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RESUMO

As pick-ups compreendem uma importante categoria de veículo comercial por combinar o 

transporte de passageiros e de carga. A presença de uma caçamba aberta é responsável pela 

formação de uma topologia de escoamento única que é naturalmente de grande interesse para 

pesquisas dos fabricantes e que vem aos poucos sendo mais discutida em artigos acadêmicos. 

Este trabalho apresenta um estudo numérico e experimental do escoamento ao redor de uma 

pick-up genérica baseada nos líderes de mercado de pick-ups leves do Brasil. O modelo de 

pick-up proposto é composto apenas por superfícies planas e cantos vivos e é derivado de um 

estudo dimensional dos cinco principais modelos da categoria; uma segunda versão é 

concebida a partir do arredondamento desses cantos. Simulações são realizadas usando as 

equações de Navier-Stokes médias (RANS) no software STAR-CCM+ com o modelo de 

turbulência SST k-w; malha é constituída de elementos tetraédricos e o efeito da camada de 

prisma é estudado. No túnel de vento, anemometria de fio quente e visualização parietal por 

tufos são utilizados num modelo 1:10 e são usadas como referência para validação inicial dos 

resultados numéricos. Apesar de uma nova geometria ser testada, resultados são similares aos 

presentes na literatura. Arredondar o modelo causou uma redução de 30% no arrasto; 

variações significativas na estrutura global do escoamento na caçamba e na esteira não são 

observadas. A solução computacional é preparada para o modelo reduzido e para a pick-up em 

tamanho real em velocidades típicas de rodovia; para a faixa de escalas testadas (Re de 5*105 

a 5x106), acredita-se que o problema seja independente do Reynolds, desse modo dados 

obtidos em túnel de vento dinamicamente não similares ainda são representativos do 

escoamento real. Esse trabalho visa servir como referência para análises futuras e deste modo 

um estudo mais refinado de setup numérico (malha e solver) e a aplicação de outras rotinas 

experimentais é recomendado. A investigação de mecanismos de redução de arrasto e dos 

efeitos de outras modificações na geometria é sugerida para as próximas etapas.

1 Palavras-chave: Aerodinâmica Externa; Pick-up; CFD; Anemometria de Fio-Quente; Túnel de 
vento.
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ABSTRACT

The pickups correspond to an important category of commercial vehicle once they combine 

passenger and cargo transport. The presence of an open trunk is responsible for a unique flow 

topology within a natural great interest for manufacturer's research and that is gradually being 

more discussed on academic articles. This work presents a numerical and experimental study of 

the flow around a generic pickup based on the leaders of the light pickup market in Brazil. The 

proposed pickup model is composed only by flat surfaces and sharp edges and it's derived from 

a dimensional study of five principal models of the category; a second version is conceived with 

the application of fillets on those edges. Simulations are performed using Reynolds Averaged 

Navier Stokes equations (RANS) on STAR-CCM+ solver with SST k-w turbulence model; mesh 

is constituted of tetrahedral elements and the effect of a prismatic boundary layer is studied. On 

wind-tunnel, hot-wire anemometry and wall tufts visualization techniques are deployed for 1:10 

scale model and serve as a reference for numerical results initial validation. Although a new 

geometry is tested, the results are similar to previous works. Rounding the model caused a 

reduction of 30% in the drag coefficient; no significant change is noted on the overall distribution 

of the structures on trunk and wake. Computational solution is prepared for reduced and full size 

pickup on typical highway velocities; for the range of tested scales (Re from 5*105 to 5x106), 

problem is believed to be independent of Reynolds, therefore wind-tunnel data that is not 

dynamic similar is still representative of real flow. This work is aimed to serve as a benchmark 

for future analyses so that more refined examination on CFD setup (mesh and solver) and 

application of other experimental routines are recommended. The investigation of drag reducing 

devices and the effects of other geometry variations is suggested as next steps.

Key-words : External aerodynamics; Pickup; CFD; Hot-wire anemometry; Wind-tunnel.
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CHAPTER I

Introduction

The development of the automotive industry is close related with the technological 

advances. Significant market and a global concurrence demands constant improvement from the 

production chain to the final product. In the 20's century, the power plants can be considered the 

component that most evolved, achieving better performance and less consumption. Following 

this trend, aerodynamic aspects defined the design of modern vehicles and continue to shape 

cars.

A compromise between safety, performance and design is performed by each 

manufacturer. The balance between those domains, directly influenced by financial and 

productive aspects, is the key to a better vehicle. The variety of models and the complexity of 

the flow related to each one of them, summed to the dynamics of human occupation and 

transports needs, demand a continuous evolution of the techniques.

The movement of a car is constraint mainly by two factors: rolling resistance and 

aerodynamic forces. In general, for commercial vehicles, after 90 km/h, typical highway speed, 

aerodynamic effects are the major source of those restraining forces, also contributing to 

instability when lateral forces and moments are taken in account. Therefore, the reduction of 

drag affects directly the performance and the CO2 emission. Figure 1.1 presents the evolution of 

aerodynamic and rolling forces with the speed for a heavy vehicle tractor trailer truck. After 

50 mph (80 km/h) the drag is the most important component.

Environmental concerns demand from all transportation industry consistent noise and 

consumption reduction, so that there are constant reformulation and creation of related 

legislation, in both national and global context. The new standards play an important role in 

pushing the development of the industry, as seen in Figure 1.2, the average CO2 emission 

dropped for all segments in the European market from 2001 to 2010.
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Figure 1.1 - Graphic depicting representative horsepower requirements versus vehicle speed for 

a heavy vehicle tractor-trailer truck (WOOD and BAUER, 2003).

Figure 1.2 - New passenger cars: CO2 emissions by vehicle segment (The International Council 

on Clean Transportation, 2011).
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A notable example of such initiatives is the INOVAR-AUTO program (Brazilian law 

number 12,715 of 2012) that intends to promote R&D investments for companies that produce, 

distribute or present projects to invest in the automotive production in Brazil. One of its pillars is 

reducing fuel consumption: a decrease of 18.84% by 2017 will result in 2% direct tax deduction 

for the final product.

Such aspects are aligned with the pursuit for more comfort and economical differentials, 

pushing the competitors to comprehend and optimize all the phenomenology associated with 

fuel consumption. The most touched category is commercial vehicles, such as trucks, buses, 

vans and pick-ups, mostly for its large use and unique geometry that results in bigger drag than 

for those of passengers' cars (see Figure 1.3). The limitations created by theirs applications 

requirements, space for cargo, demands more creative solutions and the deployment of multiple 

engineering tools.

Co

I 
“1“

Figure 1.3 - Drag coefficients of different commercial vehicles (HUCHO, 1987).

The most common aerodynamic structures are the vortex formed on the cab and a big 

recirculation zone after the trunk. The wake and the recirculating zones are the principal sources 

of drag and must be modified in order to achieve less consumption. For trucks, the interaction 

between the tractor and the trailers are also a significant source of drag. Besides the global 
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geometric modifications, both passive and active flow control techniques can be used to 

reconfigure flow path, however, the second one must be proven to be energetically lucrative. 

Spoilers and flaps, for example, are used to drop the strength of recirculation bubbles, to 

extinguish or retard transition/separation points, reducing and modifying vortex positions, thus 

decreasing the pressure difference and the related forces. Figure 1.4 exemplifies the effect of a 

cab-spoiler attaching the flow to the top of the trailer.

Figure 1.4 - Example of the effect of an aerodynamic add-on (cab-spoiler) in a truck (HUCHO, 

1987).

Pickups are used as commercial and as passenger vehicles. Despite being similar to 

SUV's, the existence of the open trunk is unique in terms of airflow behavior and the fact that 

pickups presents a bigger drag coefficient is more appealing in terms of the pursuit of fuel 

saving.

The mix of passengers and cargo fills a specific demand but remains representative in 

the automotive market. In 2014, according to FENABRAVE (Federação Nacional da Distribuição 

de Veículos) they comprehend 83.11 % of the licensing for the light commercial subsegment 

(composed by pickups and vans) what represented 12.68 % of total brazilian automotive market 
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(including cars, trucks and buses). In November 2015, pick-ups represented 9% of auto sales in 

United States according to the Wall Street Journal.

Although the analysis of the external flow around pickups is mostly restrict to the 

manufactures, it attracts academic work for its complex tridimensional flow, even serving as test 

case for numerical algorithms. Experimental and numerical works discuss the subject, focused 

mostly in flow description and drag estimation/reduction techniques.

This study is aimed to the general description of the external flow around a pickup 

vehicle. A simplified model is prepared from averaged dimensions of the vehicles with the 

biggest market share in the brazilian light pickups market: Fiat Strada; Volkswagen Saveiro; 

Chevrolet Montana; Peugeot Hoogar; and Ford Courier. Baseline test article is composed by 

sharp edges and second version is prepared applying fillets to all external edges.

Analysis is performed numerically using averaged Navier Stokes equations (RANS) and 

experimentally in a subsonic wind-tunnel (hot-wire anemometry and wall tufts visualization). The 

experiments are performed with a 1:10 scale version and numerical analyses are done with in 

scale pickup and full model.

The second chapter is dedicated to the description of the fundamentals of automotive 

aerodynamics and of the flow around a pickup truck, summarizing the literature conclusions. A 

discussion of all the academic work on the matter is presented in the third chapter. Forth chapter 

is dedicated to present the definition of the pickup generic model and both numerical and 

experimental methods. Chapter five summarizes the results and discussions concerning wind 

tunnel tests and CFD validation, the effects of the prismatic boundary and geometric variation 

(rounded model) and the performed scale study.



CHAPTER II

Phenomenology

This chapter is dedicated to the description of the fundamentals of automotive 

aerodynamic analysis and to summarize previous conclusions on the flow present around a 

pickup.

2.1. Fundamentals of Automotive Aerodynamics

The study of automotive aerodynamics deals with both internal and external flow. Engine 

feeding, systems cooling, thermal and acoustics comfort are the main focus on the first domain. 

For the exterior of the car, most important aerodynamic quantities are the forces and 

momentums, directly influencers of the vehicle stability and consumption.

Lift and drag are the most discussed aerodynamic forces, especially when cross-wind is 

not considered. The first one is responsible for reducing adherence of the tires and the second 

one operates against the movement of the automobile. In order to compare forces with virtually 

any condition (flow velocity and density) and geometries, non-dimensioned coefficients are used, 

as descripted on the following equations:

n Drag
'■'!.) = 1

2pU0A
(2.1)

„ Lift
CL = 1 7 (2.2)

2pU0A

where p is the air density, U0 is the freestream velocity and A is a reference area.
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Those forces are composed by pressure and shear efforts. For bluffy bodies such as a 

car, the main source of those efforts is the pressure difference created when the air contours 

such form. An important parameter to describe this phenomenon is the pressure coefficient, CP, 

which measures the relation between a static pressure differential and the freestream dynamic 

pressure:

Cp
P-Po

(2.3)

where P is local pressure and P0 is pressure on the freestream. For incompressible flow, Cp > 0 

indicates that flow is slower than U0 and Cp < 0 means that local flow is faster than freestream 

and CP = 1 represents a stagnation point. This parameter is largely used in experimental context 

because of simple application (use of pressure tabs on model's surfaces).

