Weakly (I, J)-continuous multifunctions and contra (I, J)-continuous multifunctions

E. Rosas ${ }^{1}$, C. Carpintero ${ }^{2}$ and J. Sanabria ${ }^{3}$
${ }^{1}$ Departamento de Matemática
Universidad de Oriente
Cumaná, Venezuela \&
Departamento de Ciencias Naturales y Exactas
Universidad de la Costa, Barranquilla, Colombia
ennisrafael@gmail.com
erosas@cuc.edu.co
${ }^{2}$ Departamento de Matemáticas
Universidad De Oriente
Cumaná, Venezuela \& Universidad Autónoma del Caribe
Barranquilla, Colombia
carpintero.carlos@gmail.com
${ }^{3}$ Facultad de Ciencias Básicas
Universidad del Atántico
Barranquilla, Colombia
jesanabri@gmail.com

August 24, 2018

Abstract

The purpose of the present paper is to introduce, study and characterize upper and lower weakly (I, J)-continuous

multifunctions and contra (I, J)-continuous multifunctions. Also, we investigate its relation with another class of continuous multifunctions.

AMS Subject Classification: 54C10, 54C08, 54C05, 54C60

Key Words and Phrases:weakly (I, J)-continuous multifunctions, I-open set, I-closed set, contra (I, J)-continuous multifunctions, (I, J)-continuous multifunctions

1 Introduction

It is well known today, that the notion of multifunction is playing a very important role in general topology, upper and lower continuity have been extensively studied on multifunctions $F:(X, \tau) \rightarrow$ (Y, σ). Currently using the notion of topological ideal, different types of upper and lower continuity in multifunction $F:(X, \tau, I) \rightarrow$ (Y, σ) have been studied and characterized [2], [8], [9], [15], [18]. The concept of ideal topological spaces has been introduced and studied by Kuratowski[12] and the local function of a subset A of a topological space (X, τ) was introduced by Vaidyanathaswamy [17] as follows: given a topological space (X, τ) with an ideal I on X and if $P(X)$ is the set of all subsets of X, a set operator (. $)^{*}: P(X) \rightarrow$ $P(X)$, called the local function of A with respect to τ and I, is defined as follows: for $A \subseteq X, A^{*}(\tau, I)=\{x \in X / U \cap A \notin I$ for every $\left.U \in \tau_{x}\right\}$, where $\tau_{x}=\{U \in \tau: x \in U\}$. A Kuratowski closure operator $c l^{*}($,$) for a topology \tau^{*}(\tau, I)$ called the ${ }^{*}$-topology, finer than τ is defined by $c l^{*}(A)=A \cup A^{*}(\tau, I)$. We will denote $A^{*}(\tau, I)$ by A^{*}. In 1990, Jankovic and Hamlett[10], introduced the notion of I-open set in a topological space (X, τ) with an ideal I on X. In 1992, Abd El-Monsef et al.[1] further investigated I-open sets and I-continuous functions. In 2007, Akdag [2], introduce the concept of I-continuous multifunctions in a topological space with and ideal on it. In 2007, A. Al-Omari and M. S. M. Noorani [3] introduce the notions of Contra- I-continuous and almost I-continuous functions. Given a multifunction $F:(X, \tau) \rightarrow(Y, \sigma)$, and two ideals I, J associate, now with the topological spaces (X, τ, I) and (Y, σ, J), consider the multifunction $F:(X, \tau, I) \rightarrow(Y, \sigma, J)$. We want to study some type of upper and lower continuity of F as doing Rosas et al. [14]. In this paper, we introduce and study a two new classes
of multifunction called a weakly (I, J)-continuous multifunctions and contra (I, J)-continuous multifunctions in topological spaces. Investigate its relation with another classes of continuous multifunctions. Also its relation when the ideal $J=\{\emptyset\}$.

