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ABSTRACT 
 

Pancreatitis is a debilitating disease with complex etiology, prognosis and pathology, limited 

treatment options and a burden on health resources. The main lesions of acute pancreatitis are injury 

to acinar cells and inflammation of the pancreas. Mild interstitial pancreatitis (or oedematous 

pancreatitis) is characterized by acute inflammation with oedema in the stroma and acinar tissue. 

Necrosis of acinar tissue, stroma or peri-pancreatic fat is absent and complete recovery, or 

regeneration of the gland is usual. Whilst there is universal agreement on many of the cellular changes 

that accompany acute pancreatitis, there is no clear distinction between the factors that determine 

whether regeneration can occur. The mechanism of regeneration and the cellular processes that 

influence regeneration form the primary basis of this study. 

 

Experimental models of pancreatitis have been produced in rats, mice, dogs, cats and swine by various 

methods. The time course and final tissue regeneration, if it occurs, vary considerably among different 

models, with many having the limitation that pancreatic injury is extended, so that degenerative 

processes are superimposed on regenerative activity. Three in vivo models of pancreatitis in rats were 

chosen for this project, to study pancreatitis and pancreatic regeneration that occurs in the recovery 

phase. These models evolve slowly, allowing detailed morphological study. In general, they have 

similar early events but vary considerably in regenerative outcome. (1) The infusion of caerulein is a 

well-established model for inducing experimental pancreatitis in rats and pancreatitis is followed by 

a great reparative capacity. Caerulein is a decapeptide with biological activity on gastrointestinal 

smooth muscle contraction and pancreatic and gastric secretion. (2) In 1-cyano-2-hydroxy-3-butene 

(CHB)-induced pancreatitis, acinar cell regeneration is limited to small islands of acini which fail to 

endure. CHB is known to induce cell death in pancreatic acini. (3) The model of partial pancreatic 

duct ligation leads to atrophy of the gland with little or no regeneration ensuing. Although some 

characteristics are known about these models of pancreatitis, there is a general lack of information on 

the association between pancreatic atrophy and inflammation and investigating this association was 

one of my overall aims. In addition, as well as investigating the three different models of pancreatitis 

in rats, I aimed to compare the same initiating event in other animals. Because of the selective nature 

of CHB pancreatotoxicity, and the ease of producing the model in rats, I sought to investigate this 

method in a mouse model. In addition, I sought to establish and characterise a canine CHB model. 
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The pancreatic atrophy induced in the chosen models typically involved apoptosis of acinar cells and 

its removal by macrophages. In some situations, if acinar redifferentiation did not occur, development 

of fibrosis and scarring was a key to pancreatic repair. This atrophy took place in a coherent fashion 

with normal architectural relationships being maintained. Loss of the potentially dangerous enzyme-

secreting cells by apoptosis led to regression of the underlying duct structure such that regeneration 

might occur should the circumstances change. This thesis has had a prolonged history because of 

part-time enrolment, through departure from the University of Queensland of my original Principal 

Advisor Dr Neal Walker, transfer of my Associate Advisor Dr Lyndell Kelly to Dunedin, New 

Zealand and necessary changes in my Advisory Team, an attempt to complete some of the research 

in New Zealand and the unfortunate death of the scientist I was working with, as well as my own 

personal and family issues. I am hoping to complete the project with my current re-enrolment.  

 

The hypothesis tested was that different models of pancreatitis can be used to describe the processes 

of atrophy and regeneration in the pancreas. The specific aims of this study were: 

1. To investigate rat models of pancreatitis using caerulein, CHB and duct ligation; 

2. To validate a pancreatitis model with CHB in the mouse;  

3. To establish a canine model of pancreatitis with CHB;  

4. To compare and contrast the models with respect to: 

Stellate cells and the production of fibrosis   

The role of mast cells and macrophages 

The role of survivin in pancreatic regeneration 

 

Summary of outcomes of this study 

 Study of the three rat models of pancreatitis facilitated a comparison of markers and 

mechanisms within the lesion. 

 All of the pathological processes studied, including fibrosis, stellate cells, mast cells and 

macrophages had specific roles in the different models that correlated with the initiation of 

pancreatitis, the deposition and degradation of fibrosis, and the ability of the pancreas to 

regenerate. 

 Resorption of fibrosis may depend on the type of collagen deposited. 

 Survivin appears to be maintaining conditions for the survival of cell populations. 

 The models of CHB in mouse and dog were not suitable for the study of pancreatitis as the 

liver showed more severe damage at low doses than the pancreas    



 
 

iv 
 

DECLARATION BY AUTHOR 
 

This thesis is composed of my original work, and contains no material previously published or 

written by another person except where due reference has been made in the text. I have clearly 

stated the contribution by others to jointly-authored works that I have included in my thesis. 

 
I have clearly stated the contribution of others to my thesis as a whole, including statistical 

assistance, survey design, data analysis, significant technical procedures, professional editorial 

advice, financial support and any other original research work used or reported in my thesis. The 

content of my thesis is the result of work I have carried out since the commencement of my 

higher degree by research candidature and does not include a substantial part of work that has 

been submitted to qualify for the award of any other degree or diploma in any university or other 

tertiary institution. I have clearly stated which parts of my thesis, if any, have been submitted to 

qualify for another award. 

 
I acknowledge that an electronic copy of my thesis must be lodged with the University Library 

and, subject to the policy and procedures of The University of Queensland, the thesis be made 

available for research and study in accordance with the Copyright Act 1968 unless a period of 

embargo has been approved by the Dean of the Graduate School. 

 
I acknowledge that copyright of all material contained in my thesis resides with the copyright 

holder(s) of that material. Where appropriate I have obtained copyright permission from the 

copyright holder to reproduce material in this thesis and have sought permission from co-authors 

for any jointly authored works included in the thesis. 

  



 
 

v 
 

ACKNOWLEDGEMENTS 

 

I acknowledge and thank those who have given me support throughout this long journey. Prof Neal 

Walker, now Envoi Pathology, Brisbane, introduced me to pancreatitis as supervisor for my Masters 

Qualifying thesis and was first supervisor for the PhD thesis. Prof Grant Ramm (QIMR-Berghofer 

Research Institute) supervised a comprehensive but ultimately unsuccessful and aborted search for 

the elusive pancreatic stem cell. Dr Leila Cuttle (then, UQ School of Medicine) taught me how to use 

the ImagePro Plus® image analysis software. Dr Richard Malik (Centre for Veterinary Education, 

University of Sydney) and Dr Melanie Latter (veterinary pathologist, formerly UQ School of 

Veterinary Science) provided veterinary proficiency. Dr Anne Marie McNicol (now retired, Reader 

in Pathology, Glasgow University) perused some of the earlier manuscript. Work colleagues from the 

past, Clay Winterford, Estelle Schoch and from the more recent past, the brilliant staff too numerous 

to mention, of the Lakhani Breast Cancer Research Group, are sincerely thanked. Debates and 

discussions about research and protocols, sharing of knowledge and general moral support, were 

invaluable. Dr Lyndell Kelly (School of Medicine, University of Otago, New Zealand) has been a 

friend and colleague extraordinaire and a PhD supervisor: The Three Musketeers, Lyndell, Lynne and 

Pancreas have planned projects, finished some, made the acquaintance of lots of laboratory animals 

and enjoyed mutual scientific discovery. I could not have done this without you. A/Prof Glenda Gobe 

(School of Biomedical Sciences, UQ Faculty of Medicine), I am forever grateful for your expertise, 

patience and good humour in helping me achieve the finished product.  

 



 
 

vi 
 

PUBLICATIONS  

 

Peer-reviewed publications during candidature 

Reid L and Walker N. Acinar cell apoptosis and the origin of tubular complexes in caerulein-

induced pancreatitis. Int. J. Exp. Pathol. 1999, 80, 205-215. 

Kelly LE, Reid L, Walker NI. Massive acinar cell apoptosis with secondary necrosis, origin of 

ducts in atrophic lobules and failure to regenerate in cyanohydroxybutene pancreatopathy in rats. 

Int. J. Exp. Pathol., 1999, 80, 217-226. 

 

Peer-reviewed published abstracts during candidature 

Kelly LE, Goodall AR, Reid L, Walker NI. The effect of the pancreatotoxin cyanohydroxybutene 

on pancreatic ductal and acinar carcinoma cell lines. In Proceedings of the 5th International 

Symposium on predictive Oncology and Therapy, Cancer Detection and Prevention, 2000, 24, S-

184. 

 

Publications relevant to this thesis pre-candidature 

Middleton G, Reid LE, Harmon BV. Apoptosis in the human thymus in sudden and delayed death. 

Pathology. 1994, 26(2), 81-89. 

 

Publications during part-time candidature 1996-2012 not related to thesis 

 
Peters AA, Simpson PT, Bassett JJ, Lee JM, Da Silva L, Reid LE, Song S, Parat MO, Lakhani SR, 

Kenny PA, Roberts-Thomson SJ, Monteith GR. Calcium channel TRPV6 as a potential therapeutic 

target in estrogen receptor-negative breast cancer. Mol Cancer Ther. 2012,11(10), 2158-68 

 

Smart CM, Askarian Amiri ME, Wronski A, Dinger ME, Crawford J, Ovchinnikov DA, Vargas 

AC, Reid LE, Simpson PT, Song S, Wiesner C, French JD, Dave RK, Silva L, Purdon A, Andrew 

M, Mattick JS, Lakhani SR, Brown MA, Kellie S. Expression and function of the protein tyrosine 

phosphatase receptor J (PTPRJ) in normal mammary epithelial cells and breast tumors. PLoS ONE, 

2012, 7 (7) e40742 

 



 
 

vii 
 

Vargas AC, McCart Reed AE, Waddell N, Lane A, Reid LE, Smart CE, Cocciardi S, da Silva L, 

Song S, Chenevix-Trench G, Simpson PT, Lakhani SR. Gene expression profiling of tumour 

epithelial and stromal compartments during breast cancer progression. Breast Cancer Res Treat. 

2012 135(1):153-65.  

 

Waddell N, Arnold J,  Cocciardi S, da Silva L, Marsh A,  Riley J,  Johnstone CN,  Orloff M, 

Assie G,  Eng C, Reid LE, Keith K, Yan M, Fox S, Devilee P, Godwin AK, Hogervorst FBL 

Fergus Couch F, kConFab Investigators, Grimmond S Flanagan JM, Khanna KK, Simpson, PT, 

Lakhani SR, Chenevix-Trench G. Subtypes of familial breast tumours revealed by expression and 

copy number profiling.Breast Cancer Res Treat 2010, 123, 661–677 

 

Alexopoulou AN, Leao M, Caballero OL, Da Silva L, Reid LE, Lakhani SR, Simpson AJ, Marshall 

JF, Neville AM, Jat PS.  Dissecting the transcriptional networks underlying breast cancer: NR4A1 

reduces the migration of normal and breast cancer cell lines. Breast Cancer Research 2010, 12:R51 

 

Da Silva L, Buck L, Simpson PT, Reid LE, McCallum N Barry J. Madigan BJ,  Lakhani SR. 

Molecular and morphological analysis of adenoid cystic carcinoma of the breast with synchronous 

tubular adenosis. Virchows Arch 2009, 454,107–114 

 

Shin SJ, Simpson PT, Da Silva L, Jayanthan J, Reid LE, Lakhani SR, Rosen PP. Molecular 

Evidence for Progression of Microglandular Adenosis (MGA) to Invasive Carcinoma. Am J Surg 

Pathol 2009, 33, 496–504 

 

Da Silva L, Parry P, Reid LE, Keith P, Waddell N, Kossai M, Clarke C, Lakhani SR, Simpson PT, 

Aberrant Expression of E-cadherin in Lobular Carcinomas of the Breast. Am J Surg Pathol 2008, 

32, 773–783. 

 

Simpson PT, Reis-Filho JS, Lambros MBK, Jones C, Steele D, Mackay A, Iravani M, Fenwick K, 

DexteR T, Jones A, Reid L, Da Silva L, Shin SJ, Hardisson D, Ashworth A, Schmitt FC, Palacios J, 

Lakhani SR.  Molecular profiling pleomorphic lobular carcinoma of the breast: evidence for a 

common molecular genetic pathway with classic lobular carcinomas. J Pathol 2008, 215, 231–244 

 

Michael-Robinson JM, Reid LE, Purdie DM, Biemer-Hüttmann AE, Walsh MD, Pandeya N, 

Simms LA, Young JP, Leggett BA, Jass JR, Radford-Smith GL. Proliferation, apoptosis, and 



 
 

viii 
 

survival in high-level microsatellite instability sporadic colorectal cancer. Clin Cancer Res. 2001, 

7(8), 2347-56. 

 

CONTRIBUTION TO PUBLICATIONS INCLUDED IN THIS THESIS 
 
 

Reid L and Walker N. Acinar cell apoptosis and the origin of tubular complexes in caerulein-

induced pancreatitis. Int. J. Exp. Pathol. 1999, 80, 205-215. PMID: 10583630 

 

Contributor Statement of contribution 

Lynne Reid (Candidate) Designed experiments, wrote the paper 
(60 %) 

Neal Walker Designed experiments, edited the paper 
(40 %) 

 
 

 

Kelly LE, Reid L, Walker NI. Massive acinar cell apoptosis with secondary necrosis, origin of 

ducts in atrophic lobules and failure to regenerate in cyanohydroxybutene pancreatopathy in 

rats. Int. J. Exp. Pathol., 1999, 80, 217-226. PMID: 10583631 

 

Contributor Statement of contribution 

Lyndell Kelly Designed experiments, wrote the paper 
(40 %) 

Lynne Reid (Candidate) Designed experiments, wrote the paper 
(40 %) 

Neal Walker Designed experiments, edited the paper 
(20 %) 

 

 

STATEMENT OF PARTS OF THE THESIS SUBMITTED TO QUALIFY FOR THE 

AWARD OF ANOTHER DEGREE 

 
None 

  



 
 

ix 
 

RESEARCH INVOLVING HUMAN OR ANIMAL SUBJECTS 
 

All research was reviewed and approved by an independent review committee prior to 

commencement. Animal experiments were performed under National Health and Medical 

Research Committee guidelines and approved by the University of Queensland Animal Ethics 

Committee prior to project commencement. Animals were closely monitored for clinical signs of 

pain and distress. Ethics approval numbers were PATH/402/96 (caerulein), PATH/527/97/98 (rats 

with duct ligation); PATH/527/00 (rats with duct ligation with clips removed); 

PATH/QIMR/586/03 (CHB and duct ligation), PATH/457/04LF and PATH/725/05/LF (dogs); and 

PATH/102/04/PTPL (mice). 

 

 

FINANCIAL SUPPORT 
 

Some financial support was available from School of Medicine, University of Queensland for 

consumables and animals for this project. 

 
 

KEYWORDS 

Pancreatitis, fibrosis, cell death, apoptosis, regeneration, histology, electron microscopy 
 
 
 

AUSTRALIAN AND NEW ZEALAND STANDARD RESEARCH CLASSIFICATIONS 

(ANZSRC) 

 

ANZSRC code: 110307 Gastroenterology and Hepatology 50% 

ANZSRC code: 110316 Pathology (excl oral pathology) 25% 

ANZSRC code: 060103 Cell Development, Proliferation and Death 25% 

 
FIELDS OF RESEARCH (FoR) CLASSIFICATION 

 
FoR code: 1116 Medical Physiology 50% 

FoR code: 0601 Biochemistry and Cell Biology 50% 
 

 
 
  



 
 

x 
 

TABLE OF CONTENTS 
 

          Page number 

ABSTRACT…………………………………………………………………………..... ii 

DECLARATION BY AUTHOR……………………………………………………... iv 

ACKNOWLEDGEMENTS…………………………………………………………… v 

PUBLICATIONS……………………………………………………………………… vi 

Peer-reviewed publications during candidature…………………………………........... vi 

Peer-reviewed published abstracts during candidature……………………………........ vi 

Publications relevant to this thesis pre-candidature......................................................... vi 

Publications during part-time candidature 1996-2012 not related to thesis………......... vi 

Contribution to publications included in this thesis……………………………………. viii 

Statement of parts of the thesis submitted to qualify for the award of another degree.... viii  

Research involving human or animal subject…………………..………………………. ix 

Financial support……………………………………………………………………….. ix 

Keywords…………………………………………………………………………............ ix 

AUSTRALIAN AND NEW ZEALAND STANDARD RESEARCH  

CLASSIFICATIONS (ANZSRC)……………………………………………………. ix 

FIELDS OF RESEARCH (FOR) CLASSIFICATION……………………………. ix 

TABLE OF CONTENTS……………………………………………………………… x 

LIST OF FIGURES…………………………………………………………………….. xv 

LIST OF TABLES…………………………………………………………………….... xviii 

ABBREVIATIONS……………………………………………………………………… xix 

 

CHAPTER 1 LITERATURE REVIEW 

1.1 Introduction ............................................................................................................... 1  

1.2 Anatomy and histology of normal pancreas.............................................................. 3 

1.2.1 Light and electron microscopy ......................................................................... 5  

1.3 Pancreatitis ................................................................................................................ 9 

        1.3.1 Acute pancreatitis ............................................................................................. 11 

      1.3.2 Chronic pancreatitis .......................................................................................... 11 

        1.3.3 Cell death and its role in pancreatitis ................................................................ 12 



 
 

xi 
 

       1.3.4 Regeneration ....................................................................................................... 13 

1.4 Pancreatic fibrosis and inflammation .......................................................................... 15 

1.4.1 Extracellular matrix ........................................................................................... 15  

  1.4.2 Basement membrane .......................................................................................... 15 

  1.4.3 Collagen .............................................................................................................. 16 

  1.4.4 Laminins ............................................................................................................. 17 

  1.4.5 Fibrosis ............................................................................................................... 18 

  1.4.6 Fibrosis in the pancreas ...................................................................................... 19 

  1.4.7 Resolution of fibrosis......................................................................................... 20 

  1.4.8 Pancreatic stellate cells ....................................................................................... 21 

  1.4.9 Fibrosis and transforming growth factor family ................................................. 23 

  1.4.10 Fate of pancreatic stellate cells ......................................................................... 23  

  1.4.11 Pancreatic inflammation ................................................................................... 24  

     1.4.11.1 Macrophages in pancreatitis .................................................................. 24  

     1.4.11.2 Mast cells in pancreatitis....................................................................... 25  

    1.4.12 Survivin and the processes of pancreatitis ............................................................ 26  

1.5 Experimental models of pancreatitis ............................................................................. 27 

  1.5.1 Caerulein ............................................................................................................. 28  

  1.5.2 Ethanol ………………………………………………………………………… 29  

  1.5.3 L-Arginine ……………………………………………………………………... 29  

  1.5.4 1-cyano-2-hydroxy-3-butene …………………………………………………... 29  

  1.5.6 Duct Ligation …………………………………………………………………... 30  

  1.5.7 Vascular causes ………………………………………………………………… 30   

  1.5.8 Genetic models ………………………………………………………………. 31  

  1.5.9 Summary of models ………………………………………………………….. 31  

1.6 Hypothesis and aims of this thesis .............................................................................. 32 

       

CHAPTER 2  MATERIALS AND METHODS 

2.1 Introduction .................................................................................................................... 33  

2.2 Statement of ethics ......................................................................................................... 33  

2.3 Materials ......................................................................................................................... 33  

2.4 Animals, sources, housing and conditions ..................................................................... 33 

2.5 Caerulein model ............................................................................................................. 34  

2.6 Duct ligation model..........................................................................................................35  



 
 

xii 
 

2.7 1-cyano-2-hydroxy-3-butene (CHB) model.................................................................... 37  

2.8 Microscopy ..................................................................................................................... 38 

      2.8.1 Light microscopy ................................................................................................... 38  

      2.8.2 Frozen sections ...................................................................................................... 38   

      2.8.3 Electron microscopy ............................................................................................. 38 

2.9 Immunohistochemistry .................................................................................................. 39 

2.10 Digital capture and analysis for fibrosis and stellate cells ........................................... 40 

2.11 Cell death and proliferation .......................................................................................... 43 

2.12 Statistics……………………………………………………………………………… 43  

  

CHAPTER 3   RAT MODELS OF PANCREATITIS 

3.1 Introduction .................................................................................................................... 44  

      3.1.1 Aim ....................................................................................................................... 44  

3.2 Materials and methods .................................................................................................... 45  

3.3 Results ............................................................................................................................. 45  

      3.3.1 Control .................................................................................................................. 45 

      3.3.2 Experimental results from three models ............................................................... 47 

               3.3.2.1 Apoptosis counts ....................................................................................... 57 

3.4 Discussion  ..................................................................................................................... 62  

 

CHAPTER 4   FIBROSIS IN RAT PANCREATITIS 

4.1 Introduction ……………………………………………………………………... 64  

      4.1.1 Aim ……………………………………………………………………….. 64  

4.2 Materials and methods …………………………………………………………... 65 

4.3 Results – Fibrosis and stellate cells in pancreatitis                                                          65 

      4.3.1 Control pancreas for fibrosis studies ………………………………………. 65 

      4.3.2 Fibrosis in the rat models ……………………………………………………. 67  

      4.3.3 Control pancreas stellate cells ……………………………………………….. 78  

      4.3.4 Stellate cells in rat models …………………………………………………… 78 

4.4 Discussion - fibrosis and stellate cells in pancreatitis………………………….  88 

4.5 Macrophages in inflammation and fibrosis in pancreatitis…………………  91 

      4.5.1 An introduction to the role of macrophages in pancreatitis  ……………………. 91 

      4.5.2 Materials and methods………………………………………………………... 91 

4.5.3 Results for macrophage studies in inflammation and fibrosis in pancreatitis  91  



 
 

xiii 
 

4.5.4 Discussion of the role of macrophages in inflammation and fibrosis in pancreatitis 102 

4.6 Mast cells in inflammation and fibrosis in pancreatitis………………………………. 103  

4.6.1 An introduction to the role of mast cells in pancreatitis………………………. 103 

4.6.2 Materials and methods ………………………………………………………. 103 

      4.6.3 Results for mast cells in inflammation and fibrosis in pancreatitis……………. 103  

      4.6.4 Discussion on mast cells in inflammation and fibrosis in pancreatitis  112  

4.7 Overview of fibrosis in pancreatitis ………………………………………………….. 113  

 

CHAPTER 5   SURVIVIN IN RAT PANCREATITIS  

5.1 Introduction ……………………………………………………………………… 114 

5.2 Aim ………………………………………………………………………………… 114 

5.3 Materials and methods ……………………………………………………………… 114 

5.4 Results ………………………………………………………………………………. 115 

5.5 Discussion …………………………………………………………………………… 122  

 

CHAPTER 6   THE EFFECTS OF CYANOHYDROXYBUTENE IN MICE 

6.1 Introduction .................................................................................................................. 125 

      6.1.1 Aim ....................................................................................................................... 126 

6.2 Materials and methods .................................................................................................. 126 

6.3 Results ........................................................................................................................... 127 

       6.3.1 Experiment 1. Subcutaneous dose regime of CHB to produce apoptosis in mice 127 

       6.3.2 Experiment 2. Optimal dose of CHB over time………………………………… 132 

       6.3.3 Experiment 3. Effect of mouse adolescent status with optimal dose of CHB 136 

6.4 Discussion ..................................................................................................................... 136 

6.5 Conclusion .................................................................................................................... 139  

 

CHAPTER 7   DOG MODEL OF PANCREATITIS 

7.1 Summary ..................................................................................................................... 140 

7.2 Introduction ................................................................................................................ 141 

7.3 Materials and methods ................................................................................................ 141 

      7.3.1 Immunohistochemistry ....................................................................................... 143 

7.4 Results .......................................................................................................................... 143 

        7.4.1 Biochemical parameters and gross pathology ................................................... 143  

        7.4.2 Histopathology .................................................................................................. 144 



 
 

xiv 
 

                 7.4.2.1 Pancreas ............................................................................................... 144 

                7.4.2.2 Liver ...................................................................................................... 146 

7.5 Discussion  .................................................................................................................. 149 

7.6 Conclusion .................................................................................................................. 153 

7.7 References for this Chapter ...................................................................................... 153  

 

CHAPTER 8   DISCUSSION AND FUTURE WORK 

8.1 Overview of results ...................................................................................................... 156 

8.2 Models ........................................................................................................................... 156 

8.3 Regeneration ................................................................................................................. 157 

8.4 Fibrosis ...................................................................................................................... 158 

8.5 Survivin ........................................................................................................................ 162 

8.6 Mouse ............................................................................................................................ 163 

8.7 Dog ........................................................................................................................... 164 

8.8 Future Directions ......................................................................................................... 164 

8.9 Conclusion ................................................................................................................... 164 

 

BIBLIOGRAPHY ............................................................................................................. 166 

APPENDIX 1 ..................................................................................................................... 187 

  



 
 

xv 
 

LIST OF FIGURES 

 

CHAPTER 1  

Figure 1.1. The pancreas as an accessory organ to the intestine ………………………………... 4 

Figure 1.2. Histology of pancreas ……………………………………………………………… 6 

Figure 1.3 Electron microscopy of normal pancreas …………………………………………… 8 

 

CHAPTER 2 

Figure 2.1 Diagrammatical representation of duct ligation ………………………………… 36 

Figure 2.2 Captured screen of ImagePro Plus® image analysis software for αSMA IHC …….. 41 

Figure 2.3 Captured screen of ImagePro Plus® image analysis software for fibrosis,,,,.............. 42 

 

CHAPTER 3 

Figure 3.1 Control rat pancreas, light microscopy …………………………………………………46 

Figure 3.2. Electron microscopy of control rat pancreas with focus on acini ……………………...48 

Figure 3.3. Electron microscopy of control rat pancreas with a focus on ducts ……………………49 

Figure 3.4 Apoptosis of pancreatic acinar cells in rat models ……………………………………...50 

Figure 3.5 Typical apoptotic body and secondary necrosis in rat models ………………………….51 

Figure 3.6 Macrophage or adjacent epithelial cell removal of apoptotic bodies in rat models …….53 

Figure 3.7 Acinar atrophy in rat models ……………………………………………………………54 

Figure 3.8 Tubular complexes in rat models ……………………………………………………….55 

Figure 3.9 Regeneration in the caerulein model ……………………………………………………56 

Figure 3.10 Regeneration in the CHB model ………………………………………………………58 

Figure 3.11 Regeneration in the duct ligation model ………………………………………………59 

Figure 3.12 Mean ±SEM of counts of apoptosis for the three models ……………………………..60 

Figure 3.13 Mean ±SEM of cell proliferation measured by PCNA immunohistochemistry……. 61 

 

CHAPTER 4 

Figure 4.1 Fibrosis in the control rat pancreas …………………………………………………….66 

Figure 4.2 Collagen deposition in the rat models ………………………………………………….68 

Figure 4.3 Comparison of bright field and polarised light images …………………………………70 

Figure 4.4 Polarised light images of collagen in the rat models ……………………………….... 71 

Figure 4.5 Comparison of the types of collagen deposited in the three models ……………………72  



 
 

xvi 
 

Figure 4.6 Fibrosis in the caerulein model …………………………………………………………74 

Figure 4.7 Fibrosis in the CHB model …………………………………………………………… 75 

Figure 4.8 Fibrosis in the duct ligation model …………………………………………………… 76 

Figure 4.9 Mean ±SEM of estimate of fibrosis for the three models…………………………….. 77 

Figure 4.10 Laminin immunohistochemistry for basement membrane in the rat models……….. 79 

Figure 4.11 Stellate cells in control rat pancreas ………………………………………………… 80 

Figure 4.12 αSMA immunohistochemistry for stellate cells in the rat models ………………. 81 

Figure 4.13 Estimate of activated stellate cell area using immunohistochemistry ……………….. 82 

Figure 4.14 Stellate cells in the caerulein model………………………………………………… 84 

Figure 4.15 Stellate cells in the CHB model …………………………………………………….. 85 

Figure 4.16 Stellate cells in the duct ligation model …………………………………………….. 86 

Figure 4.17 Stellate cells producing collagen ……………………………………………………. 87 

Figure 4.18 Macrophages in control pancreas …………………………………………………… 92 

Figure 4.19 CD68 immunohistochemistry for macrophages in the rat model ………………. 94  

Figure 4.20 Mean ±SEM of counts of macrophages using CD68 antibody………………… 95 

Figure 4.21 Macrophages in the caerulein model ………………………………………………... 97 

Figure 4.22 Macrophages in the CHB model …………………………………………………….98 

Figure 4.23 Macrophages in the duct ligation model ………………………………………….…99 

Figure 4.24 Inflammatory cells in pancreatitis …………………………………………………...100 

Figure 4.25 Relationship between macrophages and adipose tissue …………………………….101 

Figure 4.26 Control rat pancreas stained for mast cells ………………………………………….104  

Figure 4.27 Distribution of mast cells in the rat models …………………………………………106 

Figure 4.28 Mean ± SEM of mast cell numbers in three rat models……………………………..107 

Figure 4.29 Typical mast cell with macrophages ………………………………………………...108 

Figure 4.30 Mast cell granules …………………………………………………………………...109  

Figure 4.31 Mast cells in the rat models ……………………………………………………….....110 

Figure 4.32 Mast cells found in the regenerative phase …………………………………………..111 

 

CHAPTER 5 

Figure 5.1 Control rat pancreas with survivin immunohistochemistry …………………………..116  

Figure 5.2 Distribution of survivin at early time points in the rat models ………………………..117 

Figure 5.3 Distribution of survivin at later time points during regeneration ……………………..118 

Figure 5.4 Survivin staining in other cell populations ……………………………………………120 

Figure 5.5 Comparison of survivin with proliferation marker PCNA …………………………….121 



 
 

xvii 
 

CHAPTER 6  

Figure 6.1 Effects of CHB on apoptosis and mitosis over 24hrs……………….………………..128  

Figure 6.2 Mouse pancreas and liver for controls and experiment 1 (70mg/kg CHB) …………..129 

Figure 6.3 Mouse experiment 1: Pancreas and liver in mice treated with 270mg/kg CHB……...131 

Figure 6.4 Non-lethal acinar cell damage in mouse pancreas ……………………………………133 

Figure 6.5 Acinar injury with necrosis in the mouse model ……………….…………………… 134 

Figure 6.6 Experiment 2: Pancreas and liver in mice treated with 280mg/kg CHB for 24 hrs …..135 

 

CHAPTER 7 

Figure 7.1 Range of pancreatic damage after treatment with CHB ………………………………145 

Figure 7.2 Range of liver damage after treatment with CHB …………………………………….147 

 

CHAPTER 8 

Figure 8.1 Timeline of events in pancreatitis in the rat models………………………………….157 

  



 
 

xviii 
 

LIST OF TABLES 

 

CHAPTER 1 

Table 1.1 Causes of pancreatitis …………………………………………………….10  

 

CHAPTER 2 

Table 2.1 Antibodies for immunohistochemistry ……………………………………40 

 

CHAPTER 7 

Table 7.1 Clinical and biochemical results for dogs ………………………………..148 

  



 
 

xix 
 

ABBREVIATIONS 

 

All abbreviations are listed in alphabetic order 

ANOVA analysis of variance 

αSMA  Alpha smooth muscle actin 

ADM  Acinar-to-ductal metaplasia 

AP  Activator protein 

ATP  Adenosine triphosphate 

Bcl2  B-cell lymphoma 2 

BIR  Baclovirus inhibitor of apoptosis protein 

BM  Basement membrane 

BMP  Bone morphogenetic protein 

CASR  Calcium sensing receptor 

CCK  Cholecystokinin 

CCL  Carbon tetrachloride 

CCN  Cysteine-rich angiogenic protein 

CFTR  Cystic fibrosis 

CHB  1-cyano-2-hydroxy-3-butene 

CK   Cytokeratin 

CO2  Carbon dioxide  

COPD  Chronic obstructive pulmonary disease 

COX  Cyclooxygenase 

CPC   Chromosomal passenger complex  

CTGF/CCN2 Connective tissue growth factor 

CTRC  Chymotrypsinogen C 

Cre-LoxP Cre-recombinase protein/locus of x over P1 

DAB  Diaminobenzidine tetrahydrochloride solution  

DIABLO Direct IAP binding protein with low p1 

ECM  Extracellular matrix 

EDTA  Ethylenediaminetetraacetic acid  

EM  Electron microscopy 



 
 

xx 
 

ERK  Extracellular-signal-regulated kinase 

FFPE  Formalin-fixed paraffin-embedded  

FGF  Fibroblast growth factor  

GFAP  Glial fibrillary protein 

GFP  Green fluorescent protein 

HSC  Hepatic stellate cells 

H&E  Haematoxylin and eosin 

HRP  Horseradish peroxidase 

IAP  Inhibitor of apoptosis protein 

ICAM1 Intercellular adhesion molecule1  

IGF  Insulin growth factor 

IHC  Immunohistochemistry 

IL   Interleukin  

JAK-STAT Janus kinase/signal transducers and activators of transcription 

JNK  c-Jun N-terminal kinase  

MAPK  Mitogen-activated protein kinase 

MF  Myofibroblasts 

MLKL  Mixed lineage kinase domain 

MMPs  Matrix metalloproteinases 

NF-κB  Nuclear factor kappa-light-chain-enhancer of activated B cells 

NR5a2  Nuclear receptor 5a2 

OCT  Optimal cutting temperature 

P13K  Phosphatidylinositol 3-kinase 

PAF  Platelet activating factor 

PAS   Periodic acid Schiff 

PBS  Phosphate buffered saline 

PCNA  Proliferating cell nuclear antigen  

PDGF  Platelet-derived growth factor 

PDL2  Programmed cell death 1 ligand 

PDX1  Pancreatic and duodenal homeobopx1 

PERK  Protein kinase R-like endoplasmic reticulum kinase knockout 



 
 

xxi 
 

PTFA  Pancreas specific transcription factor 

PDGF  Platelet-derived growth factor 

PPAR-γ Peroxisome proliferator-activated receptor gamma  

PRSS11 Periostin, serine protease 11 

PSC  Pancreatic stellate cell 

Relma  Resistin-like molecule alpha 

RER  Rough endoplasmic reticulum  

RIP   Receptor-interacting protein kinases 

RNA   Ribonucleic acid 

ROS  Reactive oxygen species 

R-Smad Regulatory mothers against decapentaplegic homologues 

SEM  standard error of the mean 

SCF  Stem cell factor 

SMAC Second mitochondria-derived activator of caspases 

SMAD Caenorhabditis elegans protein SMA. Drosophila protein mothers against 

decapentaplegic homologues (MAD) 