The complete description of any fluid dynamics problem has to account for viscous 

effects. It touches the dynamic of boundary layer detachments and turbulence structures 

formation. The quantification of those effects is accounted by the Reynolds number, a 

non-dimensional that compares inertial and viscous effects:

Re = (2.4)
p

where L is a reference dimension and p is the dynamic viscosity of the flow. In automotive

aerodynamics, reference dimension and surface are vehicle's length and frontal area,

respectively.

Other important non-dimensional on the analysis of bluff bodies dynamics is the Strouhal 

number, that correlates vortex shedding frequency and freestream flow velocity:

fC
Co

(2.5)

where f is the vortex shedding frequency; and L is the reference dimension (models height for 

bluff bodies).

Efforts created due to vortex are remarkably influenced by viscosity and also a source of 

drag. Being highly tridimensional, streamwise vortexes and many smaller structures are 
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common around cars (HUCHO, 1987), as illustrated on Figure 2.1. The dynamics of vortexes on 

rear portion of the vehicle is of great interest and has been largely discussed. The use of 

simplified geometry, such as the Ahmed body, continues to be an important contribution to the 

comprehension of those structures and optimization of the automobiles aerodynamics.

Front 
End

Hood-Windshield 
Junction

Windshield-Side 
Window Junction

Lower
Front-Bumper 

Region

Left-Front 
Corner 

(Top View)

Side Windows 
(Top View)

Figure 2.1- Flow around a car and major locations of flow separation (HUCHO; SOVRAN, 1993).

In this perspective, the use of a simplified pickup geometry is proposed on this work. To 

complement the notions of automotive aerodynamics, a general description present on the 

literature of flow for this particular type of vehicle is presented next.
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2.2. Pickup aerodynamics

Ground vehicles aerodynamics is complex due to the influence of flow from the bottom, 

top and laterals of the body. The study of pickups has a differential caused by the presence of 

the open trunk that is impacted simultaneously by all three and its singular components.

The following description and the remaining discussions on this document are going to 

be presented according to the nomenclature proposed on Figure 2.2. Frontal part of the vehicle 

is the front end. The underbody is composed by the front overhang (region between front end 

and frontal wheelbase) and the rear overhang (between rear wheelbase and the end of the 

pickup). The cab is defined as the upper parts of the vehicle: hood, front-windshield and cabin 

superior surface. The defined trunk considers the rear surface of the cabin (cabin back surface); 

the trunk's interior (bed) and laterals walls and the tailgate. Reference dimension are the pickup 

overall length (L), the bed length (l) and the tailgate height (h).

UNDERBODY

L

rear
overhang

---------------

! front
i overhang

CAB
cabin

TRUNK

superior 
surface

Figure 2.2 - Proposed nomenclature for pick-up parts.

The following description is based on results of Al-Garni et al. (2003, 2008, 2010) that 

experimentally investigated the flow around a simplified pickup using pressure tabs and PIV. The 

proposed geometry (Figure 2.3) and the found results are recurrent on the literature. Also, very 

similar flow topologies were obtained with different geometries (MOKHTAR; BRITCHER; CAMP, 

2009 and HA; OBAYASHI; KOHAMA, 2009, for example).
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Figure 2.3 - Generic pickup model proposed by Al-Garni; Bernal; Khalighi (2003).

Results of the pressure measured on the model's symmetry plane are presented as the 

CP evolution graph on Figure 2.4. There is a stagnation region on the front end of the vehicle 

followed by a slight acceleration until the frontal tip of hood. Flow decelerates until the joint with 

the frontal windshield, where it achieves a velocity minimum; next it is reaccelerated until a 

global CP minimum on cab, gradually pressure coefficient is reduced until cabin back surface. 

On bed, all points present a depression. The acceleration of flow caused by the constriction 

under the vehicles creates a depression on the complete underbody.

0 50 100 150 200 250 300 350 400
x (mm)

Figure 2.4 - Mean pressure coefficient distribution along the symmetry plane on the pickup truck

(AL-GARNI; BERNAL 2010).

Inside the trunk there is a large recirculation zone formed by a main bubble with air 

deviated from the cabin's roof. Flow from the trunks lateral also deviates to the bed due to the 

depression, and important vortical structures are formed inside and outside the trunk. Flow that
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is deviated from the recirculation bubble contacts the outside of the tailgate. On each lateral, 

counter rotating vortexes are formed by air from laterals and flow leaving the trunk, creating a 

downwash at the symmetry plane. Vortexes are also created at the end of cabin's roof.

Figure 2.5 - Streamlines of the mean velocity field in the symmetry plane of the wake (left) and 

on the horizontal plane at z = 15 mm behind tailgate (right) of pickup truck (AL-GARNI; BERNAL 

2010).

On back of trunk, pressure is proven to be smaller on the internal surface of the tailgate 

due to the pressure recovery promoted by the cited downwash. Therefore, a reduction of drag is 

associated with tailgate up configuration (COOPER, 2004). The results are summarized on the 

proposed vortex system on Figure 2.6.

Similar effects were obtained by Mokhtar; Britcher; Camp (2009) with a different 

geometry. A main recirculation bubble on trunk, vortexes on the sides of tailgate exterior and 

cab, downwash on tailgate are present; CP distribution on symmetry plane is also very similar. 

Globally, flow follows the topology proposed by Al-Garni and Bernal (2010), as seen on the iso 

velocity surface representation of the wake (Figure 2.7).
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Figure 2.6 - Proposed vortex system of the flow around a pickup (AL-GARNI; BERNAL 2010).

Figure 2.7 - Wake shape behind a pickup truck (MOKHTAR; BRITCHER; CAMP, 2009).

In terms of drag force, pickups are known to present higher drag coefficients than SUV's 

(HOLLOWAY et al. 2009). According to Chen and Khalighi (2015) 70% of the drag is due to 

pressure difference between front and rear of the pickup. An interest in predicting and reducing 

this restraining force is noticed on the literature.

Figure 2.8 presents the maximum and minimum CD values encountered on some of the 

publications that are presented on bibliographic review (chapter 3). Most of the papers are 

aimed to study drag reduction techniques, objective that justifies the significant variation. Also, 

used test articles are not the same.
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Besides the existence of such works, the presence of academic publications on this 

matter remains small. Numerical and experimental standards and methodologies are yet to be 

defined and specific versions of pickups have to be investigated. This work proposes the 

description of a light pickup, most common commercial vehicles on Brazilian automotive market. 

The numerous geometrical variables associated with a pickup have been proven to have 

complex effects on flow behavior and drag characteristics when varied. The use of simplified 

model strictly based on light models is aimed to question the geometry influence and to serve as 

a reference on future works.
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CHAPTER III

Bibliographic review

The study of flow around pickups has been mostly performed in industrial context; 

therefore there are a small number of open articles on the subject. Even though, a general 

description can be found and a clear increase of related papers on the last decade is perceived.

The interest in aerodynamically optimize pickups is a longtime concern of the industry. 

Butz et al. (1987) performed a complete analysis for the development of the 1988 Chevrolet 

Pickup. A parametric study with ten geometric parameters (such as box length and height and 

ground clearance) was performed experimentally in a 1/4 scale modular clay model, in a total of 

197 configurations. Refrigeration of the engine was considered in wind tunnel testing and 

acoustic tests were performed with an anechoic model. The effect of the tonneau cover was also 

discussed for a full tonneau cover and half tonneau, both contributed to the decrease of the drag 

but the last one was more efficient. Compared to the previous model, the 1987 Chevrolet 

Pickup, 8% drag and 5dB noise reductions are achieved. A total increase of 0.8 miles per gallon 

in efficiency was observed, where 75% is a consequence of the aerodynamic improvements.

In a more recent work, Wang et al (2014) used steady CFD analysis. Four design 

variables (bed length; bed height; cabin height and; ground clearance) were manipulated to 

achieve the smallest drag coefficient. It was proven that those parameters cannot be isolated in 

order to reduce drag what confirms the tridimensional aspect of the flow. Only ground clearance 

showed linear relation and relatively independence to the other variables for the proposed 

design space. A general conclusion was that a longer bed results in smaller drag. The optimized 

model has a CD of 0.3163 (9.7% smaller than the original model); the contribution of the tailgate 

is not observed for the optimum bed geometry, however the increase of pressure inside bed 

(after cabin) results in a total drag reduction.
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Furthermore, optimization routines were also performed for aerodynamic add-ons, such 

as the use of bumps on the rear of the cabin (MOUSSA; FISCHER; YADAV, 2015). The 

variables were the number and the dimensions of the proposed device equally distributed on 

cabin roof in the pursuit of a smallest drag. All the analyses were performed with average 

Reynolds equations (RANS) solver and a reduction of 10% of the drag coefficient was observed. 

The authors believe that the downward caused by the bumps reduced the strength of the wake 

thus there was an increase in pressure coefficients in the external face of tailgate.

The use of add-ons to reduce aerodynamic drag is a relatively cheap solution and can be 

easily design to not affect the functionality of the vehicle. Ha; Jeong; Obayashi (2011) studied 

the effects of a downward flap on the cab of the cabin. Numerical RANS simulation was 

performed and wind tunnel testing with a load cell for drag measurement, hot wire anemometer 

for acquiring the power spectrum density at the tailgate and oil paint on the upper surface of the 

tailgate for friction lines visualization. The use of the flap resulted in a displacement of the 

attachment point in the bed, causing more downwash inside the bed, thus reducing the wake 

strength and consequently the drag force. Another effect was the increase of the pressure 

coefficient at the cabin back, also contributing to the CD reduction. The best results were 

observed for a 12° angle of the flap, with a drag reduction of 5.6% for CFD and 3.6% on 

experiments.

In 2014, Moussa et al. used the same concept of Ha; Jeong; Obayashi (2011) on a 

different pickup geometry and performed an optimization of the length and the angle of the flap 

using global and bounded Nelder-Mead Algorithm. Although using a different model, with 

completely different bed dimensions, the smallest CD was achieved with the same 12° downward 

angle of the flap, and a similar behavior was noted for pressure distribution at the cabin back.

Another example is the numerical study of Chen and Khalighi (2015) of three drag 

reduction devices in a realistic pickup model: boat tail-like extended plates attached to the 

tailgate; mid-plate attached to the mid-section of the tailgate and; flat plates partially covering the 

truck bed. All simulations were performed in commercial software FLUENT with a 24 million of 

elements mesh. The add-ons are formed by non-thickness plates, that is only surfaces with wall 

conditions. For the 24 tested configurations, the best result (a reduction of 0,021 in CD) was 

achieved with the partial cover and the top plat on tailgate. The changes in both the outside of 

the tailgate and at the rear surface of the cabin provoqued a decrease of pressure on the inner 

surface of the tailgate resulting in the drag reduction.



21

In a mix of add-ons and geometric modifications, Mokhtar et al. (2011) performed a study 

of two aerodynamic enhancements: a tailgate spoiler and a tapered roof. Numerical simulation is 

performed for both add-ons and for a generic pickup model using RANS approach. A drag 

reduction was seen for the two devices; however, the tapered roof was the most effective. A link 

between the flow behavior and the forces coefficients is observed, the reduction of the 

recirculation in the wake is related to drag reduction. The speed of the flow changed the degree 

of contribution of the tested enhancements.