2 Preliminaries

Throughout this paper, (X, τ) and (Y, σ) (or simply X and Y) always mean topological spaces in which no separation axioms are assumed, unless explicitly stated and if I is and ideal on $X,(X, \tau, I)$ mean an ideal topological space. For a subset A of $(X, \tau), C l(A)$ and $\operatorname{int}(A)$ denote the closure of A with respect to τ and the interior of A with respect to τ, respectively. A subset A is said to be regular open [16] (resp. semiopen [11], preopen[13], semi preopen [4]) if $A=\operatorname{int}(C l(A))(r e s p . A \subseteq C l(\operatorname{int}(A)), A \subseteq \operatorname{int}(C l(A)), A \subseteq$ $C l(\operatorname{int}(C l(A))))$. The complement of regular open (resp. semiopen, semi-preopen) set is called regular closed (resp. semiclosed, semipreclosed) set. A subset S of (X, τ, I) is an I-open[10], if $S \subseteq$ $\operatorname{int}\left(S^{*}\right)$. The complement of an I-open set is called I-closed set. The I-closure and the I-interior, can be defined in the same way as $C l(A)$ and $\operatorname{int}(A)$, respectively, will be denoted by $I C l(A)$ and $\operatorname{Iint}(A)$, respectively. The family of all I-open (resp. I-closed, regular open, regular closed, semiopen, semi closed, preopen, semipreclosed) subsets of a (X, τ, I), denoted by $I O(X)$ (resp. $I C(X)$, $R O(X), R C(X), S O(X), S C(X), P O(X)$,
$S P O(X), S P C(X))$. We set $I O(X, x)=\{A: A \in I O(X)$ and $x \in$ $A\}$. It is well known that in a topological space $(X, \tau, I), X^{*} \subseteq X$ but if the ideal is codense, that is $\tau \cap I=\emptyset$, then $X^{*}=X$.
By a multifunction $F: X \rightarrow Y$, we mean a point-to-set correspondence from X into Y, also we always assume that $F(x) \neq \varnothing$ for all $x \in X$. For a multifunction $F: X \rightarrow Y$, the upper and lower inverse of any subset A of Y denoted by $F^{+}(A)$ and $F^{-}(A)$, respectively, that is $F^{+}(A)=\{x \in X: F(x) \subseteq A\}$ and $F^{-}(A)=\{x \in X: F(x) \cap A \neq \varnothing\}$. In particular, $F^{+}(y)=$ $\{x \in X: y \in F(x)\}$ for each point $y \in Y$.

Definition 2.1. [7] A multifunction $F:(X, \tau) \rightarrow(Y, \sigma)$ is said to be

1. upper semi continuous at a point $x \in X$ if for each open set V of Y with $x \in F^{+}(V)$, there exists an open set U containing x such that $F(U) \subseteq V$.
2. lower semi continuous at a point $x \in X$ if for each open set V of Y with $F(x) \cap V \neq \emptyset$, there exists an open set U containing x such that $F(a) \cap V \neq \emptyset$ for all $a \in U$.

Definition 2.2. [15] A multifunction $F:(X, \tau) \rightarrow(Y, \sigma)$ is said to be

1. upper weakly continuous if for each $x \in X$ and each open set V of Y such that $x \in F^{+}(V)$, there exists an open set U containing x such that $U \subseteq F^{+}(C l(V))$.
2. lower weakly continuous if for each $x \in X$ and each open set V of Y such that $F(x) \cap V \neq \emptyset$, there exists an open set U containing x such that $F(u) \cap C l(V) \neq \emptyset$ for every $u \in U$.
3. weakly continuous if it is both upper weakly continuous and lower weakly continuous.

Definition 2.3. [2] A multifunction $F:(X, \tau, I) \rightarrow(Y, \sigma)$ is said to be

1. upper I-continuous if for each $x \in X$ and each open set V of Y such that $x \in F^{+}(V)$, there exists an I-open set U containing x such that $U \subseteq F^{+}(V)$.
2. lower I-continuous if for each $x \in X$ and each open set V of Y such that $x \in F^{-}(V)$, there exists an I-open set U containing x such that $U \subseteq F^{-}(V)$.
3. I-continuous if it is both upper and lower I-continuous.

Definition 2.4. [5] A multifunction $F:(X, \tau, I) \rightarrow(Y, \sigma)$ is said to be

1. upper weakly I-continuous if for each $x \in X$ and each open set V of Y such that $x \in F^{+}(V)$, there exists an I-open set U containing x such that $U \subseteq F^{+}(C l(V))$.
2. lower weakly I-continuous if for each $x \in X$ and each open set V of Y such that $x \in F^{-}(V)$, there exists an I-open set U containing x such that $U \subseteq F^{-}(C l(V))$
3. weakly I-continuous if it is both upper weakly I-continuous and lower I-weakly continuous.

