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Abstract 

Global efforts are underway to reduce greenhouse gas emissions (GHG) from anthropogenic 

activities. Nitrous oxide (N2O) emissions accounted for 13% of Australia’s National GHG 

inventory over the period 2016-2017 (NGGI, 2017) with most N2O derived from agricultural 

soils. Sugarcane soils are high emitters of N2O, and this thesis explores whether legumes, 

grown as a companion crop with biological N2 fixation (BNF) capacity, can partially replace 

N fertiliser to lower the emissions of N2O from sugarcane soil.  

Chapter 2 synthesises published literature on sugarcane intercropping. Most research has 

focussed on the productivity of sugarcane with intercrops, including legumes. Intercropping 

can benefit sugarcane yield, have neutral or negative effects. This practice is common in 

subsistence agriculture, and farm income benefits, but environmental benefits intercropping 

have not been a research focus.  

Chapters 3 and 4 explore sugarcane-legume intercropping at three commercial farms in 

Australia. N2O emissions, soil and crop variables were quantified with different N fertiliser 

applications and in the presence or absence of legumes. The farms, two Rain-fed, one Irrigated, 

were located in the dry and wet tropics, and in the subtropics, representing different climate 

and agronomic settings. Industry-recommended (full) N fertiliser rates were compared with up 

to 50% reduced N fertiliser rates in the presence or absence of legume and benchmarked against 

a zero N fertiliser control. We hypothesised that reduced application of N fertiliser limits 

sugarcane growth and that legumes can alleviate N limitation. However, full and reduced N 

fertiliser treatments mostly generated similar sugarcane yields, confirming that industry-

recommended full N fertiliser rates exceed sugarcane needs. In line with this notion, the 

reduced N+legume treatments did not improve sugarcane growth. N2O emissions in reduced 

N+legume were either similar to reduced N fertiliser sugarcane monoculture or higher and 

similar to the emissions observed with full N fertiliser rates. Soybean strongly benefitted 

sugarcane yield under N limiting conditions (zero N fertiliser) at one farm, increasing soluble 

soil N levels and nearly doubling sugarcane yield compared to zero-N sugarcane monoculture, 

and generating 6-times lower N2O emissions than the full N rate. At the Rain-fed sites, soil 

nitrate levels explained 81 and 64% of N2O emissions; at the Irrigated site, the interaction of 

soil nitrate and soil moisture explained 63% of N2O emissions. High N2O emissions factors at 

the subtropical site were associated with wet, low drainage soil (>70% water filled pore space 

over summer), conditions that promote denitrification. High N fertiliser rates in Irrigated, well-
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draining soils had lower N2O emissions, possibly shifting N losses from gaseous to leaching. 

The promising findings observed with soybean under N limitation require further investigation 

to explore N2O mitigation options with a view of optimising legume facilitation and the 

‘tipping point’ for N fertiliser applications.  

Chapter 5 presents a glasshouse experiment investigating the effect of N fertiliser rate on 

competition vs facilitation up to peak N accumulation of soybean. No or low N fertiliser rates 

enhanced soybean BNF but reduced growth of sugarcane. With moderate to high N fertiliser 

rates, soybean BNF and growth diminished, while sugarcane growth increased which 

indicatives increased competitive ability. We conclude that N fertiliser rates substantially 

impact upon the relative performance of sugarcane and legume intercrop, with a trade-off 

between N fertiliser application and legume BNF. Under the experimental condition, direct N 

transfer from soybean to sugarcane was negligible. Rather, decomposition and mineralisation 

of legume biomass are likely to be the main pathway for increased N accumulation in 

intercropped sugarcane observed in some instances.  

Chapter 6 synthesises the findings from literature, field and glasshouse experimentation and 

discusses future directions for sugarcane-legume intercropping research. 
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Chapter 1 – Introduction 
 

1.1 Climate Change and Agriculture 

Global climate change is one of the grand challenges of our time (UN, 2017). Anthropogenic 

activities have been accelerating the increases in three main greenhouse gases (GHG): carbon 

dioxide (CO2), methane (CH4) and nitrous oxide (N2O).  Together, these gases account for up 

to 80% of total radiative forcing of all GHG (IPCC, 2014). The current concentrations of 409 

ppm CO2 (NOAA, 2018), 1853 ppb CH4 and 328 ppb N2O (WMO, 2016) in the atmosphere 

surpass those in the past 800,000 years (NOAA, 2018). The increase of GHG is caused 

predominantly by anthropogenic activities including the burning of fossil fuels, land use 

change (i.e. the conversion of natural ecosystems to agricultural land), and agriculture (IPCC, 

2014, Schultz et al., 2010). Overall, GHG emissions from agriculture represent 13% of 

Australia’s National GHG inventory over 2016-2017. 

The focus of the research presented here is on nitrous oxide (N2O), a trace gas with a global 

warming potential 265–298 times that of CO2 for a 100-year timescale. N2O emissions can be 

direct or indirect in agricultural soils (IPCC, 2006). The direct pathways increase N2O 

emissions as a result of over-use of synthetic N fertilisers and manures, driven by biological 

nitrification and denitrification processes; the indirect pathways of N2O emissions are the result 

of N volatilization, leaching, runoff or harvest of crop biomass (IPCC, 2013). It is estimated 

that indirect N2O emissions released from these processes constitute about one third of total 

agricultural N2O emissions (IPCC, 2006), with leaching and surface runoff as the major 

contributors (Tian et al., 2018, Xia et al., 2013b). For example, high ammonia (NH3) 

volatilisation occurs with surface-applied urea or manures, and subsequent NH3 oxidation can 

generate indirect N2O emissions (Redding et al., 2016). In our study, urea was applied 

subsurface (as is industry practice in Australia) which minimises NH3 emissions (Freney et al., 

1994). The focus was therefore on direct emissions as main source of N2O emissions from N 

fertilised agricultural soils. It is estimated that approximately 4.1 Tg N2O-N y-1 (1.7 to 4.8 Tg 

N2O-N y-1) of the total anthropogenic sources of 6.9 Tg N2O-N y-1 (2.7 to 11.1 Tg N2O-N y-1) 

are the results of N inefficiencies in agriculture (IPCC, 2013). The uncertainties for N2O 

emissions are high, and improved understanding of N2O emissions is therefore essential. 

Importantly, mitigation options are needed that do not compromise crop yields. 
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1.2 Pathways of nitrous oxide (N2O) formation of in soils 

The emissions of N2O from soils are the result of biological and physio-chemical processes. 

Soil can be a sink or a source of GHG, including N2O, depending on the dynamic equilibrium 

between microorganisms generating or metabolising GHG. This equilibrium is influenced by 

environmental factors including those imposed by the management of crop systems 

(Schlesinger and Bernhardt, 2013, Mosier et al., 2004, Dalal et al., 2003). Figure 1.1 illustrates 

the emissions from soil to the atmosphere (solid lines) with focus on the N transformations that 

are the focus here.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1 Conceptual diagram of the formation of nitrous oxide (N2O) in the soil of a legume-

sugarcane intercropping system (adapted from Dalal et al., 2003, Bodelier, 2011; Kool et al., 

2011, Schlesinger and Bernhardt 2013, Itakura et al., 2012; Nazaries et al., 2013, Signor and 

Cerri , 2013, Meyer et al., 2008) . NN (nitrifier nitrification); ND (nitrifier denitrification); N-

CD and FD (nitrification-coupled denitrification and reduction of the N fertiliser applied). 

Dotted lines show the contribution of the different pathways to form N gas compounds.  

 

1.2.1 Nitrogen transformation in soils and N2O emissions  

The transformations of N in soils are mediated by soil microbial communities which perform 

the processes that result inter alia in the production of N2O and other NOx (Nazaries et al., 
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2013, Xia et al., 2013c, Thomson et al., 2012, Bodelier, 2011). Four processes are implicated 

in the production of N2O emissions; nitrification, denitrification, dissimilatory nitrate reduction 

to ammonium (DNRA) and assimilatory nitrate reduction; the latter pathway is considered to 

be less important as it is inhibited at low concentrations of NH4
+ or soluble organic N.  

Nitrification (autotrophic nitrification) and denitrification (heterotrophic denitrification) are 

considered the main source of N2O emissions (Müller et al., 2014, Venterea and Rolston, 

2000), possessing the genes and enzymes responsible for N2O formation (Figure 1.1; Table 

1.1).  

 

To devise mitigation strategies, understanding of the enzymatic pathways and microbes 

involved in N2O emissions is important, which in turn are driven by agronomic management 

and environmental variables. For example, analysis of the molecular pathways suggest that the 

enzyme nitrous oxide reductase (N2OR) could play an important role in mitigating N2O 

emissions as it converts N2O to dinitrogen (N2) (Muller et al., 2014, Thomson et al., 2012, Kool 

et al., 2011). N2O is the final product of the nitrifier denitrification pathway because ammonia 

oxidising bacteria (AOB) do not contain N2OR (Cantera and Stain, 2007). 

 

Table 1. 1 Processes, genes and enzymes responsible for N2O emissions; modified from 

Thomson et al. (2012). 

 

 

With research on soil microbial communities and N transformations ongoing, this thesis 

focusses on agronomic practices and the net effect on N2O emissions with the aim to mitigate 

N2O emissions. Building on existing knowledge of N2O emissions from Australian sugarcane 

soils and research globally, the aim was to quantify how recommended (full N rate) and 

reduced N fertiliser in combination with legumes affect N2O emissions. The various pathways 

Transformation Process Genes  Encoded enzyme  

N2          →        NH3 Nitrogen fixation nifHDK  nitrogenase  

  Mineralisation   
NH4

+         → NH2OH Ammonium 

oxidation 

Amo ammonia monooxygenase 

NH2OH  → NO2
- Hao hydroxylamine oxidoreductase 

NO2
-
          → NO3

- Nitrite oxidation NOR/NXR nitrite oxidereductase 

NO3
-
         → NO2

- 

Denitrification 

narG 

napEDABC 

dissimilatory nitrate reductase 

periplasmatic nitrate reductase 

NO2
-      → NO 

nirK, nirS 
copper nitrite reductase, nitrite 

reductase haem cd1 

NO        → N2O norCB nitric oxide reductase 

N2O      → N2 nosZ nitrous oxide reductase N2OR  
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are outlined below as they will be considered as potential contributors to N2O in the research 

here. 

1.2.2 Autotrophic nitrification 

Autotrophic nitrification is an aerobic pathway that involves the oxidation of ammonium 

(NH4
+) or ammonia (NH3) to nitrate (NO3

-) and is catalysed by two dominant bacterial groups 

and archaea (Hink et al., 2016, Bowatte et al., 2009). Ammonia oxidising archaea (AOA) and 

bacteria (AOB) in the Nitrosomonas genus (e.g. Nitrosomonas europaea) participate in the 

oxidation of NH4
+ to NO2

-. The oxidation of ammonium involves a three-step process termed 

nitrification (Thomson et al., 2012). Firstly, NH4
+ is converted to hydroxylamine (NH2OH) by 

ammonia mono-oxygenase (amo) that requires molecular oxygen (O2). Then, NH2OH is 

oxidised to NO2
- by hydroxylamine oxidoreductase (hao) (Kool et al., 2009, Andersson and 

Hooper, 1983). The second bacterial group belong to Nitrobacter (e.g. Nitrobacter 

winogradskyi) and oxidise NO2
- to NO3

- by nitrite oxidoreductase (nor) (Thomson et al., 2012). 

Nitrifier nitrification (NN) and nitrifier denitrification (ND) produce N2O by reduction of 

NH2OH and NO2
- respectively. In the latter pathway, copper nitrite reductase (nirK) reduces 

NO2
- to NO, and nitric oxide reductase (norCB) reduces NO to N2O (Thomson et al., 2012, 

Kool et al., 2011).  

1.2.3 Heterotrophic nitrification 

Microorganisms such as fungi can produce N2O emissions under aerobic conditions through 

the heterotrophic nitrification process (Granli and Bøckman, 1995, Robertson et al., 1989). 

Heterotrophic and autotrophic nitrification processes involve similar N oxidation processes; 

however, the former has different enzymes responsible for N2O emissions (Wrage et al., 2001). 

The magnitude of N2O emission production during the heterotrophic nitrification process is 

dependent on low pH, high availability of O2 and organic C supply (Wrage et al., 2001). 

1.2.4 Heterotrophic denitrification  

Denitrification is the main pathway of N2O production performed by non-specialist 

heterotrophic bacteria (organotrophs, chemo- and photo-lithotrophs, and N2 fixers among 

others) (Robertson and Thorburn, 2007). Denitrifiers use NO3
- instead of O2 as an electron 

acceptor during respiration (CHAPUIS‐LARDY et al., 2007, Mosier et al., 2004). In this 

process, NO3
- is reduced via two pathways, from both nitrification–coupled denitrification 

(NCD) and fertiliser denitrification (FD) as fertiliser NO3
- (Kool et al., 2011, Kool et al., 2009). 

Nitrification coupled-denitrification relates to the existing proximity between nitrification and 
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denitrification process that frequently occurs in the soil. In this stage, a substantial part of the 

NO3
- from nitrification diffuses to the anaerobic denitrification zone where NO3

- is reduced to 

N2; however, during this stepwise reduction, N2O is one of the intermediate product that can 

be released to the atmosphere (Nielsen et al., 1996). 

1.2.5 Other N transformation in soil 

There are further microbial processes that currently become more important in the production 

of N2O from soils (van Groenigen et al., 2014). Processes such as dissimilatory nitrate 

reduction to ammonium (DNRA), non-respiratory denitrification and anaerobic ammonium 

oxidation (anammox) are considered to play significant role in N gaseous cycle (Muller et al., 

2014, Thomson et al., 2012, Robertson and Groffman, 2007). Specific soil conditions (aerobic 

or anaerobic) and microorganisms (e.g. facultative and obligate bacteria, fungi and/or yeast) 

are involved in the oxido-reduction reactions of these processes. However, the ecology of these 

processes is less well understood than nitrification or denitrification (Robertson and Groffman, 

2007), and some of the processes that generate N2O also are able to consume N2O. For 

example, the DNRA can enhance N2O consumption by the presence of typical enzymes like 

denitrifier nosZ I and atypical non denitriyfier nosZ II or by the production of N2O as a by-

product (van Groenigen et al., 2014). Therefore, N2O emissions from the different N 

transformation pathways are complex due to the numerous soil biological, physical and 

chemical reactions. Substantial research has been directed at identifying the pathways of N2O. 

However, in the applied context of agronomic practices aimed at reducing N2O emissions from 

soil, research mostly centres on reducing soluble soil inorganic N pools as main substrate for 

N2O emissions (Müller et al., 2014, Kool et al., 2011). 

1.3 Drivers for the production of nitrous oxide from soils   

Management practices combined with environmental factors in agricultural systems influence 

the rate of N2O emissions (Zhu et al., 2013, Thomson et al., 2012). The rates of N2O emissions 

from soil are determined inter alia by abiotic factors such as soil moisture (i.e. irrigation or 

rainfall) and N application rate and fertiliser type, e.g. manures, urea, nitrate or ammonium-

based synthetic fertilisers (Vargas et al., 2014). We discuss the various factors in the following 

section.  

1.3.1 Nitrogen sources  

Available N in soil is the precursor for N2O emissions, with emissions increasing under 

conditions of high N substrate availability (NH4
+, NO3

-, and organic N) (Yu et al., 2001).  The 
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response of N2O emissions to fertiliser applications depends on the composition and quantity 

of N fertiliser (Hut et al., 2010, Dalal et al., 2008). The highest risk of N2O emissions occurs 

with large pools of soil inorganic N and anoxic conditions due to high rainfall or irrigation 

(Oertel et al., 2016, Signor and Cerri, 2013). Strategies to manage N2O emissions are frequently 

based on N fertiliser reductions (Wang et al., 2016, Luo et al., 2016), splitting the application 

of fertiliser to reduce the size of soil inorganic N pools (Allen et al., 2010) or managing the 

pool size of inorganic N with slowed-release N fertilisers or using inhibitors that target some 

of the enzymes involved in N2O generation (Wang et al., 2016, Subbarao et al., 2006). 

 

Figure 1. 2 Factors controlling N2O emissions (adapted from Mosier et al., 2004, Dalal et al., 

2003, 2008, Denmead et al., 2008, Vargas et al., 2014) in sugarcane crop systems.  

 

1.3.2  Soil moisture, aeration and texture

Soil moisture greatly influences N2O emissions as it regulates soil microbial activity, gas 

diffusion and aeration status (Dalal et al., 2008). The rate of N2O production varies with the 

different N transformation processes in line with changes in water filled pore space (WFPS) 

and associated air diffusion rate. Very low fluxes of N2O derived from nitrification occurred 

at levels of <40% WFPS which doubled at 55-65% WFPS (Dalal et al., 2003). Oxygen 

diffusion becomes limiting >60% of WFPS, and N2O flux from denitrification sharply 
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increases. At very high WFPS (>90%), N2O flux is lower as N2 becomes the dominant form of 

gaseous N released from soils (Dalal et al., 2003, Granli and Bøckman, 1995). Beyond these 

broad categories of N2O flux from soil, peak N2O emissions can occur at different WFPS for 

various soil types under different soil management and weather conditions (Redding et al., 

2016).  

 

Soil texture interacts with soil moisture and influences the release of N2O. Clay soils tend to 

release more N2O than sandy soils  (Redding et al., 2016) as water is retained in the soil pores 

and gas diffusion is lower than in course-textured soils (Signor and Cerri, 2013, Granli and 

Bøckman, 1995). Soil management can increase N2O emissions. For example, in compacted 

soils, tillage decreases N2O emissions by increasing soil aeration and facilitating soil O2 and 

water exchange (Zhu et al., 2013). Figure 1.2 illustrates the factors that influence the production 

and consumption of N2O. The interactions among these factors (i.e. soil moisture, soil mulch, 

N and C availability) are complex (Vargas et al., 2014); these factors (in the dashed rectangle) 

can affect microbial communities rapidly, and therefore immediate change the rates of N2O 

production when conditions are altered, e.g. by management or weather. 

1.3.2 Redox Potential, Temperature, pH  

Nitrous oxide production is strongly affected by soil redox potential (Eh). In agricultural soils, 

highest N2O emissions were observed in anaerobic conditions with the denitrification pathway 

active at redox potential of +120 to +250 mV (Yu et al., 2001). However, N2O emissions also 

depend on interactions of soil nitrate availability, soil pH, soil organic matter content, soil 

temperature and soil moisture content as contributors (Vargas et al., 2014, Swamy et al., 2012, 

Dalal et al., 2008, Yu et al., 2001). For example, larger N2O emissions were reported during 

the crop season of mung bean (Vigna radiata) with high redox potential (+100 to +150 mV). 

However, during the postharvest fallow, N2O emissions were higher despite redox potential 

decreasing to +40 mV, high soil temperatures (36 to 45 oC), as rapid degradation and 

mineralisation of the N-rich legume residue and soil moisture contributed to N2O emissions 

(Swamy et al., 2012).  

Temperature affects general microbial activities including nitrification and denitrification 

(Oertel et al., 2016, Signor and Cerri, 2013). Denitrification is associated with high 

temperatures (up to 50oC) which increase soil respiration and decreases soil O2 levels to form 

and distribute N2O to the atmosphere (Signor and Cerri, 2013, Knowles, 1982). Additionally, 
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increasing temperatures are able to increase mineralisation and nitrification processes resulting 

in substrate availability for denitrification (Butterbach-Bahl et al., 2013). 

 

Soil pH also influences N2O emissions (Oertel et al., 2016, Signor and Cerri, 2013). During 

the denitrification process, N2O emissions are produced with a high concentration of NO3
- and 

low pH; at low pH, nitrous oxide reductase enzyme (N2OR) is inhibited, and only a small 

amount of N2O would be reduced to N2 (CHAPUIS‐LARDY et al., 2007). While the 

denitrification (anaerobic) process increases soil pH (Khalil et al., 2004), the application of N 

fertiliser reduces soil pH (Thomson et al., 2012). During denitrification, highest N2O emissions 

were reported in a pH range between 4.0 and 5.5 (Knowles, 1982); while, during nitrification, 

N2O emissions increased with a pH range of 5.9 to 8.3 (Bremner and Blackmer, 1981).  

1.4 Sugarcane management practices and N2O production 

1.4.1 Sugarcane agriculture in Australia 

Sugarcane (Saccharum officinarum x spontaneum) is grown globally on approximately 26.8 

million hectares in 108 countries in the tropics and subtropics (FAOSTAT, 2016). In 2016, 

Brazil was the largest producer of sugarcane globally, with 10.3 million ha of harvested area 

and average productivity of 75.2 t ha-1. Australia has ≈0.37 million ha of sugarcane but higher 

production per hectare (91.2 t ha-1) than Brazil (Australian Sugarcane, 2016). High sugarcane 

yields are enabled by breeding, disease/pest control and fertiliser application and depend on 

climate conditions, agronomic management and crop variety (Hartemink, 2008). Australian 

sugarcane is grown predominantly in intensive monocultures with high inputs of fertiliser, 

pesticides and herbicides. While efforts to transition the industry to improve farming systems 

with wider row spacings, GPS guidance, rotations to legumes between ratoon cycles, and 

reduced inputs are under way, progress has been relatively slow (Bell et al., 2007), with only 

40% of growers currently using best practice management (Canegrowers, 2017). 

1.4.2 N2O emissions from sugarcane soils 

Emissions of carbon dioxide, methane and nitrous oxide (CO2, CH4, N2O) occur between 

sugarcane soils and the atmosphere and depend on climate, soil type, and management 

practices (Carmo et al., 2013, Allen et al., 2010, Denmead et al., 2010b, Hartemink, 2008, 

Weier et al., 1998, 1996, Macedo et al., 2008). Sugarcane soils often generate larger N2O 

emissions than the 1% default emission factor of the IPCC, with N2O emission factors up to 

21% (de Oliveira et al. 2013, Denmead et al., 2010, Weier et al., 1998). Controlling factors 

such as high rates of  fertiliser (100 to 300 kg N ha-1), high rainfall, high retention of sugarcane 
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residues, fertiliser management (form and timing of N application), poorly drained soils, and 

dunder (vinasse) application contribute to high N2O emissions (Carmo et al., 2013, de Oliveira 

et al., 2013, Denmead et al., 2010b, Weier et al., 1998, 1996). 

 

In sugarcane systems, productivity is generally the priority; however, environmental 

compliance with a view of pollution linked to the inefficient use of N fertilisers is under 

scrutiny (Thorburn et al., 2013, Dalal et al., 2003). Sugarcane management strategies aim to 

improve crop yield and soil fertility (da Silva Paredes et al., 2014, Carmo et al., 2013, Weier, 

1996). As sugarcane management differs regionally, N2O emissions differ with location and 

climate (da Silva Paredes et al., 2014, de Oliveira et al., 2013, Dalal et al., 2008). Most N2O 

emission rates in Australia detected so far surpass the default emission factor (1%) of the IPCC, 

and the global emission factor from sugarcane soils of 3.87% (Lisboa et al., 2011). The addition 

of either synthetic N fertiliser or organic amendments (vinasse, filter cake or unburnt sugarcane 

residues left on the field) increases N2O emissions (Vargas et al., 2014, de Oliveira et al., 2013, 

Carmo et al., 2013, da Silva Paredes et al., 2014). Many factors impact on N2O emissions: (i) 

high levels of N fertilisation, (ii) additional N supplied from organic amendments, which can 

also increase dissolved organic carbon availability and increase microbial activity and 

subsequent reduction in redox potential, (iii) low soil pH (acidic soils) that can limit completion 

of the denitrification process, (iv) soil tillage (especially in plant cane). Research has shown 

high variability of N2O emissions from sugarcane soil and has demonstrated that emissions 

cannot be extrapolated to other sites if they vary in soil type and texture, temperature, carbon 

content, water filled pore space and soil soluble N (Vargas et al., 2014, Carmo et al., 2013, 

Denmead et al., 2010b, 2008).  

 

Agricultural practices have been developed in sugarcane production to reduce N2O emissions; 

however, the intricate interaction among climate, physical, chemical and biological soil 

conditions and anthropogenic activities complicate mitigation strategies as discussed above. In 

sugarcane production, the practice of retaining green crop residues after harvest (rather than 

burning residues) is termed ‘trash blanketing’. Sugarcane trash can act as a source of carbon 

and increase soil organic carbon levels (De Figueiredo and La Scala Jr, 2011, Pretty et al., 

2002). Sugarcane trash left on the soil surface had a range of effects on the production and 

consumption of N2O (da Silva Paredes et al., 2014, Carmo et al., 2013, da Silva et al., 2013, de 

Oliveira et al., 2013, Weier, 1996). Efforts to reduce N2O emissions and N leaching from 

sugarcane agriculture centre around tailoring N application rates to closely match crop demand 



21 

 

(Schroeder et al., 2014), and ongoing research is investigating fertiliser coatings and 

nitrification inhibitors as an avenue for reducing pool size of nitrate, and therefore the risk of 

denitrification events. These current technologies have variable success in different locations 

and years (Wang et al., 2016, Verburg et al., 2014), and investigations into alternative practices 

to reduce N2O emissions are necessary.  

 

In this thesis, the focus is on legumes as an important source of biologically fixed N, which 

can improve soil fertility and stimulate productivity of the crop following a legume rotation 

(Jensen et al., 2012, Park et al., 2010). The use of legumes could be instrumental in reducing 

N2O emissions to the atmosphere by partially replacing synthetic N with biologically fixed N 

(Jensen et al., 2012). In Australia, rotations of legumes into sugarcane systems, by interrupting 

the sugarcane ratoon cycle with legume crops, are practiced by a small (~12.5% in 2004, Bell 

et al., 2007) but increasing number of growers, to reduce soil borne disease, pest and weed 

cycles. Soil physical and chemical characteristics improvement and N input into plant cane can 

be reduced (Thorburn et al., 2010, Park et al., 2010, Stirling, 2008). There are some indications 

that this practice has benefits for decreasing N2O production from sugarcane cropping systems, 

although the timing of N release from some legume rotations means that legume-N is at risk of 

loss before the next sugarcane crop (Huth et al., 2010). 

1.5 Sugarcane-legume companion cropping 

This project investigates sugarcane-legume companion cropping as an alternative N supply 

system for sugarcane agriculture. Intercropping is generally an alternative row system in which 

two or more species are planted in separate alternate rows, and grow simultaneously (Arshad 

et al., 2014, Keating and Carberry, 1993). The slow growth rate of sugarcane during the first 

three months of its cycle and the wide space between sugarcane rows (75 to 183 cm) provides 

excellent conditions to integrate crops of short duration. Sugarcane is frequently intercropped 

with a variety of crops in developing countries, where both crops are harvested for yield by 

hand. This approach optimises use of space, natural resources and is used to stabilise 

profitability by minimising risk (Chogatapur, 2017, Shiming and Gliessman, 2016, Luo et al., 

2016, Geetha et al., 2015, Ramesh et al., 2003), and allows high crop production for a specific 

area of land compared to the monoculture system (Duchene et al., 2017, Masasso, 2007). In 

mechanised agriculture and developed countries, there is little capacity to harvest multiple 

crops growing simultaneously in the same field, but there is interest in using legumes as 

sacrificial green manure crops. Growing legumes simultaneously with sugarcane may reduce 
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the temporal mismatch between the N release from legumes and N uptake by sugarcane, and 

the loss of N from legume rotations (Brackin et al., 2015, Huth et al., 2010, Park et al., 2010). 

In companion cropping systems where a legume is used as green manure, the non-legume crop 

benefits primarily from N released during the decomposition and breakdown of legume 

residues (Ong, 1995). Additionally, legumes contribute to other processes that increase N and 

other nutrient availability such as root exudates and rhizo-deposits (Jensen and Hauggaard-

Nielsen, 2003, Jensen, 1996). Midmore (1993) pointed out that the benefit of legumes is not 

only limited to the current intercrop system, as residual nutrients may supply the succeeding 

crops. Sugarcane-legume intercropping can be classified as sustainable agricultural 

intensification because it reduces the use of external inputs such as N fertiliser, and connects 

biological nitrogen fixation to the nutrient cycling (Robertson, 2006). However, despite the 

potential benefits of this system, the use of legume as intercrop has received very little study 

under Australian commercial field conditions. 

1.5.1 N2O emissions from legume cropping 

While the use of legumes in rotations or intercrops can reduce the requirements for inorganic 

fertiliser application (Park et al., 2010, Robertson, 2006), legumes themselves can contribute 

to N2O emissions. Legumes, unless grown in soils with high-N fertiliser addition, derive N 

mainly from the atmosphere through biologically nitrogen fixation (BNF) by hosting symbiotic 

bacteria and/or archea (diazotrophs) in root nodules (Inaba et al., 2009). N2O emissions from 

the process of BNF itself are negligible as recently recognised by removal of the emission 

factor by the IPCC (2014); however, N2O emissions are produced from the decomposition of 

legume crop residue (Rochette and Janzen, 2005).  

 

Within nodules, the activity of the nitrogenase enzyme breaks the triple bond of N2 to produce 

ammonia (NH3) (Thomson et al., 2012). The ammonia becomes part of the organic nitrogen 

pool that is transported throughout the plant. The decomposition of root nodules, roots and 

shoot residues generates soluble organic N, which soil microbes convert through the processes 

of ammonification, followed by nitrification and denitrification which produce N2O emissions 

(Figure 1.1) (Itakura et al., 2013, Inaba et al., 2009).  