SPARC Secreted protein acidic and rich in cysteine 

SPINK Serine protease inhibitor kazal type 1 

STAT Signal transducer and activator of transcription 

TBS  Tris buffered saline 

TGF  Transforming growth factor 

TIMPs  Tissue inhibitors of matrix metalloproteinases 

TNF  Tumor necrosis factor 

TRAIL  Tumor necrosis factor related apoptosis inducing ligand  

VCAM1 Vascular cell adhesion protein 1 

VEGF  Vascular endothelial growth factor 

WBN/KOB Wistar Bonn/Kobori rats 

Wnt  Wingless-type MMTV integration site 

ZG   Zymogen granules 



1 
 

CHAPTER ONE 

LITERATURE REVIEW 
 

1.1 INTRODUCTION 

 

Pancreatitis is a term that describes inflammation of the pancreas. More broadly, the term designates 

a group of diseases in which the basic lesions involve injury and death of acinar cells and 

inflammation of the pancreas. A spectrum of clinical pictures occurs with variety in the severity, 

duration and outcome of the disease. Due to the complexity of the disease, treatment is considered in 

terms of etiology and prognosis and remains largely supportive, with management to relieve 

symptoms and prevent further disease progression. Pancreatitis causes a significant burden on 

medical resources, and patients with chronic pancreatitis have reduced quality of life with 

substantially reduced employment and income.1  

 

The worldwide incidence of acute pancreatitis ranges from 4.9 to 73.4 per 100,000 people per year 

with the risk of recurrence in the vicinity of 20%.2 The incidence of chronic pancreatitis ranges from 

4 to 14 per 100,000 per year. Approximately 35% of patients with at least one recurrence of acute 

pancreatitis risk progression to chronic pancreatitis, with the mortality rate of chronic pancreatitis at 

approximately 28-35%.3  

 

Historically, pancreatitis has been divided into acute and chronic types. Acute pancreatitis is 

associated with elevated pancreatic enzymes in blood and urine due to inflammation and systemic 

responses of varying severity.4 Mild interstitial or oedematous pancreatitis with acute inflammation 

and oedema generally resolves to normal morphology and function, however, the often fatal, severe, 

form of acute pancreatitis is haemorrhagic with necrosis and abscess, leading to the complete 

destruction of the gland, systemic complications and organ failure.5 Chronic pancreatitis is an 

inflammatory disease, with the end result irreversible fibrotic destruction of the gland with 

impairment of exocrine and endocrine function.1 The current view is that recurrent attacks of acute 

and chronic pancreatitis may represent a disease continuum due to repeated tissue destruction and 

subsequent remodelling.6 Several classification systems have attempted to include etiology as an 

important criterion for the characterization of pancreatitis, particularly chronic pancreatitis.7 These 

classification proposals attempted to include all relevant features of the disease: clinical presentation, 

outcome, pathology, and etiology. Currently, chronic pancreatitis is usually diagnosed when the 
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disease is already fully established with uncertain pathogenesis, unpredictable clinical course and 

unclear treatment, hence life expectancy is reduced.8 

 

There is no reliable molecule, genetic biomarker or imaging system currently available for predicting 

the severity of acute pancreatitis.9 These diagnostic aids would improve the ability to treat the early 

manifestation of the disease to prevent morbidity and mortality, as the early systemic inflammatory 

response has already occurred by the time patients present for treatment.9 The models presented in 

this thesis allow pre-clinical analysis of etiology, outcome and pathology. In some experimental 

models of acute pancreatitis, acinar cells die by apoptosis. Without severe inflammation, the pancreas 

is able to regenerate and recover. In other models, no recovery takes place and the gland becomes 

fibrotic with loss of exocrine function. Although experimental studies do not completely mimic the 

human clinical situation, it is possible that a similar scenario is occurring in the human condition. It 

appears that the mode of cell death, apoptosis or necrosis, is important to the outcome, as is the 

production and resolution of fibrosis with accompanying interaction of inflammatory mediators. As 

evidence-based treatment options are limited, further exploration of the biomarkers and mechanisms 

involved in regeneration of exocrine pancreatic tissue is required to answer the question of how to 

prevent recurrence and progression of this disease. To do this, various animal models may be utilised.  

 

Current treatment regimens have improved considerably over recent years with advances in intensive 

care medicine and pain relief, however, treatment is mainly symptom alleviation. In mild, acute 

pancreatitis, treatment is based on hydration and nutrition with laparoscopic cholecystectomy for 

biliary pancreatitis. Aggressive intravenous fluid, enteral feeding and intensive care monitoring are 

required for severe acute pancreatitis.9, 10 For chronic pancreatitis, treatment is for maldigestion, and 

nutritional deficiencies resulting from exocrine insufficiency. Diabetes therapy is required for 

endocrine deficiencies. Complications such as obstruction of the pancreatic duct, gastric outlet and 

vessels, common in chronic pancreatitis, are treated with endoscopy and surgery.1, 3 There is no 

current treatment for the fibrosis that causes the pathophysiology of chronic pancreatitis.  

 

Chronic pancreatitis is considered a risk factor for pancreatic cancer.6 The cancer is usually at an 

advanced stage at diagnosis, and it is rare to have complete resection of the tumour, and conventional 

cancer therapies such as radiation and chemotherapy have limited results with significant side 

effects.11 1-Cyano-2-hydroxy-3-butene (CHB) may represent a potential treatment for pancreatitis 

and acinar cell carcinoma of the pancreas as it may eliminate all or virtually all acinar cells and 

malignant cells derived from them. It is unknown whether the effect of CHB on the pancreas occurs 

in representative members of other species and whether this can be achieved safely. 
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This project aimed to improve descriptions of mechanisms and processes of acute and chronic 

pancreatitis. It used several pre-clinical animal models to complete this aim. 

 

1.2 ANATOMY AND HISTOLOGY OF THE NORMAL PANCREAS 

 

The human pancreas is an elongate, firm, gastrointestinal gland lying in the upper abdomen behind 

the stomach. It divides into the head near the duodenum, body, and tail approaching the hilum of the 

spleen (Figure 1.1). The pancreas is covered by a loose, thin connective tissue capsule which extends 

inwards as septa dividing the parenchyma into distinct lobules. The gland performs both exocrine and 

endocrine functions. The human exocrine portion forms the greatest volume (84%), ductular cells and 

blood vessels about 4 % of the gland, while endocrine cells comprise only 2%, and the remainder 

occupied by extracellular matrix. The exocrine pancreas is a branched, acinar gland responsible for 

secreting digestive enzymes into the intestine: the endocrine tissue, organized into islets of 

Langerhans, secretes hormones involved in stabilization of blood glucose homeostasis. In the human 

pancreas, the splenic artery provides the blood supply to the neck, body and tail, the superior and 

inferior pancreaticoduodenal arteries supply the head.12 Most of the arteries are accompanied by veins 

that run into the splenic vein and by the pancreaticoduodenal veins into the portal and mesenteric 

veins.13 Lymphatics from the pancreas follow the course of the arteries. The pancreas is richly 

innervated both by parasympathetic (cholinergic) fibres from the vagus nerve and by sympathetic 

fibres arising from the celiac, superior mesenteric and hepatic plexis.14  

 

Pancreatic juice secretion is stimulated by parasympathetic activity and inhibited by sympathetic 

activity.15 Rodent autonomic nerve distribution is homologous with human distribution, however 

innervation of exocrine tissue is poor in comparison to the rich innervation in humans.15 Generally, 

the blood supply, lymphatics and nerves accompany the duct system to its terminus in the acini. The 

pancreas drains via a large pancreatic duct that penetrates the wall of the duodenum in association 

with the common bile duct. In the rat, the pancreas and biliary tract share a common conduit into the 

duodenum that results in the passage of bile into the proximal portion of the pancreatic duct prior to 

drainage into the duodenal lumen.16  
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Figure 1.1 The pancreas as an accessory organ to the intestine 

The human pancreas is an elongate, firm, gastrointestinal gland lying in the upper abdomen behind 

the stomach. It divides into the head near the duodenum, body, and tail approaching the hilum of the 

spleen. 

Accessory organs of the digestive system. Physiology Plus 2017 278 
http://physiologyplus.com/accessory-organs-of-the-digestive-system-and-their-functions/ 
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There is interspecies variability in the proportion and distribution of endocrine tissue.15, 17 The 

pancreas in rodents is soft and diffuse within the mesentery loosely attached to the stomach, 

duodenum and spleen and often described as gastric, duodenal, and splenic lobes.15, 17 Adipose, 

connective and lymphatic tissues are dispersed in the rodent lobes.15 The dog pancreas is solid, caudal 

to the liver and divided into three lobes, right, body and left, which form a reasonable V-shape.17 Dog 

and rodent pancreatic blood supply is generally homologous to the human system.15  

 

1.2.1 Light and electron microscopy  

 

The exocrine pancreas is a complex anastomosing tubular network. The main functional unit is the 

acinus, comprised of approximately 50 cells bordering a common luminal space that with a few 

centroacinar cells forms the beginning of the duct system. In haematoxylin and eosin (H&E) sections, 

the closely packed acini appear as rounded units bounded by nuclei. Individual cells cannot be 

discerned. The endocrine Islets of Langerhans and ducts are randomly distributed (Figure 1.2). Cells 

appear pyramidal shaped with numerous darkly eosinophilic spherical zymogen granules situated in 

the apical cytoplasm. The basal cytoplasm is basophilic due to the high content of RNA in rough 

endoplasmic reticulum (RER) and the rounded nucleus eccentric towards the base. Nuclei contain 

one to two nucleoli (EM in Figure 1.3). The Golgi apparatus at the junction of the apical and basal 

poles appears as a paler zone. A basal lamina surrounds each acinus and the acinar unit is buttressed 

by a thin extracellular connective tissue matrix that contains numerous blood capillaries, nerves and 

connective tissue. The acinar cell height, granule content and the relative volume of the cell occupied 

by RER and zymogen granules vary with the stage of protein synthesis and secretion and this affects 

staining features. RER increases during synthesis, then, as zymogen granules increase, they occupy 

a greater proportion of the cell and RER is decreased.18-20. 

 

Centroacinar cells constitute the beginning of the duct system continuous with the intercalated ducts 

that interpose between the acini and the intralobular ducts. The irregularly shaped centroacinar cells 

invaginate partly into the acinus, remaining in contact with the lumen that is not always obvious in 

light microscopy.21, 22 Centroacinar cells are distinguished from acinar cells by a more irregularly 

shaped nucleus, less RER, no secretory granules and therefore paler cytoplasm. The intercalated and 

intralobular ducts have low cuboidal epithelium supported by a thin coat of connective tissue. The 

lumens of the ducts may contain homogeneous eosinophilic pancreatic proteinaceous secretion. 

Intralobular ducts comprise the largest percentage of all duct cells in the rat.21 In the septa outside 

pancreatic lobules, the larger interlobular ducts are lined by cuboidal to columnar epithelium with 
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occasional goblet cells and are surrounded by a thick layer of connective tissue. Periacinar and 

periductular interstitial cells are predominately fibroblasts and macrophages.23   

 

 

 

 

Figure 1.2 Histology of pancreas 

The pancreas is made up of the exocrine segment (E) consisting of acini and randomly spaced ducts 

(D). The endocrine portion of the pancreas consists of the Islets of Langerhans (I). (Original 

magnification x400; haematoxylin and eosin stain). 

  



7 
 

The endocrine Islets of Langerhans, with a range of size of 50-250 µm, are mostly spherical in shape 

and dispersed throughout the lobules. They comprise approximately 1-2% of the pancreas in most 

mammalian species.24 In rodent islets, the location of glucagon secreting α-cells is on the periphery 

of the islet with the insulin secreting β-cells mainly in the middle, whereas in human islets α-cells 

appear mixed with β-cells within the islets. The smaller α-cells can be seen with a trained eye in 

rodent islets with H&E staining but are particularly prominent with immunohistochemical (IHC) 

staining.24 The distribution of organelles seen by electron microscopy (EM) in the acinar cell is highly 

polarised. Using EM to describe the ultrastructure of the pancreas, the nucleus has dispersed 

chromatin and the nucleoli are prominent (Figure 1.3). The basal pole of the cell is packed with 

abundant lamellar arrays of RER with ribosomes studded to the cytosolic surface of the membrane or 

occasionally free between the cisternae. The RER occupies approximately 20% of the cytoplasm and 

its membranes account for approximately 60% of the surface area of the cell’s membranes.18 The 

cytoplasm contains numerous mitochondria. Supranuclearly is a prominent Golgi apparatus with 

parallel arrays of stacked cisternae, many small vesicles, condensing vacuoles filled with low-density 

flocculent material, microtubules and microfilaments.18, 25 Apical zymogen granules have a single 

limiting membrane; when well preserved their matrix has a high-density homogeneous electron 

opaque content, in pathological conditions or in immature granules the matrix may vary to pale 

staining with a dense irregular core. They vary in size from about 0.5-1.4 µm.24  

 

Acinar lumina are approximately 1-3 µm in diameter and contain varying amounts of electron dense 

material.25 The luminal end of the acinar cell has a few microvilli coated with a thin layer of fine 

filamentous material. The acinar basal plasma membrane is about 60 Å thick inside an amorphous 

basement membrane (BM) of 150-400 Å with associated collagen fibres.25 The plasma membranes 

of adjacent cells fuse into well-developed zonulae occlendentes that seal the apical zone from access 

to digestive enzymes following exocytosis of zymogen granules.  The relatively straight lateral cell 

membranes are separated by a narrow space joined by occasional desmosomes and adhering 

zonules.18, 26 The acinar cell may also contain some dense, membrane-limited lysosomal bodies and 

multi-vesicular bodies. Connective tissue with capillaries and autonomic nerve fibres occupy the 

small spaces between the acini.27 

 

Centroacinar, intercalated and intralobular duct cells similarly have little ER, a modest Golgi 

apparatus, ribosomes are free in the cytoplasm and mitochondria are few and smaller than those of 

the acinar cell.28 A less extensive Golgi apparatus is found usually at the apical aspect of the nucleus.25 

The cytoplasm of duct cells contains considerable amounts of delicate fibrils but appears empty in 

contrast to acinar cells. The nucleus is large, mostly oval with marginal indentations. At least some 
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cells in each category of pancreatic duct possess cilia that project into the luminal space from a basal 

body in the supranuclear region.21 The non-motile cilia have nine peripheral doublets but no central 

microtubules.21, 29 Blebs are found on the surface of intralobular cells25 but only occasionally on 

intercalated or centroacinar cells.25 Intralobular duct cells have elaborate interdigitations at the lateral 

and basal plasma membranes.28 Close packed and long microvilli border the surface of cells lining 

interlobular and main ducts. These cells contain mucin granules, have a more developed RER and 

some goblet cells.21 The surface of duct cells secrete a coat of sialoglycoprotein that acts as a barrier 

to bicarbonate ions or pancreatic enzymes.30  

 

 

 

Figure 1.3 Electron microscopy of acinar cell of normal pancreas 

The nucleus has dispersed chromatin (N=nucleus, open arrow=chromatin).  The normally prominent 

nucleoli are not visible in this image. . There are abundant lamellar arrays of rough endoplasmic 

reticulum (RER) basally. The cytoplasm contains numerous mitochondria (short black arrows). 

Apical zymogen granules have a high-density homogeneous electron-opaque content (long black 

arrows). L= lumen.  
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The EM of fibroblasts and stellate cells has been well described. Fibroblasts have a spindle shape, an 

often elongated thin nucleus, long cytoplasmic extensions and lack of lipid droplets. In comparison, 

pancreatic stellate cells have a large triangular nucleus, more cytoplasm, prominent RER active in 

protein synthesis, abundant ribosomes, few mitochondria, and long cytoplasmic projections. Dilated 

cisternae of the RER may contain flocculent material. The cell surface has caveolae and closely 

aligned collagen fibres.  

 

In the islets of Langerhans, the alpha cell secretory granules are round to ovoid with an eccentric core 

of high electron density separated from a limiting membrane by a halo of medium dense granular 

material. The more numerous beta cell secretory granules have an electron dense core surrounded by 

empty space. Dog and human granules have a dense core with bar like appearance. Delta cells have 

a similar distribution to alpha cells. Their secretory granules are larger, less dense than alpha granules 

and more uniform than beta granules.31 

 

1.3 PANCREATITIS 

 

Acute pancreatitis, chronic pancreatitis and pancreatic cancer account for the burden of exocrine 

pancreatic disease with high morbidity and mortality in severe cases.1, 32, 33 More broadly, the term 

pancreatitis designates the group of diseases in which the basic lesions are injury of acinar cells and 

inflammation of the pancreas with a spectrum of pathologies displaying variety in the severity, 

duration and outcome.34 Due to the complexity of the disease, treatment is considered in terms of 

etiology and prognosis and remains largely supportive with management to relieve symptoms and 

prevent further disease progression. Pancreatitis causes a significant burden on medical resources, 

and patients with chronic pancreatitis have reduced quality of life with substantially reduced 

employment and income.1  

 

The worldwide incidence of acute pancreatitis ranges from 4.9 to 73.4 per 100,000 people per year 

with the risk of recurrence approximately 20%.2 The prevalence of chronic pancreatitis ranges from 

4 to 14 per 100,000 per year with mortality at approximately 28-35%.3 Alcohol and gallstones make 

up the majority (80%) of all causes of pancreatitis and the overall risk of recurrence, 50% in alcoholic 

and 32-61% in gallstone pancreatitis.35, 36 A retrospective study of patients with a first episode of 

acute pancreatitis of various causes showed recurrence in 17% of patients with 8% progressing to 

chronic disease within 5 years.37 The risk was higher with smokers who abused alcohol. Generally, 

the causes of pancreatitis include obstructive (biliary and duct), toxic -metabolic (alcohol, tobacco, 

hypercalcaemia), vascular, trauma, autoimmune disorders, infectious, idiopathic, genetic 
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predispositions (cystic fibrosis). Hereditary and tropical pancreatitis are rare manifestations.38, 39 

Some examples of causes of pancreatitis are presented in Table 1.1. Patients with these rare types of 

pancreatitis pose an approximately 50 fold greater risk than the general population of developing 

pancreatic cancer however the risk for all chronic pancreatitis patients is approximately 5%.38  

 

Table 1.1. Causes of Pancreatitis 

Alcoholism 

Gallstones 

Abdominal surgery/haemorrhage 

Certain drugs/medications 

Cigarette smoking 

Cystic fibrosis 

Family history of pancreatitis 

High calcium levels in the blood (hypercalcemia), which may be caused by an overactive 

parathyroid gland (hyperparathyroidism) 

High triglyceride levels in the blood (hypertriglyceridemia) 

Infection 

Injury to the abdomen/haemorrhage 

Pancreatic cancer 

Adapted from Kleefe, J., et al (2017).  Talukda P., Vege S., (2015) 

 

 

Current treatment regimens have improved considerably over recent years with advances in intensive 

care medicine and pain relief, however, treatment is mainly symptom alleviation. In mild, acute 

pancreatitis, treatment is based on hydration and nutrition with laparoscopic cholecystectomy for 

biliary pancreatitis. Aggressive intravenous fluid, enteral feeding and intensive care monitoring are 

required for severe acute pancreatitis.9, 10 For chronic pancreatitis, treatment is for maldigestion, and 

nutritional deficiencies resulting from exocrine insufficiency. Diabetes therapy is required for 

endocrine deficiencies. Complications such as obstruction of the duct, gastric outlet and vessels, 

common in chronic pancreatitis, are treated with endoscopy and surgery.1, 3 There is no current 

treatment for the fibrosis that causes the pathophysiology of chronic pancreatitis.  

 

Diagnosis of pancreatitis is made primarily on the basis of abdominal pain, serum amylase/lipase 

levels and abdominal imaging.32, 40 Scoring systems to predict severity have high false positive rates 
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and individual assessment of patients is critical for recognition of the inflammatory response and 

local complications.40 Diagnosing chronic pancreatitis is challenging as it can be easily confused with 

recurrent attacks of acute pancreatitis or features of other disorders, biopsy and direct visualisation 

are difficult and symptoms can be subtle and vague.1, 38 There is no reliable molecule, genetic 

biomarker or imaging system currently available for predicting the severity of acute pancreatitis.9 

These diagnostic aids would improve the ability to treat the early manifestation of the disease to 

prevent morbidity and mortality as the early systemic inflammatory response has already occurred by 

the time patients present for treatment.9  

 

Chronic pancreatitis is usually diagnosed when the disease is already fully established as the pancreas 

has a considerable functional reserve such that the symptoms of pancreatic insufficiency are not 

clinically recognised until most tissue destruction has occurred. Uncertain pathogenesis, 

unpredictable clinical course and unclear treatment result, so life expectancy is reduced.8 There is no 

current treatment for the fibrosis that causes the pathophysiology of chronic pancreatitis as well as 

the lack of specific laboratory parameters for non-specific clinical symptoms.3  

 

The classification of acute and chronic pancreatitis is multifaceted and has changed often due to the 

diverse aetiologies, symptoms, morphological patterns, the stage (early/late) and complications. 

Determinant-based classification (PANCREA) 201241 and Atlanta classification42 for acute 

pancreatitis; and the M-ANNHEIM classification 43 and S3 Guideline for chronic pancreatitis are 

recent classification systems that introduce unifying concepts to pancreatitis.3 

 

1.3.1 Acute pancreatitis 

 

Acute pancreatitis is associated with elevated pancreatic enzymes in blood and urine due to 

inflammation and systemic responses of varying severity.4 Mild interstitial or oedematous pancreatitis 

with acute inflammation and oedema generally resolves to normal morphology and function , 

however, the often fatal, severe form of acute pancreatitis is haemorrhagic with necrosis and abscess, 

leading to the complete destruction of the gland, systemic complications and organ failure.5  

 

1.3.2 Chronic pancreatitis 

 

Chronic pancreatitis is a fibro-inflammatory disease, the end result being irreversible destruction of 

the gland with impairment of exocrine and endocrine function.1 The current view is that recurrent 

attacks of acute pancreatitis and chronic pancreatitis may represent a disease continuum due to 
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repeated tissue destruction and subsequent remodelling.6 Chronic pancreatitis is irreversible once 

established but progression and symptoms can be modified by clinical intervention.1 Chronic 

pancreatitis is considered a risk factor for pancreatic cancer.6 The cancer is usually at an advanced 

stage at diagnosis, and it is rare to have complete resection of the tumour, and conventional cancer 

therapies such as radiation and chemotherapy have limited results with significant side effects.11 

 

1.3.3 Cell death and its role in pancreatitis 

 

Cell death is critical for tissue sculpting in development, in immunity and destruction of damaged 

cells. Best researched are necrosis, or accidental cell death, and apoptosis, or programmed cell death 

or cell suicide. Recently it has been suggested that there is cross talk between these forms of cell 

death, with necroptosis and pyroptosis utilising mechanisms distinct from necrosis and apoptosis to 

activate cell death.  

 

Apoptosis, named by Kerr et al (1972), is an evolutionarily conserved innate process of regulated cell 

death executed to dispose of cell contents in a conservative manner. It is intentional cell suicide based 

on genetic mechanisms and activated in normal development and morphogenesis as well as in cellular 

injury and stress.44 Apoptosis is regulated by extrinsic stimuli such as cell surface death receptors, 

tumour necrosis factor (TNF)α, Fas and TNF related apoptosis inducing ligand (TRAIL) leading to 

the activation of caspase-8, or by intrinsic stimuli via the mitochondrial signalling pathway through 

cytochrome c and Smac/Diablo that activate caspase-9.45 Activated caspase-8 and -9 cleave and 

activate further caspases to result in apoptosis. The morphology of apoptosis is distinct. The nuclear 

chromatin becomes condensed and often marginated against the nuclear envelope, simultaneously 

with convolution of the nuclear outline. These sharply-defined chromatin masses often appear as 

crescent shaped.  The cytoplasm condenses, microvilli disappear and protruberances, or blebs, appear 

on the cell surface. Cell attachments fail and cells separate from their neighbours. Cytoplasmic 

condensing causes crowding of organelles, ER rearranges into circumscribed whorls or circular 

profiles. Cell fragmentation occurs as the nucleus breaks into discrete fragments and the blebs on the 

cell surface separate with membrane sealing to form membrane bound apoptotic bodies of varying 

size and composition. Apoptotic bodies usually are rapidly phagocytosed by macrophages and 

adjacent epithelial cells or occasionally extruded into intercellular spaces or the pancreatic lumen. 

Most estimates are that apoptotic cells are recognized, ingested and degraded within approximately 

1-2 hrs.46  
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Necrosis is regarded as an un-programmed cell death lacking signalling cascades, initiated by noxious 

or physical insult or lack of blood supply. Morphologically, the cytoplasm swells (oncosis) and 

nuclear chromatin clumps. Mitochondria swell with the appearance of densities in their matrix. The 

irregularly clumped nuclei become dispersed (karyorrhexis) leaving ghost like nuclei (karyolysis). 

Nuclear, organelle and plasma membranes rupture with dissolution of lysosomes and ribosomes. Cell 

boundaries become indistinct with blebbing and the cell contents leak into the intercellular space 

leading to an inflammatory response. Tissue architecture is lost and tissue appears eosinophilic. 

Cellular debris is ingested by macrophages.   

 

Necroptosis resembles necrosis morphologically however it is a programmed form of necrosis driven 

by defined molecular pathways. It is induced by death receptors including TNF, Fas (under conditions 

of caspase inhibition), and involves activation of the receptor-interacting protein kinases/mixed 

lineage kinase domain (RIP1/ RIP3/ MLKL) pathway and other signalling pathways.47 ROS, rapid 

depletion of ATP and mitochondrial dysfunction are also key events. Mice lacking RIP3/MLKL are 

protected from pancreatitis in an induced model.48 Pyroptosis is a form of programmed cell death that 

depends on the action of caspase-1 therefore differs from apoptosis biochemically. Morphologically, 

pyroptosis is associated with cell swelling, plasma membrane lysis, nuclear fragmentation and lack 

of mitochondrial permeabilisation. It is suggested that pyroptosis functions to control infection or for 

release of inflammatory cytokines.49 

 

1.3.4 Regeneration  

Progenitor cell activity is active prenatally in the pancreas, however after birth, pancreatic cells do 

not regenerate continuously and lineage crossover is rare.  It is possible to alter the growth of the 

pancreas by various types of experimental intervention, for example, with cholecystokinin (CCK) 

and after pancreatic resection.50, 51 Mild pancreatitis in human and animal models appears to resolve 

through regeneration of acinar cells. Chronic pancreatitis endures with persistent inflammation, 

fibrosis and tubular complexes. Multiple mechanisms participate in regeneration including 

inflammation, metaplasia and differentiation. As well as acinar cells, cellular constituents 

contributing to repair are duct cells, inflammatory cells, and stellate cells. Fibrosis and the cellular 

interactions within the fibrotic milieu appears important in the regeneration process but is not well 

characterised. 

 

In experimental regeneration conditions, acinar cells depleted by cell death are replaced by tubular 

complexes composed of cells positive for ductal markers that then appear to regenerate into acinar 
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cells. Whether this acinar cell regeneration is due to population expansion or acinar-to-ductal 

transdifferentiation and duct-to-acinar dedifferentiation has been debated passionately in the 

literature.52 Recent knockout and genetic studies in mice, in particular the Cre-LoxP lineage tracing 

technique that links transcription factors to cell fate decisions have begun to unravel the molecular 

basis of regeneration.53 Lineage tracing studies have determined to date that there are no stem cells 

in the exocrine pancreas although this issue is still under investigation.  

 

Tamoxifen induced lineage tracing experiments show that when acinar cells are deleted and 

conditions support regeneration they are replaced by expansion of surviving acinar cells and not by 

progenitor cells. These acinar cells appear to retain lineage commitment as they do not differentiate 

into duct or endocrine cells.54, 55 In these experiments residual acinar cells remain after injury. When 

acinar cells are erased completely, in a diphtheria toxin induced model, duct to acinar 

transdifferentiation appears to be the method of acinar renewal.56 Furthermore, experimental models 

of regeneration from pancreatitis that have focused on the endocrine compartment have revealed a 

plasticity within acinar cells.52 As well, recent evidence from experiments with genetically engineered 

mice suggests that acinar cells become duct-like through acinar-to-ductal metaplasia and are the 

source of pancreatic cancer. Acinar cells express the differentiation factors PTF1A, Mist1 and Nr5a2.  

Loss of PTF1A from acinar cells causes acinar-to-ductal metaplasia.57 Under the influence of 

oncogenic KRAS, acinar-to-ductal metaplasia leads to the formation of precancerous lesions and 

thence to cancer. Mist1 and Nr5a2 normally expressed in acinar cells protect from transformation but 

equally, ductal fate controllers Sox9 and Pdx1 drive acinar cells toward a ductal state that may 

increase cancer cell growth.58, 59 Exocrine regeneration is dependent on cell-to-cell interactions 

through disrupted gap junctions and ductal defects.53  

 

Fibrosis is a common feature of failure to regenerate in pancreatitis. The persistence or withdrawal 

of pancreatic stellate cells affects regeneration, their role is uncertain and Cre lines for adult PSCs 

have not yet been developed. Macrophages and other immune cells such as dendritic cells, also persist 

in fibrotic pancreatitis. Their contribution to limiting or driving inflammation associated with injury 

resolution requires further investigation. Inflammatory signalling pathways associated in regeneration 

from pancreatitis are principally the nuclear factor-κB (NF-κB) and Janus activated kinase (JAK)-

Signal transducer and activator of transcription (STAT) pathways implicated in inflammation, PSC 

recruitment and dedifferentiation, however findings to date are conflicting. As well, signals from 

factors expressed in embryonic development such as the Notch and Wnt signalling pathways, Pdx1 

transcription factor, Hedgehog, Hippo and Wnt/β-catenin pathways may have regenerative roles 
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promoting acinar redifferentiation and proliferation. Communication between the fibrotic process, 

inflammation and developmental mechanisms may determine the outcome of regeneration. 

 

1.4 PANCREATIC FIBROSIS AND INFLAMMATION 

 

Progressive fibrosis is a characteristic feature of chronic pancreatitis of various etiologies. The 

cellular and molecular mechanisms leading to pancreatic fibrosis remain poorly understood.  

 

1.4.1 Extracellular matrix 

 

The extracellular matrix (ECM), the organic matter found between cells, is a framework that acts as 

a structural scaffold for the cellular components and determines cell function through cell-matrix 

biochemical and biomechanical interactions. It is indispensable in embryonic development and tissue 

remodelling, the ECM molecules playing a role in adhesion, migration, proliferation, differentiation 

and homeostasis.60 ECM is composed of multifunctional proteins grouped primarily into structural 

proteins (collagen, elastin), proteoglycans and glycosaminoglycans (hyaluronan, perlecan), 

glycoproteins (fibronectins, laminins), and matricellular proteins (thrombospondins, tenascin).61 

Collagen and elastin classify as fibre-forming molecules, proteoglycans and glycoproteins are 

interfibrillary whereas other molecules regulate cell-matrix interactions The ECM molecules are 

strictly organised such that genetic abnormalities in ECM proteins can produce an array of disorders. 