3 Weakly (I, J)-continuous multifunctions

Definition 3.1. A multifunction $F:(X, \tau, I) \rightarrow(Y, \sigma, J)$ is said to be:

1. upper weakly (I, J)-continuous at a point $x \in X$ if for each J-open set V such that $x \in F^{+}(V)$, there exists an I-open set U containing x such that $U \subseteq F^{+}(J C l(V))$
2. lower weakly (I, J)-continuous at a point $x \in X$ if for each J open set V of Y such that $x \in F^{-}(V)$, there exists an I-open set U of X containing x such that $U \subseteq F^{-}(J C l(V))$.
3. upper (resp. lower) (I, J)-continuous on X if it has this property at every point of X.

Example 3.2. Let $X=Y=\{a, b, c\}$ with two topologies $\tau=$ $\{\emptyset, X,\{b\}\} \sigma=\{\emptyset, Y,\{a\}\}$ and two ideals $I=\{\emptyset,\{a\}\}, J=$ $\{\emptyset,\{b\}\}$. Define a multifunction $F:(X, \tau, I) \rightarrow(Y, \sigma, J)$ as follows: $F(a)=\{a\}, F(b)=\{c\}$ and $F(c)=\{b\}$. It is easy to see that:
The set of all I-open is $\{\emptyset, X,\{b\},\{c\},\{a, b\},\{a, c\},\{b, c\}\}$.
The set of all J-open is $\{\emptyset,\{a\},\{c\},\{a, b\},\{a, c\}, Y\}$.
In consequence, F is upper(resp. lower) weakly (I, J)-continuous on X.

Example 3.3. Let $X=Y=\{a, b, c\}$ with two topologies $\tau=$ $\{\emptyset, X,\{b, c\}\}, \sigma=\{\emptyset, Y,\{b\}\}$ and two ideals $I=J=\{\emptyset,\{b\}\}$. Define a multifunction $F:(X, \tau, I) \rightarrow(Y, \sigma, J)$ as follows: $F(a)=$ $\{a\}, F(b)=\{c\}$ and $F(c)=\{b\}$. It is easy to see that:
The set of all I-open is $\{\emptyset, X,\{a\},\{c\},\{a, c\},\{b, c\}\}$.
The set of all J-open is $\{\emptyset, Y,\{a\},\{c\},\{a, b\},\{a, c\},\{b, c\}\}$. In consequence, F is not upper (resp. lower) weakly (I, J)-continuous.

Recall that if (X, τ, I) is an ideal topological space and I is the empty ideal, then for each $A \subseteq X, A^{*}=\operatorname{cl}(A)$, that is to said, every I-open set is a preopen set, in consequence, if $F:(X, \tau, I) \rightarrow$ $(Y, \sigma,\{\emptyset\})$ is upper weakly $(I,\{\emptyset\})$-continuous, then F is upper weakly I-continuous.

Example 3.4. Let $X=Y=\{a, b, c\}$ with two topologies $\tau=$ $\{\emptyset, X,\{b\}\} \sigma=\{\emptyset, Y,\{a, c\}\}$ and two ideals $I=\{\emptyset,\{a\}\}, J=\{\emptyset\}$. Define a multifunction $F:(X, \tau, I) \rightarrow(Y, \sigma, J)$ as follows: $F(a)=$ $\{b\}, F(b)=\{c\}$ and $F(c)=\{a\}$. It is easy to see that:
The set of all I-open is $\{\emptyset, X,\{b\},\{c\},\{a, b\},\{a, c\},\{b, c\}\}$.
The set of all J-open is $\{\emptyset,\{a\},\{c\},\{a, b\},\{a, c\}, Y\}$.
$F:(X, \tau, I) \rightarrow(Y, \sigma)$ is upper weakly I-continuous but $F:(X, \tau, I) \rightarrow$ $(Y, \sigma,\{\emptyset\})$ is not upper weakly $(I,\{\emptyset\})$-continuous.

Now consider (X, τ, I) and (Y, σ, J) two ideals topological spaces. If $J \neq\{\emptyset\}$, then the concepts of upper weakly (I, J)-continuous and upper weakly I-continuous are independent, as we can see in the following examples.

Example 3.5. In the Example 3.4, the multifunction F is upper weakly (I, J)-continuous on X but is not upper weakly I-continuous on X.