 

A comparison of N2O data from 171 sites from 1994 to 2011 showed estimated N2O emissions 

were large and variable during the growing season of legumes, across different legume 

management and pasture systems (Jensen et al., 2012). At 77 sites without N fertiliser, annual 
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N2O-N emissions or per growing season ranged from 0.29-7.09 kg ha-1; however, the origin of 

these emissions was not clear because in some experiments the background emissions from 

soil were not quantified. On the other hand, where N2O emissions from bare soil without N 

fertiliser or legume were measured, no difference in emissions occurred in comparison with 

non-N fertiliser legume crops (Jensen et al., 2012).  The chemical composition and quantity of 

crop residues can have impacts on N2O emissions. While sugarcane trash has a high C/N ratio 

(>100) producing immobilisation of N in the soil (Carmo et al., 2013, De Figueiredo and La 

Scala Jr, 2011), legumes by contrast have low C/N ratios and can increase N2O emissions 

(Frimpong et al., 2012, Millar and Baggs, 2004). For example a 30 day incubation study 

showed the effects of using residue mixtures at different C:N ratio on N2O production; mixing 

cowpea-maize residues in a sandy clay loam at ratios of 100:0, 50:50 or 0:100 resulted in 

cumulative N2O emissions of 26, 23 and 13 mg N2O m-2 d-1, respectively (Frimpong et al., 

2012). It is currently unclear how mixed sugarcane and legume residues in intercropping 

systems will influence overall system N2O production. 

1.6 Objectives of this thesis 

The main objective was to evaluate legumes as companion crops of sugarcane to mitigate 

nitrous oxide (N2O) emissions from wet and dry sub/tropical agricultural soils. The strong and 

positive relationship between N fertiliser application rate and N2O emissions confirms the need 

for reducing emissions through improved N management (Müller et al., 2014, Allen et al., 

2010, Denmead et al., 2010b, Huth et al., 2010). The research of this thesis has potential to 

discover if legumes with strong capacity for biological N2 fixation (BNF), grown as a green 

manure (sacrificial crop) companion crop, can reduce off-site N losses, and N2O emissions 

were quantified in context of environmental factors and sugarcane yield. Most studies on 

sugarcane-legume intercropping systems have aimed to improve productivity and profitability 

for smallholders by harvesting both crops. Sugarcane-legume companion cropping with 

sacrificial legumes requires research to evaluate the potential of such systems for increasing 

environmental compliance without jeopardising profitability of sugarcane production. We 

hypothesised that legume companion crops can reduce N fertiliser needs, concentrations of 

soluble N in soil and associated N2O emissions. 

 

Chapter 2 is a  review of sugarcane intercropping. For this purpose, data from 32 studies 

published in English, Spanish and Portuguese were summarised to bring together current 
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research and knowledge in sugarcane intercropping systems worldwide. To the best of our 

knowledge, this is the first comprehensive review of intercropping in sugarcane. 

 

Chapters 3 and 4 aimed to (1) quantify N2O emissions with recommended (full N rate) and 

reduced N rates in the presence and absence of legumes, (2) identify drivers of N2O emissions, 

and (3) evaluate interactions between N fertiliser rate, legumes and sugarcane yield in a 

commercial production setting. Our field studies quantified the effects of legume companion 

crops on sugarcane production over one to three growing seasons. The experiments were 

carried out on three farms in Australia’s wet tropics, dry tropics and subtropics.  Soybeans were 

used at all sites and mung beans were included at the wet tropics site. Field trial designs and 

treatments varied at each site due to local constraints and agronomic recommendations, but all 

had a fully fertilised treatment, a reduced N treatment (with and without legume), and a 

treatment without N fertiliser. In two trials, we were able to include a treatment without N 

fertiliser+legume. We hypothesised that reduced N fertiliser rates would result in decreased 

sugarcane yield and N2O emissions compared to the fully N fertilised treatments, and that the 

addition of a legume would increase sugarcane yield by alleviating N limitation while 

decreasing N2O emissions. 

 

Chapter 5 focused on identifying the effects of N fertiliser rates on the performance of 

sugarcane and soybean in controlled glasshouse conditions. The use of a nodulating soybean 

and non-nodulating mutant soybean allowed to partially untangle the effects of interspecific 

competition and facilitative interactions derived from biological N fixation. We hypothesised 

that soybean will outcompete sugarcane under very low N fertiliser supply while the opposite 

will occur with high N fertiliser supply, and that a ‘golden middle’ N supply can be identified 

where soybean uses primarily N from biological N2 fixation and sugarcane uses N fertiliser to 

foster facilitation between both crops. 
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Chapter 2 – Sugarcane intercropping systems.  

A review  
 

2.1 Introduction 

Intercropping entails two or more crop species grown together with the broad aim of improving 

productivity, optimising natural resource use and steadying yield crops (Chogatapur, 2017, 

Dantata, 2014, Masasso, 2007, Keating and Carberry, 1993). Combining crops with different 

canopy structure, root properties, patterns of resource acquisition and requirements allows the 

complementary use of solar radiation, water, and nutrients, and reduces the presence of specific 

pests and pathogens (Duchene et al., 2017, Stagnari et al., 2017).  

 

Sugarcane holds potential for intercropping as has been found in developing countries (Figure 

2.1) where sugarcane is an important agricultural commodity and cash crop. Especially in 

subsistence farming, sugarcane is commonly intercropped (Kaur et al., 2016, Li et al., 2013). 

In these systems, intercropping facilitates food production to meet growing demand for diverse 

food and feed crops, achieves extra revenue and minimises risk (Chogatapur, 2017, Shiming 

and Gliessman, 2016, Parsons and Be, 2003). Sugarcane has a long growth cycle, is 

comparatively small early in the growing season, and is grown at wide row spacing so that 

intercrops can be accommodated temporally and spatially (Shiming and Gliessman, 2016, 

Geetha et al., 2015, Cadersa, 2001, Goviden, 1991). In South Africa, small-scale farmers grow 

sugarcane with food crops such as legumes and achieve greater food security and income and 

reduce the risk of crop failure (Parsons and Khubone, 1999). In India, intercropping is 

considered an alternative to crop rotations with a view of improving soil fertility, and 

increasing sugarcane production (Chogatapur, 2017, Geetha et al., 2015, Singh et al., 2003). In 

China, sugarcane-legume intercropping has been shown to alleviate pollution by reducing N 

fertiliser needs without affecting sugarcane yield (Luo et al., 2016, Shiming and Gliessman, 

2016). In Mauritius, intercropping sugarcane addresses land shortages and the need for crop 

diversification and intensification (Goviden, 1991).  

 

Research on sugarcane intercropping has concentrated on the compatibility of companion 

crops, agronomic performance and profitability relative to monoculture. Planting density, 

spatial arrangement, planting time and development of companion crops as food or green 

manure have been considered, while fertiliser management has received less attention (Brooker 

et al., 2015, Ijoyah, 2012, Kwong et al., 1996). In this review, we find that the outcomes of 
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intercropped sugarcane systems are highly variable and specific situation. This is unsurprising 

given the diversity of environmental settings and agronomies and prevents extrapolation of 

outcomes. However, key factors that determine the success of intercropped sugarcane include 

climate, soil type and crop management. Here, we synthesise the current state of knowledge 

from peer-reviewed published literature and propose next steps. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     

2.2 Quantifying competition and facilitation 

Interactions between crops in intercropping systems are characterised by competition and 

facilitation (Masasso, 2007). Competition occurs when one crop species exerts a negative 

effect on another, while facilitation results in positive effects that increase crop performance 

and yield (Lithourgidis et al., 2011). Interspecific competition for resources such as space, 

light, water, and nutrients (Li et al., 2001, Wallace, 1995) is modulated by agronomic measures 

such as irrigation or fertiliser application, planting time and others (Iijima et al., 2005).  

To quantify interspecific competition, indices such as ‘aggressivity’ (AG) and ‘competitive 

ratio’ (CR) are useful. The former compares the yield of intercropped and monoculture systems 

about the area occupied by each crop, the latter measures the level of competition that one crop 

exerts on another. Values greater than 0 (AG) or 1 (CR), indicate that the competitive ability 

of one crop exceeds that of another crop (Yang et al., 2013, Billore et al., 2000).  

Figure 2. 1 Number of published sugarcane intercropping studies worldwide (1985-2016) compiled 

in this review (7 Brazil., 1 Mexico., 1 Guatemala., 5 Africa., 1 Philippines., 7 India., 6 China., 1 

Bangladesh., 3 Mauritius) 
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The field experiment in China, a 3-year sugarcane-soybean intercropping, AG was -0.79 to -

0.09 and CR were 0.6 to 0.9, indicating that sugarcane had a low competitive ability compared 

to soybean (Yang et al., 2013). At flowering stage, soybean had overgrown sugarcane, reducing 

light interception, N uptake and growth of sugarcane. In contrast, a 2-year sugarcane-soybean 

trial in India showed that sugarcane was more competitive than soybean with AG of -0.64 to -

0.70 and CR of 0.18 to 0.25 because soybean was planted when sugarcane was three months 

old (Billore et al., 2000). In the Chinese study, soybeans were planted simultaneously with 

sugarcane. The authors of both studies concluded that the planting time of soybean is crucial 

for the success of intercropping.  

2.3 Agronomic performance of sugarcane in intercropping  

2.3.1 Compatibility of companion crops, spatial assessment and economic outcomes 

Intercropping systems differ in their spatial and temporal design with various row intervals and 

spacing, or intermixing crops (Lithourgidis et al., 2011). In sugarcane, intercropping involves 

an alternative-row system with two or more species planted in separate and alternate rows 

(Arshad et al., 2014, Lithourgidis et al., 2011).  

 

Table 2.1 summarises field studies with various spatial and temporal arrangements. The yield 

performance of sugarcane differed with planting arrangement, intercropped species and time 

of planting. Although most of the intercropped species were planted from zero to three days 

after the sugarcane planting, increase or decrease of the intercropped relative sugarcane yield 

in plant cane or ratoon were inconsistent. For example, common beans, potatoes and maize, 

planted in paired or triple rows decreased sugarcane yield by 2 to 36%, while soybeans 

marginally increased yield by up to 2% (Roodagi et al., 2001b). Maize and common beans 

planted at 1:1 spatial arrangement decreased sugarcane yield by 20 and 6%, while potatoes 

increased relative cane yield by 3% (Parsons and Khubone, 1999). Common beans planted in 

paired rows 15 days after sugarcane sowing (DASS) increased by 8 to 14% the sugarcane yield 

compared to monoculture sugarcane. While common beans planted simultaneously with 

sugarcane or planted >20 DASS reduced (4%) or increased (12%) sugarcane yield respectively 

(Souza Filho and Andrade, 1985).  
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Table 2. 1 Crop spatial arrangement of intercropped crops over cane plant and ratoon cane 

under intercropping systems. DASS (Days after the sugarcane sowing, it is related to plant 

cane), DASH (Days after the sugarcane harvest. It is related to ratoon cane). Economic 

advantage or disadvantages of the intercropping system related to the sugarcane monoculture 

is identified as + and - symbols, respectively. 
 

 
 

1:1 one row of legume is planted in the middle of the sugarcane inter-row; 1:2 two rows of legumes planted in the inter-row of two cane rows. 
2:2 two rows of legumes planted every two-cane rows. 1:2 (0.5m) two rows of legumes planted at 50 cm far of two cane rows; 1:2 (0.25m) 

two rows of legumes planted at 25 cm far of two cane rows. 2:3 three rows of legumes planted every two-cane rows, 2:4 four rows of legumes 
planted every two-cane rows. DASS: days of the intercropped planting after sugarcane sowing; DASH: days of the intercropped planting after 

sugarcane harvest; 0: legumes were planted same day with sugarcane. Common bean (Phaseolus vulgaris), cabbage (Brassica oleracea var. 

capitata), green gram (Vigna radiata), peanut (Arachis hypogaea), maize (Zea mays), brown hemp (Crotalaria juncea), cowpea (Vigna 
unguiculata); soybean (Glicine max), black gram (Vigna mungo), green gram (Vigna radiata), garlic (Allium sativum), chilli (Capsicum 

annuum L), sweet potato  (Ipomoea batatas), sweet corn (Zea mays L. var. rugose), temperate and tropical potato (Solanum tuberosum.) 

*peanuts were planted first and then sugarcane at 1st irrigation. 

 

In several studies, sugarcane intercropped with legumes or food crops had low yields and 

unfavourable sugarcane economies (Parsons and Be, 2003, Gana and Busari, 2003, Roodagi et 

al., 2001a, Billore et al., 2000, Parsons and Khubone, 1999). However, advantages of legumes 

in intercropping include soil improvement, which addresses the need for sustainable agriculture 
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to increase farm profits (Islam et al., 2009, Malavia et al., 1992, Goviden, 1991, Souza Filho 

and Andrade, 1985). In the studies examined here, intercropping with legumes as cash crops 

outweighed the economic disadvantages of reduced sugarcane yield. However, the variable 

outcomes of soybean, common beans, mung beans (Table 2.1) highlight that successful 

intercropping sugarcane requires knowledge about legume species and cultivars, spatial 

arrangement, the timing of sowing, competition for water and nutrients, and facilitation.  

2.4 Fertiliser use 

2.4.1 Soil quality, nutrient relations and microbial activity 

Intensive sugarcane production can profit from intercropping, but few studies so far have 

assessed the interaction between nitrogen fertilisation and intercropping. The yield response of 

sugarcane to N fertiliser is variable and depends on a range of factors, including the type of 

intercrop and agronomic management (Table 2.2).  

 

Plant cane was unresponsive to synthetic N fertiliser rates (applications from 0 to 100 % of the 

full N rate) when intercropped with cowpea (Vigna unguiculata), white lupin (Lupinus albus) 

and soybean (Glycine max). Whereas in the first ratoon crop, high N fertiliser rates (from 67 

to 100% of the full N rate) sugarcane yield increased by 4 to 9% yield compared to monoculture 

(Ramouthar et al., 2014). In China, soybean intercropping had twin benefits of reducing N 

fertiliser needs from 525 to 300 kg ha-1 and increasing sugarcane yield by 14% (Luo et al., 

2016). In Ethiopia, although intercropped soybean received 18 kg N ha-1 at planting time with 

sugarcane, the late application of N fertiliser (74 kg N ha-1) to intercropped sugarcane (2.5 

months after the sugarcane planting) reduced sugarcane yield by 2%. Conversely, a low 

fertiliser application (18 kg N ha-1) to soybean improved sugarcane yield by 21% compared to 

sugarcane monoculture, showing the benefits of soybean at low N application (Teshome et al., 

2015). Regarding sugarcane juice quality parameters, application of synthetically N fertiliser 

and presence of soybean as companion crop did not affect the percentage of sucrose in the raw 

sugar (Teshome et al., 2015, Yang et al., 2013).  

 

The substitution of N fertiliser with organic sugar mill waste (termed filter cake, mill mud or 

press mud) with lentil (Lens culinaris) intercrop resulted in similar sugarcane yield as the 

sugarcane monoculture (Srivastava et al., 2009) indicating that alternative fertilisers and 

intercropping can be successful. Another study showed that soil physical properties improved 

during a two-year trial with the sugarcane+lentil intercropping system as soil bulk density of 
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the furrow in the first 15 cm depth decreased and soil infiltration rate increased compared to 

sugarcane only (Chogatapur, 2017) 

 

Table 2.2 shows a consistent trend for increasing yield in intercropped sugarcane compared to 

sugarcane monoculture with non-legume crops is seen at rates >100 kg N ha-1 (Kaur et al., 

2016, Vashishtha and Sinha, 2004, Singh et al., 2003). In India, intercropping with Brassica 

species and application of N fertiliser (112 to 275 kg N ha-1) increased sugarcane yield by up 

to 38% (Kaur et al., 2016). In Mauritius, with 220 kg N ha-1 (100 and 120 kg N ha-1 applied to 

maize and sugarcane, respectively), intercropping with maize (Zea mays) was associated with 

a 29% increases in sugarcane yield, compared to the monoculture (Kwong et al., 1996). In this 

study, intercrops did not affect the uptake of N by sugarcane. For instance, the pure stand 

sugarcane, as well as the intercropped sugarcane with maize, showed similar N uptake despite 

that maize was fertilised with 100 kg N ha-1. Intercropped sugarcane showed a low N recover 

~10% (15N-labelled fertiliser) of the N rates applied to maize. The low acquisition of N applied 

to the intercrop was related to the high rate of biological immobilisation and limited lateral 

movement of fertiliser. 

From an economical viewpoint, the studies summarised in Tables 2.1 and 2.2 showed that 

sugarcane intercropping with food crops including legumes were viable economically in most 

of the studies. In some instances, the net margin (% of revenue remaining after operating 

expenses) with soybean as green manure or soybean grain was 17 and 4% lower respectively, 

compared to sugarcane monoculture. These reductions in profitability were due to the costs of 

soybean planting and harvesting. In contrast, Bolonhezi et al. (2010) showed that although 

sugarcane yield intercropped with common bean at N application rate of 80 kg N ha-1 had 23% 

lower yield than monoculture sugarcane; profitability increased with the bean harvest. 

Different organic amendments influenced the benefit/cost ratio in a sugarcane-lentils 

intercropping system. For example, application of 20 t ha-1 of farmyard manure had an 

economic advantage, while 10 t ha-1 press mud had a lower economic advantage because of its 

high cost (Srivastava et al., 2009). The economic benefits of intercropping with two food crops 

depend on the profitability of both individual cropping operations while intercropping with 

green manure (or companion cropping) depends on the green manure crop enhancing the yield 

of sugarcane. 
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Table 2.2 Crop spatial arrangement, N fertilisation rates and sugarcane performance in 

intercropping systems. Sugarcane monoculture is 100% relative yield of each study. Economic 

advantage or disadvantages of the intercropping system related to the sugarcane monoculture 

is identified as + and - symbols, respectively. 

 

 
 
1:1 one row of legume is planted in the middle of the sugarcane interrow; 1:2 two rows of legumes planted in the interrow of two cane rows. 

2:2 two rows of legumes planted every two-cane rows. † 18 kg N ha-1 applied to intercropped soybean at planting seeds of soybean and 

sugarcane sets and 75 kg N ha-1 applied after 2.5 months of the planting time. Common beans (Phaseolus vulgaris), green gram (Vigna 
radiata), peanut (Arachis hypogaea), cowpea (Vigna unguiculata); soybean (Glicine max), rapeseed (Brassica napus), mustard (Brassica 

juncea), white lupin (Lupinus albus), lentil (Lens culinaris). 

 

 

In addition to easily quantifiable agronomic and economic outcomes, intercropping systems 

influence microbial populations and soil enzymes as important components of agro-ecosystems 

(Li et al., 2013, Stigter and Baldy, 1995). Soil microbial composition and biomass are an 

important soil quality indicators, affected by plant community composition, soil organic matter 
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content and composition, soil moisture and temperature (Wardle, 1992, Staben et al., 1997), 

and contributing much to nutrient cycling and energy flow (Li et al., 2013).   

 

A glasshouse study that was continued until the soybean crop flowered showed that sugarcane-

soybean intercropping enhanced soil quality and promoted crop growth and yield (Li et al., 

2013). Reasons included beneficial effects of soil microorganisms and soil enzymes that 

boosted the availability of inorganic N (66%) and P (311%) and increased soil organic matter 

(22%) (Li et al., 2013). An Indian study showed that intercrops increased soil microbial 

biomass C and N over monoculture sugarcane. Legume intercrops nearly doubled soil 

microbial biomass N compared to non-legume crops, while food crops (maize, wheat, mustard, 

potatoes) increased soil microbial biomass-C by 14% above that of legume intercrops (Suman 

et al., 2006). The low C/N ratio of legume residues (<14) increased total soil N by 24%, and 

allowed rapid decomposition and stimulated N mineralisation, which in turn increased the 

available N in the sugarcane root zone by 9%. 

 

We conclude that the positive effects of intercropping on soil quality and nutrient relations 

demand further investigation. Soil quality, nutrient relations and the ongoing dynamics of 

intercropped systems should be assessed to identify suitable agronomic practices for particular 

settings and with a view of environment concerns. The potential of intercropping to reduce N 

pollution and increase soil carbon levels should be explored in more detail as these are principle 

concerns for the industry. It should be estimated how much BNF is performed by legumes in 

different environments to obtain a basis for reducing N fertiliser rates. Necessary next steps are 

field trials performed over several years, possibly accompanied by controlled experiments, and 

with a detailed analysis of processes to advance mechanistic understanding of intercropped 

systems to inform future design. 

2.4.2 Legumes as green manure  

Legume N-fixation provides obvious benefits for the intercrop and additional flow-on benefits 

through the breakdown of legume residues, root exudates and rhizo-deposits (Singh et al., 

2003, Jensen, 1996, Ong, 1995, Lemaire, 1995). Few studies have considered legumes as green 

manure crops to supply N although legumes have been planted as intercrop alongside 

sugarcane row, cut and left to decompose to improve soil fertility and to enhance physical, 

chemical and biological characteristics through greater soil organic matter content and 

mineralisation rates (Trento Filho, 2010). It has been proposed that legume intercropping could 
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extend the sugarcane ratoon cycle and thereby reduce the cost of establishing sugarcane plant 

crops (Ambrosano et al., 2013, Trento Filho, 2010). Midmore (1993) cited that the benefits of 

legumes go beyond the immediate intercropping system, but that residual nutrients supply to 

subsequent crop. Sugarcane-legume intercropping is considered as a sustainable agricultural 

intensification because it reduces the input of N fertiliser and integrates BNF into the 

agronomic nutrient cycle (Robertson and Groffman, 2007, Robertson and Thorburn, 2007). 

 

A wide range of tropical legumes species and genotypes has been assessed for compatibility 

and performance in sugarcane intercropping as green manure crops. Legumes within the 

sugarcane row cut or incorporated to the soil can be favourable or unfavourable to sugarcane 

yield (Córdova-Gamas et al., 2016, Ambrosano et al., 2013, Prellwitz and Coelho, 2011, Pérez 

et al., 2009, de Resende et al., 2003, Singh et al., 2003, Roodagi et al., 2001b, Yadav and 

Yaduvanshi, 2001).  To account for the large range of yield responses, we converted absolute 

yield to relative yield with sugarcane monoculture set at 100% (Table 2.3).   

 

In India, studies from 1997 to 2001 showed that the use of different legumes as green manure 

crops affected sugarcane yield widely from minor yield reduction (-2%) to a considerable 

increase (18%). Daincha (Sesbania aculeata), brown hemp (Crotalaria juncea), cowpea 

(Vigna unguiculata) and manila agathi (Sesbania rostrata) benefited sugarcane productivity 

and soil fertility when they were incorporated at 45 days after the sowing (Ramesh et al., 2003). 

Species in the genus Crotalaria are the most studied green manure legumes followed by horse 

bean (Canavalia ensiformis) and pigeon pea (Cajanus cajan). Ambrosano et al. (2013) showed 

that slender leaf rattlebox (Crotolaria ochroleuca), increased the yield of sugarcane ratoons by 

up to 9%, while brown hemp decreased sugarcane yield by half. Legume management, 

including planting density and spatial arrangement, time of planting and harvesting allowed to 

overcome the suppressive effects of brown hemp and increased sugarcane yield by 24 to 46% 

(Prellwitz and Coelho, 2011, Pérez et al., 2009). Brown hemp, showy rattlebox (Crotalaria 

spectabilis), horse beans, pigeon pea and sesbania (Sesbania cannabina) up to doubled 

sugarcane yield compared to unfertilised monoculture, indicating that legumes benefit the N 

budget of sugarcane (Córdova-Gamas et al., 2016, Ambrosano et al., 2013, Prellwitz and 

Coelho, 2011, Pérez et al., 2009, Singh et al., 2003). However, in those studies, unfertilised 

sugarcane-legume intercrops yielded less than N-fertilised sugarcane. Application of 25 to 250 

kg N ha-1 to sugarcane-legume intercrops boosted yield by 2 to 36% compared to non-N 

fertilised intercrops ( Yadav and Yaduvanshi, 2001, Singh et al., 2003, Roodagi et al., 2001b). 
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Yadav and Yaduvanshi (2001) found that application of 75 and 150 kg N ha-1 to prickly sesban 

or daincha intercropping improved sugarcane yield from 21 to 40% following a wheat crop, 

and 16 to 26% following mustard. This effect continued in the 1st ratoon crop, where the 

residual effect of green manure and application of N resulted in significant increase in 

sugarcane yield of 12 to 40%. Similar outcomes were found when prickly sesban was 

incorporated as green manure to both plant and 1st ratoon sugarcane, increasing yield 12 to 

36% with applications of 75 and 225 kg N ha-1, with greater tiller number, sugarcane biomass 

and leaf area index (Singh et al., 2003). 

 

Green manure intercropping (or companion cropping) has focused on legume planting 

methods, time of planting, cutting or incorporating legume biomass into the soil. Spatial 

arrangements (1:1, 1:2 and 2:3 sugarcane-legume) overall did not affect sugarcane yield (Singh 

et al., 2003, Yadav and Yaduvanshi, 2001, Roodagi et al., 2001a). However, in plant cane, 

paired rows of legumes caused competition and decreased sugarcane yield, reducing tiller 

numbers by 9-13% (Yadav and Yaduvanshi, 2001) and up to 30% (Singh et al., 2003). 

Advantages of two-rows of prickly sesban, horse bean and pigeon pea manifested themselves 

in the subsequent crop when sugarcane yield increased from 6 to 50%, due to residual effects 

of green manure (Córdova-Gamas et al., 2016, Singh et al., 2003, Yadav and Yaduvanshi, 

2001). Soil properties improved with rising soil organic carbon levels (Singh et al., 2003, 

Roodagi et al., 2001b, Yadav and Yaduvanshi, 2001), increasing N availability and dropping 

in pH on alkaline soil after two years of evaluation (Singh et al., 2003, Yadav and Yaduvanshi, 

2001). Similarly, Roodagi et al. (2001b) found that incorporation of brown hemp and cowpea 

biomass benefitted sugarcane yield (up by 3.5 and 1.6%, respectively) due to higher levels of 

soil organic matter and available N.  

 

The effect of planting times has been explored at different planting days of legumes and 

sugarcane (Table 2.3). Planting horse bean and brown hemp 1, 10 or 20 days after planting or 

harvesting sugarcane did not affect sugarcane yield (Pérez et al., 2009) but the timing of cutting 

or incorporating legume biomass is important. In Brazil, sowing brown hemp by 45 and 51 

days after the sugarcane harvest and incorporating legume biomass at 110 and 103 days after 

legume sowing resulted in highest sugarcane yield (up by 36 and 32% respectively) compared 

to uncut legumes (Prellwitz and Coelho, 2011). In order to limit competition, de Resende et al. 

(2003) reported that legumes had to be cut within 71 days when both sugarcane and legumes 

were planted together. Brown hemp covered over 55% of the soil by 35 days after planting 
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sugarcane, and 51 days after harvesting the 1st ratoon. The competition was even stronger with 

showy rattlebox, horse bean and velvet bean (Mucuna deeringiana) which exceeded 80% of 

soil cover by 51 after sugarcane planting and 71 days after harvest of the 1st ratoon (de Resende 

et al., 2003). In India, species in genus Sesbania reduced plant cane yield by 11% (S. 

cannabina) and 7% (S. aculeata) when they were cut 60 or 45 days after planting sugarcane, 

respectively (Singh et al., 2003, Yadav and Yaduvanshi 2001). 

 

The time of sowing, cutting and incorporating legumes affected how much N legumes 

accumulated in vegetative biomass and seeds. Species or genotypes of Crotalaria, horse bean, 

pigeon pea, velvet contained between 114 and 350 kg N ha-1 when planted 60 days after 

sugarcane harvest and were harvested after 120 days (Ambrosano et al., 2013). A similar study 

in Mexico showed that horse bean and pigeon pea planted 20 days after planting sugarcane, 

accumulated 155 and 413 kg N ha-1, respectively (Córdova-Gamas et al., 2016). Both studies 

considered whole biomass (roots, shoots, seeds) to determine the total amount of N contained 

in the legumes. Which combine N derived from soil and biological N fixation, brown hemp 

accumulated 250 kg N ha-1 when planted at 51 days after sugarcane harvest and incorporated 

into the soil at flowering stage (103 days post sowing), boosting sugarcane yield by 44% 

compared to uncut legumes (Prellwitz and Coelho 2011). Some studies detected lower N 

accumulation with 10 to 40 kg N ha-1 with pigeon pea, showy rattlebox, horse bean, velvet or 

sesbania cut or incorporated earlier at the vegetative stage 35 to 71 days post-planting (De 

Resende et al., 2003, Singh et al., 2003). Horse bean and pigeon pea grown for 65-70 days after 

sugarcane harvest and then cut and incorporated, accumulated 97 and 154 kg N ha-1 

respectively. Fertile Andosol and other environmental factors (Pérez et al., 2009) may have 

enabled this large N accumulation over a comparatively short time span. 

 

Two studies aimed to quantify the percentage of N derived from legume (biological N2 fixation, 

BNF). De Resende et al. (2003) and Ambrosano et al. (2013) used 15N natural abundance to 

show that tropical legumes acquired between 50 to 99% their N needs via BNF. We interpret 

these results with caution, as BNF is difficult to quantify in field grown plants using 15N natural 

abundance.  
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Table 2. 3 Spatial arrangement, planting day of legumes (DASS, days after sugarcane sowing; 

DASH, days after sugarcane harvest), time of biomass cutting or incorporating into the soil of 

sugarcane-legume intercropping systems. Relative sugarcane yield in the intercropping 

systems is shown with monoculture sugarcane yield as 100%. 