An important aspect of the flow around a pickup is the bed. Many studies are aimed to 

understand and enhance the phenomenology related to it and find the best configuration in 

terms of drag reduction. Mokhtar; Britcher; Camp. (2009) tested numerically and experimentally 

four bed configurations (flat bed, tailgate-off, tailgate down and tailgate-up) in different velocities 

and yaw angles. The flow behavior was proven to be a function of the walls and boundaries 

seen in the bed, and the pressure distribution related to those topologies plays a major role in its 

drag characteristics. The best results were for the flat bed, however for the remaining models 

(more realistic for the purpose of the vehicle) the tailgate-up is the configuration with the smallest 

drag.

The same results are seen in the literature relating the smaller pressure in the bed when 

compared to the values after the force created by this pressure difference is opposite to the flow 

direction, thus is assumed to decrease the drag.

Conclusion on the influence of speed is also performed. No major differences are seen in 

flow behavior and a small increase in the drag coefficient is observed. For the yaw angle, the 

increase is also related to the drag increase. For both parameters, changing the configuration 

modifies the susceptibility of the force coefficients.

Another contribution of Mokhtar and Camp (2010) was the analysis of the box 

configuration influence in the drag. For three configurations (open-box, tonneau cover and cap), 

numerical RANS simulation were performed. For the front of the vehicle (before trunk), there are 

no variations of the flow. The tonneau cover resulted in a smaller and weaker wake due to the 

smaller recirculation in bed. For the cap, the wake is larger and even with no separation in cap, a 

bigger drag is observed.

Ha; Obayashi; Kohama (2009) discussed the influence of the bed geometry (height and 

length) in the drag characteristic of a generic pickup truck via numerical and experimental 

approaches. Both dimensions are proven to influence in flow topology, resulting in different 
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combinations of bed flow, reverse flow in wake. The smallest drag coefficient is achieved for the 

short and long bed, geometry in which there is no separation between the recirculation in bed 

and the tailgate flow. The same behavior is encountered by Al-Garni; Bernal; Khalighi (2003).

A major contribution to the academic study of pickups was made by Al-Garni and Bernal 

(2003, 2008, 2010). For a proposed generic model, scale 1/12, PIV and pressure measurements 

(steady and unsteady were performed in wind tunnel for a complete description of flow behavior. 

The proposed vortex system consists of small counter rotating cab vortex and two bigger 

structures created at the tailgate. Those two elements create an attachment of the flow in the 

tailgate, producing a pressure difference between the inner bed and outer bed regions helping to 

reduce drag, as observed by Cooper (2004). The Reynolds influence on the pressure distribution 

is considered negligible. Theirs results were used for simulation validation and techniques 

testing in later works.

Jindal; Khalighi; Iaccarino (2005), performed a RANS analysis of the flow around the 

model proposed by Al-Garni, using immersive body approach, local grid refinement and adaptive 

mesh refinement. The domain used for the simulation mimics wind-tunnel boundary condition 

(no-slip walls) and is formed by 2.1x106 cells. The same behavior for the streamlines and 

velocities distribution is observed, most significant variation are seen in the underbody and at 

tailgate vicinity. Limitations of the turbulence method, unsteady effects and the poor refinement 

of the mesh under the vehicle are pointed as possible sources. The drag coefficient for the 

simulation showed a 6% deviation from the experimental value.

A study of turbulence models was performed by Holloway; Leylek; York (2009). The 

calculation setup is based on RANS for 3 different turbulence models: k-e; EVU (unsteady 

simulation); and SDSM (semi-deterministic stress model). All simulations presented 

simultaneously very similar results and significant deviations when compared to the wind tunnel 

values. The authors suggest that the unsteadiness of the problem is not well represented in an 

averaged approach and even macroscopic parameters such as the drag coefficient are not well 

predicted.

Using the same geometry, Guilmineau (2010) performed a numerical analysis for two 

turbulence models: Explicit Algebraic Reynolds Stress Model (EARSM), and Detached Eddy 

Simulation (DES). The domain is a replica of the wind tunnel setup and the solver is ISIS-CFD, 

with the incompressible unsteady Reynolds-averaged Navier Stokes equations (URANS). The 

complete pickup is simulated, with a total of 16.6 million of cells. The obtained results are very 
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close to the experimental values for the velocity and correlation profiles, the same behavior is 

achieved for the pressure distribution and flow topology. The friction lines are presented and a 

recirculation in the base of the windshield was notices. Both turbulence models gave similar 

results, that way the use of EARSM turbulence model is proven more advantageous for its 

smaller CPU time. A study scale is suggested.

For a more simplified model, Lee and Parameswaran (2006) performed a transient 

analysis with the k-£ turbulence model under the Launder-Kato modification. The mesh was 

produced in ICEM CFD HEXA, no slip condition is assumed for all the walls. No quantitative data 

is presented, only velocity contours for the symmetry plane and in the truck bed. The flow 

behavior is reasonable compared to the results presented in literature; however the small 

amount of data is not representative for more conclusions.

The use of simplified geometry in order to understand the major structures is much 

disseminated in automotive aerodynamics, being the Ahmed body one expressive example. The 

same trend can also be seen for pickup inspired geometries. Agelin-Chaab (2014) performed 

experimental analysis of a 2D bluff-body inspired by pickup trucks geometry. The experiments 

were made on a water tunnel for different ground clearances and “bed” lengths and heights, PIV 

and proper orthogonal decomposition (POD) was performed. The description of the flow is 

similar to the results of Al-Garni (2003) for the 3D generic pickup analysis; however the tri­

dimensionality of the flow must be taken in account for that analysis. For the tested model, the 

contribution of the small scale structures (higher order modes) was proven to be the most 

significant.

For the present work, the study is also based in a simplified pickup model with realistic 

dimensions based on light pickups of the Brazilian market. A general flow description is 

presented numerically and experimentally and a study of the influence of the mesh prismatic 

layer, model geometry, flow velocity and experiment scale is presented.



CHAPTER IV

Methodology

This chapter is designated for the presentation and definition of the proposed pickup 

model, and the numerical and experimental setups used on this study.

4.1. Test Article

In order to have a geometry that characterized real vehicles, the used geometry is based 

upon the most typical models in the light pickups market in Brazil. Table 4.1 presents the 

number of licensing for this category in July 2014. For the six most licensed models, the Hafei 

Mini is not considered due to its peculiar geometry; Peugeot Hoggar and Ford Courier are no 

longer produced, however there are still representative in the fleet.

Table 4.1 - Brazilian Light pickups licensing in July 2014 (FENABRAVE, 2014).

POS. MODEL JULY MARKET JULY JUNE MARKET JUNE
1° Fiat STRADA 12 585 56,28% 10 559 53,78%
2° Volkswagen SAVEIRO 7 294 32,62% 6 721 34,23%
3° Chevrolet MONTANA 2 446 10,94% 2 319 11,81%
4° PEUGEOT HOGGAR 23 0,10% 23 0,12%
5° HAFEI MINI 11 0,05% 13 0,07%
6° Ford COURIER 1 0,00% - 0,00%

TOTAL 22 360 100,00% 19 635 100,00%

Figure 4.1 presents the photographs of the five considered models. The simplest version 

of 2016 was considered for all the models (and the latest available for the Peugeot Hoggar and



25

the Ford Courier). It's observed that the geometrical variations between versions of the same 

vehicle are small and possible mistakes regarding the considered variety are negligible.

Fiat Strada

Volkswagen Saveiro

Chevrolet Montana

Peugeot Hoggar

Ford Courier

Figure 4.1 - Reference pickup vehicles.

Total of 26 external dimensions are obtained from manufactures website, customer 

manuals and from photographs analyzing using the software ImageJ. For the image processing, 

one known dimension (total length or total width) is used to set the scale of the photo in 

pixels/mm and the scale is confirmed for another known dimension (total height). A total of 10 

images encountered on manufacturer's websites and publications on specialized media were 

used: two for the Fiat Strada; two for the Volkswagen Saveiro; one for the Chevrolet Montana; 

three for the Peugeot Hoggar; and two for the Ford Courier. A mean error of 4.5% is observed 

for all the scale tests. The acquired dimensions are presented on Figure 4.2 and Table 4.2.

All the dimensions are defined for at least one of the reference vehicles and the 

proposed model is defined only from those dimensions. Grey cells represent values obtained via 

image analyzing and red values are the ones corresponding to previous versions of the pickup. 

Empty cells are dimensions that could not be defined for all the proposed methodologies. The 
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overall length of the bed of the Ford Courier was not considered due to its discrepancy of the 

values presented for other models.

MODEL

Table 4.2 - Pickup models dimensions

LABEL DESCRIPTION Fiat
STRADA

VW
SAVEIRO

Chevrolet 
MONTANA

Peugeot
HOGGAR

Ford
COURIER

A track front [mm] 1,425 1,429 1,550.124
B track-rear [mm] 1,390 1,490.71 1,439 1,396.631
C windshield front height [mm] 1,094.033 995.319 1,078.657
D1 overall height [mm] 1,402.433 1,550 1,578 1,524 1,477
D2 overall height (with cab rack) [mm] 1,525 1,497 1,630 1,577.886
E ground clearance [mm] 170 231.381 264.286 203.052 265.281
F hood front height [mm] 839.401 861.571 877.176 821.207

G1 overall width [mm] 1,664 1,708 1,700 1,668 1,793
G2 overall width (with mirrors) [mm] 1,906 1,893 1,918 2,020.399
H cabin lateral angle [deg] 62.152 66.371 57.995 62.808
I hood angle [deg] 11.725 9.951 10.305 12.799 9.039

J1 approach angle [deg] 25.849 32.59 24.109 20.925 25.769
J2 departure angle [deg] 26.743 27.77 25.322 21.915 25.755
K windshield angle [deg] 31.858 30.669 30.196 29.403 31.855
L rear of cabin angle [deg] 23.039 12.45 23.374 27.512 9.866
M front overhang [mm] 790 744.893 844 792.59 679.998
N wheelbase [mm] 2,718 2,750 2,669 2,745 2,893.417
O rear overhang [mm] 901 872.091 1,001 883.325 884.271
P overall lenght [mm] 4,409 4,493 4,514 4,526 4,457

Q1 box height [mm] 1,249.249 1,228.855 1,195.558 1,143.976 1,058.722
Q2 box interior height [mm] 525 464
R box lenght [mm] 1,685 1,615.461 1,737.357 1,706.814 1,760.316
S width between wheelhouses [mm] 1,090 920 1,119 1,100

T1 box interior width [mm] 1,230 1,340 1,240
T2 box width [mm] 1,350
V overral lenght at box [mm] 1,640 1,680 1,816+

LEGEND
1,000
1,000
1,000

data from manufacturer and specialized publications 
data from images analysing 
dimension of previous models
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R

Figure 4.2 - Test article composing dimensions.

To achieve an understanding of the general flow around a pickup, the model is simplified: 

no air inlets or outlets are modeled; underbody is simplified; there are no rear viewers, wheels 

housing or any attachments in the model, thus dimensions labelled as ‘D2', ‘G2' and ‘S' are not 

considered on this study. The simplified design (sharp edges and plan surfaces) does not 

reproduces any of the original vehicles; however the use of a more generic body is aimed to 

clarified macroscopic effects seen in outside flow of a pickup, especially in bed, and ignores the 

design choices of the manufactures.

For each dimension, a simple mean operation is applied in order to achieve a geometry 

that represents in general the pickups on the road; values are presented on Table 4.3. The 

maximum and minimum values of the dimensions and the standard deviation and coefficient of 

variation are also presented. As seen in Ha; Obayashi; Kohama (2009), the bed geometry plays 

a key factor in the produced aerodynamic structures and consequently in the drag of the vehicle, 

the use of five references could represent a more global geometry with could be seen as more 

illustrative.

