in relation to non-key classes for all releases analyzed. Thus,

in other words, focusing on key class could drive and reduce developer time to assess the system

design and propose new solutions for future releases.

So, the fact that key classes are design classes could redirect in different forms of refactoring

in relation to the other classes of the system, in order to reduce the complexity of the key classes

in terms of cohesion and coupling. This could help assess the impact of future design decisions

during maintenance activities.

On the ownership of classes, Tufano et al showed that those developers that introduce smells

are generally the owners of the file and they are more prone to introduce smells when they

have higher workloads (TUFANO et al., 2015). The goal of that study was to analyze change

history of software projects, with the purpose of investigating when code smells are introduced

by developers, and the circumstances and reasons behind smell introduction. Considering we

found that the two main owners are responsible for most of the commits of owners in key classes

code inspection on commits of these owners would have greater impact on design.
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for computing metrics and Structure101 rules for detecting dependencies. We used DECOR,

because it was widely evaluated in the literature, with a precision above 60% and a recall of

100% (TUFANO et al., 2015). We are aware that our results can be affected by the presence of

false positives and false negatives. Another threat is the analysis of ownership developer, which

was performed using the Git author information instead of relying on committers (not all au-

thors have commit privileges in open source projects, hence observing committers would give

an imprecise and partial view of the reality). However, there is no guarantee that the reported

authorship is always accurate and complete.

4.6 Concluding Remarks

In this chapter, Keecle was applied to open source and proprietary systems to retrieve a reduced

number of key classes to investigate the assessment of software design.

Accordingly, due to the design importance associated with those classes, one goal was to

investigate structural and ownership properties of key classes compared to non-key classes to

analyze the adequacy of using key classes to prioritize design assessment.

The presence of specific bad smells in key classes and the relationship with the metrics

of cohesion and coupling were investigated. Our results suggest that that developers should

prioritize key classes when assessing design. First, key classes have more Complex class

smells compared to non-key classes. Second, using conventional structural metrics to prioritize

assessment would indicate several non-key classes with poor metrics. Supported by the design

nature of key classes, prioritizing design assessment with key classes analysis may increase the

chances of finding more relevant design anomalies.

Another analyzed property was related to the dependency graph of key classes. The study

showed that the approach produced a meaningful structured view of key classes with respective

violations, suggesting that developers would benefit from that in situations where the software

documentation is not available, or supplementing current documentation with additional in-

formation about dependencies. Finally, on the activity analysis in key classes, we found that

although ownership in key classes has a lower level compared to non-key classes, the number of

main owners seems to be reduced, either for key and non-key classes, suggesting that prioritiz-

ing code review code of owners when committing in key classes would produce more benefits

in design.

In the next chapter, we will presented a description of the two experimental studies con-

ducted around key classes. Specifically, the purpose of this study will be to determine whether

documentation based on key classes produces a positive feedback on developers.
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Chapter5

Experimental Study with Human

Subjects

This chapter contains a description of the two experimental studies conducted around key

classes. Specifically, the purpose of this research study was to determine whether software

documentation based on key classes produces a positive feedback developers.

The major components of this chapter include our research questions and rationale for both

quantitative and qualitative study, software system selection, experiment design, data analysis

procedures, results, discussion and threats to validity.

5.1 Study Design

In the previous chapter, we have shown that a set of key classes highlights classes that are im-

portant from the software design viewpoint, since they present important structural properties,

and therefore are able to represent a general organization of the system. In this chapter, we

investigate from the point of view of developers if design documentation based on key classes

can complement existing documentation or be a replacement for it. The motivation for an ex-

perimental study is to investigate if documentation based on key classes would actually benefit

comprehension activities, since it is constructed using dynamic analysis, and so, would pro-

vide a straight relation to the actual behavior of the software benefiting cognitive activities.

Nonetheless, key classes may not cover all details necessary for understanding the systems, and

thus additional information would still be necessary.

Another aspect is related to the time. We aim at investigating if a software design documenta-

tion based on key classes could help to reduce the time to understand a system. Documentation

based on key classes is simple and straightforward, because the set of key classes tends to be

small. Therefore, such documentation would help on decreasing system understanding time.

The rationale is that a small set of key classes could guide the developer more quickly rather

than navigating on all available source files, in case when documentation is not available. On the
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other hand, key classes would be more complex than ordinary classes, and still understanding

would not be simple.

The experiments had as object of interest, developers during the execution of activities that

require analysis of software documentation. Our goal is to present a comparative analysis of

different groups about the utility and satisfaction regarding the use of documentation based on

key classes compared to the traditional documentation of the target systems. Figure 11 presents

an overview experimental study, highlighting the elements that will be discussed on the next

sections. Information on the configuration of the experiment and of the survey are described in

Appendix A.

Figure 11 – Experimental Study Overview.

We produced a documentation based on key classes for students and developers, to be eval-

uated in two experimental studies. In order to define a documentation based on a previous

standard, we found that, unfortunately, there is no standard that is widely adopted for devel-

oper documentation. A recent work (ROBILLARD; MEDVIDOVIC̀, 2016) highlighted a case

study involving the analysis of architectural documentation of 18 source code softwares. In that

work, each invited contributor re-documented the architecture of a system on a limited number

of pages. Subsequently, the authors of that paper reviewed the documentations and concluded

that there was no uniform criterion for documenting a software application.

Instead of delivering for developers a simple list of key classes, we decided to manually pro-

duce a documentation based on key classes containing information such as dependency graph

between key classes, complexity metrics, code smells, top contributors, trace tree, etc., about
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the software systems. One of the reasons for generating information around key classes is based

on a study presented in (PINTO; STEINMACHER; GEROSA, 2016) (STEINMACHER et al.,

2013), showing that the main barrier for newcomers comprehending a software is the lack of

documentation or if it does not contain organized and adequate content. To define the content

of the documentation which can help developers to grasp the main aspects of a target system,

we performed preliminary meetings with other students and professors. One of the most dis-

cussed aspects were the presence of many lines of code in the documentation to comprehend

the context. This could be one of the main reasons why newcomers abandon projects.

In this way, we produce documentation that highlights the organization of the system into

key classes in a simple and straightforward way, aiming at minimizing the barriers that newcom-

ers face. However, the documentation should also meet the needs of experienced developers,

since we highlight structural information about key classes such as code smells and complex-

ity metrics, which may be useful to developers in future software maintenance and evolution

activities.

5.2 Experimental Study - Comprehension: Key Classes x Tra-

ditional Documentation

In this experiment, the subjects were undergraduate students which would have a profile sim-

ilar to potential newcomers for an open source systems. We replicated this experiment at two

institutions, to investigate if the documentation based on key classes can be used as a starting

point for understanding the design of the application for newcomers, compared to the tradi-

tional system documentation. Our goal is to assess if documentation based on key classes can

be effective alone or can be a complement for comprehension activities. In this experiment, the

control factors were the support material that were distributed among the groups.

5.2.1 Study Questions

Based on five criteria – usefulness, time, learning obstacle, satisfaction and easiness for under-

standing – we establish study questions to verify our hypothesis on key classes:

On the usefulness of key classes:

Q1.1: Does the documentation provide a design description that guide the developer in software

development activities?

Q1.2: Does the documentation provide useful for understanding the overall organization of the

system?

Q1.3: About the information presented in the documentation. What was its usefulness for

understanding the application?

Q1.3: Are methods highlighted for specific classes useful for understanding system design?
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Q1.4: Was the material provided sufficient and adequate to complete the task?

Q1.5: Was the document navigation mechanism useful for the activity?

On the time to evaluate the documentation:

Q2: Does the documentation based on key classes improve the time required to understand an

application when compared to the time required in traditional documentation?

On the learning obstacles presented by the approach:

Q3: Does the documentation available present obstacles that hinder the learning about the

system design by the developer?

On user satisfaction observed using documentation based on key classes:

Q4: Is the developer satisfied with completeness and adequacy of the documentation in order?

On the ease for understanding of the application using documentation based on key classes:

Q5: Is the documentation easy to understand by the developer?

Next sections, we are going to present experimental setting for this experiment.

5.2.2 Human Subjects

The subjects involved in the experiments are volunteer students not previously involved with

the research.

In order to define the subjects and distribute them in groups, we surveyed students for a self-

evaluation: i) knowledge level about the object-oriented paradigm; ii) knowledge level about

software design; iii) how he/she is classified in relation to the other students in the class.

For the sample selection of students, their teachers of the courses in Java and software design

were contacted, and they provided the contact of their students. The participating institutions

are listed below:

• Public institution: Bachelor Degree in Computer Science (labeled as Institution 1);

• Public institution: Bachelor Degree in Technology in Systems for Internet (labeled as

Institution 2);

The subjects accepted a term of agreement, that stated the conditions of the experiment,

including that their identify would not be disclosed. At the end of the experiment the students

received an online questionnaire to assess whether the same were able to participate according

to inclusion and exclusion criteria of the experiments, described bellow. Thus, 36 students from

Institution 1 and 29 students from Institution 2 volunteered to participate.
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5.2.3 Experimental Activity

This experiment consisted in performing a design comprehension activity evaluating the docu-

mentations (traditional or based on key classes) with students from two different institutions to

evaluate the design documentation.

The students from institution 1 analyzed PDFBox documentation and from institution 2 an-

alyzed JEdit documentation. In each institution, students were randomly divided into 3 groups

to available documentation for the comprehension activity. So, the activity of this experiment

was to comprehend the application design from the available documentation analysis.

• Traditional - Traditional documentation only group: evaluated the traditional docu-

mentation, available on the developer’s website, during the comprehension activity;

• Key classes + Traditional documentation - complementary group: evaluated the tra-

ditional documentation, available on the developer’s website and documentation based on

key classes, during the comprehension activity.

• Key classes only - Documentation based on key classes group: evaluated the docu-

mentation based on key classes, during the comprehension activity;

Regarding to the activity complexity, one possible solution would be to read the content

provided in the documentation to locate important components of the application design.

The comprehension activity is designed to be completed in a maximum time limited to 60

minutes for each activity to prevent students spend all the time available to solve the task be-

cause at the final of task the students were solicited to fill out a survey. The experiment was

conducted in a single day because there was no alternation of documentation between groups.

The activities were applied in the computer lab during the class period of the students to guar-

antee a more participants.

5.2.4 Sample Characteristics

As an inclusion criteria, students were invited to attend if the following criteria were met:

• undergraduate students for bachelor’s degree in computer science and bachelor’s degree

in Technology in Systems for Internet;

• Students currently involved in courses that include knowledge about the object-oriented

paradigm and software design.

A questionnaire, was applied to establish a profile of the volunteer. Considering students

from Institutions 1 and 2:
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Table 13 – Profile of subjects - Institutions 1 and 2.

Institution 1 Institution 2

Object-Oriented Programming Object-Oriented Programming

Tradit. Tradit. + Key classes Key classes Tradit. Tradit. + Key classes Key classes

Min 5 1 3 Min 1 6 5
Max 10 10 8 Max 10 9 9
Mean 6.9 6.6 6.4 Mean 5 6.9 7
Median 8 7 8 Median 5 7 7

Software Design Software Design

Tradit. Tradit. + Key classes Key classes Tradit. Tradit. + Key classes Key classes

Min 2 0 0 Min 1 2 1
Max 8 9 9 Max 9 9 8
Mean 4.1 4.7 5.3 Mean 5 4.9 6.2
Median 4 4 5 Median 6 6 6

Compared Knowledge Level Compared Knowledge Level

Tradit. Tradit. + Key classes Key classes Tradit. Tradit. + Key classes Key classes

Min 5 5 4 Min 1 5 5
Max 9 9 8 Max 9 9 9
Mean 7.3 7 6.6 Mean 6 8 7.1
Median 7 7 7 Median 6 8 7

• All are enrolled Computer Science students and were attending or had already attended

courses related to the object-oriented paradigm - Institution 1;

• All are enrolled for Technology in Systems for Internet and were attending or had already

attended courses related to the object-oriented paradigm - Institution 2;

• On the knowledge level related to the object oriented paradigm informed by the subjects

themselves (an auto-evaluation). Using a scale from 0 to 10 we obtain the following

results as observed in the Table 13 in terms of minimum level = min; maximum level=

max; mean and median.

• On the knowledge level in software design attributed by the subjects themselves. Using

a scale from 0 to 10, we obtain the following results as observed in the Table 13 in terms

of minimum level = min; maximum level= max; mean and median

• On the knowledge level classification compared to the other students in the class. Using

a scale from 0 to 10 we obtain the following results as observed in the Table 13 in terms

of minimum level = min; maximum level= max; mean and median.

In relation to the student sample from the two considered institutions, they demonstrate a

reasonable knowledge about the object-oriented paradigm and software design.

5.2.5 Target systems

Two Java applications in well-known domains are our objects of study. We suppose that a

well-known domain should not be a factor that could interfere substantially in the performance

of the subjects. We mined key classes on the target systems and then we define some of the

comprehension questions to assess the quality of the recovered key classes.
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Apache PDFBox Software

The Apache PDFBox library is an open source Java tool for working with PDF documents.

This project allows creation of new PDF documents, manipulation of existing documents and

the ability to extract content from documents. Apache PDFBox also includes several command-

line utilities.

Moreover, we considered this application because, PDFBox is an adequate representative

of real-life programs, having 166 classes distributed across 110 packages, containing the total

of 116464 LOC. It also has good documentation and version control, uses examples that help

developers to use the application. The source code of the application is made available and

finally, the application domain is easy to understand for potential newcomers.

In order to run Keecle to detect the key classes, we considered 13 features obtained from the

present examples in the application source code. We then produced a documentation based on

key classes and contacted the real developer of the application to evaluate the approach. The

documentation based on key classes for PDFBox and it is available in the link of the LASCAM

website1.

The traditional PDFBox documentation, has the following structure:

• Overview: this topic contains help, features ans news about PFFBox;

• License: this topic contains licensing of distributions;

• Downloads: this topic contains information about releases, mirrors, libraries, etc;

• Support: this topic contains questions about how to use PDFBox;

• Mailing lists: this topic contains questions about or problems with Apache PDFBox;

• Issue tracker: this topic contains a knowledge base containing information on each cus-

tomer, resolutions to common problems, and other such data.