 

 
 

1:1 (one row of legume was planted at 60, 65 and 75 cm far from the sugarcane row); 1:2  (two rows of legumes was planted at 20-25, 30, 40, 

45 and 50 cm far from the sugarcane row);  DACS: days after cane sowing; DACH: days after cane harvest; 0: legumes were planted same 

day with  sugarcane; I: legume cut and incorporated into the soil; S: legume cut and left on the soil surface. PT: plant cane; R: ratoon cane. 
Sugarcane row distance in India was 0.90 m, in Mexico 1.35 m, in Guatemala 1.50 m and Brazil ranged between 1.20 to 1.40 m.  *organic 

amendment composition: filter cake, ash and bagasse 3:1:5 proportion. Slender leaf rattlebox (Crotolaria ochroleuca), crotalaria pallida 
(Crotalaria  mucronata), crotalaria brevifolia, pigeon pea (Cajanus cajan), brown hemp (Crotalaria juncea), horse bean (Canavalia 

ensiformis), velvet bean (Mucuna deeringiana), showy rattlebox (Crotalaria spectabilis), sesbania (Sesbania cannabina),  prickly sesban 

(Sesbania aculeate),  cow pea (Vigna unguiculata ) 

 

The method is inherently inaccurate due to different isotopic signals of soil N sources, impacts 

of rooting depth and mycorrhiza status, discrimination against the heavy N during uptake as 

well as internal N cycling, all of which affect the 15N signatures of legumes and non-legume 

comparator species (Peoples et al., 2015). The finding showed that 99% of legume-N is derived 
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from BNF when legumes are grown in fertile agricultural soils is likely to be a substantial 

overestimate.  

 

Taken together, the findings of these combined studies on sugarcane intercropping demonstrate 

that a range of outcomes is possible from this technique. Intercropping results in both positive 

and negative impacts on sugarcane yield, regardless of intercrop species (Figure 2.2a, b), 

country of study origin (Figure 2.2c), and row arrangement (Figure 2.2e). Some trends are 

evident: brown hemp and pigeon pea appear to produce predominantly negative yield 

responses in sugarcane, while Sesbania species produced largely positive yield responses 

(Figure 2.2b) and may be worthy of further investigation. The relative yield was highly variable 

at fertiliser application rates of zero kg N ha-1. A trend of increased relative yield at N 

application rates of up to ~250 kg N ha-1, and subsequent decrease up to N application rates of 

~550 kg N ha-1 was apparent. However, this may be confounded by the relatively small number 

of fertilised studies and should be interpreted with caution. A slight trend towards higher 

relative yield at small (0.9m) and wide (1.6m) compared to moderate (1.2-1.3m) sugarcane row 

spacing was apparent. This could potentially suggest that competition is avoided at wide but 

not moderate row spacing; and that facilitation increases with decreased row spacing; however, 

other interpretations are possible. Only one dedicated trial assessed the impact of different row 

spacings and found similar results to the broad pattern seen here (Ramouthar et al., 2013). The 

unequal number of trials and unequal distribution of intercrop types across the different row 

spacing mean that further dedicated trials examining row spacing should be conducted in the 

future. 

 

The studies above highlight that numerous factors have to be considered when deciding on 

legume species or genotypes as intercrops as they can be both competitor and facilitator crops 

under different circumstances. Key considerations from a N perspective include effective BNF 

and N acquisition from the soil, the ability to safeguard N and avoid losses, and allowing N to 

be available in synchrony with sugarcane needs. Other considerations include the effects of 

legumes on nutrient other than N, regarding both mobilisation and competition, water use, 

ability to outcompete weeds and tolerance to overall environmental conditions including 

waterlogging, climate, and tolerance to pests and diseases. In regions where, appropriate 

legume cultivars have been selected for grain, fodder or green manure production, it may be a 

small step to find suitable cultivars to test with sugarcane. It is clear that regional solutions 

have to be found to optimise sugarcane-legume intercropping. 
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Figure 2. 2 Analysis of published sugarcane intercropping data. Relative yields of 

intercropping compared to equivalent monoculture are shown, grouped by a) broad botanical 

grouping of intercrop species b) only legumes, grouped by species, c) country of study and e) 

row arrangement. Each data point is plotted – horizontal lines indicate the average of each 

group. Relative yield is also shown versus d) N fertilizer application rate and f) sugarcane row 

spacing. 
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2.4.3 Legumes to control environmental pollution   

Legumes as intercrops in sugarcane systems have not been studied in depth for environmental 

benefits. Most studies in sugarcane-legume intercropping systems have focussed on additional 

profit from legume grains or for soil improvement with legume residues. To the best of our 

knowledge, one study from China showed that reduction of N2O emissions was associated to 

40% reduction of N fertiliser in a sugarcane-soybean intercropping system and the presence of 

soybean did not affect sugarcane productivity negatively at the reduced N fertiliser rate (Luo 

et al., 2016).  

 

2.5 Conclusions  

This review summarised the impact of different crop species that have been used as 

intercropped in sugarcane monoculture systems. The studies provided a large range of sites, 

years and intercropping management. The productivity of the two components has been the 

main target in all studies followed by soil health improvement. Our results highlighted the 

effect of intercropped species (either as a cash crop or as green manure) on sugarcane yield. In 

general, intercropped sugarcane yields showed favoured, unfavoured or neutral response due 

to companion crops. However, the system was able to provide in most of the cases financial 

profits to subsistence farming. Additionally, when legumes used as green manure or in residue 

decomposition after harvest, sugarcane-legume intercropping systems can be considered as 

sustainable agricultural management because of enhancing physical and chemical soil 

properties, especially in the beneficial effect on N supply.  

The lack of sugarcane-legume intercropping studies related to environment pollution was 

noticeable. Currently, sugarcane production is under examination and intercropped legumes 

within sugarcane systems might be adopted to as a sustainable and viable and practical 

agricultural management for farmers. Therefore, future research is needed under long term 

settings taking into account soil type, climatic conditions, legumes species and management to 

determine the real effect on environmental issues as intercropping systems. Thus, this review 

was the first outcome as part of a project that evaluated legumes (to be decomposed in the field 

as green manure) as intercrop in commercial sugarcane fields to reduce N losses as nitrous 

oxide (N2O) and the partial dependency of synthetically N fertiliser. 
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Chapter 3 – Evaluating legume companion cropping 

to mitigate nitrous oxide emissions from sugarcane 

agriculture in tropical soils  
 

Chapters 3 and 4 show the outcomes of cultivating ratoon sugarcane simultaneously with 

sacrifical legumes that decompose in the field as potential avenue to reduce nitrogen (N) 

fertiliser needs and mitigate nitrous oxide (N2O) emissions.  

In Chapter 3, we report 3-years of sugarcane yield measurements and 2-years of N2O emissions 

quantification in field experimentation at a commercial sugarcane farm in Australia’s Wet 

Tropics. In the first year, cane rats consumed most legume seedlings and prevented legume 

establishment. In following two years cane rats were controlled and soy and mung beans 

established well after sowing through the sugarcane trash blanket. Nitrous oxide emissions and 

sugarcane yields were mostly similar with recommended (full) and 38% reduced N rates (148 

and 91 kg N ha-1), irrespective of legumes present. Sugarcane yields were lower with a 56% 

reduced N fertiliser rate (66 kg N ha-1) or no N fertiliser. N2O emissions were influenced 

predominantly by N fertiliser rate and rainfall, with emission factors of 0.26 to 1.78. Soybean 

emerged as a more favourable companion crop than mung bean, which carried a 9% yield 

penalty in the third year.  

3.1 Introduction 

Soils in wet tropical climates that receive large doses of N fertilisers, especially as single 

applications of highly reactive N such as urea or ammonium nitrate, could generate large 

nitrous oxide emissions (N2O) due to the temporal excess of N pool. This is under scrutiny 

because N2O emissions from agriculture contribute at least 10-12% to anthropogenic 

greenhouse gas emissions (IPCC, 2014). Greenhouse gas (GHG) emissions (N2O, CH4, CO2) 

from the agricultural sector account for 74% of anthropogenic N2O emissions (Department of 

Environment, 2014) because of over- and inefficient use of N fertilisers and manures (Wang 

et al., 2016, 2011, Barton et al., 2008,). 

 

Nitrous oxide is generated in soil by microbial conversion of N of ammonium and nitrate via 

nitrification and denitrification (Itakura et al., 2013, Bodelier, 2011, Kool et al., 2011, 

Robertson and Groffman, 2007, Mosier et al., 2004, Müller et al., 2004, 2014). Nitrous oxide 

emissions are greater under conditions of high soluble soil inorganic N, warm temperatures, 
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easily microbial accessible organic carbon, and micro-anaerobic conditions that generally 

coincide with high soil moisture and biological activity (da Silva et al., 2013, Nazaries et al., 

2013, Schlesinger and Bernhardt, 2013, Thorburn et al., 2013, Macedo et al., 2008). These 

conditions characterise many tropical soils under high-production agriculture including 

sugarcane.  

 

Particularly sugarcane cultivation often reported with large emission factor (the percentage of 

N fertiliser emitted as N2O) of 3.87% in average (Lisboa et al., 2011), which is nearly 4-times 

of the general emission factor (1%) for crop production in a global scale (IPCC, 2006). 

Emissions factors from Australian sugarcane soils range widely from <1 to 21% (Kingston et 

al., 2016, Wang et al., 2016, 2014, 2008, Denmead et al., 2010b, Allen et al., 2010). Mitigation 

strategies include reducing N fertiliser rates, applying fertiliser in multiple smaller doses, using 

slow-release fertilisers and N-conversion inhibitors, and minimising waterlogging by avoiding 

flood irrigation (Kingston et al., 2016, da Silva Paredes et al., 2014, de Barros et al., 2010, 

Allen et al., 2010, Wang et al., 2008, Huth et al., 2010, Denmead et al., 2010b, 2008, Weier et 

al., 1996).  

 

Another approach to mitigate N2O emissions as yet unexplored in Australian sugarcane 

production is companion cropping with legumes to supply N via biological N-fixation (BNF). 

Companion legumes are a sacrificial crop that is not harvested but decomposes in the field. 

However, there are reports that legumes can increase N2O emissions via root exudates and litter 

decomposition (Saggar et al., 2013, Jensen et al., 2012, Rochette and Janzen, 2005), and 

empirical research has to determine if legumes can reduce the N2O footprint of sugarcane 

cropping. 

 

In Australia, legumes, especially soybean (Glycine max) and peanut (Arachis hypogaea), are 

widely grown as rotation crops (i.e. between sugarcane ratoon cycles) and harvested for grain. 

The demonstrable benefits of legumes on the following sugarcane crop include reduced 

incidence of soil-borne diseases, weed suppression and N input (2003, Thorburn et al., 2010, 

Berry et al., 2009, Kaur et al., 2015). Legume companion cropping has not received much 

attention although individual farmers are experimenting with such systems. It is currently 

unknown whether companion cropping represents a viable alternative to current agronomic 

management, and how companion cropping should be optimised to maximise environmental 

and economic benefits. 
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Co-cultivation of sugarcane and legumes is documented in non-mechanised agriculture in 

Brazil, India, Guatemala and Mexico. Commonly used legumes are sunn hemp (Crotalaria 

juncea), canavalia (Canavalia ensiforme) and pigeon pea (Cajanus cajan). In these sugarcane-

legume intercropping systems both crops are harvested for food and feed (Kaur et al., 2015, 

Arshad et al., 2014, Parsons and Be, 2003, Roodagi et al., 2001a, 2001b) although some legume 

residues may remain on the field. Documented benefits include improved soil physical, 

chemical and biological properties (Trento Filho, 2010, Ambrosano et al., 2013, Prellwitz and 

Coelho, 2011, Córdova-Gamas et al., 2016, Pérez et al., 2009, de Resende et al., 2003, Singh 

et al., 2003, Yadav and Yaduvanshi, 2001, Roodagi et al., 2001b).  

 

There is little information on sugarcane-legume cropping in mechanised agriculture (Shiming 

and Gliessman, 2016),  and this study represents an initial step assessing legumes as companion 

crops in commercial sugarcane production. We hypothesised that legume companion crops can 

reduce synthetic N fertiliser needs, and consequently result in lower N2O emissions.  

3.2 Materials and methods 

3.2.1 Experimental site  

The field trial was carried out on a commercial sugarcane farm located in the Herbert River 

region near Ingham, Abergowrie (18o 27.9” S, 145°50.9” E) in Queensland, Australia from 

2013 to 2016. The areas have a wet tropical climate with mean maximum summer and winter 

temperatures of 31.7 and 13.7 °C, and mean annual rainfall of 1407 mm (Bureau of 

Meteorology, Site 032174, Abergowrie Alert).  

 

The trial commenced in the third ratoon (Saccharum officinarum L, cultivar KQ 288) in August 

2013. The first year was designed to test legume sowing rate and establishment, N fertiliser 

rates, and sugarcane yield. In the first year (2013-14 crop season), legumes germinated well, 

but the establishment was hampered by strong herbivory by cane rats (Rattus sordidus) in the 

first year. Poison baiting successfully controlled rats in the following years. In next crop 

seasons (2014-15 and 2015-16), we tested N rate and legume interactions by quantifying soil 

variables (soluble inorganic N, temperature, water filled pore space) and N2O emissions, as 

well as sugarcane yield. Nitrogen fertiliser rates ranged from no N fertiliser, 56 % reduced N 

fertiliser rate (66 kg N ha-1), 38% reduced rate (91 kg N ha-1), to recommended (full) rate (148 

kg N ha-1, Table 3.1). 
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An overview of the trial is shown in Table 3.1. Over the three years of experimentation, we 

adjusted treatments according to outcomes in the previous year and other sites to modify N 

fertiliser and legume planting. Sugarcane yield was quantified with three N fertiliser rates; our 

budget constrained GHG measurements to full and reduced N rates and unfertilised control in 

years 2 and 3 (2014-15; 2015-16).  

 

 Table 3. 1 Nitrogen and legume treatments implemented over three seasons at a commercial 

sugarcane farm at the Abergowrie, North Queensland. In the first season, legumes were 

decimated by cane rats. GHG and soil variables were quantified over two seasons from 2014 

to 2016.  

 

Treatments 2013-2014 2014-2015 2015-2016 

 N kg ha-1 

Full N 148 148 148 

38% Reduced N  n/a 91 91 

 91+soybean 91+soybean 91+soybean 

 91+mung bean 91+mung bean 91+mung bean 

56% Reduced N 66+soybean 66+soybean n/a 

 66+mung bean n/a n/a 

No N +legume n/a n/a 0+soybean 

No N (control)  0 0 0 
           n/a not available 

 

3.2.2 Experimental design  

The trial was a randomised block design with three replicates. Each experimental plot had six 

sugarcane rows with 1.65 m row spacing and 210 m row length. All measurements were taken 

from the two central rows and all six rows were harvested. Soybean (Glycine max (L.) Merr), 

cultivar Leichardt and mung bean (Vigna radiata (L.) R. Wilczek), cultivar Krystal were sown 

with a legume planter and coulter that deposited the legumes through the sugarcane trash 

blanket into the soil. Legumes were sown 106 days after harvesting the 3rd ratoon crop (2014-

15), and in the following season (2015-16) 122 days after harvesting the 4th sugarcane ratoon 

crop. The planting distance for soybean and mung bean was at 0.15 m on both sides of the 

sugarcane row with 60 and 30 kg seed ha-1, respectively. Soybean was inoculated with Nodule 

NTM rhizobia bacteria to ensure maximum N fixation potential, mung bean was not inoculated 

as no commercial inoculants for the species are available. All plots received a basal fertilisation 

(448 kg ha-1) of a commercial fertiliser (CK140 Incitec Pivot) contains 22 kg ha-1 of 
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phosphorus, 96 kg ha-1 of potassium and 28 kg ha-1 of sulphur at the time suggested by the 

management guidelines (Sugar Research Australia 2013). Nitrogen was applied as prilled urea 

at the same day of planting legumes (2013-14), 30 days (2014-15), and 42 days (2015-16) prior 

to planting legumes. All fertiliser was applied as banding at 10 cm soil depth.  

3.2.3 N2O sampling and analysis  

We used manual GHG chambers to quantify emissions of N2O from the soil surface. Two 

chambers were installed in each plot to cover the within-field variability introduced by field 

topography, fertiliser and legume placement. One chamber covered the row and part of 

shoulder directly over the fertiliser band, and the second chamber the inter-row space. 

Chambers consisted of a square stainless-steel base chamber of 0.25 m2 introduced 

approximately 5 cm deep into the soil and a cubic top chamber placed over the base with a 

total volume of 140 litres. Top chambers were equipped with a valve for gas sampling. Joints 

between base and top chambers were sealed with air-tight door seals. 

The frequency of gas sampling depended on local weather conditions. Fifty-one sampling dates 

were spread across 279 days after N fertiliser application in the 2014-2015 season, and 46 

sampling dates across 288 days in the 2015-2016 season. Quantification of GHG emissions 

commenced two- and ten-days post N fertilisation in the 2014-15 and 2015-16 seasons, 

respectively.  

 

More frequent sampling occurred during spring and summer when soil had high soluble N 

concentrations, moisture and temperature and conditions were most conducive for N2O 

emissions. Gas sampling was conducted every 3 to 7 days during spring and summer, every 7 

days in autumn and during the final two months every 14 days. Gas was sampled between 9:00 

and 11:00 am, considered the most representative time of day for sampling with static chambers 

(Allen et al., 2010, Reeves and Wang, 2015). Chambers were closed for 60 minutes, and 30 ml 

of gas was taken using a gas-tight syringe and transferred into pre-evacuated Exetainer vials 

(Labco Limited, Lampeter, UK). The gas samples were analysed via gas chromatography 

(Varian CP-3800, Varian Inc., Middelburg, The Netherlands). Greenhouse gas emissions per 

hour were converted into daily emissions (multiplying by 24) and the sum of the estimated 

emission rates by linear interpolation between the days of measurement resulted in a 

cumulative emission total. Total cumulative N2O-N emissions were calculated by weighting 

emissions from sugarcane row and inter-row relative to the area occupied with one third of 
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area occupied by row and two thirds of the field area occupied by inter-row. N2O emission 

factors were calculated with the IPCC (2007) Tier 1 method:  

[(cumulative N2O-Ntreatment – cumulative N2O-Ncontrol)]/[N application] x 100 

 

3.2.4 Sugarcane biomass and analysis  

Sugarcane was harvested with a commercial harvester on 12/08/2014, 04/09/2015 and 

15/08/2016. Harvest bin numbers were recorded from each treatment, and bin weights and 

sugar contents provided by the sugar mill to quantify biomass and sugar yield. In the 2015-16 

season, sugarcane nitrogen content was quantified by separating stalks, top leaves (leaf 

cabbages) and dead leaves from 10 whole stalks. Then, each component of biomass was cut, 

sub-sampled and fresh weighed to be dried at 60 °C for > 48 hours to determine dry weight. 

Afterwards, the sub-samples were ground to 2mm Retsch ZM 2000; Ultra Centrifugal Mill, 

Haan, Germany) and analysed for total N by combustion (LECO TruSpec analyser, see above). 

Dry matter weight of each biomass component was expressed in kg ha-1 and multiplied by the 

respective N concentration to calculate N accumulation into shoots with  

Total N uptake = [N% in stalks * dry matter of stalks (kg ha-1)]/ [100]. 

 

The response of sugarcane yield to N fertiliser rate was quantified by calculating Agronomic 

Efficiency of fertiliser N (AgroEffFert) (Schroeder et al., 2014). 

AgroEffFert = (t sugarcane yield (N fertilised) – t sugarcane yield (unfertilised)]/[kg N fertiliser applied]  

3.2.5 Soil sampling and analysis  

Two soil samples were collected from each plot at every second GHG sampling event; one 

sample was taken from the sugarcane row and another from the inter-row within one meter of 

each chamber and at 0-10 cm depth. The soil samples were stored and transported at 4°C, and 

processed within one week of collection. Soil and air temperatures were measured in the field 

at the time of gas sampling by a hand-held thermometer. Gravimetric soil water content was 

determined by oven-drying of the soil at 105oC to constant weight. Soil nitrate (NO3
--N) and 

ammonium (NH4
+-N) concentrations were quantified with standard 1M KCl extraction (1:2 

ratio of soil: solution) and colorimetric analyses (Kandeler and Gerber, 1988, Miranda et al., 

2001) (Table 3.2). 
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Table 3. 2 Soil properties of the upper 0-10 cm of the brown dermosol at the commercial farm 

and location of this study in Abergowrie, North Queensland, Australia.  

 

Soil texture Soil physic-chemical properties 

Clay 

(%) 

Silt 

(%) 

Sand 

(%) 

TOC 

% 

TC 

 % 

TN 

% 

P 

mg/kg 

CEC 

cmol(+)/kg 

pH 

(water) 

EC 

(uS/m) 

20 10 70 1.72 1.74 0.15 138 5.22 5.55 57.5 

TOC: Total organic carbon; TC: Total carbon; TN: total nitrogen, Colwell-P: phosphorus, CEC: cation exchange capacity, EC: 

electrical conductivity 

 

Soil texture was determined by the hydrometer method (Gee and Or, 2002) and physiochemical 

properties determined in the top 10 cm (Table 3.2). The soil was classified as a brown dermosol 

soil with a dark clay loam texture and moderate soil drain. Soil pH and electric conductivity 

(EC) were assessed with a solution in a 1:5 soil to distilled water (Rayment and Lyons, 2011). 

Soil organic carbon and nitrogen and organic carbon were analysed by combustion-Dumas 

(after pre-treated with acid to remove inorganic carbonates; LECO CHN analyser, LECO ltd., 

St Joseph, MI, USA). Cation exchange capacity (CEC) was determined by silver thiourea 

(AgTU+) (1:50 soil solution extracts were prepared in 0.01 M silver thiourea and mixed for 24 

h). Colwell P was quantified in a 1:50 soil solution extracts of 0.5 M sodium bicarbonate mixed 

for 16 h (Rayment and Lyons, 2011) (Table 3.2). Soil bulk density was determined for 

sugarcane-row and inter-row to calculate water filled pore space (%WFPS) as (volumetric 

water/total pore) x (100) (Linn and Doran, 1984).  

3.2.6 Data Analysis 

Statistical analyses were performed using Statistica (Dell-Inc., 2015) and Minitab (Minitab 17 

Statistical Software 2010) software. Normal distribution of dependent and independent 

variables was tested using Shapiro-Wilk Normality test at P<0.05 level of significance. N2O-

N emissions were log-normally transformed before statistical analysis. Differences and 

interactions between treatments were calculated by GLM-ANOVA and LSD all-pairwise 

comparison test at P <0.05. An initial multiple regression (lmer) model fitted with linear mixed 

effect (Lme4) and non-linear mixed effect (nlme) models were performed using R Studio (R 

Development Core Team, 2011) to analyse the effect of water filled porous space (WFPS), soil 

NO3
--N and NH4

+-N content and their interactions on the N2O-N emissions per each treatment 

and year. A maximum likelihood method was used to assess the relative contribution of 

independent parameters (WFPS, soil NO3
--N and NH4

+-N) and their possible interactions in a 
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multiple regression models. A comparison between one model that contains all defined 

predictors in the regression model against a second similar model without the predictor of 

interest assesses the percentage of the variance that is explained for the predictor in the study. 

The use of a known likelihood ratio to estimate a Chi-square distribution can identify whether 

a first model is significantly different from a second model that does not contain one of the 

parameters. 

3.3 Results  

3.3.1 Climate, N2O emissions and soluble soil nitrogen concentrations  

Annual rainfall in the year 1 was 1482 mm (5% above the 12-year average of 1408 mm), in 

the year 2 was 802 mm, 43% less than the 12-year average and in the year 3 was 1211 mm 

(14% below the 12-year average). In the first two crop seasons respectively, 40 and 53% of 

total annual rainfall occurred across spring/summer, and 53 and 39% in autumn. The third 

season (2015-16) had a rainfall distribution of 21% in spring/summer and 59% of the total 

annual rainfall in autumn (Figure 3.1h).  

 

All results of WFPS were below 60% that indicated the soil was not waterlogged. In the year 

2, WFPS ranged from 15 to 51% and from 30 to 60% in year 3. Soil temperature during GHG 

measurements decreased from a maximum of 31oC in spring and summer to 16.9-19.0 oC in 

winter (Figure 3.1g, h). 

 

Nitrous oxide emissions and soluble soil nitrate (NO3
--N) and ammonium (NH4

+-N) levels had 

seasonal patterns with largest N2O emission and N concentrations during spring and summer, 

and lowest values in autumn and winter (Figure 3.1c,d,e,f). Concentrations of soil NO3
- and 

NH4
+ within sugarcane rows were related to soil moisture and N fertiliser rate. The highest 

concentrations of NH4
+-N and NO3

--N occurred in spring and summer and resulted in 

significant (P<0.05) between treatments. Concentrations of both N forms were lower in 

autumn and winter and similar between treatments (Figure 3.1c, d, e, f). Nitrate concentrations 

were significantly (P<0.05) higher in the 2015-16 crop season than the previous crop season, 

while NH4
+-N concentrations were similar in both years. Soil NH4

+-N concentrations were 5- 

and 3-times higher than NO3
- in spring in 2014-15 and 2015-16, respectively (Figure 3.1c, d, 

e, f).  
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Figure 3. 1 Seasonal patterns of N2O production (a, b), soluble soil NO3
- N and NH4

+ N 

concentrations (c, d, e, f) and weather patterns (g, h) ( S.E, n=3) with different N fertiliser rates 

in sugarcane monoculture and sugarcane-legume companion cropping in 2014-15 season (left 

column) and 2015-16 season (right column). Seasonal patterns of rainfall (mm), soil 

temperature (oC) and water filled pore space (WFPS %) at in the Australian Wet Tropics 

(Abergowrie, Herbert River Catchment). The control treatments were a sugarcane monoculture 

without N fertilisation (No N). SPR: spring, S.E: standard error  
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Table 3. 3 Cumulative N2O emissions, emission factors (EF), Yield scaled emissions & 

Agronomic Efficiency) (± S.D, n=3) from sugarcane rows and inter-rows averaged with 33% 

of area as row and 67% as inter-row, with different N fertiliser rates in sugarcane monoculture 

and sugarcane–legume companion cropping in the Australian Wet Tropics (Abergowrie, 

Herbert River Catchment).  

 

2014-2015 kg Cumulative N2O-N ha-1   

N kg ha-1 
sugarcane 

row 

sugarcane 

inter-row 
Total EF* 

Yield scaled 

emissions (g 

N2O-N ha-1 

TCH-1) 

AgEff 

(t cane increase in 

cane yield per kg 

applied N) 

148 2.2a ± 1.3 0.7a ± 0.2 0.9a ± 0.4 0.52 8.7 0.15 

91 1.0a ± 0.4 0.5a ± 0.2 0.5a ± 0.2 0.39 5.1 0.17 

91+soy 0.7a ± 0.3 0.5ab ± 0.1 0.4a ± 0.1 0.26 4.0 0.16 

91+ mung 1.3a ± 0.7 0.6a ± 0.2 0.6a ± 0.2 0.50 6.2 0.15 

0 0.2b ± 0.1 0.3b ± 0.2 0.2b ± 0.1 n/a 1.9 n/a 

2015-2016    

148 6.3a ± 0.5 1.3a ± 0.3 2.5a ± 0.2 1.50 22.3ª 0.29 

91 5.0a ± 2.9 0.8ab± 0.2 1.9a ± 1.0 1.72 17.3ª 0.43 

91+soy 4.5a ± 1.7 1.4a ± 0.7 2.0a ± 0.8 1.78 18.3ª 0.38 

91+mung 3.5a ± 1.2 1.1a ± 0.1 1.5a ± 0.4 1.31 15.1ab 0.35 

0 0.3b ± 0.1 0.6b ± 0.4 0.3b ± 0.1 n/a 4.8b n/a 
Differences at P<0.05 level of significance between N fertilizer treatments in cane row and inter-row and total cumulative 

emissions are highlighted by letters. *N2O-N EF (emission factor) was calculated using the original data of the total 

cumulative emissions. 

 

During spring and summer, the soil in the rows of the unfertilised control had lowest NO3
--N 

and NH4
+-N concentrations (0.3 to 1.6 mg NO3

--N kg-1 soil; 3.3 to 15.6 mg NH4
+-N kg-1). Full 

and 38% reduced N treatments had significantly (P<0.05) higher soil NO3
--N and NH4

+-N 

concentrations compared to the unfertilised control, and were unaffected by the presence of 

legumes, (8.7 to 19.7 mg NO3
--N kg-1; 12.3 to 50.7 mg NH4

+-N kg-1). In autumn and winter, 

all treatments had similar NO3
--N and NH4

+-N concentrations. Across all seasons and 

treatments, inter-rows had similar soil N concentrations (1.2 to 5.8 mg NO3
--N kg-1; 2.4 to 6.8 

mg NH4
+-N kg-1 (Table S3.1).  

3.3.2 Relationship between N2O emissions, climate and soil properties  

Nitrous oxide emissions from sugarcane rows varied seasonally, with all treatments having 

highest N2O emissions in summer. Nitrous oxide emissions were statistically similar across N 

fertilised treatments with considerable variability among the three replicates.  
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We observed a statistically non-significant trend of the full N fertiliser treatment having the 

highest N2O emissions. Emissions peaked in the 2014-15 season at 0.27 and 0.17 mg N2O-N 

m-2 h-1 at 95 and 109 days after fertiliser application, respectively (Figure 4.1a). In the 2015-

16 season, N2O emissions peaked at 0.57 and 0.34 mg N2O-N m-2 h-1 at 37 and 67 days after 

fertiliser application (Figure 3.1.b). In the 2014-15 season during these peak events, the 

reduced N treatments irrespective of legume presence, had significantly (P<0.05) lower 

emissions with up to 76% less N2O emitted than the full N rate. In the 2015-16 season, the 

reduced N treatment with sugarcane monoculture had 21% lower N2O emissions than the full 

N rate, while the presence of legumes decreased peak N2O emissions by 30% compared to the 

full N rate (P<0.05). (Figure 3.1a, b).   