Disturbances in ECM occur in a variety of human diseases such as coronary heart disease, 

hypertension, asthma, chronic obstructive pulmonary disease (COPD), hepatic fibrosis, chronic 

pancreatitis, Crohn’s disease and some cancers.62  

 

1.4.2 Basement membrane 

 

The BM is a dense sheet-like structure that underlies and separates epithelial cells from interstitial 

tissue or endothelial cells, surrounds muscle, fat and Schwann cells and acts as a permeability filter 

in kidney glomeruli.63, 64 BM is a complex, highly cross-linked meshwork of proteins secreted in 

soluble state and then organised into insoluble cell frameworks.65 The essential BM components 

include collagen type IV in one or more variants, along with the proteoglycans laminin, heparin 

sulfate, perlecan and entactin/nidogen;63, 64, 66 and also non-essential components such as secreted 

protein acidic and rich in cysteine (SPARC) and the integrin ligand nephronectin.65 Collagens XV 

and XVIII are found tethered to the BM and stromal interfaces as are growth factors of the TGFβ 

family, proteinases and their inhibitors, and regulatory molecules.65 Together these mediate local and 
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distant signals with complex signalling cascades, and support and protect the physical interactions of 

cells and tissues.  

 

Morphologically, three layers of BM can be distinguished by EM; the electron dense lamina densa is 

20-300nm thick; the lamina lucida, at 10-50nm thick, is clear or not electron dense; the lamina rara 

interna is 10nm thick and is the basal portion. The lamina reticularis of 200-500nm borders the lamina 

rara interna. BM formation is a laminin/collagen self-assembly, multi-step process involving binding 

and adhesion at the cell surface and polymerisation.64, 65 Through laminins, the BM anchors to integrin 

and dystroglycan receptors65 and sulfatides, nidogen and perlecan feature in assembly with 

considerable heterogeneity, resulting in different structural and biological properties at different 

locations.63, 67, 68 

 

1.4.3 Collagen 

 

Collagen consists of a large family of approximately 28 different collagens encoded by 42 different 

collagen genes.60 Most bind and interact with other ECM proteins to form supramolecular aggregates 

that are classified into fibrillary, fibril-associated, network-forming, membrane-anchoring, 

interconnecting and developmental collagens.60 They localise differently in the BM and/or the 

interstitial matrix. 69 The composition of collagens changes with age and tissue type and mature fibres 

can consist of multiple fibril types.70 The collagen protein is elastic with a resilience of 90% thus 

collagen fibrils show reversible deformity and their mechanical properties are dependent on a variety 

of cross-linking pathways.60 Collagen type IV is produced mainly by endothelial and epithelial cells 

whereas types-I, -III and -V collagen are synthesised intracellularly in fibroblasts.69  

 

The common collagen triple helix forms by three polypeptide α-chains incorporating a repeating 

sequence of glycine X-Y, after which the molecule is called procollagen.71 The existence of several 

alpha chains and molecular isoforms increases the structural and functional diversity of the collagen 

family.60 The molecule is stabilised by covalent bonding along the chain before the formation of 

fibrils, end-to-end linear growth and lateral growth. In fibroblasts, collagen formation begins with 

translation of the protein in the RER. Packaging occurs in the Golgi apparatus. Two models of 

fibrogenesis are proposed; transport through the cytoplasm from Golgi to membrane by means of 

specialised, elongated compartments containing 28nm fibrils followed by exocytosis into the 

extracellular space via caveolae or membrane protrusions, or extracellular fibril assembly through an 

enzymatic fusion process.60, 72 
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EM can be used to illustrate the morphology of collagen. Collagen fibrils form from groups of 

filaments that contain proto-filaments of 0.5-0.3nm. In electron micrographs, the fibrils that form an 

aggregate of filaments 20nm-2µm in diameter often appear hollow or negatively stained due to 

artefact. Mature collagen fibrils show a full-banded and distinctive cross-striated pattern because they 

pack in a staggered arrangement. Very slender or young fibrils show only vague periodic structure. 

Each period consists of a light-dark band and 10-13 fine dark cross striations within each period. In 

ultra-thin EM sections, the length of period is approximately 52-62nm. Collagen fibres, often called 

heterotypic because they consist of a collection of several collagen fibril types, are usually 1-10µm 

in diameter and are wavy fibres of variable length.  Collagen I consists of five molecules of twisted 

microfibrils interdigitated with neighbouring fibrils.60 Reticular fibres are very fine branching 

collagen fibrils of collagen III. They are Periodic Acid-Schiff reagent (PAS) positive and 

argyrophilic, having an affinity for silver as used in a common histochemical stain. 

 

1.4.4 Laminins 

 

Laminins are a family of large molecular weight glycoproteins found in the BM. They function as 

structural components essential for BM formation and integrity and embryonic morphogenesis and 

mediate cell adhesion, proliferation, differentiation, cell shape and migration.64, 73 Laminins interact 

with cell surface receptors like heparins, integrins and dystoglycans to initiate intracellular signalling 

that regulates cellular organisation.64, 74  

 

Laminins are heterotrimers assembled from three genetically-distinct, disulphide-linked polypeptide 

chain subunits, and each laminin is named according to its chain constituents.74, 75 The chains fold 

into many combinations stabilized by disulphide bonding into either cross-shaped, Y-shaped or rod-

shaped trimers.  This shaping determines how the laminin trimers interact with each other and other 

BM proteins for example, in cross-shaped laminins, the short arms can bind to other laminin 

molecules forming sheets that initiate BM assembly; the long arm binds to cells in an anchoring 

manner.76 Laminins self and co-polymerise in the matrix; structure and assembly are reviewed 

elsewhere.63 In different tissue locations and in different cell types they show heterogeneity due to 

diversity of assembly of their chain domains and the variety of interactions mediated by different 

binding sites.63, 77 This leads to the formation of ECM with a diversity of laminin arrangement and 

biological properties.77  
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1.4.5 Fibrosis 

 

Fibrosis is the excessive accumulation of fibrillary, collagen-rich ECM occurring either in persistent 

tissue damage or in tissue repair. Following damage to tissue or organs through trauma or disease, 

fibrosis may aid the restoration of cell and ECM components beneficially. However, the prolonged 

presence of fibrosis detrimentally leads to dysfunction and chronic disease. In skin wound healing, 

during inflammation, a platelet plug forms followed by a fibrin matrix scaffold. Growth factors 

activate neutrophils, mast cells, macrophages and fibroblasts to infiltrate and populate the scaffold. 

These cells defend against microorganisms, clear debris, produce fibrosis and signalling factors.78 

New tissue formation follows keratinocyte migration over the injured site to restore a barrier of 

epithelium and angiogenesis occurs to replace the fibrin matrix with granulation tissue. The 

endothelial, mast and macrophage cells undergo apoptosis or exit the wound, leaving a mostly 

acellular protein and collagen matrix. Activated fibroblasts (myofibroblasts) form the fibrotic scar of 

mainly collagen III and use mechanistic contraction to remodel the injury. Over time, matrix 

metalloproteinases secreted by fibroblasts regulate collagen turnover from collagen III to collagen I, 

until skin integrity and homeostasis is maintained.79 

 

Studies of fibrosis are well documented in liver and have provided the basis for fibrosis research in 

pancreas. Although there are similarities to fibrosis in the pancreas, the liver has a population of 

resident macrophages (Kupffer cells), hepatic stellate cells have more and larger lipid droplets, the 

relationship with vasculature is different and a liver stem cell (oval cell) has been identified.80 In liver, 

the deposition of fibrosis by collagens I, III, IV and V is accompanied by change in immune cell 

composition, altered angiogenesis and architectural changes. The collagen is produced by activated 

hepatic stellate cells (HSC) located in the peri-sinusoidal space and myofibroblasts located in larger 

vessels, portal tract stroma and sinusoidal endothelial cells.81 In the liver, resident macrophages 

(Kupffer cells) and macrophages recruited from monocytes along with bile duct epithelial cells, the 

hepatic progenitor stem cells (oval cells)80 and activated fibroblasts secrete cytokines and other 

mediators to recruit and activate HSC and myofibroblasts.82  The environmental stiffness of ECM in 

advanced fibrosis activates HSC and MF and promotes the survival of HSC.80, 83 Kupffer cells recruit 

monocyte macrophages that infiltrate and produce TGFβ1, TNFα and interleukins 1β, 6 and 13, which 

are pro-inflammatory or pro-fibrotic. Oval cells produce TGFβ1, TGFβ2, PDGF and sonic hedgehog 

for HSC proliferation and activation: HSC maintain oval cell growth through production of survival 

factors.80 In acute liver disease, removal of excess ECM by matrix metalloproteinases (MMPs) leads 

to resolution of the disease state. However, in protracted or subsequent bouts of injury excess ECM 

deposition dominates permitting MMP downregulation and upregulation of tissue inhibitors of MMPs 
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(TIMPs). Fibrosis models optimised for liver fibrosis reversal include in rats treated with carbon 

tetrachloride (CCL4) or alcohol and bile duct ligation84 and in mice CCL4 or thioacetamide induced 

fibrosis.85 Factors associated with inefficient fibrolysis in the liver include advanced vascular 

remodelling with architectural distortion, extensive cross-linking of ECM components hindering 

proteolytic removal, and the disappearance of cells that digest and degrade scar tissue.85   

 

1.4.6 Fibrosis in the pancreas  

 

Injury to the pancreas, whether necrosis, apoptosis, inflammation or obstruction, leads to production 

and deposition of ECM depending on the site of injury and the tissue compartment or cell types 

involved.86-88 Fibrosis may replace the normal exocrine and endocrine cell populations leading to 

both exocrine and endocrine deficiency. Pancreatic fibrosis ranges from interlobular (for example, 

alcoholic chronic pancreatitis), periductal (hereditary pancreatitis) or periductal and lobular 

(autoimmune pancreatitis).89 It is the common pathological feature in chronic pancreatitis and a major 

risk factor for pancreatic cancer. There is a direct role of fibrosis in cancer invasiveness 90, apoptosis 

associated with cancer91 and through molecular interaction between PSCs and cancer cells controlling 

pro-tumorigenic properties.92-94 Treatment for pancreatic fibrosis remains problematic.   

 

In the pancreas, injury to acinar cells activates the cascade of events that leads to fibrosis. Activated 

acinar cells and recruited inflammatory cells, macrophages, neutrophils and eosinophils, platelets,95 

induce the release of pro-inflammatory cytokines such as interleukins (IL)-1,-6,-8,-18 to -33 and 

TNFα that activate pancreatic stellate cells.34 Matrix accumulates through activated pancreatic stellate 

cells (PSCs) secreting the ECM under the production of a wide range of cytokines and molecular 

signalling pathways, for example TGFβ/Smad, mitogen-activated protein kinase (MAPK), Rho 

kinase, JAK/STAT and phosphoinositol-3-kinase (P13K) pathways.34 Macrophages produce pro-

fibrotic cytokines such as TGFβ, platelet-derived growth factor (PDGF), fibroblast growth factor-2 

(FGF2) and insulin growth factor-1 (IGF1). PSCs also regulate the degradation of ECM by secreting 

MMPs and TIMPs such that the balance between resolution of fibrosis and progression to fibrotic 

chronic disease depends on a complex process with multifunctional modes of action.  

 

Dynamic autocrine and paracrine signalling pathways accompany the development of fibrosis in the 

pancreas. TGFβ regulates activation of PSCs in an autocrine manner through Smad and ERK 

pathways.96, 97 Transforming growth factor (TGF)α increases proliferation and migration of PSCs via 

upregulation of MMP-1.98 TGFβ also regulates other signalling pathways including the MAPK 

pathway whose members extracellular signal regulated kinase (ERK), c-Jun N terminal kinase (JNK), 
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p38 induce collagen synthesis.99-102 The Rho kinase family is linked to the invasive nature of 

pancreatic ductal carcinoma103, PDGF induces the proliferation of PSC by activating the JAK-

2/STAT-3 pathway.101 

 

Models used to study pancreatic fibrosis include repeated injections of caerulein104, duct ligation105, 

toxins injected into the pancreatic duct (trinitrobenzene sulfonic acid or IV dibutyltin chloride,106, 107 

over-expression of TGFβ,108, 109 the WBN/Kob spontaneous chronic pancreatitis rat,110 and alcohol-

induced pancreatitis in rats111 and in mice.112   

 

1.4.7 Resolution of fibrosis 

 

Fibrosis resolution depends on elimination of the pathological stimulus, clearance of PSCs and their 

stimulants such as macrophages, degradation and clearance of ECM components and regeneration of 

tissue epithelium. Identification and studies of the intracellular signalling pathways are important for 

the development of anti-fibrotic therapy. Reported pancreatic anti-fibrotic approaches in animal 

models include antioxidants;113-116 silencing of TGFβ117-119; inhibition of TNFα;113 anti-inflammatory 

drugs;120 troglitazone, the peroxisome proliferation-activated receptor-γ (PPAR-γ) agonist;121 

angiotensin receptor blocker;122 and a mouse model with inducible c-Jun.123   

 

The withdrawal of the etiological source of chronic injury, the disappearance of PSCs, the recruitment 

of macrophages and the prevalence of MMPs over their inhibitors TIMPs are necessary for the 

reversal of fibrosis.84 MMPs, a family of 28 members, also called matrixins, are zinc-dependent 

endopeptidases active in the degradation of most components of ECM.124-126 They are commonly 

classified into collagenases, gelatinases, stromelysins, matrilysins, membrane-bound and other 

MMPs. Originally studied for their role in the turnover of ECM by degradation of ECM proteins in 

wound repair and embryogenesis, they are now known to be active in pathological conditions such 

as rheumatoid arthritis, chronic obstructive pulmonary disease, myocardial infarction, cancer 

metastasis and neurological disorders.124, 126 

 

Through modulation of cellular and signalling pathways, MMPs have a role in cell proliferation, 

migration, differentiation, apoptosis, angiogenesis, cancer invasion and metastasis and immunity.125 

They are distributed in connective tissue as well as some vascular tissues and cells.125 Most MMPs 

are secreted as inactive proenzymes by multiple cells including fibroblasts, macrophages, neutrophils 

and lymphocytes however some are membrane anchored to the cell surface of cells or the 

mitochondria or nucleus.124 The core structure of MMPs consists of amino acids in a pro-peptide, a 
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catalytic metalloproteinase domain, a linker peptide and a hemopexin domain.125 Generally, MMP-1, 

-8, -13,-14 cleave collagens I, II, III; MMP-2 cleaves collagen I.126 TIMPs are a small family of four 

proteins that regulate the activity of all MMPs. In normal tissues, the ratio of MMPs to TIMPs is 1:1 

however this balance is disrupted under pathological conditions.124 Because the ratio of MMP/TIMP 

mostly determines the extent of protein degradation, MMPs are proposed as therapeutic targets for 

several pathological disorders.124-126 Transmembrane receptors, integrins, are involved in resolution 

of fibrosis through the finding that liver, lung and kidney fibrosis are attenuated in mice with a 

constitutive MF-specific knockout of the αv integrin chain.127 

 

1.4.8 Pancreatic stellate cells  

 

Activated PSCs produce most of the components of the ECM, increasing synthesis and secretion of 

ECM components including collagen types I and III, fibronectin, laminins, proteoglycans and 

hyaluronan.128-130 Historically, the activation of fibroblasts and fibroblast-like cells was observed in 

acute and chronic pancreatitis in the rat caerulein-induced pancreatitis.105, 131, 132 Walker et al. (1992) 

identified myofibroblasts and fibroblasts in fibrotic areas of duct ligation rats. The importance of 

fibroblast-like cells in the peri-acinar region of the pancreas for collagen synthesis and fibrosis was 

identified by several authors133-135 Cultured rat peri-acinar fibroblastoid cells were identified as 

myofibroblast-like cells producing the ECM proteins collagen, fibronectin and laminin.136 A similar 

observation was made in transgenic mice models by others.137,138 Alpha smooth muscle actin (αSMA) 

positive myofibroblast-like cells were recognised around the acini, ducts and vessels of the human 

pancreas.139 Further studies with isolated and cultured fibroblast/myofibroblast cells from normal rat 

pancreas140 and from human chronic pancreatitis, and from rats treated and untreated with caerulein129 

noted the similarity of the myofibroblast-like cells to hepatic stellate cells (HSC) and changed the 

terminology to PSCs. 

 

Stellate cells, in general, have a perivascular location and store retinoids, a feature shared with 

HSC.141, 142 In normal pancreas, quiescent PSCs (or inactive fibroblasts) are in low numbers 

(approximately 4% of the cells), have limited proliferation, rounded cell bodies with long cytoplasmic 

processes, possess vitamin A containing fat droplets129, 140 and are negative for α-smooth muscle actin 

(αSMA).140 They have a periacinar and interlobular distribution129, 140 however may be detectable in 

islets.143 When isolated and cultured in vitro129, 140 and when activated in vivo during both human and 

experimental fibrosis,144 PSCs transform to a myofibroblast-like phenotype. They lose their vitamin-

A containing lipid droplets, enlarge and proliferate, stain positive for the cytoskeletal marker protein 

αSMA and synthesise large amounts of ECM proteins.  
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Quiescent PSCs are believed to reside in the normal pancreas, however histological stains for their 

identification and comparison with resident fibroblasts are limited. For both PSC and HSC, vitamin 

A droplets in the cytoplasm provide a target for staining, however the lipid marker Oil Red O is 

reliable only with frozen sections as processing with solvents for formalin-fixed paraffin-embedded 

(FFPE) sections dissolves the lipid. Markers previously reported to be effective in quiescent HSCs or 

PSCs in rats and cell culture, glial fibrillary protein (GFAP), nestin, desmin and vimentin, are either 

not specific and/or are not positive in human PSCs.129, 140, 144-147 Many markers for quiescent PSCs in 

normal human pancreas have been evaluated recently.148 They identified the limitations of previously 

proposed markers and suggested cytoglobin and adipophilin as possible but not perfect replacements.  

 

Activated PSCs migrate and phagocytose.149, 150 Activated PSCs are thought to transform from 

quiescent PSCs residing in the pancreas129, 140 however, in mice with caerulein-induced pancreatitis 

approximately 5% of the total population of PSCs were derived from bone marrow.151, 152 The bone 

marrow derived cells contributed to both quiescent and activated PSC populations.153 Phillips et al. 

(2003) reported an increase in the numbers of PSC in pancreatic injury resulting not only from PSC 

proliferation but also via migration from surrounding areas to injured tissue. This migration of 

cultured PSC was stimulated by platelet-derived growth factor (PDGF)149 and the migration is 

dependent in part on cell proliferation.154 In an animal model of spontaneous chronic pancreatitis and 

diabetes mellitus using the male WBN/KOB rat, Shimizu et al. (2005) found phagocytic cells in the 

periacinar region with the same characteristic features of PSCs, suggesting that PSCs might act as 

resident phagocytic cells during pancreatic injury.  

 

PSCs produce MMPs and TIMPs to degrade collagen.155 PSCs therefore play an important role in the 

balance between synthesis and degradation of ECM. Proteins expressed in activated PSCs are 

different to those in the quiescent state according to proteomic studies of mouse, rat and human 

PSCs.156, 157 Chronic pancreatitis with fibrosis is a complication of alcoholism and ethanol metabolites 

along with oxidative stress may perpetuate activated PSC. PSC were activated by exposure to ethanol 

in culture158 via the metabolism of ethanol to acetaldehyde accompanied by oxidant stress.159 The 

antioxidant retinol supplements prevented alcohol-induced PSC activation.160 The authors propose 

that retinoic acid in quiescent stellate cells is responsible for keeping the cells in an undifferentiated 

state.160, 161 
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1.4.9 Fibrosis and the transforming growth factor beta family  

 

TGFβ is a multifunctional cytokine residing in the ECM and synthesized by macrophages, 

lymphocytes, fibroblasts and PSCs, epithelial cells, and platelets. It has roles in cellular and 

development pathways and tumour promotion or suppression and is linked to the tight control of 

apoptosis.162, 163 In mammals, TGFβ occurs as three isoforms, TGF-β1, TGF-β2, and TGF-β3, with 

TGF-β1 the most abundant. Stimulated TGFβ dimers mediate signalling via serine/threonine kinase 

Type-I and Type-II receptors.164 TGFβ can activate the MAPK signalling pathways ERK, JNK and 

p38 and mediate Smad-dependent or independent effects. Loss of function of the components of the 

TGFβ pathway results in aberrant organ development and physiological performance. The TGFβ 

family has a role in embryogenesis and may be necessary for normal development of acini. In the 

exocrine pancreas, acini express TGFβ1 whilst duct cells are reactive for all three isoforms.165 

Inactivating TGFβ in transgenic mice resulted in increased proliferation, defective acinar 

differentiation and fibrosis with macrophage infiltration, suggesting the necessity for TGFβ in normal 

exocrine function.166 TGFβ appears to support both fibrosis and hyperglycaemia in chronic 

pancreatitis. In fibrosis, TGFβ regulates PSC activation and proliferation through Smad 2, Smad3 and 

ERK-dependent autocrine pathways.97 PSCs actively secrete TGFβ1 and express TGFβ receptors I 

and II. Exogenous TGFβ1 increases collagen protein synthesis significantly.167  

 

1.4.10 Fate of pancreatic stellate cells 

 

Prolonged activation of PSCs results in progressive fibrosis. PSCs activate by autocrine pathways, 

thus they may achieve a perpetually-activated state when triggers, for example ethanol, have 

ceased.168 PDGF, TGFβ1 and activin A, cytokines (IL-1, IL-6 and TRAIL), and the pro-inflammatory 

molecules (cyclo-oxygenase-2/COX-2) can perpetuate the activated phenotype.169 Mechanisms to 

terminate PSC activation are required for fibrotic resolution and tissue regeneration. Several studies 

have found that PSCs may revert to quiescence, or undergo cell death or senescence. In vitro and in 

vivo immunity studies in mouse and rat models showed the necrotic cell death of PSCs after engulfing 

necrotic acinar cells and apoptotic neutrophils.150 The fate of rat PSCs in culture and in a chronic 

pancreatitis model was determined by senescence.170 PSCs isolated from rat pancreas were 

susceptible to CD95L and TRAIL-induced apoptosis in culture and, in a model of explant cultures of 

rat pancreatic tissues, some PSCs disappeared by apoptosis whilst some reverted to non-activated 

fibroblast phenotype.171 Apoptotic PSCs were demonstrated in an ethanol-fed endotoxin model of 

chronic pancreatitis.172 Exposure to retinoic acid may counteract PSC activation, or promote the PSC 
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quiescent phenotype or stage.102, 173 In cell culture of PSCs, studies demonstrated that activin A 

induced the expression of anti-apoptotic Bcl-xL.174  

 

1.4.11 Pancreatic inflammation 

 

Inflammatory cells (particularly macrophages), platelets, injured acinar cells and pancreatic cancer 

cells secrete cytokines and growth factors to activate PSCs in a paracrine manner. This stimulates 

PSCs to produce factors that act through autocrine signalling to regulate and sustain PSC activation.175 

The multiple signalling pathways involved in PSC activation and functions are summarised.175, 176 

They include the p38 MAPK pathway involved in activation and proliferation of PSCs; PPAR-γ in 

maintenance of quiescence; ERK mainly in proliferation with JNK and JAK-STAT3; Rho/Rho kinase 

pathway for regulation of the actin cytoskeleton and contraction; NF-κB , ERK, JNK, p38 kinase and 

activator protein-1  (AP-1) for cytokine production; and P13K/Akt for controlling migration.  

 

Members of the Smad family regulate activation, α-smooth muscle actin (αSMA) and COX-2 

expression and VEGF production. STAT1 and Smads are involved in growth inhibition. Mediators 

for the signalling pathways include growth factors such as platelet-derived growth factor (PDGF);128, 

130 TGFβ1177 and activin A;178 basic FGF (bFGF);129, 130 connective tissue growth factor 

(CTGF/CCN2);179, 180 and cytokines such as IL-1 and -6;181 IL-8 and TRAIL;169 and TNFα.130, 181 The 

vasoconstrictor, endothelin-1 is expressed by PSCs however they also contract and migrate in 

response to endothelin-1 expression.101, 182 Overexpression of the integrin ligand, periostin, produced 

by PSCs, may contribute to tumour desmoplasia in pancreatic ductal adenocarcinoma.183 Oxidative 

stress, ethanol and pressure also act to stimulate and perpetuate the activation of PSCs.158, 184, 185  

 

1.4.11.1 Macrophages in pancreatitis 

Macrophages are mononuclear phagocytes involved in mammalian development, trophic support and 

homeostasis of tissues and are major coordinators of both the initiation and resolution of inflammation 

after tissue injury. For simplicity and mechanistic cell culture studies, macrophages are divided 

primarily into classically activated M1 macrophages by secretion of pro-inflammatory cytokines 

TNFα, IL1β and IL6, and alternatively activated M2 macrophages treated with IL-4 and IL-13.186 

However, as macrophages appear to be highly plastic, other subsets, phenotypes and changed 

physiology are described that respond to changes in environmental signals.187 Studies in cancer and 

obesity indicate that macrophage populations do undergo a phenotypic switch associated with time 

and pathology.188 The pancreas contains an unknown proportion of resident self-sustaining 

macrophages, however they are known to reside in the peritoneal cavity near the pancreas and in the 
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peri-pancreatic tissue and are recruited from blood and bone marrow under inflammatory conditions. 

Following injury, they expand exponentially. Peritoneal macrophages, alveolar macrophages and 

Kupffer cells become activated at different stages of acute pancreatitis.189  

 

Macrophage-derived MMPs facilitate BM disruption and this expedites movement of inflammatory 

cells to the injury site.190 Macrophages recognise cell surface markers expressed by acinar cells and 

act as phagocytes to clear dying cells rapidly and efficiently. Clearance of cellular debris alters the 

physiology of macrophages through endogenous signals from ingested material including alterations 

in surface protein expression and the production of cytokines and pro-inflammatory mediators.188 

This removal of intracellular contents appears to simulate the macrophages to express either an anti-

inflammatory phenotype for the resolution of inflammation, or a suppressive phenotype that would 

continue inflammation.191  

 

Macrophages produce several growth factors that promote wound healing through proliferation and 

angiogenesis including PDGF, IGF-1, and VEGF and also produce mediators such as TGFβ to 

activate PSCs. Thus, they stimulate PSCs to synthesise ECM products that result in the development 

of fibrosis. If the trigger for injury is removed, macrophages direct tissue repair through mechanisms 

that suppress inflammation, remove collagen and restore tissue architecture. Dysregulated cross talk 

between macrophages and other cells or the ECM, and transcription of pro-fibrotic genes by cytokines 

PDGF, IL-6, IL-13 results in survival and proliferation of PSCs.79 This leads to pathological fibrosis 

and chronic pancreatitis. Studies of macrophages in cancers support a role of the ECM in guiding 

macrophage interactions where they support metastasis by mobilizing and co-migrating with tumour 

cells.79  

 

1.4.11.2 Mast cells in pancreatitis 

Mast cells are haematopoietic immune cells resident in all human tissues usually in close proximity 

to vasculature. Sensitive to pathological change, on activation they release a myriad of inflammatory 

mediators important in the context of allergic disorders and other inflammatory responses as well as 

in protection against toxins and infection.192 The secretion and the regulation of the extent of mediator 

release is controlled by stem cell factor (SCF), the ligand of the receptor c-kit.193 The precise role of 

mast cells in acute and chronic pancreatitis is not clear, however they are implicated in the 

development and progression of acute pancreatitis,194 and identified as the cells responsible for 

perpetuating chronic inflammation in chronic pancreatitis.195  
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Mast cells have a high content of secretory granules filled with preformed compounds including 

histamines, cytokines and growth factors (TNFα, FGF2, TGFβ, IL-4), and lysosomal hydrolases and 

proteases (tryptase, chymase).196 The many mediators and molecules that mast cells produce are pro-

fibrotic. They demonstrate biological effects modulating fibrosis through directly influencing 

fibroblasts/PSCs or through recruitment and activation of other inflammatory cell types (overview of 

mediators and biological effects.192 In particular, histamine, FGF-2, TNFα and proteases are 

implicated in fibroblast proliferation and migration, matrix protein and collagenase production and 

collagen synthesis in humans. Mast cells may be a source of TGFβ as TGFβ derived from cultured 

mast cells can enhance collagen 1 production.197 Animal studies, particularly in knockout mice, have 

provided contradictory results on the effects of mast cells on fibrosis with detrimental, protective and 

no effects noted. Data from human and in vitro studies favour a pro-fibrotic function for mast cells.  

 

1.4.12 Survivin and the processes of pancreatitis 

 

Survivin is a member of the inhibitor of apoptosis protein (IAP) family. The eight IAP family proteins 

are identified by one to three copies of an ~70-amino acid zinc finger fold designated Baclovirus IAP 

repeat (BIR). Other domains include a carboxyl-terminus RING and a caspase-recruitment domain. 

At 16.5kDa and 142 amino acids, survivin is the smallest IAP containing a single N-terminal BIR 

and a carboxyl-terminus α-helix.198 The human gene for survivin is found on chromosome 17q25.199 

Four alternative splice variants have been described, designated survivin 2B, survivin-ΔEx3, survivin 

3B, and survivin-2α.199 The splice variants appear to differ in subcellular localisation and function, 

however, anti-survivin antibodies recognise them all due to the existence of an identical amino-

terminal peptide.200 Survivin gene expression is activated by transcription factors for pathways of cell 

proliferation, cell survival or development, or inhibited by other molecules such as p53.198  

 

Survivin is localised intracellularly in the cytoplasm (approximately 80%), nucleus and mitochondria, 

and as components of the mitotic apparatus.201 It is present abundantly in embryonic tissues, and in 

fast dividing cells but is mostly absent in normal differentiated cells. It may be expressed in normal 

adult cells such as primitive haematopoietic cells, T-lymphocytes, polymorphonuclear neutrophils 

and vascular endothelial cells. It occurs prominently in nearly every human tumour where it is 

frequently associated with poor outcome and resistance to therapy. The IAP family is implicated in 

control of cell division or regulation of apoptosis however survivin is associated with both functions. 

Essentially, nuclear survivin is involved in cell proliferation, but cytoplasmic survivin participates in 

cell survival.  
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It is well established that survivin is essential for cell division with cell cycle dependent expression 

at G2/m and localisation of the mitotic apparatus. Many studies targeting deletion of survivin have 

shown mitotic defects.198 As a member of the chromosomal passenger complex, survivin targets the 

centromere in chromosome-microtubule attachment and may regulate the spindle assembly 

checkpoint by repressing microtubule dynamics.198 Survivin has an anti-apoptotic function at mitosis 

by inhibiting mitotic catastrophe (the activation of a dual necrotic/apoptotic pathway) through 

suppression of caspase-9 and segregation of Smac. During embryogenesis, the signalling pathways 

Wnt/β-catenin, Hedgehog, Hippo and Notch target survivin. Because human and mouse embryonic 

stem cells express survivin, it may be essential for the integrity of stem cells to have survivin 

protection from apoptosis.198 It is well documented that survivin is a biomarker of poor prognosis in 

human metastatic tumours through inhibition of apoptosis, increased drug resistance and maintenance 

of stem cells, however it appears that survivin may participate in cell motility and invasion.198  

 

Investigations with human cases of normal pancreas and chronic pancreatitis or pancreatic cancer 

have found conflicting results. Survivin expression was absent in normal pancreas and chronic 

pancreatitis but positive in tumour cells.202 Survivin expression in ducts, acini and islets increased 

with the extent of fibrosis in human chronic pancreatitis cases.203 In acute necrohaemorrhagic 

pancreatitis in rats, duct cells (cytoplasm and nucleus), acinar cells and infiltrating cells (nucleus 

only) were positive for survivin.204 

 

1.5. EXPERIMENTAL MODELS OF PANCREATITIS   

 

Exocrine pancreatic pathology is usually comprised of four conditions: acute and chronic pancreatitis, 

cancer and cystic fibrosis. Since it is difficult to study the pathophysiology of pancreatitis in humans, 

many animal models of pancreatitis have been established in an effort to elucidate the cellular and 

molecular mechanisms that initiate and precipitate the disease and the subsequent events that allow 

regeneration and recuperation of the pancreas. Experimental models attempt to mimic the clinical 

situation and whilst most do not in entirety, many result in the physiological and histological 

alterations that are relevant to clinical findings. Models using chemical administration, diet or 

surgical-induction have been developed in such diverse species as rats, mice, rabbits, dogs, cats, 

hamsters, pigs, opossum and ducklings.  