The small variation of the measured dimensions confirms the similarity and validates the 

use of a simplified model in the proposed aerodynamic study. The biggest fluctuations are 
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observed for the angular values and are due to the difficult of the image analyzing, especially for 

the rear of cabin angle (L). The geometry of the wheels is based on the standard tire of four of 

the reference pickups: the 175/70 R14 (18 cm wide and external diameter of 60 cm).

Table 4.3 - Statistics of dimensions analysis.

LABEL MAXIMUN MINIMUN MEAN STANDARD
DEVIATION

COEF. OF 
VARIATION

A 1,550.12 1,425.00 1,468.04 71.11 4.8%
B 1,490.71 1,390.00 1,429.09 46.46 3.3%
C 1,094.03 995.32 1,056.00 53.11 5.0%
D1 1,578.00 1,402.43 1,506.29 68.94 4.6%
D2 1,630.00 1,497.00 1,557.47 58.85 3.8%
E 265.28 170.00 226.80 40.92 18.0%
F 877.18 821.21 849.84 24.59 2.9%

G1 1,793.00 1,664.00 1,706.60 52.00 3.0%
G2 2,020.40 1,893.00 1,934.35 58.27 3,0%
H 66.37 58.00 62.33 3.43 5.5%
I 12.80 9.04 10.76 1.49 13.9%

J1 32.59 20.93 25.85 4.26 16.5%
J2 27.77 21.92 25.50 2.22 8,7%
K 31.86 29.40 30.80 1.07 3.5%
L 27.51 9.87 19.25 7.65 39.7%
M 844.00 680.00 770.30 61.47 8.0%
N 2,893.42 2,669.00 2,755.08 83.74 3.0%
O 1,001.00 872.09 908.34 52.82 5.8%
P 4,526.00 4,409.00 4,479.80 47.46 1.1%

Q1 1,249.25 1,058.72 1,175.27 76.35 6.5%
Q2 525.00 464.00 494.50 43.13 8.7%
R 1,760.32 1,615.46 1,700.99 55.78 3.3%
S 1,119.00 920.00 1,057.25 92.29 8.7%

T1 1,340.00 1,230.00 1,270.00 60.83 4.8%
T2 1,350.00 1,350.00 1,350.00 - -
V 1,680.00 1,640.00 1,660.00 28.28 1.7%

The contact of the wheel with the ground is modeled by a chamfer that removed 1% of 

the diameter parallel to the ground. This modification is closer to reality than the line contact 

present if the wheels were completely round and more reasonable for later process of meshing 

and CFD calculation.
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The overall dimensions are of the same magnitude of previous works, as presented in 

Table 4.4, however specific dimensions (such as bed height and length) and the proportions of 

the models are not the same and comparisons between results must be made with care in 

regard of those differences. In order to achieve a convenient blockage factor on experimental 

testing, 5 % according to Hucho (1987), 1/10 scale is adopted. The model presents 205.58 cm2 

of frontal area that equals a blockage ratio of 5.71 % on wind tunnel.

Table 4.4 - Overall dimensions and blockage ratio of generic pickup models in the literature.

MODEL Al-Garni
(2003)

Ha
(2009)

Mokhtar*
(2010)

Lee 
(2006)

lenght [mm] 447.98 432 407.4-528.6 5,300 432
height [mm] 150.63 148.8 167 1,900 123
width [mm] 170.66 152 183.5 1,780 152

frontal area [m2] 0.0206 0.019 - 2.545 -
blockage ratio 5.71 % 6% - 0.78 % -

*numerical simulation

The model is designed in the software CATIA V5R20 using the dimensions presented on 

Table 4.3 and the cited tire diameter. The model is made entirely composed by sharp edges and 

flat surfaces; the three views plan is presented on Appendix I. Later on this work it is referenced 

as “baseline”. In order to comprehend the effects of the sharp edges, a second version of the 

model (“rounded” version) is prepared by adding a fillet of 15 mm on all the external edges and a 

fillet of 6 mm on the exterior of the bed; the bed interior is the same for the baseline model. Both 

models are illustrated on Figure 4.3.

Figure 4.3 - Pickup models: baseline (left) and rounded (right).
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4.2. Numerical

4.2.1. Numerical Domain and Mesh

The mesh is prepared in software ANSYS ICEM CFD 16.0, meshing software that allows 

the use of CAD exported geometry from multiple software; capable of structured and 

unstructured meshing; and to export them for a number of solvers such as ANSYS FLUENT; 

Star-CCM+, CFD++ and OpenFOAM. The relative high controllability of shell and volumetric 

elements parameters allows the creation of sophisticated domain discretization.

The complete domain surfaces (model and boundaries) are prepared on CATIA using 

both generic pickups presented on section 4.1. The files must be converted to an older file 

format of CATIA (.MODEL, from CATIA V4) in order to be imported on ICEM CFD.

The numerical domain dimensions are based on the car length L and follow the 

proportions used by Ha; Jeong; Obayashi (2011). As summarized on Figure 4.4, the inlet is 

placed forward the model at a distance of 10L, the outlet is located 20L downstream the model, 

the superior limit of the domain is at 10L (instead of 30L) of the ground and the lateral limit is 

placed after 7.5L the model. Only half of the model is simulated with 0.06 % blockage ratio.

Figure 4.4 - Refinement regions on symmetry plan (L is the pickup length; l is the trunk length; 

and W is the pickup width)

For better accuracy for flow representation, the elements of the mesh are refined in 

specific regions, especially in the trunk and in the wake. Six volumetric regions, defined by the 

software as “densities”, are used to delimit the size of the elements in representative regions and 

are listed next.
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- trunk density: element size of 2 mm, corresponds to the trunk and the closer portion of 

the wake. It starts at the end of the rear surface of the cabin; therefore it is bigger for the 

rounded geometry. Labelled as (A) on diagram;

- wake density: element size of 5 mm, comprehends both the later wake and the 

underbody of the model; (B) on diagram;

- inner density: size of 10 mm, englobes all the pickup and affects both before and after 

the model; (C) on diagram;

- outer density: size of 40 mm, an expansion of the previous density; (D) on diagram.

- wheel density: variable size, minimum of 0,5 mm on the contact with the ground; one for 

each wheel, not represented in the diagram.

On the rest of the domain - represented as (E) - the element size is defined as the length 

of the pickup (447 mm).

Wheels and trunk surface mesh is defined using the blocking feature of the software for 

triangular elements and are illustrated on Figure 4.5. The pre-mesh is later converted for 

unstructured mesh.

Figure 4.5 - Surface mesh of wheel (right) and trunk (left).

A total of three final meshes (corresponding to the two tested geometries) are used in all 

numerical simulations. In order to evaluate the influence of the boundary layer in the results, the 

study of the baseline model is made initially with mesh composed only by tetrahedrical elements 

(later on this work this mesh is referenced as TETRA); later simulations were performed with the 

same geometry with a 4 mm high prismatic boundary (20 layers with exponential grown, first 
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layer is 0.05 mm height - y+ ~ 3.5 for Schlichting skin-friction formula, U0 = 25 m/s) on the 

ground and on the vehicle (labelled BASELINE); mesh is redone for a better numerical 

convergence (in order to reduce shrunken and distorted pyramidal elements), however all the 

domain definitions presented on Figure 4.4 are maintained to grant a reasonable comparison 

between results. The same study was intended to be performed for the rounded geometry, but 

numerical convergence was not reached for the mesh with no prismatic boundary and all 

preliminary results are not presented. Thus, the ROUNDED mesh contains also tetra and 

prismatic elements (same size and distribution cited previously).

The main refinement regions and the boundary elements are depicted on Figure 4.6, with 

represents the surface mesh on the symmetry plane and the pickup model for the three meshes.

Figure 4.6 - Numerical surface mesh on symmetry plane and pickup (from top to bottom:

TETRA, BASELINE and ROUNDED).

The meshes present an average of 8 million elements. Previous works used for RANS 

simulations: Mokhtar; Britcher; Camp (2009), 700 thousand, and Moussa; Fischer; Yadav 

(2015), 3 million cells, for half domain (symmetry); Guilmineau (2010), 16.6 millions, Ha; Jeong; 

Obayashi (2011), 3 million, Holloway; Leylek; York (2009), 26 million, and Chen and Khalighi 

(2015), 39 million, for the complete vehicle. In comparison to previous work and due to the main 



33

focus of describing the mean flow structures, meshes are considered reasonable, especially for 

the available computational capacity.

The tested flow velocities (16.67 m/s; 25 m/s and 33.33 m/s) are constrained to wind 

tunnel performance and correspond (in terms of Reynolds number) to a very slow pickup speed 

(6 to 12 km/h). For the chosen scale, dynamic correlation is achieved for a ten times bigger 

velocity (166.7 to 333.3 m/s) within would consist in an important Mach value and level of 

compressibility.

To question the validity of the use of in scale model for the description of the flow around 

the real size pickup, both the baseline and the rounded model are tested at the same freestream 

velocity with an enlarged geometry: a simple scale transform is performed for the mesh, 

extending the size of the elements for a factor of 10 in all three directions, maintaining for each 

individual case (TETRA, BASELINE and ROUNDED) the same elements geometry and 

distribution.

4.2.2. Boundary Conditions and Solver

All the numerical analyses are performed using the steady Reynolds Averaged Navier 

Stokes equation (RANS) in commercial software STAR-CCM+, distributed by CD Adapco Inc.

The turbulence model is SST k-w, proposed by Menter in 1994, with the standard 

coefficients. It presents good behavior in adverse pressure gradients and separating flow 

conditions (HA; JEONG; OBAYASHI, 2011). Solution is based on the segregated flow model 

(2nd order upwind convection scheme), with all y+ wall treatment. Fluid is incompressible air 

(standard properties: 1.18415 kg/m3 density and 1.85508x10’5 Pa.s dynamic viscosity); 

reference pressure is also let on standard (P = 101,325 kPa).

In order to mimic wind tunnel set-up, the ground is fixed and wheels are also static, both 

surfaces with non-slip condition. The far field (both upper field and side field) is defined as walls 

with slip condition. Inlet presents constant velocity (16.667; 25.000; 33.333 m/s), turbulent 

intensity is set to 1% and the turbulent velocity scale is fixed at 10% of the free stream velocity. 

Turbulence viscosity ratio is fixed as 10. Outlet is defined as a pressure outlet of 0 Pa 

(barometric). Pickup is completely stationary, composed by non-slip surfaces.
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For the proposed discussions, a total of 18 simulations are performed, considering: three 

freestream velocities; three meshes (corresponding to the two geometries) and two scales (full 

size and in scale), as summarized on Table 4.5.

Table 4.5 - Simulations Matrix.

MODEL baseline rounded
MESH TETRA BASELINE ROUNDED
SIZE Full Scale Full Scale Full Scale

«r
.E
oD

16.667 x x x x x x

25.000 x x x x x x

33.333 x x x x x x

The CFD calculations are done in a workstation with an Intel Core i7-3930K (3.20 GHz) 

processor with twelve cores (six physical) and 48.0 GB RAM memory. For the presented 

meshes, mean iteration time is of 12 seconds when all cores are used.

Simulations for the in scale baseline model are redone with wind tunnel air properties for 

validation.
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4.3. Experimental setup

This section presents all experimental assets and techniques used on this work.