 

 

Figure 3. 2 Cumulative N2O emissions (S.E, n=3) from sugarcane soil in the 2014-15 (a) and 

2015-16 (b) seasons with different N fertiliser rates in sugarcane monoculture and sugarcane-

legume companion cropping at in the Australian Wet Tropics (Abergowrie, Herbert River 

Catchment). The control treatment was a sugarcane monoculture without N fertilisation (No 

N). SPR: spring, S.E: standard error 

 

The highest N2O emissions coincided with major rainfall events, resultant high soil moisture 

and warmer soil temperatures. In 2014-15, N2O emissions peaked 95 days after N fertiliser 

application after dry conditions during the initial 75 days. Cumulative rainfall of 163 mm 

occurred between days 75 and 95, resulting in 28% WFPS and accompanied by a soil 

temperature of 31oC. The second N2O flux peak occurred after 61 mm of rainfall, a WFPS of 

33% and soil temperature of 28oC. In 2015-16, the first N2O peak occurred after 35 mm of 

rainfall during the first 37 days after fertiliser application, resulting in elevated WFPS (41.4%) 

and in conjunction with a soil temperature of 32oC. The second N2O flux peak occurred 67 
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days after fertiliser application after 70 mm cumulative rainfall over 30 days elevated WFPS 

(56.7%) and soil temperature (31oC) (Figure 3.1g, h). 

 

Over the four seasons of 2015-16, N2O emissions were 2 to 12-fold higher than in the 

corresponding seasons in 2014-15 (Figure 3.1a, b). During spring and summer, statistically 

significant differences occurred only between the no N fertiliser control and N fertilised 

treatments. In contrast, N2O emissions from the inter-rows were similar in no-N control and 

fertilised treatments.  

 

Table 3. 4 Two-year multiple linear regression analysis (n=615) fitted in mixed-effect models 

of N2O emissions versus soil soluble WFPS, NO3
--N and NH4

+-N in sugarcane monoculture 

and sugarcane-legume companion cropping system in the Australian Wet Tropics 

(Abergowrie, Herbert River Catchment). 

 

Variable 
Parameter estimate 

(Coefficients) 

Proportion of variance 

explained (%) 

Intercept 0.0028  

WFPS  -0.0357 ns 1.5 ns 

NO3
--N 0.4283 *** 81.4*** 

NH4
+-N 0.1647** 5.7** 

WFPS* NO3
--N -0.0859 ns 2.5 ns 

WFPS* NH4
+-N  0.1612***  7.1** 

NO3
--N * NH4

+-N 0.0149 ns 0.1 ns 

WFPS* NO3
--N * NH4

+-N 0.0721*                        1.7* 

Multiple R2 0.3318  

Adjusted R2 0.3241  

P-value  2.2e-16  
                  Significant codes: P< 0.001 ‘***’; P< 0.01 ‘**’; P< 0.05 ‘*’; P> 0.05 ‘ns’ ns: non-significant 

 

 

Total cumulative N2O emissions in 2015-16 were 3.2 times higher than in 2014-15 (Figure 

3.2). N2O emissions at the end of the measurements at 279 days (2014-15) and 288 days (2015-

16) after N fertiliser application were highest for the full N rate with 0.93 and 2.54 kg N2O-N 

ha-1, respectively (Table 3.3, Figure 3.2). Over trial years, companion cropped and monoculture 

sugarcane at the reduced N rate had 23 to 57% lower N2O emissions than the full N rate. Within 

the reduced fertiliser treatments, total cumulative N2O emissions from companion cropping 

treatments varied, but these were not statistically significantly different. In 2014-15, N2O 

emissions from the mung bean treatment were 16% higher than from the sugarcane 

monoculture, while emissions from the soybean treatment were 23% lower. In 2015-16, N2O 
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emissions were 20% lower with mung bean than sugarcane monoculture, and 3% higher with 

soybean (Table 3.3). 

 

Cumulative N2O emissions from sugarcane rows were 2.3- to 4.2-fold higher than from inter-

rows in the 2014-15 and 2015-16 seasons, respectively. The full N treatment resulted in the 

highest N2O emissions from the sugarcane row (2.2 to 6.3 g N2O-N ha-1). Reduced N treatments 

(with or without legumes) were statistically similar to the full N treatment (P<0.05). Only the 

zero N treatment produced significantly lower emissions from 0.16 to 0.57 kg N2O-N ha-1 

(Table 3.3).  

 

The N2O emission factors (EF) obtained in 2014-15 were below the 1% N2O EF of the IPCC 

standard emissions from crop soils, and below the global average for sugarcane soils (3.87%; 

Lisboa et al. 2013) in 2015-16 (Table 3.3). The presence of a legume companion crop did not 

produce consistent responses when compared to the sugarcane monoculture at the same N 

fertiliser rate. For example, in 2014-15, soybean companion cropped treatment had the lowest 

EF of 0.26%, while in 2015-16 the soybean treatment has the highest EF of 1.78%. 

 

The multiple regression fitted in mixed-effect models provided seven models; three as single 

factors (WFPS, NO3
--N and NH4

+-N) and four based on WFPS and the interaction with soil 

NO3
--N and NH4

+-N (WFPS* NO3-N, WFPS* NH4
+-N, NO3

--N * NH4
+-N and WFPS* NO3

--

N * NH4
+-N). The outcomes represent the coefficients or slope coefficients of each predictor 

obtained from the ANOVA and the proportion of each contributor to total emission of N2O 

(Table 3.4). The 2-year multiple linear regression using the single predictors (WFPS, NO3
--N, 

NH4
+-N) and their interactions were highly significant (P<0.05) despite a relatively low R2 of 

0.33), indicating 33% of the variations in N2O emissions can be explained by the independent 

variables (Table 3.4). Additionally, the coefficients of NO3
--N, NH4

+-N, WFPS* NH4
+-N and 

WFPS* NO3
--N* NH4+-N were significant ranged between P<0.001 and P<0.05  

 

The mathematical model confirmed NO3
--N as a single factor was significant (P<0.001) and 

explained 81.4% of the variance in N2O emissions over the two crop seasons (2014-16). In 

contrast, NH4
+-N and WFPS contributed less than 5.7% to explaining N2O emissions. The 

contribution of WFPS alone was not significantly (P>0.05) linked to N2O emissions, but in 

interaction with NO3
--N, NH4

+-N and the interaction NO3
--N*NH4

+-N predicted 11.3% of the 

soil N2O flux (Table 3.4). 
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3.3.3 Sugarcane production and nitrogen uptake 

Legumes did not establish well in the first season (2013-14) due to damage by cane rats soon 

after germination. Because of that, we observed no effect of legumes on sugarcane yield 

(Figure 3.3a). In contrast, legumes established well in the following years, but sugarcane yield 

remained similar with full and 38% reduced N fertiliser rates and was unaffected by legumes.  

 

In 2014-15 and 2015-16, significantly differences in yield occurred only between the no-N 

control and full or 38% reduced N fertiliser treatments, with yields 21 to 40% higher in full N 

treatments, and 7 to 15% higher in reduced N treatments (Figure 3.3b, c). In the 58% reduced 

N fertiliser treatment (2014-15), soybean did not significantly improve yield when compared 

to the no-N control (P>0.05) although yield was 6% higher. Mung bean was associated with 

significantly (P<0.05) lower sugarcane yield in the 2015-16 season with a 6.3 and 2.5% 

compared to sugarcane monoculture and soybean at the reduced N level (Figure 3.3c). No 

benefit was derived from soybean when sugarcane was grown without N fertiliser and yield 

was 5.5% low with soybean although this was not statistically significant (P>0.05) (Figure 

3.3c). 

 

In 2015-16, we quantified the N accumulation of sugarcane shoots. The no-N treatment 

acquired 90 kg N ha-1 irrespective of soybean presence, the reduced N treatment with or 

without legumes 128 kg N ha-1, and 153 kg N ha-1 in the full N treatment. Nitrogen 

acquisition in the non-N treatments was significantly lower (P<0.05) than all N-fertilised 

treatments (Figure 3.3c). We observed a positive and significant linear regression (R2=0.55, 

P<0.001) between total N2O emissions and sugarcane N uptake. For every 1 kg of N 

accumulated in aboveground biomass per hectare, 0.0203 kg ha-1 of N2O-N was emitted to the 

atmosphere (Figure 3.5).  
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Figure 3. 3 Tonnes of sugarcane per hectare (TCH) at different N rates as monoculture and 

grown with legumes in the 2014-15 season (a), 2015-16 season (b)  and sugarcane N uptake in 

2015-16 (c). Data are means (n=3) at Abergowrie, North Queensland. different lowercase 

letters above the error bars indicate significant differences between treatments at P<0.05 (LSD, 

Fisher test) in sugarcane yield and different lowercase letters within bars indicate significant 

differences between treatments at P<0.05 (LSD, Fisher test) in sugarcane N uptake. Shade 

columns in 2013-14 where legumes did not grow.  
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Figure 3. 4 Sugarcane N uptake (kg ha-1) vs. cumulative N2O-N emissions in the 2015-2016 

season at different N rates as monoculture and grown with legumes. Data are means (n=3) at 

Abergowrie. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. 5 Agronomic efficiency of the N fertiliser based on cane yield (t cane ha-1/ kg N ha-

1 after subtracting the contribution of the soil N background) vs. yield-scaled N2O emissions 

(g N2O-N/ t cane) in the 2015-2016 season, at different N rates as monoculture and grown with 

legumes. Data are means (S.E, n=3) at Abergowrie.  

 

We observed an inverse relationship between agronomic N use efficiency (kg N in fertilised 

crop-kg N in the unfertilised crop)/kg N applied) and yield–scaled N2O-N emissions (kg N2O-

N emitted/t sugarcane produced per hectare) over the 2-year experiment (Figure 3.5). On 

average, the 2014-15 season had a 68% lower agronomic efficiency of fertiliser-N use than the 

2015-16 season, and there were no significant differences between treatments (Figure 3.5). The 
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reduced N treatments, irrespective of the presence of legumes, had 1.2- to 1.5 times greater 

agronomic N use efficiency than the full N rate in the 2015-2016 season. Mung bean 

companion cropping at the reduced N rate significantly decreased yield-scaled N2O emissions 

by 32% compared to the full N treatment (Table 3.3, Figure 3.5). 

3.4 Discussion 

It is largely unexplored how sacrificial companion crops such as N2 fixing legumes that 

decompose in sugarcane fields impact on soil N status and N2O emissions in conventional 

agriculture. This study explored if this approach is an avenue to improve N efficiency in 

sugarcane cropping. We hypothesised that if legumes contribute biologically-fixed N and have 

facilitative rather than competitive interactions with sugarcane, benefits should arise. This 

study showed that legumes had only minor effects on sugarcane yield and total N2O emissions 

although the presence of legumes was associated with lower N2O emissions during peak 

emission periods. A caveat that restricted our ability to quantify the benefits of legumes as an 

N source was that sugarcane yields were relatively similar with full (148 kg N ha-1) and reduced 

(91 kg N ha-1) fertiliser rates over the three years of experimentation. Important observations 

were that legumes did not negatively affect sugarcane yield when rainfall was 48% below the 

annual average, and a trend suggesting that soybeans are as a more favourable companion crops 

than mung bean in the tested conditions.  

3.4.1 N2O emissions and sugarcane production from sugarcane–legume companion cropping 

The potential of legume intercropping to mitigate N2O production has been studied in 

herbaceous perennial pasture grass and grain cropping systems (Huang et al., 2014, Dyer et al., 

2012, Hauggaard-Nielsen et al., 2016). Most research on sugarcane-legume intercropping 

systems has focussed on evaluating profitability and the effects on soil improvement (Córdova-

Gamas et al., 2016, Shiming and Gliessman, 2016, Edmilson José et al., 2013, Trento Filho, 

2010, Gana and Busari, 2003, Roodagi et al., 2001a). One study to date has assessed N2O 

emissions from sugarcane-soybean intercropping (Luo et al. 2016). 

 

Many studies under temperate climate conditions that have examined legumes as an N fertiliser 

replacement for N2O mitigation showed advantages over monocultures, especially when 

intercropping systems received zero N fertiliser. For example, wheat-faba bean intercropping 

without N fertiliser significantly reduced N2O losses (by 35%) compared to a wheat stand crop 

fertilised with 80 kg N ha-1 (Senbayram et al 2015). By contrast, in Scotland, after a 3-year 

fallow regime, an unfertilised barley-pea and unfertilised barley sole crop produced similar 
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N2O emissions (Papa et al., 2011). On the other hand, application of N in addition to legume 

companion crops resulted in different N2O emissions responses. Legume forages (Red clover, 

alfalfa, White clover) as companion with ryegrass (Lolium perenne) or with a grass mixture 

(cockfoot , and tall fescue,) decreased N2O emissions and dry matter production up to 13% 

relative to the grass monoculture or mixed grasses at high inputs of  N (325 kg ha-1).  In the 

same trial, reducing the full N rate by 72% (to 90 kg N ha-1) reduced biomass production of 

grass sole crop by 33%, while mixed grasses intercropping had yield reduced by only 7%. N2O 

emissions were mitigated by 43% regardless of presence or absence of the intercropping 

treatment (Haugagard-Nielsen et al., 2016).  

 

Like our study, Luo et al. (2016) found that 43% reduction in N fertiliser application from 525 

to 300 kg N ha-1, irrespective of soybeans presence, N2O emissions were reduced by 30 to 50% 

without affecting sugarcane yield. These results are somewhat unsurprising, as even the 

reduced fertiliser treatment (300 kg N ha-1) had N additions likely to be well in excess of both 

crop’s N requirements. By contrast in our study, the 56% N reduced rate (66 kg N ha-1) 

significantly decreased sugarcane yield suggesting that sugarcane was N limited. Both studies 

showed that the presence of soybean did not significantly increase sugarcane yield compared 

to monoculture sugarcane at the same N application rate. 

 

The impact of legume as intercropping on N2O emissions varies with climate (temperature, dry 

and wet conditions), location, agricultural management, type of legume, N inputs from 

biological N fixation and the rate of mineralisation and immobilisation process (Senbayram et 

al., 2015, Luo et al., 2016, Dyer et al., 2012, Huang et al., 2014, Epie et al., 2015). N2O 

emissions from intercropping systems can differ considerably between legume species and 

cultivars as well as from year-to-year (Pappa et al., 2011, Huang et al., 2014). In our study, 

N2O production of soybean and mung bean companion cropping treatments differed with 

emissions of 0.40 and 0.62 kg N2O-N ha-1 respectively in 2014-15 and 1.96 and 1.53 kg N2O-

N ha-1 in the following season. Luo et al. (2016) found that N2O emissions of the same 

intercropping sugarcane-soybean cultivar varied from 1 to 8 kg N2O ha-1 over several years 

with major drivers being edaphic conditions, soil water content, soil temperature, soil soluble 

N and rainfall. Emissions from monoculture sugarcane varied similarly from 2 to 8 kg N2O ha-

1 per season (Luo et al 2016), indicating that this year-to-year variability was not specific to 

legume treatments.  Pappa et al. (2011) showed that N2O emissions from a barley cultivar 

intercropped with pea cultivar Zero 4 were 80% smaller than barley-pea cultivar Nitouche. The 
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authors associated the difference in N2O emissions between the pea cultivars with increases of 

nitrification in response to high temperatures, N supply by the fixed N of legumes and plant 

residues from the different cultivar and subsequent mineralisation and immobilization of 

legumes plants. Possible reasons for the lack of legume effects on  in our study include (i) 

increased competition for water due to lower than average and N2O emissions by nitrification 

process mainly, (ii) reduced mineralisation process due high limited water and less microbial 

activity, (iii) slower decomposition rate of legume biomass and N transfer from legumes to 

sugarcane. 

 

In general, the magnitude of N2O production is closely linked to the rate of N fertiliser 

applications; thus, smaller N2O emissions are derived from small quantities of N fertiliser. 

However, Van Groenigen et al. (2010) argued that N2O efficiency of a cropping system should 

be expressed per unit crop N uptake rather than per area of cropping, in order to capture an 

element of crop productivity in the measure. They found lowest yield-scaled emissions at 

moderate N applications rates, where N application facilitated optimum yields. Both under-and 

over-application of N resulted in higher yield-scaled N2O emissions, due to poor crop 

performance and soil N surpluses respectively. By contrast, in this study yield-scaled N2O 

emissions were lowest in zero N treatments, and increased with fertiliser application, indicating 

that yield limitation at zero N was less severe than that found by Van Groenigen et al (2010) 

in their meta-analysis. In 2015-16, yield-scaled N2O emissions were significantly lower in the 

reduced N with Mung bean treatment than in the full N treatment, indicating a greater 

efficiency of production. Similarly, the treatments with 38% reduced N applications show 

higher agronomic efficiency than full N treatments, especially in the 2015-16 season where 

sugarcane N fertiliser efficiency improved by 22 to 33%. Treatments with lower yield-scaled 

N2O emissions consistently had greater agronomic efficiency within each season, suggesting 

that a relationship exists between these agricultural efficiency metrics, despite one being 

calculated on yield and inputs, and the other being calculated using yield and losses. Substantial 

variation in both metrics from season to season occurred due to differences in magnitudes of 

both N2O, and the decreased yield of the zero N fertiliser treatment in 2015-16, indicating that 

a consistent relationship between these metrics does not occur across sites and seasons. 

3.4.2 Key drivers, magnitude and effects of N fertiliser of N2O emissions  

Nitrous oxide emissions vary with different N fertiliser application rates over the two years of 

experimentation with total estimated emissions of 0.93 and 2.54 kg N2O-N ha-1 in the drier and 
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wetter year, respectively from the full N rate treatment. These emissions are substantially lower 

than previously published ones from sugarcane grown with similar N fertiliser rates that ranged 

from 3.6 to 45.9 kg ha-1 of N2O-N (Allen et al., 2010, Wang et al., 2016, Denmead et al., 2010b) 

but are comparable to emissions previously measured in Brazil (de Oliveira et al., 2013). 

The comparatively low N2O emissions detected here were likely due to dry conditions with 

rainfall 48 and 14% below the 12 year-average of 1408 mm, especially during the first 3-4 

months after N application when soil inorganic N and N2O emissions are generally highest 

(Robinson et al., 2011, Holst et al., 2012, Allen et al., 2010). With the exceptions of few time 

points when high rainfall, soluble soil N concentrations and soil temperatures coincided and 

resulted in peak N2O emissions, the studied soil did not have the high soil moisture levels 

(WPSP from 15 to 60%) that are not conducive to extreme N2O emissions. Denitrification is 

the main process to release N2O-N emissions under anaerobic conditions (Linn and Doran, 

1984, Dalal et al., 2008, Robertson and Groffman, 2007, Dalal et al., 2003).Wet soils (by 

rainfall or irrigation) are the trigger for denitrification to occur and are directly associated with 

WFPS > 60% that decrease air filled pore space and restrict O2 diffusion to microorganisms. 

Thus, WFPS influences the distinct N transformation pathways and is been highly correlated 

with N2O production. Soil texture influences the onset of denitrification, and the sandy loam 

texture was a likely factor preventing high emissions, facilitating soil O2 and water exchange, 

rapid water drainage and low water retention as has been found in other studies (Barton et al., 

2008, Barton et al., 2011, Aguilera et al., 2013). Similar to our study, N2O emissions from a 

sandy loam Kandosol were 88%  smaller (3.6 kg N2O-N ha-1) than a silty clay Hydrosol (28.2 

kg N2O-N ha-1) at similar N fertiliser rates (150 and 160 kg N ha-1) and annual rainfall (1585 

and 1665 mm) (Wang et al., 2016).   

 

Contrary to research that has shown that N2O emissions peaked with WFPS of >80 to <91% 

(Huang et al., 2017), we found that the largest N2O emission peaks coincided with high levels 

of soil NO3
-N (23.1 to 46.9 mg N kg-1 soil) and relatively low soil moisture contents (34.0 to 

56% WFPS). Soil NO3
- was the largest single factor explaining 81% of the variance in N2O 

emissions. In contrast, WFPS and NH4
+ predicted 6% of the soil N2O flux, possibly due to 

the lack of waterlogging and denitrification events during both seasons. If higher WFPS had 

occurred during this trial, it is likely that emissions would have been greater. 

 

Our study showed that N fertiliser input was the main driver of N2O production with the highest 

hourly emissions detected in the full N treatment. Similarly, other Australian studies showed 
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that reducing N fertiliser by half also reduced N2O emissions up to 50% (Allen 2010; Wang et 

al. 2016). In spring and summer, N2O emissions and fluctuations are generally large in the 

presence of high levels soluble inorganic N levels after fertiliser application, high rainfall and 

associated to high WFPS as well as high soil temperature (Wang et al., 2011, Wang et al., 2016, 

Barton et al., 2010). In our study, high rainfall and associated soil moisture (WFPS) in autumn 

and winter did not promote N2O emissions (<0.02 mg N2O-N m-2 h-1) likely because soil 

mineral N concentration was lower (<10.0 mg N kg-1) in autumn and winter compare with >20 

and <60 mg N kg-1 during spring and summer) and soil temperature (average 19 C compared 

to 30 C in spring and summer). Similarly, soils from an Australian subtropical cropland 

(wheat) released the lowest N2O-N emissions (<0.004 mg N2O-N m-2 h-1) during autumn and 

winter because of low soil N concentrations (from 10 to 20 mg of N kg) and temperature (< 

10oC) in conjunction with low rainfall (Wang et al., 2011).  

 

After the N fertiliser (urea) was applied, soil NH4
+-N dominated the soil extractable N during 

spring and summer. In these seasons, while the concentration of NH4
+-N decreased, the 

available NO3
--N increased proportionally because of the nitrification of NH4

+-N to NO3
--N, 

coinciding with higher N2O emissions. Even though this study did not aim to identify the 

biological processes influencing N2O-N production, the fluctuations of N2O-N in relation to 

NO3
--N and WFPS (< 60% WFPS) suggested that nitrification was the main pathway for N2O 

emissions. Similarly, studies under low rainfall, soil temperature and light textured soils at  

cropland systems from Australian subtropical and semi-arid regions (Wang et al., 2015, Barton 

et al., 2008, Barton et al., 2011), temperate Chinese North plain (Huang et al., 2014) and 

Mediterranean climate (Aguilera et al., 2013) found that nitrification is an important pathway  

for N2O emissions. 

3.4.3 Sugarcane is grown with legumes 

While intercropping can increase crop yield and profitability where both crops are harvested 

(Brooker et al., 2015, Kaur et al., 2016, Yang et al., 2013, Parsons and Be, 2003, Kwong et al., 

1996), legumes in our study were examined solely as a potential source of N for sugarcane to 

address environmental concerns. It has been argued that the success of sugarcane-legume 

systems is largely determined by factors that include the capacity of legumes for BNF, water 

availability and planting time of legumes ( Gana and Busari, 2003, Roodagi et al., 2001b). For 

example, legumes did not establish well in sugarcane older than three old months at the time 

of legume planting due to competition (Billore et al., 2000). Previous experimentation by 
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Australian sugarcane growers demonstrated good outcomes with soybean sown into ratoon 

sugarcane 50 cm tall (Bryan Granshaw, pers. comm.). At this site, legumes were planted when 

sugarcane was 80 cm tall to minimise the risk of competition from legumes during early 

sugarcane growth. As anticipated, canopy closure of sugarcane occurred within four months of 

legume planting and out-shaded the legumes. We also aimed to minimise competition for 

nutrients other than N with the application of basal fertiliser nutrients but did not investigate if 

nutrient competition occurred between both crops. For example, a glasshouse experiment 

showed that sugarcane-soybean intercropping enhanced facilitation processes by improving 

soil inorganic N and P availability by 66 and 117%, respectively relative to the monoculture, 

increasing sugarcane biomass by 35% (Li et al., 2013). Contrary, a field experiment showed 

no significant differences in soil N and P availability or sugarcane yield between sugarcane-

soybean intercropping and pure stands of sugarcane (Luo et al., 2016).  

 

In our study, competition for nutrients other than N was minimised with the application of 

basal fertiliser nutrients. Mung bean, but not soybean, was associated with lower sugarcane 

yield. It is possible that inefficient N-fixation by mung bean and competition for water or slow 

decomposition of mung bean biomass impacted on sugarcane productivity. Soybean is more 

effective than mung bean in N-fixation as soybean seeds were inoculated with efficient 

rhizobia, while mung bean relied on native soil microbes. Peoples et al. (2009) shown that 

mung bean has a low reliance on N fixation (28% Ndfa) than soybean (53% Ndfa) and that 

inoculation can improve legumes’ symbiotic performance, growth and grain yield. In Australia, 

soybean and mung bean yield responded significantly to inoculation about 64 and 67%, 

respectively (Peoples et al., 2009). N2 fixation - the proportion of N derived from the 

atmosphere (% Ndfa) is strongly regulated by legume growth. At Breeza, Australia an increase 

of 2.6 times shoot dry matter in soybean resulted in six and 28 times greater the %Ndfa and 

the amount of N fixed by soybean over mung bean (Peoples et al., 2009). 

 

We did not aim to quantify N-fixation but or if legume-N was successfully acquired by 

sugarcane. Nitrogen fertiliser and, to a lesser degree, residual soil N may have negatively 

affected BNF. In the 2015-16 season soil from the zero N treatment (with or without legume) 

supplied N to sugarcane up to 89 kg ha-1. This value doubled to other findings from Wet tropics 

(Ingham) in ratoon cane (42-55 kg N ha-1) with a wide cane yield from 55 to 89 t cane per ha-

1 that were similar to our zero N treatments (from 61to 88 t cane per ha-1 ) (Bell et al. 2010, 

Wang et al., 2014, Schroeder et al., 2003). The high crop N content derived from soil reserves 
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in Abergowrie were similar to southern regions (Bundaberg and Rocky Point) where the 

rainfall was less than wet tropics and therefore fewer N losses (Kingston et al., 2008, Schroeder 

et al., 2003, Thorburn et al., 2003.). In the current experiment, the high N uptake from the 

background soils might be (i) the scarcity of rainfall was evident during the seasons 2014-2016 

compared to 12-year average record, and probably less losses of N and more accumulation of 

background N mineralisation (ii) potential to release N because of a moderate soil organic 

carbon concentration (1.72%) and an adequate soil N index (iii) site to site variation.  

 

There is much evidence that N fertiliser application and concomitant increases in soil inorganic 

N levels supresses BNF (Unkovich et al., 2008, van Kessel and Hartley, 2000, Salvagiotti et 

al., 2008, Streeter and Wong, 1988). Salvagiotti et al. (2008) demonstrated that the proportion 

of the fixed N decreased with increases of N fertiliser. Soybean stand crop fixed 57% of its N 

content at applications of less than 10 kg N ha-1, while at applications between 85 to 160 kg N 

ha-1, soybean nitrogen fixation supplied only 35% of crop N. In our experiment, we applied 66 

and 92 kg N ha-1 that together with residual N may have reduced BNF. We did not detect an 

effect of legumes on the pool of soluble NO3
- and NH4

+ levels in the top 10 cm of soil, despite 

regular monitoring, suggesting that legume inputs were insufficient to substantially alter soil 

inorganic N levels, or that increased sugarcane uptake balanced any increases in N inputs. 

There are potentially great complexities in the N interactions between the two crops, as while 

legumes may be a source of soil N; both crops are also a sink for soil N. We did not 

comprehensively evaluate legume nodulation; however, spot-checks in all treatments found the 

presence of nodules. 

3.5 Conclusions  

Nitrous oxide emissions were primarily influenced by N fertiliser rates, and legumes only 

reduced peak emissions at certain time of evaluation but not in the total cumulative emissions. 

Other studies have shown that legumes as intercrop can facilitate reductions in N fertiliser 

requirements and N2O emissions, and further research has to examine the potential of legumes 

as companion crops, and potentially intercrops. A promising outcome was legumes did not 

negatively affect sugarcane yield (the exception being mung bean in one crop season) which 

suggests that facilitative and competitive interactions were approximately equal. As these 

results are site-specific, research in different locations and under different agronomic 

managements has to establish context and generalities. For practitioners is attractive that 
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legumes can provide slow-release N, soil health benefits as well as potential income from 

grains.  
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Chapter 4 –Legume companion cropping to mitigate 

nitrous oxide emissions from Rain-fed and Irrigated 

sugarcane soils 
 

 
Throughout this chapter, we emphasized the results of one-year sugarcane yield and N2O 

emissions from field experiments at two farms with contrasting soil, climate and agronomy, 

located in dry tropic (irrigated site) and subtropic (rainfed site) of Australia. Rain-fed, low-

drainage hydrosol soil had annual emissions of 14.4, 7.6 and 3.9 kg N2O-N ha-1 with full N 

fertiliser rate (160 kg N ha-1), with 50% N fertiliser rate+soybean, and with 50% N rate, 

respectively. Irrigated, well-drained vertisol soil had emissions of 1.7 to 2.6 kg N2O-N ha-1, 

unaffected by N fertiliser rate (full rate 250 kg N ha-1 or 28% reduced rate) or soybean. 

Sugarcane yield was similar with reduced and full N fertiliser rates irrespective of soybean 

present, indicating that reduced N rates provided sufficient N. In N limiting conditions (no N 

fertiliser applied), soybean increased sugarcane yield by 41% to match the full N fertiliser 

treatment but with 6-fold low N2O emissions. Our study affords early insight into sugarcane-

soybean systems, and next-step research has to evaluate a broad range of environmental and 

agronomic settings to examine soybean, and potentially other legumes, as an avenue for N2O 

mitigation. 

 

4.1 Introduction 

Sugarcane is a food, bio-energy and fibre crop cultivated on ~27 million hectares in the tropics 

and subtropics (FAOSTAT, 2016), and 385,000 ha in Australia (Australia Sugarcane, 2016).   

Sustainable N use is an important consideration as sugarcane crops use on average only 50% 

of the applied N fertiliser (Robinson et al., 2011). In Australia, sugarcane farming is considered 

a main source of N pollution that affects the Great Barrier Reef (Kroon et al., 2012) and a 

considerable source of the potent greenhouse gas nitrous oxide (N2O). Avenues are sought to 

reduce the N footprint of sugarcane.  