Example 3.6. In the Example 3.3, the multifunction F is upper weakly I-continuous on X but is not upper weakly (I, J)-continuous on X.

Remark 3.7. It is easy to see that if $F:(X, \tau, I) \rightarrow(Y, \sigma, J)$ is a multifunction and $J O(Y) \subset \sigma$ and F is upper (lower) weakly I continuous, then F is upper (lower) weakly (I, J)-continuous. Even more, if $F:(X, \tau, I) \rightarrow(Y, \sigma, J)$ is a multifunction and $J O(Y) \nsubseteq$ σ, we can find upper (resp. lower) weakly (I, J)-continuous on X that are not upper (lower) weakly I-continuous.

The following theorem characterize the upper weakly (I, J) continuous multifunctions.

Theorem 3.8. For a multifunction $F:(X, \tau, I) \rightarrow(Y, \sigma, J)$, the following statements are equivalent:

1. F is upper weakly (I, J)-continuous.
2. $F^{+}(V) \subseteq \operatorname{Iint}\left(F^{+}(J C l(V))\right)$ for any J-open set V of Y.
3. I $C l\left(F^{-}(\operatorname{Jint}(B))\right) \subset F^{-}(B)$ for any every J-closed subset B of Y.

Proof. (1) $\Rightarrow(2)$: Let $x \in F^{+}(V)$ and V be any J - open set of Y. From (1), there exists an I-open set U_{x} containing x such that $U_{x} \subset F^{+}(J C l(V))$. It follows that $x \in \operatorname{Iint}\left(F^{+}(J C l(V))\right)$, in consequence, $F^{+}(V) \subseteq I \operatorname{int}\left(F^{+}(J C l(V))\right)$ for any J-open set V of Y. $(2) \Rightarrow(1)$: Let V any J-open subset of Y such that $x \in F^{+}(V)$. By $(2), x \in F^{+}(V) \subseteq \operatorname{Iint}\left(F^{+}(J C l(V))\right) \subseteq F^{+}(J C l(V))$. Choose $U=\operatorname{Iint}\left(F^{+}(J C l(V))\right) . U$ is an I-open subset of X, containing x. It follows that F is upper weakly (I, J)-continuous.
$(2) \Rightarrow(3)$: Let B be any J - closed set of Y. Then by $(2), F^{+}(Y \backslash B)=$ $X \backslash F^{-}(B) \subseteq \operatorname{Iint}\left(F^{+}(J C l(Y \backslash B))\right)=\operatorname{Iint}\left(F^{+}(J C l(Y \backslash \operatorname{Iint}(B)))\right)=$ $X \backslash I C l\left(F^{-}(\operatorname{Jint}(B))\right)$. Thus, $I C l\left(F^{-}(J \operatorname{int}(B))\right) \subset F^{-}(B)$.
$(3) \Rightarrow(2)$: Let V be any J - open set of Y. Then by (3),
$I C l\left(F^{-}(\operatorname{Jint}(Y \backslash V))\right) \subset F^{-}(Y \backslash V)=X \backslash F^{+}(V)$. It follows that
$I C l\left(X \backslash F^{+}(I C l(V))=I C l\left(F^{-}(Y \backslash I C l(V))\right)=I C l\left(F^{-}(\operatorname{Jint}(Y \backslash V))\right) \subset\right.$ $X \backslash F^{+}(V)$, and then $X \backslash \operatorname{Iint}\left(F^{+}(I C l(V))\right) \subseteq X \backslash F^{+}(V)$. And the result follows.

Theorem 3.9. For a multifunction $F:(X, \tau, I) \rightarrow(Y, \sigma, J)$, the following statements are equivalent:

1. F is lower weakly (I, J)-continuous.
2. $F^{-}(V) \subseteq \operatorname{Iint}\left(F^{-}(J C l(V))\right)$ for any J-open set V of Y.
3. I $C l\left(F^{+}(\operatorname{Jint}(B))\right) \subset F^{+}(B)$ for any every J-closed subset B of Y.

