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Da Silva, R.B. Performance of Different Cutting Tool Materials in Finish Turning of Ti-6Al-4V Alloy 

with High Pressure Coolant Supply Technology, 2006, 299 f. Ph.D. Thesis, Universidade Federal de 

Uberlândia, Uberlândia. 

ABSTRACT 

This study investigated the machinability of Ti-6Al-4V alloy with newly developed cutting tools such 
as uncoated (T1 and T3) and coated (T2 and T4) cemented carbides, Polycrystalline Diamond (PCD) – 
T5 and T6 inserts, Cubic Boron Nitride (CBN) – T7,T8,T9 inserts, SiC Whiskers Reinforced Ceramic 
(T10) insert, and Al2O3 base (T11) and Si3N4 base nano-grain size ceramic  (T12) inserts using various 
cooling environments such as high pressure coolant supplies at pressures of 7 MPa, 11 MPa and     
20.3 MPa, argon enriched environment and conventional coolant flow at high speed machining 
conditions typical of finish turning operation. Tool life and failure modes, wear mechanisms, 
component forces generated, surface integrity, surface finish and chip form data were used to assess 
the performance of the different cutting tools and cooling environments investigated. PCD and carbide 
inserts gave the best performance, in terms of tool life, when machining Ti-6Al-4V alloy. In general 
coarser (T1 and T4) grain size carbides and PCD (T5) inserts gave the best overall performance in 
terms of lower wear rate hence longer tool life compared to finer grain (T2,T3 and T6) grades. 
Encouraging tool life can be achieved when machining with high pressure coolant supply relative to 
conventional coolant flow and in the presence of argon. Tool lives generally increased with increasing 
coolant pressure due to the ability of the high coolant pressure to reduce the tool-chip contact 
length/area and to lift the chip, thereby providing adequate lubrication at the tool-chip interface with 
consequent reduction in friction. Machining with T1, T4 and T10 inserts in presence of argon was only 
able to prevent chip ignition with no improvement in tool life, due probably to the suppression of the 
cooling and/or lubrication characteristics of argon gas when machining at cutting conditions 
investigated. Up to 8 fold improvement in tool life were achieved when machining with PCD inserts 
relative to carbide inserts under conventional coolant flow. All the grades of CBN inserts gave poor 
performance during machining due to accelerated nose wear and, in some cases, severe chipping of the 
cutting edge associated with a relatively high diffusion wear rate that tends to weaken the bond 
strength of the tool substrate. An increase in the CBN content tends to accelerate notch wear rate, 
consequently diminishing tool life under the cutting conditions investigated. Micron and nano-grain 
size ceramics did not demonstrate satisfactory performance in terms of tool wear rate and tool life, due 
to severe abrasive wear and chipping of the cutting edge, hence the poor machined surfaces generated. 
Nose wear was the dominating tool failure mode when machining with carbide, PCD and CBN (T7) 
inserts due to a reduction in tool-chip and tool-workpiece contact lengths and the consequent increase 
in both normal and shear stresses and temperature at the tool tip, while severe notching and chipping 
occurred when machining with CBN (T8 and T9) and micron grain size ceramics. Severe notching 
also occurred when machining with nano-grain ceramic inserts, often leading to catastrophic tool 
failure at speeds in excess of 110 m min-1. Machining with PCD tools gave lower cutting forces than 
carbides inserts. Surface roughness values generated with carbides, PCD and CBN inserts were 
generally within the 1.6 µm rejection criterion for finish machining and above 2 µm when machining 
with all grades of ceramics employed. Micrographs of the machined surfaces show that micro-pits are 
the main damage to the machined surfaces. Microhardness of the machined surfaces when machining 
with carbides varied randomly around the hardness values of the workpiece material prior to 
machining. Machining with PCD tools generally led to softening of machined surfaces. Increase in 
cutting speed generally led to increased hardness when machining with the larger grain size PCD (T5) 
tool using conventional coolant flow and with coolant pressures up to 11 MPa. No evidence of plastic 
deformation was observed on the machined surfaces and the surface integrity of the finish machined 
surfaces is generally in agreement with Rolls–Royce CME 5043 specification. 
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DA SILVA, R.B. Desempenho de diferentes Materiais de Ferramentas de Corte no Torneamento de Acabamento 

da liga de titânio Ti-6Al-4V com a Tecnologia de Aplicação de Fluido de Corte à Alta Pressão, 2006, 299 f. Tese 

de Doutorado, Universidade Federal de Uberlândia, Uberlândia. 