• Project team: list of developers with commit privileges that have directly contributed to

the project in one way or another;

• Migration Guide: this topic contains information about environment required;

• Examples: this topic highlights a list of examples which evaluable on SVN2 (a Version

Control System);

• Dependencies: this topic contains APIs required to run PDFBox;

• Building from source code: this topic contains several ways for building the application;

• Coding conventions: this topic contains some rules for formatting text, white space,

structure, etc.

1 http://lascam.facom.ufu.br/pdfbox/PDFBox/theme/
2 http://subversion.apache.org/



98 Chapter 5. Experimental Study with Human Subjects

JEdit Software

JEdit is a mature programmer’s text editor with the following features:

• Extensibility in which plugins can turn jEdit into a very advanced XML/HTML editor,

or a full-fledged IDE, with compiler, code completion, context-sensitive help, debugging,

Visual diff, and many language-specific tools tightly integrated with the editor.

• Customization File Management Search and Replace Source Code Editing General Mul-

tiple open windows, Unlimited undo / redo, copy and paste, Marker locations.

Among the factors that allowed the choice of this application include:

• JEdit has been addressed in several related works;

• Software has good online documentation and control versions;

• The application domain is easy to understand;

In order to mine the key classes, ten more relevant features of JEdit were exercised, these

features were selected by the largest number of classes that were captured by the trace extractor.

In relation to traditional documentation of JEdit this presents the following information:

• Features: A detailed view on the application’s features;

• Compatibility: Provides information on operating systems and recommended Java ver-

sions;

• Reviews: A list of reviews already performed on JEdit;

• Downloads and plugins: this topic contains instructions for installing JEdit and available

plugins and how to use them;

• JavaDoc about application classes.

Next, we produced a documentation based on key classes for JEdit. The documentation

based on key classes is available in the site of the LASCAM research group3.

5.2.6 Variables

The experiments are limited by a set of independent and dependent variables which will be

presented below. To answer the questions in Table 14 the independent variable is the kind of

available documentation:

• traditional documentation, documentation based on key-class, or both.

3 http://lascam.facom.ufu.br/jedit/jEdit/theme/
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Student groups were divided into three groups: a control group (traditional documentation),

the key classes group and the complementary group (using traditional documentation plus doc-

umentation based on key classes). This criterion allows comparing the performance of the

proposed approach.

The dependent variables are the answers provided by the questions from the students. The

questions from Table 14 were used as affirmative sentences because their answers were mea-

sured using the Likert scale:

• 2: Strongly Agree

• 1: Agree

• 0: Neutral - I did not know opine

• -1: Disagree

• -2: Strongly Disagree

Table 14 – Research Questions for Students.

Research Question
Q.1.1 Is the documentation provided a design documentation that guide the developer in software devel-

opment activities?
Q1.2 Is the documentation provided useful for understanding the overall organization of the system by

the developer?
Q1.3 Are the methods highlighted during the definition of some application classes useful for under-

standing the system design?
Q1.4 Are the description about application dependencies clear and useful for understanding the applica-

tion?
Q1.5 Was the document navigation mechanism useful for the activity?
Q2.1 Check below the start and end time of the activity.
Q3.1 Does the documentation available presents problems that limit the learning about the system design

by the developer?
Q4.1 Was the material provided sufficient and adequate to complete the task?
Q5.1 Is the documentation easy to understand by the developer?

5.2.7 Data Analysis Methodology

We applied the Mann-Whitney test differences on the median of two groups. The Kruskal-

Wallis tests were considered when three groups a compared as, described in sequence.

5.2.7.1 Kruskal-Wallis Test

It is equivalent to the non-parametric ANOVA, where the measured variable must be numerical

or ordinal scale and assumptions of normality and homogeneity of variance compromised.

The Kruskal-Wallis test (KRUSKAL; WALLIS, ) is used to test the hypothesis that several

samples (two or more) have the same distribution.

To interpret a Kruskal-Wallis test, key output includes the point estimates and the p-value.

To determine whether any of the differences between the medians are statistically significant,

we compare the p-value to the significance level to confirm/reject the null hypothesis. The
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null hypothesis states that the population medians are all equal. Usually, a significance level

(denoted as α) of 0.05 works well. A significance level of 0.05 indicates a 5% risk of concluding

that a difference exists when there is no actual difference. P-value ≤ α, the differences between

some of the medians are statistically significant and P-value > α, the differences between the

medians are not statistically significant.

5.2.7.2 Mann-Whitney test

The Mann-Whitney U test is often considered the nonparametric alternative to the independent

t-test. The Mann-Whitney test is used to compare differences between two independent groups

when the dependent variable is either ordinal or continuous, but not normally distributed.

Similar to Kruskal-Wallis test, to determine whether the difference between the medians is

statistically significant, we can compare the p-value to the significance level. Usually, a signifi-

cance level α of 0.05 works well. A significance level of 0.05 indicates a 5% risk of concluding

that a difference exists when there is no actual difference. Thus, P-value ≤ α the difference

between the medians is statistically significant and P-value > α, the difference between the

medians is not statistically significant.

5.2.8 Results

In this section the results of the individual questions will be presented for an accurate analysis

of the strengths and weaknesses of the approach. The analysis will be presented by experiment,

and then we will perform a collective analysis of the data.

5.2.8.1 Results - Institution 1

Next, the results will be presented for the experiment performed with 36 students from insti-

tution 1 using the Apache PDFBox application. The test results are summarized in the Table

15 and boxplots are presented on the Figure 12 and will be discussed on the next topics. With

the exception of the time other research questions were answered through a questionnaire that

the subjects answered after the activity. The questions from Table 14 were used as affirmative

sentences because their answers were measured using the Likert scale.

Table 15 – Summarized Results of the Experiment - Institution 1.

Criterion Kruskal-Wallis

chi-squared

p-value Post-Hoc analysis (Tra-

ditional / key-classes +

Traditional)

Post-Hoc

analysis

(Traditional/Key-

classes)

Post-Hoc analy-

sis (Key-classes/

key-classes +

Traditional)

Time 2.4387 0.2954 0.73 0.70 0.26
Navigation Utility 0.18325 0.9124 0.99 0.93 0.98
Documentation Satisfaction 3.4984 0.1739 0.36 0.30 0.99
Method Utility 2.5396 0.2813 0.39 1.00 0.43
Learning Obstacle 4.4508 0.108 0.33 0.13 0.88
Dependencies Utility 0.80561 0.6684 0.77 0.90 0.97
Comprehension Facility 2.5879 0.2742 0.44 1.00 0.41
Usefulness Information 2.8628 0.239 0.30 0.82 0.66
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(equals -1) than the other groups, that is, documentation based on key classes presents fewer

problems than traditional documentation.

Dependencies Utility: Subjects were asked whether the application dependencies descrip-

tion are clear and useful for understanding of the application - The description about application

dependencies are clear and useful for understanding the application. The result for the Kruskal-

Wallis test presented a p-value of 0.6684. When we performed Post-Hoc analysis on the groups,

we did not find significant difference as shown on the Table 15. Therefore, the dependencies

utility with the use of the documentation was not significantly different for the three groups. In

the boxplot of the Figure 12 it is noted for the groups Traditional, Key-classes+Traditional and

Key-classes also presented similar medians. So this suggest that all types all documentation are

similarly adequate to satisfy the comprehension of the developer.

Comprehension Facility: The subjects were asked if the documentation is easy to under-

stand by the developer - The documentation is easy to understand by the developer. The result

for the Kruskal-Wallis test had a p-value of 0.2742 no significant difference was found, as shown

in the Table 15. Therefore, the ease for understanding with the use of the documentation was

not significantly different for the three groups. In the boxplot of the Figure 12 for groups Tradi-

tional, Key-classes+Traditional and Key-classes also presented similar medians equals one for

all groups, suggesting that all types of documentation are similarly adequate to facilitate the

understanding of the application design.

Usefulness Information: The subjects were asked about the useful information contained

in the two documentations (based on key classes and traditional) to perform the comprehension

activity - The documentation provided is a project documentation that guide the developer in

software development activities. They responded according to the boxplots of the Figure 12.

The result for the Kruskal-Wallis test showed a p-value of 0.239, showing that there was no

significant difference in the perception of the documentation usefulness. When we performed

Post-Hoc analysis on the groups, we did not find significant difference as shown on the Table 15.

Analyzing the medians on the boxplots, it is observed that the group Key-classes+Traditional,

which performed the evaluation of the two documentations (based on key classes and tradi-

tional), presented a perception of greater utility. This observation suggests that the two docu-

mentation are complementary to each other.

5.2.8.2 Results - Institution 2

Next, the results for the experiment performed with 29 students from institution 2, using the

JEDit application. The test results are summarized in the Table 16 and boxplots are presented

on the Figure 14. With the exception of the Time other research questions were answered

through a questionnaire that the subjects answered after each activity. The questions from Table

14 were used as affirmative sentences because their answers were measured using the Likert

scale.
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Dependencies Utility: Subjects were asked whether the description of application depen-

dencies are clear and useful for comprehending the application - The description about appli-

cation dependencies are clear and useful for understanding the application. The result for the

Kruskal-Wallis test showed a p-value of 0.5635. When we performed Post-Hoc analysis on the

groups, we also did not find significant difference. In the boxplot of the Figure 14 it is noted for

the groups Traditional, Key-classes+Traditional and Key-classes similar medians equals one.

So, information about the dependencies contained in the documentation based on key classes

and the traditional adequately guide the subjects to the information comprehension.

Comprehension Facility: The subjects were asked if the documentation is easy to under-

stand by the developer - The documentation is easy to understand by the developer. The result

for the Kruskal-Wallis test was a p-value of 0.1443. When we performed Post-Hoc analysis

on the groups, we also did not find significant difference. In the boxplot of the Figure 14, for

groups Traditional and Key-classes presented similar medians equals one. So, information is

organized in the documentation based on key classes and the traditional facilitate the design

comprehension.

Usefulness Information: The subjects were asked about an information utility contained in

the two documentations (based on key classes and traditional) to perform the activities - The

documentation provided is a project documentation that guide the developer in software de-

velopment activities. They answered according to the boxplot of the Figure 14. The result for

the Kruskal-Wallis test presented a p-value of 0.9194. When we performed Post-Hoc analy-

sis on the groups, we did not find significant difference as shown on the Table 16. From the

median of the boxplots, that the information available for all groups have median equals one

suggesting were equally, and suggests that documentation based on key classes can be used in

environments where no documentation is available or outdated and it can complement tradi-

tional documentation.

5.3 Survey with Developers

In this study, the subjects were developers, who analyzed if the documentation based on key

classes could replace the traditional documentation and whether the information contained in

the documentation could support the developers in maintenance activities.

For the developers sample, approximately 29 developers of open source systems and prop-

erty systems were invited to participate. Four developers accepted to participate were three

developers from a private company and one developer was from an open source system. One

of these subjects was acknowledge of the researchers characterizing a possible thread for the

research. To mitigate this threat the research questions were not subjective and involved a real

evaluation activity of the documentation based on key class. In addition, there were control

questions to discard inappropriate subject answers from the analysis.
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5.3.1 Questions of the Survey

Based primarily on six criteria based on quality and utility, the following questions are formu-

lated to investigate our hypothesis on key classes:

Documentation Quality:

Q1.1: Are Dependency graphs important for understanding the main dependencies of the ap-

plication?

Q1.2: Are actually key classes important entities for design/architecture comprehension?

Q1.3: Is this new documentation a design documentation?

Q1.4: Is the provided information useful to complement the understanding of the general orga-

nization of the system?

Q1.5: Can this new documentation replace the traditional documentation of the original devel-

oper used in application?

Q1.6: Is the new documentation is easy to understand?

Q1.7: Is there missing information in the generated documentation?

Key classes Quality:

Q2.1: Are key classes set are enough for evaluating architecture of the application?

Q2.2: Are key classes set adequate starting point to comprehend the application?

Q2.3: Are knowing key classes useful information for software maintenance?

Q2.4: Are knowing key classes useful information for introduction of new functionalities?

Q2.5: Are knowing key classes useful information for bug fixing?

Q2.6: Could if your system has some architectural problems be solved restructuring key classes?

Smell Detection Utility:

Q3.1: Are detected smells presented in the documentation are useful to show design anomalies?

Q3.2: Are knowing detected smells useful information for software maintenance?

Q3.3: Are knowing detected smells useful information for introduction of new functionalities?

Q3.4: Are knowing detected smells useful information for bug fixing?

Trace Tree Utility:

Q4.1: Are the trace trees presented in the documentation useful information to show design

anomalies?

Q4.2: Are knowing trace trees useful information for software maintenance?

Q4.3: Are knowing trace trees useful information for new functionalities?

Q4.4: Are knowing trace trees useful information for bug fixing?

Q4.5: Are the Graphs "All usages" presented in the documentation useful to show design

anomalies?

Q4.6: Are the methods and attributes presented in the documentation useful for software main-

tenance or introduction of new functionalities?
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Dependency Graph Utility:

Q5.1: Are knowing dependency graph useful information for bug fixing?

Q5.2: Are knowing dependency graph useful information for software maintenance?

Q5.3: Are knowing dependency graph useful information for introduction of new functionali-

ties?

Q5.4: Are knowing dependency graph useful information for detecting smells?

Complexity Metrics Utility:

Q6.1: Considering complexity metrics boxplots. Are boxplots set enough for evaluating archi-

tectural problems of the application?

Q6.1: Are knowing complexity metrics useful information for introduction of new functionali-

ties?

Q6.1: Are knowing complexity metrics useful information for software maintenance?

Q6.1: Are knowing complexity metrics useful information for bug fixing?

5.3.2 Sample Characteristics and Inclusion Criterion

Regarding to the inclusion criteria to invite developer to participate in the survey were estab-

lished two criteria:

• Developers with experience in the Java programming language;

• Experience and knowledge level in the target application.

In sequence, developers, they were asked to report their experience level to identify possible

newcomers. All of them reported have a professional experience that goes to from years (from

5 to 11 years), not being newcomers and have the owner profile of the application. About the

open source application developer we checked his information available in OpenHub and this

is a contributor around 8 years and is the manager of the application.