Proof. The proof is similar to that of Theorem 3.8.
Definition 3.10. [14] A multifunction $F:(X, \tau, I) \rightarrow(Y, \sigma, J)$ is said to be:

1. upper (I, J)-continuous at a point $x \in X$ if for each J-open set V containing $F(x)$, there exists an I-open set U containing x such that $F(U) \subset V$.
2. lower (I, J)-continuous at a point $x \in X$ if for each J-open set V of Y meeting $F(x)$, there exists an I-open set U of X containing x such that $F(u) \cap V \neq \emptyset$ for each $u \in U$.
3. upper (resp. lower) (I, J)-continuous on X if it has this property at every point of X.

Example 3.11. The multifunction defined in Example 3.2 is upper weakly (I, J)-continuous on X but is not upper (I, J)-continuous on X.

Remark 3.12. Every upper (resp. lower) (I, J)-continuous multifunction on X is upper (resp. lower) weakly (I, J)-continuous multifunction on X, but the converse is not necessarily true, as we can see in the following example.

Example 3.13. Let $X=\mathbb{R}$ the set of real numbers with the topology $\tau=\{\emptyset, \mathbb{R}, \mathbb{R} \backslash \mathbb{Q}\}, Y=\mathbb{R}$ with the topology $\sigma=\{\emptyset, \mathbb{R}, \mathbb{Q}\}$ and $I=\{\emptyset\}=J$. Define $F:(X, \tau, I) \rightarrow(Y, \sigma, J)$ as follows: $F(x)=\mathbb{Q}$ if $x \in \mathbb{Q}$ and $F(x)=\mathbb{R} \backslash \mathbb{Q}$ if $x \in \mathbb{R} \backslash \mathbb{Q}$. Recall that in this case the I-open sets are the preopen sets. f is upper (resp. lower) weakly (I, J)-continuous on X, but is not upper(resp. lower) (I, J) continuous on X..

Theorem 3.14. [14] For a multifunction $F:(X, \tau, I) \rightarrow(Y, \sigma, J)$, the following statements are equivalent:

1. F is upper (I, J)-continuous.
2. $F^{+}(V)$ is I-open for each J-open set V of Y.
3. $F^{-}(K)$ is I-closed for every J-closed subset K of Y.
4. I $C l\left(F^{-}(B)\right) \subset F^{-}(J C l(B))$ for every subset B of Y.
5. For each point $x \in X$ and each J-open set V containing $F(x)$, $F^{+}(V)$ is an I-open containing x.

There exist any additional condition in order to say that every upper (resp. lower) (I, J)-continuous if upper (resp. lower) weakly (I, J)-continuous.

Theorem 3.15. Let $F:(X, \tau, I) \rightarrow(Y, \sigma, J)$ be a multifunction such that $F(x)$ is a J-open subset of Y for each $x \in X$. Then F is lower (I, J)-continuous if and only if lower weakly (I, J) continuous.

Proof. Let $x \in X$ and V any J-open subset of Y such that $x \in$ $F^{-}(V)$. Then there exists an I-open subset U of X containing x such that $U \subset F^{-}(J C l(V)$. It follows that $F(u) \cap J C l(V) \neq \emptyset$ for each $u \in U$. Since $F(u)$ is a J-open subset of Y for each $u \in U$, It follows that $F(u) \cap V \neq \emptyset$ and then F is lower (I, J)-continuous. The converse is clear because every (I, J)-continuous multifunction is weakly (I, J)-continuous.

Theorem 3.16. Let $F:(X, \tau, I) \rightarrow(Y, \sigma, J)$ be a multifunction such that $F(x)$ is a J-open subset of Y for each $x \in X$. Then F is upper (I, J)-continuous if and only if upper weakly (I, J) continuous.

Proof. The proof is similar to the above Theorem.

4 Contra (I, J)-continuous multifunctions

Definition 4.1. A multifunction $f:(X, \tau, I) \rightarrow(Y, \sigma, J)$ is said to be:

1. upper contra (I, J)-continuous if for each $x \in X$ and each J-closed set V such that $x \in F^{+}(V)$, there exists an I-open set U containing x such that $F(U) \subset V$.
2. lower contra (I, J)-continuous if for each $x \in X$ and each J closed set V of Y such that $x \in F^{-}(V)$, there exists an I-open set U of X containing x such that $U \subseteq F^{-}(V)$.
3. Contra (I, J)-continuous if it is upper contra (I, J)-continuous and lower contra (I, J)-continuous.