 

RESUMO 

Este estudo visa avaliar a usinabilidade da liga de titânio Ti-6Al-4V utilizando várias classes de diferentes 
materiais de ferramentas de corte tais como metal duro sem revestimento (insertos T1 e T3) e com revestimento 
(insertos T2 e T4), PCD – insertos: T5 e T6, CBN – insertos: T7,T8 e T9, cerâmicas Whiskers (inserto T10), e 
nano-cerâmicas à base de alumina (inserto T11) e à base de nitreto de silício (inserto T12) em diferentes 
atmosferas de usinagem (fluido de corte aplicado a altas pressões (HPC) de 7 MPa; 11 MPa and 20,3 MPa, 
argônio e aplicação de fluido de corte convencional) e em elevadas condições de corte típicas de acabamento 
(velocidade de corte de        100 m min-1 a 500 m min-1, com avanço de 0,15 mm volta-1 e profundidade de corte 
de 0,5 mm constantes). Foram monitorados a vida das ferramentas bem como os mecanismos e tipos de desgaste, 
as forças de usinagem, a integridade superficial, a rugosidade das superfícies usinadas, a circularidade e os tipos 
e classes de cavacos produzidos. Os resultados foram utilizados para avaliar a eficiência das diferentes 
ferramentas de corte e atmosferas de usinagem empregadas na usinagem da liga Ti-6Al-4V. Os resultados 
mostraram que as ferramentas de PCD e metal duro tiveram o melhor desempenho, em termos de vida de 
ferramenta, que as demais ferramentas testadas. Em geral, as ferramentas com tamanho de grãos maior, metal 
duro (T1 e T4) e PCD (T5), apresentaram o melhor desempenho, em termos baixa taxa de desgaste e, 
consequentemente, vida mais longa, comparada com as ferramentas com tamanho de grãos menores (classes 
T2,T3 e T6). A utilização da técnica HPC mostrou ser eficiente na usinagem da liga Ti-6Al-4V, em termos de 
aumento de vida da ferramenta e, consequentemente, de aumento de produtividade, em relação à técnica de 
aplicação de fluido de corte convencional e com utilização de argônio nas condições investigadas. Em geral, a 
vida das ferramentas aumentaram com o aumento da pressão de aplicação de fluido de corte devido à sua 
capacidade de reduzir a área de contato cavaco-ferramenta e de quebrar o cavaco mais eficientemente e, 
portanto, propiciando uma melhor condição de lubrificação na interface cavaco-ferramenta com conseqüente 
redução de atrito. A utilização do argônio na usinagem com as ferramentas T1, T4 e T10 nas condições 
investigadas apenas evitou com que o centelhamento e ignição do titânio ocorresse, além de não propiciar 
aumento de vida da ferramenta, provavelmente devido à supressão das características de refrigeração e 
lubrificação que o argônio tem. As ferramentas de PCD apresentaram uma vida cerca de 8 vezes maior que as 
ferramentas de metal duro quando empregadas com aplicação de fluido de corte convencional. Todas as classes 
de ferramentas de CBN, em geral, apresentaram baixo desempenho em termos de vida de ferramenta devido ao 
acelerado desgaste na ponta da ferramenta e, em certos casos, lascamentos da aresta de corte que estão 
associados com a relativa alta taxa de difusão que ocorre durante a usinagem com titânio, que tende a diminuir a 
forças de ligações entre os átomos do substrato. Todas as ferramentas de cerâmicas testadas não demonstraram 
desempenho satisfatório em termos de desgaste e de vida ferramenta durante a usinagem da liga Ti-6Al-4V por 
causa da ocorrência de desgaste abrasivo e de lascamento da aresta de corte, como também da produção de 
superfícies usinadas com pobre acabamento superficial. O desgaste de ponta foi o tipo de desgaste predominante 
durante a usinagem com as ferramentas de metal duro, PCD e CBN (T7) devido à redução da área de contato 
cavaco-ferramenta e, consequentemente, ao aumento das tensões atuantes e aumento da temperatura na ponta da 
ferramenta. Já o desgaste de entalhe e lascamento ocorreram durante a usinagem com as ferramentas de CBN 
(T8 and T9) e com cerâmicas convencionais. O desgaste de entalhe também ocorreu de forma mais acentuada 
nas ferramentas de nano-cerâmicas, o que levou à falha catastrófica de tais ferramentas quando empregadas em 
velocidades de corte superiores a 110 m min-1. A usinagem com ferramentas de PCD geraram baixas forças de 
corte em relação às ferramentas de metal duro. Os valores de rugosidade superficial produzidos com as 
ferramentas de metal duro, PCD e CBN em geral ficaram abaixo do valor estipulado para critério de rejeição 
para torneamento de acabamento de 1.6 µm, enquanto que todas as ferramentas de cerâmicas produziram valores 
de rugosidade acima de 2 µm. A análise metalográfica das superfícies usinadas permitiu identificar pequenas 
marcas que não comprometeram as superfícies produzidas. A usinagem com ferramentas de metal duro produziu 
valores de dureza que variam aleatoriamente dentro dos limites inferior e superior de dureza da peça medidos 
antes da usinagem. Nenhuma evidência de deformação plástica nas superficies de titânio usinadas com todas as 
ferramentas e condições testadas.   Em geral, a integridade superficial das superficies usinadas atendem à norma 
Rolls–Royce CME 5043. 
 