5.3.3 Target systems

Four Java proprietary applications will be our objects of study. We mined key classes on target

systems and then we define some of the comprehension questions to assess the quality of the

recovered key classes and the application design comprehension of them. Proprietary systems

or open source which did not presented evaluable documentation or did not have documentation

based on key classes are adequate to show the feasibility of our approach in an industrial context.

Table 17 reports for each of such (a) Running Scenario (b) the number of lines of code,

(c) the number of packages, and (d) the number of classes. The choice of the systems for

analyzing was driven by distinct size, design and application domain and the developer’s interest
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in collaborating with the evaluation of the approach. In sequence will be present the main

features of target systems, PDFBox was previously discussed.

Table 17 – Characteristics of the systems under analysis.

System # Scenarios LOC Packages Classes

Financial 9 36702 21 130
School 11 59427 40 424

Service order 14 558534 183 3361

Scholar Software

The Scholar is a proprietary system, is destined to regular schools from small to large size,

developed with Java technology.

In order to mine the key classes, we invited its developers to collaborate, so the ten more rele-

vant features of Scholar were pointed out by the owner of the application to exercise them. This

application does not have evaluable traditional documentation so, a documentation based on

key classes was produced. The executed features of the Scholar software are listed in sequence:

• Maintenance of the Bulletin (Release of notes, faults);

• Issuance of the School Report Card;

• Issuance of School Records;

• Registration of goods for maintenance;

• Disciplines control;

• School management;

• Parents and students control;

• Matrix Control of Disciplines;

• Occurrences control of students.

Financial Software

This application is developed in Java language and can register the price tables by modalities

of courses and can include additional rates and amounts according to the financial policy of the

institution. Based on this price list are created payment plans that are flexible to the needs of

the institution.

In order to mine the key classes, we invited its developers to collaborate, so the ten more

relevant features of Financial were pointed out by owner of the application. This application

does not have available traditional documentation. So, a documentation based on key classes

was produced. The executed features of Financial are listed in sequence:
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• Management Tuition;

• Employee Control;

• Enrollment payment management;

• Management of Purchase of school material;

• Control of Sale of school material;

• Management of accounts payable and receivable;

• Cash Flow Control;

• Issuance of bank tickets;

• Issuance of individual and grouped containers;

• Control of pre-dated checks;

• Financial Reports.

Service Order Software

Service Order software is developed in Java technology and allows to link strategic and opera-

tional information with various activities related to providing services.

In order to mine the key classes, we invited its developers to collaborate, so the ten more rel-

evant features of Service Order were pointed out by owner of the application. This application

does not have available traditional documentation, a documentation based on key classes was

produced. In relation to features exercised of Service Order are listed in sequence:

• Multi company;

• Print the Service Order in several formats, including PDF;

• Allows inform the participant technical of the maintenance;

• Registration of goods for maintenance;

• Launch of goods, parts and services totaling the values;

• Component registration with serial number;

• It allows to register identifiers (brand, model, chassis, year);

• Creation general reports;

• Service orders (open, closed or all);

• Collateral management;

• Allows the launch of services based on hours;

• Access control by user and company.
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5.3.4 Experimental Activity

The activity performed with subjects was aimed at verifying if documentation based on key

classes could replace traditional documentation. Moreover, we investigate if the information

contained in the documentation could support developers in different maintenance activities.

To perform the activity for evaluating documentation quality, we provided, for the develop-

ers, a documentation based on key classes for the target systems, which did not have traditional

documentation or did not present a documentation based on key class. In this way, the develop-

ers evaluated the quality of the key classes in terms of recall and precision (presented on chapter

3) and, in addition, the quality and usefulness of the information produced from the key classes.

Regarding the activity complexity, a possible solution would be to read the content provided

in the documentation to assess whether it can be a starting point to highlight relevant structural

aspects of the application to guide developers during evolution activities and if it can replace or

complement traditional documentation.

5.3.5 Control Questions

In this section, we present control questions to meet the understanding level and the degree of

consistency in the answers of the developers. In this sense, for the questions presented below,

we will control the type of response mentioned by the developers. Only answers Disagree or

Strongly Disagree will be accepted considering the likert scale. In this way, for the other type

of answers we will eliminate the developer of the analysis for a specific topic addressed by the

question.

We created two distinct topics related to Icons Pack and Banner contained a set of questions

related.

For the topic referring to Icons Pack. This topic contains control questions in which we

expect a specific kind of reaction. This section aims to minimize the response bias, since one of

the contributors was the researcher’s contact.

The first control question is to comprehend if - Icons pack are useful to comprehend archi-

tecture or design system. Analyzing the Table 18 we can observe that a small number (on two

systems) of developers disagreed. So, we did not considered answers equals to Agree on our

result analysis for questions related to comprehend architecture or design system. One reason

for this might be not understanding the question and having adopted a different criterion to

answerer to it. The set of icons presented may indicate to the developers the abstract repre-

sentation of the features and functionalities present in the systems and therefore, be useful to

comprehend the design, but in particular the interaction design.

A similar situation was found in the following control sentence - Icons pack are useful to

detect smells. Icons pack is not related for detecting smells. So, we expected that developers
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Table 18 – Opinion from developers about if icons pack are useful to comprehend architecture
or design system.

Software/Likert scale # Developers Strongly Disagree Disagree Neutral Agree Strongly Agree

Service Order 3 - - - 100% -
Scholar 3 - 33.33% - 66.67% -
Financial 3 - 66.67% - 33.33% -

answered (Disagree or Strongly Disagree). We can observe on the Table 19 that few developers

disagreed (on two systems). We did not considered answers equals to Agree on our result

analysis related to detect smells. A possible reason for this is that developers had little or no

contact with the bad smells concept, and this may have affected the decision making.

Table 19 – Opinion from Developers about icons pack are useful to detect smells.

Software/Likert scale # Developers Strongly Disagree Disagree Neutral Agree Strongly Agree

Service Order 3 - - - 100% -
Scholar 3 - 33.33% - 66.67% -
Financial 3 - 66.67% - 33.33% -

A positive situation occurred for another control sentence - Icons pack are useful to evaluate

complexity metrics. On the Table 20 the most of developers disagreed about the icons pack

utility for evaluating metrics. In this situation we also did not considered answers equals to

Agree on our result analysis for questions related to evaluate complexity metrics.

Table 20 – Opinion from Developers about if icons pack are useful to evaluate complexity met-
rics.

Software/Likert scale # Developers Strongly Disagree Disagree Neutral Agree Strongly Agree

Service Order 3 - 66.67% - 33.33% -
Scholar 3 - 100% - - -
Financial 3 - 100% - - -

Next control sentence: Icons pack are useful for software maintenance or introduction of

new functionalities. In this case a small number of developers also were disagree (Table 21).

In this situation we also did not considered answers equals to Agree on our result analysis for

questions related to software maintenance or introduction of new functionalities. A possible

reason on icons pack is intuitive to manage features already existing on the application, so the

addition, adaptation and organization to new features can be facilitated.

Table 21 – Opinion from Developers about if icons pack are useful for software maintenance or
introduction of new functionalities.

Software/Likert scale # Developers Strongly Disagree Disagree Neutral Agree Strongly Agree

Service Order 3 - 66.67% - 33.33% -
Scholar 3 - 33.33% - 66.67% -
Financial 3 - 66.67% - 33.33% -

Next topic is another control topic named Banner Section. We included a company logo on

the documentation based on key classes. In this topic we expected a specific kind of reaction,

so this section aims to minimize the response bias. First control sentence we want to know if
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Banner is useful to comprehend architecture or design system. The most of developers agreed,

this was negative situation (Table 22), we can observe that a small number (on two systems)

of developers disagreed. So, we did not considered answers equals to Agree on our result

analysis for questions related to comprehend architecture or design system because banner is

not related to comprehend architecture or design system. This was the last section of the survey

that contained 36 questions. A possible explanation for the kind of answer may be related to

the developer’s dismay, tiredness, workload, and carelessness in evaluating that question.

Table 22 – Opinion from Developers about banner to comprehend architecture or design sys-
tem.

Software/Likert scale # Developers Strongly Disagree Disagree Neutral Agree Strongly Agree

Service Order 3 - 33.33 - 66.67% -
Scholar 3 - - - 100% -
Financial 3 - 33.33% - 66.67% -

Next control sentence: Banner is useful to detect smells. We had a positive perception of

developers (Table 23). The most of developers disagreed about to use banner to detect smells.

We did not considered answers equals to Agree on our result analysis for questions related to

detect smells. A similar situation was verified on next control sentence Banner are useful to

evaluate complexity metrics - (Table 24).

Table 23 – Opinion from developers about banner to detect smells.

Software/Likert scale # Developers Strongly Disagree Disagree Neutral Agree Strongly Agree

Service Order 3 - 100% - - -
Scholar 3 - 66.67% - 33.33% -
Financial 3 - 100% - - -

Table 24 – Opinion from Developers about banner to evaluate complexity metrics.

Software/Likert scale # Developers Strongly Disagree Disagree Neutral Agree Strongly Agree

Service Order 3 - 33.33% - 66.67% -
Scholar 3 - 66.67% - 33.33% -
Financial 3 - 100% - - -

However, developers were not always coherent to answer the control sentence - Banner is

useful for software maintenance or introduction of new functionalities. On the Table 25, we can

observe that a small number (on two systems) of developers disagreed. We did not considered

answers equals to Agree on our result analysis for questions related to software maintenance or

introduction of new functionalities.

Table 25 – Opinion from developers if banner is useful for software maintenance or introduction
of new functionalities.

Software/Likert scale # Developers Strongly Disagree Disagree Neutral Agree Strongly Agree

Service Order 3 - 33.33% - 66.67% -
Scholar 3 - 33.33% - 66.67% -
Financial 3 - 100% - - -
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5.3.6 Results

The results will be presented for the survey performed with 4 developers from 4 software sys-

tems (3 proprietary software and 1 open source software). We constructed a documentation

based on key classes available to guide developers during comprehension activities. We created

a minimum and direct documentation to contextualize key classes for developers with some

useful information that helps to understand general concepts about the target software.

The research questions were answered through the questionnaire after evaluating the docu-

mentation produced around the key classes.

The survey was answered in two steps: the first step was to verify the feasibility and quality

of a documentation based on key classes. The second step it was to verify feasibility and quality

of a documentation based on key classes to support maintenance tasks. We applied this control

on second step, so to six criteria presented in Section 5.3.1 Documentation Quality and Key

classes Quality were not applied control.

5.3.6.1 Documentation Quality

We asked to the developers their opinion on the organization of key classes using dependency

graphs, as an important factor for understanding the structure of the application - (Dependency

graphs are important for understanding the main dependencies of the application). All devel-

opers answered "Agree" (Table 26). On this fact key classes could be used to enable developers

focus on the design of the target system.

An aspect we want to investigate is the possibility of establishing a design view using a

dependency graph on key classes, and whether this structure is able to reveal important depen-

dencies of source code such as circular dependencies as showed in Figure 16 (PDDocument

↔ COSWriter and PDDocument ↔ PDFParser) extracted from PDFBox using key classes,

which are considered problematic. More specifically, a dependency graph of key classes can

provide a meaningful view of the design, so we propose to create a dependency graph of key

classes because it could reveal inconsistencies or provide additional information. In case in that

the documentation is available, but it does not necessarily match what is in the source code,

either because it shows only a simplified picture, or because it is outdated. The dependency

graph of the main classes of the system can be useful source of information to assess design

because they show the implicit dependencies and display undesirable dependencies such as

circular dependencies when they exist.

Table 26 – Importance Level for Dependency Graphs.

Software # Developers Strongly Disagree Disagree Neutral Agree Strongly Agree

Service Order 3 - - - 100% -
Scholar 3 - - - 100% -
Finanial 3 - - - 100% -
PDFBox 1 - - - 100% -



5.3. Survey with Developers 115

FontFileFinder PDDocument

PDFParserCOSWriter

COSDocument

PDPage

PDAnnotationTextMarkup

PDPageContentStream

PDFontDescriptor

TrueTypeFont

FontFormat PDGraphicsState

PDFTextStripper

Figure 16 – Dependency Graph for Apache PDFBox.

The sentence to investigate: Key classes are important entities for design/architecture com-

prehension. In fact, for all systems their developers agreed (Table 27) with that affirmative

because those classes have an important role on the system, and there are classes (considering

key classes) that are more important than others, and have more impact in software design. In

addition, key classes tending to present more structural anomalies compared to other system

classes, this can be linked to the strong control that those classes have on the application. Thus,

this finding suggests that focusing the study on key classes would help developers to assess the

overall design and possibly indicate the critical parts of the system that need attention in order

to improve that overall design quality.

Table 27 – Importance Level of Key Classes for Design/Architecture Comprehension.

Software/Likert scale # Developers Strongly Disagree Disagree Neutral Agree Strongly Agree

Service Order 3 - - - 100% -
Scholar 3 - - - 100% -
Financial 3 - - - 100% -
PDFBox 1 - - 100% -

Next sentences intend to evaluate the quality of the presented documentation. So, we asked

if - This new documentation is a design documentation. The PDFBox developer do not have

an opinion. Although, this result is apparently negative, it was somehow expected. One of

the reasons is that the PDFBox application has a traditional documentation available. Another

factor relates to the developer’s experience level with strong knowledge of the code in some

cases eliminates the need for documentation. On the other hand, in environments where there

is no documentation available, the reaction of the developers was positive in most cases (see

Tables 28 e 29). In this situation, we observe mainly that a documentation based on key classes

can complement the traditional documentation of the original developer used in application.

In sequence, we asked if - The provided information is useful to complement the under-

standing of the general organization of the system. The most of developers agreed about this
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Table 28 – Opinion from Developers about Design Documentation.

Software/Likert scale # Developers Strongly Disagree Disagree Neutral Agree Strongly Agree

Service Order 3 - - - 100% -
Scholar 3 - - - 100% -
Financial 3 - - - 100% -
PDFBox 1 - - 100% - -

affirmation (Table 29). The set of key classes highlights classes that are important from the

design viewpoint, since they present important structural properties, and therefore are able to

represent a general organization of the system.

Table 29 – Opinion from Developers about if the provided information is useful to complement
the understanding of the general organization of the system.