4.3.1. Wind tunnel Facility and Model

The facility is an open wind tunnel with a test section of 60 x 60 cm of the External 

Aerodynamics Research Center (CPAERO) of the Federal University of Uberlândia, presented 

on Figure 4.7. Flow momentum is created by a rotor of 12 blades driven by a 25 HP electrical 

engine on the upstream of the wind tunnel. Air velocity is driven by an electrical inverter (output 

from 0 to 60 Hz).

It is instrumented with pressure tabs and an analogic manometer. A Pitot tube and a 

digital manometer can also be used for calibration.

Figure 4.7 - Wind tunnel facility.

In order to perform the experiments presented on this work, improvements were made on 

the wind tunnel. The concerning results and general wind tunnel flow description procedures are 

presented on Appendix II.
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The baseline model is printed using a MakerBot 3D printer, model Replicator 2x, with an 

ABS filament of 1.5 mm diameter. The geometry is prepared under the same CATIA model that 

generated the meshes for CFD analysis, thus the chamfer in wheels is also present. The 

generation of STL files (for the printer) follows the standard exportation parameters and the 

tessellation is prepared on printer manufacturer's software (MakerBot Desktop). Due to 

limitations regarding the printer size, the model is printed in four parts, as presented in Figure 

4.8. Printer resolution is 0.5 mm and the level of infill density is 10%.

Figure 4.8 - Pickup model parts.

Superficial texture and distortions observed on the largest pieces required later 

preparation for assembling the parts and smoothing the external surfaces and the contacts. The 

finalized model, presented on Figure 4.9, is painted black to achieve better contrast on the 

qualitative flow visualization tests.

Figure 4.9 - Finalized pickup model.

The model is fixed directly on the ground of the wind tunnel test section. Influences of the 

existing boundary layer, inexistent for real life vehicles once the air is stationary, are considered 

irrelevant.
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4.3.2. Quantitative method - Hot-wire Anemometry

This technique uses the magnitude of heat that is transferred from a thin wire to a 

passing flow in order to measure it speed. Electric current is applied to the wire, generating 

electrical power (P) proportional to the current magnitude (I) and the wire resistance (Rw): 

P = I2Rw. Once temperature of the wire is steady, it means that the amount of energy given to 

the wire equals what is being dissipated to the flow, thus, convective energy is measured. With 

access to the voltage difference that created the current, we are able to the monitor the amount 

energy.

Dissipated energy via convection can be related to the flow velocity using a power law 

correlation for the Nusselt non-dimensional number. The following equation was proposed by 

King on 1914, known as King's law:

I2R^ =E2 = (Tw - To)(A + BUn) (4.1)

where E is the voltage; Tw is wire temperature; T0 is a reference temperature; U is the velocity of 

the flow and A, B and n are coefficients obtained on calibration. With measured voltages, those 

coefficients can be obtained using equipment such as a Pitot tube or another hot-wire 

anemometer system placed at the same flow or a calibration nozzle.

Measured voltages are commonly related to flow velocity using two different equations 

presented next:

■ Power law (based on King's law):

(4.2)

■ 4th degree polynomial equation:

U = Co + CiEc + C2E2 + C3E2 + C3E2 (4.3)

where A, B, n, and C0 to C5 are the calibration constants and Ec is a corrected voltage.

Being this method based on convection, it's susceptible to all properties that are related 

to this heat change mechanism such as temperature variations (errors of approximately 2% per 
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Celsius degree change) and fluid compressibility. When low speeds are considered, natural 

convection also influences. More details on the technique itself can be seen on DANTEC 

documentation (J0RGENSEN, 2004), where this short description is based.

Important features of the flow can be analyzed using the signals obtained with hot wire 

anemometry. Besides mean velocity, U0, two interesting parameters when describing turbulence 

can be derived: the standard deviation of the velocity, URMS, and the turbulence intensity, Iturb (its 

adimensionalized version). All formulations are presented on following equation:

N

Uo

i = 1

Uf; hurb
Urms (4.4)

where Ui is a acquired velocity; and N is the total number of acquired values.

Global distribution of turbulent scales and vortex shedding frequency can be defined with 

spectra of the recorded signal using Fourier Transform for a discrete signal:

N

DSP(k) = x(j~) exp( — 2m/AQ(y-1)(A'-1)
i=i

(4.5)

Values can be presented in the decibels scale using a reference value (Eref):

(DSP\
DPSdB = 20logio\—-) (4.6)

\Eref /

The hot-wire anemometry is used to produce velocity profiles upstream and downstream 

the model. All measurements are performed using DANTEC Dynamics StreamLine Pro 

Anemometer System. A 1D hot-wire probe (55P11) is attached to a 90° support and connected 

to one of the constant temperature anemometer (CTA) modules of the StreamLine Pro frame. 

The acquisition module is connected to a National Instruments A/D converter which sends data 

to the computer via a USB port. The system control and data exporting is done with the 

manufacturer's software, StreamWare Pro. Figure 4.10 illustrates the experimental setup.

The pickup is placed on the floor of the wind tunnel test section and the probe is 

positioned on three different axes at the symmetry plane of the pickup: 78 mm - bed's length l - 
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before the model (P1); 50 mm and 92.57 mm - approximately tailgate height h and its first 

multiple - after the model (P2 and P3, respectively).

Measurements of the stream wise velocity with a 1D hot-wire probe are performed for a 

distance of the ground from 5 mm to 170 mm, each 5 mm (total of 34 measurements points per 

position).

The sampling frequency is 2 kHz (acquisition period of At = 0,5 ms) for a total of 

N = 32,768 sample points (acquisition time of T = 16.383 seconds). A Pitot tube is placed on the 

roof of the test section and a digital manometer displays the free stream velocity. This indication 

is used to define global freestream flow stagnation and start anemometer acquisition.

Calibration is performed using the StreamLine Pro Automatic Calibrator for 20 velocities 

between 1 to 27 m/s, logarithmic spaced. Indicated pressure and temperature are P = 91.85 kPa 

and Tabs = 27.30 °C. The 4th degree polynomial function is chosen as the calibration law and 

temperature correction is not applied. All unmentioned parameters are set default on the 

acquisition software and the post processing is performed on software MATLAB.

Figure 4.10 - Experimental setup.
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Figure 4.11 - Experimental setup (left). On detail (right) the hot-wire support and probe on 

position P1 and Pitot tube on test section roof.

4.3.3. Qualitative method - Wall Tufts

In order to describe flow direction and detached/recirculation zones close to model's 

surface, wall tufts technique is applied. Important features of close surface flow can be easily 

pointed with this technique: when flow is laminar, tufts are aligned with flow direction and 

describe a relatively steady dynamics; on turbulent/unsteady regions, the movement of tufts is 

highly oscillating; zones where tufts are elevated are the ones within separated/adverse flow 

(MERZKIRCH, 1987). Disturbances caused by the presence of the tuffs and theirs attachments 

assets (tape or glue) must be accounted. This method is largely applied in both aeronautical and 

automotive domains (example presented on Figure 4.12).

Figure 4.12 - Fluorescent minitufts on car moving at 160 km/h past stationary camera 

(MERZKIRCH, 1987).
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For this study, 15 mm long wool tufts are attached on pickup walls. Tufts are not placed 

on the front end; on the underbody, only the wheels and the final part of the trunk (rear 

overhang) are discretized. An average distance of 5 mm is considered between the lines of tufts. 

Figure 4.13 presents the model with the tufts.

Figure 4.13 - Model with wool tufts.

The tests are recorded with a high definition camera posed on a tripod, as seen on 

Figure 4.14. The effects on the trunk are also registered from the top via a hole on test section 

roof using a cell phone camera. Recording are made on three flow velocities: 10.0, 16.7 and 

25.0 m/s. On this document, representative frames of those videos are presented.

Figure 4.14 - Experimental setup for wall tufts test.



CHAPTER V

Results and Discussions

This section is dedicated to the presentation and discussion of both experimental and 

numerical results.

5.1. Numerical Solution Properties and Validation

First chapter is dedicated to present the simulation characteristics and the influence of 

boundary layer discretization for the baseline model, numerical results and the validation of CFD 

solution. The flow around both geometries is discussed next. Final part contains the results of 

the performed scale study.

5.1.1. Numerical Solution Properties

This section is dedicated to present the aspects of numerical solution and to describe the 

proposed convergence criteria. If not settled contrary, the results presented on this section are 

for the in scale model, freestream at U0 = 25 m/s and meshes with and without prismatic 

boundary.

Due to the complexity of the problem and its transient behavior (HOLLOWAY et al., 

2009), relatively high order residuals are achieved for all considered quantities, as seen on 

Figure 5.1. Also, mesh quality is highly restricted by the elements at the contacts of the wheel 

with the ground, especially for BASELINE mesh, leading to the existent residuals fluctuations. 

According to the solver's help manual, it's often recommended to ignore those instabilities; 

therefore other properties are considered for defining convergence.
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Figure 5.1 - Residuals monitor for simulation with the TETRA (top) and BASELINE (bottom) 

meshes (in scale, U0 = 25 m/s).

In order to define a number of minimum iterations to obtain a representative solution, 

velocity field on symmetry plane and force coefficients are monitored. Figure 5.2 presents the 

evolution of CD and CL for the two meshes.

tetra

Iteration

Figure 5.2 - Evolution of numerical force coefficients for in scale TETRA (left) and BASELINE 

(right) meshes, U0 = 25 m/s.

baseline
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Stopping criteria is defined based on drag coefficient convergence. A sequence 

l = {CD,i ; i = 1,2,3,...}, where i represents a iteration, is statistically convergent if and only if its 

sequence of partial averages, p(n), converges and its sequence of partial standard deviations, 

o(n), converges to 0 (BURGIN; DUMAN, 2006). Figure 5.3 shows the evolution of the mean and 

standard deviation of the numerically obtained CD sequences, starting at iteration 5. For both 

geometries, convergence is defined visually within 3,000 iterations.

Figure 5.3 - Evolution of partial average (left) and standard deviation (right) of drag coefficient 

sequence for baseline and rounded in scale model, U0 = 25 m/s.

Similar behavior is observed in all calculations and the simulations are stopped with 

3,500 iterations; the additional 500 are used for force coefficients prediction. Standard deviation 

of the considered CD values (from iteration 3000 to 3500) is on the order of 0.005. At the last 

iteration mass imbalance for the complete domain is around 1x10-4 %.

For the proposed number of iterations, convergence is not well defined for the lift 

coefficient with the TETRA mesh. According to Guilmineau (2010), poor discretization of the 

underbody may lead to poor CL prediction, but this aspect alone does not invalidate the solution. 

For BASELINE mesh, 40 elements are added between the ground and the model (the two 

prismatic boundaries) and convergence is similar to the observed for drag coefficient.

The same analyses are performed for the ROUNDED mesh and the results are similar to 

those of the mesh with prismatic boundary. For this reason they are not presented on this 

document.



45

5.1.2. Mesh study

For the baseline model, simulations are performed for two different meshes: TETRA with 

no prismatic layers; and BASELINE with 4 mm boundary layer discretization. The influence of 

the proposed refinement is discussed next. Simulations for in scale, 25 m/s flow are used for the 

comparison.