Globally, N2O emissions from agricultural soils contribute ~12% of anthropogenic greenhouse 

gas (GHG) emissions (IPCC, 2014), and the average N2O emissions factor of sugarcane soils 

is 3.87 % (% of N fertiliser emitted as N2O) (Lisboa et al., 2011), nearly 4-fold the estimated 

1% for managed soils globally (IPCC, 2006). Australian sugarcane receives average N fertiliser 

rates of 160 kg N ha-1 y-1 (Fraser et al., 2017, Thorburn et al., 2017), mostly as a single dose of 

urea during early crop establishment. Whole-season studies of N2O emissions from Australian 
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sugarcane soils show that typical N fertiliser rates (100-200 kg N ha-1) generate 2.0 to 72.1 kg 

N2O-N ha-1, which translates to N2O emissions factors of 0.3 to 21% (Table 1). Noticeable is 

that these emissions factors generally exceed the default factor of 1 for crops in general (IPCC 

2006) and 1.25% for sugarcane specifically (Department of Environment 2014).  

 

In a two-step system, legumes generate N via BNF and acquire soil N, including fertiliser N, 

in the early growing season when the N demand of sugarcane is low and N losses from soil are 

the highest (Robison et al., 2011). In the later season, decomposing legumes cam supply N to 

sugarcane which accumulates N over six months or more. Lowering the concentrations of 

soluble soil N, especially inorganic nitrate and ammonium, can reduce the rate of microbial 

nitrification and denitrification and reduce N2O formation (Mosier et al., 2004, Bodelier, 2011, 

Kool et al., 2011, Itakura et al., 2013, Müller et al., 2004, 2014, Robertson and Groffman, 

2007). Abiotic factors, including soil moisture, aeration, texture, temperature and pH affect 

N2O production (Oertel et al., 2016, Signor and Cerri, 2013, Müller et al., 2014), and the 

numerous interactions between abiotic and biotic factors require empirical quantification of 

N2O emissions. Measures to reduce N2O emissions include lowering N fertiliser rates (Wang 

et al., 2016), split application of fertiliser (Allen et al., 2010), slow-release fertilisers and 

nitrification inhibitors (Wang et al., 2012), organic fertilisers and soil amendments 

(Westermann, 2017, Kingston et al., 2016), trash blanketing (Wang et al., 2016, Denmead et 

al., 2010b) and irrigation that avoids waterlogging (Allen et al., 2010). An untested strategy to 

abate N2O emissions is legume companion cropping, which currently only very few sugarcane 

farmers practise in Australia.  

 

This study follows on from our previous research on sugarcane-legume companion cropping 

in Australia’s wet tropics (Table 4.1) to expand investigations to the Irrigated-Dry Tropics and 

Rain-fed Subtropics. 
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Table 4. 1 Summary of N2O emissions and N2O emission factors (EF) across sugarcane 

growing seasons in Australian studies.  

 

 
 

‘Trash’ refers to the practice of green sugarcane harvesting where stalk tips and youngest leaves are recycled to the soil 

surface at harvest. *Australian Soil Classification (ASC adapted from Isbell 1996); ** Australian sugarcane soils relate to 

Soil Taxonomy (Soil Survey Staff USDA 1998). £ N2O EF from season 2014-2015, § N2O EF from season 2015-2016, N 

inhibitors (DMPP), †N2O emissions from automatic chambers; †† N2O emissions from micrometeorology 
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4.2 Materials and methods 

4.2.1 Experimental sites  

The experiments were carried out at two commercial sugarcane farms located in south-east 

Queensland (Sunshine Coast, Rain-fed farm, 26°34'S, 153°00'E) and north Queensland 

(Burdekin region, Irrigated farm, 19°49.23' S, 147°09.63' E), Australia. The Rain-fed site has 

a subtropical climate with average (1994-2016) maximum and minimum summer temperatures 

of 31.1 and 27.3 °C and max-min winter temperatures of 19.8 and 12.9 °C respectively, and 

average annual rainfall of 1457 mm (Bureau of Meteorology, Site 040861, Sunshine Coast 

Airport). The site has potentially acid sulphate soil (sulfidic hydrosol) (Isbell, 2002) with silty 

light clay texture and poor internal drainage. No fertiliser was applied in the year prior to the 

commencement of the experiment. The sugarcane was Australian sugarcane cultivar Q138 

from the 5th ratoon crop over three crop seasons from December 2013 to December 2016.  

The Irrigated site has a dry tropical climate with average (1994-2016) summer and winter 

maximum-minimum temperatures of 32.3 and 25.2ºC, 22.1 and 11.7ºC, respectively, and 

average annual rainfall of 850 mm (Bureau of Meteorology, Site 033002, Ayr DPI Research 

Station). The soil is a Vertisol (Isbell, 2002) with clay texture and moderate internal drainage. 

The site was Irrigated in regular intervals (cooler months every three weeks and warm months 

every seven days) according to grower practices in the region (Figure 4.1h). The amount of 

water per irrigation event was 12 mm. The experiment was carried out during the 2015-2016 

season as a 2nd ratoon crop of Australian cultivar Q183. 

4.2.2 Experimental design  

Three N treatments were (1) Full N fertiliser (sugarcane monoculture, sugarcane industry 

recommended rate, (2) Reduced N fertiliser (sugarcane monoculture or cultivated with 

soybean), and (3) No (zero) N fertiliser (sugarcane monoculture or cultivated with soybean) 

(Table 2). At the Rain-fed site, the 2013-14 season tested the performance of crops to decide 

on legume and N fertiliser regimes for the following seasons. The next two seasons had five 

treatments assessed for soil traits, N2O emissions and yield over 280 days (2014-2015) and 313 

days (2015-16). At the Irrigated site, the experiment ran during the 2015-2016 crop season with 

four treatments evaluated over 272 days (Table 4.2).  

At both sites, treatments were arranged in a randomised block design with three replicate plots, 

except the 2015-16 season at the Rain-fed site that had four replicates. Each plot consisted of 

six sugarcane rows with 1.65 m spacing between rows. The size of individual plots was 3564 

m2 (1st year) and 100 m2 (2nd and 3rd year) at Rain-fed site. At the Irrigated site, each 
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experimental plot was 300 m2. At both sites, the outer rows of each plot were buffer strips. At 

the Rain-fed site, additional sugarcane buffer strips of 5 meters length were set up between 

plots. Measurements were performed in the two central sugarcane rows. At the Rain-fed site, 

a sugarcane trash blanket from the previous harvest covered the soil (~13 t dry matter ha-1). In 

line with common practice in the Burdekin region, the Irrigated site was not trash blanketed.  

All rain-fed plots received phosphorus (40 kg P ha-1), potassium (100 kg K ha-1) and sulphur 

(25 kg S ha-1), and all Irrigated plots received phosphorus (56 kg P ha-1), potassium (50 kg K 

ha-1) and sulphur (50 kg S ha-1) as triple super phosphate, mono-potassium phosphate and 

sulphate potash. Nitrogen was applied as prilled urea as outlined in Table 4.2. Fertiliser was 

banded at 10 cm depth. Plots were hand harvested (25th November 2014, 19th October 2015, 

12th October 2016 at the rain-fed site; 10th October 2016 at the irrigated site).  

 

Table 4. 2 Nitrogen fertiliser regime and legume treatments implemented at subtropical (Rain-

fed site) and dry tropics (Irrigated site) commercial sugarcane farms in Australia.  

 

 
            1cv. Fernside, 2 cv. Leichardt, 3cv. Leichardt (2014-15), 4cv. Bunya (2015-16), n/a not applicable  

 

4.2.3 Soybean planting  

Industry recommended, locally available soybean cultivars were chosen for the experiments. 

In the first year at the Rain-fed place, soybean cultivars Fernside and Leichardt were sown on 

23rd December 2013, in the following years cultivars Leichardt (16th December 2014) and 

Bunya (4th December 2015) were sown. At the Irrigated site, Bunya was sown (12th August 

2015). Soybean successfully established, except in the last year at the Rain-fed site where 

herbivory by hares prevented establishment. Soybeans were inoculated with Nodule NTM 

rhizobia. Seeds (70 to 78 kg soybean ha-1) were sown using a mechanical legume planter with 
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coulter wheels cutting into the soil and through the trash blanket, depositing legume seeds at 

three cm depth and a distance of ~15 cm on either side of the sugarcane row.  

4.2.4 N2O sampling and analysis  

Two manual greenhouse gas (GHG) chambers were set up in each plot. One chamber was 

placed along the sugarcane row directly over the fertiliser band covering the row space, and 

the second chamber was positioned between rows, the inter-row space. Stainless steel base 

chambers of 0.25 m2 were introduced to approximately 5 cm deep into the soil to ensure a tight 

seal. Top chambers were placed over the base to obtain a total volume of 140 and 68 litres for 

Rain-fed and Irrigated sites, respectively. Top chambers were equipped with vent tubes 

connected to valves (Reeves and Wang, 2015). Gas sampling occurred twice a week during the 

peak emissions period over 9 weeks of the crop season when soil moisture, temperature and 

soil soluble N concentrations were high. Sampling frequency was reduced to weekly from 

week 10, and to fortnightly sampling during the final two months of the crop season when soil 

moisture, temperature and soluble N concentrations were lowest. Gas sampling was conducted 

between 9:00 and 11:00 am to capture daily mean fluxes (Allen et al., 2010, Reeves and Wang, 

2015). Briefly, one hour after top chambers were placed over the base chambers, 30 ml gas 

was extracted from chambers using a gas-tight syringe and transferred into pre-evacuated 

Exetainer vials (Labco Limited, Lampeter, UK). A total of 34 and 31 sampling events occurred 

over 2014-15 and 2015-16 seasons at the Rain-fed site, respectively, and 40 sampling events 

at the Irrigated site. Gas samples were analysed with gas chromatography equipped with an 

electron capture detector (ECD) (GC 2010, Shimadzu Co., Kyoto, Japan). Hourly N2O 

emissions were converted into daily emissions by multiplying by 24, and cumulative emissions 

were estimated with linear interpolation between measurement days (Reeves and Wang, 2015).  

N2O emission factors were calculated using the IPCC (2006) Tier 1 method:  

             [(cumulative N2O-Ntreatment – cumulative N2O-Ncontrol)]/[N application] x 100  

 

4.2.5 Sugarcane yield and nitrogen uptake  

Sugarcane was harvested manually by cutting the two central rows over the 10 m length of 

each plot, and fresh biomass was weighed with electronic balance. Sugarcane biomass 

separated into stalks and leaves (three stalks, Rain-fed site; 10 stalks, Irrigated site). Biomass 

sub-samples were used to determine fresh weights and dry weights after drying at 60 °C for > 

48 hours. Sub-samples were ground to a fine powder to determine N content of leaf and stalk 

tissues (LECO TruSpec analyser, LECO ltd., St Joseph, MI, USA). Dry biomass of each stalk 
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component (kg dry matter ha-1) was multiplied by the respective N concentration to calculate 

aboveground N uptake:  

          

Total N uptake (kg N ha-1) = [N% in stalks * dry matter of stalks (kg ha-1)] / [100]  

 

The response of sugarcane yield (tonnes sugarcane ha-1) to N fertiliser rates was quantified by 

using the agronomic efficiency of fertiliser N  (Schroeder et al., 2015) 

AgroEffFert (t sugarcane kg-1 N) = (t cane yield (N fertiliser) – t cane yield (no N fertiliser)]/[kg fertiliser 

N applied]  

4.2.6 Soil sampling and analysis  

Soil samples were taken at 0-10 cm soil depth in sugarcane row and inter-row in each plot at 

every GHG sampling event at the Rain-fed site and every second event at the Irrigated site. 

Soil temperature was measured at 10 cm soil depth at the time of gas sampling with a hand-

held thermometer. Soil samples were stored at 4 ºC until processing in the laboratory within 

24 hours of sample collection. Gravimetric soil water content was determined by oven drying 

at 105 ºC to a constant weight. Soil bulk density was determined once for sugarcane-row and 

inter-row to calculate water filled pore space (%WFPS) as (volumetric water/total pore) x (100) 

(Linn and Doran, 1984). Soluble inorganic N was determined by extracting 15 g soil with 30 

ml 1M KCl and mixed for one hour. Soil pH and electric conductivity (EC) were assessed with 

a solution in a 1:5 soil:distilled water (Thomas, 1996). Soil total and organic carbon and total 

nitrogen were analysed by combustion-Dumas (samples were pre-treated with acid to remove 

inorganic carbonates) using a LECO CHN analyser (see above). Cations and cation exchange 

capacity (CEC) were determined by silver thiourea (AgTU+) (1:50 soil solution extracts 

prepared in 0.01 M silver thiourea and mixed for 24 h). Colwell P was quantified in 1:50 

soil:0.5 M sodium bicarbonate mixed for 16 h (Rayment and Lyons, 2011) (Table 4.2). 
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Table 4. 3 Soil physio-chemical properties at 0-10 cm depth of sugarcane rows at the rain-fed 

site and irrigated site.  

 

TOC, total organic carbon; TC, total carbon; TN, total nitrogen; EC, electrical conductivity; CEC, cation 

exchange capacity 

 

4.2.7 Data Analysis 

Statistical analyses were performed using Minitab Software (Minitab Pty Ltd, Sydney NSW 

Australia). Normal distribution of dependent and independent variables was tested using 

Shapiro-Wilk Normality test at P<0.05. N2O emissions were log-normally (ln) transformed 

before statistical analysis. Differences and interactions between treatments were calculated by 

GLM-ANOVA and LSD all-pairwise comparison test at P<0.05. Linear multiple regression 

fitted with linear mixed effect (Lme4) was performed using R Studio (R Development Core 

Team, 2011) to analyse effects of water filled pore space (WFPS), soil nitrate (NO3
--N) and 

ammonium (NH4
+-N) content and their interactions on the N2O emissions per year and site. A 

maximum likelihood method was used to assess the relative contribution of independent 

parameters (WFPS, soil NO3
--N and NH4

+-N) and their possible interactions in the multiple 

regression model. A comparison between models with and without the predictors of interest 

assessed the proportion of the variance that is explained for the predictor on study. A Chi-

square distribution determined if the models were significant.   

4.3 Results 

4.3.1 N2O emissions, soil and climate variables  

We analysed the effect of reduced N fertiliser rates and soybean companion crops on N2O 

emissions and sugarcane yield over the 2014-2015 (Rain-fed site) and 2015-2016 (Irrigated 

site) crop seasons, when soybeans established well at both sites. Soil N2O fluxes and soluble 

soil nitrate and ammonium levels were highest during the weeks following N fertiliser 

application. At the Rain-fed site, N2O emissions and soluble soil inorganic N concentrations 

peaked after N fertiliser application in early summer and were lowest in autumn and winter-

spring. At the Irrigated site, N2O emissions and soluble soil N concentrations were highest in 
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late winter and spring following N fertiliser application in late winter and were lowest in 

summer and autumn (Figure 4.1a, b).  

At the Rain-fed site, N2O emissions and soluble inorganic N (ammonium, nitrate) 

concentrations were highest in sugarcane rows in summer, coinciding with high soil moisture 

content and temperatures. N2O emissions were 16- and 100-fold higher in summer than in 

autumn and winter-spring seasons, respectively (Figure 4.1a). Similarly, soil nitrate and 

ammonium concentrations in summer were up to ~6- and 10-fold higher than in autumn and ~ 

10- and 20-times higher than in the others seasons (Figure 4.1c). 

 

Total rainfall was 1359 mm over the 2014-2015 crop season, 7% below the 22-year average 

(1467 mm), with 55% (749 mm) of rainfall received in summer, 27% (370 mm) in autumn, 

and 18% (240 mm) in winter-spring, respectively (Figure 4.1g). Soil temperatures were 

fluctuated around 26 to 30 ºC and decreased to 13.8 ºC at the end of winter (Figure 4.1g). Soil 

moisture (water filled pore space, WFPS) ranged from 54 to 97% across sampling times with 

high WFPS of 70 to 94% maintained during the first 44 days after N fertilisation, which 

coincided with highest N2O emissions. High WFPS was maintained throughout the early crop 

season with the combination of high soil clay content (40%) and associated poor drainage, and 

two high rainfall events (117 and 312 mm).  

 

Soluble soil N concentrations in the sugarcane rows differed significantly (P<0.05) between 

plots receiving N fertiliser and the unfertilised control plots in the summer season. In this 

season, nitrogen fertilised sugarcane plots (full and 50% reduced N rate) had concentrations of 

29 and 30 mg NH4
+-N kg-1, and 50% reduced N sugarcane+soybean had 25 mg NH4

+-N kg-1 

(Table 4.4). The 50% reduced N treatment with sugarcane only or with sugarcane+soybean 

had NO3
--N concentrations of 6.3 and 4.5 mg NO3

--N kg-1, respectively, which were lower than 

the full N rate (10.9 mg NO3
--N kg-1, Table 4.4).  
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Figure 4. 1 Seasonal N2O emissions (a, b), soluble soil nitrate (c, d), ammonium (e, f), water 

filled pore space from sugarcane row, soil temperature and rainfall (g, h) (S.E., n=3) at different 

N fertiliser rates in sugarcane monoculture and sugarcane-legume companion cropping at the 

Rain-fed site (2014-15) and Irrigated site (2015-16). Arrows represent irrigation events 

(Irrigated site).  
 



74 

 

Table 4. 4 Seasonal average concentrations of soluble soil ammonium and nitrate (± S.D, n=96, 

Sunshine Coast, n=120, Burdekin), in the top 10 cm of soil profile. Details are listed for 

sugarcane rows and average for inter-row as no treatment differences were observed. 

Treatments included N fertiliser rates and sugarcane grown as monoculture or intercrop with 

soybean at Rain-fed site (2014-2015 season) and Irrigated site (2015-2016 season). Different 

letters in columns indicate significant differences (P<0.05) between N fertiliser and legume 

treatments 

 

 

The presence of soybean in the zero N fertiliser treatment significantly (P<0.05) increased 

soluble N concentrations with 2-and 3-fold higher NO3
--N and NH4

+-N concentrations detected 

relative to the zero N sugarcane monoculture. In the 50% reduced N fertiliser treatment, the 

presence of soybean was associated with significantly (P<0.05), 59 and 15% lower NO3
--N 

and NH4
+-N concentrations relative to the full N rate (Table 3). Soil NO3

--N concentrations 

decreased from 9.3 to 1.6 mg kg-1 over autumn to winter-spring seasons (Figure 4.1c), and soil 

NH4
+ concentrations declined gradually from 11.8 to 1.2 mg NH4

+-N kg-1 over autumn to 

spring (Figure 1e). In contrast, similar concentrations of soluble N occurred inter-row soil 

across treatments and seasons with 1.1 to 3.6 mg NH4
+-N kg-1 and 0.7 to 1.1 mg NO3

--N kg-1 

(Table 4.4). 
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At the Irrigated site, sugarcane rows N2O emissions and soluble N concentrations were highest 

in spring and decreased over summer and autumn (Figure 4.1b). N2O emissions in winter were 

2-fold higher than in spring, and N2O emissions in spring were up to 27-fold higher than in 

summer and autumn (Table S4.1). The dry season corresponds to winter-spring (June to 

October) and the wet season occurs in summer-autumn (December to May). The annual rainfall 

during 2015-16 season was 13% lower than the 22-year annual average (850 mm), with 94% 

of the rainfall occurring in summer and autumn. As rainfall was low in winter and spring, five 

flood irrigation events were applied, and a further 14 irrigation events occurring during summer 

and autumn. Overall, water filled pore space was lower (24 to 69% WFPS) in the dry season 

and higher in the wet season (50 to 81% WFPS). Dry and wet season soil temperatures ranged 

from 21 to 28oC and 29 to 31oC (Figure 4.1h).  

 

Soluble soil NO3
--N and NH4

+-N concentrations in sugarcane rows fluctuated considerably in 

spring, with NO3
--N exceeding NH4

+-N concentrations almost 4-fold (Figure 4.1d, f). During 

winter and summer-autumn seasons, soil NO3
--N concentrations at the N fertilised plots, 

irrespective of legumes presence, were significantly (P<0.05) higher (2.9 to 12.4 mg NO3
--N 

kg-1) than zero N fertiliser plots (1.1 mg NO3
--N kg-1). Highest concentrations occurred in 

spring in all fertilised treatments (32 to 34 mg NO3
--N kg-1) while the control had the lowest 

NO3--N concentration (7.5 mg NO3
--N kg-1). Soil NH4

+-N concentrations did not differ 

significantly between all treatments and seasons, ranging from 3.73 to 12.19 mg NH4
+-N kg-1 

(Table 4.4). In sugarcane inter-rows, NO3
--N and NH4

+-N concentrations ranged from 1.7 to 

7.0 mg kg-1 without differences between treatments and seasons (Table 4.4). 

4.3.2 Relationship between N2O emissions, climate and soil properties  

At the Rain-fed site, application of N fertiliser at the start of the field experiment resulted in 

highest N2O emissions in summer. Emissions from sugarcane rows were statistically similar at 

the full N fertiliser rate (2.4 mg N2O-N m-2 h-1) and 50% reduced N fertiliser+soybean (1.3 mg 

N2O-N m-2 h-1), and significantly (P<0.05) lower in the reduced N fertiliser (0.7 mg N2O-N m-

2 h-1). Zero N fertiliser+soybean had significantly (P<0.05) higher N2O emissions (0.36 mg 

N2O-N m-2 h-1) than zero N sugarcane (0.08 mg of N2O-N m-2 h-1, Table S4.1).  

Peak N2O emissions from sugarcane rows were recorded in all N fertilised treatments during 

the first 30 days after N application and cumulative rainfall of 160 mm, and 157 mm cumulative 

rainfall 12 days after the first N2O emissions peak. Both periods presented high N2O emissions, 

high WFPS (70 to 82% (Figure 4.1a), high soluble soil N concentrations (9.0 to 23.0 mg NO3
-
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-N kg-1; 23 to 54 mg NH4
+-N kg-1) and high soil temperatures 27.8 to 28.3oC (Figure 4.1g). 

N2O emissions from all treatments gradually decreased 72 days after N fertiliser application 

and remained stable over autumn and winter-spring seasons (0.01 to 0.04 mg N2O-N m-2 h-1). 

In sugarcane inter-rows, N2O emissions were similar across treatments and seasons (Table 

S4.2). 

Total cumulative N2O emissions were significantly higher (P<0.05) at the full N rate (14.4 kg 

N2O-N ha-1) than zero N (1.2 kg N2O-N ha-1). The presence of soybean in the zero N fertiliser 

treatment increased total cumulative N2O emissions significantly (P<0.05) by 50% compared 

to the sugarcane monoculture (Table 4.5). Overall, sugarcane rows of all N fertilised treatments 

emitted from 10.7 to 41.3 kg N2O-N ha-1. Zero N fertiliser+soybean emitted significantly 

(P<0.05) more N2O (5.4 kg N2O-N ha-1) than zero N fertiliser (0.8 kg N2O-N ha-1, Table 4.5). 

Full N and reduced N+soybean had similar N2O emissions factors of 8.3 and 8.0%, 

respectively, while reduced N sugarcane monoculture had a lower factor of 3.5% (Table 4.5).  

 

Table 4. 5 Cumulative N2O emissions and N2O emission factors (EF) (±S. D, n=3) from 

sugarcane rows and inter-rows, and total area calculated with the relative proportions of row 

and inter-row area. Sugarcane was grown as monoculture or with legume companion crops 

with different N fertiliser rates at Rain-fed site (2014-2015) and Irrigated site (2015-2016) 

sites. Different letters within columns denote significant differences at P<0.05 level.  

 

 

 

 

 

 

 

 

 

At the irrigated site, application of N fertiliser at the end of winter increased N2O emissions 

and the widest range of emissions was recorded in spring. Following N fertiliser application, 

emissions from sugarcane rows during winter and spring were similar at full N rate (0.56 and 

0.28 mg N2O-N m-2 h-1) and 28% reduced N fertiliser+soybean (0.50 and 0.25 mg N2O-N m-2 
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h-1), respectively. In winter, the average hourly N2O emissions rate of the reduced N treatment 

was significantly (P<0.05) lower than those of the full N fertiliser and reduced N 

sugarcane+soybean treatments. Lowest N2O emissions occurred in summer and autumn in all 

treatments including control from sugarcane rows and inter-rows (0.002 to 0.01 mg N2O-N m-

2 h-1) (Table S4.1). 

N2O emissions from sugarcane rows of N fertilised treatments peaked 29 days after N 

fertilisation (1.0 to 2.0 mg N2O-N m-2 h-1) with small fluctuations during late spring (0.03 to 

0.16 mg N2O-N m-2 h-1), followed by low emissions over summer and autumn (0.04 mg N2O-

N m-2 h-1) (Figure 4.1b). In the reduced N fertiliser treatments, irrespective of legume presence, 

spring N2O emission peaked 29 days post fertiliser application which coincided with irrigation 

events, 59% WFPS, high concentrations of soil soluble N (44 mg NO3
--N and 13 mg NH4

+-N 

kg-1) and soil temperatures of 26 oC (Figure 4.1b).   

 

Full N and reduced N rates (with or without soybean) had similar total cumulative N2O 

emissions ranging from 1.7 to 2.6 kg N2O-N ha-1 (Table 4.5), and only the zero N fertiliser 

treatment had significant lower (P<0.05) N2O emissions of 0.2 kg N2O-N ha-1. N2O emission 

factors ranked from 1.3% (reduced N+soybean) > 0.9% (full N) > 0.8% (reduced N) (Table 

4.5). Cumulative N2O emissions from N fertilised sugarcane rows were ~6-times higher than 

from inter-rows which were similar across all treatments and seasons (0.4 to 0.7 kg N2O-N ha-

1) (Table 4.5). 

4.3.3 Drivers of N2O emissions   

N2O emissions from the two sites fitted (P<0.001) a multi-regression model irrespective of a 

relatively low R2 (0.35 and 0.27), with and 27% of the N2O emissions explained by the 

predictor variables identified at the Rain-fed and Irrigated sites, respectively. At the Rain-fed 

site, the model indicates that soluble soil nitrate (P<0.001) is the main driver of N2O emissions 

and explains 64% of variation, followed by single factors WFPS (17.7% of variation) and 

ammonium (15.5% of variation). At the Irrigated site, the interaction between WFPS and 

nitrate accounted for 63% of variation, and nitrate as single factor explained 17% (Table 4.6). 
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Table 4. 6 Multiple linear regression analysis fitted in mixed-effect models of N2O fluxes and 

predictors as WFPS, soluble soil NO3
- and NH4

+ in sugarcane monoculture and with legume 

companion crops at wet Rain-fed site (n=510) and Irrigated site (n=480) sites. Multiple R2: 

Proportion of the variation of N2O emissions accounted for the predictors.  Adjusted R2: it is 

the adjusted for the number of predictors (independent variables) in the model. Coefficients: 

are known as slope coefficients and represent the average change of N2O emissions per unit of 

change of each predictor (variable). P-value: Test the null hypothesis that the coefficient is 

equal to zero 

 
                    

           Significances P< 0.001 ***; P< 0.01 **; P< 0.05 *; P> 0.05 ns, non-significant. WFPS: water filled pore space 

 

4.3.4 Relationship between N2O emissions and agronomic efficiency of fertiliser (AgronEff) 

The agronomic N use efficiency of fertiliser calculates sugarcane yield relative to the rate of N 

applied and increased with decreasing N fertiliser at the studied sites (Figure 4.2). The 

reduction of N fertiliser by 50 or 28%, irrespective of soybean present, increased agronomic 

efficiency from 0.22 to 0.28 t sugarcane kg-1 N fertiliser at the Rain-fed site, and from 0.14 to 

0.28 t sugarcane kg-1 N fertiliser at the Irrigated site. The full N rate had the lowest agronomic 

N use efficiency with up to 0.10 tonne sugarcane per kg N at the two locations (Figure 4.2).  

Relating N2O emissions to sugarcane yield showed that yield-scaled N2O emissions decreased 

at the two sites with decreasing N fertiliser application. Plot-to-plot variability was high, for 

example at the Rain-fed site, zero N+soybean reduced yield-scaled N2O emissions by 28% in 

one plot and increased emissions by 13 to 148% at the other two plots compared to zero-N 

plots with sugarcane monoculture. On the other hand, at the Irrigated site, plot variability was 

low and yield-scaled N2O emissions increased from 4.0 to 8.5% in all plots with reduced N 

fertiliser+soybean relative to the treatments with sugarcane at the same level of N fertiliser rate 

(Figure 4.2) 
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Figure 4. 2 Sugarcane agronomic efficiency of applied N (t cane/kg N applied after subtracting 

the contribution of the soil N background) versus yield –scaled N2O emissions (g N2O-N/t cane 

ha-1) at different N rates as monoculture and grown with soybean from Rain-fed site (Full N: 

160 kg N ha-1, Reduced N: 80 kg N ha-1) and Irrigated site (Full N: 250 kg N ha-1, Reduced N: 

180 kg N ha-1)  

 

4.3.5 Sugarcane yield and nitrogen accumulation into shoots 

At the Rain-fed site, no significant yield differences were detected between treatments 

receiving N fertiliser and grown as sugarcane monoculture or with soybean; although 

sugarcane yields were 14% higher in the presence of soybean in the first season compared to 

the same rate of reduced N fertiliser with sugarcane only (2013-2014; Figure S4.2). In the 

2014-15 season (the focus here), zero N fertiliser+soybean had a significant (P<0.05) 41% 

yield increase relative to monoculture (Figure 4.3a). In the third season (2015-2016), soybean 

did not establish due to herbivory by hares and sugarcane yields differed significantly (P<0.05) 

between full N fertiliser (70 t ha-1), 50% reduced N (55 t ha-1) and zero N (35 t ha-1) (Figure 

S4.2). At the Irrigated site, full N or 28% reduced N treatments irrespective of soybean 

presence, had similar sugarcane yields (91 to 92 t ha-1), while without N fertiliser, sugarcane 

yield was significantly (P<0.05) lower (81 t ha-1; Figure 4.3b).  