Software/Likert scale # Developers Strongly Disagree Disagree Neutral Agree Strongly Agree

Service Order 3 - - - 100% -
Scholar 3 - - - 66.67% 33.33%
Financial 3 - - - 100% -
PDFBox 1 - 100% - - -

We asked if - This new documentation can replace the traditional documentation of the orig-

inal developer used in application. On Table 30 developers do not have a clear opinion about

this topic. A reason about this could be the documentation based on key classes is produced us-

ing dynamic analysis, providing a straight relation to the actual behavior of the software would

benefit cognitive activities, and therefore producing more accurate solutions during comprehen-

sion activities. However, key classes could not cover all details necessary for understanding the

systems, and thus additional information would still be necessary.

Table 30 – Opinion from Developers about if the new documentation can replace the traditional
documentation of the original developer used in application.

Software/Likert scale # Developers Strongly Disagree Disagree Neutral Agree Strongly Agree

Service Order 3 - - 67.67% 33.33% -
Scholar 3 - - 33.33% 66.67% -
Financial 3 - - 100% - -
PDFBox 1 - 100% - - -

We want to evaluate whether a general documentation in key classes is easy to understand -

The new documentation is easy to understand. Table 31 showed that the most of developers had

positive perception level in relation for comprehension facility (property systems developers).

One possible explanation for this is due to the absence of reference documentation or a crite-

ria for producing documentation that could be used as a benchmark. The PDFBox developer

disagree. Although, this result is apparently negative, it was somehow expected. One of the

reasons is that the PDFBox application has a traditional documentation available. Another fac-

tor relates to the developer’s experience level with strong knowledge of the code in some cases

eliminates the need for documentation.

Next sentences are regarding key classes information quality. First, PDFBox developer

points out that there is missing information in the generated documentation - There is miss-

ing information in the generated documentation. Analyzing Table 32 we credit this problem to
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Table 31 – Opinion from developers about comprehension facility.

Software/Likert scale # Developers Strongly Disagree Disagree Neutral Agree Strongly Agree

Service Order 3 - - - 100% -
Scholar 3 - - - 100% -
Financial 3 - - 100% - -
PDFBox 1 - 100% - - -

the reasonably low recall. However, we need to mention that the set of mined key classes is

not definitive, mainly because of two points. First, the listing of key classes is sensible to target

number of key classes k defined by the user. If the user wants to manage more detail, a higher

k is selected. On the other hand, a lower k may be selected to assess just a few key classes. The

other point is that the set of key classes may vary between different versions of the system. In

this study, we applied the approach on the last version of the target systems, so the set of key

classes may not be same compared to other versions because of design evolution. To analyze

design evolution based on key classes, different values for k should be analyzed based on the

assumption that as the size of systems tend to grow so would be the set of key classes.

On the other hand, in environments where there is no documentation available, the reaction

of the developers was neutral for all cases. We believe this reaction is due to absence of a stan-

dard documentation to compare the available information making it a barrier to disseminating

architectural knowledge.

Table 32 – Opinion from Developers about missed information in the generated documentation.

Software/Likert scale # Developers Strongly Disagree Disagree Neutral Agree Strongly Agree

Service Order 3 - - 100% - -
Scholar 3 - - 100% - -
Financial 3 - - 100% - -
PDFBox 1 - - - 100% -

For next research questions were answered only by proprietary system developers and ap-

plied the control questions to clear the answers. We contacted PDFBox developer to answer

some more questions related to the effectiveness of the documentation for different tasks, but

we did not have feedback.

5.3.6.2 Quality of Key Classes

The next sentence is intended to know if - Key classes set are adequate starting point to compre-

hend the application. Analyzing Table 33 we can conclude a positive perception in relation to

the starting point to comprehend an application. Documentation based on key classes is simple

and straightforward, because the set of key classes tends to be small. Therefore, documentation

based on key classes would have help on decreasing system understanding time. The rationale

is that a small set of key classes can guide the developer more quickly rather than navigating

on all available source files, in case when documentation is not available. On the other hand,

key classes would be more complex than ordinary classes, and still understanding would not be

simple.
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Table 33 – Opinion from Developers about key classes set are adequate starting point to com-
prehend the application.

Software/Likert scale # Developers Strongly Disagree Disagree Neutral Agree Strongly Agree

Service Order 3 - - - 100% -
Scholar 3 - 33.33% - 66.76% -
Financial 3 - - - 100% -

Other sentences are intended to know if:

• Knowing key classes are useful information for software maintenance. - Table 34;

• Knowing key classes are useful information for introduction of new functionalities. -

Table 35;

• Knowing key classes are useful information for bug fixing. - Table 36;

• Consider complexity metrics boxplots and bad smells information. If your system has

some architectural problems could be solved restructuring key classes. - Table 37.

For these sentences the most of developers agreed. This reaction is expected for us. Docu-

mentation based on key classes highlights structural properties important of the application and

therefore they are a guide in maintenance distinct activities.

Table 34 – Opinion from Developers about if Knowing key classes are useful information for
software maintenance.

Software/Likert scale # Developers Strongly Disagree Disagree Neutral Agree Strongly Agree

Service Order 1 - - - 100% -
Scholar 1 - - - 100% -
Financial 2 - - - 100% -

Table 35 – Opinion from Developers about if key classes are useful information for introduction
of new functionalities.

Software/Likert scale # Developers Strongly Disagree Disagree Neutral Agree Strongly Agree

Service Order 1 - - - 100% -
Scholar 1 - - - 100% -
Financial 2 - - - 100% -

Table 36 – Opinion from Developers about if knowing key classes are useful information for
bug fixing.

Software/Likert scale # Developers Strongly Disagree Disagree Neutral Agree Strongly Agree

Service Order 3 - - - 100% -
Scholar 3 - 66.67% - 33.33% -
Financial 3 - - - 100% -

5.3.6.3 Smell Detection Utility

We formulated Smell Detection Section to evaluate some sentences such as if - Detected smells

presented in the documentation are useful to show design anomalies. The developers agreed

with this sentence as shown on the Table 38. As shown in an earlier chapter some bad smells
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Table 37 – Opinion from Developers about consider complexity metrics boxplots and bad
smells information.

Software/Likert scale # Developers Strongly Disagree Disagree Neutral Agree Strongly Agree

Scholar 1 - - - 100% -
Financial 2 - - - 100% -

Table 38 – Opinion from Developers about if smells presented in the documentation are useful
to show design anomalies.

Software/Likert scale # Developers Strongly Disagree Disagree Neutral Agree Strongly Agree

Scholar 1 - - - 100% -
Financial 2 - - - 100% -

such as long parameter lists and complex classes are related to high coupling, so these are a

natural way to improve these modularity indicators.

A similar and positive perception (Table 39) was observed on the next sentence to know if

- Knowing detected smells are useful information for software maintenance. This is expected

for us, because as most bad smells are concentrated on key classes, then developers should

prioritize them due to their higher impact on the overall design.

Table 39 – Opinion from Developers about if knowing detected smells are useful information
for software maintenance.

Software/Likert scale # Developers Strongly Disagree Disagree Neutral Agree Strongly Agree

Scholar 1 - - - 100% -
Financial 2 - - - 100% -

We asked if - Knowing detected smells are useful information for introduction of new func-

tionalities. One developer did not have concrete opinion about this (Table 40). A possible

reason would be that developers had not yet experienced a similar situation, for example using

bad smells information for introduction of new functionalities.

Table 40 – Opinion from Developers about if knowing detected smells are useful information
for introduction of new functionalities.

Software/Likert scale # Developers Strongly Disagree Disagree Neutral Agree Strongly Agree

Service Order 1 - - - 100% -
Scholar 1 - 100% - - -
Financial 2 - - - 100% -

However, a positive perception was collected for the sentence - Knowing detected smells are

useful information for bug fixing. A possible reason is the fact bugs can be related to design

anomalies and consequently to bad smells as shown on the Table 41.

5.3.6.4 Trace Tree Utility

We also created a section for evaluating the documentation based on key classes regarding trace

tree utility. The first question is if - Trace trees presented in the documentation are useful in-

formation to show design anomalies. The most of developers agreed with this sentence (Table
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Table 41 – Opinion from Developers about if knowing detected smells are useful information
for bug fixing.

Software/Likert scale # Developers Strongly Disagree Disagree Neutral Agree Strongly Agree

Scholar 1 - - - 100% -
Financial 2 - - - 100% -

42). In fact, trace trees can show unwanted call sequences and consequently can be useful for

evaluating design anomalies. So, developers can benefit from tree structure and recommend

changes during maintenance activities as shown on Table 43 for evaluating the following sen-

tence: Knowing trace trees are useful information for software maintenance.

Table 42 – Opinion from Developers about if Trace trees presented in the documentation are
useful information to show design anomalies.

Software/Likert scale # Developers Strongly Disagree Disagree Neutral Agree Strongly Agree

Service Order 3 - 33.33% - 66.67% -
Scholar 3 - 33.33% - 66.67% -
Financial 3 - 33.33% - 66.67% -

Table 43 – Opinion from Developers about knowing trace trees are useful information for soft-
ware maintenance.

Software/Likert scale # Developers Strongly Disagree Disagree Neutral Agree Strongly Agree

Service Order 1 - - - 100% -
Scholar 1 - - - 100% -
Financial 2 - - - 100% -

In sequence, we asked if - Knowing trace trees are useful information for new functionalities.

Trace trees are useful for feature location and the developers (Table 44) can use their structure

to find a adequate strategy to include new functionalities minimizing the degradation of the

system structure.

Table 44 – Opinion from Developers about if knowing trace trees are useful information for
new functionalities.

Software/Likert scale # Developers Strongly Disagree Disagree Neutral Agree Strongly Agree

Service Order 1 - - - 100% -
Scholar 1 - - - 100% -
Financial 2 - 50% - 50% -

The developers in general presented positives (Table 45) to use trace trees information for

bug fixing - Knowing trace trees are useful information for bug fixing. A bug may be associated

with a particular feature of the application. Developers can use the information available in the

tree structure to evaluate sequence of called classes and methods to find bugs.

Next sentence we are going to know if - Graphs "All usages" presented in the documentation

are useful to show design anomalies. The most of developers as show on the Table 46 agreed.

Graphs "All usages" show all classes used by a specific key class and all classes which use

a specific key class. So, this graph can be useful to show undesirable anomalies based on

relationship among classes.
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Table 45 – Opinion from Developers about if knowing trace trees are useful information for bug
fixing.

Software/Likert scale # Developers Strongly Disagree Disagree Neutral Agree Strongly Agree

Service Order 3 - 66.67% - 33.33% -
Scholar 3 - 33.33% - 66.67% -
Financial 3 - - - 100% -

Table 46 – Opinion from Developers about Graphs "All usages" o show design anomalies.

Software/Likert scale # Developers Strongly Disagree Disagree Neutral Agree Strongly Agree

Service Order 3 - 33.33% - 66.67% -
Scholar 3 - 33.33% - 66.67% -
Financial 3 - - - 100% -

The following sentence - Methods and attributes presented in the documentation are useful

for software maintenance or introduction of new functionalities. In general developers agreed

(Table 47). Methods associated to roots of the key classes in the execution trace tree have been

highlighted, for example showing code examples and their role in the class. In addition, other

important methods contained on a key class have also been emphasized. As key classes have

a high impact on software design, evaluating information on such methods can be useful in

assessing the impact of the new feature.

Table 47 – Opinion from Developers about if methods and attributes presented in the documen-
tation are useful for software maintenance or introduction of new functionalities.

Software/Likert scale # Developers Strongly Disagree Disagree Neutral Agree Strongly Agree

Service Order 1 - - - 100% -
Scholar 1 - 100% - - -
Financial 2 - - - 100% -

5.3.6.5 Dependency Graph Utility

Dependency Graph Section is intended to evaluate the opinion of the developers if - Knowing

dependency graph are useful information for bug fixing. As shown on the Table 48 developers

considered useful to use dependency graph for bug fixing. In fact, key classes dependency graph

can provide a starting point to investigate and locate classes that contain bugs. Because bugs

can be associated to undesirable dependencies mainly to key classes which have high impact on

the design software.

Table 48 – Opinion from developers about if knowing dependency graph are useful information
for bug fixing.

Software/Likert scale # Developers Strongly Disagree Disagree Neutral Agree Strongly Agree

Service Order 3 - 66.67% - 33.33% -
Scholar 3 - - - 100% -
Financial 3 - - - 100% -

Developers had a positive perception about to use dependency graph for software mainte-

nance and introduction of new functionalities: Knowing dependency graph are useful informa-

tion for software maintenance - (Table 49) and Knowing dependency graph are useful infor-

mation for introduction of new functionalities - (Table 50). In fact, dependency graph show an
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overview of the most important relationship of the application and so, this an relevant infor-

mation for evaluating the impact to include new functionalities during software maintenance

activities.

Table 49 – Opinion from Developers about dependency graph for software maintenance.

Software/Likert scale # Developers Strongly Disagree Disagree Neutral Agree Strongly Agree

Service Order 1 - - - 100% -
Scholar 1 - - - 100% -
Financial 2 - - - 100% -

Table 50 – Opinion from Developers about if knowing dependency graph are useful information
for introduction of new functionalities.

Software/Likert scale # Developers Strongly Disagree Disagree Neutral Agree Strongly Agree

Service Order 1 - - - 100% -
Scholar 1 - - - 100% -
Financial 2 - - - 100% -

On the sentence - Knowing dependency graph are useful information for detecting smells.

Developers agreed (Table 51). A possible reason is that dependency graph presents an overview

of the key classes in terms of relationship. If classes are more prone to present high coupling

and low cohesion, so they can be a adequate starting point to investigate bad smells information.

Table 51 – Opinion from developers about if Knowing dependency graph are useful information
for detecting smells.

Software/Likert scale # Developers Strongly Disagree Disagree Neutral Agree Strongly Agree

Scholar 1 - - - 100% -
Financial 2 - 50% - 50% -

5.3.6.6 Complexity Metrics Utility

On section named Complexity Metrics, firstly we asked to developers if - Considering com-

plexity metrics boxplots. Boxplots set are enough for evaluating architectural problems of the

application. This result (Table 52) is expected for us, complexity metrics are adequate to ana-

lyze architectural problems, because they can evaluate cohesion and coupling measures.

Table 52 – Opinion from developers about if boxplots set are enough for evaluating architectural
problems of the application.