Figure 5.4 presents the normalized velocity field for both meshes. The coarse mesh 

(TETRA) has globally a similar velocity field, with a big recirculation bubble on the trunk and 

above the hood. However, the poor modeling of the flow contact with the surfaces (minimum 

element size of 2 mm) of the geometry caused a simpler reproduction of the smaller structures 

and their effects. For the BASELINE mesh, the ground detachment and the shear layer on 

pickups underbody is more well-defined. Also, a recirculation region on front overhang and a 

boundary layer growth on cabin top are present and a higher wake is existent.

Figure 5.4 - Normalized velocity field on symmetry plane, baseline model for TETRA (top) and 

BASELINE (bottom) meshes (in scale, U0 = 25 m/s).

On trunk, the use of the prismatic elements influenced the recirculation bubble size and 

position. Patterns that are unnoticed for the TETRA mesh solution are responsible for pushing
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the recirculation center downstream, as showed on Figure 5.5. The detachment on trunk is 

placed at 24% of bed's length for the refined mesh and at 2% of l for the TETRA mesh. The 

smaller vortexes formed on lower exterior part of tailgate are numerically instable and vary in 

position and shape for a relatively low number of iterations and cannot be accountable for 

comparing the meshes.

Figure 5.5 - Streamline on symmetry plane for TETRA (left) and BASELINE (right) mesh (in 

scale, U0 = 25 m/s).

Inside the trunk, a different behavior is present. Figure 5.6 has the streamlines for both 

meshes on the center of the trunk horizontal plane. The central recirculation is much smaller due 

to the presence of a more important vortex on the cabin back surface, at the center of the trunk. 

On wake, there are no significant changes on the streamlines distribution.

Figure 5.6 - Streamline on center of trunk for TETRA (top) and BASELINE (bottom) meshes (in 

scale, U0 = 25 m/s).
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Solution for the BASELINE mesh contained a more energetic wake (Figure 5.7). The 

vortex on cab is more developed for the chosen scale and a slower dissipation is achieved; 

turbulent energy is also more prominent close to the ground.

Figure 5.7 - Evolution of Turbulent Kinetic Energy on pickup trunk and wake for TETRA (top) 

and BASELINE mesh (bottom).

The discretization of the boundary layer caused variations of the pressure evolution on 

symmetry plane of the model. The differences are going to be commented on the following 

paragraphs and a discussion on the structures themselves is presented on the section 5.2. 

Results are presented following the axis system on Figure 5.8 and are adimensionalized using 

the model overall length (L), bed length (l) and tailgate height (h).

Figure 5.8 - Axis system.
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Figure 5.9 presents CP evolution for the cab, bed and underbody. For the cab, CP graphs 

are very similar for both meshes and follow the same behavior observed by Al-Garni and Bernal 

(2010): depression on hood and cabin top and global maximum on front windshield. Comparable 

behavior is noted on bed, where there is a decrease of pressure until about 40% of the bed 

followed by an increase up to tailgate. However, for BASELINE mesh, the first 20% of bed 

presents a plateau of CP = -0.2 formed by the structures located between the cabin back surface 

and the recirculation bubble. On underbody, there is a depression caused by the recirculation of 

flow on front overhang, only noted on the solution with the more refined discretization 

(BASELINE). A stagnation point is formed on the front end and a parabolic CP evolution is 

observed for both solutions, which is not presented on graph.

Differences are more visible on the cabin back surface and the tailgate, see Figure 5.10. 

Phenomenology on trunk that caused the variations observed on bed also produced a higher CP 

on cabin back for the TETRA mesh. On internal face of the tailgate, curve follows the same 

pattern and oscillations are in order of 10% (from -0.10 to -0.11). Outside tailgate, the behavior is 

similar for both meshes, but a CP difference of 0.07 is observed on tailgate root. It is noted at all 

the parts that TETRA mesh CP curves present oscillations, when BASELINE graphs are smooth.

All discrepancies are a reflection of the different vortex distribution obtained with the two 

meshes. The use of boundary description is extremely important to simulate flow detachment 

and turbulent flow, and the similarity between TETRA and BASELINE meshes can be 

associated with the existence of only sharp edges, which have a distinguish detachment point. 

For the rounded model, convergence could not be achieved without prismatic boundary. The use 

of a much refined mesh altered the topology of the flow in both the front and the back of the 

geometry. Thus, a study of the prismatic boundary itself is recommended.

Variations in flow behavior affected force coefficients. The differences resulted in 6.79% 

increase of drag coefficient: from CDT = 0.5034 for TETRA mesh to CDB = 0.5376 for BASELINE 

mesh. Both the values are the same in terms of distribution of drag, being 96% caused by 

pressure differences and only 4% by shear forces. In terms of lift coefficient, the TETRA mesh 

presented a much more important fluctuation (the standard deviation for last 500 predicted 

values reduced from 0.0432 to 0.0220), however the results are not representative when 

compared to commonly found on automotive aerodynamics (CLT = 0.0980 and CLB = 0.0158). 

Guimineau (2010) obtained lift coefficients in the order of 0.3.
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Figure 5.9 - Pressure coefficient on symmetry plane of the cab, bed and underbody for TETRA 

and BASELINE meshes (in scale, U0 = 25 m/s).

Figure 5.10 - Pressure coefficient on symmetry plane of the cabin rear surface and tailgate for 

TETRA and BASELINE meshes (in scale, U0 = 25 m/s).
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5.1.3. Experimental Results and Validation

Qualitative and quantitative experimental techniques are used to validate numerical 

computations. On this section, velocity profile and surface topology results produced on wind 

tunnel are presented and compared to CFD solutions for baseline geometry.

5.1.3.1. Quantitative - Velocity Profiles
Velocity profiles on symmetry plane, upstream (P1) and downstream (P2 and P3) the 

printed model are produced in wind tunnel with a hot-wire anemometer. Tests were performed 

for two freestream velocities: U0 = 16.7 and U0 = 25.0 m/s.

In order to perform numerical validation, simulations with TETRA and BASELINE meshes 

are relaunched for additional 1,000 iterations in experimental conditions: P = {91.85; 101.60} 

kPa, U0 = {16.9029; 25.00} m/s; p = {1.055; 1.222} kg/m3 (using perfect gas equation with 

average temperature between the start and the end of the data acquisition); and turbulence 

intensity on inlet Iturb = {0.8; 1.0} %. All remaining parameters are unaltered.

The numerical results are exemplified on the velocity field on Figure 5.11. The vectors 

are placed at the experimentally tested locations. On the first position (P1), we see the influence 

of the model on upstream flow. On wake (P2 and P3), boundary layer evolution, accelerated flow 

from underbody and sequential shear boundary are noticed.

Figure 5.11 - Streamwise velocity field in symmetry plane and vectors on tested points for

BASELINE mesh at wind tunnel conditions (in scale, U0 = 25.0 m/s).
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Compared to the CFD results, the same behavior is observed for the 3 positions (velocity 

profiles on Figure 5.12). On P1 (before the model) boundary layer is defined between 0 to 

10 mm, deviation outside the boundary layer region is of the order of 1%. For P2, outside 

boundary layer, there is an increase of velocity until 40 mm that can be associated to underbody 

flow acceleration, followed by a rapid decrease. The recirculation encountered after the trunk is 

represented by a plateau of 6 m/s for U0 = 16.7 m/s and 9 m/s for U0 = 25.0 m/s from around 60 

to 90 mm on the rear profiles. The wake continues until the higher point considered. At the last 

position, the obtained curve is the same that the one observed in the previous acquisition plane, 

however the structures are dislocated in position and velocity magnitude (higher and slower).

For the first profile, the 4 numerical solutions reproduced the numerical curve. On the 

wake, profile structure is the same: accelerated flow at Z = 40-60 mm, minimum velocity at 60­

80 mm and gradual acceleration until reaching freestream velocity at last point (Z = 170 mm). 

However, the solutions vary above 40 mm. For BASELINE mesh, the developing boundary layer 

presented on section 5.1.2 is closer to the experimental results; solution with the TETRA mesh 

have an abrupt velocity increase that created a velocity profile very distinct from hot-wire results.

When analyzing the profiles acquired on the wake (P2 and P3), it's noticed that the 

experimental curves are smother and the minimum speed is around 5 m/s, despite the expected 

negative magnitudes on the recirculation zones. This result can be associated to the limitations 

of the measuring technique, once values outside the calibration region (including negative 

velocities) are not correctly acquired. On Figure 5.13, the limits of the acquired data are showed 

at each point; for the four profiles placed on the models wake, the minimum velocity for almost 

all points is fixed around 1 m/s (the calibration inferior limit).
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Figure 5.13 - Experimental velocity profiles limits for U0 = 16.7 m/s (top) and U0 = 25 m/s 

(bottom).
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Vortex shedding frequency can be obtained using spectral analysis of the velocity signals 

recorded on the wake. Simulations being steady (RANS) on present work limits the study to 

experimental data, therefore the following discussion is prepared to serve as validation for future 

works.

Spectral study of the acquired signals is performed using MATLAB fast Fourier transform 

function. Figure 5.14 illustrates energy distribution for signal acquired at Z = 55 mm on P2 and 

P3. For the portrayed example, a global peak is noted around 45 Hz, however, it is clear that 

many scales are excited on the wake of the tested geometry, what denotes that the flow is 

completely developed.

Energy distribution on frequency scale for all tested positions on wake is presented on 

Figure 5.15. Each column of the grid is the spectral distribution of the signal obtained with the 

probe on the position represented on the abscissa axis for the two positions on symmetry plane 

(P2 and P3). For clarity, spectra presented on the grid representation are performed for 1024 

points; higher discretization is used for vortex shedding frequency determination.

For U0 = 16.7 m/s, higher magnitudes are seen for a frequency bandwidth of [40; 60] Hz, 

and on the same level of the negative velocities in the numerical profiles (Z = 40-60 mm). The 

other tested velocity presented more intense values on the vicinity of 60 Hz for Z = 60 mm.

Figure 5.14 - Spectral energy distribution for velocity signal acquired at P2 (left) and P3 (right),

Z = 55 mm (U0 = 25 m/s), using unity as reference for decibels (smoothed curve in red).
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Both locations of higher energy can be associated with the shear boundary formed on 

the rear-overhang of the pickup. Frequencies that corresponded to the global energy peak and 

the corresponding Strouhal number (the height of the model is used as characteristic dimension) 

are listed on Table 5.1. Mean is 0.378; For a hot-wire probe placed 15 mm behind the tailgate, 

Ha et al. (2011) observed a peak around f = 30 Hz, that corresponds to St = 0.167.

Table 5.1 - Positions and frequencies of maximum spectral energy peaks on pickup wake.

POSITION U0 [m/s] Z [mm] f [Hz] St
P2

16.9
55 41.634 0.370

P3 65 43.594 0.387
P2

25.0
55 64.827 0.389

P3 65 61.012 0.366
mean St 0.378
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Figure 5.15 - Spectral energy distribution of measured velocities on pickup wake at P2 (top line) 

and P3 (bottom line) for U0 = 16.7 m/s (left column) and U0 = 25.0 m/s (right column), using unity 

as reference for decibels.
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5.I.3.2. Qualitative - Wall Tufts Visualization
For flow tendency visualization, wool tufts are placed on model wall. Wind tunnel testing 

is performed with three velocities: U0 = {10.0; 16.7; 25.0} m/s. Videos are recorded from lateral 

of the pickup and above trunk.

Figure 5.16 presents frames of the recorded videos of the trunk and Figure 5.17 

illustrates images registered laterally. No clear distinction is observed from one velocity to 

another. Therefore, comparison with numerical results are only made with the fastest velocity 

(U0 = 25 m/s), which is the one that has more discrepancy between zones.