Palavras-chave: Liga de titânio, Fluido de corte à alta pressão, Várias ferramentas de corte, Vida de ferramenta, 
Integridade superficial. 
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Figure 2.36 - The performance of various grades of PCD tools when milling ceramic 
impregnated surface of a flooring board (HPL) (COOK; BOSSOM, 2000) 

75 

Figure 2.37 - Formation of strongly adherent layer on the rake face of a PCD tool after 
machining titanium base, Ti-5Al-4Mo-2Sn-6Si alloy under dry condition (NABHANI, 
2001b) 

76 

Figure 2.38 - (a) Section through ‘quick-stop’ specimen showing part of CBN tool 
adhering to underside of chip (100x), (b) close-up view of Fig. 2.38(a) (200x) 
(NABHANI, 2001a) 

78 

Figure 2.39 - (a) A typical scanning electron micrographs of worn-out edges: (a) cutting 
temperature of 734ºC, (b) cutting temperature of 900ºC (ZOYA; KRISHNAMURTHY, 
2000) 

80 



 

 

xvi

Figure 2.40 - Variation in uniform flank wear with cutting time for the turning of Ti-
6Al-4V (hardness, 36 HRC), showing reduced tool wear with the new geometry (cutting 
speed, 122 m min-1; feed rate, 0.23 mm rev-1 unless otherwise indicated; depth of cut, 
1.52 mm; tool SNG432 (SCEA, 15º): curve A, SIALON (Kyon 2000) with clearance 
angles of 17º (localised wear, 0.889 mm; edge fracture; crater) and 5º (localized wear, 
1.321 mm; fracture; crater); curve B, SIALON (Kyon 2000) with a clearance angle of 5º 
and a feed rate of 0.127 mm rev-1; curves C and D, cemented carbide (Carboloy grade 
999) with clearance angles of 5º and 17º, respectively (KOMANDURI; REED JR, 1983) 
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Figure 3.6 - Tool holders used in the machining trials: (a) designation PCLNR2525-M12 
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CHAPTER I 
 

 

 

INTRODUCTION 

 

 

The machinability of titanium alloys is generally considered to be poor due to their 

inherent properties such as chemical reactivity, consequently their tendency to weld onto the 

cutting tool during machining leading to excessive chipping and/or premature tool failure. The 

low thermal conductivity of titanium alloys increases temperature generated at the tool-

workpiece interface, adversely affecting tool life. They also exhibit tendency to form localised 

shears bands (ASPINWALL et al., 2003) and work-harden during machining. Additionally, 

their high strength maintained at elevated temperature and their low modulus of elasticity 

further impair their machinability. These pose considerable problems in manufacturing hence 

titanium-alloys have poor machinability (MILLER (1996), EZUGWU; WANG (1997), 

VIGNEAU (1997), GATTO; IULIANO (1997)). The poor machinability of titanium alloys 

have prompted many large companies (e.g. Rolls-Royce and General Electrics) to invest large 

sums of money in developing techniques to minimise machining and overall processing costs 