Software/Likert scale # Developers Strongly Disagree Disagree Neutral Agree Strongly Agree

Service Order 1 - - - 100% -
Scholar 2 - - - 100% -
Financial 3 - - - 100% -

Next sentence is intended to verify if - Knowing complexity metrics are useful information

for introduction of new functionalities. The most of developers had negative perception about

this context (Table 53). One possible reason for this may be related to the knowledge high level

about the code since these developers are the owners of the application and therefore do not



5.4. Threats to Validity 123

feel the need to evaluate of the application complexity as an initial step to the addition of new

functionalities. On the Tables 54 and 55 we asked the respective sentences: Knowing complexity

metrics are useful information for software maintenance; and Knowing complexity metrics are

useful information for bug fixing, developers were undecided. We believe that this is due to the

lack of experience with this kind of evaluation during maintenance activities.

Table 53 – Opinion from Developers about complexity metrics are useful information for intro-
duction of new functionalities.

Software/Likert scale # Developers Strongly Disagree Disagree Neutral Agree Strongly Agree

Service Order 1 - 100% - - -
Scholar 1 - - 100% - -
Financial 2 - 100% - - -

Table 54 – Opinion from developers about complexity metrics for software maintenance.

Software/Likert scale # Developers Strongly Disagree Disagree Neutral Agree Strongly Agree

Service Order 1 - - - 100% -
Scholar 1 - - - 100% -
Financial 2 - 50% - 50% -

Table 55 – Opinion from developers about complexity metrics for bug fixing.

Software/Likert scale # Developers Strongly Disagree Disagree Neutral Agree Strongly Agree

Service Order 1 - - - 100% -
Scholar 2 - 50% - 50% -
Financial 3 - 66.67% - 33.33% -

5.4 Threats to Validity

There are several threats to validity that we will categorize in relation to subjects (students and

developers), activities and others.

5.4.1 Subjects

Participant’s willingness to participate: the participant’s performance during the execution of

an activity is influenced by the subject at that time available. The subject may mood be diverse:

excited, tired and upset and this factor may interfere with his concentration and comprehension

capacity. In experiments with students groups in institutions were performed on the same day

and, it was just one comprehension activity. For developers, the documentation assessment

based on key classes was performed in day, place and schedule of their choice. Even the delivery

date of the questionnaires was also negotiated, when they could not meet the deadline. Another

factor that mitigate this threat is that the participants were volunteers and they were told they

could give up the activities at any time.

Familiarity of the participants with the documentation: the environment and the lack of

clarity and knowledge of the technical terms used in the documentation may interfere on the

results. In addition, there may be a lack of clarity about the objectives and details of carrying
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out the activities. To mitigate this threat, to the students groups instructions were provided and

they had contact with the environment used. However, learning and adaptation can vary among

subjects and therefore interfere with results. About the developers, the same threat is observed

for developers and moreover, it is necessary to consider the workload and the venue to assess

the documentation chosen by himself.

Subjectivity of the definition about which elements of the documentation and code are

useful, complex or important to the execution of the activities from the point of view of the

participant. Since each element of the documentation can have a distinct relevance level for

each subject, according to the knowledge and experience level of the participants. To mitigate

this threat we consider an adequate number of participants in the experiments. Another threat is

related to the criteria based on Likert scale has individual interpretation. To mitigate this threat

it is necessary to well define the meaning of each value in the scale to avoid bias interpretation.

Subjects may have some kind of knowledge about the development new approach. To

mitigate this threat, no subject involved with the research participated in the experiments. The

subjects did not know the questions and did not know what documentation was the result of

the approach. The developers knew they were evaluating the documentation produced by our

approach. To mitigate this threat, we consider some control questions to minimize the influence

of the positiveness of the subjects.

5.4.2 Activities

Complexity of tasks. They can impact on the time. To mitigate this threat, simple activities

were proposed. A situation is observed on the developers and students is about the difficulty

degree is related to the activity complexity (required knowledge), such as classes, methods,

documentation analysis that employ the use of terms that are unknown among the subjects

involved. Another way to mitigate this threat was to instruct students and developers presenting

the organization of documentations and concepts that would not usual among participants.

Activities may have been difficult for the experiment. However, most of the participants

completed the activities within the time limit and there were no withdrawals. Another factor

taking into consideration was the low student experience and the duration of the experiments.

In this way, the planning and the complexity of the activities took into account these two fac-

tors. Within experiment with developers the time was not estimated to complete to analyze the

documentation and the level of the activities was simple, minimizing effect of the threat.

5.4.3 Other Threats

The size and content of the documentations. can influence the ability to query and use them.

The two types of documentation (traditional and based on key classes) presented distinct con-

tent, but similar in relation to the size. Thus, the effort to evaluate the two documentation would
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not be influenced by the size of the documentation.

Experimenter Effects (researcher). This effect may occur because the researcher is in-

volved with the proposal. In this could, there may be unconscious influence of the researcher

when instructing the participant subjects, choosing questions, selecting the experiments, etc. In

the adhesion document of the participant, the subjects were asked for strict sincerity in their

answers.

5.4.4 External Validity

The generalization of our results can be hampered by the limited representativeness of subjects

and tasks.

Ideally, subjects sample should represent all possible users of the approach in a real scenario.

The sample is varied, as it considered subjects of academia and software industry. However,

most of the subjects are students who do not have in-depth experience with development. We

contacted developers of open source and proprietary systems, of which only 4 participations

were collected. Thus, subjects sample does not represent the profile of possible end users for

this approach. The activities also do not cover all potential uses of key class information. To

cover these possibilities, the number of necessary activities would be incompatible with the

participants’ availability.

5.4.5 Construction Validity

The first contact with the application can influence the second contact: to minimize this influ-

ence the groups used only one kind of documentation. However, this can not be fully controlled,

for instance, the developer had contact with the code files and who had contact with the docu-

mentation can become familiar with the organization of the application.

5.5 Discussion

To better understand the achieved results, we will consider the responses for the open questions

to help identify problems, needs and opinions of subjects.

5.5.1 Experiment with Students

This experimental setup involved the design comprehension using the available documentation

of the systems as support material. Two institutions agreed to collaborate with our experiments.

Our aim was to investigate if a documentation based on key classes can complement or replace

the traditional documentation, and whether it is effective for software maintenance tasks, such

as, application design comprehension. Considering the evaluated criteria, in general, we can
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affirm that no significant statistical differences were found between the evaluated documen-

tations. In particular, this result is positive to our approach, indicating that the approach for

mining key classes and the information retrieved around them, can be used as a starting point

for understanding the application during evolution activities and it can potentially replace or at

least, complement traditional documentation.

We used thematic analysis (CRUZES; DYBA, 2011) to produce a systematic outcome of the

students responses in open questions. The researcher read all responses, and labeled responses

with open codes that specified the realm of the response. Responses with similar realms would

be labeled with the same code. After all responses were labeled, the researcher verified related

codes within a same theme. Then, the final themes were reviewed and named.

We present themes that emerged after analyzing the answers received from the questionnaire.

We present a discussion considering four open questions and give some examples of answers

associated to them.

The first open question is about usefulness.

Q1- About the information presented in the documentation, how was it useful to comprehend

the application? Table 56 summarizes the results for Q1.

Table 56 – Themes that emerged after analyzing the answers received from the questionnaire -
Question Q1.

Theme # Occurrences

on the survey

Institution Key Classes

(#occurrences)

Key classes + Traditional

(#occurrences)

Traditional

(#occurrences)

Non-specific 14 1, 2 - 8 6
Application overview 12 1, 2 8 - 4
Description of classes 9 1, 2 6 3
Versions 6 1, 2 - 2 4
Visual representation 6 2 4 - 2
Command Line 3 1, 2 - 1 2
Coding conventions 2 1 - - 2
Contact of developers 1 1 1 - -

We also asked to the students how they conducted the analysis of the documentation:

Q2- Describe how you performed the comprehension provided documentation (how you read

and analyzed the documentation). Table 57 summarizes the results for Q2.

Table 57 – Themes that emerged after analyzing the answers received from the questionnaire -
Question Q2.

Theme # Occurrences

on the survey

Institution Key Classes

(#occurrences)

Key classes + Traditional

(#occurrences)

Traditional

(#occurrences)

Selection of topics 15 1, 2 7 4 4
Visual representation 12 1, 2 7 5 -
Reading based on title 7 1,2 - - 7
Based on functionalities 6 1 - 6 -
Detailed reading 6 1 4 - 2
Non-specific 4 1 - 4 -

The third question is aimed at finding the points influenced his/her performance.
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Q3- What factors do you attribute to your success/failure in performing the activity? Table

58 summarizes the results for Q3.

Table 58 – Themes that emerged after analyzing the answers received from the questionnaire -
Question Q3.

Theme # Occurrences

on the survey

Institution Key Classes

(#occurrences)

Key classes + Traditional

(#occurrences)

Traditional

(#occurrences)

Non-specific 9 1, 2 - 4 5
Application overview 9 1, 2 - 9 -
Versions 9 1, 2 - 5 4
Description of classes 8 1, 2 5 3 -
Documentation organized 6 1, 2 - 6 -
Visual representation 4 2 3 - 1
Idiom 4 1, 2 1 1 2
Lack of experience 4 1, 2 2 1 1

Finally, we asked to the students:

Q4- Describe the information that attracted you more and that helped you in describing the

design description. Table 59 summarizes the results for Q4.

Table 59 – Themes that emerged after analyzing the answers received from the questionnaire -
Question Q4.

Theme # Occurrences

on the survey

Institution Key Classes

(#occurrences)

Key classes + Traditional

(#occurrences)

Traditional

(#occurrences)

Code 15 2 6 5 3
Non-specific 10 1, 2 4 3 3
Visual representation 8 2 - 8
Organized documentation 7 2 - 7 -
Application overview 5 1 1 3 1
No information, because
my lack of knowledge

3 1, 2 1 1 1

Software operation 2 2 - - 2
Idiom 2 1, 2 1 1 -
Versions 1 2 - - 1
Smells 1 2 1 - -
Command line 1 2 - - 1

Regarding the themes emerged among open questions, we are going to present a possible

explanation.

Application overview: Among the answers analyzed emerged from the questions Q1, Q3

and Q4, the most relevant information pointed by the students regarding the usefulness is the

application overview. We have, as example: The vital information for the understanding of

the project was those available in the overview and migration/getting started part, because

it presented the project and show how to work with the project, respectively. One possible

explanation is related to time. Regarding questions Q3 and Q4 key classes + Traditional group,

this theme was useful to comprehend the application, in particular this group evaluated two

documentations under limited time, so they adopted a superficial analysis of the documentation.

Selection of Topics: Among the answers analyzed emerged from the question Q2, the most

prevalent way of performing the comprehension was selecting topics to deepen the analysis.

We have, as examples: a)By random topics and b) I went through the pages and reading what
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I found pertinent. I searched for words that excited my curiosity or that I found interesting.

We believe this situation occurred because comprehension activity was limited to a maximum

time of 60 minutes and consequently the students have also chosen to prioritize some topics.

The selection of topics had more occurrence in key classes group, one possible explanation is

related to documentation structure based on key classes. For each key class, the student found

the same correspondent content, so they decided filter some classes to visit.

Reading based on the title: This topic emerged from the question Q2. This kind of reading

was generated due to the short time that the students had to complete the task, being guided

by the matter described in the titles of the documentation that catched the interest of the new-

comer. In this context, one important aspect to be mentioned is the clarity and objectivity of the

information. We have, as example: The information given in the titles and anchors, and pages

giving a ”summary“ of the theme. The reading based on title had more occurrence in Tradi-

tional group, a possible explanation is related to volume of content (item) on the documentation

that naturally induced the students to perform a reading based on titles attractive.

Reading based on the functionality: This topic emerged from the question Q2. This kind

of reading also was generated due to the short time that the students had to complete the task.

Another possible explanation is related in the application comprehension by identifying the

most important features of the application. We have, as example: The application’s features

are all separated and grouped, making it easy to read the documentation. The reading based on

functionality had more occurrence in Key classes + Traditional group, a possible explanation is

related to comprehend the application design considering the features of interest.

Detailed reading: This topic emerged from the question Q2 was observed to groups of

students who performed the analysis of only documentation and decided to get into the details

of the application design. We have, as example: I read the documentation in order to abstract

as much detail as possible. It was possible to understand everything about the application and

how to use it... This theme occurred on the key classes group, because the documentation was

simple and direct centered on software design.

For the above themes, they are related to the time to perform the comprehension task. In

both institutions regarding the time, there was no significant statistical difference among the

times. But, by the qualitative analysis of boxplots, the Key classes group concluded the analysis

in a slightly shorter time compared to the other groups. One possible explanation is that the

documentation based on key classes is simple and direct and involve many visual elements such

as graphs and tables, thus documentation analysis would be faster.

So, in real-world development environments, because time is a crucial element in software

activities, it is important to consider an effective strategy that supports developers during the

software comprehension activities. Thus, a documentation containing design information, such

as structural aspects, is relevant to developers to comprehend important aspects of an applica-

tion.
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Lack of experience: This topic gathered answers from students to question Q3 related to

the difficulty they encountered in understanding the software design. One possible explanation

is related to the students’ lack of contact with design documentation, the size and complexity

of the evaluated application and the lack of professional experience. We have, as example: lack

of knowledge related to design documentation analysis. This theme occurred with more fre-

quency on the key classes group, because the students do not have professional experience with

large projects and contact with the documentation centered on design specific for developers

comprehend a design overview.

Idiom used in the documentation: Among the answers analyzed from question Q3 and

Q4, the information pointed by the students is a barrier related to the idiom used in the doc-

umentation. As example, we have: documentation was in English, which made it difficult to

understand. For question Q3 this comment was frequent to Traditional group and for question

Q4 occurred a regular distribution between Key classes and Key classes + Traditional group.

A possible explanation for question Q3 is that traditional documentation has more textual de-

scriptions while documentation based on key classes emphasizes visual representation of the

information.

Organized documentation: Among the answers analyzed from question Q3 and Q4, the

most relevant information pointed by the students is related to organization of the documenta-

tion. We have, as example: The documentation is very explanatory, what to do and what not

to do, and all the functionalities are shown and exemplified in a page responsible for describ-

ing some algorithms and show the features of the library. This theme was observed on key

classes + Traditional group, a possible explanation was available content in structure adequate

that facilitates the navigation.