Figure 5.16 - Wall tufts on trunk for U0 = 10.0 m/s (left), U0 = 16.7 m/s (center) and 

U0 = 25.0 m/s (right).

To compare these results with CFD flow, shear stress streamlines are presented at the 

surfaces of the model for both meshes.

Tufts on downstream of the trunk are elevated due to the presence of a recirculation 

bubble also predicted on numerical simulations. This behavior is noted only after the third line of 

tufts, thus, the recirculation does not occupies the entire trunk. Simulations for the BASELINE 

mesh reproduce this topology while TETRA solutions have the recirculation bubble starting at 

2% of the bed length, as seen on Figure 5.18.

Structures that are observed on overall model are illustrated on Figure 5.19. Important 

features are highlighted and labelled sequentially



58

Figure 5.17 - Wall tufts on trunk for U0 = 10 m/s (top), U0 = 16.7 m/s (center) and U0 = 25.0 m/s 

(bottom).



59

Figure 5.18 - Trunk close wall flow topology for wall tufts test (center) and shear stress 

streamlines on trunk surface for TETRA (left) and BASELINE (right) mesh (U0 = 25.0 m/s).

Figure 5.19 - Wall tufts (center) and numerical shear streamlines for TETRA (left) and 

BASELINE (right) mesh (U0 = 25 m/s).
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As on experimental visualization, flow recirculates above the hood. The limit of the 

recirculation zone is marked on curve (1) for both results; however, on experiments the 

recirculation is limited BY the hood-front windshield joint. Perturbed tufts at the vicinity of the 

curve (2) mark the presence of C-pillar vortex, convergence with experiments is observed for 

BASELINE mesh, and dislocated upstream for TETRA solution. The curve (3) delimitates tufts 

that are deviated up (above the curve) and down (under the curve), this separation can also be 

noted on CFD solution; also, the vortex at the tip of the curve proposed on both solutions is 

present on experiments. The disturbance of flow downstream the front wheel (4) is also 

predicted on both numerical solutions. A zone with no adverse flow is delimited above curve (5); 

it's very similar for BASELINE solution and reduced on the streamlines obtained with the TETRA 

mesh.

The use of wall tufts permitted the clarification of flow behavior close to the model, 

especially for zones under adverse pressure or flow recirculation. Even so, the produced images 

are very subjective and susceptible to erroneous interpretations. Combining these results with 

surface oil visualization methods are recommended for the oncoming.

For the qualitative and quantitative techniques deployed to describe the flow around the 

generic pickup model, significant deviations are noticed with CFD. Once they are also believed 

to be influenced by experimental conditions, and that global behavior is predicted numerically, 

the RANS simulations are considered physically consistent. Thus, numerical setup and domain 

discretization characteristics are considered validate. An important aspect that must be 

considered on next steps is experimental quantification of drag coefficient that may endorse this 

conclusion.

Although both numerical solutions present numerous similarities with wind-tunnel testing, 

the BASELINE mesh is closer to the experimental description of the flow and to previous 

analysis on literature. All the presented conclusions about the pertinence of the chosen 

discretization scheme for the considered problem are extended to the ROUNDED mesh, which 

is conceived using the same refinement. Next section is dedicated to the study of the two 

proposed geometries based on computational simulations performed on these two meshes.
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5.2. Model study

Comparison of flow around the two proposed geometries (baseline and rounded) is 

presented on this section. All results are restricted to in scale simulations, freestream at 

U0 = 25.0 m/s, meshes with prismatic boundaries. Discussion about meshes is presented on 

section 5.1.2 and velocity and scale effects are summarized on section 5.3.

Figure 5.20 presents the normalized velocity field on the symmetry plane for the baseline 

model. Freestream air forms a stagnation zone on pickups front end. A detachment zone on the 

hood front leads to an important recirculation bubble that extends to the front windshield. As 

noticed on previous works, a recirculation bubble is formed inside the trunk. For the proposed 

geometry, the bubble does not comprehend the entire trunk, smaller turbulent structures are 

formed on first 20% portion of the box, pushing the center of the bubble to the tailgate.

There is no recirculation outside the tailgate and a shear boundary is formed when the 

flow is encountered with accelerated air from underbody. A downwash on tailgate external 

surface is also present, as proposed on the literature (see section 2.2).

Globally, the flow follows same behavior for the rounded geometry, see Figure 5.21. 

Most important variations are caused by the absence of sharp edges: no recirculation above the 

hood and on the front overhang and no detachment above the cabin. It's plausible to admit that 

those effects, associated with the inclination of the contact between the cab and cabin rear 

surface, caused a flow deviation resulting In the presence of a smaller wake.

Figure 5.20 - Normalized velocity field on symmetry plane, baseline model U0 = 25 m/s.
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Figure 5.21 - Normalized velocity field on symmetry plane, rounded model U0 = 25 m/s.

Differences are visible on flow on trunk. Figure 5.22 illustrates the streamlines at the 

trunk mid-plane for both geometries. The same vortex distribution is noted; however they vary in 

core location and in sizes. Secondary structures next to cabin rear surface and on tailgate are 

bigger for the rounded version. This behavior echoes the presence of a smaller recirculation 

bubble on trunk and the smaller wake.

Figure 5.22 - Streamline on center of trunk for baseline (top) and rounded (bottom) models (in 

scale, U0 = 25 m/s).

Figure 5.23 summarizes the evolution of surface pressure coefficient at the symmetry 

plane for both geometries. Besides the depression on front overhang caused by a recirculation 

for the baseline model, a very similar behavior is present on the remaining parts of the 

underbody. The same phenomenon is perceived on pickup hood: the absence of recirculation for 
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the rounded model and the associated pressure deviation between the tested geometries. For 

rounded model, maximum CP is perceived at hood-windshield joint, dislocated by 10% of the 

pickup length for the baseline geometry. There is a similar evolution on the cabin roof.

The most important variations are noticed on the trunk, as evidenced on pressure 

coefficient graphics of Figure 5.24. The rear cabin surface and the tailgate exterior of the 

baseline model present both a decrease of pressure when compared to the same regions of the 

rounded version; opposite behavior is present on tailgate exterior part. Regarding bed region, 

the results are smoother for the baseline model, especially upstream the bubble, which also 

creates a smaller depression for this geometry (see Figure 5.23).

Figure 5.23 - Pressure coefficient on symmetry plane of the cab, bed and underbody for baseline 

and rounded models (in scale, U0 = 25 m/s).
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Figure 5.24 - Pressure coefficient on symmetry plane of the cabin rear surface and tailgate for 

baseline and rounded models (in scale, U0 = 25 m/s).

Previous results presented a different behavior regarding the tailgate (AL-GARNI and 

BERNAL, 2010): the pressure on the outside is smaller than on the internal face, thus a 

contribution to drag can be deduced. The use of a different model with different trunk dimensions 

and proportions and the fact that the rear overhang is not parallel to the ground, as in previous 

works, may lead to a variation of the pressure distribution on tailgate. As noted by Ha et al. 

(2009), the relation of height and length of the trunk plays an important factor on flow behavior.

The pressure coefficient distribution on trunks surface, showed on Figure 5.25, confirms 

that flow follows the same behavior for both geometries; however, the magnitude of depression 

is smaller for the rounded pickup. The existence of a pressure depression on the side of the 

tailgate exterior face is caused by a recirculation promoted by flow from the pickup lateral and 

trunk. Many levels of CP are perceived on cabin back face and can be related to the many 

structures found on this region (upstream the recirculation bubble).
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Figure 5.25 - Surface pressure coefficient on rear cabin and tailgate exterior (top) and on bed 

and tailgate interior (bottom) for baseline (left) and rounded (right) models (in scale, 

U0 = 25 m/s).

Tridimensional visualization is possible on Figure 5.26. As mentioned earlier, solution is 

performed for only half model and results are mirrored for clarity. The front wheels are 

responsible for the formation of a significant number of vortical structures and a smaller density 

appears on rear wheels. As proposed by Al-Garni and Bernal (2010), cab vortex is noticed and 

no clear vortical behavior is noted on the symmetry plane of the model. As mentioned earlier, 

two vortexes, supposedly counter rotating, are formed by the interaction of air from the laterals 
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and flow leaving the trunk (“tailgate vortex”). The center of that vortex is not on center of the 

tailgate;

Flow is much less perturbed by the rounded model, as seen on Figure 5.27. The cab 

vortex is unnoticed on the chosen iso-surface magnitude but the structure is still present. This 

behavior confirms the mentioned characteristics of the derived geometry when regarding the 

baseline model. There is no recirculation on the hood and A-pillar structures are not present 

either.

Figure 5.26 - Iso-surface of À2 =-4.0 x 104 s-2 for baseline model, in scale U0 = 25 m/s.

Figure 5.27 - Iso-surface of À2 =-4.0 x 104 s-2 for rounded model, in scale U0 = 25 m/s.
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All those variations have an influence on the predicted drag for the two pickup models: 

the in scale baseline model presented for the chosen velocity a drag coefficient of CDB = 0.5376; 

for the rounded model, CDR =0.3607 (33% smaller). Lift is not well predicted for both simulations.

Previous considerations are focused on only one velocity and model scale. The influence 

of variating the scale (Re) of the flow is discussed next.



68

5.3. Scale study

For both models, simulations are performed for three freestream velocities 

U0 = {16.667; 25.000; 33.333} m/s that correspond to typical highway speeds 

U = {60; 90; 120} km/h. The use of in scale model subjected to the same freestream velocity is 

not dynamic similar to the original problem. According to Hucho (1987), once main source of 

drag is pressure difference, Reynolds may not influence on force coefficients. However, the 

mechanisms of boundary layer detachment are highly influenced by it. To question the 

correlation of mechanically un-similar flows around pickups, a scale study is performed 

numerically.

The simulations are executed for both in scale and real size pickup, so a total of 6 scales 

are tested for each model. Using the solver standard air properties of density and viscosity, the 

correspondent Reynolds numbers are listed on the following table.

Table 5.2 - Tested scales

# Scale Uo [m/s] L [m] Re

1 16.667 0.447 4.76 x 105
2 1:10 25.000 0.447 7.13 x 105
3 33.333 0.447 9.51 x 105
4 16.667 4.470 4.76 x 106
5 1:1 25.000 4.470 7.13 x 106
6 33.333 4.470 9.51 x 106

When solving equations for the flow around a specific geometry, baseline or rounded, the 

same mesh is used. A scale factor of 10 in applied on each directions. Thus, the same elements 

are considered but they are 10 times bigger. Results are for meshes with prismatic boundaries 

(BASELINE and ROUNDED).

Velocity iso-surface of 1/3 of the freestream speed at the wake of the pickup is presented 

for the first three tested scales for baseline and rounded pickups on Figure 5.28. Flow 

disturbance upstream the pickup is unchanged for each model. Cab and tailgate vortex are 

visible; structures formed on frontal wheel vary on size but maintain shape. Although 

discrepancies can be pointed for both models, the solutions for the rounded version deviates
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more one from the other. The same behavior is repeated on pressure distribution graphs

presented next.

Figure 5.28 - Iso-velocity surface for 1/3 of freestream velocity: U0 = 16.67 m/s (left column), 

U0 = 25.00 (center column) and U0 = 33.33 m/s (right column), for baseline(top line) and rounded 

(bottom line) in scale models.