 

Model-based bias is a difficulty for the extrapolation of findings in animal models to the human 

disease. In the rat, pancreatic ductal epithelium is less well developed, and ductal secretion may occur 

predominantly in interlobular ducts compared with intralobular/intercalated ducts in humans. The 
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physiological profile of rodent pancreatic acini is different to human with respect to CCK receptors 

and amines, and fluid secretion from acini differs markedly. Other species, for example dog and cat, 

exhibit a pattern closer to that in human.205  

 

1.5.1 Caerulein 

 

Caerulein is a decapeptide, structurally and functionally related to the intestinal hormone 

cholecystokinin (CCK), and was originally extracted from the skin of the Australian tree frog Litoria 

caerulea. Since Lampel and Kern 275 first showed it to have a striking stimulatory action on exocrine 

pancreatic secretion by producing reversible, oedematous pancreatitis in rats, it has become well-

established as a model of experimental acute pancreatitis. In pharmacological doses, it also 

reproducibly induces acute pancreatitis in mice, dogs and Syrian hamsters.206 This model, often 

referred to as secretagogue hyperstimulation pancreatitis, may be induced by intravenous, 

subcutaneous or intraperitoneal injection routes, the course and severity of pancreatitis varying with 

dose and route. At low doses, acinar cells are stimulated to activate the consecutive steps in the 

secretory process and pancreatic growth is accelerated; at maximal doses the secretory process is 

disturbed and acute pancreatitis ensues.207 The model is found to be physiologically relevant to some 

aspects of human disease, although the effect of CCK is different in humans and rodents.205 Whereas 

in rat and mouse it regulates exocrine enzyme secretion, human acini lack CCK receptors, and are 

regulated by neurogenic CCK stimulation.208 Depending on dose and route of administration, 

caerulein induces a mild, self-limiting, reversible pancreatitis with oedema, increased serum levels of 

digestive enzymes, necrosis/apoptosis, inflammation and vascular permeability such that the early 

initial changes that occur in pancreatitis may be studied.209 Repeated episodes of acute pancreatitis 

may induce chronic pancreatitis. Neuschwander-Tetri (2000A,B) developed a chronic pancreatitis 

model in mice using repeated doses of caerulein which results in a pattern of fibrosis similar to that 

found in human chronic pancreatitis. However, repeated doses of caerulein are not sufficient to cause 

the endocrine and exocrine insufficiency normally found in human chronic pancreatitis.208 Wistar 

Bonn/Kobori (WBN/Kob) rats spontaneously develop chronic pancreatitis and may be supplemented 

with caerulein doses to produce a more severe effect.110 The repetitive caerulein model may be 

combined with toxic agents such as lipopolysaccharides, dibutyltin dichloride and ethanol to enhance 

its effect.208 
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1.5.2 Ethanol  

 

In humans, ethanol causes severe damage to liver but milder changes in the pancreas where ethanol 

may act merely as a sensitizer to chronic injury. Cofactors such as ethanol metabolites are probably 

responsible for producing the chronic pancreatitis that occurs in those who abuse alcohol. The 

majority of studies in rodents found that ethanol feeding and even continuous infusion of ethanol 

could not produce typical pancreatitis (comprehensively reviewed in Schneider et al 2002). However, 

supplementation with different feeding protocols for example, Lieber-DeCarli diet, Tsukamoto-

French diet, deliver higher doses of ethanol. Similarly, models combining ethanol with other factors, 

including pancreatic duct obstruction, trinitrobenzene sulfonic acid, dibutyltin dichloride and 

caerulein have been investigated.210 These models of ethanol administration do not produce classical 

acute or chronic pancreatitis however, they do facilitate the investigation of mechanisms that include 

enzymes, nutrition, metabolite changes and regeneration that are important in the course of alcoholic 

pancreatitis. 

 

1.5.3 L-Arginine 

 

A single intraperitoneal injection of high-dose amino acid L-arginine induces acute necrotizing 

pancreatitis.211 This model has established pancreatitis in rats and mice with selective dose-dependent 

pancreatic acinar cell necrosis and is suitable for varying the degree of severity of disease and for 

investigating early and late phases, regeneration and multi-organ characteristics of acute 

pancreatitis.212, 213 Results in chronic pancreatitis with administration of l-arginine for an extended 

time results in chronic pancreatitis with exocrine insufficiency.214 This model is of unknown clinical 

relevance and is not used in vitro. 

 

1.5.4 1-cyano-2-hydroxy-3-butene (CHB) 

 

CHB is the stable breakdown product of a glucosinolate present in plants of the Cruciferae family, 

particularly the Brassica genus that includes vegetables such as cabbage, turnip and kale, condiments 

such as mustard, canola oil and certain forage and pasture plants. It is now well-established that in 

rats, at a reasonably high dose, CHB causes cell death in pancreatic acinar cells only215, 216 but at 

higher doses lethality due to CHB is caused by extensive hepatocyte vacuolation and necrosis.217 In 

the CHB study by Kelly and colleagues,216 large animals were found to be more sensitive on a 

dose/weight basis than smaller animals, with females and males being equally sensitive. In rats, if the 

initial dose of CHB was high enough, death of virtually all acinar cells occurred with only very 
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occasional nests regenerating before 28 days. Subcutaneous administration gave a more consistent 

lesion, a more complete atrophic effect and liver toxicity could be lessened. An acute oedematous 

pancreatitis induced by synthetic CHB is non-invasive and requires but one subcutaneous injection 

of CHB. This model in rats has the benefit that the acinar cells are deleted completely by apoptosis 

so that regeneration and the fibrotic process can be assessed without the complication of residual 

acinar cells.216 Bhatia et al. (1998) studied the early events of pancreatitis with a combination of CHB 

administration followed by caerulein-induced pancreatitis. 

 

1.5.6 Ductal ligation 

 

Gallstone or biliary disease is a common cause of pancreatitis. Historically, this instigated extensive 

research into the cause of pancreatitis from obstructed ducts. Invasive models of pancreatitis 

including the closed duodenal loop model, and duct injection models involving the retrograde 

injection into the pancreatic duct of bile, bile salts, with or without trypsin and pancreatic enzymes 

and bacteria result in severe pancreatitis with necrosis and haemorrhage. These were used to study 

pseudocyst and abscess formation, duodenal juice components and fat necrosis.206 The perfusion of 

the bile acid sodium taurocholate induces biliary pancreatitis with severe haemorrhagic, necrotic 

pancreatitis with multi-organ failure.206 The infusion of trinitrobenzene sulfonic acid into rat 

pancreatic ducts produces chronic pancreatitis with mono- and polymorphonuclear cell infiltrates, 

fibrosis and gland atrophy within 3 weeks.106 Partial surgical ligation in rats as a model for ductal 

obstruction in the pancreas was modified by Pound and Walker.218 The technique of tying off the 

body of the pancreas, but not the splenic vessels close to the hilus of the spleen, avoids interference 

with biliary drainage, preserves the blood vessels, minimizes constitutional disturbance and leaves 

some pancreatic parenchyma as an internal control with retained organ function so that animal 

experiments may be extended.218 The resultant pancreatitis is considered to be precipitated by 

pancreatic ductal hypertension, due to pancreatic secretion into the obstructed ducts. In the exocrine 

portion of the pancreas, acinar cells progressively disappear by apoptosis and the lobules are reduced 

to groups of small ductular complexes lying in a fibrous stroma.218  

 

1.5.7 Vascular causes  

 

Vascular-induced pancreatitis includes methods to impair pancreatic vasculature, or disturbance of 

microcirculation.206 This is achieved by inducing hypovolemic shock, permanent occlusion of 

pancreatic arteries, by venous ligation or retrograde injection of microspheres and 
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ischaemia/reperfusion models. Microcirculatory disorders are a major cause of death in the course of 

severe acute pancreatitis in humans.194 

 

1.5.8 Genetic models  

 

Following the sequencing of the genome of the mouse, transgenic mouse models and gene deletion 

studies facilitated understanding of the role of specific proteins in the complex processes where 

different proteins interact and co-react in pancreatitis. Genetically engineered mouse models 

recapitulating chronic pancreatitis,219 and gene knockout models to examine the effects of cytokine 

and chemokine mediators plus their receptors have been targeted.206 Mutations in genes identified 

from families with hereditary pancreatitis have led to investigations with trypsin/trypsinogen (serine 

protease inhibitor kazal type 1/SPINK1) and bicarbonate secretion (cystic fibrosis/CFTR) in the 

pancreas and to the development of mouse models with these genetic manipulations.219 Mutations in 

genes PRSS2 (anionic trypsin), SPINK1, CFTR, CTRC (chymotrypsinogen C) and CASR (calcium 

sensing receptor) expressed in mouse models are associated with an increased risk of pancreatitis.208 

The connection that recurrent acute pancreatitis may precede chronic pancreatitis was identified by 

the PRSS1 mutations in chronic pancreatitis.   

 

WBN/Kob male rats endogenously develop morphological and biochemical changes typical of 

chronic pancreatitis and unique genes not found in other inbred rats.208 Other chronic pancreatitis 

genetic models are COX2, Sonic hedgehog, and knockouts KRAS, and TGFβ. Protein kinase R-like 

endoplasmic reticulum kinase knockout (PERK-/-) mice and mice overexpressing IL-1β have been 

developed to look at chronic inflammation.208 

 

Multiple mouse models for pancreatic cancer now exist. They include the subcutaneous xenograft 

model where cell lines or human cancer tissue are implanted subcutaneously in nude mice or 

immunodeficient mice and have been used to study chemotherapeutic agents. The technically 

challenging orthotopic model that uses pancreatic grafted tissue, either cell lines or cancer tissue in 

immunodeficient mice allows study in in vivo conditions. Genetically engineered mouse models of 

pancreatic cancer include mutant KRAS and the TGFβ family. 

 

1.5.9 Summary of models 

 

The models of pancreatitis, whether invasive or non-invasive, simple or complex, employing high or 

low dose chemicals, induce a variety of lesions from mild interstitial to severe necrotizing pancreatitis 
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with considerable variation between species and with unique advantages and disadvantages. Many of 

the models mentioned above go some way to reproducing human pancreatitis in terms of 

histopathology and pathophysiology. However, they still lack effectiveness for clinical relevance, 

etiology, symptoms, treatment and outcomes.  Ductal models have some relevance to gallstone 

disease, and none reproduce alcoholic pancreatitis. Nonetheless, the models of chronic pancreatitis 

are improving. 

 

1.6 HYPOTHESIS AND AIMS OF THIS THESIS 

 

The hypothesis tested was that different models of pancreatitis can be used to describe the processes 

of atrophy and regeneration in the pancreas.  

 

The specific aims of this study were:  

1. To investigate rat models of pancreatitis using caerulein, CHB and duct ligation;  

2. To validate a pancreatitis model with CHB in the mouse;  

3. To establish a canine model of pancreatitis with CHB;  

4. To compare and contrast the models with respect to: 

Stellate cells and the production of fibrosis   

The role of mast cells and macrophages 

The role of survivin in pancreatic regeneration 
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CHAPTER 2 

MATERIALS AND METHODS 
 

2.1 INTRODUCTION 

 

This Chapter presents the general materials and methods for this thesis. More specific details are 

given in the original research Chapters (Chapters 3-6) for methods specific to those Chapters. 

 

2.2 STATEMENT OF ETHICS 

 

Animal experiments were performed under National Health and Medical Research Committee 

guidelines and approved by the University of Queensland Animal Ethics Committee prior to project 

commencement. Animals were closely monitored for clinical signs of pain and distress. Ethics 

approval numbers were PATH/527/97 (caerulein) and PATH/527/98 (rats with duct ligation); 

PATH/527/00 (rats with duct ligation with clips removed); PATH/QIMR/586/03 (CHB and duct 

ligation), PATH/457/04LF and PATH/725/05/LF (dogs); and PATH/102/04/PTPL (mice) 

 

2.3 MATERIALS 

 

All chemicals were of high purity and, unless otherwise indicated, were obtained from Sigma-Aldrich 

(St. Louis, MO, USA). Food for the rodent diet was from Specialty Feeds (Glen Forrest, Australia). 

 

2.4 ANIMALS, SOURCES, HOUSING AND CONDITIONS 

 

Randomly bred mature male Wistar or Sprague-Dawley rats, aged approximately 7-8 weeks and 

weighing 170-250gm were bred, supplied and housed by the Herston Medical Research Centre, 

Herston, Brisbane. Wistar rats were used for CHB experiments and Sprague-Dawley for caerulein 

and duct ligation experiments, based on the original models. CD1 Swiss outbred mice (20-35gm) 

were purchased from the Animal Resource Centre (ARC) Perth, transported by air and an air-

conditioned van then housed at the Herston Medical Research Centre. Randomly-bred dogs were 

obtained from Logan City Pound, transported by air-conditioned van and housed at the Herston 

Medical Research Centre. All of the above animals were acclimatised for one week before 

commencement of experiments. 
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Rats and mice were housed in standard stainless steel boxes. The animal house was maintained at 

21ºC ± 1ºC and supplied automatically with artificial light in a 12 hrs day/12 hrs night cycle. Animals 

were fed a standard pellet diet and were allowed free access to water. Environmental enrichment was 

provided in the form of shredded paper and cardboard rolls. Dogs were housed in pens that allowed 

social interaction. They were fed a normal dry dog food and had free access to water. Dogs were 

exercised in a free run on a daily basis. 

 

When tissues were to be fixed by immersion only, rats and mice were killed by CO2 asphyxiation or 

lethal dose of pentabarbitone sodium. When rats were perfused with solutions via the aorta the 

animals died during deep pentabarbitone anaesthesia. Dogs were euthanased by intravenous injection 

of pentabarbitone. Animal remains were disposed according to University of Queensland (UQ) 

regulations.  

 

Rats were divided randomly into three groups of four to six animals at each time point; normal 

animals not subjected to any experimental procedure; sham-operated animals subjected to the same 

procedures and handling as experimental animals but without caerulein, duct ligation or CHB, and 

experimental animals. Mice were divided into control sham and experimental animals. Dogs were 

experimental animals only; no control dogs were used in this experiment. Archival tissue from 

previous rat experiments by this and other researchers (with permission), as well as dog control tissue, 

liver and pancreas from the UQ Veterinary School, was accessed. A full necropsy was undertaken in 

one rat and mouse per experimental run and all dogs to assess the effect of the drugs in other organs. 

In rat, mouse and dog, pancreas and liver were the only organs affected.  

 

2.5 CAERULEIN MODEL 

 

Pancreatitis was induced in Sprague-Dawley rats using the method of Jurkowska et al (1992), by 

subcutaneous injection of caerulein (synthetic caerulein, C-9026, Sigma Chemical Co., St Louis, 

MO., USA), 24μg/kg, every 8 h for 2 days. The caerulein dose was dissolved in gelatine solution (G-

2625, Sigma Chemical Co) in the ratio 75% gelatine to 25% distilled water to prolong its absorption. 

The caerulein dose was determined by earlier trials as the least dose producing a relatively uniform 

but maximal pancreatic lesion. Sham control animals were subjected to the same procedures and 

handling as experimental animals, but with saline substituted for caerulein. Groups of 4 rats were 

assessed 8, 12, 16 hrs and 1, 2, 3, 4, 5, 6, 7 and 10 days after the first injection. After assessment of 
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the histology, the time points 2, 4, 7 and 10 days were chosen as representative time points for 

developments in the lesion. Additional pairs of rats were used for EM analyses.  

 

2.6 DUCT LIGATION MODEL 

 

Figure 2.1 gives a diagrammatical representation of duct ligation. Randomly bred adult male 

Sprague-Dawley rats weighing 190-210gms were anaesthetised with pentabarbitone sodium 

(60mg/mL) given intraperitoneally at a dose of 40mg/kg for early experiments and later as this regime 

was no longer considered as best practice with Ketamine 60mg/ml+ Rompun 20mg/ml. Analgesia 

with bupenorphine 0.1-0.5mg/kg sc. was administered to the rats for recovery. Partial ligation was 

performed through a left paramedian incision. The lienal pancreas was freed from the colonic 

mesentery, two clips (Hemoclip Pilling Weck Inc, Research Triangle Park, NC, USA) were clasped 

about the pancreas at the superior pole of the spleen after separation of splenic vessels. The abdominal 

wall was closed as a single layer with chromic catgut sutures (Ethicon G121, Ethnor Pty. Ltd., 

Sydney) and the skin closed with metal clips (Medicon, Germany). The whole procedure took 

approximately 10 minutes. Rats were euthanased at 1, 2, 3, 4, 5, 10, 12, 18 days following ligation. 

Sham controls were treated accordingly, the pancreas handled but not ligated. In an attempt to produce 

regeneration in the duct ligation model a further group of 15 rats were subjected to ligation of the 

pancreatic duct (as above) with one clip only. Atrophy was allowed to develop for 1 week, then under 

anaesthesia and analgesia (as before), a paramedian incision was made and the clip removed with 

care to not damage the surrounding tissue. The wound was closed the animals were allowed to recover 

and the pancreata harvested after 7 days.   
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Figure 2.1 Diagrammatical representation of duct ligation 

The technique of tying off the body of the pancreas, but not the splenic vessels close to the hilus of 

the spleen, avoids interference with biliary drainage, preserves the blood vessels, minimizes 

constitutional disturbance and leaves some pancreatic parenchyma as an internal control with 

retained organ function so that animal experiments may be extended. The lienal pancreas is freed 

from the colonic mesentery, and hemoclips are clasped about the pancreas at the superior pole of 

the spleen after separation of splenic vessels. 
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2.7 1-CYANO-2-HYDROXY-3-BUTENE (CHB) MODEL 

 

Synthetic racemic CHB was obtained from Research Directions, Brisbane, Australia. Adult male 

Wistar rats weighing 200-250gms were used. At time zero, test animals were injected subcutaneously 

with 150mg/kg of CHB mixed in 0.5ml sterile saline and sham controls were given 0.5ml sterile 

normal saline. Groups of 4 experimental and 2 control rats were euthanased 1, 2, 4, 5, 7, 10, 12, 14, 

16, 18, 28 days after the first dose. Pancreas was removed from all rats, liver was removed from 

selected rats.  

 

Adult mice between 27.0-34.5gms were randomly divided and housed in pairs. One pair used for 

sham control purposes was injected subcutaneously with 0.25ml normal saline. Experimental pairs 

of mice were injected subcutaneous doses of CHB starting at 70mg/kg through 90, 110, 150, 170, 

190, 210, 230, 250, 270, 290 and up to 310mg/kg. The dose increase was decided after review of 

histology of the previous dose pair. Euthanasia by carbon dioxide was performed 24 hrs later. 

Pancreas and liver were removed, a small piece of each placed in glutaraldehyde, some snap frozen 

in liquid nitrogen and the bulk placed in 4% buffered formalin. Three groups of eight mice were 

injected with a subcutaneous dose of 280mg/kg and one group euthanased at each time point of 12, 

18 and 24 hrs, liver and pancreas removed and processed as above. Four smaller CD1 Swiss mice of 

21 – 23 grams were given 280mg/kg subcutaneously and euthanased at 24 hrs, liver and pancreas 

removed and processed as above. This was performed to see whether some effect in mice was due to 

the adolescent status of the animals. Dogs (15-20kg) were given a pre-medication of 8mg of 

acepromazine and 8mg of methadone to induce drowsiness. CHB of the required dosage was placed 

in a 100ml bag of normal saline and infused intravenously over 15 minutes. Dosage for the first dog 

was commenced at 70mg/kg CHB and amended in subsequent dogs as required. Further intravenous 

Hartman’s solution was administered at the rate of one litre every 12 hrs. Blood was taken at regular 

intervals. Dogs were kept sedated and comfortable with regular acepromazine and methadone and 

with monitoring of behaviour and blood parameters. Dogs were killed at selected times as detailed in 

the appropriate chapter, necropsy was performed by a veterinary pathologist, pancreas and liver tissue 

removed and processed as above.  
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2.8 MICROSCOPY  

 

2.8.1 Light microscopy 

 

Pancreas for histological study was fixed in 4% formalin in phosphate buffered saline at pH 7.2, 

dehydrated in graded alcohols, cleared in xylene and embedded in paraffin wax. Four micron sections 

were cut by microtome onto glass slides and stained with haematoxylin and eosin (H&E). Specific 

stains are noted in chapters and methods for these are in Appendix 1. Sections were visualised under 

a Nikon Eclipse E800 microscope with lenses of x10, x20, x40 and x100 (oil). The microscope was 

fitted with a Nikon digital camera DXM 1200F. A graticule was used for counting cells in tissue 

sections. The total area of the graticule at x400 magnification measured 250µm2.  Each square of the 

grid measured 25 µm2. 

 

2.8.2 Frozen sections 

 

Small pieces of pancreas (1mm) were either placed into cryomatrix (OCT) and frozen on dry ice or 

small pieces were snap frozen in liquid nitrogen. Frozen sections (7µm) were cut onto glass slides on 

a Bright cryostat and fixed for 2.5 minutes in acetone. 

 

2.8.3 Electron microscopy 

 

Caerulein animals were deeply anaesthetised with intraperitoneal injections of pentabarbitone 

sodium. The abdomen was entered through a midline incision and a catheter (2mm outer diameter) 

was inserted into the abdominal aorta and secured using 6.0 silk (Ethicon, Ethnor Pty. Ltd., Sydney 

Australia) proximal to the coeliac artery. The ventricle was cut to allow free flow of the perfusing 

solutions. Fixation was carried out in sequence with 1) heparinised normal saline, 2) 1% 

paraformaldehyde and 1.2% glutaraldehyde in sodium cacodylate buffer and 3) 4% paraformaldehyde 

and 5% glutaraldehyde in sodium cacodylate buffer.220 Tissue from duct ligation and CHB animals 

was immersion fixed in 3% glutaraldehyde in 4% paraformaldehyde. In all models the pancreas was 

removed immediately, trimmed of fat and lymph nodes. Small pieces (1mm) were left in fresh fixative 

for 2 hrs. The tissue was post-fixed in Osmium Tetroxide, stained en bloc in 5% aqueous uranyl 

acetate, dehydrated through a series of graded alcohols, cleared in propylene oxide, and embedded in 

an Epon/Araldite mixture. Semithin sections (1µm) were cut on an ultratome V microtome and 

stained with toluidine blue for viewing. Ultrathin sections from selected areas were stained with lead 

citrate and examined with a JEOL-1200 EX11 electron microscope.  
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2.9 IMMUNOHISTOCHEMISTRY 

 

Heat antigen retrieval was performed in a decloaking chamber (Biocare Medical). Slides in 0.01M 

citric acid buffer pH6.0 or 0.001M Tris/EDTA buffer pH8.8 were subject to 5 minutes heat at 125ºC 

or 15 minutes heat at 105ºC respectively. After completion of the cool down cycle the container of 

slides was allowed to cool for a further 20 mins before transfer to Phosphate Buffered Saline. Enzyme 

pre-treatment consisted of prediluted Proteinase K (DAKO Corp., Carpinteria, California, USA.) or 

0.1% trypsin in 0.05M Tris buffered saline (TBS) with 0.1% calcium chloride. Endogenous 

peroxidase was inhibited by treating sections with 1% hydrogen peroxide and 0.1% sodium azide in 

Phosphate buffered saline (PBS). Non-specific antibody binding was inhibited by incubation with 

10% non-immune goat or donkey serum. Localization was demonstrated using peroxidase-labelled 

streptavidin biotin complex method (DAKO streptavidin AB Complex/Horseradish peroxidase 

(HRP) or DAKO Envision. Reactions were developed with 3,3'–diaminobenzidine tetrahydrochloride 

solution (DAB) (Zymed, San Francisco, California) or Vector VIP (SK-4600), Vector SG (SK-4700), 

Vector NovaRED (SK4800) peroxidase substrate kits (Vector laboratories, Inc. Burlingame, 

California, USA). Where double staining was performed with two mouse antibodies, Fab fragment 

was used after the first antibody. All sections were lightly counterstained with haematoxylin or 

nuclear fast red. Specificities of the antibodies used for identification was checked by inclusion of 

known positive control tissue (normal pancreas) in each run. Negative controls comprised test tissues 

without the addition of primary antibody. Antibodies used are detailed in Table 2.1.  
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Table 2.1   Antibodies for immunohistochemistry 
 
Primary 
Antibody 

Manufacturer Clone Antigen 
retrieval 

dilution 2° antibody 

α-amylase rabbit 
anti-human  

Sigma  Proteinase K 1:500 Jackson goat 
anti-rabbit 

Bax rabbit anti-
human 

Santa Cruz P-19 heat/citrate 1:100 Dako 
EnVision+ 

Bcl-xL rabbit 
anti-human 

Santa Cruz S-18 heat/EDTA 1:400 Dako 
EnVision+ 

caspase-3 rabbit 
anti-cleaved 

Cell signalling ASP-175 heat/EDTA 1:100 Dako 
EnVision+ 

CD68 mouse 
anti-human 

Dako PG-M1 heat/citrate 1:100 Dako 
EnVision+ 

CD117/c-kit 
rabbit poly 

Dako   heat/EDTA 1:600 Mach 1 
universal 
HRP kit 

Cytokeratin 
mouse anti-
human 

Dako AE1/AE3 Proteinase K 1:40 Jackson rat 
anti-mouse 

glucagon porcine 
anti-human 

Novocastra  Proteinase K 1:100 Dako 
EnVision+ 

Laminin 1+2 
Rabbit poly 

Abcam  chymotrypsin 1:300 mach 

PCNA anti-
mouse 

Calbiochem AB-1 HCl 0.2N  1:50 Dako 
EnVision+ 

αSMA mouse 
anti-human 

Sigma 1A4 no AR 1:250 Dako 
EnVision+ 

Survivin, rabbit 
anti-human  
 

Cell Signaling 
Technology 

71G4 heat/EDTA 1:50 Dako 
EnVision+ 

Survivin rabbit 
anti-human 

Novus 
Biologicals 

 heat/EDTA 1:150 Dako 
EnVision+ 

 
 
 
2.10 DIGITAL CAPTURE AND ANALYSIS FOR FIBROSIS AND STELLATE CELLS 

 

Figures 2.2 and 2.3 demonstrate some methods for digital capture of images. 

 

Semi-quantitative analysis of sections stained for Puchtler’s picro-sirius red and αSMA expression 

was performed. Sections were captured with a spot RT slider cooled CCD camera as digital images. 

Ten fields of 50μm2 from each slide were captured and variability associated with the light source 

was avoided by photographing all slides on the same day with the same settings. In particular, each 

field targeted a tubular complex or acinar cells, rather than interstitial areas, blood vessels, or large 

ducts. 
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ImagePro Plus® image analysis software was used to analyse image morphometry. This programme 

was adjusted to automatically calculate the area in square microns of defined stained proteins (as 

pixels) in each section. To define the pixels counted, coloured area ranges were selected that, through 

trial and error, selected a consistent intensity of the chosen colour, for example, in the fibrosis study 

the red of collagen staining; in the stellate cell study the brown of DAB, staining αSMA. The 

programme calculated ratios for each field and the average and standard error of the mean (SEM) 

were calculated for each time point in each animal model.  

 

 

 
 
 

Figure 2.2 Captured screen of ImagePro Plus® image analysis software for αSMA IHC 

Screen capture shows selected area on α-smooth muscle actin (αSMA) stained section (A) and 

corresponding calculated area of defined stained proteins for the brown pixels of αSMA staining 

(B), bright field image.  
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Figure 2.3 Captured screen of ImagePro Plus® image analysis software for fibrosis 

Screen capture shows selected area on Sirius Red sections (A, C, E) and corresponding calculated 

area under different filters of defined stained proteins for Sirius Red pixels of (B) red (D) yellow/red 

and (F) green. A,B bright field images, (B) shows area of collagen deposition; C-F polarised light 

images discriminates and shows area of collagen III (D) and area of collagen I (F).  
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2.11 CELL DEATH AND PROLIFERATION  

 

Apoptosis was identified using morphological criteria.221 Immunoperoxidase stains for amylase were 

used to confirm residual intact acinar cells, which were otherwise difficult to identify. The following 

criteria were used to identify apoptosis in H&E sections; a single condensed cell or large single 

apoptotic body with typically marginated nuclear chromatin was given a single count; many apoptotic 

bodies clustered together were given a single count; any doubtful cells were disregarded. Necrosis 

was identified by cell swelling, mitochondrial swelling, lysosomal rupture, and plasma membrane 

rupture. The morphological characteristics used to distinguish mitosis were (i) formation of mitotic 

spindles occurring during metaphase and remaining visible in anaphase, or (ii) cells in the later stages 

of mitosis, telophase or undergoing cytokinesis. Cell senescence was approximated morphologically 

by the presence of large cells, at least 3-4 times the diameter of non-senescing cells. 

 

2.12 STATISTICS 

 

Values reported are mean ± standard error of the mean (SEM). Where indicated, data were analysed 

using one-way analysis of variance (ANOVA) and Tukey’s post hoc analysis. Significance was 

established at P < 0.05. 
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CHAPTER 3 

RAT MODELS OF PANCREATITIS 
 

3.1 INTRODUCTION  

 

We do not yet fully understand the complex interactions that comprise human pancreatitis. The 

current animal models are not comparable to the full spectrum and complexity of the human disease. 

In human pancreatitis, when acinar cells die by any cause they either regenerate or are followed by a 

progressive and gradual replacement of the glandular tissue with fibrosis. In order to study 

regeneration after pancreatitis I sought to use a model where the pancreatitis was severe enough to 

cause loss of acinar cells and production of a fibrotic infiltrate, though still mild enough that the 

pancreas could regenerate partially or fully. Three models that were standardized and fitted with this 

criteria were caerulein, CHB and duct ligation. They all have apoptosis as the mode of cell death to 

satisfy the interpretation of mild pancreatitis. They all develop fibrosis and considerable inflammatory 

infiltrate. The interesting factor is that they differ in regenerative ability which allows comparison of 

their outcomes. The caerulein model regenerates readily and fully; the CHB model regenerates 

partially but does not proceed; the duct ligation model does not regenerate at all. As no one model 

would be expected to be more suitable than another to answer specific questions these three rat models 

appeared to be a good compromise for a comparable study of the cellular interactions that occur in 

regeneration from pancreatitis. The three rat models, caerulein, CHB and duct ligation were chosen 

because of our expertise in all models, and the facilities available to produce all models. These were 

ethically acceptable, minimally invasive techniques with low morbidity and no procedural mortality.  

 

3.1.1 Aim 

 

The overall aim of this Chapter was to develop, reproducibly, a mild pancreatitis with fibrosis using 

three rat models, caerulein, CHB, duct ligation and to investigate patterns of cell death and 

regeneration.  
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3.2 MATERIALS AND METHODS 

 

General materials and methods can be found in Chapter 2. Aspects of the three models have been 

described previously by this student, her PhD advisors and colleagues.105, 216, 222 Some results for early 

time points were developed from review of available archival tissue from these studies. 

 

A separate experiment was attempted with the duct ligation model to see if regeneration of acinar 

tissue could be achieved. This regeneration experiment, with rats subjected to duct ligation, clipped 

with one clip and the clip removed after one week, was abandoned. There was difficulty locating the 

clip after the first week due to adhesions and inflammation around the clip. Furthermore, the clip was 

difficult to remove without causing damage to the surrounding tissue. Whilst the distal pancreas of 

rats clipped with two clips was consistently atrophic, the pancreas of rats in trials with one clip showed 

variable results. Therefore, it was difficult to be certain whether the partial regeneration seen after the 

clip was removed and the pancreas allowed to recover for 7 days was due to actual regeneration or 

incomplete atrophy, or in cases where regeneration did not occur, whether this was due to the 

pancreatic duct being irretrievably damaged and failing to reopen.  

 

3.3 RESULTS 

 

3.3.1 Control  

 

Pancreas from control rats appeared normal with widely spaced ducts and islets separated by closely 

packed acinar cells. Acinar cells have basophilic cytoplasm at their base due to a high content of RNA 

and the presence of nuclei. The apical cytoplasm is eosinophilic due to the high content of zymogen 

granules. The lobules are closely aligned, separated by narrow interlobular spaces (Figure 3.1A). 

High power clearly shows the centroacinar cell and intercalated duct cell at the beginning of the ductal 

system (Figure 3.1B). Immunohistochemistry for cytokeratin demonstrates the spacing of the ducts 

in normal pancreas (Figure 3.1 C).  
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Figure 3.1 Control rat pancreas, light microscopy 

A. Normal pancreas with islet and closely packed acini. Acinar cell cytoplasm is basophilic at base 

due to the staining of the nucleus and eosinophilic at apex due to the staining of zymogen granules. 

Intralobular duct (long arrow), The lobules are closely aligned, interlobular space (short arrows). 