Visual representation: Among the answers analyzed from questions Q1, Q3 and Q4, the

most relevant information pointed by the students is related to visual representation, mainly

dependency graphs available in documentation based on key classes. We have, as example:

The information that attracted me most was the general description of the classes using the

dependency graph, because in it is possible to understand the application and which specific

place I should go to reach a certain functionality. For question Q3 visual representation them

is related to dependency graphs reported by Key class group, while at the Traditional group

reported considering the available screenshots.

This theme is related to the Usefulness Information criterion, there were no statistical sig-

nificant differences. However, group Key classes + Traditional of institution 1 had a positive

perception about the useful information. We believe that this result is related to the contact with

a larger amount of information by this group.

Code example: Among the answers analyzed from question Q4, the most relevant informa-

tion pointed by the students is related to visual representation. We have, as example:The part

that called attention was to show users code examples, since most of the time the users (mainly
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programmers without so much experience) take a documentation does the reading but ends up

not understanding how to apply that to their project, then giving examples of how to apply the

library to the project makes understanding easier. this theme occurred in a regular distribution

among all groups.

This theme is related to Methods utility criterion. No significant statistical differences were

found between groups. In particular, Key classes + Traditional group of institution 1 pointed

out that the highlighted methods highlighted. In both documents, methods details from dis-

tinct features were presented, however preference over traditional documentation was due to

the presentation of complete examples of the features which increased the application compre-

hension perception, while in the documentation based on key classes only the role of key classes

methods was evaluated.

Description of classes: This theme emerged from answers to question Q1 and Q3. Both

documentation contained references to the description of classes, but in different ways, and

often mentioned by students. In addition to code example, the documentation contains textual

descriptions that present the classes overview. A possible explanation for this, is that code

example connected to the textual description of the classes, enables the student to quickly learn

about the features of interest. We observed a regular distribution of this theme among the

groups, a possible explanation is that textual descriptions guide the newcomers to comprehend

the code faster.

Versions: In this topic refers answers emerged from question Q1, Q3 and Q4 regarding to

traditional documentation content, it focuses on downloading available code versions from ver-

sion control software such as SVN, GitHub. This interest was already expected by us, since

developers need to resort to these repositories when they decide to make use of the target ap-

plication in a new project. We observed a uniform distribution of this theme among the group

which evaluated traditional documentation. We have, as examples: Links of the repositories:

GitHub, Svn, facilitates the access to the files of way and practice. Download Links: Download

the application, easy visibility and download the application.

Command line: In this topic emerged from question Q1 and Q4, also refers to traditional

documentation content from PDFBox. Command line comes with a series of command-line

utilities. A possible explanation is reported from a student: it was the main one to understand

what the application is capable of, and how to use it. We observed a uniform distribution of

this theme among the groups which evaluated traditional documentation.

Coding Convention: In this topic emerged from question Q1, also refers to traditional doc-

umentation content from PDFBox. This interest was already expected by us, because it is specif

for development. We have, as example: it is useful about formatting, white space, comments,

variables, etc.

Contact of developers: This topic emerged from question Q1, refers to documentation
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based on key classes content. It was mentioned from one student from Key classes group who

reported: and if there is still doubt, it is possible to contact the developers. In particular, this

topic can assist newcomers in environments where documenting is not available, the code is

difficult to understand, etc. A possible explanation for the lack of interest in this topic is the

lack of professional experience of the students.

Smells: One student belonging Key classes group reported on this topic on question Q4,

regarding the way as code smell was represented in the documentation based on key classes as

reported: I was struck by how smells detection was demonstrated. A possible explanation for

the low interest of students in the subject is the novelty of the subject, since the topic is not

completely covered in the courses.

Software operation: This topic emerged from question Q4, gathered answers related to

how to use the software, how to access the functionalities of the software. Two students from

traditional group reported about this theme. We have, as example: I tried to read in a quick

way, trying to absorb what the software did, what the main features. In particular of this theme

is specific from traditional documentation available.

Non-specific: This theme gathers answers where it was not possible to identify the inten-

tion of the participant. One possible explanation is the discouragement, tiredness, or lack of

understanding of the purpose of the question. We have, as examples: a) Success, b)Focus on

task execution. c) I know English and I like extracurricular readings. In general we observed

a regular distribution this theme among the groups for all questions. In particular, for question

Q2 this theme occurred only to Key classes + Traditional group.

No information, because my lack of knowledge: This topic emerged from question Q4

on the gathered answers. In this case the students evaluated the documentation, but did not

assimilate knowledge related to software design. A possible explanation is related technical

terms unfamiliar to students and software complexity in relation to the size.

From the Tables 56, 57, 58 and 59 the themes with many answers are: visual representation,

organized documentation, overview, code, description of classes and selection of topics. In

particular, these themes reflect the basic needs of newcomers who decide to engage in a new

project and need to understand and assess the design during maintenance tasks. In relation

to other themes with less occurrence of answers are specific to the target software knowledge

domain and therefore, less usual in documentations.

5.5.2 Survey with Developers

On the survey with developers we establish some relevant perceptions about the quality of

the documentation produced around the key classes, after analyzing the questions that were

measured with Likert scale. Some perceptions of the developers were not consistent with the

expected, but in general, the analysis of the questionnaires allowed us to collect the perceptions
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described in sequence.

Documentation centered on design: Regarding to the usefulness of the documentation

based on key classes the developers presented a positive perspective, this can be a result of the

reasonable recall and precision obtained. Another positive aspect from the developers was to

suggest that key classes and other resources (trace trees, dependency graph, etc.) are an impor-

tant starting point to comprehend the application design. We conclude that key classes can to

produce relevant information to guide developers in maintenance activities, introduction of new

features, bug fixes, complexity metrics and bad smells information and can solve application

structural problems, such as detect anomalies in the project.

Documentation based on key classes complements original documentation: Another

important information observed was the positive opinion of the developers about the pos-

sibility of the documentation based on key classes to complement original documentation -

(documentation satisfaction) criterion because it organizes the structure of the system using

diagram instead on only textual descriptions long.

Experience level: software documentation may be subject to different analyzes that vary

with the developer’s knowledge and experience on the application. In this context on the learn-

ing obstacle criterion this can be sensitive to the way and the kind of information presented in

a documentation. Developers who were asked about this aspect did not present an opinion on

this criterion. But they have partially indicated not to be easy to comprehend the documenta-

tion (ease for understanding criterion), since it brings a concept-centered approach to design

assessment.

Lack of documentation: Developers surveyed are the owners of the systems and they used

to perform activities related to software maintenance without resorting to the project documen-

tation. This suggests that preventive measures indicated in documentation, which ensure the

structural quality of the software may be compromised. In addition, for newcomers, lack of

documentation is a factor limiting understanding of the application.

Lack of knowledge based on technical terms: Based on the control questions, we ob-

served the difficulty of some developers in judging the usefulness of the documentation regard-

ing to technical terms such as smells, metrics of complexity, etc. Although developers were

instructed in defining these terms, but the practice in performing maintenance activities on a

daily basis, without considering structural aspects of the project recorded in documentation

based on key classes, may compromise the maintainability of the system.

5.6 Concluding Remarks

This study provided an investigation about the usefulness of key classes organized on a struc-

tured documentation. The collected observations have implications on the field of software
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architecture.

Understanding software structures, through prioritization of the key classes, which have a

strong impact on the other classes of the system, seems to alleviate understanding barriers faced

by newcomers. When we add information organized around the key classes, we get a simplified

documentation that can be used as a starting point to understand the internals of a software.

In particular, for senior developers a documentation based on key classes enables warning of

potential problems, such as low cohesion and high coupling, circular dependencies that violate a

software structure, and code smells information that limits system flexibility in evolution tasks.

A fundamental aspect about the usefulness of key classes is how they are presented. In this

case, we collected some information on our observations with respect to documentation:

• Documentation containing snippets of code is a cognitive barrier to newcomers. The

reports collected in our questionnaire show dissatisfaction when this resource is used,

unless it comes accompanied by a brief explanation.

• Long documentation, accompanied by many textual descriptions, hinders newcomers’

orientation. In some cases, the newcomer decides to prioritize some topics to conduct

documentation review.

• Documentation containing graphical views that reflect the organization of system inter-

nals, facilitates understanding the application, and thus activity are likely to be completed

in less time.

• Finally, the absence of widely used criteria to describe the design of an application makes

it difficult to analyze the quality of documentation around the key classes.

In the next chapter, we will present studies that address topics, ranging from architecture

recovery techniques to structural and social problems in software.
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Chapter6

Related Work

This section presents studies that address topics, ranging from architecture recovery techniques

to structural and social problems in software. Studies that deal with the problems of program

comprehension are also important since these highlight the main difficulties encountered, when

dealing with the large amount of data that is available to developers and their need to understand.

Keecle in turn retrieves a reduced data set as a starting point for understanding important soft-

ware structure and relationships. Along the same line, studies dedicated for data visualization

are presented.

6.1 Program Comprehension

Research on program comprehension has already developed several strategies for presenting

data in different areas as shown below. In general, we observed that most of the reviewed papers

in this section show that when considering static and dynamic data analysis, data reduction is

greater for static data in most cases. When considering the reduction of the size of the traces,

the authors do not generally discuss the used procedure. Another aspect concerns limitations of

some techniques to support the analysis of large trace files, i.e, only a limited number of studies

suggest solutions to a few classes or method applications. The authors concluded reporting

three lessons learned: First, they observed that the feature location activity sets an example

in the way research results are evaluated. Second, the standard object-oriented systems may

be overemphasized in the literature at the cost of Web applications, distributed software, and

multithreaded systems, for which the authors have argued that dynamic analysis is very suitable.

Third, with regard to evaluation, the comparisons and benchmarking do not occur as often as

they should, particularly in activities other than feature location.

Problems on program comprehension have motivated the emergence of numerous approaches

of dynamic analysis with different techniques and tools. In a previous work Cornelissen et al.

(2009) presented a systematic review to contextualize and investigate this set of proposals, based

on dynamic analysis, providing an overview of the main contributions of the field, serving as
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a source of support for identifying gaps and opportunities. The authors analyzed 176 selected

articles. Articles were classified taking into account four criteria: activity, target, method and

evaluation.

The study by Trumper, Dollner and Telea (2013) investigated the understanding of program

execution through traces. An important task in this context is the comparison of two traces for

finding similarities and differences in code execution, execution order and execution duration.

For large and complex traces, the difficulty related to the cardinality (size) of the trace data

was tackled with a new visualization method based on packages. The technique aimed at help-

ing users to navigate the main differences between two traces by using the TRACEDIFF tool.

However, a factor which affects the tool quality is the difficult of using and understanding the

information shown in the tool, which causes misunderstandings.

The work of Dugerdil (2007) proposed reduction technique for execution traces based on a

sampling strategy. The concept of an omnipresent class is defined as an analogical signal pro-

cessing for noise. During analysis, omnipresent classes may be removed to focus the analysis

only on the relevant classes. Using the technique of samples, correlates elements and dynam-

ically checks that they occur in the same samples. In this manner, classes can be dynamically

grouped for recovering components in already existing systems. In the case study, the tech-

nique is applied in a relatively complex system with 240 KLOC on the client and 90KLOC on

the server.

The work presented by Sartipi and Dezhkam (2007) suggests the use of dynamic and static

views of a system software. The representation of a dynamic view was defined by collecting

useful information from the execution of a set of scenarios that covers the features. The in-

formation obtained is embedded in a process of static view recovery. The approach combines

static and dynamic information in a architectural recovery technique based on patterns.

In the work of Briand, Labiche and Leduc (2006) a methodology was proposed to recover of

sequence diagrams using the dynamic analysis on distributed systems in Java. In this approach,

while collecting traces, loops and recursive calls are not inserted. The tool to collect traces is

based on AspectJ, similar to that used in this study, which captures the name of the qualified

method, the call level in the execution stack, timestamp, identifier of the object, and also col-

lects the parameters and retrieves return values of calls methods, control flows as if, else, while,

for, do, switch case and return. A limitation of this work is the difficult understanding of large

sequence diagrams, due to the amount collected information, the problem becomes bigger when

large, complex systems are considered. The methodology demonstrated in this work uses meta-

model (such as a class diagram) and transformation rules (OCL - Object Constraint Language)

to retrieve the sequence diagram of an implementation scenario.
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6.2 Visualization and Documentation of Software

This section presents related work on software visualization and documentation which has be-

come an important technique in understanding programs.

6.2.1 Visualization

Currently, there are many tools to visualize the structure, behavior and evolution of the program.

In the paper of Maruyama, Omori and Hayashi (2014), a tool was developed for source code

visualization, CodeForest. In this tool, the source code is seen as a forest in which each class is

a tree. The tool CodeForest helps the user to experiment with a large number of combinations

through mapping software on the visual metrics parameters. In addition, it records user actions

taken in order to understand historical data that would accelerate the future tasks of software

understanding.

Kobayashi et al. (2013) presented a paper showing how to facilitate comprehension of soft-

ware architecture through the Sarf Map tool, a technique that visualizes software architecture in

terms of its features. The Sarf Map tool visualizes implied features of software using a cluster-

ing algorithm based on software dependencies. A general map can be used to make level high

decisions for reuse and also for communication between developers and other interested parts.

In Sarf Map, each feature is displayed as blocks of a city, and classes are defined as buildings

reflecting software layers. The relevance of features is represented as streets. Through studies

on open source software, the architecture of the target systems could be easily displayed and the

quality of the projects can be quickly assessed. However, the tool (KOBAYASHI et al., 2013)

did not support all cases. For example, there may be features which are superimposed and

present different points of view. In this sense, the tool does not support such situation. Other

issue is the quality of dependency graph and scalability for large systems. A system with many

classes makes viewing and management difficult. Finally, scalability also relates to colors, since

humans can exhibit a shortcoming in discriminate colors, so when software has many packages,

patterns of source organization are difficult to identify.

There are also techniques which retrieves software architecture organized in layers (BELLE

et al., 2015). There are many different applied techniques, such as, clustering (SCHMIDT;

MACDONELL; CONNOR, 2014), class grouping with common relations (SCANNIELLO et

al., 2010), composition operations based on cohesion and coupling metrics and based static and

dynamic information (ANDREOPOULOS et al., 2007).