Example 4.2. Let $X=\mathbb{R}$ the set of real numbers with the topology $\tau=\{\emptyset, \mathbb{R}, \mathbb{R} \backslash \mathbb{Q}\}, Y=\mathbb{R}$ with the topology $\sigma=\{\emptyset, \mathbb{R}, \mathbb{Q}\}$ and $I=\{\emptyset\}=J$. Define $F:(X, \tau, I) \rightarrow(Y, \sigma, J)$ as follows: $F(x)=\mathbb{Q}$ if $x \in \mathbb{Q}$ and $F(x)=\mathbb{R} \backslash \mathbb{Q}$ if $x \in \mathbb{R} \backslash \mathbb{Q}$. Recall that in this case the I-open sets are the preopen sets. It is easy to see that F is upper (resp. lower) contra (I, J)-continuous.

Example 4.3. Let $X=Y=\{a, b, c\}$ with two topologies $\tau=$ $\{\emptyset, X,\{b\}\} \sigma=\{\emptyset, Y,\{a\}\}$ and two ideals $I=\{\emptyset,\{a\}\}, J=$
$\{\emptyset,\{b\}\}$. Define a multifunction $F:(X, \tau, I) \rightarrow(Y, \sigma, J)$ as follows: $F(a)=\{b\}, F(b)=\{a\}$ and $F(c)=\{c\}$. It is easy to see that:
The set of all I-open is $\{\emptyset, X,\{b\},\{c\},\{a, b\},\{a, c\},\{b, c\}\}$.
The set of all J-open is $\{\emptyset,\{a\},\{c\},\{a, b\},\{a, c\}, Y\}$.
The set of all J-closed is $\{\emptyset,\{b\},\{c\},\{a, b\},\{b, c\}, Y\}$.
In consequence, f is upper(resp. lower) (I, J)-continuous on X but is not upper (resp. lower) contra (I, J)-continuous.

Example 4.4. The multifunction F defined in Example 4.2 is upper (resp. lower) contra (I, J)-continuous but is not upper (resp. lower) (I, J)-continuous on X and the multifunction F defined in Example 4.3 is upper (resp. lower) (I, J)-continuous but is not upper (resp. lower) contra (I, J)-continuous. In consequence both concepts are independent of each other.

Theorem 4.5. For a multifunction $F:(X, \tau, I) \rightarrow(Y, \sigma, J)$, the following statements are equivalent:

1. F is upper contra (I, J)-continuous.
2. $F^{+}(V)$ is I-open for each J-closed set V of Y.
3. $F^{-}(K)$ is I-closed for every J-open subset K of Y.

Proof. (1) $\Leftrightarrow(2):$ Let $x \in F^{+}(V)$ and V be any J-closed set of Y. From (1), there exists an I-open set U_{x} containing x such that $U_{x} \subset F^{+}(V)$. It follows that $F^{+}(V)=\bigcup_{x \in F^{+}(V)} U_{x}$. Since any union of I-open sets is I-open, $F^{+}(V)$ is I-open in (X, τ). The converse is similar.
$(2) \Leftrightarrow(3)$: Let K be any J - open set of Y. Then $Y \backslash K$ is a J closed set of Y by $(2), F^{+}(Y \backslash K)=X \backslash F^{-}(K)$ is an I-open set. Then it is obtained that $F^{-}(K)$ is an I-closed set. The converse is similar.

Theorem 4.6. For a multifunction $F:(X, \tau, I) \rightarrow(Y, \sigma, J)$, the following statements are equivalent:

1. F is lower contra (I, J)-continuous.
2. $F^{-}(V)$ is I-open for each J-closed set V of Y.
3. $F^{+}(K)$ is I-closed for every J-open subset K of Y.
4. For each $x \in X$ and each J-closed set K of Y such that $F(x) \cap K \neq \emptyset$, there exists an I-open set U containing x such that $F(y) \cap K \neq \emptyset$ for each $y \in U$.

Proof. The proof is similar to the proof of Theorem 4.5.
Remark 4.7. It is easy to see that if $J=\{\emptyset\}$ and $F:(X, \tau, I) \rightarrow$ (Y, σ, J) is upper (resp. lower) contra (I, J)-continuous then F is upper (resp. lower) contra I-continuous.

The following example shows the existence of upper (resp. lower) contra I-continuous that is not upper (resp. lower) contra $(I,\{\emptyset\})$ continuous.