At the Rain-fed site, N accumulation into sugarcane shoots decreased by up to 10% in the 20% 

reduced N treatment, up to 16% in the reduced N+soybean treatment, and up to 20% in the 

zero N+soybean, but were statistically similar compared to the full N rate. Zero N+soybean 

increased (P<0.05) N uptake N 30% relative to zero N only (Figure 4.2c). Companion cropped 
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soybean in the zero N treatment accumulated 0.82 t of dry matter ha-1 and acquired 22 kg N 

ha-1. With the reduced N rate (80 kg N ha-1), soybean increased dry matter production and N 

uptake by 60% (1.35 t DM ha-1; 36.2 kg N ha-1, Table 4.7). 

 

 

Figure 4. 3 Sugarcane grown at different N rates grown as monoculture or with soybean 

companion crop. Tonnes of sugarcane per hectare (TCH) (a,b), and N accumulation in 

aboveground biomass (c,d). Data are means S.E, n=3) from the Rain-fed site (2014-15) and 

Irrigated site (2015-16). Different letters above bars denote significant differences between 

treatments at P< 0.05 (LSD, Less significant difference test).  

 

Table 4. 7 Companion cropped soybean dry matter yield (DM) and N uptake into shoots at 

two N rates (zero fertiliser and 80 kg N ha-1). Data are means (n=3) from the Rain-fed site. 

2014-15 season. 

 

Treatment 

kg N ha-1  

DM 

t ha-1 
N uptake 

kg ha-1 

80+soybean 1.35 36.2 

0N+soybean 0.82 22.0 
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At the irrigated site, N acquisition in the reduced N fertiliser+soybean was elevated (7 and 11% 

higher than full N and reduced N) but statistically similar, while a 37% reduced N uptake 

occurred in the zero N treatment (Figure 4.3d).  

 

A significant positive relationship was observed between total cumulative N2O emissions and 

sugarcane N uptake at the Rain-fed site (R2=0.46, P<0.001) and the Irrigated site (R2=0.62, 

P<0.001). Thus, for every 1 kg of N accumulated in sugarcane shoots above 33 kg N ha-1, over 

320 g N2O-N ha-1 was released to the atmosphere in the Rain-fed site; and 53 g N2O-N ha-1 at 

the Irrigated site (Figure 4.4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. 4 Sugarcane N uptake (kg N ha-1) versus cumulative N2O-N (n=27) emissions at 

different N rates as monoculture and with soybean companion crop at Rain-fed site (Full N: 

160 kg N ha-1, reduced N: 80 kg N ha-1) and Irrigated site (Full N: 250 kg N ha-1, Reduced N: 

180 kg N ha-1).  

 

4.4 Discussion 

This study addresses the question whether soybean companion crops can reduce N2O emissions 

from sugarcane soils by partially replacing N fertiliser with biologically fixed N. N2O 

emissions increased in response to N fertiliser rate at one site but not the other, confirming that 

the environmental context is a strong determinant if N is lost from soil as gases or via leaching 

or run-off. Rain-fed, low-drainage hydrosol with high WFPS had high N2O emissions in the 

order full N fertiliser > reduced N+soybean > reduced N > zero N+soybean > zero N. Irrigated, 

well-drained vertisol had lower N2O emissions without an obvious relationship between N 
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fertiliser rate and soybean presence. At both sites, soybean did not affect sugarcane yield with 

full and reduced N fertiliser, most likely because full and reduced N fertiliser rates sufficiently 

supplied sugarcane and BNF had no benefit. At the Rain-fed site, a zero-N+soybean treatment 

was implemented which demonstrated that under N limitation, soybean can boost sugarcane 

yield and reduce N2O emissions. The study advances understanding of sugarcane-legume 

companion cropping. It confirms that soybean as companion crop does not negatively affect 

sugarcane yield in the tested situations, and that soybean assist N2O emission reduction in low 

N conditions. The study also shows that soybean in combination with excessive N fertiliser use 

can increase N2O emissions. Achieving N sufficiency of sugarcane while minimising N losses 

from soil may be possible with prudent N fertiliser use that avoids excess N in soil. How 

soybean (and potentially other legumes) can best assist in this quest requires further 

investigation. With N2O emissions in the spotlight, next-steps research should explore the 

threshold of N fertiliser input over multiple years to guide the optimisation of sugarcane-

legume companion systems across climate and soil gradients. Simultaneous quantification of 

the overall environmental and agronomic benefits will advance sugarcane production with low 

pollution footprint. 

4.4.1 Sugarcane production with legumes 

Legumes are commonly grown as a rotation crop in the sugarcane fallow, with documented 

benefits including reducing soil pathogens and N input via BNF (White et al., 2011, Park et 

al., 2010, Wang et al., 2015). Soybean is a compatible intercrop for sugarcane with documented 

benefits to farm income in subsistence farming (Kaur et al., 2016, Islam et al., 2009, Roodagi 

et al., 2001a), and can reduce N fertiliser needs (Luo et al., 2016). We observed a pronounced 

benefit of soybean when N was limiting sugarcane growth when no N fertiliser used, 

confirming studies of soybean companion crops that benefitted sugarcane growth with no or 

low rates of N fertiliser (Hauggaard et al. 2016, Jensent et al. 2012). Without N fertiliser, the 

complementary effects of cereal-legume systems were explained by cereals using soil N and 

legumes meeting their N requirements with BNF (Ghaley et al., 2005). Sugarcane has a long 

growth period of nine to 12 months, and we expect a proportion of the N-rich legume residue 

to become available during the crop season. Our laboratory experiments showed that 20-30% 

of legume-N mineralises within 60 days, and 30-50% within 150 days (Buckley et al., 2016, 

Brackin et al., 2013), well within the N uptake phase of sugarcane. The inorganic soil N pool 

in the zero N+soybean treatment was elevated compared to zero N sugarcane, confirming that 

soybean increased N availability. Similarly, legume intercrops with low C/N ratios of 13 to 14 
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increased the pool of inorganic soil N by 38 to 56%, N mineralisation rates by 22 to 34%, and 

benefitted sugarcane yield (Suman et al., 2006).  

 

Soybean did not improve sugarcane yield with 28 or 50% reduced N fertiliser application rates. 

The most likely explanation is that the reduced N fertiliser rate supplied sufficient N to 

sugarcane. Nitrogen use efficiency averages 50% in Australian sugarcane (Robinson et al., 

2011) so that, if minimal losses occur and/or if soil contains residual N, a 50% reduced N 

fertiliser rate theoretically supplies sufficient N to sugarcane. A further mechanism that can 

explain a lack of benefits from soybean could be that sugarcane uses N fertiliser and residual 

soil N and outcompetes soybean (Ghosh et al., 2009, Ghaley et al., 2005). However, in our 

study, soybean biomass and N content increased by 60% in the reduced N fertiliser treatment 

(1.4 t dry matter and 36.2 kg N ha-1) compared to zero N fertiliser (0.8 t DM and 22 kg N ha-1) 

confirming that soybean profited from N fertilisation. A further consideration is that high levels 

of soluble soil N can inhibit or delay nodule formation and reduce BNF. It is well established 

that BNF decreases with increasing soil inorganic N levels (Peoples et al., 2009, Ghosh et al., 

2006, Salvagiotti et al., 2008, Ghaley et al., 2005, Senbayram et al., 2015). In soybean 

monoculture <16% of legume-N was derived from BNF with 200-300 kg fertiliser-N ha-1 while 

>50% of legume-N was derived from BNF with rates of <80 kg N ha-1 (Salvagiotti et al., 2008). 

By contrast, it was suggested that soybean as sugarcane companion crops fixed 29 to 57% of 

their N demand when grown with 300-525 kg fertiliser-N ha-1 (Shiming and Gliessman, 2016). 

However, the 15N abundance method used by the authors to quantify BNF is inherently 

inaccurate, and such high BNF rates in the presence of such massive N fertiliser rates are 

questionable as they contradict other studies. We did not investigate how much N was fixed by 

soybean but with high N fertiliser rates (full, reduced) and soybean increasing soil inorganic N 

levels only under N limiting (zero N fertiliser) conditions, it appears likely that BNF was lower 

in the N fertilised treatments than unfertilised control.     

4.4.2 N2O emissions from sugarcane–legume companion cropping system  

Legumes as companion or intercrops of cereals, grass pastures and trees can mitigate N2O 

emissions but the complex interactions between crops, environmental and agronomic variables 

prevent accurate predictions of how legumes affect N2O emissions. Legumes can have no 

effect, decrease N2O emissions by 48%, or increase them by 13 to 50% (Huang et al., 2014, 

Hauggaard-Nielsen et al., 2016). The impact of legumes on N2O emissions depends on abiotic 

and biotic factors, especially soil N, moisture and temperature, agronomy, legume and BNF, 
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among other factors (Senbayram et al., 2015, Luo et al., 2016, Dyer et al., 2012, Huang et al., 

2014, Epie et al., 2015, Jones et al., 2007). To the best of our knowledge, only one study on 

N2O emissions from sugarcane legume intercropping has been published – they reported that 

reducing N fertiliser by 40% in a sugarcane-soybean system maintained sugarcane yield but 

did not significantly reduce N2O emissions compared to fully fertilised monoculture sugarcane 

(Luo et al., 2016).  

 

In our study, total cumulative N2O emissions at the Irrigated site were similar in the N fertilised 

treatments irrespective of the presence of soybean. At the Rain-fed site, N2O emissions were 

elevated in the presence of soybean so that the reduced N fertiliser rate+soybean statistically 

matched those from the full N treatment. Similarly, with zero-N+soybean, N2O emission from 

sugarcane rows where higher than from sugarcane monoculture. Higher levels of soluble 

ammonium and nitrate in zero-N+legumes compared to sugarcane monoculture confirm that 

soybean increased soil N levels, but soil inorganic N levels were not increase with reduced 

N+soybean. These inconsistencies emphasise the need for further research. Our study was 

restricted to three replicate plots and, typical for field-based experimentation, variability 

between replicates was considerable. Similarly, intercropped soybean (Luo et al., 2016), or 

companion crops of soy of mung bean (Chapter 4) had inconsistent effects on N2O emissions.  

 

In pasture and crop systems, legume rotations are considered a sustainable alternative to N 

fertiliser (Stagnari et al., 2017, Crews and Peoples, 2005, Jensen et al., 2012) with N2O 

emissions from legumes similar to those from unfertilised background (Jensen et al., 2012). 

However, legumes are not without a N2O footprint (Rochette and Jansen 2005, Hauggaard-

Nielsen et al., 2016, Pappa et al., 2011), and N release from decaying soybean roots and nodules 

is a likely cause of N2O emissions during grain filling and maturation (Ciampitti et al., 2008, 

Yang and Cai, 2005). Our results concur with reports that legumes can increase N2O emissions 

when BNF adds further N to fertilised soils (Jensen et al. 2012; Luo et al., 2016; Hauggaard-

Nielsen et al., 2016; Ciampitti et al. 2008). N2O emissions appear to be mostly driven by the 

gradual turnover and decomposition of N-rich soybean residues during the sugarcane tillering 

phase (Yang and Cai 2005), rather than being the immediate result of N input from BNF 

(Rochette and Janzen, 2005, Pappa et al., 2011). Soybean shoots rapidly decompose and 

stimulate soil microbial growth, mineralisation and nitrification rates (Brackin et al., 2013), 

and the presence of labile C in soybean biomass increases the activity of nitrifiers and 
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denitrifiers and promotes N2O production (Senbayram et al., 2015, Tortosa et al., 2015, Carter 

et al., 2014).  

Compared to non-legume monocultures without added N fertiliser, legumes increased N2O 

emissions by 13 to 79% in intercropping systems (barley-pea, barley-white clover, grass-

legumes) (Hauggaard-Nielsen et al., 2016). Thus, with different rates of BNF and other effects 

of legumes on N cycling, the impact of legumes on N2O emissions will vary. Soybean shoots 

with zero-N fertiliser had accumulated 22.4 kg N ha-1 124 days after planting. We estimate that 

at least 50% of legume biomass decomposed over the following 160 days to the end of the 

season (day 280) (Buckley et al., 2016, Brackin et al., 2013), but the largest driver of N2O 

emissions in our study was N fertiliser, not legume-N. This is unsurprising because N fertiliser 

was the largest N input, and future studies should ascertain in more detailed investigation how 

N2O emissions respond to conditions when the largest N input is from legumes rather than N 

fertiliser. 

Alternative processes that contribute to N2O emissions include Rhizobium bacteria (generally 

added to legumes in farming systems to ensure effective BNF) that can increase N2O emissions 

via denitrification (Tortosa et al., 2015, Itakura et al., 2013). However, Breitenbeck and 

Bremner (1989) suggested that the population of symbiotic fixing bacteria such as Rhizobium 

is too small to impact on denitrification rates, yet Rhizobium is ubiquitous in soil and 

rhizosphere (Yeoh et al., 2017). Inoculation of soybean with Bradyrhizobium japonicum and 

grown with 30 kg N fertiliser ha-1 increased N2O emissions by 40% compared to non-

inoculated soybean at the same N rate (Ciampitti et al., 2008). However, such experiment does 

not distinguish between the effects of microbes on N2O emissions or the increasing N status of 

the system due to effective BNF of symbiotic microbes. A minor effect that nevertheless 

highlights the impact of bacterial traits was documented with Bradyrhizobium japonicum 

strains with increased nitrous oxide reductase activity, an enzyme that catalyses the reduction 

of N2O to N2. These strains reduced N2O emissions by 54 and 60% (0.052 and 0.045 kg N2O 

ha-1, respectively) relative to native B. japonicum (0.113 kg N2O ha-1) during decomposition 

of soybean nodules (Itakura et al., 2013). With the advent of metagenomics and 

metatranscriptomics such differences in bacterial properties can be explored to potentially 

assist the selection of microbes to enhance beneficial N cycling processes.   
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4.4.3 Cumulative greenhouse gas emissions  

The N2O emission factors (EF) from all fertilised treatments at the Rain-fed site were 

substantially larger than the default 1% N2O EF of the IPCC (2006) for managed soils and the 

1.25% EF for Australian sugarcane soils (Department of Environment, 2014). The EF from 

full N fertiliser treatments and reduced N sugarcane+soybean ranged from 0.8 to 8.03%. The 

highest EF at the Rain-fed site was more than twice the global average N2O emission factor for 

sugarcane soils (3.87%, Lisboa et al., 2011). The N2O EF of the Rain-fed Hydrosol in our study 

was at the higher end of the range of EF of 1.1 to 10% from Australian Hydrosols under 

sugarcane (Allen et al., 2010, Kingston et al., 2016, Wang et al., 2016). The highest emission 

factor (21%) in Australia was recorded by Denmead et al. (2010b) from a Hydrosol where trash 

was burnt before harvest (now an uncommon practice in Australia) and high organic carbon 

concentration of 9%; by comparison the Hydrosol in our study had <2% organic C content. 

N2O EFs from the Irrigated Vertosol were <1.2% and below the global average EF for 

sugarcane soil (Lisboa et al., 2011) and Australian sugarcane soils (Department of 

Environment, 2014). The 28% reduced N fertiliser+soybean had an EF of 1.2%, below the 1.3 

to 4.5% from similar soil types (Dermasol, Kandosol, Chromosol) and similar N fertiliser rates 

(140-150 kg N ha-1) and agronomies (Wang et al., 2016, 2014, 2012, Denmead et al., 2010b).  

The EF from the Irrigated Vertisol were similar or lower than those from 38% reduced 

N+soybean or mung bean from Dermasol at our third study site (1.31-1.78% N2O EF, Chapter 

4). The considerable difference in N2O emissions between the Rain-fed Hydrosol and Irrigated 

Vertisol, despite similar soil texture and temperature, and higher N fertiliser application at the 

site with lower N2O emissions is discussed below. 

4.4.4 Influence of soil physical and chemical parameters on N2O emissions in the field 

At the Rain-fed site, it is likely that most N2O emissions resulted from denitrification as the 

soil had mostly high soil moisture content and water filled pore space (WFPS) >60%. 

Nitrification is largely responsible for N2O emissions at WFPS <55%, while denitrification 

prevails under anaerobic conditions with WFPS of >80% (Wang et al., 2015, Barton et al., 

2008, 2011, Aguilera et al., 2013, Huang et al., 2014). Nitrogen fertiliser was applied at the 

start of the wet summer season during high temperatures (28-30 ºC soil temperature), high 

rainfall (340 mm), and high WFPS (60 to 90%) over the 50 days following N fertilisation. 

These conditions combined with high concentrations of soil organic carbon and soluble N 

would have promoted microbial activity and N2O production (Wang et al., 2016, Signor and 

Cerri, 2013, Fracetto et al., 2017). Soil microbial activity as quantified with CO2 respiration 
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was high, with 400 to 800 mg CO2-C m-2 h-1 in all treatments (data not shown). The sugarcane 

trash blanket can generate favourable conditions for microbial activity, keeping soil moist and 

providing C-substrate to fuel nitrification and denitrification (Carmo et al., 2013, Denmead et 

al., 2010b, de Oliveira et al., 2013). The presence of organic carbon as a source of energy for 

microbial respiration depletes soil oxygen levels and generates favourable conditions for N2O 

production (CHAPUIS‐LARDY et al., 2007, Robertson and Groffman, 2007, Oertel et al., 

2016). In line with previous research, the combination of high soil moisture, temperature, 

organic C and soluble soil N, promoted high N2O emissions in our study.  

 

At the Irrigated site, we hypothesise that nitrification was the main pathway for N2O emissions. 

Soil aerobic conditions prevailed with WFPS <58% during winter and spring. At this site, 

several variables differed from the Rain-fed site: application of N fertiliser occurred at the end 

of winter during comparatively low soil temperatures (~20ºC) and lower soil moisture (26-

58% WFPS). Lower levels of soil soluble N occurred during warm summer months and even 

WFPS of up to 70% did not boost N2O emissions. Lower N2O emissions are observed when 

the controlling factors, especially soluble inorganic N, high WFPS, labile carbon and soil 

temperature do not interact at the same time (Smith et al., 1998, Wang et al., 2011, Denmead 

et al., 2010a, Dyer et al., 2012, Zhang et al., 2016). The Irrigated site did not have a trash 

blanket, and the soil had relatively low soil organic carbon (1.04%) and total N (0.13%) 

concentrations. Soil microbial activity was substantially lower in most treatments (110 to 410 

mg CO2-C m-2 h-1) compared to the Rain-fed site. The only exception was the reduced N 

sugarcane-soybean treatment in the Irrigated site with significantly higher emissions ranging 

from 162 to 836 mg CO2-C m-2 h-1, which suggests that labile C additions from decomposition 

of the soybean crop stimulated microbial activity, as has been observed in previous studies 

(Brackin et al., 2013, Buckley et al., 2016). 

 

A further factor for N2O emissions is soil pH; the lower soil pH of 5.2 at the Rain-fed site may 

have favoured the denitrification pathway, while the higher soil pH of 6.5 at the Irrigated site 

may have promoted nitrification in line with previous research (Signor and Cerri, 2013, Oertel 

et al., 2016, Wrage et al., 2001). Which of the two pathways was mainly active at either site 

requires further investigation (see below), but the net outcome for N2O emissions, high from 

Hydrosol with low-drainage and high WFPS, and low from Vertisol with good drainage and 

comparatively low WFPS, is in line with previous research. 
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4.4.5 Relationship between soil inorganic N and N2O emissions   

Soil NH+
4-N and NO3

--N concentration at both locations was high during the first 70 and 80 

days after N fertiliser application. All treatments with N fertiliser irrespective of the 

intercropping treatments had significantly elevated soil soluble NH+
4-N and NO3

--N compared 

to the control treatments (with or without soybean).  

At the Rain-fed site, after N fertiliser application, soil NH+
4-N dominated the soil solution up 

to 5-fold greater than NO3
--N during summer. While this would suggest that nitrification could 

be the main precursor of N2O emissions; multiple regression analysis indicated that N2O 

emissions from all treatments were highly correlated with soil NO3
--N, followed by NH+

4-N 

and water filled pore space. Therefore, denitrification is more likely to have been the main 

pathway to N2O emissions. Redding et al. (2016) found a significant presence of bacterial 

nitrifier communities in a clay soil under denitrification processes and high denitrifier activities 

independent of availability of NH+
4-N or NO3

--N sources. This suggests that simultaneous 

transformation of NH+
4-N to NO3

--N may have occurred within aerobic soil microsites within 

the predominantly anaerobic soil (Müller et al., 2014, Robertson and Groffman, 2007).  

 

At the Irrigated site, NO3
--N was the dominant soluble N form in soil, up to 4-fold than higher 

than NH4
+-N during spring. Despite the high NO3

--N concentration and availability of 

irrigation to compensate the deficit of water (14% less precipitation than the annual average 

850 mm), the N2O emissions were up to 83% lower than N2O emission from Sunshine Coast. 

The relatively low soil compaction (soil bulk density; 1.16 g cm-3), good internal drainage  and 

few irrigation events (five) could lead NO3
--N losses by leaching at the Irrigated site, 

suggesting that leaching may be the predominant N loss pathway at this site. Relatively low 

temperatures during winter and spring after early fertiliser application could decrease the rate 

of N conversion thus less N2O emissions to the atmosphere. WFPS was less than 58%, 

suggesting that nitrification was the principal pathway of N2O production in all treatments. 

Signor and Cerri (2013) and Oertel et al. (2016) cited that temperature and soil density are the 

main factors inducing N2O emission from nitrification while, N2O emissions from 

denitrification are related to WFPS.  

4.4.6 Relationship between N2O emissions and agronomic efficiency of fertiliser  

Minimising and managing N inputs to optimise sugarcane yield is a priority for the Australian 

sugarcane industry. Approaches include the selection of sugarcane cultivars with superior N 

use efficiency (Robinson et al., 2011) and agronomic strategies that improve N fertiliser use 
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(Thorburn et al., 2017, Bell et al., 2014). A simulation study identified N fertiliser rates more 

prominently affecting N use efficiency (NUE) (Thorburn et al., 2017) than management 

practices such as timing of fertiliser application, splitting N application, tillage intensity and 

in-field traffic management. Agronomic efficiency of fertiliser is an indication of how much 

additional cane (above the amount produced with zero N fertiliser) is produced per kg of N 

applied, and these values increased in reduced N treatments. Our results are in the range of 

agronomic efficiencies reported (0.11-to 0.31 t cane ha-1 kg-1 N applied; Bell et al., 2014), and 

the agronomic efficiency was similar in reduced N treatments with or without legumes.  

Our study, similar to Van Groenigen et al. (2010), showed a significant negative relationship 

between yield-scaled N2O emissions and Agron Eff, especially in the Rain-fed site (Figure 4). 

At the two locations, reduced N treatments plots (with or without legumes) decreased yield-

scaled N2O emissions from 205 to 64 g N2O-N per tonne sugarcane in Rain-fed site and from 

32 to 21 g N2O-N per tonne sugarcane in the Irrigated site while the agronomic efficiency of 

N use increased from ~0.2 to 0.3 t cane kg N applied at both sites. 

4.5 Conclusion 

This study confirms previous research that depending on environmental conditions, low to high 

N2O emissions occur from sugarcane soils. The combination of available N, high bulk density, 

low drainage, high WFPS and high soil carbon levels (soil organic carbon, trash blanket) 

resulted in high N2O emissions, while available N in combination with higher drainage, lower 

WFPS and soil carbon levels had comparatively low N2O emissions. Soybean companion 

cropping with reduced N fertiliser was associated with higher N2O emissions but did not 

exceed full N fertiliser rates. This finding indicates that prudent use of N fertiliser has to 

accompany legume companion cropping. Next steps research has to deepen the observations 

here that soybean can support sugarcane growth and reduce N2O emissions. Longer term 

studies are needed to enable maximise the benefits of legumes for N2O mitigation. In addition 

to soybean, other legumes should be tested for their ability to acquire excess N in the early 

season, perform BNF and decompose to optimise N cycling in sugarcane systems while 

minimising competition and maximising facilitation. 
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Chapter 5 – Responses of sugarcane and soybean to 

N supply in a glasshouse experiment 
 

The outcomes of this chapter are based on a glasshouse experiment that allowed us to 

understand the interaction between sugarcane and soybean at different N fertilizer rates under 

control conditions. The effect of N fertilizer had an important role in sugarcane and soybean 

biomass. Soybean outcompeted sugarcane growth at low or zero N fertilizer rates while for 

sugarcane was contrary over medium or high N fertilizer rates. 

 

5.1 Introduction  

Legumes are often used as rotation or intercrops because they are an important source of N, 

which can improve soil fertility, stimulate crop productivity and enhance use of nutrients and 

water (Jensen et al., 2012, Park et al., 2010). Legume productivity in monoculture and in 

intercropping systems is influenced by microclimatic conditions, soil properties, crop 

genotypes and agronomic management (Salvagiotti et al., 2008, Unkovich et al., 2008). These 

interactions impact on the extent to which legumes can supplement or replace synthetic N 

fertiliser. The amounts of N fixed via BNF varies widely in monoculture and intercropping 

systems (reviewed by (van Kessel and Hartley, 2000). Nitrogen input from BNF of grain 

legume monocultures ranges from 14 to 215 kg N ha-1, and in intercropping systems from 8 to 

124 kg N ha-1. The legume N becomes available to the surrounding environment via 

mineralisation of legume shoot and root tissues (indirect transfer), and via root exudates and 

rhizo-deposits, and transfer through mycorrhizas (direct transfer) (van Kessel and Hartley, 

2000, Jensen, 1996, Lemaire, 1995, Thilakarathna et al., 2016). 

 

The amount of N transferred to non-legume crops varies widely (Thorsted et al., 2006, Ghosh 

et al., 2009). High levels of N fertiliser and soil inorganic N inhibit the rate of BNF; for 

example BNF of soybean decreased by 50% at applications of up to 160 kg N ha-1 (Salvagiotti 

et al. (2008). Likewise, BNF of pea intercropped with wheat dropped by 37% at applications 

of 80 kg N ha-1 (Ghaley et al., 2005). In a sugarcane-soybean intercropping system, BNF was 

similar at high N fertiliser rates between 300 and 525 kg N ha-1 (Shiming and Gliessman, 2016), 

perhaps because such high N fertiliser rates equally suppress BNF. Application of N fertiliser 

often increases soil nitrate levels, which suppresses nodule numbers, nodule mass, BNF 

activity, and accelerates nodule senescence and disintegration ((Ohyama et al., 2011).  
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Quantifying the facilitative or competitive effects of legumes on nutrient availability in 

intercropping systems is challenging as growth and resource requirements of component 

species combinations differ (Ghosh et al., 2009). A way to quantify these interactions is via 

indices of facilitation and competition that describe the type and intensity of interactions 

between species and/or cultivars (Zhao et al., 2016). Interspecific competition can be linked to 

crop growth rates, root system architecture, plant density among others factors that affect the 

competition for water, nutrients and light (Geetha et al., 2015, Ghosh et al., 2009, Yang et al., 

2013, Billore et al., 2000). Conversely, facilitation occurs when one species facilitates growth 

of other species, such as via nutrient mobilisation (Li et al., 2016). Intercropping systems often 

produce higher biomass than monocultures, if two species access different resources and 

therefore do not compete directly and increasing efficiency (Zhang and Li, 2003, Li et al., 

2009). 

 

While sugarcane-legume intercropping is successful in some circumstances, in others a 

negative or no effect on sugarcane yield was observed (Geetha et al., 2015, Gana and Busari, 

2003, Roodagi et al., 2001b). Sugarcane yields were suppressed in a sugarcane-soybean/lupin 

(Glycine max/Lupinus albus) intercrop at N fertiliser N rates of 0, 33, 67, and 100% of the full 

N rate (Ramouthar et al., 2014). Similarly, cowpea (Vigna unguiculata), mung bean (Vigna 

radiata) and urad bean (Vigna mungo) reduced sugarcane yield by 8 to 14%; however, 

economically such system was successful with the highest benefit cost ratio at applications of 

125% of the recommended NPK in sugarcane-cowpea systems (Kumar et al., 2006).  

 

Overall, most of the experiments using legumes to intercrop with sugarcane have been 

performed in the field. Assessment of the effect of N in sugarcane-legume intercropping 

systems to date has largely used different rates of N fertiliser and focussed on sugarcane 

growth, production and juice quality in field trials. In Chapter 4, at the rain-fed subtropical  

site, we found that the presence of a legume intercrop benefitted sugarcane yield at 0 kg N ha-

1 but not at 80 kg N ha-1. It suggests that presence of N fertiliser reduced the facilitation 

provided by the legume intercrop; or that factors other than N became limiting as crops grew 

larger in the presence of fertiliser. Although field experiments are important to understand 

responses under different climate conditions and farm management, greater understanding of 

the interaction between sugarcane and legume intercrops at different fertiliser rates profit from 
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controlled experiments than allow to solely assess the effect of N fertilisation on the 

performance of sugarcane and soybean.  

 

The overall project here is based on the concept of legumes as green manure companion crop, 

which decays and supplies N to sugarcane. While legumes are grown with the primary purpose 

of advantaging sugarcane, BNF capacity of soybean, despite being a potential competitor of 

sugarcane, is crucial for the performance of the system. It remains unclear to what extent 

growing, living legumes can directly supply N to sugarcane through direct BNF-derive N 

leakage or transfer (Thilakarathna et al., 2016, Li et al., 2016), or indirect decomposition and 

mineralisation after legume death (Ghaley et al., 2005, Jensen and Hauggaard-Nielsen, 2003, 

Ijoyah, 2012, Senbayram et al., 2015).  