(EZUGWU; WANG, 1997). The best tool material is one that will maximise the efficiency 

and ensure accuracy at the lowest cost, in other words, one that will satisfy the requirements 

of a specific workpiece material (OKEKE, 1999). A cutting tool must possess high resistance 

to abrasion in order to withstand changes in dimensions by rubbing action; hot-hardness to 

maintain a sharp and consistent cutting edge when machining at elevated temperature 

conditions; chemical stability (lack of affinity between the tool and workpiece) in order to 

avoid the formation of a built-up edge; high resistance to thermal shock in order to withstand 

continuous heating and cooling cycles (typical in milling operation) and high toughness which 

allows the insert to absorb the forces and shock loads during machining. If a machine tool is 

not sufficiently tough, then induced shock load alone can cause the edge to chatter.  
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Despite the developments in cutting tool materials for the machining of difficult-to-

machine materials at higher metal removal rates, they tend to be ineffective in machining 

titanium-alloys because of their high chemical affinity. Also, recent developments in coating 

technology seem to demonstrate only marginal improvement when machining titanium-alloys, 

despite additional cost of the coated inserts. Ceramics and Cubic Boron Nitride 

(CBN)/Polycrystalline Cubic Boron Nitride (PCBN) tools are not usually recommended for 

machining titanium-alloys because of their poor performance due to excessive wear rates as a 

result of the high reactivity of titanium-alloys to the tool materials in addition to their 

relatively high cost (HONG; MARKUS; JEONG, 2001). Cutting tools used for machining 

titanium alloys generally exhibit accelerated wear as a result of extreme thermal and 

mechanical stresses close to the cutting edge. An ideal cutting tool for machining titanium 

should have, among others, a hot hardness property to withstand elevated temperatures 

generated at relatively high speed conditions. Reduction of hot hardness at elevated 

temperature conditions lead to the weakening of the inter-particle bond strength and the 

consequent acceleration of tool wear. In addition to that, the machining environment plays a 

very important role in order to improve the machinability of titanium alloys.  

Aero-engine alloys, particularly titanium alloys, cannot be effectively machined without 

cooling. There is excessive concentration of temperature at the cutting interfaces when 

machining titanium alloys because of their poor thermal conductivity. In addition to that, 

practically all the energy consumed in machining is converted into thermal energy. Cutting 

fluids are used to minimise problems associated with the high temperature and high stresses 

generated at the cutting edge of the tool during machining. Titanium alloys are generally 

machined using conventional coolant flow. Also, there is other technique to deliver coolant in 

variable quantities at high/ultra high pressures, generally within the range 0.5 – 360 MPa 

(SECO TOOLS (2002a)). This technique has been employed when machining mainly nickel 

alloys. One of the benefits of using high pressure coolant supply is because it acts as a chip-

breaker. Additionally, the temperature gradient is reduced by penetration of the high-energy 

jet into the tool-chip interface and consequently eliminating the seizure effect 

(MAZURKIEWICZ; KUBALA; CHOW, 1989), thereby providing adequate lubrication at the 

tool-chip interface with a significant reduction in friction (EZUGWU; BONNEY; YAMANE, 

2003). These combined with high velocity coolant flow causes the breakage of the 

continuous-type chips into very small segments. Because the tool-chip contact time is shorter, 

the tool is less susceptible to dissolution wear caused by chemical reaction with newly 
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generated chips, especially titanium-alloy chips (LINDEKE; SCHOENIG; KHAN, 1991). 