The technique proposed in this thesis (Keecle) aim at reducing data visualization noise,

through a data reduction process that occurs at each phase. In this thesis, we provide a vi-

sualization of key classes in a dependency graph. Thus, from a small set of classes it is easy to

understand the dependency relationships and the hierarchical organization of classes.
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6.2.2 Documentation

From the key classes we expect to approximate an architectural description that allows initial

understanding of the main concepts of the system. Some studies (ROBILLARD; MEDVI-

DOVIC̀, 2016) show the deficiencies of documentation in open source systems and recom-

mends a set of guidelines for the formulation of system documentation. This paper reported on

an interview-based study of 18 authors of different chapters from the two-volume book “Archi-

tecture of Open-Source Applications”. The main contributions are a synthesis of the process of

authoring essay-style documents (ESDs) on software architecture, a series of observations on

important factors that influence the content and presentation of architectural knowledge in this

documentation form, as well as a set of recommendations for readers and writers of ESDs on

software architecture. They analyzed the influence of three factors in particular: the evolution

of a system, the community involvement in the project, and the personal characteristics of the

author. The results showed a concern with accessibility of documentation.

The software architecture documentation concepts found in the above books are also dis-

cussed in many smaller publications that focus on architecture description languages ((CHAP-

MAN et al., 2010), (LEVESON, 1995), (MEDVIDOVIC̀; TAYLOR, 2000)), UML ( (AL-

MORSY; GRUNDY; IBRAHIM, 2013) (LANGE; CHAUDRON; MUSKENS, 2006), (MED-

VIDOVIC et al., 2002)), architectural patterns and styles ( (BARNES; GARLAN; SCHMERL,

2014), (JANSEN; AVGERIOU; VEN, 2009), (OMMERING et al., 2000)), architectural views

((BRINKKEMPER; PACHIDI, 2010), (HEESCH; AVGERIOU; HILLIARD, 2012), (KRUCHTEN,

1995)), and standardized templates for capturing architectural knowledge ((GRAAF et al.,

2012), (TANG; LIANG; VLIET, 2011)). The use of UML in practice was not widely used

due to its complexity, lack of formal semantics, lack of inter-view synchronization, and the

resulting inconsistencies.

A recent paper presented problems related to documentation manual nature of its creation

and the gap between the creators and consumers (ROBILLARD et al., 2017). They discussed

the major challenges they face in realizing such a paradigm shift, highlight existing research that

can be leveraged to this end, and promote opportunities for increased convergence in research

on software documentation.

A survey investigated the effectiveness of documentation for particular tasks (LETHBRIDGE;

SINGER; FORWARD, 2003). In this study, only 35% of the developers reported use the doc-

umentation for software maintenance tasks whereas 61% reported the use of documentation

for learning tasks related to software. So, they recognize the need to find ways to express the

most useful information in less space and to make documentation easier to update, perhaps semi

automatically.

A particular paper investigated the kind of information that a documentation should contain

to support maintenance task (SOUZA; ANQUETIL; OLIVEIRA, 2005):
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• differentiate four stages of experience (from newcomer, the first day of work; to expert,

after some years of work on a system). For each stage, they propose different documents:

newcomers need a short general view of the system; apprentices need the system archi-

tecture; interns need task oriented documents such as requirement description, process

description, examples, step by step instructions; finally, experts need low level documen-

tation as well as requirement description, and design specification;

• a document must describe the hierarchical architecture of the system;

• should include notes on the application domain, dependencies among classes, detailed

description of a class’ methods.

The available software documentation often contains information that does not match the

reality of the code. A survey was presented in (LATOZA; MYERS, 2010) surveyed professional

software developers and asked them to list hard-to-answer questions that they had recently

asked about code. There are 179 respondents reporting on 371 questions. The most frequently

reported question categories dealt with intent and rationale – what does this code do, what is

it intended to do, and why was it done this way? Often, information needs of developers are

difficult to address, such as questions about intent and rationale. Understanding information

needs may provide clues to techniques for enabling developers to express needs; expression

may be particularly difficult if developers have an incomplete or even incorrect understanding

of the information they need.

In this thesis, we did not aimed to propose a new model for software documentation. A rea-

son for generating information around the key classes is based on a study presented, showing

that the main barrier for newcomers comprehending a software is the lack of documentation

or if it does not contain organized and adequate content (PINTO; STEINMACHER; GEROSA,

2016) (STEINMACHER et al., 2013). Documentation information should be a guide for devel-

opers to comprehend and to perform distinct tasks during the software development, so design

details is important to consider in a documentation. In addition, developers present distinct

experience levels and interest on the documentation, so it is necessary establish a structure to

attend different developer profiles.

In the software visualization context the most of studies address the problem of how much

information is viewed and how it is organized. In this way, the amount of information presented

constitutes a barrier for developers because results in large documentation that it difficult to

find relevant information and requires developers to consult the source code directly. Keecle

recovers dependency relationships and shows architecture organization in a dependency graph.

In addition the organized information around key classes focuses on important design details to

guide the developers understanding process.
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6.3 Software Architecture Recovery

This section presents related work based on several techniques to extract software architecture

(DUCASSE; POLLET, 2009a). In a recent study, Garcia, Ivkovic and Medvidovic̀ (2013b)

performed an evaluation with six software architecture recovery techniques based on clustering,

and here we review the two most relevant ones: ACDC and WAC.

ACDC technique (TZERPOS; HOLT, 2000) recovers components discovering clusters that

follow patterns commonly observed in decomposition of large systems. It automatically assigns

also meaningful names to clusters. The approach was evaluated with two case studies using

stability and skeleton size. In the comparative analysis of Garcia, Ivkovic and Medvidovic̀,

ACDC accuracy was confirmed, but in some cases, the tool can produce very small clusters.

Keecle criteria benefit larger subtrees, and the limitation is encountered when small relevant

subtrees are discarded. Fortunately, these situations seemed to be exceptions.

WCA technique (MAQBOOL; BABRI, 2004) is a clustering algorithm based on inter-cluster

distance during the clustering process. They used code routines as clustering entities since

they are able to reflect existing cohesion between entities. Evaluation of the approach with

two systems is given in terms of recall and precision. Experiments with WCA (GARCIA;

IVKOVIC; MEDVIDOVIC̀, 2013b) showed that for some inputs, the MoJoFM metric was not

calculated because of memory errors.

In the paper from Garcia et al. (2011), a technique was designed to recover concerns asso-

ciated with components to facilitate the understanding of the cluster meaning. Another kind

of element recovered by the approach is connectors that describe the interaction between the

components. The evaluation with eight systems produced reasonable results. A limitation of

the approach it is the need of the users defining the number of clusters that provide the best

result. In Keecle the number of key classes is defined from users interest to comprehend more

or less details of the system design. Keecle is defined to recover a small set of classes that are

central to comprehend the software architecture. Most of the software architecture recovery

techniques based on clustering process are limited to retrieve classes and provide some type of

organization such as components. Most of the techniques are aimed at decreasing the effort to

understand such code elements, but the amount of classes and or components recovered by the

approaches.

Another dynamic approach to recover architecture is Discotect (YAN et al., 2004) which

filter important classes in the production of more abstract models. A case study with AAMS,

a closed software, was conducted. One drawback is that the developer needs to specify an

automaton that filters the desired classes.

A hybrid model that combines static analysis and dynamics for recovering architecture was

shown in (RIVA; RODRIGUEZ, 2002). The main features are: visualization of static and

dynamic views, synchronization of abstractions performed on the views, scripting support and
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management of the use cases. The approach and the environment were demonstrated with only

one example.

The study by Zaidman and Demeyer is the most closely related to ours (ZAIDMAN; DE-

MEYER, 2008). They proposed a technique to automatically identify so-called key classes of

a software system that can be useful for a software engineer who is trying to get a high-level

overview of a unfamiliar system. In this paper, the authors defined key classes as being typ-

ically characterized with having a lot of ”control“ within the application. Their technique is

based on the identification of tightly coupled classes. They also take into account indirect cou-

pling through the application of a webmining algorithm. In our work, software components are

formed by large trace subtrees containing key classes.

A recent paper used centrality measures to identify the key classes in software systems

(DING; LI; HE, 2016). The authors defined key classes as being key nodes that refers to a

number of nodes which are more likely to affect the structure and function in a software net-

work. In this paper, the authors presented a contribution based on four new measures based on

the h-index to study class importance, according to the degree of neighbors and the edge weights

and compared with several existing centrality measures. The authors validated the feasibility

of proposed measures to identify important nodes. The approach was validated on three open

source software (Tomcat, Ant and JUNG) using version control log derived by TortoiseSVN for

each software system. The result indicates that the classes with greater centrality are changed

more frequently. The proposed measures not only are able to identify the key classes as some

commonly used centrality measures (correlative coefficient 0.987) but also perform better than

some commonly used centrality measures (the improvement is at least 0.215). However, their

approach is not adequate for small set of key classes, so when for instance k = 5 the most im-

portant five classes have not been modified, but when k = 200, these classes were successfully

recognized that they needed to be changed. We believe that the number of key classes depends

of the interest of the developer in understanding the design with more or less details and mainly

that key classes must be a guide for design comprehension, but, key classes large set is a barrier

that difficult the design comprehension by newcomers.

Another recent paper related to Zaidman and Demeyer (2008) is discussed. The authors pro-

posed to model softwares as a network, where the classes are the vertices in the network and the

dependencies are the edges, and apply K-core decomposition to identify a core subset of ver-

tices as potentially important classes (key classes) (MEYER; SIY; BHOWMICK, 2014). They

studied three open source Java projects over a 10-year period and demonstrate, using different

metrics, that the K-core decomposition of the network can help us identify the key classes of

the corresponding software. The authors compared their approach with Zaidman and Demeyer

(2008) for Apache Ant software. Zaidman and Demeyer identified the top 10 classes in Apache

Ant while the approach presented by MEYER, SIY and BHOWMICK (2014) returned sim-

ilar results, a factor that limit the approach is related to low precision: 64 key classes were
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recovered. Our approach recovers the desired number of key classes by developers alleviating

the barriers for design comprehension. We used dynamic dependencies to mine key classes,

but dynamic analysis eliminates abstract classes and interfaces which serve as useful starting

points for concept location in program comprehension. We still could rely on manual analysis

of classes extending or implementing abstract classes and interfaces to potentially include them

in result set.

Another paper was proposed a tool to automatically extract such a summary, by identifying

the most important classes of the system (SORA, 2015). In this paper, the importance of a

class (key class) is given by the amount and types of interactions it has with other classes.

Thus, a natural approach of identifying the most important classes was based on ranking them

with a graph-ranking algorithm. This approach consists of modeling the static dependencies of

the system as a graph and applying a graph ranking algorithm. They empirically determined

how different dependency types should be taken into account in building the system graph.

They compared the results using Apache Ant in relation to work Zaidman and Demeyer (2008)

around 30 classes were mined, presenting recall similar to Zaidman and Demeyer.

6.4 Structural Properties - Smells

This section presents related work on bad smells. Research on architectural smells to solve

design problems have gained increased interest. Garcia et al. (2009a) investigated the concept

of architectural ”bad smells”, which are recurring results of software decisions that can have

non-obvious and significant detrimental effects on system lifecycle properties. The authors

presented architectural smells and differentiate them from related concepts, such as architec-

tural antipatterns and code smells. In that paper, the authors only describe four representative

architectural smells, a experimental study was not reported. Subsequently, this approach was

considered in an experiment evolving two large industrial systems (GARCIA et al., 2009b). The

experience gained indicates the need to identify and catalog architectural smells so that software

architects can discover and eliminate these from system design. The proposed approach in this

thesis can be useful in the sense that more important architectural smells are likely to be found

in key classes.

Oizumi et al. (2014) studied code-anomaly agglomerations. An agglomeration is a group of

code anomalies that are related to each other for some reason and affects syntactically-related

code elements in the program. The results showed that architectural problems are much more

often reflected as anomaly agglomerations rather than individual anomalies in the source code.

The approach considered a total of 5418 code anomalies and 2229 agglomerations within 7

systems. They conclude that agglomerations have a higher chance to be related to architectural

problems than individual anomalies as they naturally affect more code elements than individual

code anomalies. Nonetheless, the results in this thesis suggest that individual anomalies on
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key classes also have higher chances of being related to architectural problems because of the

inherent nature of architecturally relevant classes.

Some authors have studied the lifespan of code smells using software repositories (PETERS;

ZAIDMAN, 2012). The idea is to provide insight into the behavior of software developers with

regard to resolving code smells and anti-patterns. In one particular case study, these researchers

investigated the lifespan of code smells and the refactoring behavior of developers in seven open

source systems. The results of this study indicated that engineers are aware of code smells, but

are not very concerned with their impact, given the low refactoring activity. A problem that

affects the results is related to the deliberate refactorings that must be distinguished from other

coding activities that coincidentally result in the removal of a code smell. Log messages have

to be inspected manually to make this distinction, which is usually clear, taking the aforemen-

tioned threat into account. Indeed, with our results, smells found in key classes seems to have

higher priority over smells in non-key classes, and refactoring activities on key classes may

have important impact in the overall architecture.

Similar papers were presented (LOZANO; WERMELINGER; NUSEIBEH, 2007) (PALOMBA

et al., 2015), (PALOMBA et al., 2013). The existence of bad smells points to important design

problems which in turn help to focus developers’ efforts. The authors performed an empirical

study of the evolution of software systems and limited their studies to particular kinds of smells.

A study to investigate if classes with code smells are more change-prone than classes with-

out smells was presented in (KHOMH; PENTA; GUEHENEUC, 2009). The authors performed

an case study with releases of Eclipse and Azureus and showed that classes with code smells

are more change-prone than the others. Other recent studies (TUFANO et al., 2015) conducted

a large empirical study over the change history of 200 open source projects from different

software ecosystems and investigated when bad smells are introduced by developers, and the

circumstances and reasons behind their introduction. Their study required a strategy to identify

smell introducing commits. The paper revealed that most of the time code artifacts are affected

by bad smells since their creation and newcomers are not necessarily responsible for introduc-

ing bad smells, while developers with high workloads and release pressure are more prone to

introducing smell instances. Our results showed that main owners of key classes are also re-

sponsible for a majority of commits and so, they would be equally likely to be responsible for

smells around in key classes.