 

Here we focus on the first question: can growing, living legumes directly supply N to 

sugarcane? The use of nodulating and non-nodulating soybean (Lin et al., 2012) allow 

separating the competitive effects of soybean (non-nodulating soybean) from the beneficial 

effects via N input (nodulating soybean). Additionally, the difference in N uptake of both 

soybean types allows to estimate the amount of N derived from BNF (Unkovich et al., 2008). 

The objectives of the research were to assess the interactions between N fertiliser rate, biomass 

production and N uptake of sugarcane and soybean when grown together, with nodulating or 

non-nodulating soybean, and compared to sugarcane grown without soybean.  

5.2 Material and methods  

5.2.1 Plant material and growing conditions  

A commercial sugarcane cultivar (Saccharum officinarum x spontaneum, cv. Q138) was grown 

in a naturally lit glasshouse during summer-early autumn (December 2016 to March 2017) at 

the University of Queensland in Brisbane, Australia. Over the experimental period, daytime 

temperatures in the glasshouse ranged from 21 to 37°C. Mature sugarcane stalks were obtained 

from the rain-fed subtropical site, Maroochy River, Sunshine Coast, Queensland. Sugarcane 

plants were grown from setts (nodal stem cuttings; 2.5 cm average length) without N for four 

weeks in seedling trays with perlite as medium before transfer to pots. 

  

Nodulating soybean cv. Bragg and non-nodulating ‘139 mutant soybean’ (Glycine max) were 

inoculated by adding and mixing moist peat inoculum (Nodule NTM rhizobia, NewEdge 

Microbials Pty Ltd.). Seeds were provided by the Centre for integrative Legume Research, The 
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University of Queensland. Seeds were inoculated one hour before planting to ensure maximum 

BNF potential. Additionally, 20 grams of Nodule NTM inoculum was dissolved in 22.5 litres of 

tap water, and 300 ml was applied to all pots with soybeans.  

Sugarcane seedlings and soybean seeds were grown together in 8 litre pots (24.8 cm diameter) 

with a mixture of 25% soil and 75% sand as a potting medium with free drainage. Sugarcane 

seedlings were planted on the 2nd of December 2016 (‘start of the experiment’). Four soybean 

seeds per pot were sown 14 days later, and re-sown where soybean germination failed. Three 

soybean plants were removed from each pot and one plant was left to grow. Soybean flowered 

from 60 to 69 days, and pod formation commenced by day 70. The experiment was harvested 

on day 88. Nitrogen and basal fertiliser (P, K, S) was applied at day 42 at five cm depth. Basal 

fertilisation consisted of 1.0 g pot-1 of phosphorus (approximately 40 kg P ha-1), 2.4 g pot-1 of 

potassium (100 kg K ha-1) and 0.5 g pot-1 of sulphur (20 kg S ha-1), Sugar Research Australia 

2013. Urea was source of N, mono-potassium phosphate and sulphate potash were the sources 

of P, K and S. All pots were supplied with a micro-nutrient solution of pH 6.0 (200 μM 

FeEDTA, 10 μM MnCl2, 10μM H3BO3, 1μM CuSO4, 2.5 μM ZnSO4, 0.35 μM Na2MoO4) 

twice a week, and supplied with tap water until the harvest. Nutrient solution or water was 

added until liquid was dripping from pots. Potting media comprised of 75% sand and 25% soil 

with a total organic carbon level of 0.16% and total N of 0.05%, available P of 18 mg/kg 

(Cowell P), CEC of 7.5 cmol (+)/kg, and pH of 6.5 (1:2 soil:water).  

5.2.2 Biomass and nitrogen analyses  

Plants were harvested 88 days after the start of the experiment. Sugarcane plants were separated 

into leaves (mature leaf blades and sheaths, immature leaves) and stalks. Soybean plants were 

separated into leaves (with petiole) and stalks. Roots of sugarcane and soybean were 

considered whole because separation proved impossible. Plant tissue was dried at 60◦C, 

weighed and ground to a fine powder for N analysis. Tissue N concentration of each component 

was analysed by combustion (LECO TruSpec analyser, LECO Ltd., St Joseph, MI, USA). Dry 

matter biomass above and below ground of each intercropping component was expressed in g 

per pot and multiplied by its respective N concentration to calculate N uptake.  

5.2.3 Statistical analyses 

Statistical analyses were performed using Minitab (McKenzie, JD 2004) Software. The 

treatments were arranged as a randomised complete block design (CBD) with two factors and 

five replicates. The first factor, soybean cultivars, were nodulating (cv. Bragg) and non-

nodulating soybean intercropped with sugarcane, and sugarcane monocultures. The second 
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factor was N fertiliser rate which was applied as one of five rates 0, 1.1, 2.2, 3.3, 4.3 g per pot-

1, comparable to 0, 45, 90, 135, 180 kg N ha-1. Differences and interactions between treatments 

were calculated by GLM-ANOVA and LSD all-pairwise comparison test at P<0.05. 

Interspecific competition indices  

Relative yield quantifies the productivity of intercropping relative to a sole crop (Ghosh et al., 

2009, 2006). For the glasshouse experiment, relative dry matter yield and N uptake (yield) 

(RDY, RNY) of aboveground intercropped sugarcane aboveground biomass was used to 

estimate the effect of intercropping with soybean (Ghosh et al., 2009, 2006, Jensen, 1996) and 

calculated as follows: 

 

RDY=   DM ISC 

              DM MSC 

RNY=   N uptake ISC 

              N uptake MSC 

 

Where DM ISC and N uptake ISC are intercropped sugarcane dry matter and N uptake, and MSC 

and the equivalent values of monoculture sugarcane. Theoretically when RDY ≥ RNY, N is 

limiting for intercropped sugarcane, and if RDY ≤ RNY, more N is accessible in the 

intercropping system (Ghosh et al., 2009).  

5.2.4 Capability for BNF and quantification of BNF 

The capability of soybean to fix N2 and the amount of fixed N were assessed by subtracting 

the N content of the sugarcane+non-nodulating soybean from the sugarcane+nodulating 

soybean treatment at each N rate (Unkovich et al., 2008). BNF can be determined by the 

difference in uptake of N of the N2 fixing legume and reference plants, in our case the sugarcane 

with non-nodulating soybean.  

 

N2 fixed = Total N Yield (ISC+NSB) – Total N Yield (ISC+Non-NMSB) 

 

Total N Yield (ISC+ NSB) refers to the combined N uptake of sugarcane and nodulating soybean 

(above and belowground) in the intercropping system. Total N Yield (ISC+ Non-NMSB) refers to the 

combined N uptake of sugarcane and non-nodulating soybean (above and belowground) in the 

intercropping system.  
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Additional assessment of nodulation was used to support to calculated N input. Nodulation was 

scored visually (Unkovich et al., 2008) with scores from 0 for no nodulation, poor to medium 

nodulation, to a maximum score of 5 (>20 nodules counted). 

5.3 Results  

5.3.1 Biomass production 

At harvest, 32% of all soybean plants, irrespective of N rates and nodulation ability, were 

forming pods, the others were flowering. Sugarcane was in the tillering phase. Sugarcane shoot 

dry matter increased significantly with increased additions of N and plateaued at additions >2.2 

g N per pot in intercropped treatments, irrespective of the type of soybean (Figure 5.1a). 

Sugarcane as sole crop increased dry matter shoot sharply up 1.1 g N per pot-1 to 74 g per pot-

1, with similar biomass produced at all rates >1.1 g N pot-1. Presence or absence of soybean did 

not significantly affect sugarcane biomass at 0, 2.2, 3.3, or 4.3 g N, but soybean significantly 

decreased sugarcane biomass at 1.1 g N pot-1 (Figure 5.1a). 

 

Biomass of nodulating soybean was greater with 0, 1.1 and 2.2 g N, decreased gradually at 

higher rates of N application, and was significantly lower in the 4.3 g N treatment with shoot 

legume dry matter reduced by 56% (P<0.05) compared to non-fertilised soybeans (Figure 

5.1b). Aboveground biomass of nodulating soybean was 229 and 37 % greater than biomass of 

non-nodulating soybean at 0 and 2.2 g N, and similar at all other N rates (Figure 5.1b). Non-

nodulating soybean had the highest biomass at 1.1g N per pot-1, a non-significant trend towards 

reduced biomass with each increasing N level, and significantly lower biomass in the 0 N 

treatment (P<0.05) (Figure 5.1b).  

 

The addition of N fertiliser increased the combined shoot and root biomass with significant 

(P<0.05) differences between treatments (Figure 5.1c). Application of 1.1 g N increased total 

aboveground biomass 1.8, 3.8 and 14.4-fold and root dry matter biomass by 1.6, 2.6 and 3.4-

fold with nodulating soybean, non-nodulating soybean and sole sugarcane treatments 

respectively, compared to the zero N application (Figure 5.1c). There was no statistically 

significant effect of N fertiliser or soybean type on total above and belowground biomass at 

applications > 2.2 g N for intercropped treatments; however, intercropped systems with non-

nodulating and nodulating soybean had 1.3 and 1.5 times higher shoot dry matter than 

sugarcane only (P<0.05) (Figure 5.1c). Adding soybean resulted in significant differences 

(P<0.05) in the total shoot dry matter (Table S5.2), especially in the unfertilised treatment 
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where the sugarcane monoculture and sugarcane+non-nodulating soybean produced 90 and 

56% less aboveground biomass than sugarcane+nodulating soybean (P<0.05). 

5.3.2 Nitrogen uptake and internal nitrogen use efficiency  

Shoot N content of sugarcane and soybean showed similar trends to biomass production 

(Figure 5.2a). Sugarcane shoot N uptake increased significantly with higher N application. 

Sugarcane aboveground N uptake was not affected by the presence of either type of soybean. 

Nodulating soybean was very sensitive to N applications with aboveground N uptake highest 

in the 0 and 1.1 g N treatments and decreasing significantly by 36 and 60% at 2.2 g N and 3.3 

g N applications, respectively. Nitrogen applications 3.3 g N resulted in similar soybean 

aboveground N (Figure 5.2b). Non-nodulating soybean had similar N content at all fertiliser 

application levels, although there was a trend towards highest N uptake at moderate fertiliser 

levels (Figure 5.2b). Non-nodulating soybean had significantly lower aboveground N content 

than nodulating soybean at 0, 1.1 and 2.2 g N application, and N content of both soybean types 

was similar at higher N applications (>3.3 g N).  

 

Total aboveground N uptake was significantly higher in the non-nodulating 

sugarcane+soybean than in monoculture sugarcane at all N fertiliser levels (Figure 5.2c). Total 

combined aboveground N uptake in the unfertilised treatment with nodulating soybean was 6.5 

and 37.5-fold higher than that of non-nodulating soybean and sugarcane monoculture, 

respectively (Figure 5.2c). Additionally, N uptake into root biomass for the unfertilised 

nodulating soybean treatment was 3.0 to 5.5-fold higher than non-nodulating soybean and 

sugarcane monoculture, respectively (Figure 5.2c). As a general trend belowground N uptake 

from the unfertilised treatment was almost similar compared to the all fertiliser treatments. 

Total N uptake remained stable at applications more than 2.2 g N per, ranging from 0.36 to 

0.53 g N pot-1 (Figure 5.2c).  
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Figure 5. 1 Pot experiment of sugarcane plant grown with a soybean plant or sugarcane grown 

as sole plant. Shoot dry matter of sugarcane grown in the presence of a soybean plant or as sole 

sugarcane (a), shoot dry matter of soybean grown with sugarcane (b), shoot and root dry matter 

of sugarcane and soybean (root dry matter is sugarcane and soybean combined) (c) under 

different N supply (SE, n=5). Different letters above bars indicate differences at P<0.05 

between treatments (LSD, Fisher test).   
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Figure 5. 2 Pot experiment of sugarcane plant grown with a soybean plant or sugarcane grown 

as sole plant. Shoot N uptake of sugarcane grown in the presence of soybean (a), shoot N 

uptake of soybean grown with sugarcane (b), and total N uptake of shoots and roots of 

sugarcane+ soybean, and sugarcane monoculture (root dry matter is sugarcane and soybean 

combined (c) under different N application rates. (SE, n=5). Different letters above bars show 

differences at the P<0.05 level between N fertiliser and legume treatments (LSD, Fisher test).   
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Figure 5. 3 Sugarcane with nodulating soybean plants (a) and sugarcane with non-nodulating 

soybean plants (b) grown with N fertiliser rates (kg N ha-1 are shown, translating to 1.1, 2.2, 

3.3 and 4.3 g N per pot-1). Photos were taken day 84 of the experiment.  

 

 

 

 

 

(b) 

(a) 
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5.3.3 Tillering  

Intercropped soybean cultivars did not affect sugarcane tiller formation. Tillering increased 

significantly at increasing rates of N fertiliser (P<0.05). Applications from 1.1 to 4.3 g N 

increased the number of sugarcane tillers from 0 to 5.6, 6.2 and 7.4 tillers in the presence of 

nodulating soybean, non-nodulating soybean and sugarcane only, respectively (Table 5.1). 

Sugarcane shoots were thinner in the zero N aplication, and stooling was reduced. With N 

fertiliser sugarcane and nodulating soybean were markedly greener compared to zero N and 

compared to non-nodulating (Figure 5.3a and b) 

 

Table 5. 1 Number of sugarcane tillers of sugarcane grown with soybean, and nodulation of 

soybean under different fertiliser N rates.   

 

g N  

per pot 
Nodule scores*  

Number of sugarcane tillers 

Sugarcane 

+nodulating  

soybean 

Sugarcane 

+non-nodulating 

soybean 

Sugarcane only 

0 4.8a  0.0 d ± 0.0 0.0d ± 0.6 0.0 d ± 0.5 

1.1 4.4a 4.2 c ± 1.1 3.8 c ± 1.9 4.8 c ± 1.2 

2.2 2.6b 5.4 bc ± 0.5 5.4 bc ± 1.0 5.0 bc ± 2.2 

3.3 2.4b 5.6 bc ± 2.7 5.5 bc ± 1.6  5.4bc ± 0.6 

4.3 0.4c 5.6 bc ± 1.1 6.2 ab± 0.8 7.4 a ± 3.9 
              Different letters in the column show differences at P<0.05 level of significance between N fertiliser rates    

(LSD, Fisher test). *Unkovich et al., 2008. 

 

5.3.4 Internal nitrogen efficiency of sugarcane 

Internal N use efficiency (iNUE) indicates how much biomass is produced per amount of N 

acquired into shoots. As a general trend, sugarcane iNUE decreased with soybean and in 

monoculture with increasing N applications. Intercropped sugarcane reached the highest iNUE 

(up to 149 g biomass g-1 shoot N) at N applications <2.2 g N pot compared to sugarcane 

monoculture (up to 129 g biomass g-1 shoot N). Nitrogen applications >3.3 g N reduced iNUE 

to 74-94, but this was not statistically significant (Table 5.2).  

  

 

 

 



101 

 

Table 5. 2 Internal nitrogen use efficiency (iNUE) of aboveground biomass from intercropped 

sugarcane with nodulating and non-nodulating soybeans and sugarcane monoculture under 

fertiliser N application rates (± SD, n=5). 

 

 
Sugarcane+nodulating  

soybean 

Sugarcane+non-

nodulating soybean 
Sugarcane 

g N applied  

  
iNUE (g sugarcane biomass g-1 N in sugarcane shoots) 

0   131b     ± 17.5    149a     ± 31.2   125bc ± 10.7 

1.1  119bcd ± 10.8    114cde ± 18.9     129b  ±  13.1 

2.2  93gh    ± 8.1    103efg ± 11.9 108def ±   8.4 

3.3    86hi      ± 13.1    87hi     ± 13.9   94fgh  ± 12.9 

4.3  74i        ± 4.7    82hi     ± 11.1  85hi  ± 7.2 
            Different letters in each column indicate differences at P<0.05 between N fertiliser rates (LSD, Fisher 

test).  iNUE: internal nitrogen use efficiency 

 

5.3.5 Quantification of fixed N2 and nodulation  

Nodulating soybean fixed N2 as indicated by nodules were located in the crown–root zone of 

sugarcane which intermingled with soybean roots. Visual assessment indicated that nodules 

were active as indicated by the pink colour of leghaemoglobin (Figure 5.5a and b). A negative 

relationship was found between the presence of nodules and N applications rates, decreasing 

from a nodule score of 4.8 without N fertiliser to 0.4 at the highest N rate of N (Figure 5.4). 

 

Table 5. 3 Nitrogen fixed by nodulating soybean grown with sugarcane as estimated by 

comparison with non-nodulating soybean. (± SD, n=5). 

 

                 N uptake into shoots and roots  

N applied per pot 

(g) 

Sugarcane-soybean 

(nodulating)  

Sugarcane-soybean  

(non-nodulating) 

Estimated BNF 

(g N per pot) 

0   1.92ab   ± 0.3    0.38e  ± 0.1    1.55a± 0.2 

1.1    2.15a ± 0.1    1.26d ± 0.2    0.89b  ± 0.2 

2.2  1.97ab ± 0.3   1.56c  ± 0.2     0.41c ± 0.5 

3.3  1.97ab ± 0.3     1.83bc ± 0.2      0.14c ± 0.4 

4.3   2.01ab ± 0.2     1.87b  ± 0.3    0.15c  ± 0.2 
Different letters above bars indicate differences at P<0.05 between treatments (LSD, Fisher test).   
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Total N uptake was 6-fold greater with nodulating soybean compared to non-nodulating 

soybean in the unfertilised treatments. The nodulating soybean fixed an estimated 1.53 g N per 

pot at zero N fertiliser addition; this amount decreased to an estimated 0.22 g N per pot with 

increasing fertiliser addition (Table 5.3). 

 

 

 

 

Figure 5. 4 Intermingled roots of sugarcane and nodulating soybean at different N rates (kg N 

ha-1 are shown, translating to 1.1, 2.2, 3.3 and 4.3 g N per pot). The zero N fertiliser treatment 

has the largest amount of nodules. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. 5 Intermingled roots of sugarcane and soybean (SB: soybean, nodulating and non-

nodulating) and root system of sugarcane monoculture without N fertiliser (a) and appearance 

of active nodules from the nodulating soybean (b).  

  

 

 

 

(a) (b) 

Sugarcane Nodulating 

SB 
Non-nodulating 

SB 
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5.3.6 Competition indices of sugarcane–soybean system  

The relative dry matter aboveground biomass (RDY) and relative nitrogen uptake (RNY) from 

the intercropped sugarcane at harvest varied with the rates of N fertiliser. The unfertilised 

intercropped sugarcane had significantly higher (P<0.05) values of RDY and RNY (regardless 

the soybean type) than any other fertiliser rate.  

 

Table 5. 4 Shoot relative dry matter yield (RDY) and shoot relative nitrogen uptake (RNY) of 

intercropped sugarcane with nodulating or non-nodulating soybean, compared to sugarcane 

monoculture at different rates of N application. 

 

 

 

 

         

                   

 

 

 

 

 

 

                           Different letters in each column indicate differences at P<0.05 level of significance.  

 

Nitrogen application influences the competitive ability of sugarcane. The RDY of intercropped 

sugarcane increased gradually from 0.61 to 1.04 and from 0.64 to 1.09 with nodulating and 

non-nodulating soybean respectively at the application >1.1 g N and <4.3 g N, with a slight 

reduction at the highest levels of N rate. Similar trends were observed with RNY which 

increased from 0.56 to 1.12 without significant differences between fertilised treatments 

(P<0.05) (Table 5.4). 

 

Values closer or greater than 1.0 (without considering the zero treatments) at the higher rates 

of N (3.3 and 4.3 g N) showed an improvement in the use of N fertiliser and production of 

aboveground biomass for intercropped sugarcaneo but this was not significant compared to 

respective sole sugarcane.  At applications <1.1 g N, the relative dry matter (RDY) was higher 

than relative N yield (RNY) of intercropped sugarcane with both soybean types, suggesting N 

  Relative dry matter or N uptake of  

intercropped sugarcane  

soybean type 
N  

g  pot 
RDY RNY 

nodulating soybean 

0 1.43a 1.33ab 

1.1 0.61c 0.56c 

2.2  0.84 bc  0.98 bc 

3.3 1.04 bc 1.12 bc 

4.3 0.99 bc 1.09 bc 

non-nodulating 

soybean 

0 2.19a 1.80 a 

1.1 0.64 c 0.62c 

2.2 0.96 bc 1.00 bc 

3.3 1.09bc 1.18 bc 

4.3 1.02 bc 1.06 bc 
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limitation for sugarcane growth. Conversely, with fertiliser N >2.2 g N, RDY was lower than 

RNY, suggesting resources other than N are limiting (Table 5.4).  

5.4 Discussion 

5.4.1 Effects of soybean on sugarcane biomass and nitrogen accumulation 

The results indicate no significant effects of legumes on sugarcane biomass at 0, moderate or 

high N application; but significant decreases in sugarcane biomass at low N fertiliser rates. A 

similar pattern is observed with N accumulation. Presence or absence of BNF did not affect 

sugarcane biomass or N content. These findings indicate that no significant direct N transfer 

from soybean to intercropped sugarcane occured in this experiment, despite substantial N 

fixation in the zero and low-N treatments. Indirect N transfer from soybean to sugarcane 

(belowground decomposition of root tissue and nodules) was not examined in the experiment 

but the focus was on direct N transfer that may occur in the early season of legume and 

sugacane growth. The ‘indirect’ pathway of N transfer via mineralisation of residues and 

uptake by the non-legume crop is comparatively understood, direct transfer pathways are less 

well understood (Peoples et al., 2015). Our results agree with  studies that reported that 

cowpeas (Vigna unguiculata) in field and glasshouse experiments and ricebeans (Vigna 

umbellata)  in a field trial did not appear to directly transfer N to maize (Rerkasem and 

Rerkasem, 1988, Ofori and Stern, 1986). Similarly, reviews on the topic have concluded that 

contribution of direct N transfer are minor or negligible (Peoples and Herridge, 1990). 

However, pathway may contribute a significant proportion of the N of non-legume crops 

(Peoples and Craswell, 1992, Thilakarathna et al., 2016, Stern, 1993). Previous studies have 

shown the importance of root interaction to enhance the direct N transfer via root exudates in 

a maize-faba bean intercrop (Li et al., 2016) or via mycorrhizal hyphae network that increased 

direct N transfer from soybean to maize from 13.2 to 30.2%  (Zhang et al., 2017). Mycorrhizas 

were not quantified in the current study, although the presence of soil may have provided 

mycorrhizal spores. The mixture of 75% steam sterilised sand with 25% soil may not have 

been conducive to mycorrhizal growth. The high root contact between the two crops in pots 

should have provided conditions highly conducive to direct transfer of N via root exudates and 

another root-derived N. However no significant transfer was apparent, suggesting that this form 

of transfer may be less important than sometimes claimed. However, it our finding is 

representative of sugarcane-legume interactions in the field is unknown but should be 

investigated.  
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We speculate that the N advantage of legumes for sugarcane (Chapters 3 and 4) could be 

predominantly occuring via indirect N transfer of decomposition and mineralisation of legume 

litter. If this is the case, the overall success of legume intercropping for sugarcane will be 

determined primarily by how effectively soybean litter is decomposed and mineralised, and 

whether the timing of this N release is well matched with sugarcane N demand.  

 

Sugarcane-legume combinations showed a favorable response for iNUE. Sugarcane grown 

with legume produced more biomass per unit of tissue N acquired, especially at the lowest 

rates of N fertiliser (<2.2 g N pot). In line with our results, other studies showed that intercrops 

use soil nutrients more efficiently than monoculture crops due to high recovery (Zhang and Li, 

2003, Gao et al., 2014). However, iNUE from intercropped sugarcane was similar as sugarcane 

monoculture at the highest rates of N (>3.3 g N pot) suggesting that there was no competitive 

suppression of sugarcane growth by soybean at higher N rates.  

5.4.2 Interspecific competition indices for sugarcane-soybean intercropping 

Crop yield of intercropping systems is directly influenced by the interspecific competition of 

each crop (Zhao et al., 2016, Xia et al., 2013a, Yang et al., 2013, Li et al., 2001). In several 

studies, sugarcane grown with different legumes or other crops showed positive, neutral or 

negative sugarcane yield responses compared to sugarcane monoculture (Billore et al., 2000, 

Islam et al., 2009, Ramouthar et al., 2014, Kaur et al., 2016). Intercropping grain legumes  with 

cereals showed high competitive ability of legumes in conditions of low N availability, while 

cereals outcompeted legumes with high N availability (van Kessel and Hartley, 2000, 

Lithourgidis et al., 2011, Jensen, 1996, Ghaley et al., 2005). In our study, sugarcane had 

different N competitive intensities based on dry matter biomass (RDY) and N uptake (RNY) 

that changed with rates of N fertiliser. Though relative values in zero N applied were high, the 

absolute values of intercropped sugarcane shoot dry matter and N uptake were significantly 

lower than those fertilised N treatment (Figure 5.1a and 5.2a). A review by Bedoussac et al. 

(2015)  reported high partial relative dry matter yield occurred only in pot experiments or on a 

per plant basis where legumes penalised cereal yield because of greater legume growth like it 

happened in our glasshouse trial.  

The no N treatment with soybean resulted in non-significant facilitation of sugarcane growth 

and N uptake, while low applications of N fertiliser (1.1g N per pot) resulted in a competitive 

disadvantage to sugarcane crop in the presence of either soybean type. Applications >2.2 g N 

pot to intercropping treatments with soybean showed no effect of intercropping on sugarcane, 
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but resulted in yield penalties for soybean, probably due to competition from sugarcane. It 

concurs with research indicating that moderate to high N fertiliser application tip the balance 

of interspecific competition towards the non-legume intercrop in intercropping systems 

(Ghaley et al., 2005, Jensen, 1996). 

 

In a study similar to ours, addition of organic amendments (farmyard manure, and phospho-

compost) in combination with a reduction of NPK fertiliser by 25% minimised the competition 

for N and P between intercopped sorghum and legumes compared to the reduced NPK (without 

amendments) treatment (Ghosh et al., 2009). By contrast, a study in China on sugarcane-

soybean intercropping showed high interspecific competition exerted by soybean on sugarcane 

crop yield and N acquisition despite high levels of N  fertiliser (325 and 500 kg N ha-1). These 

responses were atributed to a lag of the growth stages between crops, and high capacity of 

soybean to compete for water, light and nutrients (Yang et al., 2013). In our study, soybean 

planting and fertilisation schedule may have reduced soybean supression of sugarcane yield. 

Soybean were planted about 28 days after the sugarcane seedling planting, and all plants 

received N fertiliser 14 days later. This planting schedule allowed the establishment of 

sugarcane before the introduction of the soybean intercrop (minicking field conditions), and it 

is likely that sugarcane was able to respond faster to N supply, as it would have had a larger 

root system than soybean at the time of fertiliser application.  

5.4.3 Roots and nodulation  

Yield improvements in intercropping systems have been associated with root traits (Meng et 

al., 2015, Li et al., 2016, Gao et al., 2010). Root distribution and length, morphology and 

interaction between intercropped species play important roles in nutrient uptake and water use 

(Gao et al., 2010, Li et al., 2006). In our study, roots of sugarcane-soybean could only be 

investigated as combined biomass as both roots systems were entangled. At zero N, combined 

root biomass and N contents from both intercropped treatments were greater than monoculture 

sugarcane roots, indicating extra resources were available via BNF. Ghaley et al. (2005) noted 

that interspecific competition decreased under N limitation when intercropped peas fixed N 

during early growth stages, and that pea and wheat can facilitate for N in soils with low N 

content. In all levels of fertiliser application here, total root biomass of intercropped and 

monoculture treatments was similar, potentially indicating limitations on root growth due to 

lack of available space for root expansion in the relatively small pots. 
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We calculated that up to 1.53 g N per pot was fixed in the zero N treatment while <0.22 g N 

per pot was fixed with higher rates of N fertiliser. In line with these findings, the nodulation 

score decreased significantly from 4.80 in the unfertilised treatment to 0.40 at the highest level 

of N. Our findings resemble other studies that showed a negative correlation between the % 

Ndfa (N derived from air) and higher levels of inorganic N (Parsons and Khubone, 1999). For 

example, Ghaley et al. (2005) found that pea intercropped with wheat decreased %Ndfa by 79 

and 90% with additions of 40 and 90 kg N ha-1. This indicates that trade-offs exist with N 

fertilising legume intercropping systems. While low N fertiliser rates maximise BNF, they  may 

disadvantage sugarcane growth due to a lack of N and/or competition from soybean. High N 

fertiliser rates on the other hand minimise both N fixation and competition, but reduce the 

adavantage of lower N fertiliser rates. 

5.5 Conclusions  

Presence or absence of soybean did not affect sugarcane biomass at zero, moderate or high N 

application, however, at low fertiliser application rates (1.1g N per pot) significant decreases 

in sugarcane biomass and N accumulation occurred. Our findings suggest that direct transfer 

of N from legumes to sugarcane was negligble in the tested conditions at all fertiliser rates and 

that advantages seen in field are likely to occur predominantly via indirect decomposition and 

mineralisation of legume biomass. This glasshouse study further confirms that finding the ideal 

N fertiliser rate and legume companion crop will need further research. We also conclude that 

the overall advantage of legume companion cropping will depend on how effectively soybean 

litter is decomposed and mineralised and whether this matches the timing of N needs of 

sugarcane. 
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Chapter 6 – General Discussion 
 

The research evaluates, for the first time, the relationship between N supply and N2O emissions 

in sugarcane-legume companion cropping systems in Australia. This thesis focusses on the 

questions if legumes can supplement synthetic N fertiliser and lower the emissions of N2O 

from the soil, and how sugarcane performs when intercropped with legumes. Several 

discoveries allow the conclusion that sugarcane-legume cropping has the potential for N2O 

mitigation, and that more research is needed to understand better and optimise such systems 

for particular climates, soil and agronomies.   