H&E x200. B. High power of an acinus (dotted lines) shows a typical rounded acinus with several 

acinar cells surrounding a lumen. The beginning of the duct system at the lumen, shows a centroacinar 

cell nucleus (arrow) next to the nucleus of an intercalated duct cell. The islet is easily identified by 

paler cytoplasm and pale nuclei. H&E magnified to x1200. C. Normal spacing of ducts stained for 

cytokeratin immunohistochemistry (brown), haematoxylin counterstain. 
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EM demonstrated the polarised arrangement of organelles in the acinar cell. A whole acinus with 

round nuclei arranged around a central lumen and distinctly electron dense apical zymogen granules 

is shown (Figure 3.2A). Microvilli protrude from the luminal surface and zonulae occlendentes seal 

the cells at the lumen (Figure 3.2B). A basal view of the acinar cells show prominent RER and 

mitochondria, lysosomal bodies, interdigitations in the lateral space between cells, and BM closely 

aligned with the cell surface (Figure 3.2C,D). Duct cell nuclei are elongated and indented. Compared 

with acinar cells there are fewer mitochondria and RER (Figure 3.3A). Blebs on the surface of the 

cells and lateral interdigitations are common on intralobular ducts (Figure 3.3B). Figure 3.3C shows 

the start of the ductal system within the acinus. Centroacinar cells are smaller than acinar cells with 

fewer organelles and no zymogen granules (Figure 3.3C). Cilia are seen randomly projecting into 

the ductal lumen (Figure 3.3D). 

 

3.3.2 Experimental results from three models  

 

From 2 hrs in the models CHB and duct ligation (tissue distal to the ligature), and 6 hrs in the caerulein 

model, secretion leaked from lumens into intercellular and interstitial spaces. Oedema persisted for 

48 hrs in CHB and duct ligation, less in caerulein. By 24 hrs all models had a cellular infiltration of 

mononuclear cells, fibroblasts and a moderate number of neutrophils. Acinar lumens began to extend. 

Apoptosis was the mode of acinar cell death in all models. Apoptotic nuclei were seen as pyknotic, 

condensed, rounded nuclei sometimes lying within cleared spaces or fragmented nuclei in 

eosinophilic or basophilic apoptotic bodies in H&E sections. Almost every acinus in the caerulein 

and duct ligation models had one or two apoptotic cells however in contrast in the CHB model, 

apoptosis was massive and synchronous with every cell affected (Figures 3.4A-C). In the EM images 

dilatation of RER and vacuoles were prominent early features of acinar cells with convolution of the 

cell membrane. There was disruption of junctional complexes between adjacent acinar cells. 

Zymogen granules discharged into increasingly dilated acinar lumens. Apoptotic cells were easily 

identified by their sharply demarcated condensation of chromatin against the nuclear envelope, with 

convolution of the nuclear outline, cell shrinkage and nuclear fragmentation to form apoptotic bodies 

(Figures 3.4 D-F). The apoptotic bodies contained pyknotic nuclear chromatin, intact or partially 

degraded zymogen granules, RER and mitochondria and later amorphous material and myelin figures.  
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Figure 3.2 Electron microscopy of control rat pancreas with focus on acini  

A. Control acinus. Note the pyramidal shaped acinar cells around a central lumen. The round nuclei 

are typically basal and apical electron dense zymogen granules congregate at the luminal pole. 

L=lumen. Electron microscopy (EM) x2000. B. High power of an acinar lumen with microvilli jutting 

into the luminal space. Zonulae occludentes form firm closures at the lumen to prevent unregulated 

release of zymogen granules (white arrows). Zymogen granules close to the lumen are ready for 

release ZG = zymogen granule EM x20000. C. Basal end of acinus. Interdigitations (long arrows) 

line the spaces between acinar cells, desmosome holds the acinar cells together (thin arrow), normal 

thin basement membrane (short arrow), lysosomal body (white arrow), rough endoplasmic 

reticulum=RER, mitochondria=M. EM x10000. D. High magnification of C showing the normal 

extent of basement membrane (arrow). Some collagen deposits are free in the intra-acinar space.  
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Figure 3.3 Electron microscopy of control rat pancreas with a focus on ducts 

A. Intralobular Duct. Indented, elongated nuclei. F=fibroblast with a little collagen deposition. EM 

x5000. B. Magnification of A, with interdigitations on lateral membranes (white arrows), and 

basement membrane (black arrow). Electron microscopy (EM) x15000. C. Start of ductal system in 

acinus. CA=centroacinar cell, D= intercalated duct cell, N= nucleus, nucl= nucleolus, 

M=mitochondria, star =lumen. X4000. D. Cilia at lumen of interlobular duct. EM x 30000. 
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Figure 3.4 Apoptosis of pancreatic acinar cells in rat models 

A. Caerulein at 24 hrs. Acinar cells undergo apoptosis as tubular complexes form. The inflammatory 

infiltrate is well advanced so that acini have lost adhesion to their neighbours. Haematoxylin and 

eosin (H&E) x400. B. CHB at 12 hrs. Apoptosis is present in most acinar cells in this model compared 

with only some to several in each acini of the other two models. The inflammatory infiltrate is not 

yet activated. H&E x400, insert x1000. C. Duct ligation at 24 hrs is similar to the caerulein model, 

H&E x400. D. Caerulein at 24 hrs, electron microscopy (EM) x 3000. E. CHB at 12 hrs EM x2500. 

F. Duct ligation at 24 hrs EM x4000. Figures A-C, short arrows show apoptotic nuclei, long arrows 

inflammatory infiltrate. Figures D-F, A=apoptotic nuclei, note crescent shaped chromatin. N=normal 

nucleus, arrows =zymogen granules; star=whorled rough endoplasmic reticulum; cp = capillary. 
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In the caerulein model, acinar cell apoptosis (Figure 3.5A) peaked at 3 days with a rapid reduction 

in acinar cell numbers, and by 4 days, few recognizable acinar cells remained. Similarly, by the 5th 

day in the duct ligation model all acini had disappeared. In contrast, in the CHB model, apoptosis was 

evident at 6 hrs and by 18 hrs almost all acinar cells had chromatin changes of apoptosis but also 

swollen vacuolated cytoplasm indicative of ‘secondary necrosis’ which subsequently progressed 

(Figure 3.5B,C). By 4 days no acinar cells remained.   

 

 

 

Figure 3.5 Typical apoptotic body and secondary necrosis in rat models 

A. Electron microscopy (EM) of apoptotic body in duct ligation at 60 hrs. Note the condensed nuclear 

chromatin, multiple nuclear fragments within an apoptotic body becoming free from the surrounding 

cytoplasm, zymogen granules of varying size, many reduced in size, and whorling RER. Autophagic 

vacuoles are seen within the cytoplasm as are adjacent viable acinar nuclei.  V=vacuole, 

arrows=zymogen granules of varying size, Star=whorled rough endoplasmic reticulum. B. 24 hrs 

after CHB massive apoptosis overwhelms the tissue until it appears degraded with both distended and 

condensed cytoplasm, however viable cells remain. Stars = degraded cytoplasm, arrows = viable 

cytoplasm. Haematoxylin and eosin x400. C. 18 hrs after CHB, stars = necrotic cytoplasm, black 

arrows = viable cells, white arrows = apoptotic bodies. EM x2000.  
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Apoptotic bodies were in the epithelium, in acinar lumens, free within the interstitium or 

phagocytosed within macrophages. In the CHB model, as apoptosis was a synchronous event, 

apoptotic bodies did not appear to be ingested by adjoining epithelial cells as in the other two models. 

The residual acinar tissue was mopped up predominantly by macrophages.  Macrophage numbers 

were greatly increased in all models compared to controls (Figure 3.6). The macrophage results are 

expanded on in Chapter 4.  

 

As a result of the depletion of acinar cells, lobules were rapidly converted into small groups of duct-

like cells forming tubular complexes (Figure 3.7). Tubular complexes were well established by 2 

days in the caerulein model, by 4 days in the CHB and duct ligation models. The lobules and tubular 

complexes within them were separated by fibrosis and a persistent mononuclear inflammatory cell 

infiltrate (Figure 3.7A-C). Tubular complexes stained positive for cytokeratin confirming their ductal 

origin. Amylase immunohistochemistry indicated the few acinar cells or acinar debris remaining 

(Figure 3.7D-F). In the caerulein model particularly, as tubular complexes formed, residual acinar 

debris and duct cells coexisted (Figure 3.7D). The tubular complexes had distended lumens lined by 

flattened epithelial cells with the appearance of duct cells (Figures 3.8A-F). Mitoses were rarely seen 

in control sections but considerable numbers of  cells lining tubular complexes showed mitotic 

activity by 2 days in all models (Figure 3.8E).  

 

In the caerulein model, at 3-5 days clustered regenerative acinar cells in demilunes could be seen 

arising from tubular complexes and contained sparse small luminal zymogen granules (Figure 3.9A-

c). Occasional cells were difficult to identify as ductal or acinar. Cytokeratin and amylase double 

staining showed clustered amylase positive cells around lightly stained brown tubular complexes 

(Figure 3.9C). Tubular complexes gave rise to islet cells with increased frequency (Figure 3.9D). 

By days 7-10 acinar cell mitoses were conspicuous, tubular complexes disappeared (Figure 3.9F). 

By day 10 the lobular architecture had returned to a near normal appearance though mild fibrosis and 

a mild patchy inflammatory infiltrate persisted. 
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Figure 3.6 Macrophage or adjacent epithelial cell removal of apoptotic bodies in rat models 

A. Caerulein 24 hrs, B. CHB 48 hrs, C. Duct ligation 48 hrs, all CD68 immunohistochemistry x 400, 

shows the extent of macrophage migration into the pancreas of each model. D. Caerulein day 4, 

apoptotic bodies being engulfed by a macrophage. Electron microscopy (EM) x 5000. E. CHB 48 hrs 

with secondary necrosis within a macrophage. EM x 4000. F. Duct ligation 60 hrs, apoptotic bodies 

were also engulfed by adjacent epithelial cells seen in this forming tubular complex with extended 

lumen and a viable acinar nucleus at the bottom of the complex. EM x2500 
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Figure 3.7 Acinar atrophy in rat models 

A. Caerulein, day 2. B. CHB, day 3. C. Duct ligation, day 3.These micrographs show the parenchyma 

devoid of, or with few, acinar cells in all models. Tubular complexes fill the lobules which are 

surrounded by inflammatory infiltrate. All haematoxylin and eosin x 200. D. Caerulein, day 2, tubular 

complexes brown, acinar tissue purple indicate that most of the cells are ductal with only small 

residual acinar cells present, Immunohistochemistry for amylase (purple) and cytokeratin (brown) 

x400. E. CHB, day 3, residual acinar material is sparse amongst tubular complexes. Insert= residual 

acinar material lying in the lumen of a tubular complex. IHC for amylase (brown). x400, insert x1000. 

F. Duct ligation, day 4. Tubular complexes shown by IHC for cytokeratin (brown) are all that remain 

in the duct ligation model. x400. D-F counterstain is haematoxylin. 
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Figure 3.8 Tubular complexes in rat models 

A. Caerulein, 36 hrs. B. CHB, day 5. C. Duct ligation, day 3. All toluidine blue stained semi-thin 

epoxy resin sections. Note the large lumens and flattened cells of the tubular complexes, surrounded 

by inflammatory infiltrate. In A, a tubular cell merges with a normal elongated duct and some dark 

condensed acinar material remains. All x1000.  Electron microscopy (EM) is presented in D-E. D. 

Caerulein, day 2. E. CHB, day 3. F. Duct ligation, day 3. D shows tubular complexes forming with 

residual acinar debris and duct cells (arrows). E. shows mitosis in a ductal cell (Mit). F depicts a 

formed tubular complex next to one still forming with inclusions of residual material. D.= x2000, E 

and F. = x2500. 
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Figure 3.9 Regeneration in the caerulein model 

A. Caerulein day 5, scattered regenerative acini are prominent because of eosinophilic cytoplasm and 

intense staining nuclei (arrow) in a lobule with residual tubular complexes and islet tissue. 

Haematoxylin and eosin (H&E), x400. B. Caerulein day 3, acinar cells regenerating in demi-lunes 

from tubular complexes was a particular feature of the caerulein model (arrows).Toluidine blue semi-

thin epoxy resin, x1000. C. Caerulein day 4, acinar regeneration and proliferation. This particular 

staining combination highlights the zymogen granules with amylase content and the extent of cycling 

cells in regenerating acini, immunohistochemistry for amylase (pink) and proliferating cell nuclear 

antigen (PCNA) (brown), counterstain haematoxylin. x400. D. Caerulein day 4, an example of acinar 

cell regeneration (arrow), erupting from a tubular complex with its large elongated nuclei. Islet cell 

regeneration was a prominent feature in tubular complexes in this model. TC=tubular complex, 

cp=capillary, star=islet cell regeneration. Electron micrograph, x2500. E. Caerulein day 7, lobule 

almost fully regenerated with acini. H&E, x200. F. Caerulein day 10, regeneration varied between 

lobules and by day 10 considerable inflammatory infiltrate remained around some acinar lobules. 

x400. 
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In the CHB model, small numbers of apoptotic bodies continued to be seen within duct lumens and 

epithelium and by day 7 tubular complexes had larger lumens and flattened lining epithelial cells. 

Collagen was deposited both in and around lobules. Regenerative islands of acini appeared by 10 

days but these were few and did not increase significantly in size or number (Figure 3.10A-F). The 

regenerative acinar cells displayed both mitosis and apoptosis (Figure 3.10B). Apoptosis was seen in 

the duct cells lining tubular complexes (Figure 3.10E) and the number of tubular complexes 

decreased with fewer remaining at 18 and 28 days. By 28 days the pancreas comprised largely fat, 

collagen, islets, blood vessels and nerves. 

 

The duct ligation model followed a similar progression initially (Figure 3.11A-F). By day 7 and up 

to day 18 lobules consisted of tubular complexes within a collagenous stroma. The tubular complexes 

were mostly smaller and more crowded than in the CHB and caerulein models. No regenerative acini 

were seen in this experiment except for a few sparse cells closely aligned with the ligature clips. 

Thickened basal lamina, and fibroblasts remained in the stroma with considerable adipose tissue 

around lobules.  

 

3.3.2.1 Apoptosis counts  

 

Figure 3.12 demonstrates mean ± SEM of counts of apoptosis for the three models over time points 

to 7 days. Compared with untreated controls (Time 0) where negligible apoptosis was found, all 

models had significantly increased apoptosis, but at varying periods of time after the cause of 

pancreatitis. The CHB model had massive apoptosis over 12 hrs, 1 and 2 days but this disappeared 

from 3 days where all acinar cells have disappeared through phagocytosis. While caerulein and duct 

ligation had a much lesser incidence of apoptosis compared with CHB, the incidence in caerulein was 

visible to 3-4 days, and the incidence with duct ligation to 5 days. Figure 3.13 presents counts of cell 

proliferation using PCNA IHC. The graphs demonstrate the expected pattern of cycling cells. In the 

caerulein model, acinar cells were regenerating until experimental end at 10 days. The CHB model 

had duct cell regeneration up to 12 days when acinar cell regeneration started then declined by end 

of experiment. With the duct ligation model, duct cells were proliferating from 3 days to end of 

experiment at 18 days, with decreasing incidence from day 12. 
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Figure 3.10 Regeneration in the CHB model 

A. CHB day 10, small clusters of acinar cells with eosinophilic zymogen granules and intense purple 

nuclei stand out amongst residual tubular complex cells, arrow =mitosis. Haematoxylin and eosin 

(H&E) x 400. B. CHB day 12, Many of the regenerative acini at this time point are undergoing 

apoptosis at the same time as the acini are regenerating (arrows). The insert depicts a typical 

regenerating acinus with eosinophilic luminal cytoplasm and intensely stained nuclei as well as 

apoptotic nuclei, H&E x 400, insert x1000. C. CHB day 16, complete acinus on edge of lobule. 

Regenerating acini were often closely aligned with adipocyte formation. A=adipocyte. Toluidine blue 

semi-thin epoxy resin, x1000. D. CHB day 7, cycling cells were prominent both in tubular complexes 

(black arrow) and acinar cells (white arrow). Proliferating cell nuclear antigen (PCNA) 

immunohistochemistry x400. E. CHB day 7, apoptosis was often quite extensive in tubular complexes 

(black arrows). H&E x1000. F. CHB day 18, acinus with large autophagic vacuoles (arrows) indicates 

that these cells may be undergoing damage. Electron microscopy x2500. 
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Figure 3.11 Regeneration in the duct ligation model 

A. Duct ligation day 12, tubular complexes identified by their large lumens fill the tissue. No acinar 

cells can be seen. Haematoxylin and eosin (H&E) x200. B. Duct ligation day 10, apoptosis (arrows) 

in tubular complexes. The fibrous inflammatory infiltrate is prominent H&E x1000. C. Duct ligation, 

tubular complexes and fibrotic infiltrate remain, Toluidine blue x400. D. Duct ligation day 18, cycling 

cells are prominent in the tubular complexes. Proliferating cell nuclear antigen (PCNA) 

immunohistochemistry (IHC) x 200. E. Duct ligation day 16, large ducts also show increased cycling, 

interlobular duct. PCNA IHC x200. F. Duct ligation day 18, tubular complex with extended lumen 

and flattened, elongated lining cells. The inflammatory infiltrate is closely packed with collagen 

deposition stellate cells and macrophages. Stellate cells are also closely aligned with the tubular 

complex. Toluidine blue x1500 
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Figure 3.12 Mean ± SEM of counts of apoptosis for the three models 

Apoptosis was counted in 10 random fields at x400 magnification of one 4µm thick section of whole 

pancreas per rat per time point. Data are the mean ± SEM of four rats (n=4) per time point from one 

experiment per model. Compared with untreated controls (Time 0) where negligible apoptosis was 

found, all models had significantly increased apoptosis, but at varying periods of time after the cause 

of pancreatitis. The CHB model had massive apoptosis over 12 hrs, 1 and 2 days but this disappeared 

from 3 days. While caerulein and duct ligation had a much lesser incidence of apoptosis compared 

with CHB, the incidence in caerulein was visible to 3-4 days, and the incidence with duct ligation to 

5 days (barely visible on graph). One way ANOVA was used to compare apoptosis counts between 

the experimental groups. Tukey’s multiple comparison test was used to compare individual groups. 

Apoptosis counts were significantly higher than controls in the caerulein, CHB and duct ligation 

models at days 1-2 (P=0.0002, P<0.0001, P<0.0001, respectively) and day 4 (P<0.0001, P<0.0001, 

P<0.0001, respectively).  
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Figure 3.13 Mean ± SEM of cell proliferation measured by PCNA immunohistochemistry 

Single nuclei stained for PCNA were counted in five to ten random fields at x200 magnification of 

one 4µm thick section of whole pancreas per rat (n=4) per time point. The number of fields counted 

varied with regard to reduced parenchyma at atrophic time points. Data are the mean ± standard error 

of the mean (SEM) of four rats (n=4) per time point for one experiment per model. Error bars 

represent the SEM. The graphs demonstrate cells that are undergoing cycling. In the caerulein model, 

acinar cells were regenerating until experimental end at 10 days. The CHB model had duct cell 

regeneration up to 12 days when acinar cell regeneration started then declined by end of experiment. 

With the duct ligation model, duct cells were proliferating from 3 days to end of experiment at 18 

days, with decreasing incidence from day 12. One way ANOVA was used to compare PCNA 

expression in control groups versus experimental groups. Tukey’s multiple comparison test was used 

to compare individual groups. PCNA expression in the caerulein, CHB and duct ligation models was 

significantly higher than controls at days 2, 4 and 7 (day 2, P<0.0001, P<0.0001, P<0.0004, 

respectively; day 4, P<0.0001, P<0.0001 P<0.0001, respectively; and day 7, P<0.0001 P<0.0001, 

P<0.0001, respectively). 
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3.4 DISCUSSION 

 

This chapter shows the results of three models of pancreatitis produced experimentally in rats to 

understand the pathology and the cell biological and pathophysiological disease mechanisms and, 

eventually, as a step towards developing targeted therapies. The rat models were developed to reflect 

specific changes of human acute and chronic pancreatitis. Data relating to the molecular mechanisms 

of the disease are presented in later Chapters.  

 

Although the timelines differed slightly, the models of caerulein, CHB and duct ligation successfully 

produced a mild pancreatitis with the mode of cell death as apoptosis. This was followed by fibrosis 

deposition with inflammatory cells prominent and differences in regeneration. Pancreatic atrophy in 

the caerulein model occurred randomly. In all rats the whole pancreas and every lobule was disturbed 

however there was considerable variation between the lobules from partial to complete atrophy that 

also varied between animals. In every rat pancreas there remained some viable acini. Loss of acinar 

cells by apoptosis, generation of tubular complexes, loss of tubular complexes and regeneration of 

acinar cells proceeded in concert. In the CHB model there was consistency between animals and the 

whole process seemed sequential. Acinar cells appeared to be completely absent from the lobules 

following apoptosis and re-emerged as small islands of regeneration later amongst tubular complexes. 

Compared with the caerulein model this was a slower process and regenerative acini in general often 

had a different appearance. In H&E sections the nuclei were larger and the cytoplasm was more 

intensely coloured as if the acinar cells were forming. Apoptosis occurred in the duct ligation model 

in a similar manner to caerulein, with one to several apoptotic cells visible in each acinus at any one 

time. However, in this case all of the acinar cells disappeared and no regenerating acini were seen. 

Tubular complexes were the only epithelia that remained in the fibrotic stroma. These models produce 

a mild pancreatitis with loss of acinar tissue. The inflammatory infiltrate proceeds to the deposition 

of fibrosis as may occur in humans. It is vitally important to elucidate the processes that lead to 

successful regeneration after fibrotic deposition in pancreatitis. 

 

Most current knowledge of the pathogenesis of pancreatitis comes from animal studies as the human 

pancreas is relatively inaccessible especially in the early stages of the disease. Commonly used animal 

models focus on rodents and although widely used they have failed to produce noticeable clinical 

benefits. No model fully reproduces the human disease and each model has its advantages and 

disadvantages. Shortcomings aside, animal models are necessary for understanding the 

pathophysiology of this disease. It is unclear and possibly questionable if caerulein and CHB are 

clinically relevant stimulants in humans though the duct ligation model mimics gallstone obstruction 
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pancreatitis. The question addressed is of importance and in this case the generic models allow the 

study of specific elements common to the pancreatic disease. By comparing more than one model 

and the mechanisms by which they differ this analysis will progress our understanding of pancreatitis. 
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CHAPTER 4 

FIBROSIS IN RAT PANCREATITIS 
 

4.1 INTRODUCTION 

 

Pancreatic fibrosis is a characteristic histopathological feature of many types of human pancreatitis 

including alcoholic, hereditary, autoimmune, idiopathic and tropical and obstructive chronic 

pancreatitis where it deposits in interlobular and periductal spaces.7 It is typified by proliferation of 

connective tissue consisting mostly of densely packed ECM. Initially, pancreatic injury which 

involves the interstitial mesenchymal cells, the duct or the acinar cells leads to necrosis or apoptosis 

of parenchymal cells. These death processes, and immigrating inflammatory cells, release cytokines, 

growth factors and chemokines which in turn stimulate pro-fibrotic stellate cells of the pancreas 

(PSC) to activate, proliferate and migrate to the area of injury.223 Activated PSC synthesise significant 

amounts of ECM, in particular collagens that are deposited in interstitial spaces.135 In normal 

pancreas, quiescent PSC are in low numbers, possess vitamin A containing fat droplets and stain 

negative for αSMA. When activated, they lose the lipid droplets, enlarge and proliferate and stain 

positive for αSMA. They then increase secretion of ECM including collagens I and III and laminin, 

under the influence of molecular signalling pathways and cytokines released from recruited 

inflammatory cells.130 In pancreatic pathology, the normal cell populations may be replaced by 

fibrosis, leading to both exocrine and endocrine deficiency. Accumulation of matrix leading to 

pancreatic fibrosis depends on an imbalance between ECM synthesis and degradation. PSC regulate 

this balance, however the role of other inflammatory cells such as macrophages and mast cells is not 

clear. As the three rat models of pancreatitis developed fibrosis and underwent different regenerative 

outcomes (Chapter 3), they have the potential to provide a good basis for comparison of the 

interactions between fibrosis and regeneration in pancreatitis.  

 

4.1.1 Aim  

 

The aim of this Chapter was to determine whether fibrosis in the three models of pancreatitis in rats 

followed a similar course with respect to inflammatory cell populations. The interaction of the PSC 

and other inflammatory cells (macrophages, mast cells) in the process of initiating, maintaining and 

degrading fibrosis was of particular interest.  
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4.2 MATERIALS AND METHODS 

 

General materials and methods for this Chapter can be found in Chapter 2. Collagen stained 

histochemically by Puchtler’s Sirius red (Appendix 1) was compared with an objective and 

quantitative scoring system of digital capture and image analysis of the histopathology. Comparison 

of collagen I and III was achieved by using a polarizing filter to visualise the birefringent collagen. 

Activated PSCs, mast cells and macrophages were identified by light and EM and IHC. 

 

4.3 RESULTS – FIBROSIS AND STELLATE CELLS IN PANCREATITIS  

 

4.3.1 Control pancreas for fibrosis studies 

 

In the normal pancreas, the exocrine lobules are delineated by a thin line of connective tissue in the 

interlobular space and around ducts and blood vessels (Figure 4.1A). At a higher power the small 

amount of collagen was evident in the space between an intralobular duct and an acinus. The BM was 

closely attached to the cells (Figure 4.1B). 
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Figure 4.1 Fibrosis in the control rat pancreas 

A. Collagen is indicated by the red staining of Puchtler’s Sirius red. It shows fine threads of collagen 

in between acini and delineates the lobules which are closely aligned. Interlobular connective tissue 

(white arrows), blood vessels (black arrows). Red = collagen, yellow = parenchyma; Puchtler’s Sirius 

red x400. B. Acinus and intralobular duct with small amounts of deposited collagen in the interstitial 

space. The basement membrane is a thin line along the extremities of the cells. Arrows = basement 

membrane. Electron microscopy x15000. 
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4.3.2 Fibrosis in the rat models 

 

The different timelines demonstrated in the photomicrographs of Figure 4.2 are used for specific 

features and as a comparison of fibrosis development in the different models. Figures 4.2A-I show 

the progression of fibrotic deposition through the course of the pancreatitis.  

 

The increase in deposition of collagen occurred earlier in the caerulein model. Apoptotic acini were 

clearly delineated by fine strands of collagen as early as day 1 whereas in the CHB and duct ligation 

models at days 2-3 oedema was present and fibrosis was limited to wispy intralobular strands and 

intralobular ducts (Figures 4.2A-C).  

 

By days 4-5, the caerulein model had reached the peak of fibrosis. Tubular complexes were 

surrounded by distinct wavy collagen, collagen was dense around intralobular ducts and ample in 

intralobular areas, wispy in interlobular areas (Figure 4.2D). By day 7 in the caerulein model, when 

acinar regeneration was widespread, collagen deposition was partially but not totally resolved. 

Collagen deposition was thin around newly formed acini but remained as wavy, thick strands in 

intralobular spaces and surrounding intralobular ducts (Figure 4.2G). 

 

By day 4 in the CHB model and day 7 in the duct ligation model, collagen deposition was 

approximately similar to that of the caerulein model (Figures 4.2E,F). In all models, the islets and 

nerves were surrounded by collagen but not infiltrated by collagen. Blood vessels were surrounded 

by dense collagen. From these times, collagen deposition in the CHB and duct ligation models 

increased in quantity and in density with thick, solid deposits around the tubular complexes and thick 

and wavy strands around intralobular ducts and in interlobular spaces (Figures 4.2H,I).  

 

The collagen deposition remained around tubular complexes and interstitial areas in both CHB and 

duct ligation models until the end of the experiments. In the CHB model, where there was 

regeneration, fibrosis was sparse around the acinar bundles.  
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Figure 4.2 Collagen deposition in the rat models  

Images show the deposition of fibrosis as collagen by Puchtler’s Sirius red histochemistry. Collagen 

production is increased early compared with the controls in Figure 4.1. It progresses to being laid 

thickly around tubular complexes in each model, however regresses substantially in the caerulein 

model and remains thickly deposited in the others. Each experimental row depicts a comparable 

stage in the course of the pancreatitis for each model but not necessarily the same time point. All 

x200. 

A, D, G. Caerulein, day 1, day 4, and day 7, respectively. 

B, E, H. CHB model, day 2, day 4, and day 16, respectively. 

C, F, I. Duct ligation, day 1, day 7, and day 18, respectively. 
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Polarised light was used to demonstrate how collagen deposition changed over time from green 

(collagen III) to yellow/red (collagen I), as the fibres became thicker and displayed more intensity. 

Figure 4.3 shows the bright field image with the corresponding polarised light image. Vertical 

columns give examples for each of the models, with Figures 4.3A-C presenting the bright field 

images and Figure 4.3D-F presenting the corresponding fields under polarised light.  

 

The type of collagen laid down varied in intensity and in type between the models (Figure 4.4). Early 

(days 1 and 4, Figures 4.4A,D) in the caerulein model and after regeneration (day 7, Figure 4. 4G), 

the collagen fibres were thin (green) around acinar cells. Blood vessels and ducts were easily seen as 

were occasional thicker strands (Figure 4.4G). At day 4 when tubular complexes were most prolific, 

collagen was a mixture of the collagen III type and the yellow colour of the denser strands of collagen 

I (Figure 4.4D).  

 

CHB and duct ligation models showed similar patterns of collagen III early (Figure 4.4B,C) and a 

similar but more dense yellow/red colour as the lesion progressed (Figure 4.4E,F). By the later 

stages, collagen visualised as predominantly collagen I (red). This occurred around tubular 

complexes, as interstitial collagen remained predominantly green as can be seen in Figures 4.4H and 

I. 

 

Figure 4.5 compares the types of collagen deposited in a comparison between the three models. 

Collagen III was seen predominantly in the caerulein model, with CHB and duct ligation having 

mainly collagen I.   
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Figure 4.3. Comparison of bright field and polarised light images 

Vertical columns are the same section example for each of the models. A-C present the bright field 

image, collagen=red, parenchyma=yellow. D-F demonstrate the corresponding field under polarised 

light. Collagen III=green, collagen I=yellow/red. Circular spaces portray the lumens of tubular 

complexes. Although the amount of deposited collagen looks similar in all models in the bright field 

images, the polarised light images show that the caerulein model has more green-coloured collagen 

III than the red of collagen I in the other two models. Puchtler’s Sirius red is photographed under 

bright field and polarised light x400. 
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Figure 4.4 Polarised light images of collagen in the rat models  

Vertical columns give examples for each of the models. Caerulein: A day 1, D day 4, and G day 7; 

CHB: B day 4, E day 14, and H day 16; Duct ligation: C day 4, F day 12, and I. day 18. Each 

experimental row depicts a comparable stage in the course of the pancreatitis for each model but not 

necessarily the same time point. Note how the progression of green collagen III deposition changes 

to collagen I deposition in the CHB and duct ligation models but does not progress to considerable 

amounts of collagen I in the caerulein model and regresses by day 7. Collagen III=green, collagen 

I=yellow/red. Puchtler’s Sirius red is photographed under polarised light. All x400. 
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Figure 4.5 Comparison of the types of collagen deposited in the three models 

Five fields of 50µm2 of defined pixels were counted at x400 magnification for each 4µm thick section 

of whole pancreas for the time point of comparable collagen deposition between the models: caerulein 

and duct ligation day 4, CHB day 5. Data are the mean ± SEM of four sections (n=4) per time point 

for one experiment per model. Error bars represent the standard error of the mean. Collagen III was 

seen predominantly in the caerulein model, with CHB and duct ligation having mainly collagen I. 

One way ANOVA was used to compare the area of collagen III to collagen I between the experimental 

groups. Tukey’s multiple comparison test was used to compare individual groups. Collagen III was 

significantly increased in the caerulein model compared to CHB and duct ligation (P<0.0001, 

P<0.00010, respectively). The CHB and duct ligation models were not significantly different from 

one another (P=0.5430). Collagen I was significantly increased in the CHB and duct ligation models 

compared to the caerulein model ((P<0.0001, P<0.00010, respectively). The CHB and duct ligation 

models were not significantly different from one another (P=0.5431). 
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Using light microscopy and IHC and under EM, a comparison is made of structural similarities and 

differences for fibrosis in the three models. From day 1 in the caerulein model, collagen was deposited 

beside acinar cells undergoing apoptosis. This occurred earlier than in the other models (Figure 

4.6A). By day 4 when there were few acinar cells left, the collagen deposition increased around 

tubular complexes as the complexes became surrounded by PSC (Figure 4.6B). As apoptosis and 

acinar atrophy occurred BM became disrupted and folded. By day 4 remnant BM, immature and 

mature collagen fibrils were mixed in the interstitial space (Figure 4.6C,D). As regeneration occurred 

collagen levels around acini returned to near normal levels, however around ducts collagen was still 

obvious (Figure 4.6E,F).  