As indicated on Figure 5.29 and Figure 5.31, there is no significant variation for the CP on 

both the underbody and the superior part of the vehicle (hood and front windshield) on symmetry 

plane of both geometries. A different behavior is noticed for the trunk.

For baseline mode, pressure coefficient evolution on bed, cabin back and tailgate, follow 

same behavior discussed on previous section. Variations are of low order and are considered to 

be of the same magnitude of numerical solution instabilities. Variations are in a more important 

scale for rounded pickup simulations. The increase of velocity resulted in bigger recirculation 

bubble on trunk (Cp plateau on bed's tip pushed upstream) and smaller pressure depression on 

bed. Pressure increases gradually with Reynolds number for all points at the cabin rear surface; 

on tailgate exterior face, the increase is abrupt and important variations are noticed.
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Figure 5.29 - Pressure coefficient on symmetry plane of the cab, bed and underbody of the 

baseline model in all scales.
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the baseline model in all scales.
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rounded model in all scales.

Figure 5.32 - Pressure coefficient on symmetry plane of the cabin rear surface and tailgate of 

the rounded model in all scales
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The biggest divergences are present between the solutions for the rounded model. On 

the streamlines at the symmetry plane, presented on Figure 5.33, it's visible that the velocity 

alone plays a role in shaping the structures on the wake. However, there is a clear distinction 

when the size of the model (variation in scale) is considered. When the same analysis is done 

for the solutions of the baseline geometry, variations are smaller and thus omitted on this 

document.

1:11:10

Figure 5.33 - Streamline on symmetry plane for rounded model in scale (left) and full size (right) 

for U0 = 16 m/s (top), U0 = 25 m/s (center) and U0 = 33 m/s (bottom).

Those observed differences are going to be discussed for the two extremum of the tested

Reynolds range: in scale, U0 = 16.667 m/s (Re1); and full size for U0 = 33.333 m/s (Re6).



73

Normalized velocity fields on symmetry plane are presented on Figure 5.32 for both 

solution samples. On front part of the vehicule, the solution is the same for both conditions 

(stagnation point and decellaration on hood-front windshield joint). For trunk and wake, the 

solution for the in scale geometry is very similar to the result discussed on section 5.2: 

recirculation bubble starting at about 20% of bed's length; shear boundary on both cab and 

underbody, and detachement downstream the pickup. The Re6 simulation has a reciruclattion 

bubble that corresponds the entire trunk, and the presence of small vortex on tailgate exterior, 

leading to an elevation of shear layer formed on the cab and consequentely a bigger wake.

Figure 5.34 - Normalized velocity field on symmetry plane at Re1 (top) and Re6 (bottom) for 

rounded model.

Similar behavior is noted on streamline on horizontal plane at the center of the trunk 

(Figure 5.35). Smaller structures are present after cabin back surface on the center of trunk only 

for the smallest Reynolds, but overall flow is maintained.
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Figure 5.35 - Streamline on center of trunk for rounded model for two scales: Re1 (top) and Re6

(bottom).

It's noted on the symmetry plane and at the trunk that structures are similar but there is a 

variation in size and distibution of flow topology downstream the cab. Figure 5.36 ilustrate with 

iso-velocity surfaces that both results have tailgate vortex and the downwash proposed by 

Al-Garni and Bernal (2010). However, evolution of cab votex is more defined for the first scale as 

well as the disturbance provoqued by the front wheel.

Figure 5.36 - Iso-velocity surface for 1/3 of freestream velocity for Re1 (top) and Re6 (bottom) 

for rounded model (structures on upstream of the model are omitted).
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In conclusion, smaller structures are not represented, therefore the vortex distribution on 

the wake and the flow at trunk variates. This behavior is not as critical for the baseline model 

once detachment zones are well defined for sharp edges.

Discrepancies are believed to be also caused by poor modeling of the physics of the 

flow, reflected on the difficulty to achieve consistent convergence. This conclusion applies 

especially with the extended mesh, once all phenomena are limited to volumetric elements with 

a minimum size of 20 mm and a prismatic boundary ten times higher.

In terms of drag coefficient, rounded model presents a 30% smaller CD than baseline's 

for all scales. Global trend is the same as on previous works on generic pickups (AL-GARNI; 

BERNAL, 2010; MOKHTAR et al. 2009): for the tested speeds, with the increase of the velocity 

there is an increase of drag. Figure 5.37 illustrates the evolution of the drag coefficient for both 

models; CD varies from 0.5334 to 0.5498 for baseline pickup and from 0.3411 to 0.3815 for the 

rounded version.

0.60

0.50

0.40

0.30

Re

Figure 5.37 - Drag coefficient for all on scales.

O baseline
□ rounded

For all scales, average drag coefficient are CDB = 0.5405 and CDR = 0.3624 for baseline 

and rounded models, respectively. When comparing to the local values, maximum deviation is 

around 5%, as represented at Figure 5.38. The linear evolution of the drag observed for baseline 

pickup is not reproduced for rounded model.
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Figure 5.38- Percentage CD oscillation from all scales average value for baseline and rounded 

models.

The scale study for the rounded geometry repeats the results of the comparison between 

meshes. For TETRA mesh, global behavior is also achieved, but the poor representation of 

smaller scales resonates in a different vortex distribution. When in scale, the flow is very similar 

to the experiments and well correlates with descriptions on the literature; the use of the extended 

meshes is very similar to the mesh with no boundary discretization: recirculation bubble 

comprehends the entire trunk; and absence of smaller scales.

Solutions of the flow fields around the baseline model are considered invariant for the 

tested range of Reynolds. Observed disparities are of small order and are considered to be a 

due to numerical instabilities. This phenomenon may be related to the fact that separation will 

occur in the same way for all Reynolds numbers for bodies with sharp edges (HUCHO, 1987), 

and a coarse discretization has consequently minor influence. For simulations with the TETRA 

mesh, the influence of changing scales is also small.

Even though CFD results have disparities, preliminary conclusion indicates that the 

problem is independent of Reynolds number from 4.76 x 105 to 9.51 x 106. The use of more 

refined meshes for the real size model must be performed and the use of different numerical 

setups is necessary to confirm this conclusion.



CHAPTER VI

Conclusion

A numerical and experimental study of the aerodynamics of a generic pickup was 

performed. Studied geometry was established on the dimensions of the most representative 

models of the light pickup fleet in Brazil. Baseline model is composed only by sharp edges and 

flat surfaces; a second version was prepared filleting those edges (rounded model). Numerical 

steady simulations (RANS) were performed on commercial software Star-CCM+ using the 

SST k-w turbulence model; tetraedrical meshes have an average of 8 million elements. All 

simulations were prepared on an i7 processor with 12 cores, 48 GB of RAM. For wind-tunnel 

testing, model was 3D printed in 1:10 scale. On experimental procedures, qualitative (wall tufts 

visualization) and quantitative (hot-wire anemometry velocity profiles) tests revealed main 

structures on wake and on the close wall.

Even though a new geometry is studied, obtained solution is similar to what is described 

on the literature. Rounded version presented a drag coefficient 30% smaller than baseline's.

For the velocity profiles, acceleration due to the underbody constriction and the shear 

boundary formed on the cab were well defined. However, the use of hot-wire anemometry 

technique was unable to capture the small and negative velocities. The wall tufts defined 

recirculation regions and detached parts of vehicle's surfaces. The main structures were 

reproduced on numerical results for the refined mesh (with prismatic boundary).

For the performed scale study, first impression implicate that the problem is independent 

of Reynolds for the tested range. Although results are limited to the many simplifications of the 

model (no lateral rear mirrors, simplified underbody and wheels compartment, no air inlets and 

outlets) and of the solver (incompressible flow, stationary equations, and stationary wheels), the 

in scale study of a generic pickup is an important step to comprehending and optimizing real 

models aerodynamics.
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Refinement of numerical calculation with the test of different turbulence models and the 

use of unsteady simulation is essential on the continuation of this work. The use of other 

experimental procedures such as force coefficients quantification and oil visualization methods is 

crucial to validate and extend the results. A study of drag reducing devices and different pickups 

configurations and geometries is recommended as next step.
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APPENDIX I



APPENDIX II

In order to perform the experimental procedures, validation and calibration routines are 

made on wind-tunnel. Two procedures are responsible for increasing flow quality at the test 

section: first, rotor rebalancing and a net was added at the beginning of the expansion; later, a 

total of sixteen 15 cm long guide vanes were placed right before the net in order to reduce 

rotating tendency at the test section (see Fig. I). On the following graphs on this appendix, the 

previous wind-tunnel condition is referred as ‘initial; ‘fix' and ‘guides' refer to two quality 

increasing processes, respectively.

The results presented here proceed from hot-wire testing. The parameters are the same 

used on the experiments: 1D probe placed along the flow, 4th degree polynomial calibration law, 

N = 32,768 acquisition points of and acquisition frequency of 2 kHz. All measurements are 

performed on the symmetry plane of test section. Tests for boundary layer and turbulent 

intensity characterization and calibration are presented next.

Figure I - Guide vanes installed on wind-tunnel.
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I - Boundary layer

Boundary layer is defined for ‘initial' and ‘fixed' setups. The hot-wire probe support is 

placed on test section roof and measures are performed from ascending direction. For both 

configurations the boundary layer thickness is less than 7 mm, as presented on the normalized 

profiles of Fig. II. Properties of the last experiment are presented on Table I. Obtained shape 

factors are typical of turbulent boundary layers (WHITE, 1998).

Figure II - Normalized velocity profile at the boundary layer of ‘initial' (left) and ‘fixed' condition 

(right).

Table I - Boundary layer properties.

U0 [m/s]
LAYER

THICKNESS
5 [mm]

DISPLACEMENT 
THICKNESS 

5* [mm]

MOMENTUM 
THICKNESS 

0 [mm]

SHAPE 
FACTOR
H = õ*/0

7.93 4.5 1.0973 0.6454 1.7003
15.63 3.0 0.3801 0.2830 1.3431
25.20 5.5 0.5169 0.4490 1.1512
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II - Calibration and Turbulence Intensity

For the probe placed 15 cm away from the wall, velocity is acquired for several motor 

frequencies. Tests are done for support placed at the test section roof for the two first conditions 

and on test section floor for the last one. For the same data, calibration is performed and test 

section turbulence intensity is evaluated. Figure III shows the calibration points for the three 

conditions and the respectively coefficients for the derived regression lines are listed on Tab. II.

Figure III - Calibration points.

Table II - Calibration coefficients.

f [Hz] = A x U [m/s] + B
initial fix guides

A 2.1311 2.2576 2.3481
B -1.0539 -1,4427 -1.8464

U [m/s] = C x f [Hz] + D
C 0.4686 0.4422 0.4248
D 0.5080 0.6635 0.8192

Last obtained calibration curve for the current condition of the wind-tunnel is presented 

on Fig. V.
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The net and guide vanes that were add to the wind-tunnel reduced its maximum air 

velocity from 26.20 m/s to 25.63 m/s (decrease of 2%). However, the two performed 

enhancements caused a decrease on turbulent intensity for all tested velocities (see Fig. IV). 

Considering all scales, average turbulent intensity dropped from 1.2234 % to 0.8116 %. The 

rotational behavior observed on test section was mitigated by the guide vanes.

Figure IV - Turbulent intensity evolution.



Figure V-W
ind-tunnel calibration

00 
-■j