6.1 Effect of companion cropping on sugarcane yield (Chapters 2, 3, 4 and 5) 

In Chapter 2, review of the literature showed that in subsistence agriculture, sugarcane 

intercropped with oil legumes, pulses and other food crops benefit farm income, land use 

efficiency, resource use and soil health. Why then, if sugarcane intercropping is successful in 

subsistence agriculture, is it so rarely practiced in modern agriculture? Brooker et al. (2015a) 

postulated that in mechanised agriculture, intercropping hinders the management of 

monoculture crops by increasing labour and equipment needs. A key difference between 

subsistence and commercial systems is whether the intercrop can be harvested for profit – while 

this is feasible in small plots with manual labour, it may be more difficult to implement in 

mechanised systems. In the research here, legumes were planted solely as green manure crop 

with the aim to benefit sugarcane through BNF. Following the development of other successful 

intercropping systems in mechanised agriculture, we see an opportunity to advance sugarcane-

legume systems with customised agronomies. Multi-species cropping, whether as 

intercropping (all crops are harvested) or companion cropping systems (one crop is harvested), 

has considerable potential to improve crop yields with similar input, or to maintain or improve 

crops yields with reduced input; in all instances agronomic efficiency increases (Brooker et al. 

2015).  

 

The review of sugarcane intercropping (Chapter 2) and the empirical field experimentation 

(Chapters 3 and 4) provide evidence that legume intercropping can benefit sugarcane yield but 

also that it can have neutral or negative effects. It is clear that a wide range of parameters 

influences the outcomes of such system including spatial (row spacing, planting distance) and 

temporal (time of legume planting, size and growth of sugarcane) factors, water availability, 

legume type, soil and fertiliser rate.  
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Figure 6. 1 Summary of the three experiments and land-use management of sugarcane-legume 

companion cropping systems.  

 

In the three field experiments, soybean subtly enhanced sugarcane yield in several settings, and 

a pronounced positive effect occurred in N limiting conditions at the Rain-fed subtropical site 

when soybeans were planted early in the season into small sugarcane (~50 cm). Contrary, at 

the zero-N rain-fed treatment in the wet tropics, soybean did not improve sugarcane yield, 

possibly because legumes were planted late in the season (December) and into large sugarcane 

(>1 m). These results indicate that planting time is a major determinant if legumes benefit 

sugarcane yield (Figure 6.1). 

 

Sugarcane yield was not penalised when grown with reduced N and legumes (an exception was 

reduced N+mung bean at the Wet tropics site, see below). We hypothesise that facilitative and 

competitive interactions were in balance. Nitrogen benefits from legumes would have been 

less obvious because the reduced N fertiliser rate mostly sufficiently supplies sugarcane. Next-

step research should pay attention to studying the water relations of both crops as under Rain-

fed and low-rainfall conditions companion crops may compete with sugarcane for water. 

Interestingly in the year with 50% below the long-term average rainfall at the Wet Tropics site, 

sugarcane yield is not impacted by legumes. At the Irrigated site the same about of water was 
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applied all treatments, and the reduced N+legumes treatment had a (statistically non-

significant) trend towards higher sugarcane yield than the full N treatment (Figure 6.3), which 

requires further investigation. Whether this benefit is derived from BNF or other legume effects 

requires further investigation. Clearly, a better understanding of competition and facilitation is 

needed to dissect the interactions of sugarcane and legumes. Our study at three contrasting sites 

gives an early indications of potential problems (in our study herbivory by wildlife affected 

each site in one year), the need to test legume systems in N limiting conditions (which means 

reducing N fertiliser applications rates substantially over several years), and, as outlined above, 

the temporal effect: if legumes are planted too late, their benefits are likely to be low because 

they will be shaded out by sugarcane resulting in low input of N through BNF. 

 

The glasshouse experiment (Chapter 5) showed that the N fertiliser rate strongly affects 

sugarcane and legume biomass production. Soybean benefitted sugarcane biomass in the 

absence of N fertiliser, possibly because breakdown and decomposition of soybean nodules 

and roots occurred during the 88 days of the experiment, supplying some N to sugarcane. This 

notion is in line with the field experiments, where a significant increase in the soluble inorganic 

soil N pool occurred in several instances the presence of soybean. We conclude that higher 

resolution of soil N dynamics will improve understanding of how legumes affect soil N pools 

and budget. Such resolution can be achieved by quantifying not just the static N pools, but also 

N fluxes. Microdialysis is a sophisticated tool for studying soil N fluxes and discerning small 

changes in soil N availability with strong temporal resultion (Buckley et al., 2016). Further, in 

addition to inorganic N, the low molecular weight organic N pool should quantify as a source 

of N for sugarcane (Brackin et al., 2015) and account for up to 60% of the soluble low 

molecular weight N pool in sugarcane soils (Holst et al., 2012). 

 

The glasshouse experiment confirmed previous research that legume BNF is highest under low 

soil N availability and decreases with increasing N fertiliser. This change in N availability may 

well have been a factor in the field trials, where legumes benefitted sugarcane most with no N 

fertiliser application at the Rain-fed Subtropical site (but not the Dry Tropics site), and smaller 

or no benefits to sugarcane were apparent at higher fertiliser applications. In the glasshouse 

experiment, the presence of soybean decreased sugarcane biomass at low (but not at high or 

zero) fertiliser rates indicating that facilitation, competition and neutral effects occur depending 

on resource availability. A small but significant decrease in sugarcane yield was observed at 

the Wet Tropics site with reduced N+mung bean. Reasons for this are unknown, potentially 
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because BNF of mung bean was lower than soybean or because the competition was more 

pronounced. With sufficient N in glasshouse and field (reduced N treatments), we did not 

observe a competition between sugarcane and soybean. These results suggest that N application 

rates have to be tailored carefully to achieve a balance between maximising BNF and avoiding 

sugarcane yield penalties. In Australia, new government directives on N fertiliser use are being 

discussed because N pollution of the Great Barrier Reef lagoon is not being curbed as quickly 

as desirable. Some demand ‘disruptive innovation’ rather than the incremental improvements 

of the sugarcane farming system that have occurred over the past two decades. If farmers are 

limited in their N fertiliser use in the future, legume companion cropping may become of 

considerable importance to ensure N sufficiency with a lower N pollution footprint. 

 

6.2 Effect of fertiliser rate and legume intercropping on N2O emissions (Chapters 3 and 

4) 

N2O emissions from companion cropped systems were overall below those of the full N rate 

and higher than those from sugarcane only with the same level of N (Figure 6.3). This effect 

of increased N2O emissions with legume companion cropping was strongest where the 

sugarcane crop had the greatest yield benefit (Figure 6.2). At the Irrigated Dry Tropics site, in 

particular, the reduced N+soybean treatment and at the Rain-fed Subtropical site zero 

N+soybean treatment had greater N2O emissions, suggesting that successful BNF by soybean 

is accompanied by N losses.  

 

Peak N2O emissions occurred at each location soon after N fertiliser application confirming 

that urea fertiliser is readily converted by soil bacteria to inorganic N and N2O. The lowest 

N2O emissions occurred where soil moisture was comparatively low at sites with low rainfall 

and well-drained soils. At the Rain-fed Subtropical site, considerable rainfall and high soil 

moisture content over the crop season generated the highest cumulative N2O emissions. The 

main driver for N2O emission was soil nitrate, contributing 64 and 81% of the variation in N2O 

emissions in the Rain-fed Subtropical and Wet Tropical sites, respectively, followed by WFPS 

with 18%. At the Irrigated site only, the interaction of nitrate*WFPS contributed 63% of the 

variation in N2O emissions. The high soluble N pool and aerobic soil conditions that dominated 

at the Rain-fed and Irrigated tropical sites with WFPS <60% mostly provided conditions where 

N2O was generated via nitrification. In contrast, the Rain-fed Subtropical site had in addition 

to a high soluble N pool, high soil moisture contents of 60 to 90% WFPS and highest N2O 
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emissions, most likely from denitrification. Avoiding the accumulation of inorganic N in soil 

using legumes has potential to reduce N2O emissions. 

 

 

 
 

 

Figure 6. 2 Effects of legume companion crop on sugarcane yield (y-axis) and nitrous oxide 

emissions (x-axis). Both axes show percentage increase or decrease relative to the control 

treatment with the same fertiliser application without companion crop. Error bars showed the 

standard error of the mean from three field replicates. 

 

 

Brackin et al. (2013) reported that sugarcane soils have high nitrification rates, converting N 

from fertiliser or soil organic matter, increasing nitrate concentration in the soil and therefore 

allowing N2O emissions via denitrification. The findings in Chapters 3 and 4 provide some 

evidence that legumes BNF and the gradual addition of legume residues stimulated N2O 

emissions. Some evidence exists that labile C (such as that in legume biomass) supplied 

alongside with N promotes N2O production by stimulating soil microbial activity. It is possible 

that this was the reason here for generally higher N2O emissions in treatments with legumes 

present versus the same N fertiliser rate without legumes, similar to previous studies 

(Senbayram et al., 2015, Dyer et al., 2012, Huang et al., 2014, Epie et al., 2015, Carter et al., 

2014, Jensen et al., 2012, Pappa et al., 2012).  

 

The zero-N treatment with soybeans at the Rain-fed Subtropical site had sugarcane yield 

increases of 41%, achieving a similar yield as full N fertiliser sugarcane with 83.3% lower N2O 

emissions than the full N rate. This indicates that soybeans can facilitate sugarcane yield while 

reducing N2O emissions. However, these findings also suggest that N derived from legume N-
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fixation like N derived from chemical fertiliser has a risk of losses to the environment, similar 

to findings from previous studies examining N losses from legume-fertilised compared to 

synthetic-fertilised cropping systems (Robertson et al., 2000, Crews and Peoples, 2004). Other 

potential environmental benefits have not been quantified – we did not measure N losses via 

leaching and runoff, which are a larger N loss pathway than N2O emissions (Zhou et al., 2012). 

A further consideration is that BNF has no pollution footprint compared to Haber-Bosch N 

fixation that has a high energy demand (approximately 2% of global energy use) in addition to 

emissions linked to transportation from manufacturing plant to the field (Crews and Peoples, 

2004). Future studies should include life-cycle analyses to examine the whole pollution 

footprint of both cropping systems. 

6.3 Future challenges and research directions 

Sugarcane farming in Australia has caused changes in soil fertility, decreased soil organic 

carbon, altered soil microbial community structure and nutrient cycling (Brackin et al., 2017, 

2013). Sugarcane-legume companion cropping has potential to be a sustainable alternative to 

current practices. Sugarcane would rely partialy on legume BNF and the soil’s capability to 

recycle nutrients. This system has drawbacks as highlighted by this study, including the 

unsuccessful or partial establishment of legumes due to wildlife or adverse weather conditions 

preventing timely legume planting and growth. 

 

As outlined above, legume inter/companion cropping can improved sugarcane yield but also 

have not measurable effect or even reduce yield. The exact reasons for this remain unclear, and 

we can only speculate about likely processes (Figure 6.3). Legumes were more successful at 

the Irrigated and Rain-fed Subtropical sites (Chapter 4), both of which had relatively high-

water availability. Less or no competition for water may have been the reason for the benefits 

observed at the wetter sites, compared to the neutral or negative effects at the drier Wet Tropics 

site (Chapter 3).  
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Figure 6. 3 Summary of field experimentation: reduced N+soybean (left); reduced N sugarcane 

(middle), and full N sugarcane (right). Soil ammonium (NH4
+-N) and nitrate (NO3

--N) content 

in the soil is in mg kg-1 of soil. Pools soluble N are annual averages. N2O are cumulative 

emissions (kg N2O-N ha-1) over the crop cycle. The amount of N acquisition for the crop 

(sugarcane shoots at harvest is shown) and the amount of N applied to the crops are in kg N 

per hectare. 
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Legume planting dates relative to the sugarcane varied at each site depending on local 

conditions – ranging from an early planting into small sugarcane at the irrigated site, to very 

late planting into tall sugarcane at the wet tropics site. At the rain-fed subtropical site, legumes 

were planted at an intermediate stage. Planting date potentially had a strong outcome on the 

system, and future trial research has to investigate legume planting dates and water regimes. 

Conditions of high-water availability and early legume planting date may maximise benefits 

from legumes as BNF can increase and legume decomposition occur earlier in the season, to 

better align with sugarcane N needs (Figure 6.1) 

 

The legume species and cultivar is likely to be important but was not a focus of the 

investigations here. We chose soybean for all location because suitable soybean varieties 

adapted to local conditions and Bradyrhizobium inoculum were available. At the Wet Tropics 

site (Chapter 4), mung bean was planted in addition to soybean. Both legumes had a similar 

effect on N2O emissions and sugarcane yield in the first year, but in the second-year sugarcane 

yield with soybean outperformed that of mung bean. Other intercropping studies have 

highlighted the importance of selecting suitable legume species and cultivars to maximise the 

potential for facilitation and minimise competition (Jones et al., 2007, Huang et al., 2014). 

Considerations should include the legume’s chemical composition (e.g. polyphenol content, 

protein binding capacity of polyphenols, other) as these impact on N2O emissions (Millar and 

Baggs, 2004). In a given soil and climate, the combination of total N, C/N ratio and chemical 

makeup of legume tissues will dictate the speed of breakdown and N release. It would be ideal 

if the timing of legume decomposition coincides with the N needs of sugarcane and if low 

molecular weight organic N or ammonium are the end products, rather than nitrate. 

 

With a couple of exceptions where the presence of soybean temporarily increased the levels of 

inorganic soil N, legumes did not affect the inorganic N pools. Reasons include that N uptake 

and release processes were in equilibrium,decomposition from litter was gradual, 

mineralisation was slow, or that sugarcane uptake acquired legume N. A further possibility is 

that the resolution of soil N analysis was insufficient (see discussion above) to discern what 

may be subtle changes in the total soluble N pool and/or fluxes. Future studies should examine 

the patterns of litter deposition and N release.  

 

The complex interactions between species may also influence the rhizosphere including 

microbial communities, which drive nutrient cycling as well as nitrification and denitrification 
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processes. Soil microorganisms from the domain archaea  (encoding ammonia-oxidising genes, 

AOA) may produce lower N2O emissions than ammonia-oxidising bacteria (AOB). AOA were 

dominant in sugarcane, pasture and vegetable soils (Bowatte et al., 2009, Liu et al., 2016, 

Paungfoo-Lonhienne et al., 2017, Hink et al., 2016). Thus, sugarcane-legume intercropping 

may have potential to mitigate N2O emissions if the combination of both species fosters the 

presence of AOA, especially where nitrification is the main pathway for N2O emissions.   

 

Further research on a wide range of land uses and management practices could add information 

about how legumes affect soil physical, chemical and biological parameters. Like other organic 

amendments, the gradual contribution of dying legumes biomass will increase the flow of 

nutrients through decomposition. Future research should also examine the effect of sugarcane-

legume intercropping on soil health. Soil health is a major issue within the Australian sugarcane 

industry, and legume rotation crops are considered one of the best management practices to 

mitigate the accumulation of soil pathogens (Brackin et al., 2017). Legume intercropping may 

have potential for improving soil biological health, and research has to explore this possibility.  

 

The research completed here may be useful for sugarcane industries elsewhere. For example, 

the sugar industry in Ecuador (the PhD candidate’s country) faces similar challenges as in 

Australia. The Ecuadorian sugarcane industry heavily relies on synthetic N fertiliser and the 

use has increased by up to 63% in the past decade (FAOSTAT, 2016) to 100 to 180 kg N ha-1. 

Current practices include planting of velvet bean (Mucuna pruriens, the only available legume 

species) or rice (Oriza sativa) as rotation crops before planting the new sugarcane crop. Velvet 

bean was able to supply about 105 kg N ha-1 through aboveground biomass, reducing weeds 

and increasing beneficial native microorganisms in the soil (Rhizobium and Gluconacetobacter 

spp.) (CINCAE, 2017). Abiotic factors differ greatly between Australia and Ecuador, the main 

constraint to sugarcane production in Ecuador is limited sunlight due to high cloud cover. For 

example, the watershed of the Guayas River where the Ecuadorian sugarcane industry is 

located has a third of the sunlight per day (CINCAE, 2017) compared to the Australian industry 

(Bureau of Meteorology, 2016) . In our study, competition for light between the two crops was 

probably a minor factor (except after closure of the sugarcane canopy when desirable shading 

out of legumes occurred). Light limitation may be a bigger problem in Ecuador and research is 

needed to determine if, for example, early vigour of legumes can hinder sugarcane 

establishment. A current constraint in Ecuador is the availability of legume seeds, which would 

have to be addressed to expand from velvet bean to test legumes.  
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Overall, the insight generated from the current study provides foundations for sugarcane-

legume companion cropping. If successfully implemented, sugarcane-legume systems may 

extend the lifespan of the sugarcane ratoon cycle, reduce N fertiliser needs, improve soil health, 

and, importantly, reduce N losses.  
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Appendices 
 

 

Appendix A – Supplementary Information (Chapter 3)  

 

 

Table  S3.1. Concentrations of soluble NO3
-
 and NH4

+ N averaged across seasons in the top 

10 cm of soil (± S.D, n=3), from sugarcane rows and inter-rows with different N fertiliser 

rates in sugarcane monoculture and sugarcane–legume companion cropping system at 

Abergowrie, North Queensland.  

 

 

N (kg ha-1) Spring Summer Spring Summer 

2014-2015   

sugarcane row NO3
--N, mg kg-1 soil NH4

+-N, mg kg-1 soil 

148 9.4a ± 6.4 11.0a ± 1.9 36.9b ±5.6 14.6a ± 3.6 

91 7.7a ± 7.5 11.1a ± 2.6 42.4ab ±9.7 13.0a ± 5.4 

91+soybean 6.6a ± 7.8 12.4a ±1.2 40.1ab ± 7.6 12.4a ± 1.7 

91+mung bean 6.6a ± 2.6   9.8a ± 5.0 50.7a ±12.7 12.3a ± 1.2 

0 0.4b ± 0.8  1.3b ± 0.3 3.3c ± 1.3  7.5b ± 2.5 

sugarcane  

inter-row 
1.2 ± 0.2 2.2 ± 0.7 2.4 ± 0.5 5.7 ± 1.4 

2015-2016   

sugarcane row     

148 14.3a ± 11.3 18.8a ± 1.8 36.4a ± 4.7 17.8a ± 3.0 

91 19.3a ± 11.4 18.8a ± 1.4 42.3a ± 5.1 18.3a ± 1.2 

91+soy 8.8a ± 4.1 19.7a ± 2.6 36.9a ± 3.2 19.4a ±2.5 

91+mung 12.5a ± 6.5 19.5a ± 3.1 38.8a ± 4.4 18.4a ± 5.1 

0 0.3b ± 0.5   1.6b ± 0.5 15.6b ± 3.9 3.9b ± 0.4 

sugarcane inter-

row 
2.1 ± 1.3 3.8 ± 0.8 5.8 ± 3.5 3.2 ± 0.8 

Different letters in the column show differences at P<0.05 level of significance between N fertiliser and 

legume treatments in sugarcane rows. Concentrations for sugarcane inter-rows are averaged across treatments 

as no significant differences were observed. 
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Appendix B – Supplementary Information (Chapter 4)  

 

Table S4.1 Seasonal N2O-N fluxes (± S.D, n=3), from the sugarcane row and inter-row at 

different nitrogen rates in sugarcane as monocrop and sugarcane–soybean as intercropping 

system at Rain-fed site. 2014-2015 season. 
 

 

Rain-fed site Summer Autumn Winter-Spring 

N fertiliser  

(kg N ha-1) 
N2O-N, mg m-2  h-1 

sugarcane row   

160 2.37a ± 1.14 0.21a ± 0.16 0.01± 0.005 

80 0.68 b ± 0.23 0.01b ± 0.00 0.02 ± 0.02 

80+soybean 1.25bc± 0.61 0.04b ± 0.03 0.01 ± 0.00 

0+soybean 0.36c ± 0.41 0.02b ± 0.01 0.01 ± 0.00 

0 0.08d ± 0.03 0.01b ± 0.00 0.01± 0.00 

sugarcane 

inter-row 
0.036 ± 0.020 0.007 ± 0.005 0.008± 0.004 

Irrigated site Winter Spring 
Sumer-

Autumn 

N fertiliser  

(kg N ha-1) 
N2O-N, mg m-2  h-1 

sugarcane row   

250 0.56a ± 0.04 0.28a ± 0.04 0.006± 0.003 

180 0.50a ± 0.03 0.25a ± 0.11 0.008 ± 0.003 

180+soybean 0.29b ± 0.15 0.16a ± 0.13 0.011 ± 0.003 

0 0.02c ± 0.01 0.01b ± 0.01 0.001 ± 0.002 

sugarcane 

inter-row 
0.01 ± 0.008 0.01 ± 0.015 0.002 ± 0.003 

 
 

Table S4.2 Seasonal  NO3-N and NH4-N concentration in the soil (± S.D, n=3), in the top 10 

cm of soil profile, from the sugarcane row and inter-row at different nitrogen rates in sugarcane 

as monocrop and sugarcane– soybean as intercropping system at Rain-fed site. 2015-2016 

season 

 

N (kg N ha-1) Sumer Autumn 
Winter-

Spring 
Sumer Autumn 

Winter-

Spring 

sugarcane row NO3
--N, mg kg-1 soil NH4

+-N, mg kg-1 soil 

160 7.2a ± 2.9 4.1a ± 4.0 0.1a ± 0.2 5.8 ± 3.2 5.5 ± 6.3 1.4 ± 0.4 

80 6.5a ± 1.5 1.5b ± 4.2 0.4a ± 0.2 4.8 ± 4.5 5.7 ± 5.3 1.2 ± 0.8 

0 1.7 b ± 1.5 0.3b ± 0.1 0.4b ± 0.4 6.4 ± 4.6 6.4 ± 7.2 1.5 ± 1.2 

sugarcane 

inter-row 
0.4 ± 0.5 0.3 ± 0.4 0.4 ± 0.2 3.0 ± 1.3 3.6 ± 2.3 1.8 ± 1.9 

Different letters in the column show differences at P<0.05 level of significance between N fertiliser and legume 

treatments in sugarcane rows. Concentrations for sugarcane inter-rows are averaged across treatments as no 

significant differences were observed. 
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Table S4.3 Seasonal N2O-N fluxes (± S.D, n=3) from the sugarcane row and inter-row at 

different nitrogen rates in sugarcane as monocrop and sugarcane–soybean as intercropping 

system at Rain-fed site. 2015-2016 season. 

 
 

 Sumer Autumn 
Winter-

Spring 

N (kg N ha-1) N2O-N, mg m-2  h-1 

sugarcane row    

160 0.91a ± 0.78 0.13a ± 0.14 0.002± 0.002 

80 0.72 b ±0.58 0.04b ± 0.03 0.004 ± 0.004 

0 0.14c ± 0.15 0.01c ± 0.01 0.001± 0.002 

sugarcane inter-

row 
0.08 ± 0.06 0.01 ± 0.01 

   0.003± 

0.006 
 

 

 

Table S4.4 Cumulative N2O-N emissions and emission factors (EF) (±S.D, n=3) from the 

sugarcane rows and inter-rows at different nitrogen rates in sugarcane monoculture and 

sugarcane–legume companion cropping system at the Rain-fed site, 2014-2015 season. 
 

2014-2015 Cumulative N2O-N (kg ha-1) 

N kg ha-1 row inter-row 
Total2 

(row+inter-row) 

N2O-N 

EF3 (%) 

160  18.1a ± 10.4 2.4 ± 1.8 6.8a ± 3.6 3.0 

80  11.9b ± 4.9 4.3 ± 2.4 5.4b ± 1.5 4.3 

80+Soy  2.4c ± 2.1 3.7 ± 2.3 2.0c ± 1.3  
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Figure S4.1 Seasonal patterns from sugarcane row of N2O production (a), soluble soil NO3-N 

(b), and NH4
+-N (c), concentrations and weather patterns (d) ( S.E, n=3) at different N fertiliser 

rates in sugarcane monoculture and sugarcane-legume companion cropping system in the Rain-

fed site, 2015-16 season. Trends across the seasons of rainfall (mm), soil temperature (oC) and 

water filled pore space (WFPS %) measured in the top 10 cm soil layer. Control was a 

sugarcane monoculture without N fertilisation (No N).  
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Figure S4.2. Tonnes of sugarcane per hectare (TCH) at different N rates as monoculture and 

grown with soybean. Data are means S.E, n=3) from sugarcane soil in the Rain-fed site, 2015-

16 season, Queensland. Different lowercase letters above bars indicate significant differences 

between treatments at P< 0.05 (LSD, Fisher test). 

 

 

 

Appendix C– Supplementary Information (Chapter 5)  

 

 

Table S5.1. Averaged dry matter and N uptake of above and below ground of total shoot 

(sugarcane and soybean), roots, sugarcane and soybean, and sugarcane monoculture under 

fertiliser N application rates (S.E, n=5).  Root biomass consisted of intermingled soybean 

and sugarcane roots.  

 
 Dry matter N uptake 

N kg ha-1 
*Total 

Shoots 
Roots 

Intercropped 

sugarcane 

Intercropped 

soybean 

Total 

Shoots 
Roots 

Intercropped 

sugarcane 

Intercropped 

soybean 

 g dry matter per pot
-1

 g N uptake per pot
-1

  

0 27.3 c 23.1a 7.4 d 29.9 b 0.6 d 0.2 c 0.1e 0.8 ab 

1.1 86.8 b 55.0a 55.9 c 46.2 a 1.0 c 0.4 b 0.5 b 0.8 a 

2.2 97.1 a 64.9ab 68.4 b 43.0 a 1.1 bc 0.4 b 0.7 c 0.7 b 

3.3 97.2 a 73.7b 79.3 a 28.2 b 1.2 ab 0.5 ab 0.9 b 0.5 c 

4.3 98.1 a 74.8 c 83.5 a 20.5 c 1.3 a 0.5 a 1.0 a 0.4 c 

Different letters in the column show differences at P<0.05 level of significance between N fertiliser and legume treatments 

(LSD, Fisher test). *Total shoots is the sum of sugarcane shoots + soybean shoots  
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Table S5.2. Averaged dry matter and N uptake above and below ground of total shoot 

(sugarcane and soybean), roots, intercropped sugarcane and soybean of three cropping 

systems.  Root biomass was formed by intermingled soybean and sugarcane roots.  

 

 Dry matter N uptake 

Cropping system 
*Total 

Shoots  

Intercropped 

sugarcane 

Intercropped 

soybean 

Total 

shoots  
Roots 

Intercropped 

soybean 

 g dry matter per pot-1 g N uptake per pot-1 

Sugarcane- 

nodulating soybean 
94.5 a 63.0 a 40.0 a 1.5 a 0.5 a 0.9 a 

Sugarcane-non-

nodulating soybean 
86.4 b 59.3 ab 27.1 b 1.0 b 0.4 b 0.4 b 

Sugarcane 63.0 c 54.5 b  0.6 c 0.3 b  
Different letters in the column show differences at P<0.05 level of the three cropping systems (LSD, Fisher test). 

*Total shoots is the sum of sugarcane shoots + soybean shoots  

 

 

 

Table S5.3. Averaged dry matter and N uptake above and below ground of total shoot 

(sugarcane and soybean), roots, intercropped sugarcane and soybean of the interaction 

cropping systems and N fertiliser rates. Root biomass was formed by intermingled soybean 

and sugarcane roots.  

 

 
  Dry matter N uptake 

Crop 
N 

g/pot
-1

 

*Total 

Shoots 
Roots 

Intercropped 

sugarcane 

Intercropped 

soybean 

Total 

Shoots 
Roots 

Intercropped 

sugarcane 

Intercropped 

soybean 

Sugarcane- 

nodulating 

soybean 

0 53.0f 30.6 7.2 e 45.8 ab 1.5 ab 0.4 0.1 1.4 a 

1.1 97.9 bc 51.9 45.6 ab 52.3 a 1.6 a 0.5 0.4 1.2 a 

2.2 110.2a 57.8 60.4 ab 49.8 a 1.5 ab 0.5 0.7 0.9 b 

3.3 108.9 ab 71.3 78.8 ab 30.1de 1.4 ab 0.5 0.9 0.5 a 

4.3 102.3ab 71.8 80.6 ab 21.7 fg 1.5 ab 0.5 1.1 0.4 a 
 Average 94.5 56.7 54.5 40.0 1.5 0.5 0.6 0.9 

Sugarcane-

non-

nodulating 

soybean  

0 23.6g 23.5 9.7 e 13.9 g 0.2 f 0.1 0.1 0.2 a 

1.1 87.6cd 61.8 47.5 d 40.1 b 0.9 de 0.4 0.4 0.4 a 

2.2 107.4 ab 65.7 71.1 bc 36.3 fg 1.2 c 0.4 0.7 0.5 a 

3.3 109.4 ab 69.0 83.1 ab 26.3 ef 1.4 b 0.5 1.0 0.4 a 

4.3 104.1 ab 69.4 84.9 a 19.2 fg 1.4 b 0.5 1.1 0.3 a 
 Average 86.4 57.9 59.3 27.2 1.0 0.4 0.6 0.4 

Sugarcane 

0 5.2g 15.3 5.2 e  0.04 g 0.1 0.0  

1.1 74.8e 51.5 74.8 ab  0.6 f 0.3 0.6  

2.2 73.8e 71.2 73.8 ab  0.7 ef 0.4 0.7  

3.3 76.1de 80.7 76.1 ab  0.8 e 0.4 0.8  

4.3 85.1de 83.1 85.1 a  1.0 cd 0.5 1.0  

 Average 63.0 60.3 63.0  0.6 0.3 0.6  

Different letters in the column show differences at P<0.05 level of the three cropping systems (LSD, Fisher test). 

*Total shoots is the sum of sugarcane shoots + soybean shoots  
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