 

During secondary necrosis negligible collagen was deposited in the CHB model (Figure 4.7A) 

however as tubular complexes formed more and more was laid down around them as typical long 

strands with striations (Figure 4.7B). By day 14, the interstitial space was distended with ECM. This 

was particularly obvious around tubular complexes (Figure 4.7C).  

 

In the duct ligation model, the accumulation of ECM was aligned with the removal of acinar debris 

and the formation of tubular complexes (Figures 4.8A-D). From then, as tubular complexes persisted 

so did the level of fibrosis (Figures 4.8C,D). In the CHB and duct ligation models (Figure 4.7 and 

4.8), no collagen was laid down in the adipose tissue.  

 

Figure 4.9 demonstrates patterns of fibrosis. Positive pixel counts of the red colour of Puchtler’s 

Sirius red was measured as an approximate estimate of fibrosis. The different timelines for the three 

models relates to the progression of fibrosis in the three models. In caerulein, fibrosis peaked at 4 

days then decreased. In CHB and duct ligation models, a similar pattern of fibrosis development was 

seen. 
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Figure 4.6 Fibrosis in the caerulein model  

A. These electron micrographs show how in the collagen in the caerulein model is laid down early in 

thick swathes around tubular complexes but resorbs as regeneration occurs. Some areas of deposition 

remain after regeneration but this is mainly around ducts. Collagen deposit close to acinus, 

star=collagen, day 1, EM x4500. B. Tubular complex surrounded by collagen, day 4, EM x2500. C. 

Interstitial space next to a tubular complex is filled with collagen, day 4, EM x5000. D. Magnification 

of depicted area in C. Collagen appears as rods and in transverse (stars) with disrupted basement 

membrane (arrows), day 4, EM x10000. E. Regenerated acinar cells showing basement membrane 

(thin arrows) and the process of a stellate cell (thick arrow). Day 7, EM x4000. F. Intralobular duct 

showing collagen deposition (stars). Day 7 EM x4000.  
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Figure 4.7 Fibrosis in the CHB model 

In the CHB model, collagen is deposited thickly around and separating tubular complexes. This 

collagen does not regress and remains until the end of the experiment. A Collagen deposition, 

longitudinal and transverse. Day 3, EM x2500. B. Collagen deposits next to a duct cell in mitosis. 

Collagen=stars; basement membrane= arrows. Day 4, EM x2500. C. Collagen fills the interstitial 

spaces (star) surrounding tubular complexes. Day 14, toluidine blue x400. 

 

Figure 4.7B is a cropped version of an electron micrograph from a publication by Kelly L, Reid L, 

Walker N.  Massive acinar cell apoptosis with secondary necrosis, origin of ducts in atrophic 

lobules and failure to regenerate in cyanohydroxybutene pancreatopathy. Int. J. Exp. Path. (1999), 

80, 217-226.216. 
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Figure 4.8 Fibrosis in the duct ligation model 

Similar to the other models collagen is deposited thickly around tubular complexes in the duct ligation 

model. It surrounds and separates tubular complexes and fills the interlobular spaces along with 

supporting inflammatory cells. A. Collagen deposition in the interstitial space. Collagen=star, tubular 

complex=TC. Day 3 EM x2500. B. High power image of collagen seemingly emanating from a 

stellate cell. Collagen shown as longitudinal rods and in transverse (stars). Day 3, EM x8000. C. and 

D. Fibrosis between tubular complexes shown as opaque colouring compared to the white lumens of 

the tubular complexes (TC). C = day 10; D = day 18. Toluidine blue x400. 
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Figure 4.9 Mean ± SEM of estimate of fibrosis for the three models 

Five to ten random fields of 50µm2 of defined pixels were counted for one 4µm thick section of whole 

pancreas per rat per time point. The number of fields chosen varied with regard to reduced 

parenchyma at atrophic time points. Data are the mean ± SEM of four rats (n=4) per time point for 

one experiment per model. Error bars represent the standard error of the mean. The different timelines 

for the three models relate to the progression of fibrosis in the three models. In caerulein, fibrosis 

peaked at 4 days then decreased. In CHB and duct ligation models, a similar pattern of fibrosis 

development was seen. One way ANOVA was used to compare the area of Puchtler’s Sirius red 

staining in control groups versus experimental groups. Tukey’s multiple comparison test was used to 

compare individual groups. Sirius red expression in the caerulein model was significantly higher than 

in the control group at day 2 (P<0.0001) but not significant at day 4 (P=0.9648) and day 7 (P=0.9996). 

In the CHB model, it was not significantly changed at day 2 (P=0.0783) but was significantly higher 

than controls at days 4 and 10 (P<0.0001 P<0.0001, respectively). The duct ligation model was 

significantly higher for days 2, 4 and 10 (P<0.0001; P<0.0001 P<0.0001, respectively). At day 18 

both CHB and duct ligation models were significantly higher than controls for Sirius red expression 

(P<0.0001).   
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Laminin IHC was used to investigate BM and ECM in the three models. There was progressive loss 

and disruption of the ECM in these models (Figure 4.10). Compared to the regular pattern of BM in 

the control image (Figure 4.10A), all three models showed considerable loss and disruption in early 

stages (Figures 4.10B,C and D). By day 4 in every model, the BM by laminin staining was disordered 

and thickened (Figures 4.10E,-G), as was seen in electron micrographs where BM appears folded 

and separated from the cell surface (Figures 4.10D and 4.10B). The laminin appears around tubular 

complexes randomly, with some surrounded thickly, some partially or thinly surrounded and some 

with a fuzzy appearance (Figure 4.10F and at higher power in 4.10K). Normal tissue such as blood 

vessels and pancreatic islets were not affected.  In the caerulein model, by day 10 (Figure 4.10H) the 

BM has returned to a more normal appearance around acinar cells. In the other models (Figures 

4.10I,J), with the persistence of tubular complexes, the BM remained denser. 

 

4.3.3 Control pancreas stellate cells 

 

Control pancreas stained for alpha-smooth muscle actin showed positive blood vessels but no 

activated stellate cells (Figure 4.11A). Electron micrographs show fibroblasts in high power and next 

to a normal acinus (Figure 4.11B,C).  

 

4.3.4 Stellate cells in rat models 

 

IHC of αSMA is demonstrated in Figure 4.12 in the three models. Stellate cells activated by day 1 in 

the caerulein and duct ligation models, later in the CHB model probably due to the massive insult of 

apoptosis in this model compared to the others (Figure 4.12A-C). By day 4, stellate cells were prolific 

in all models (Figure 4.12D-F). When the caerulein model regenerated stellate cells disappeared 

(Figure 4.12G). This also occurred around regenerative acinar cells in the CHB model but not around 

tubular complexes (Figure 4.12H). Tubular complexes in the duct ligation model remained 

surrounded by stellate cells (Figure 4.12I).  

 

A graph of the positive pixel counts for αSMA as an estimate of activated stellate cells is demonstrated 

in Figure 4.13. Staining of vessels by αSMA was not counted in these estimates. Similar to the figure 

for estimates of fibrosis (Figure 4.5), stellate cell area peaked earlier in the caerulein model than 

CHB or duct ligation, closely linking presence of stellate cells with development of fibrosis. 
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Figure 4.10 Laminin immunohistochemistry for basement membrane in the rat models 

Images show basement membrane with positive brown staining for laminin using 

immunohistochemistry. Each experimental row depicts a comparable stage in the course of the 

pancreatitis for each model but not necessarily the same time point. Compared to the controls (Figure 

4.10A), basement membrane of the treatments (brown staining) is much increased or disrupted. The 

disruption to the basement membrane is apparent in the caerulein model even at the stage of 

regeneration and very thickly evident in the other two models at the end of the experiment. All x200. 

A. Control section showing basement membrane surrounding normal acini. B,E,e,H. Caerulein B. 

day 1, E. day 4, H.) day 10. C,F,I. CHB C. day 2, F. day 4, I. day 18. D,G,J. Duct ligation D. day 2, 

G. day 4, J. day 18. K.) (Top right) High power image of selected area from 4.10I showing tubular 

complexes and normal ducts. Note: The caerulein experiment terminated on day 10 when tissue was 

almost completely regenerated. Duct ligation and CHB models were still proceeding at day 18 and 

were showing excess laminin positivity.  
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Figure 4.11 Stellate cells in control rat pancreas 

Stellate cells do not stain positively for α-smooth muscle actin. The positivity in A is around blood 

vessels. Fibroblasts were difficult to find and identify in normal pancreas sections A. Control pancreas 

with α-smooth muscle actin immunohistochemistry for activated stellate cells. Arrows depict blood 

vessels. No stellate cells are seen. x400. B. Normal fibroblast from control pancreas. EM x1200. C. 

Normal acinus with fibroblasts (arrows). EM x3000. 
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Figure 4.12 αSMA immunohistochemistry for stellate cells in the rat models 

Images show positive brown staining for α-smooth muscle actin immunohistochemistry for stellate 

cells. Each experimental row depicts a comparable stage in the course of the pancreatitis for each 

model but not necessarily the same time point. Stellate cells activated earlier in the caerulein model 

than the other two models however they were soon very active particularly around tubular complexes 

where they remained in the CHB and duct ligation models. In areas of regeneration in the caerulein 

and CHB models stellate cells were scarce. All x400. A,D,G. Caerulein A. day 1, D. day 4, G. day 7. 

B,E,H. CHB A.day1, E. day 4, H. day 18. C,F,I. Duct ligation C. day 1, F. day 4, I. day 18. 
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Figure 4.13 Estimate of activated stellate cell area using immunohistochemistry 

Five to ten fields of 50µm2 of defined pixels were counted at x400 magnification for one 4µm thick 

section of whole pancreas per rat (n=4), per time point. Fields were chosen randomly. The number of 

fields counted varied with regard to reduced parenchyma at atrophic time points. Data are the mean 

± SEM of four rats (n=4) per time point from one experiment per model. Error bars represent the 

standard error of the mean. Positive pixel counts for αSMA are demonstrated as an estimate of 

activated stellate cells. Similar to the figure for estimates of fibrosis, stellate cell area peaked earlier 

in the caerulein model than CHB or duct ligation. Staining of vessels by αSMA was not counted in 

these estimates. One way ANOVA was used to compare the area of αSMA staining in control groups 

versus experimental groups. Tukey’s multiple comparison test was used to compare individual 

groups. Α-SMA expression in the caerulein model was significantly higher than in the control group 

at time points days 2 and 4 (P<0.0001, P<0.0001, respectively) but not at day 10 (P=0.9999). The 

duct ligation model was significantly higher compared to controls at days 2, 4, and 10 (P<0.0001, 

P<0.0001, P<0.0001, respectively). Staining in the CHB model was not significant compared to 

controls at day 2 (P=0.9667) but was significantly higher at days 4 and 10 (P<0.0001, P<0.0001, 

respectively). At day 18 both CHB and duct ligation were significantly higher than the control group 

(P<0.0001, P<0.0001, respectively) and also both significantly different compared to the caerulein 

model (P<0.0001, P<0.0001, respectively). 
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Electron micrographs and semi-thin sections in the caerulein model show the stellate cells producing 

collagen around acini and tubular complexes (Figure 4.14). Stellate cells have copious RER and 

when activating lose their lipid droplets (Figure 4.14A). The stellate cells were closely aligned to 

apoptotic acini with processes wrapped around cells and apoptotic bodies (Figure 4.14B). Collagen 

can be seen in close vicinity to the stellate cells such that immature and mature collagen fibres were 

mixed together (Figure 4.14C). By day 4 tubular complexes were tightly enclosed by stellate cells 

and their processes (Figure 4.14D). With almost complete regeneration stellate cells disappeared and 

stellate cells were inactive (Figure 4.14C). 

 

Stellate cells were also activated in the CHB model as lipid droplets were extruded (Figure 4.15A). 

They were also closely aligned with tubular complexes (Figures 4.15B,C) becoming more tightly 

wound around them as the lesion progressed (Figure 4.15D). They were not around regenerative 

islands of acini or around adipose tissue but were in the interstitial space in the inflammatory infiltrate 

(Figure 4.15E).  

 

The duct ligation model has a similar account with lipid droplets in the cell process (Figure 4.16A) 

and stellate cells and their processes in close proximity to apoptotic acini and tubular complexes 

(Figure 4.16B,C,D). In some cases the stellate cells were fewer however their processes remained 

encircling the tubular complexes (Figure 4.16E). Figure 4.17 shows the extent of the stellate cells 

and their thin elongated processes producing collagen around an apoptotic body, acini and capillaries. 
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Figure 4.14 Stellate cells in the caerulein model 

Stellate cells contain lipids and extrude these as they activate. Stellate cells were closely aligned with 

tubular complexes, their nuclei and processes appearing to wrap the tubular complexes into bundles. 

The stellate cell nuclei were either narrower and elongated around complexes, or expanded with rough 

endoplasmic reticulum (RER). The cytoplasm of stellate cells often appeared to be extruding 

collagen. A. Activating stellate cell with lipid droplet (star), copious RER. Day 1, EM x5000. B. 

Large stellate cells with long processes around apoptotic acinus. Day 2, EM x2500. C. Stellate cell 

extruding collagen. Day 2, EM x12000. D. Tubular complexes with stellate cells (arrows) wrapped 

closely around them. Day 4, Toluidine blue x1000. E. Acinus with cells approaching fibroblast 

phenotype (arrows) and remnants of interstitial collagen. Day 7, EM x1500. 
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Figure 4.15 Stellate cells in the CHB model 

Similar to the caerulein model, the stellate cells were closely associated with the tubular complexes 

and remained so. When regeneration did occur in the CHB model, no stellate cells wrapped around 

acini however they were still noted in the inflammatory infiltrate. Note also in this model the presence 

of lipid droplets in the toluidine blue-stained sections. A. Activating stellate cell process with lipid 

droplets (star) in the cytoplasm. Day 3, EM x5000. B. Tubular complex with stellate cell in close 

contact. Day 1, EM x5000. C. Stellate cells around tubular complex. Day 4, EM x2500. D. Stellate 

cells (arrows) closely wrapped around tubular complexes (TC). Toluidine blue day 14, x400. E. 

Regenerative acini with absence of close stellate cells. Stellate cells (arrow) are in the inflammatory 

infiltrate. Day 16, toluidine blue x1000.  
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Figure 4.16 Stellate cells in the duct ligation model 

The same pattern of stellate cell activation and localisation was seen in the duct ligation model with 

multiple cells wrapped around each tubular complex. A. Activating stellate cell process with lipid 

droplet (star) in the cytoplasm. Day 3, EM x5000. B, C. Stellate cells (arrows) closely aligned with 

tubular complex (TC). B=day 3, C=day 4, EM x2500. D, E. Tubular complexes with stellate cells 

(arrows) wrapped around them. D=day 10, E=day 18. Toluidine blue x1000. 
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Figure 4.17 Stellate cells producing collagen 

This micrograph shows activated stellate cells in the early stages of the duct ligation model. Multiple 

stellate cells surround a large apoptotic body, their long thin processes sliding around the residual 

body and the adjacent acini. There is much collagen deposition associated with the stellate cells. Duct 

ligation model, day 3. Stellate cells and processes (stars) around an apoptotic body. A=acinar cell, 

M=macrophage. Electron microscopy x6000. 



88 
 

4.4 DISCUSSION - FIBROSIS AND STELLATE CELLS IN PANCREATITIS 

 

Traditionally, the pathological and physiological distinction between acute injury and chronic injury 

is blurred. Morphological characteristics which typify chronic pancreatitis are seen also in the model 

of acute pancreatitis. The three models of pancreatitis share a common pathogenesis in that atrophy 

of acinar cells via apoptosis leads to the formation of tubular complexes and the laying down of 

abnormal amounts of ECM. This study sought first to determine the differences in collagen deposition 

between the three models.  

 
The experiments described here show pancreatic fibrogenesis in the caerulein model where 

degradation of fibrosis occurs and gland architecture is restored. The CHB model where regeneration 

is limited, and the duct ligation model where regeneration does not occur, proceed to chronic fibrosis. 

Fibrosis developed earlier in the caerulein model. This may be in part due to the CHB and duct 

ligation models undergoing considerably more oedema in the early stages and undergoing a later 

infiltration of macrophages into the gland. Once established, all models developed considerable 

fibrosis. That the peak of fibrosis did not last long in the caerulein model may be accounted for by 

the insult being removed earlier. It has been estimated that physiological activity of caerulein is absent 

from Sprague Dawley rats 8 hrs after one injection.224 Resorption of fibrosis in this model proceeded 

swiftly once the insult ceased therefore the process for degradation of ECM is active in the caerulein 

model but not in the other models. 

 

Pancreatic fibrosis is the result of the deposition of collagens I, III and IV, fibronectin and laminin. 

225 One major difference between the models was in the type of collagen laid down. In the caerulein 

model the type of collagen laid down in intra- and inter-lobular areas was predominantly green under 

polarising light, typical of collagen type III and mostly of a wavy wispy nature. Around tubular 

complexes the collagen was a mixture of collagen type III and amounts of yellow, denser deposits 

that appeared to be collagen I. In contrast, in the CHB and duct ligation models under polarising light 

the collagen progressed from green to yellow then predominantly red, typical of collagen I. It was 

particularly thick around tubular complexes but also dense in swathes in the general tissue, with only 

a small amount of collagen III in some areas. Interestingly the overall amount of collagen laid down 

was approximately equal in all models at the peak of fibrosis respectively. It appears that in the 

caerulein model the process of degradation and resorption took place before collagen I fully replaced 

collagen III.  
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In the caerulein and duct ligation models, the BM became disordered and folded away from the cells 

as apoptosis and acinar atrophy progressed. In CHB, as synchronous apoptosis was followed by 

secondary necrosis BM was totally disrupted and scattered throughout the tissue. At the time point 

when tubular complexes were established in all models laminin staining showed the BM to be 

randomly dispersed around the complexes partially or fully encircling them and in thin or thick lines, 

Where regeneration occurred, the BM resumed an orderly thinner line around the acinar cells. Around 

tubular complexes, it remained thicker and disordered. BM is a highly cross-linked lattice of secreted 

proteins including collagen IV. The formation of BM depends on the binding and adhesion of 

laminin-collagen in a highly organised self- assembly process.65 It requires laminin to anchor 

integrins, dystroglycan and other receptors in the process of assembly.67 In all of the models laminin 

was disordered and dislocated to the same degree when tubular complexes formed after apoptosis. 

The laminin-collagen reassembly process occurs successfully around acinar cell regeneration as seen 

fully in the caerulein model and partially in the CHB model. The trigger for this is not yet known.  

 

Fibrosis occurs as a result of the net deposition of excess collagen I and II and other matrix proteins 

that are synthesised by stellate cells. PSCs also synthesis MMPs that activate the resorption process 

in the extracellular space. The MMPs that play a key role in regulating matrix degradation are in turn, 

regulated by a family of specific inhibitors, TIMPs. A complex interplay exists between TIMPs and 

MMPs. In the caerulein/SHOP-induced chronic pancreatitis model in rats, fibrosis resolved by 18 

days when MMP-1 and -2 expression was at a peak: MMP-9 did not significantly change.226 MMP-

2 and -9 also degrade BM proteins. Increased transcripts and protein for MMP-2 was reported during 

regeneration from caerulein-induced pancreatitis.227 Other cells also play a part in collagen 

degradation, for example, in the liver Kupffer cells in matrix degradation.228 Yokota et al. (2002) 

suggest that the MMP expression that is triggered by ECM injury enhances vascular basal membrane 

degradation and leads to an increase in polymorphonuclear leucocytes These leukocytes provide a 

further source of MMPs. Nakae and colleagues reported that the severity of disease in acute 

pancreatitis correlates with the ratio of TIMP-1/MMP-1.229 The role that MMPs and TIMPs play in 

the regulation of ECM development progression and degradation was not explored in this current 

study and is a consideration for future studies.  

 

Generally, fibroblasts with long thin nuclei and cytoplasm reside in the interstitial space closely 

aligned to parenchyma. These were identified in the control sections however they were not in great 

numbers. Non-activated stellate cells are reported to be identifiable by possessing vitamin A-

containing lipid droplets.142 These were not readily identified in controls in this study. Either the 

stellate cells were not resident in the controls, were too few to be easily observed and identified, 
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migrated into the injured pancreas, or activated from the resident fibroblasts. Others have observed 

that in the injured pancreas PSC populations resulted from bone marrow derived cells, migration from 

surrounding areas and PSC proliferation.153 New special stains may aid in the identification of stellate 

cells in controls.148 At the early stages of the experiments activating stellate cells were recognised by 

the presence of copious RER and lipid droplets in the cytoplasm and large regular shaped or elongated 

nuclei. The lipid droplets were seen up to three days in the CHB and duct ligation models, earlier in 

the caerulein model. After this no further lipid droplets were noted in stellate cell cytoplasm. The 

stellate cells were obvious by αSMA IHC, light and EM, migrating in the interlobular inflammatory 

infiltrate and in intralobular spaces and particularly closely arranged around tubular complexes. 

Mostly, the cells migrating in the inflammatory infiltrate had elongated nuclei and non-obvious 

cytoplasm more indicative of the shape of fibroblasts, however, in αSMA IHC sections they stained 

positively. In other areas their cytoplasmic processes were extremely long and thin and overlapped 

as they wrapped tightly around tubular complexes in a concentric fashion. By EM, they could be seen 

extruding preformed collagen into intercellular spaces. Stellate cells disappeared quickly as the 

caerulein model regenerated and were not apparent around regenerative acini in the CHB model. By 

the completion of the study in all models stellate cells remained around normal ducts and blood 

vessels. In the caerulein model they were there only; in the CHB model they remained also around 

residual tubular complexes; in the duct ligation model they were prevalent around tubular complexes. 

It was not obvious how the stellate cells departed other than they were seen migrating in the 

inflammatory infiltrate. Remaining cells in the caerulein model had an appearance approaching 

fibroblast morphology. No apoptosis or senescence was seen in stellate cells as were seen in other 

studies.170, 171 This may have been missed as time points of two to three days apart in all models in 

the later stages are not close enough to account for all eventualities.  

 

Future work could expand these parameters. It is apparent from this comparison of the models that 

stellate cells play roles in both the resorption of fibrosis and the ability of the pancreas to regenerate. 

Does the resorption of fibrosis first allow regeneration to occur? Do stellate cells drive regeneration? 

In the CHB model, fibrosis persists despite stellate cells waning. Does collagen I form a scar-like 

deposition in the CHB and duct ligation models that prevents the intercellular cross talk between other 

cells that promote regeneration?  
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4.5 MACROPHAGES IN INFLAMMATION AND FIBROSIS IN PANCREATITIS 

 

4.5.1 An introduction to the role of macrophages in pancreatitis 

 

The primary cause of morbidity and mortality in pancreatitis is the inflammatory response. Along 

with acinar cells, neutrophils, lymphocytes, monocytes and macrophages are a fundamental 

component of this immune response. Macrophages play a role in maintenance and resolution of tissue 

repair through communication with other immune cells. They are the major resident immune cell in 

the pancreas. They may be released into the blood stream from bone marrow to migrate into the tissue 

as monocytes and become activated and matured into macrophages. This section describes some of 

the potential roles that macrophages play in the inflammatory and fibrotic response of the injured 

pancreas. 

 

4.5.2 Materials and methods 

 

General materials and methods may be found in Chapter 2. Macrophages were identified by CD68 

IHC, light and EM and semi-thin sections stained with toluidine blue.  

 

4.5.3 Results for macrophages in inflammation and fibrosis in pancreatitis  

 

Macrophages in control rat pancreas are demonstrated in Figure 4.18. Only few macrophages were 

identified in periacinar tissue (Figure 4.18A), however in select areas on the edge of lobules they 

were seen in greater numbers in connective tissue (Figure 4.18C). Ultrastructurally, macrophages 

have large nuclei that are often elongate with indentations and a thin rim of condensed chromatin, 

variable amounts of RER, mitochondria and Golgi apparatus. Inactive macrophages have poorly 

developed lysosomal vacuoles and the cell surface may or may not have cytoplasmic processes 

(Figure 4.18B). Remnants of apoptosis were predominantly ingested by macrophages in the early 

stages of the lesions and later when duct and regenerative acinar cell apoptosis occurred. 
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Figure 4.18 Macrophages in control pancreas 

Macrophages were not obvious within the normal acinar population, however they were seen in 

numbers in connective tissue on the periphery of lobules. The macrophages were large cells with a 

large nuclear/cytoplasmic ratio, with or without chromatin clumped at the nuclear periphery and with 

obvious cytoplasmic rough endoplasmic reticulum. A. Rare macrophages were seen between acini in 

control pancreas. CD68, x200; B. A macrophage is seen next to an acinus. EM x5000; C. 

Macrophages are seen on the edge of a normal lobule, CD68 immunohistochemistry, x400. 
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Histology and EM are demonstrated in later figures. CD68 IHC showed that the macrophages 

appeared to migrate into the tissue through the inflammatory infiltrate and activate early in all of the 

models. They infiltrated into the spaces between apoptotic cells in great numbers as apoptotic 

cytoplasm was being scavenged (Figure 4.19A-C). In the caerulein model increased numbers of 

macrophages were seen early in the inflammatory infiltrate. The number peaked at 36 hrs in the 

infiltrate and in intralobular spaces however at 48 hrs they were mainly intralobular. By day 5-7 when 

there was less inflammatory infiltrate, fewer macrophages were seen (Figure 4.19D), however, by 

day 10 when regeneration was almost complete some lobules had few macrophages; other lobules 

had levels higher than normal with macrophages still in periacinar spaces and migrating in a residual 

inflammatory infiltrate (Figure 4.19G; also see 4.21D). In the CHB model the numbers of 

macrophages increased substantially up to 48 hrs (Figure 4.19B). Most macrophages were closely 

aligned with residual acinar cells rather than the inflammatory infiltrate. By day 5 macrophages were 

mainly in the inflammatory infiltrate but also singly around tubular complexes and close to stellate 

cells. From days 7-14 there remained considerable numbers of macrophages dispersed throughout the 

tissue, near tubular complexes, blood vessels and migrating (Figure 4.19E). Numbers decreased by 

days 18-28 but still remained above control levels (Figure 4.19H). In duct ligation the numbers of 

macrophages increased as apoptosis progressed up to day 4 when they were situated in the 

inflammatory infiltrate and around tubular complexes (Figure 4.19C,F). From days 7-18 numbers 

had declined but the macrophages were still active and occasionally formed giant cells (Figure 4.19I). 

As regeneration occurred in the caerulein model the number of macrophages decreased. In the CHB 

model the effect around regenerative nodules was varied with macrophages both absent and present 

in these areas (Figure 4.19H, also see 4.22D). In CHB and duct ligation models macrophages 

remained dispersed around tubular complexes, in the inflammatory infiltrate and randomly 

congregated in some areas (Figures 4.19H,I). A graph of the counts of macrophages (using IHC and 

CD68 antibody) is represented in Figure 4.20. In all experimental models, the number of 

macrophages increased from control levels.  
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Figure 4.19 CD68 immunohistochemistry for macrophages in the rat models 

IHC for macrophages showed clearly how activated they became early in pancreatitis in these models. 

They were mainly dispersed in all models but were seen both dispersed and congregated into large 

clumps in the CHB and duct ligation models. By regeneration in the caerulein model most 

macrophages had waned however large clumps persisted in the other two models. A-C. Increased 

numbers of macrophages in all models. A. caerulein, day1; (B. CHB, day2; C.duct ligation, day2. x 

200. D-F. Macrophages around tubular complexes and in inflammatory infiltrate. D. caerulein, day4; 

( E.) CHB, day7; F.) duct ligation, day4. x 200. G-I. Macrophages returned to almost normal numbers 

around regenerated acini but prolific around tubular complexes. G.) caerulein, day10; H.) CHB, 

day16; I. duct ligation, day18. x200. 
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Figure 4.20 Mean ± SEM of counts of macrophages using CD68 antibody 

Single macrophages were counted in five to ten random fields of x200 magnification for one whole 

pancreas section at 4µm per rat (n=4), per time point. The number of fields varied with regard to 

reduced parenchyma at atrophic time points. Data are the mean of four rats (n=4) per time point from 

one experiment per model. Error bars represent the standard error of the mean. In all experimental 

models, the number of macrophages increased from negligible numbers in controls. One way 

ANOVA was used to compare the number of macrophages in control groups versus experimental 

groups. Tukey’s multiple comparison test was used to compare individual groups. The number of 

macrophages in the caerulein, CHB and duct ligation models were significantly higher (all P<0.0001) 

than in the control group at time points days 2 and 4, and at day 10 for the CHB and duct ligation 

models. At day 10 in the caerulein model, the number of macrophages was not significantly different 

compared to the control group (P=0.2102). 
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Figure 4.21A shows a typical activated macrophage in the interlobular space with a chromatin 

rimmed, irregularly-outlined nucleus. The cytoplasm contains membrane-bound spherical 

phagolysosomes of various sizes filled with cellular cytoplasm and organelles in different stages of 

degradation. Apoptotic nuclear fragments were present in the same manner. The lysosomal vesicles 

were also represented by clear vacuoles or spaces where digestion had occurred and lipids remained. 

These lipids mostly leached from the tissue during tissue processing leaving white spheres, however 

may remain in some electron micrographs as grey-coloured areas or in toluidine blue sections as 

bright blue-coloured areas. Stellate cells often aligned closely with macrophages. The macrophages 

used long, thin pseudopodia to snake around and extract apoptotic bodies from acinar cells (Figure 

4.21B). In the caerulein model, the macrophages were very active in the periacinar space as acini 

underwent apoptosis and tubular complexes formed (Figure 4.21C). As regeneration progressed, 

macrophage numbers decreased quickly, however they were still found in periacinar areas and in 

residual inflammatory infiltrate in some lobules at day 10 (Figure 4.21D). 

 

In the CHB model, the macrophage response was different as they were prolific early due the massive 

apoptotic response and secondary necrosis (Figure 4.22A). As the more disorderly removal of debris 

progressed, macrophages of all shapes and sizes filled with cellular debris packed the lobules (Figure 

4.22B). By day 5, tubular complexes had formed although were undergoing continued apoptosis. 

Macrophages were often rounded up and lipid filled (Figure 4.22C). Where regeneration occurred, 

macrophages were often absent (also see Figure 4.19H) however in other areas they remained debris-

filled around the parenchyma and in the inflammatory infiltrate, and associated with adipose tissue 

(Figure 4.22D).  

 

Early in the duct ligation model, as acinar cells became vacuolated but not yet apoptotic macrophages 

migrated through the inflammatory infiltrate (Figure 4.23C). The macrophage response followed a 

typical procedure with respect to classic engulfment of apoptotic bodies in the same well-ordered 

manner as the caerulein model. Multiple macrophages filled with apoptotic bodies and lysosomal 

vesicles around apoptotic acinar cells and forming tubular complexes (Figure 4.23A,B). They 

persisted around tubular complexes and were seen migrating in the collagen rich inflammatory 

infiltrate (Figure 4.23D). Macrophages, mast cells and stellate cells shared the microenvironment in 

rat pancreatitis. They are illustrated in close proximity in the collagenous stroma in Figure 4.24. 
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Figure 4.21 Macrophages in the caerulein model 

Macrophages actively phagocytosed apoptotic bodies. They were close aligned with the acini, 

extending pseudopodia to remove detritus. They could be seen with inclusions in the inflammatory 

infiltrate well after most acinar cells has apoptosed. They were also still more visible than normal 

once regeneration had occurred. A. Macrophage in the interstitial space containing several 

phagolysosomes (black arrows) and apoptotic nuclear fragments (stars). N=macrophage nucleus, 

stellate cell (white arrow). Caerulein, day2. EM x5000. B. Macrophage (arrows) with thin 

pseudopodia removing an apoptotic body complex. Apoptotic nuclear bodies (stars). The macrophage 

nucleus is not visible. Caerulein, day2, EM x6000. C. Macrophages (arrows) within the interstitium 

around apoptotic acini and forming tubular complexes. Caerulein, day3, toluidine blue x1000. D. 

Macrophages (CD68+) remaining in intra- and interlobular spaces after regeneration. Caerulein, 

day10, CD68 x 400  



98 
 

 

Figure 4.22 Macrophages in the CHB model 

Macrophages were also active in the CHB model, engulfing the residue of secondary necrosis. They 

clumped together in numbers in this model and were seen in later stages with copious lipid inclusions 

in their cytoplasm which probably accounts for the large amounts of lipid in adipocytes in this model 

towards the end of the experiment. A. Macrophage in early activation (arrow) engulfing cells in 

secondary necrosis. CHB, day2, EM x4000. B. All cells in this image are macrophages engulfing 

residual acinar tissue. CHB, day3, EM x2500. C. Macrophages (white arrows) containing lipids in 

the inflammatory infiltrate around tubular complexes, apoptosis (black arrows). CHB, day 5, toluidine 

blue x1000. D. Large active macrophages in the inflammatory infiltrate around regenerating acini. 