Example 4.8. Let $X=Y=\{a, b, c\}$ with two topologies $\tau=$ $\{\emptyset, X,\{b\}\} \sigma=\{\emptyset, Y,\{a, c\}\}$ and two ideals $I=\{\emptyset,\{a\}\}, J=\{\emptyset\}$. Define a multifunction $F:(X, \tau, I) \rightarrow(Y, \sigma, J)$ as follows: $F(a)=$ $\{c\}, F(b)=\{b\}$ and $F(c)=\{a\}$. It is easy to see that:
The set of all I-open is $\{\emptyset, X,\{b\},\{c\},\{a, b\},\{a, c\},\{b, c\}\}$.
The set of all J-open is $\{\emptyset,\{a\},\{c\},\{a, b\},\{a, c\},\{b, c\}, Y\}$.
The set of all J-closed is $\{\emptyset,\{b\},\{c\},\{a, b\},\{b, c\}, Y\}$.
Observe that $F:(X, \tau, I) \rightarrow(Y, \sigma)$ is upper contra I-continuous but $F:(X, \tau, I) \rightarrow(Y, \sigma,\{\emptyset\})$ is not upper contra $(I,\{\emptyset\})$-continuous.

Remark 4.9. It is easy to see that if $F:(X, \tau, I) \rightarrow(Y, \sigma, J)$ is a multifunction and $J O(Y) \subset \sigma$. If F is upper (lower) contra I continuous, then F is upper (lower) (I, J)-continuous. Even more, if $F:(X, \tau, I) \rightarrow(Y, \sigma, J)$ is a multifunction and $J O(Y) \nsubseteq \sigma$, we can find upper (resp. lower) contra (I, J)-continuous on X that are not upper (lower) contra I-continuous.

References

[1] Abd El-Monsef, M. E., Lashien, E. F., Nasef, A. A., On Iopen sets and I-continuos functions Kyungpook Math. J. 32(1) (1992), 21-30.
[2] Akdag, M., On upper and lower I-continuos multifunctions, Far East J. Math. Sci.. 25(1) (2007), 49-57.
[3] A. Al-Omari and M. S. M. Noorani, Contra-I-continuous and almost I-continuous functions, Int. J. Math. Math. Sci. (9) (2007), 169-179.
[4] D. Andrijevic, Semi-preopen sets, Mat. Vesnik, 38(1986), 2432.
[5] C. Arivazhagi and N. Rajesh, On Upper and Lower weakly IContinuous MultifunctionsItalian Journal of Pure and Applied Mathematics, 36 (2016),899-912.
[6] C. Arivazhagi and N. Rajesh, On Upper and Lower contra I-Continuous Multifunctions (submitted).
[7] D. Carnahan, Locally nearly compact spaces, Boll. Un. mat. Ital., 4 (6) (1972), 143-153.
[8] E. Ekici, Nearly continuous multifunctions, Acta Math. Univ. Comenianae, 72 (2003), 229-235.
[9] E. Ekici, Almost nearly continuous multifunctions, Acta Math. Univ. Comenianae, 73 (2004), 175-186.
[10] D. S. Jankovic and T. R. Hamlett, New Topologies From Old via Ideals, Amer. Math. Montly, 97 (4) (1990), 295-310.
[11] N. Levine, Semi open sets and semi-continuity in topological spaces, Amer. Math. Montly, 70 (1963), 36-41.
[12] K. Kuratowski, Topology, Academic Press, New York, (1966).
[13] A.S. Mashhour, M. E. Abd El-Monsef, El-Deep on precontinuous and weak precontinuous mappings Proced. Phys. Soc. Egyp, 53 (1982), 47-53.
[14] E. Rosas, C. Carpintero and J. Moreno, Upper and Lower (I, J) Continuous Multifunctions, International Journal of Pure and Applied Mathematics, 117 (1) (2017), 87-97.
[15] R. E. Simithson, Almost and weak continuity for multifunctions, Bull. Calcutta Math. Soc., 70(1978), 383-390.
[16] M. Stone, Applications of the theory of boolean rings to general topology, Trans. Amer. Math. Soc., 41(1937), 374-381.
[17] R. Vaidyanathaswamy, The localisation theory in set topology, Proc. Indian Acad. Sci., 20(1945), 51-61.
[18] I. Zorlutuna, I-continuous multifunctions, Filomat, 27(1) (2013), 155-162.