Increase in productivity has been noticed using high pressure coolant delivery relative to the 

conventional methods of coolant delivery when machining nickel and titanium alloys at lower 

speed conditions. Other cooling technique like the minimum quantity of lubrication (MQL) 

has shown considerably improvement in the machinability of aerospace alloys compared to 

conventional coolant flow and looks promising for machining titanium alloys in order to 

improve the tribological processes present at the tool-workpiece interface and at the same 

time eliminate environmental damages as well as minimizing some serious problems 

regarding the health and safety of operators (SOKOVIC; MIJANOVIC (2001), DA SILVA; 

BIANCHI (2000), LI et al. (2000), MACHADO; WALLBANK (1997)). With the same 

purpose other environments such as atmospheric air (dry machining), argon enriched 

environment and liquid nitrogen (cryogenic machining) are also been employed as alternative 

cooling technology to improve the machinability of titanium-alloys. Since the gases can alter 

the tribological conditions existing between two surfaces in contact such as the cutting zone 

during machining, other environments such as atmospheres, dried air, oxygen, nitrogen, CO2 

and organic compounds such as tetrachloromethane (CCl4) and ethanol vapour (C2H5OH) are 

also expected to improve the machinability of titanium-alloys. Some special machining 

techniques including specially designed ledge tools, self-propelled rotary tool (SPRT), 

ramping technique (taper turning) and hot machining have shown remarkable success in when 

machining titanium alloys (EZUGWU; BONNEY; YAMANE (2003), EZUGWU; WANG 

(1997), EZUGWU (2005)). 

This thesis on the machining Ti-6Al-4V alloy with various cutting tools and different 

cooling environments was developed in collaborative program with industrial partners: Rolls-

Royce Plc (aero-engine manufacturer), SECO Tools (cutting tool manufacturer) and Pumps 

and Equipment Ltd (Warwick) who provided the high-pressure coolant delivery system for 

this study. A comprehensive literature survey on the machinability of aero-engine alloys 

under various cutting environments as well as the experimental techniques adopted in all 

stages of the research programme such as turning tests, data acquisition, sample preparation, 

analysis of the worn tools and machined surfaces, as well as initial machining results are 

presented in this thesis. An investigation of the machinability of components manufactured 

with titanium-base, Ti-6Al-4V (or IMI 318), alloy will involve the following: 
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i) Evaluation of recently developed cutting tools materials (uncoated and coated 

cemented carbides, Polycrystalline Diamond (PCD) inserts, Cubic Boron Nitride (CBN) and 

SiC Whiskers Reinforced Al2O3 Ceramics) when machining titanium-base, Ti-6Al-4V, alloy 

at high speed conditions; 

ii) Cutting environments (high pressure coolant supplies at pressures of 7 MPa          

(70 bar), 11 MPa (110 bar) and 20.3 MPa (203 bar), argon enriched environment, and 

conventional coolant flow; 

iii) Validation of the optimum machining conditions achieved on prototype component 

without compromising its integrity. 

 

1.1 Aims of the thesis 

 

This thesis is geared primarily to achieve a step increase in the machining productivity 

of a commercially available titanium-base, Ti-6Al-4V, alloy using recently developed cutting 

tool materials, machining techniques and various cooling media such as conventional coolant 

flow, high pressure coolant supplies and argon enriched environment. This study is part of the 

Joint Strike Fighter (JSF) project – a vectored thrust, multi-role combat aircraft designed for 

conventional take-off and landing or a Navy version which requires Short Take Off/Vertical 

Landing capability in collaboration with Rolls-Royce plc. The thesis aims primarily towards 

significant reduction in cost of manufacturing jet engines in the immediate future using 

modern cutting tool technology and machining techniques. 

The literature survey section covers cutting tool materials and the various cutting 

environments employed in the machining of aero-engine alloys. The objectives of this thesis 

are listed below: 

 Investigation of the effect of various cooling media (high-pressure coolant supply, 

argon enriched environment and conventional coolant flow) on tool performance 

when finish turning of titanium-base, Ti-6Al-4V (IMI 318), alloy; 

 Investigation of the dominant tool failure modes and wear mechanisms of newly 

developed cutting tools (uncoated and coated cemented carbides, different grades of 

Polycrystalline Diamond (PCD), Cubic Boron Nitride (CBN), SiC Whiskers 

Reinforced Ceramic, and Al2O3 and Si3N4 base nano-grain ceramic inserts) when 

finish turning of titanium-base, Ti-6Al-4V (IMI 318), alloy at high speed 

machining; 
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 Analysis of the surface finish and surface integrity of machined surfaces as well as 

run-out of the machined bars; 

 Selection of the best combination of cutting tool-cutting environment-cutting 

conditions to employ in the machining of prototypes/scaled down models of the 3 

bearing swivel nozzle.  
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