Migrating stellate cells (arrows). CHB, day 10, CD68 x400 
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Figure 4.23 Macrophages in the duct ligation model 

Macrophages in the duct ligation model followed a similar pattern to the other models of engulfing 

apoptotic bodies in large numbers. Macrophages were numerous in the inflammatory infiltrate at all 

stages of the lesion. A. Macrophages (long black arrows) are seen engulfing apoptotic nuclear 

fragments (star) and residual lysosomal bodies (short arrows). Duct ligation, day2, EM x3000. B. 

Macrophages (long arrows). Duct ligation, day3, EM x3000. C. Macrophages entering the pancreas 

through the inflammatory infiltrate. Duct ligation, day1, CD68, x400. D. Macrophages in the collagen 

rich inflammatory infiltrate and around tubular complexes (long black arrows), neutrophil (thin 

arrow). Day7, toluidine blue, x1000. 
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Figure 4.24 Inflammatory cells in pancreatitis 

This electron micrograph shows a number of active macrophages within the inflammatory infiltrate 

with inclusions of detritus at various stages of degradation in lysosomes, and lipid droplets. 

Macrophages can be seen with residual bodies and lipid droplets (black arrows), mast cell (white 

arrow) and stellate cells (short arrows) in dense extracellular matrix at the edge of a lobule. Caerulein, 

day4, EM x2000. 
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The relationship between macrophages and adipose tissue is demonstrated in Figure 4.25. In the CHB 

and duct ligation models, macrophages filled with lipid droplets which coalesced to form large lipid 

filled cytoplasm (Figure 4.25A). Macrophages were noted often in adipose tissue presumably 

emptying lipid into forming adipocytes (Figure 4.25B, C).  

 

 

 

Figure 4.25 Relationship between macrophages and adipose tissue 

Macrophages in the CHB model, particularly, had copious amounts of lipid droplets in the cytoplasm. 

They often clumped together as giant cells and were seen closely associated with adipose tissue. A. 

Macrophages can be seen with spaces that contained lipid (the actual lipid has been dissolved by 

tissue processing). CHB, day4, EM x2500. B. Adipose tissue is demonstrated with macrophages 

closely aligned. Note the size of the activated macrophages compared with Figure 4.18C. CHB, 

day18, x1000. C. Adipose tissue with macrophages (brown stain). Duct ligation, x1000. 
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4.5.4 Discussion of the role of macrophages in inflammation and fibrosis in pancreatitis 

 

Macrophages are well known for their effectiveness as scavenger cells in wound repair and tissue 

injury. This was well demonstrated in the three rat models discussed here. Following apoptosis of 

acinar cells in all models macrophages, either recruited or resident, migrated within the inflammatory 

infiltrate to establish themselves within the parenchyma. There they effectively engulfed and removed 

injured cells until tissue architecture was reinstated as tubular complexes. 

 

From there, macrophages possibly acted in the reparative process in the caerulein model as they 

disappeared in numbers as regeneration progressed. In the CHB and duct ligation models where 

regeneration did not remain or did not occur, macrophages may have aided the continuing 

inflammatory process. They remained in these models in numbers excessive of control levels.  

 

Macrophages drive the initial inflammatory response by synthesizing inflammatory mediators such 

as chemokines and matrix metalloproteinases. Distinct roles for either resident or recruited 

macrophages as anti- or pro-inflammation have been proposed.190 However, in models of liver injury 

phagocytosis functions in the conversion of inflammatory macrophages into cells displaying a 

restorative phenotype.230 The removal of intracellular contents apparently stimulates macrophages to 

express an anti-inflammatory phenotype such that the depletion or diminution of macrophages may 

lead to the resolution of inflammation, resulting in repair and restoration. These macrophages 

suppress the immune system by expressing anti-inflammatory mediators such as IL-10 and TGFβ1 

under the influence of interleukins.190 Conversely, macrophages may adopt a suppressive phenotype 

that would continue inflammation and lead to the failure of the repair process. As well, fibrotic role 

of macrophages in chronic pancreatitis may be influenced by their release of cytokines such as IL-6. 

 

As well as promoting proliferation and angiogenesis through PDGF, IGF-1 and VEGF, macrophages, 

through TGFβ, also recruit and promote the survival of the stellate cells that produce ECM. They also 

do this by producing MMPs such as MMP-2 and -9 that aid stellate cell migration via degradation of 

basement membrane.186 Macrophages can secrete pro-fibrotic mediators such as TGFβ1, PDGF, 

FGF2, insulin-like growth factor–binding protein 5, CCL18, and Galectin-3, as well as various 

mediators that can influence fibrotic resolution such as IL-10, MMP-13, Relma-α, PD-L2, and 

Arginase-1.186 For the caerulein model to regenerate through macrophage influence, presumably the 

macrophages must differentiate into anti-inflammatory macrophages that secrete the anti-fibrotic 

cytokines. These would stimulate the production of the matrix metalloproteinases that can directly 
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degrade interstitial collagen. Essential amino acids required for T cell and stellate proliferation and 

stimulation would need to be depleted. As macrophages are found in close association with stellate 

cells in these models the equilibrium between different macrophage populations or phenotypes, and 

stellate cells probably determines whether the outcome of pancreatitis is regeneration or pathogenic 

fibrosis. 

 

4.6 MAST CELLS IN INFLAMMATION AND FIBROSIS IN PANCREATITIS 

 

4.6.1 An introduction to the role of mast cells in pancreatitis 

 

Mast cells are found in close proximity to vasculature in all tissues and are sensitive to pathological 

changes. On activation, they release a myriad of inflammatory mediators important in the context of 

allergic disorders and other inflammatory responses and are believed to play a role in fibrotic disease. 

The precise role of mast cells in acute and chronic pancreatitis is not clear however they are implicated 

in the development and progression of acute pancreatitis194, 231 and have been identified as the cells 

responsible for perpetuating chronic inflammation in chronic pancreatitis. This study looks at the 

differences in mast cell distribution in experimental models of caerulein-induced, CHB-induced, and 

duct ligation-induced pancreatitis to see if they are involved in the inflammatory response or fibrosis 

or both. Mast cells have not been described in this CHB model. 

 

4.6.2 Materials and methods  

 

General materials and methods have been described in Chapter 2. For this section of the study, mast 

cells were stained histochemically with Alcian blue/nuclear fast red (Appendix 1). The presence of 

mast cells was confirmed with IHC for c-kit (CD117). The histochemical method was chosen as the 

preferred method for identifying mast cells in light microscopy. Semi-thin toluidine stained sections 

and EM were also used. Mast cells stained with Alcian blue/nuclear fast red were counted in ten fields 

x200 magnification for each slide. There was lobular variation in numbers of mast cells in all models 

which accounts for the large error bars.  

 

4.6.3 Results for mast cells in inflammation and fibrosis in pancreatitis 

 

Mast cells were sparse to non-existent in periacinar spaces but were found in small numbers around 

connective tissue, blood vessels and in lymph nodes in control sections (Figure 4.26A-C). 
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Figure 4.26 Control rat pancreas stained for mast cells  

Mast cells were seen in control sections mainly close to blood vessels. They were not very numerous. 

With Alcian blue histochemistry, the mast cell granules stain brightly and distinctly. C-kit IHC may 

also be used however Alcian blue provides efficient identification, especially when degranulating 

when granules may be few. A. Control section shows a lone mast cell in connective tissue in the 

pancreas. Alcian blue/nuclear fast red, x200. B. High power image of a mast cell stained with Alcian 

blue/nuclear fast red. X1000. C. Mast cells stained with c-kit immunohistochemistry, counterstain 

haematoxylin. 
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In experimental sections, mast cells were distributed throughout the pancreas, congregated around 

blood vessels and nerves, in the interstitial and intralobular spaces and around tubular complexes and 

acini and close to adipose tissue (Figure 4.27A-I). Mast cell numbers increased by day 1 in the 

caerulein model, and to the same level by day 2 in the CHB model. In the duct ligation model, they 

increased slowly and by day 4 had reached the levels of the other models. Thereafter the caerulein 

model mast cell population rose markedly to an early peak at day 3-4 after which it decreased equally 

noticeably with regeneration. Mast cells in the CHB and duct ligation models increased slowly to a 

peak higher than caerulein by day 14 in the CHB model and day 28 in the duct ligation model. By the 

completion of the experiment in the caerulein model, the mast cell count remained considerably 

higher than the control levels in periacinar spaces. In the CHB model mast cell numbers decreased 

from the peak at day 14 however still remained high. In the duct ligation model there was no decrease 

in number. Mast cells were easily identified in light microscopy as their granules stain bright blue 

with Alcian blue. A graph of incidence of mast cells in the three models is depicted in Figure 4.28.   

 

A typical mast cell is shown in Figure 4.29. The granules in the rat contain either finely granular 

electron dense material or scroll formations of loosely organised lamellae (Figure 4.30A-C). The 

appearance of the granules is affected by maturity of the granules and by degranulation. Immature 

mast cells demonstrate a smaller size and a higher nuclear cytoplasmic ratio with fewer granules.232 

Mast cells underwent massive degranulation in the early stages. Mast cells were in close proximity 

to macrophages and stellate cells especially in the earlier stages of the pancreatitis when apoptosis 

was occurring and tubular complexes formed. At later time points in the models, they were mainly in 

the interstitium. 

 

In the semi-thin sections toluidine blue stains the granules metachromatically, seen in the sections of 

Figure 4.31(D-F). In electron micrographs, the mast cells were identified by their numerous electron 

dense granules in the cytoplasm, an indented nucleus, and slender, cytoplasmic filiform projections 

on the cell surface.  

 

Figure 4.32A,B demonstrate mast cells found in the regenerative phase. In this example, mast cells 

were found close to regenerated acini (A) or congregated in the interstitial space (B).  
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Figure 4.27 Distribution of mast cells in the rat models 

In all of the models mast cells were seen within the parenchyma as well as around blood vessels 

during experimental conditions. In light microscopy the appeared randomly distributed and not 

particularly aligned with tubular complexes or acinar islands.  

A,D,G. Caerulein, day2, day5, day10, x 200 

B,E,H. CHB, day4, day12, day18, x200 

C,F,I. Duct ligation, day4, day12, day28, x200 
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Figure 4.28 Mean ± SEM of mast cell numbers in the three models 

Single mast cells were counted in five to ten fields of x200 magnification for one whole pancreas 

section at 4µm thickness per rat per time point. As mast cells tend to be more congregated around 

large blood vessels in the pancreas and the number of blood vessels were more closely aligned in 

reduced atrophic parenchyma over time and between models a less random but consistent system of 

field choice targeting parenchyma was used. Data are the mean of four rats (n=4) per time point from 

one experiment per model. Error bars represent the standard error of the mean. Mast cells peaked 

early in the caerulein model but took some days to peak in the CHB and duct ligation models. Mast 

cell numbers remained higher than normal (time 0) in all models. One way ANOVA was used to 

compare the number of mast cells in control groups versus experimental groups. Tukey’s multiple 

comparison test was used to compare individual groups. The number of mast cells in the caerulein, 

CHB and duct ligation models were significantly higher than in the control group at time points days 

2 and 4 (P<0.0001, P<0.0001, P<0.0001, respectively) and at day 10 (P=0.0414, P<0.0001, P<0.0001, 

respectively). 
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Figure 4.29 Typical mast cell with macrophages 

This electron micrograph shows a typical mast cell with distinctive indented nucleus, high nuclear 

cytoplasmic ratio and cytoplasmic projections on the cell surface. The granules are electron dense 

and are of varying size as they degranulate and leave an empty space halo around the granule. Two 

typical macrophages are close by this mast cell in the interstitial space. By electron microscopy, mast 

cells, macrophages and stellate cells were seen closely associated in these experiments. A typical 

mast cell, with granulation is seen in the pancreatic interstitial space, close to two macrophages (top 

cells). Caerulein day2, x1000.  
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Figure 4.30 Mast cell granules  

The mast cell granules in the rat contain either finely granular electron dense material or scroll 

formations of loosely organised lamellae. In4.30B and 4.30C, the arrow indicates a scroll formation. 
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Figure 4.31 Mast cells in the rat models 

In all of the models, mast cells could be seen actively degranulating, with some almost completely 

degranulated. They were sometimes seen randomly in the inflammatory infiltrate, often close to 

macrophages and, to a lesser degree, stellate cells. Apart from different numbers, there was little to 

distinguish between the three models for mast cells. A. Mast cell degranulating. Caerulein day 4, EM 

x10000. B. Mast cell in a compact stroma. CHB day14, EM x9000. C. Mast cell partially 

degranulated. Duct ligation, EM x10000. D. Mast cell in interstitial space (arrow). Regenerated acini. 

Caerulein, toluidine blue, day 10, x 1000. E. Mast cells one almost fully degranulated (arrows), CHB 

toluidine blue, day 14, x1000. F. Mast cell close to tubular complexes. Duct ligation (arrow), toluidine 

blue, day 10, x1000. 
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Figure 4.32 Mast cells found in the regenerative phase 

In the CHB model in the later stages of the experiment, mast cells were seen to congregate in the 

inflammatory infiltrate A. Mast cell close to regenerated acini. Caerulein day10, EM x2500. B. Many 

mast cells congregated in the interstitial space. CHB, day 14, x1000.  
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4.6.4 Discussion on mast cells in inflammation and fibrosis in pancreatitis 

 

Mast cells are widely distributed throughout normal connective tissues and are closely associated 

with the vasculature and nerves. In the models discussed here we show an increase in mast cell 

numbers early in pancreatitis and increased numbers of mast cells as fibrosis is developed. Increased 

numbers of mast cells were located near parenchymal cells, around nerves, in interstitial areas, in the 

mesentery and in adjacent lymph nodes. Mast cell degranulation was noted especially around tubular 

complexes and intralobular spaces. 

 

Mechanisms proposed in the development of human acute pancreatitis are disturbance of acinar cell 

function, followed by the generation and release of inflammatory mediators combined with oxidative 

stress, that results in an exaggerated inflammatory reaction.194 Thus, mast cell activation is proposed 

to be an important factor in the development of acute pancreatitis since many of the factors that 

stimulate mast cell activation such as platelet activating factor (PAF), ROS and oxidation products 

are implicated to trigger acute pancreatitis. Furthermore, inflammation could be further sustained by 

release of reactive oxygen species and PAF from mast cells. Of the three models only the caerulein 

model showed a dramatic increase in mast cell numbers early in the course of the lesion. Mast cell 

degranulation was found also at the 3-4 hour time-point in a mild model of caerulein-induced 

pancreatitis in rats. In the caerulein model, the presence of mast cell activation and the inflammatory 

response did not lead to a severe (or anaphylactic) outcome. Esposito and colleagues 195 reported that 

the mean number of mast cells in normal human pancreas was 7.6 ± 3.0 cells/mm2 and in chronic 

pancreatitis 20.9 ± 9.3 mm2. Mast cells were abundant both in fibrous tissue and in residual acinar 

parenchyma with diffuse infiltration around ducts, vessels and nerves. The mast cell counts from 

Esposito et al were similar to the results obtained in our experiment. 

 

The role of mast cells in chronic pancreatitis is thought to follow a similar path to that of acute 

pancreatitis. According to Gruber277 mast cells may initiate fibrosis indirectly. Endothelial cells are 

activated, adhesion molecules increase, release of chemotactic factors (in particular TGFβ) leads to 

leucocyte adhesion and migration. Fibroblast adhesion is upregulated with the increase in ICAM-1 

and VCAM-1. The involvement of c-kit and other fibroblast factors leads to mast cell/stellate cell 

attachment, stellate cell activation and thus fibrosis. Concomitant with this, as mast cells degranulate, 

the release of TGFβ and TNFα stimulate stellate cell proliferation and the release of histamine, 

tryptase, heparin and MMPs.  
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In chronic pancreatitis and fibrotic disease, activated mast cells are identified as the cells responsible 

for perpetuating chronic inflammation.233, 234 In these models, the highest count of mast cells 

coincided with the peak of fibrosis. Mast cells were also present in the CHB and duct ligation models 

as fibrosis persisted and remained active, though declined in numbers in CHB. In the caerulein model, 

mast cell count dropped noticeably as fibrosis resolved. In the models where fibrosis persisted, mast 

cell counts remained high. In these models, mast cells were located singly in the interstitium in the 

vicinity of stellate cells, macrophages and the cells of tubular complexes and surrounded by collagen 

deposition. They were found associated with both stellate cells and macrophages. The adherence of 

mast cells to stellate cells may be mediated by the interaction of membrane bound stem cell factors 

on fibroblasts with the c-kit receptor on mast cells.  

 

The release of preformed mediators (histamine, tryptase, heparin, TNFα, TGFβ, bFGF, phospholipids 

and some cytokines) from mast cells is considered to be responsible for the activation of stellate cells 

which lay down ECM.235 In the CHB model, the numbers of activated PSC decreased in the same 

timeframe as mast cell numbers decreased, despite the persistence of fibrosis and partial regeneration. 

In the caerulein model, fibrosis, mast cell and stellate cell decline were inversely related to 

regeneration of acinar cells. In the duct ligation model, there was no decline in mast cell and stellate 

cell numbers or fibrosis. This forms the basis of a relationship between stellate cells, mast cells and 

fibrosis.  

 

4.7 OVERVIEW OF FIBROSIS IN PANCREATITIS 

 

Fibrosis is a common feature of failure to regenerate in pancreatitis. The persistence or withdrawal 

of PSCs affects regeneration, but their role is uncertain. Macrophages and other immune cells such 

as mast cells, also persist in fibrotic pancreatitis. Their contribution to limiting or driving 

inflammation associated with injury resolution requires further investigation. Communication 

between the fibrotic processes, inflammation and some developmental mechanisms may determine 

the outcome of regeneration. 
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CHAPTER 5 

SURVIVIN IN RAT PANCREATITIS 
 

5.1 INTRODUCTION 

 

Cell death and cell proliferation pathways are crucial to maintaining normal tissue homeostasis. 

During apoptotic cell death proteolytically-activated caspases cleave a range of substances that lead 

to nuclear and cell fragmentation. The inhibitor of apoptosis protein (IAP) family was identified in 

baculoviral genomes,236 and in humans consists of eight regulators with the ability to block apoptosis 

through caspase inhibition by a wide range of triggers. The IAP family comprises two classes of 

molecules either indicated in control of cell division or regulation of apoptosis, however one member 

of this family, survivin, is implicated in both functions.237 

 

The survivin protein has been extensively studied and is found to be unique in its differential 

expression in cancer compared with low to no expression in normal tissues and has been targeted as 

a potential cancer therapy due to its high expression in most human malignancies. It also has known 

functions in angiogenesis and cardiovascular diseases, and potentially has other roles. Most published 

reports concentrate on the involvement of survivin in cancer. The association of survivin in disease 

pathology is conceivably as important, however the expression and function of survivin in acute and 

chronic pancreatitis is not well defined. 

 

5.2 AIM 

 

The aim of this Chapter was to look at the expression and interactions of survivin with respect to 

apoptosis and cell proliferation in the rat models of pancreatitis.  

 

5.3 MATERIALS AND METHODS 

 

General materials and methods can be found in Chapter 2. IHC for survivin was performed using a 

monoclonal and a polyclonal antibody on serial sections from the experimental studies. The 

specification sheets from the antibody manufacturers suggest that both antibodies localize to the 

nucleus however examples provided for the antibodies showed some cytoplasmic staining in some 

tissues.  
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5.4 RESULTS 

 

Serial sections of IHC for survivin are presented in Figure 5.1 on alternate rows. The CST antibody 

localized well to nuclei although the cytoplasm often had a tinge of pale staining. Although there is 

the possibility that this was background staining, this appeared to be real staining as, though pale, it 

correlated with the cytoplasmic staining of the Nova antibody. The Nova antibody stained nuclei and 

cytoplasm, however it was particularly intense in the zymogen granules of acinar cells and the 

granules/cytoplasm of islet alpha cells during regeneration. Both antibodies showed some irregular 

staining or possible failed staining in random lobules, despite staining being performed in the same 

run or repeated. This was, however, a small percentage of the whole and the images presented here 

represent what is considered to be real.  

 

The pancreas has a low turnover of cells in proliferation and in apoptosis. Nuclear survivin positivity 

in the control rat pancreas was more evident in the interlobular ducts than other ducts and acinar tissue 

and was similar in both antibodies. Nuclear positivity was seen occasionally in islets. Cytoplasm 

showed only very pale staining in the Nova antibody. (Figure 5.1). At day 1 in all models there was 

increased nuclear survivin expression in the acinar population, and in cells of the inflammatory 

infiltrate (Figure 5.2A-E). In Nova staining acinar cells and particularly the zymogen granules 

stained strongly in the cytoplasm, however the cytoplasm was negative in the duct ligation model 

(Figure 5.2G,H,I). As tubular complexes formed they were nuclear positive in both antibodies and 

also pale cytoplasmic positive in CST to strong positive in Nova. For both antibodies the duct ligation 

model was not as strongly stained (Figure 5.2G-J). As regeneration progressed in the caerulein and 

CHB models, acinar nuclei were strongly positive for survivin (Figure 5.3A,B). Nuclei in tubular 

complexes and islets were moderately positive (Figure 5.3A-C). With Nova IHC, the regenerative 

acinar cell cytoplasm was strongly positive, but islet cells were palely positive. The tubular complexes 

of the CHB model stained strongly in contrast to the duct ligation model where the cytoplasm was 

pale, however the nuclei stained strongly. Residual regenerated acini continued to express survivin 

strongly in the CHB model up to 28 days. Tubular complexes had random positive nuclei and some 

pale cytoplasm (Figure 5.3G,H).  
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Figure 5.1 Control rat pancreas with survivin immunohistochemistry 

Normal pancreas has a low turnover in proliferation and apoptosis Survivin nuclear positivity was 

seen in control sections primarily around or in ducts. A. CST antibody stains a probable acinar nucleus 

brown (arrow). In B, nuclei in the interlobular duct stain positive with both antibodies (arrows). In 

the corresponding section to A with Nova (C), there is pale staining in the ductal nucleus (arrow). In 

D, the cytoplasm and/or zymogen granules in acinar tissue at the bottom and right side of the Nova 

section (d) has a slight blush of colour.  
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Figure 5.2 Distribution of survivin at early time points in the rat models 

The CST antibody stained nuclei whilst the Nova antibody stained nuclei and cytoplasm.. When 

apoptosis was active acinar cell staining was prominent. Cells of the inflammatory infiltrate were 

nuclear positive and probably proliferating. Cytoplasmic staining in acini was weak in the duct 

ligation model. When tubular complexes formed they were also nuclear and cytoplasmic positive.  

Each experimental row depicts a comparable stage in the course of the pancreatitis for each model 

but not necessarily the same time point. Antibodies and models are indicated within the figure. A,D. 

caerulein, day1 x400; B,E. CHB, day1 x400; C,F. duct ligation, day1 x400; (G,J.)caerulein, day2 

x400; H,K.) CHB, day4 x400; I,L. duct ligation, day4 x400 
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Figure 5.3 Distribution of survivin at later time points during regeneration 

Models and antibodies are indicated within the figure. Each experimental row depicts a comparable 

stage in the course of the pancreatitis for each model but not necessarily the same time point. The 

Both antibodies indicate proliferative acinar cells by nuclear staining and zymogen granules are 

strongly positive in regenerating acini with the Nova antibody. A,D . Regenerating acinar nuclei show 

brown positivity with both antibodies, and cytoplasmic staining with Nova. Ducts and islets have pale 

cytoplasmic staining. Caerulein, day4 x400. B,E. Regenerating acini show positivity. Nova staining 

is prominent in acinar and tubular complex cytoplasm. CHB, day5 x200. C,F.Random tubular 

complex nuclei are positive. Nova stain is positive in the cytoplasm of tubular complexes. Duct 

ligation, day7 x400. G,H.) CHB, day28 x200 Nuclei are positive in regenerating acini and in tubular 

complex cells. Regenerated acini are still highly positive in cytoplasm, Nova. CHB, day28 x200 
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Other cell populations stained with the survivin antibodies. This was similar in all models although 

not all examples are demonstrated here. With Nova IHC but not CST IHC, the alpha/glucagon cells 

of the islets stained strongly (Figure 5.4A,C). This was also random as many but not every islet 

showed this staining effect (Figure 5.4F). Figure 5.4C and F compare the differences in staining of 

regenerative acini between the two antibodies.  Interlobular ducts showed prolific nuclear positivity 

(Figure 5.4G,J) as did B cells and mast cells in the lymph nodes (Figure 5.4H,K). Nerve bundles 

and ganglion cells were cytoplasmic positive only in Nova but nerve bundles were negative and 

ganglion cells strongly nuclear positive in CST (Figure 5.4I,L). Cells of the inflammatory infiltrate 

were harder to judge. There were many seen strongly positive in the early time points however 

thereafter positive cells were few.  

 

The proliferation marker PCNA on similar (but not serial) areas of the same models show that survivin 

nuclear positivity correlates with cell cycling in these models (Figure 5.5). Figure 5.5A,D,G 

compared islets stained for survivin, PCNA and alpha/glucagon cells. Survivin and PCNA staining 

are compared in interlobular ducts (Figure 5.5B,E), and in tubular complexes (Figure 5.5C, F). 

Regenerated acini in the PCNA stained image (Figure 5.5D) can be compared with the CST stained 

image of Figure 5.3A. 
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Figure 5.4 Survivin staining in other cell populations 

Models and antibodies are indicated within the figure. Islets, large ducts, lymph nodes and nervous 

tissue also stained with the survivin antibodies. In serial sections (A,D), markedly positive staining 

was noted on islet alpha cells with Nova but not CST. Caerulein, day 2, x200. This also applies to 

B,E which are CHB, day 4, x400. C,F show darkly positive staining of regenerating acinar cells, and 

variation in staining between antibodies for the islet. CHB day 18, x200. G,J. Nuclear staining of 

proliferative cells is similar between antibodies. Interlobular duct, caerulein, day10 x400. H,K. 

Lymph node with staining of B cell and mast cells. (I,L.) Ganglion cell nuclei stained with CST, 

cytoplasmic only with Nova. Nerve bundles were more prominently stained with the Nova antibody. 

This pattern of ganglion staining was consistent between the antibodies.  Ganglion cell (long black 

arrow, nerve bundle (short arrow). 
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Figure 5.5 Comparison of survivin with proliferation marker PCNA 

These images are not from serial sections. A. Islet alpha cells are strongly stained in the cytoplasm 

with survivin antibody, Caerulein, day 2 x200. For comparison, the distribution of alpha cells in an 

islet are indicated with IHC for glucagon in image G, CHB, day 18, x200. Interlobular duct nuclei 

stained positively with both survivin and PCNA. B, survivin, Caerulein, day 10 x400, E, PCNA 

Caerulein, day 10 x400. Tubular complex nuclei were positive both with survivin and PCNA, C, Duct 

ligation, day 7 x400, F, Duct ligation, day 7, x400. D shows cycling regenerating acinar cells (long 

arrow), islet cells, tubular complex (short arrow). Caerulein, day 2, x400; H shows cycling acinar 

cells. CHB, day 1, x400, both with PCNA IHC.  
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5.5 DISCUSSION 

 

Survivin, the smallest member of the IAP family, is a multifunctional protein indicated in control of 

cell division and in regulation of apoptosis. It is usually found in all common cancers including 

pancreatic cancer, and selectively in normal cell development but it is not expressed in terminally 

differentiated tissues. It has a complex role in cell development as demonstrated by the impaired cell 

proliferation, apoptosis, cell cycle arrest and mitotic spindle formation that occurs when survivin is 

depleted or knocked down.238 Survivin is expressed precisely in the G2/M phase of the cell cycle. It 

is involved in the cytokinesis process of mitosis by chromosome passenger protein behaviour and 

associates to centromeres from prophase to metaphase. Survivin has an anti-apoptotic role regulated 

by several mechanisms. Inhibition of apoptosis by survivin may occur during mitosis via the mitotic 

spindle checkpoint239 or through mechanisms functionally-distinct from the mitotic role, including 

directly binding and inhibiting cell death proteases caspase-3 and caspase-7.240  

 

Survivin is located in the nucleus contained in the mitotic apparatus and in the cytoplasm 

predominantly localized to mitochondria. Consistent with its function in cell survival and cell division 

is the proposal that nuclear survivin promotes cell division and cytoplasmic survivin controls cell 

viability. However, survivin is assumed to shuffle between nucleus and cytoplasm and has a number 

of splice variants with identical amino acid peptides that differ in subcellular locality and have 

different functional properties. The antibodies used in this study recognize all or most survivin splice 

variants and do not discriminate between the splice variants, thus the exact function of survivin in the 

cellular populations in these pancreata is subject to postulation. 

 

The results show that acinar cells expressed survivin early in pancreatitis. Acinar nuclear survivin 

expression was noted also in acute necrohaemorrhagic pancreatitis in rats induced by sodium 

taurocholate.204 This group recognised that survivin expression was not in every nucleus, proposed 

that the lack of survivin expression in other nuclei indicated that apoptosis may be activated in acinar 

cells and thus the nuclear expression of survivin is the anti-apoptotic effect. In the present study, 

survivin was expressed both in acinar nuclei and in the cytoplasm, depending on the antibody. Nuclear 

survivin expression was not in every cell and indicates that some acinar cells were cycling, confirmed 

by PCNA IHC. The early acinar cytoplasmic survivin expression was consistent in both the caerulein 

and CHB models but not in the duct ligation model. Whether the effect in the duct ligation model is 

real or a possible fixation artefact is unknown. It is clear, however, that the expression of survivin is 

increased in acinar cells early in this pancreatitis. Because the majority of these positive cells soon 

became apoptotic, the expression of survivin is not likely to have an anti-apoptotic effect. It may 



123 
 

indicate only that cell death pathways are activated and other factors determine which pathway of cell 

death or survival proceeds. Alternatively, the expression of survivin may indicate that acinar cells are 

differentiating. 

 

It is important to understand the regulation of the death pathways in pancreatitis. Apoptosis, the 

primary mode of cell death in these models, is a tightly regulated process encompassing the caspase 

family of cysteine proteases. As a member of the IAP family, survivin inhibits the caspase system 

and several studies have reported the role of IAPs in regulating cell death in pancreatitis.237 In 

caerulein pancreatitis in rats and mice, where apoptosis and necrosis were the modes of cell death 

respectively, the IAP called XIAP has been studied. In the rat model, XIAP was degraded and 

caspases activated leading to apoptosis in contrast to the mouse model where XIAP was not degraded 

and caspases were inhibited, resulting in necrosis.241 PKD/PKD1 is the predominant isoform of the 

serine/threonine protein kinase family expressed in rat pancreatic acinar cells.242 It is reported to 

mediate signal pathways in pancreatitis through NF-κB zymogen granule activation. In this study of 

experimental caerulein-induced pancreatitis, the Pandol group discovered that this protein kinase 

inhibits caspase activation and apoptosis but promotes necrosis by increasing the level of anti-

apoptotic proteins such as survivin.242 

 

In tubular complexes and normal ducts, survivin expression increased from normal values in both 

nuclei and cytoplasm, depending on the antibody. Comparison with PCNA expression, in tubular 

complexes and ducts at equivalent time points, indicates that this nuclear expression represents 

cycling cells. It is tempting to describe the consistent cytoplasmic tubular complex survivin 

expression as anti-apoptotic. Duct cells have an anti-apoptotic tendency as shown by expression of 

the Bcl2 family proteins compared with the pro-apoptotic tendency of acinar cells.243 Regenerating 

acinar cells in the caerulein and CHB models strongly expressed survivin in the nucleus and in 

zymogen granules and cytoplasm. Again, the nuclear staining equated with cycling cells but the 

cytoplasmic staining is not easily explained other than survivin expression is involved in the 

regeneration of acinar cells and that the cells of the tubular complexes may not be terminally 

differentiated. 

 

In the three rat models of pancreatitis, islet cells had nuclear expression of survivin in random cells 

consistent with cycling cells. General cytoplasmic staining may be explained as anti-apoptotic. The 

islet cells remain, presumably unaffected and non-apoptotic, under caerulein, CHB and duct ligation 

pancreatitis. Islet cells do undergo apoptosis in normal development and in diabetes pathology and 

are affected by disturbances in the cell cycle in development.244, 245 With only a few exceptions, the 
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alpha cells that produce glucagon were strongly cytoplasmic positive, the beta and delta cells pale. 