These approaches use a limited number of bad smells and are sensitive to accuracy of smell

detection tools. Our approach also depends of smell detection tools, but the accuracy impact is

alleviated because we are working with a reduced set of key classes. Our goal was to increase

the architectural learning using some relevant classes and to analyze if they are more prone to

bad smells and if the owner of the key class is more prone to introducing a bad smell in the

code.

Keecle recovers dependency relationships and shows architecture organization in a depen-
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dency graph. A study showed that problematic architectural connections can propagate errors

(XIAO, 2015). The architectural connections that violate common design principles strongly

correlate with the error-proneness of files. This can become debts that accumulate high inter-

est in terms of maintenance costs over time. A quantitative model for project managers and

stakeholders as a reference in making decisions of whether, when and where to invest in refac-

toring is presented. Another work that investigates the importance of analyzing the software

dependencies are treated (NORD et al., 2014). The motivation is to understand rework costs for

safety-critical systems.

6.5 Social Properties - Ownership

The empirical studies based on related work have been conducted in order to understand and

leverage different aspects of commits will be presented in more detail. The analyzed papers

reinforce the evidence found in this thesis related to design problems caused by ownership.

Similar to the results achieved in the proposal of Geldenhuys (2010) evaluated the rule which

states that 20% of developers contribute 80% of the work on a project (MOCKUS; FIELDING;

HERBSLEB, 2000), (MOCKUS; FIELDING; HERBSLEB, 2002) and (VIR; MING; TAN,

2007). To evaluate this behavior they analyzed the number of contributions, duration of in-

volvement with the project, and the number of modifications to source code files. The results

showed that it is not a trivial procedure to identify who are the core developers of a project

and therefore, this rule is not very well defined, contrary to what the literature suggests. The

evaluated projects do not have the same developer engagement standards.

Kolassa, Riehle and Salim (2013) evaluated the frequency of commits of an developer, as a

fundamental aspect to understand the process of software development. According to the au-

thors the results are useful for evaluating the workload of developers and if the developers are

productive by checking whether they contribute regularly. Eyolfson, Tan and Lam (2011) ana-

lyzed 57,028 and 4,399 bug-fixing commits in two large and widely-used open-source software

projects, the Linux kernel and PostgreSQL, to study the correlation between commit correctness

with several commit social characteristics, such as the time-of-day of commits, the day-of-week

of commits, developer experience, and developers’ commit frequency. The authors presented

several interesting findings, including: (1) late-night commits (between midnight and 4:00 AM)

are buggier than average, while morning commits (7:00 AM–noon) are less buggy.

The work of ownership can provide information regarding the quality of the code. In (BIRD

et al., 2011) show that ownership are responsible by inserting fault, this fact is also shown in the

work (TUFANO et al., 2015), indicating that contrary to what many think bugs are introduced

in the initial stages of development as a result of the high workloads of ownership.

In this thesis we show that ownership of key classes is low when compared to other classes

of software. However, this evidence does not alleviate the amount of structural problems en-
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countered in key classes.

6.6 Concluding Remarks

In this chapter, we selected studies to better understand the state of the art related to this thesis.

Firstly, we presented studies on program comprehension (Section 6.1) centered on execution

traces highlighting their problems, such as, related to size and their visualization in sequence

diagrams.

In Section 6.2, we showed the studies related to software visualization and documentation.

The studies highlighted for instance, software architecture visualization in terms of its features

and concerning to documentation, the studies highlighted the deficiencies of the documentation

in open source systems.

In Section 6.3, we presented some techniques to software architecture recovery such as

ACDC, WCA, Discotect, and their limitation when compared with our approach. In addition

we highlighted four studies considering recover key classes.

In Section 6.4, we showed studies relevant concerning to such as architectural bad smells

and if classes with code smells are more change-prone than classes without smells.

Finally, in Section 6.5 we highlighted some studies related to ownership information.

Next chapter, we will present the conclusion and future work related to this thesis.
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Conclusion

Key classes have been an alternative adopted by many OSS to generate documentation. How-

ever, there is no widely adopted criteria for obtaining them, resulting in a set of classes that may

have some variation in interest among the developers. Thus, the documentation based on key

classes is tailored to support a specific need of developers: understanding and assessing design.

We have developed a semi-automatic approach to mine a set of key classes, whose size is in-

dicated by the developer. The results in terms of recall and precision were promising compared

to previous work. A set of steps were taken to reduce the amount of information available from

the source code: a) capture execution traces from execution scenarios; b) compression of traces;

c) trace subtree extraction; d) elimination of identical subtrees traces; e) classification of trace

subtree; and f) extraction of roots from subtrees to obtain key classes. We adopted dynamic

analysis as a natural way of reducing the high volume of information generated by traces. The

important software features have to be exercised, to achieve a reasonable coverage of the classes

of the software, that is important to reduce an adequate set of key classes. Although dynamic

analysis only captures concrete classes of the target software, in our final result through a man-

ual analysis we also consider manual introduction of abstract classes and interfaces that were

implemented or extended by concrete classes.

However, a simple set of key classes is not able to move developers over the needs of con-

sidering them during maintenance activities. The set of key classes tends to be small and so, is

adequate as a starting point to understand software design and a guide to support maintenance

tasks.

To make developers aware of the importance of key classes to evaluate software design, in

a static context, we performed a study of the social and structural properties that involve them.

In this study, we observed that the key classes present more problems in relation to the non-key

classes of the system. Three properties were investigated: dependency graphs, the ownership

involvement degree and the relation of the cohesion and coupling metrics with bad smells. The

results showed that:
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• A meaningful structured view of key classes with respective violations can be produced,

suggesting that developers would benefit from that in situations where the software doc-

umentation is not available, or supplementing current documentation with additional in-

formation about dependencies.

• Key classes have more specific smells when compared to non-key classes. Also, for

coupling and cohesion metrics for key classes are significantly worse than for non-key

classes. The use key class information can lead to a more focused way to find relevant

design anomalies supported by the design nature of key classes.

• Ownership in key classes has a lower level compared to non-key classes. The number

of main owners seems to be reduced, either for key and non-key classes, suggesting that

prioritizing code review code of owners when committing in key classes would produce

more benefits in design.

We performed two studies involving developers and students. Overall, among the evaluated

criteria, there were no significant differences between the groups (Key classes, Traditional or

Key classes + Traditional), suggesting that:

• Considering the usefulness of the documentation based on key classes, the developers

presented a positive perspective, which could be a result of the reasonable obtained recall

and precision obtained. Another positive aspect from the developers and students was to

suggest that key classes and other resources such as trace trees, dependency graph, etc.,

are an important starting point to comprehend the application design.

• Key classes can to produce relevant information to guide developers in maintenance ac-

tivities, introduction of new features, bug fixes, complexity metrics and bad smells infor-

mation and can solve application structural problems.

• Another important information observed was the positive opinion of the developers and

students about the possibility of the documentation based on key classes to complement

original documentation satisfaction criterion because it organizes the system structure

using diagram instead on only textual descriptions long.

Therefore, our objectives were fulfilled when we presented a new semi-automated approach

capable of generating design information from a reduced set of key classes, and when orga-

nized into documentation based on key classes produce results equivalent to those of traditional

documentation.

Finally, we envision two possible future works related to the approach proposed in this thesis.

Key classes alignment: In this future work, one could investigate if aligning key classes

several applications in the same domain, we could get concepts that could help us get reference
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classes. For example, considering the key classes of Tomcat1, Jetty2 and Undertow3, when

aligned semantically to evaluate if a class in one system does a similar thing of other class in

another system, i.e, if they the same concept. Then, if we can align the key classes, then they

implement important concepts with respect to a reference class. Moreover, we could analyze

whether a key class implements some extra feature to include in another system. So, the idea

is to evaluate if those classes match with the other classes to see how the incorporation of

those classes would be possible as a reference class and which is the coupling requirement that

should be implemented to take those classes to other systems. This would be a productive way

to enhance an application.

Large scale refactoring: Another area of future work is to investigate how large scale

refactoring affects key classes. This can be used to identify when large refactorings have oc-

curred in the history of the system and how they were implemented, which in turn can help

guide the way future refactorings are conducted.

Design quality evaluation: Another area of future work is to investigate if a bad design

can mask key classes, and prevent the proposed approach generates relevant results. In this

case, approach can evolve to detect the quality level of a design according to the difficulty in

obtaining the key classes. Finally, this evaluation and be useful to insert points of a design that

must suffer refactoring.

Keecle for another programming language: Another area of future work is to extend

Keecle to extract key classes in other systems implemented in distinct programming languages

such as language C.

Occurrence of bugs in key classes: Key classes provide a more focused way to find more

relevant design anomalies classes supported by the design nature of key classes. But, it is

necessary more studies to investigate. So, as a future work, for example a study that in fact take

more the occurrence of bugs on key classes in in relation to non-keys classes.

Ease of understanding: Perform further studies with human subjects showing that the doc-

umentation based on key classes facilitates understanding object oriented system design com-

pared to traditional documentation. In this case, we want to know if key classes can be used to

discover certain aspects in the architecture, such as architectural patterns. Another possibility, is

to evaluate the degree of correctness of the task (which would give to understand why the doc-

umentation helped or not). For example, involving questions about design (what architectural

pattern is used, what are the main services performed and their collaborations, etc.)

Template for documentation based on key classes: There is no design documentation

template widely accepted by the developers community. This may be a barrier to understanding

software design. As future work, it is proposed the investigation of new resources centered in

1 http://tomcat.apache.org/
2 http://www.eclipse.org/jetty/
3 http://undertow.io/
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the design for documentation based on key classes that accelerate the learning process of the

software.
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APPENDIX A

Experiment Design

A.1 Experiment with Students

A.1.1 Experiment Design

Next sections are described details concerning to experiments with students.

Institutions 1 and 2 : Students performed comprehension activity and there was the distri-

bution of three groups of subjects: On institutions 1 and 2 we considered three groups to perform

comprehension activity: one group performed one activity to evaluate traditional documenta-

tion; one group performed activities to evaluate traditional documentation and documentation

based on key classes; and the third group performed activities using documentation based on

key classes.

A.1.1.1 Experimental Procedure

The experimental procedure was conducted in the classroom by the researcher.

Institutions 1 and 2: Considering environment setting for the experiment with students

from institutions 1 and 2, there was no need to perform a specific configuration in the execution

environment. The only concern was to ensure access to Internet network, since the question-

naires were made available via the web.

Instruction and Training: Before the activities execution, all participating subjects were

also instructed, providing materials and training on the experimental procedure in order to re-

duce failures, deviations and doubts on the performance of the activity. In this way, a mini-

mum knowledge required for the participants is expected, minimizing problems due to lack of

knowledge about the use of documentation, the environment used and the execution process. A

documentation containing instructions on the procedure was made available for the students. In

addition, in the classroom, before beginning the experiments, the researcher reinforced the in-

structions again. After the initial instructions, we introduce students to documentation structure
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based on key class and the traditional documentation of the target applications, highlighting the

organization and concepts to assist students during the exploration of documentation. The train-

ing lasted 20 minutes, with 10 minutes for each documentation. The activities were described

textually on a document to help understanding the problem and then distributed to the students.

Experimental Execution: After the selection and instruction of the students subjects, we

defined with the teacher responsible for the class, the days and times to perform out the exper-

iments. In particular, for the two experiments performed with the students, the variable object

among the groups during the execution of the experiments was the kind of documentation used

(traditional, based on key classes or both), being defined as independent variable of the experi-

ment.

Institutions 1 and 2: Before the experiment execution, for students from institutions 1 and

2, only the documentation of the target application, the questionnaires and the instructions to

execute the experiment were available.

In sequence, all students were re-instructed, distributed in groups, the application documen-

tation was briefly presented for each group. Each activity had a maximum duration of 60 min-

utes. Students were asked to record the start and end time of activities and then complete the

questionnaire related to that activity and the group that it belongs. If the student did not com-

plete the activity within the maximum period, the student was instructed to stop the activity and

fill out the questionnaire. To fill to the questionnaire the students had 20 minutes to conclude

action.

Students could quit at any time if they recognized they could not finish the activity or partially

complete it. However, even in these cases, subjects were asked to answerer to one questionnaire.

Institutions 1 and 2 answered one questionnaire, the questions were answered using Likert

scale (from -2 to 2).

A.2 Survey with Developers

Next sections are described details concerning to survey with developers.

A.2.1 Survey Design

We conducted a survey that exclusively involved developers of four applications (Apache PDF-

Box, Service Order, Scholar and Financial). Following, we describe the used methodology:

Procedure: Compared the previous studies, the survey procedure is different. For exam-

ple, experiments with students were conducted in the classroom by the researcher, whereas

the survey was conducted remotely. In this context, the time and environment to evaluate the

documentation by the developers were not controlled.
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Environment Setting: For the experiment with developers, there was no need to perform a

specific configuration in the execution environment. The only concern was to ensure access to

Internet network, since the documentation and questionnaires were made available via the web.

Instruction and Training: Before the activities execution, all participating subjects were

also instructed, providing materials and training on the experimental procedure in order to re-

duce failures, deviations and doubts on the performance of the activity. In this way, a minimum

knowledge required for the participants is expected, minimizing problems due to lack of knowl-

edge about the use of documentation, the environment used and the execution process. A video

containing an example of documentation based on key class was sent to motivate and guarantee

a greater adhesion of the developers. Next, emails were sent containing instructions on the steps

of the experiment, files and link of the produced documentation.

Experimental Execution: Developers had the flexibility to perform the evaluation of the

documentation on convenient days and times, restricted only by a deadline. An email was sent

to the developers containing a set of instructions necessary to evaluate the new documentation.

They were instructed to evaluate the documentation that was sent as an attachment or made

available via web link, and then fill out a questionnaire when the activity was completed. These

developers could quit at any time if they recognized they could not finish the activity or partially

complete it. However, even in these cases, subjects were asked to answer to the questionnaire.

The questionnaire for data collection was adequate for each type of experiment and subject

aiming to collect different information regarding the assessed documentation. Throughout the

process, the researcher has been available to answer questions. The questions were answered

using Likert scale (from -2 to 2). We also consider a set of open questions that will be used to

explain the results.
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