These inconsistencies indicate increased survivin expression requires further investigation. IHC for 

survivin was demonstrated in human fetal alpha and beta cells but expression was noted only in alpha 

cells of newborns and adults.244 High survivin expression in islets has been reported previously.203 

Hasel and colleagues report high survivin expression with immunohistochemistry in chronic 

pancreatitis in islets surrounded by fibrosis. As islets are stimulated for the TRAIL receptor lacking 

a death domain, and pancreatic stellate cells produce TRAIL, this suggests that an apoptosis-

inhibitory program may be imposed on islet cells by stellate cell regulated TRAIL. Beta cell survivin 

expression has also been reported. Postnatal mice deficient in survivin in beta cells develop disordered 

insulin production and growth of beta cells due to lack of cell cycle progression.245 Expression of the 

survivin protein, in this case, was due to EGF signalling through the Raf-1/ERK pathway. Survivin 

was strongly expressed in the nuclei of ganglion cells with the CST antibody but not with the Nova 

antibody. In Nova IHC, the ganglion cytoplasm was moderately stained as were nerve bundles that 

were negative in CST. The pancreas is richly innervated with mainly unmyelinated nerves with 

sympathetic and para sympathetic pathways and neural cell bodies known as intra-pancreatic ganglia 

aggregated randomly throughout the lobules.14 The sensory nerves are damaged in pancreatitis by 

inflammation leaving them susceptible to factors released from inflammatory and acinar cells.246 The 

damaged and sensitized nerve cells may be utilizing an adaptive and local defence response to injury 

by activating survivin.  

 

This study in three models of rat pancreatitis has shown that survivin expression is increased in the 

major cell populations in pancreatitis. As cell death, cell proliferation and differentiation are 

implicated in pancreatitis and with survivin expression, the challenge will be to better define the role 

of survivin. The change in expression in different populations at different phases of the disease is not 

well defined and forms the basis for future investigation, particularly with respect to regeneration. 
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CHAPTER 6 

THE EFFECT OF CYANOHYDROXYBUTENE IN 

MICE 
 

6.1 INTRODUCTION 

 

The common animal models of pancreatitis have been developed in a variety of species and are 

reviewed comprehensively in Chan and colleagues.274 Models using chemical administration, diet, or 

surgically-induced have been developed in such diverse species as rats, mice, rabbits, dogs, cats, 

hamsters, pigs, opossum and ducklings. These models, whether invasive or non-invasive, simple or 

complex, employing high or low dose, induce a variety of lesions from mild interstitial to severe 

necrotising pancreatitis with considerable variation between species.  

 

Following the sequencing of the genome of the mouse, transgenic mouse models and gene deletion 

studies facilitate understanding the role of specific proteins in the complex processes where different 

proteins interact and co-react in pancreatitis.247 The model of CHB in rats eliminates all, or virtually 

all, acinar cells, produces fibrosis and regeneration occurs transiently. The possibility of using CHB 

as a model for pancreatitis in transgenic mice to study fibrosis and regeneration required exploration. 

It was, therefore, critical to assess whether the effect of CHB on the pancreas occurs, and whether 

this can be achieved safely.  

 

Bhatia et al.276 found that in mice a single intravenous dose of CHB (70mg/kg) induced apoptosis of 

pancreatic acinar cells. We are collaborating with a group at the Johns Hopkins Hospital in Baltimore, 

Maryland, USA (led by Dr Steven Leach) who has tried unsuccessfully to reproduce in mice the work 

by Bhatia et al. We reasoned that a successful regimen of subcutaneous dosage could develop a 

similar lesion in mice to that developed with subcutaneous dose in the rat, that is, with a more atrophic 

effect, and total loss of acinar cells. The effect of CHB is dose-related in rats216, 248 and a sufficiently 

high dose in mice might be expected to initiate apoptosis within a relatively short time frame. 

Subcutaneous injections provide a method for minimal handling of animals in line with current ethical 

standards.  
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6.1.1. Aim 

 

These experiments attempted to establish the CHB model of pancreatitis in mice. The aim was to 

induce pancreatitis in mice by the same method as that produced previously in rats. 

 

6.2 MATERIALS AND METHODS 

 

General materials and methods have been included in Chapter 2. Three separate experiments were 

performed to determine a dose and time frame that would produce pancreatitis in mice. Light and EM 

and IHC were used to investigate results. The weight of mice decreased between 0.5 and 2.5 g over 

the experimental period.  

 

Experiment 1 Subcutaneous dose regime of CHB to produce apoptosis in mice 

Adult mice between 27.0-34.5gms were randomly divided and housed in pairs. One pair used for 

sham control purposes was injected subcutaneously with 0.25ml normal saline. As this was an attempt 

to reproduce the work by Bhatia et al.,276 and our collaborating group had already been unsuccessful 

by following that method exactly we proposed to use subcutaneous instead of intravenous injection 

which was successful in rats. As well, we treated the attempt as a pilot experiment starting with low 

doses with the intention of increasing the dose after histological review of the previous dose pair. 

Subcutaneous doses of CHB started at 70mg/kg through 90, 110, 150, 170, 190, 210, 230, 250, 270, 

290 and up to 310mg/kg. Light microscopy, EM and IHC were used to investigate outcome. 

 

Experiment 2. Optimal dose of CHB over time 

As the results of experiment 1 were not optimal for apoptosis, we sought to expand the experiment 

with time frame to see if we had missed some effect. We chose a dose which produced cell death, 

either apoptosis and/or necrosis but did not cause excessive liver damage. Three groups of eight mice 

were injected with a subcutaneous dose of 280mg/kg and one group euthanased at each time point of 

12, 18 and 24 hrs, liver and pancreas were removed and processed as above.  

 

Experiment 3. Effect of mouse adolescent status with optimal dose of CHB  

Four smaller CD1 Swiss mice of 21 – 23 grams were given 280mg/kg subcutaneously and euthanased 

at 24 hrs, then liver and pancreas taken as above. This was performed as some effect in rats may have 

been due to the adolescent status of the animals and we wanted to test if the same applied to the mice.  
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6.3 RESULTS 

 

6.3.1 Experiment 1. Subcutaneous dose regime of CHB to produce apoptosis in mice 

 

Effects of CHB on apoptosis and mitosis are represented in Figure 6.1. The effect on mice of a 

subcutaneous injection of CHB did produce apoptosis as hoped however not to the desired degree. 

Mitosis levels were slightly above normal. Damage to acinar cells occurred but the lesion did not 

proceed to classical pancreatitis. Liver necrosis caused fatal injury to the mice before pancreatitis 

could develop. In H&E sections the control mouse pancreas demonstrates typical closely packed acini 

with basophilic nuclei basally situated and eosinophilic zymogen granules at the cell apex. The acini 

are closely packed with minimal intercellular space (Figure 6.2A). The normal liver shows typical 

rows of hepatocytes separated by sinusoids. Two central veins are visible with a portal tract on the 

far right (Figure 6.2B). At a low dose of 70mg/kg CHB, there were mild changes of intra-and inter-

lobular oedema in the pancreas shown by the increase in intra-acinus space. Both apoptotic cells and 

mitotic cells were evident in small numbers (Figure 6.2C). High power microscopy of the pancreas 

revealed vacuoles in acinar cells indicating the loss of zymogen granules via disordered autophagy, 

and change to RER was indicated by whorling. Nuclei had slightly clumped chromatin and there was 

loss of adhesion between individual acinar cells. (Figure 6.2D).  
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Figure 6.1. Effects of CHB on apoptosis and mitosis over 24 hrs  

Apoptotic and mitotic nuclei were counted in ten fields of x400 magnification for one whole pancreas 

section at 4µm thickness per mouse per time point. Data are the mean ± SEM of eight mice (n=8) per 

time point from one experiment. Error bars represent the standard error of the mean. HPF=high power 

field. The effect on mice of a subcutaneous injection of CHB did produce apoptosis at 18 and 24 hrs, 

as hoped, however not to the desired degree. Mitosis was slightly above normal (time 0). One way 

ANOVA was used to compare apoptosis and mitosis in control groups versus experimental groups. 

Tukey’s multiple comparison test was used to compare individual groups. Apoptosis counts were not 

significantly different from controls at time points 12 hrs and 18 hrs (P=0.9988, P=0.0924, 

respectively) but were significantly higher than controls at 24 hrs (P<0.0001). Mitosis was 

significantly higher than the control group at 12 hrs (P<0.0001) and 24 hrs (P=0.0315) but not 

significant at 18 hrs (P=0.4875). 
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Figure 6.2 Mouse pancreas and liver for controls and experiment 1 (70mg/kg CHB) 

Mouse control pancreas typically showed closely packed acini with minimal interacinar space, 

basophilic basal nuclei and apical eosinophilic zymogen-filled cytoplasm. The liver consisted of 

plates of hepatocytes separated by sinusoids. Central veins and portal tracts formed a typical triad 

with the bile ducts. Mild changes occurred at a dose of 70mg/kg CHB. There was intra- and 

interlobular oedema, seen by increased spacing between acini, some apoptosis and mitosis. At high 

power, vacuoles from disordered autophagy were visible, loss of zymogen granules was indicated by 

condensed cytoplasm and loss of adhesion between individual cells. Nuclear chromatin was 

condensed. A. Control pancreas with closely packed acini, luminal cytoplasm eosinophilic, basal 

cytoplasm basophilic. H&E, x400. B. Control liver, portal area and central vein of normal liver. H&E, 

x200. C. Pancreas treated with 70mg/kg CHB, intralobular oedema, mitosis (short arrow), apoptosis 

(thin arrow). H&E x400. D. Pancreas at 70mg/kg CHB, vacuoles (black arrows) distension of RER 

(white arrows), loss of cellular adhesion. H&E x1000 
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These mild pancreatic changes were consistent up to doses of 190mg/kg. At doses of 190-250mg/kg, 

the pancreatic lobules showed patchy changes consistent with increased disruption to acinar cells. 

This pathology was similar at doses of 270-310mg/kg, however the effect was more widespread. 

Basophilic and shrunken pancreatic cytoplasm reflected increased loss of zymogen granules (Figure 

6.3A). High power view of a similar damaged area showed fewer nuclei, some with condensed 

chromatin, apoptotic figures, and large autophagic vacuoles in the cytoplasm (Figure 6.3B). 

Apoptosis was more prevalent at this stage but apoptotic counts were variable between animals and 

between lobules. Cell loss was obvious in some areas with acini consisting of only a few cells and 

many acini showed loss of adhesion between the remaining cells. In some lobules apoptosis and 

mitosis were juxtaposed.  

 

There was no obvious liver pathology at doses less than 270mg/kg. Between 270mg and 310mg/kg 

mice had liver damage but four of fourteen mice had extensive liver pathology. This varied in the 

extent of necrosis, haemorrhage and apoptosis between lobules. Intact areas of liver were sharply 

demarcated from necrotic areas (Figure 6.3C). Cell death tended to be more obvious in portal areas 

of the lobule. Ghost cells coexisted beside apoptotic cells with pyknotic nuclei. Margination of 

inflammatory cells was present in veins and other cells, either apoptotic Kupffer cells or apoptotic 

bodies in Kupffer cells and/or lymphocytes were present in sinusoids (Figure 6.3D).  

 

Pancreata from experiment 1, for example samples with doses of 270, 280, 290 and 310 mg/kg were 

chosen for further study with Bax and BclxL, immunohistochemistry. Nuclei showed positivity for 

both Bax and Bcl-x however the results were inconsistent with considerable variation between and 

within pancreatic lobules (Figures 6.3E,F). 
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Figure 6.3 Mouse experiment 1. Pancreas and liver in mice treated with 270mg/kg CHB 

Apoptosis was more prevalent at this dose with apoptosis and mitosis juxtaposed. Cell loss and lack 

of adhesion was more obvious. Liver damage included necrosis and haemorrhage, intact areas of liver 

were sharply demarcated from necrotic areas. Cell death was more prominent in portal area and 

inflammatory cells marginated in veins. Nuclear positivity for Bax and Bcl-xL was inconsistent with 

significant variation between lobules. A. Slightly damaged pancreas with basophilic cytoplasm 

reflects loss of zymogen granules. H&E, x400. B. Pancreas with whorling of RER, condensation of 

cytoplasm and nuclei, apoptosis (short arrows), loss of cell adhesion and architecture. H&E, x1000. 

C. Liver, necrosis (NEC) and haemorrhage (H). x200. D. Liver necrosis, haemorrhage and apoptosis; 

intact areas are sharply demarcated from damaged areas; margination of inflammatory cells (arrow), 

ghost cells devoid of nuclei (star). H&E x400. E. Bax positive nuclei brown counterstain 

haematoxylin. X400. F. Bcl-xL positive nuclei brown counterstain haematoxylin. X200. 
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EM of the mouse pancreas showed marked dilatation and whorling of endoplasmic reticulum in acinar 

cells. Nuclei appear normal. Inclusion bodies were present in lysosomes within the cytoplasm and 

extruded into enlarged intracellular spaces (Figure 6.4A). At a higher power electron dense zymogen 

granules are seen in the cytoplasm ready to be extruded as well as enclosed in extruded bodies with 

residual RER. Mitochondria appeared normal (Figure 6.4B). In Figure 6.4C, nuclei showed early 

margination of chromatin. Intercellular spaces were distended with widening gaps between 

neighbouring cells due to failure of desmosomes and gap junctions in lateral membranes. Flocculent 

material and residual RER is seen in these gaps. Zymogen granules were depleted, those remaining 

being small. Mitochondria were changed, dilated slightly with swollen cisternae. Few and small 

zymogen granules, many vacuoles and tightly wound RER are a typical picture of apoptosis, however 

in apoptosis the nuclei are apoptotic at a similar stage, and apoptotic bodies begin to form within the 

acinar cytoplasm. The mitochondrial swelling is more typical of necrosis (Figure 6.4D). A 

macrophage appears poised to mop up debris (Figure 6.4D). 

 

A more advanced necrotic picture is depicted in Figure 6.5A,B with cell contents being extruded into 

the interstitial space through breakdown of the cell membrane. Vacuoles with debris have moved 

towards the cell surface, debris accumulating in the interstitial space. Mitochondria have increasingly 

swollen cisternae.  

 

6.3.2 Experiment 2. Optimal dose of CHB over time  

 

In mice with CHB doses over 280mg/kg, liver damage increased with dose concurrent with more 

pancreatic necrosis than apoptosis. The next experiment was designed to investigate the time effects 

on mice given a dose of CHB that achieved some apoptosis without too much liver necrosis. The 

pancreas from mice given 280mg/kg CHB in the time course from 12 to 24 hrs showed a similar 

progressive loss of zymogen granules in acinar cells. Whorling of RER, oedema and loss of adhesion 

between acinar cells and whole acini became widespread with time in most samples. The effect was 

mostly necrotic, however apoptosis and mitosis were again coexistent (Figure 6.6A). By 24 hrs 

apoptotic counts reached 1.29% compared to control 0.05%; mitosis reached 0.17% compared to 

control 0.03%. With increased time liver necrosis was more consistent, obvious and advanced, and 

haemorrhage was common in the 24 hour mice (Figure 6.6B).  
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Figure 6.4 Non-lethal acinar cell damage in mouse pancreas 

By electron microscopy damage to pancreatic acinar cells was obvious. There was marked dilatation 

and whorling of RER. Inclusion bodies were in active lysosomes, in the cytoplasm and in intracellular 

spaces. Inter- and intracellular spaces were distended with failure of desmosomes and gap junctions 

causing spaces between cells where flocculent and residual RER gathered. There was some early 

margination of nuclear chromatin. Zymogen granules were depleted and the mitochondria had slightly 

swollen cisternae. A. Intercellular separation at bottom and vacuoles with extruded residual material 

(short black arrows), RER is whorled. EM x3000. B. High power of A shows extent of whorling and 

distention of RER. Zymogen granules and RER are being extruded (black arrows). Mitochondria (M) 

appear normal. EM x9000.C. Nuclei show early margination of chromatin (short white arrows). 

Lateral membranes are separated by gaps (long black arrow) containing extruded RER (long white 

arrow). Basement membrane is disrupted (short black arrow). Few small ZGs are scattered in the 

cytoplasm (star). EM x5000. D. Acini with swollen mitochondria (M), large vacuoles (short black 

arrows), few ZG (star) and residual RER. Stellate cell (PSC), macrophage (ma). EM x2500. 
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Figure 6.5 Acinar injury with necrosis in the mouse model 

These images show a more advanced scenario of acinar cell damage than in Figure 6.4. This damage 

is more consistent with necrosis. A. Acini with whorled, condensed rough endoplasmic reticulum 

(RER) and swollen mitochondria. Breakdown of cell membrane with extruding debris (long white 

arrows), nuclear debris (N), extensive autophagic vacuoles (short arrows). EM x3000. B. Swollen 

mitochondria (M), debris and macrophage EM x7500 
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Figure 6.6 Experiment 2. Pancreas and liver in mice treated with 280mg/kg CHB for 24 hrs 

The pancreas of mice treated with a high dose of CHB for 24 hrs showed the most apoptosis however 

this coexisted with mitosis. The typical picture was of loss of zymogen granules and cellular adhesion, 

vacuoles, condensation of cytoplasm. Liver necrosis was more obvious and advanced with 

haemorrhage common. A. Pancreas, cytoplasmic vacuoles (white arrow), mitosis (short arrow), 

apoptosis, (thin arrows), note less numbers of cells comprising acini. H&E, x400. B. liver H&E. 

necrosis (NEC) and haemorrhage (H). x200.  
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6.3.3 Experiment 3. Effect of mouse adolescent status with optimal dose of CHB  

 

As there was no histological difference in the pancreatic or liver effects in younger mice given 

280mg/kg and euthanased at 24 hrs compared to older and heavier mice, the pathology was no longer 

considered relevant and no images are presented.  

 

6.4 DISCUSSION 

 

The desired outcome of massive synchronous apoptosis by 12 hrs, and subsequent atrophy of exocrine 

pancreas as was found in the rat under similar experimental conditions was not achieved. At 24 hrs 

after a single subcutaneous injection of CHB to mice the apoptotic count reached seven per high 

power field (HPF) magnification x400 or 1.29% of acinar cell total compared with control levels of 

0.03%. This is only a slight increase in apoptosis, far below that found in intravenous dose by Bhatia 

et al.276 In their study, when CHB was given as a single intravenous dose of 70mg/kg to mice, 

apoptotic acinar cells reached 30-40 per high power field (magnification x250) 12 – 24 hrs after 

injection but apoptotic labeling diminished between 24-36 hrs post CHB administration and at 48 hrs, 

substantial viable acinar tissue remained.  

 

Walgren and colleagues273 evaluated the sensitivity of peptide markers for pancreatitis in rats treated 

with CHB and caerulein, and mice treated with CHB. Mice were administered a single subcutaneous 

dose of CHB (50 or 150mg/kg) however details of the method of CHB synthesis was not given. 

Minimal histological changes were noted in the mouse pancreas.  Both diffuse and multifocal changes 

were seen, mainly mild vesiculation in the RER and ZG zones. No apoptosis or necrosis was reported. 

The Steven Leach group (Johns Hopkins, Boston) reported a similar unsuccessful dose response 

regime with intravenous CHB in mice (personal communication, Prof Sandra O’Toole, Garvan 

Institute of Medical Research). At low doses there was mild injury to the pancreas. At high doses, 

liver necrosis killed the mice with little change to the pancreas. 

 

Given the half-life of apoptotic bodies of 1-2 hrs249, 250 and the fact that small increments in apoptotic 

indices of the order of 1-2% can halve the total cell population of a tissue within 24 hrs,251 the 

observed high apoptotic indices in the Bhatia276 experiment should have been sufficient to delete all 

or most acinar cells by 48 hrs. The apoptotic staining methods used in that experiment (Fluorescent 

dye Hoechst H33258 and in situ staining by Apoptag method) may be demonstrating cleaved strands 

of DNA that have chosen the apoptotic pathway but go on to repair rather than continue to the final 
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stages of apoptosis. That substantial tissue remained at 48 hrs would indicate that apoptosis leading 

to acinar atrophy was also not achieved in the Bhatia model. 

 

It would appear that the results in our experiment reflect that of a mild effect of CHB, and that liver 

damage occurs before atrophy of acinar cells. The histological picture seen in our experiments with 

mice closely resembles the mild effect described by Wallig and colleagues248 on rats 150-225gm 

given a single dose of CHB (extracted from the seeds of Crambe Abyssinica) daily in 0.25-0.50ml 

corn oil. Note: corn oil is not miscible with CHB. In those experiments, the most consistent lesion 

over 1-4 days was dilatation of the cisternae of RER in pancreatic acinar cells. The degree of dilatation 

varied from cell to cell but was present to some degree on virtually all acinar cells. In most acini 1-4 

cells were reduced in size and had rounded profile, severely dilated ER cisternae, decreased numbers 

of zymogen granules and varying degrees of cytosolic condensation. Nuclei and mitochondria were 

unaltered. Some apoptosis was seen (shrunken cells and cell fragments) in acini, macrophages, 

autophagic vacuoles and within the interstitium.  

 

Clinically and experimentally, apoptotic and necrotic cell death are seen in pancreatitis. The 

mechanisms which determine whether acinar cells undergo the apoptotic or necrotic cell death 

pathway are still to be fully understood and involve an array of molecules. Mareninova et al 240 

investigated the differences in cell death responses between rats and mice in a model of caerulein-

induced pancreatitis, with up to seven hourly injections of 50µg/kg caerulein. The rat pancreatitis was 

mild and characterised predominantly by apoptosis; the mouse model more severe with 

predominantly necrosis. Detection of caspase activity determined that in the rat model the effector 

caspase-3 and the initiator caspases-8 and -9 were swiftly increased compared with no caspase 

activation in the mouse model. The intrinsic pathway of apoptosis involves mitochondrial damage 

that releases cytochrome-c to form a complex with Apaf-1 and procaspase-9 that in turn activates the 

effector caspases through caspase-9. This appeared to be the pathway initiated in both rats and mice 

however in the mice the caspases-8 and -9 were blocked in the acinar cells. In caerulein-induced 

pancreatitis, therefore, it appears that mice are more susceptible to necrosis than apoptosis and vice 

versa for rats. Furthermore this group found that caspases protected the rats from necrotic cell death.  

 

Marked depletion of pancreatic glutathione (GSH) within 1-2 hrs of CHB administration248, 252 

suggests that CHB causes oxidative injury to acinar cells that initiates apoptosis.253 In rats, there was 

a dose relationship between GSH elevation and pancreatotoxicity following intravenous and oral 

administration of CHB.248 Plasma levels would be expected to peak much higher following 

intravenous administration compared to subcutaneous and oral dosing thus toxicity and GSH 
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elevation are most likely both related to plasma levels. The data on intravenous administration showed 

that both toxicity and GSH elevation are dose dependent. Wallig and Jeffery252 showed a mild 

protective effect of low dose CHB against the toxicity of subsequent high-dose CHB. It may be that 

the induction of glutathione after CHB administration in the mouse confers a relative resistance to 

further similar insults. The Bhatia group276 showed a protective effect of CHB against caerulein 

induced injury, especially when given 12 hrs after CHB but not after 18 or 24 hrs.  

 

In this experiment there was considerable inter- and intra-lobular variability in the pancreatic lesion 

indicating that the dose effect was less than optimal. Some acinar cells had swollen mitochondria 

indicating early necrotic injury. Loss of zymogen granules was more marked than in the rat model - 

an indicator of either a necrotic or apoptotic pathway to cell death.  Necrosis in this setting may be a 

high dose effect, but at lower dose (70mg/kg) we saw little evidence of apoptosis. We have speculated 

that in the rat, early apoptosis is a mechanism protective against necrosis.216 This does not appear to 

exist in mice and this is confirmed by the study of caspases between rats and mice by Marienova et 

al.241 The morphological features of apoptosis are well defined in the nucleus as crescentic 

margination of chromatin against the nuclear membrane. In this mouse experiment, besides classical 

apoptosis, electron micrographs show margination of nuclear chromatin different from the classical 

manner of apoptosis. This partial margination bears resemblance to that depicted as the morphological 

features of nuclei in autophagic cells.254 Autophagy may be involved in the degradation of damaged 

organelles such as mitochondria and endoplasmic reticulum as a survival mechanism for cells as 

opposed to a death pathway. Vacuolisation in the cytoplasm is seen in both necrosis and autophagy. 

In this mouse lesion it can be seen that the processes of autophagy, apoptosis and necrosis are seen 

concurrently. 

 

In the mouse pancreas there was no evidence of a substantial inflammatory infiltrate. Various triggers 

dictate the course of pancreatitis whether acute or acute-on-chronic. Generally, activation of 

complement and other serine proteases and fibrinolytic cascades occurs early.194 Caerulein 

administration in rats excites a vigorous inflammatory response255 however in rats given CHB 

inflammation is delayed, reaching moderate density only at 48 hrs,215, 252 or from early in the 

subcutaneous lesion it is mainly mononuclear with the number of neutrophils remaining small 

throughout.216 Although macrophages and stellate cells were noted in the mouse pancreas their 

numbers were not observed to increase. Weight loss in most mice would suggest that some acinar 

attrition had occurred, however mitosis was present just above normal levels from 12 hrs, indicating 

that the pancreas may have been attempting to maintain homeostasis. With viable acinar cells 
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remaining it is difficult to ascertain whether regeneration was from remaining acinar tissue, from duct 

cells or from other stem cells.  

 

Mitochondrial membrane permeabilisation (MMP) is the event that defines the point of no return in 

most programmed cell death models. Bax and/or Bak are the pro apoptotic, pore-forming molecules 

of the Bcl-2 family that can trigger MMP and the release of death-inducing molecules from the 

mitochondrial intermembrane space. The anti-apoptotic Bcl-2 proteins, Bcl-2 and Bcl-xL oppose 

MMP.256 Immunohistochemistry for Bax on the mouse sections showed an increase in expression 

with dose but not an increase with time compared to controls. Bcl-xL immunohistochemistry showed 

an increase in expression compared to controls that did not relate to either dose or time and varied 

between lobules. The inconsistent balance of Bax to Bcl-xL most likely reflects the inability of this 

model to undergo significant apoptosis.  Rats may have a lower threshold for apoptosis of acinar cells 

than do mice where BclxL and Bax are evenly switched on and may protect from low threshold 

apoptosis. As these results were inconsistent no statistical analysis was completed with Bax to Bcl-

xL here however an expanded future comparison with mouse versus rat Bcl-2 family proteins may be 

worthwhile.  

 

In these experiments, the dose of CHB was not increased past 310mg/kg as this high dose proved to 

be hepatotoxic to mice. This is in itself an important and interesting observation for the role of CHB 

in the liver. In mice given 250mg/kg CHB liver necrosis was more obvious with time. When given 

orally in water to rats, CHB is toxic to liver at a lower dose than to pancreas as expected with the 

portal circulation. In contrast when given subcutaneously the pancreatotoxic effects are the first to 

occur, followed by hepatotoxicity. In rats high dose CHB was hepatotoxic when administered orally, 

intravenously and subcutaneously.216, 217, 248 Rats given high dose CHB died of massive liver necrosis 

with little or no change to their pancreata. A fine balance between the dose and route of administration 

determines the outcome between liver and pancreatic toxicity in rats. We were not able to find this 

balance in the mouse.  

 

6.5 CONCLUSION 

 

This study was a dose response study to find a dose which caused pancreatic acinar cell atrophy. We 

found that in mice, liver toxicity occurred at a lower dose than complete pancreatic toxicity, which 

limits the usefulness of it as an experimental model. Given the marked difference between our 

findings in rats and mice it may be that the pathway to cell death is completely different in these 

rodents, an interesting conundrum for the administration of pharmaceuticals in animal models. 
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CHAPTER 7 

DOG MODEL OF PANCREATITIS 

 

This chapter presents the investigations using a dog model of pancreatitis. The chapter is presented 

as a manuscript for submission “Cyanohydroxybutene (crambene) causes massive liver damage in 

dogs” by Lynne E Reid, BSc, Melanie Latter, BVSc, and Lyndell E Kelly, MBBS, PhD, FRANZCR. 

Methods are again in detailed format. Some abbreviations previously defined in this thesis are, of 

necessity for submission of a manuscript, redefined here. Please note that references for this Chapter 

are listed at the end of this Chapter. 

 

Note that mature pound dogs were the only dogs available for this experiment although an 

unsuccessful attempt was made to secure greyhounds to limit variability among breeds. Use of 

pound dogs was not optimal as it was not possible to choose dogs individually and, therefore, it was 

challenging to get dogs of similar weight and age. No veterinary history was available for the dogs 

used. Clinical veterinary checks showed that they were in good health, however the variability in 

our results would indicate that some may have had unknown underlying conditions.  

 

7.1 SUMMARY 

 

Cyanohydroxybutene (1-cyano-2-hydroxy-3-butene, CHB) is a breakdown product of glucosinolates 

in cruciferous vegetables. In rats, a dose of 150mg/kg causes selective destruction of pancreatic acinar 

tissue principally by apoptosis. CHB was given to 14 dogs (12-21kg) in doses ranging from 70 down 

to 30 mg/kg intravenously over 15-30 minutes, followed by euthanasia and necropsy. These doses 

had little effect on the pancreas, but frequently produced fatal hepatic necrosis. Dogs were well and 

active or developed fatal liver failure, perhaps indicating that antioxidant capacity had been 

overwhelmed. Hepatic injury was reflected by depression and lethargy, and sometimes by abdominal 

discomfort. Laboratory testing showed marked elevations in hepatic cytosolic enzyme activities, 

bilirubin, creatine kinase activity and moderate to severe hypoglycaemia. Haematology showed 

marked thrombocytopaenia. A coagulopathy was suggested by bleeding into the peritoneal cavity of 

some dogs with advanced hepatic necrosis. Oral administration of antioxidants did not ameliorate 

liver injury. Clearly, CHB is of no value for treating chronic relapsing pancreatitis or acinar pancreatic 
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carcinoma in canine patients. There is a remarkable similarity in physical and laboratory necropsy 

findings between intoxications referable to the 5-carbon CHB and xylitol, a 5-carbon sugar used as 

an artificial sweetener. 

 

7.2 INTRODUCTION 

 

A model of pancreatitis induced using synthetic racemic 1-cyano-2-hydroxy-3-butene (CHB), 

sometimes called crambene, had been established in rats 1. CHB is present in many foods such as 

canola and cruciferous vegetables and is a selective pancreatotoxin in the rat and mouse. It is thought 

to be beneficial in low doses because it induces glutathione, an antioxidant 2. At high doses, it causes 

apoptosis of pancreatic acinar cells. At a critical dose, this causes almost complete loss of acinar 

tissue. CHB administration results in cell death in acinar tumours transplanted into rats making it a 

potential treatment for acinar cell carcinoma of the pancreas 3. At present, it is unknown whether this 

effect occurs in other mammals.  

 

Total and permanent loss of acinar cells constitutes a valid investigation for acute relapsing or chronic 

pancreatitis, common diseases both in human and canine patients, often secondary to inherited lipid 

disorders and  ingestion of high-fat meals 4,5. One purpose of this experiment was to see if a safe drug-

induced exocrine pancreatectomy could be achieved with CHB in the dog. We have tried to assess 

the effects and potential toxicity of CHB in randomly-bred dogs. All experiments were approved by 

the University of Queensland Animal Ethics Committee (PATH/457/04/LF).  

 

7.3 MATERIALS AND METHODS 

 

CHB was synthesized by and purchased from Research Directions, Auchenflower, Queensland.  The 

Animal Research Ethics Committee of the University of Queensland gave ethics approval. This pilot 

study was conducted in stages, with the intention of finding a dose of CHB that would selectively 

destroy acinar cells of the pancreas without excessively damaging the liver, islets of Langerhans or 

other tissues. Given that the most effective parenteral doses in mice and rats are 280 mg/kg and 150 

mg/kg subcutaneously, respectively, and taking into account allometric scaling, we elected to start 

with 70 mg/kg. Based on studies in rats and mice, CHB is more toxic on a mg/kg basis in large 

animals 6.  
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Experimental subjects (N = 14) were dogs destined for euthanasia at a local pound. They were 

apparently fit and healthy as assessed by routine physical examination and were of mixed breeds. For 

ease of handling, dogs of 15-20 kg were chosen. Dogs were continuously monitored by one or two 

veterinarians for the duration of the experiment. If required, dogs were kept sedated, however, if well, 

the level of sedation was reduced, and dogs were taken on regular walks in runs to permit urination 

and defecation. At these times, strength and demeanour was assessed and the abdomen was gently 

palpated to assess if pain was evident. 

 

Dogs were given 0.05 mg/kg of acepromazine and 0.3-0.4 mg/kg of methadone subcutaneously to 

provide sedation and analgesia. The required volume of CHB was placed in a 100 ml bag of normal 

saline (0.9% NaCl) and infused intravenously through an indwelling cephalic catheter over 15 

minutes. Hartman’s solution was subsequently administered intravenously (IV) at the rate of 1 litre 

every 12 hours using an infusion pump. Blood was taken at 4, 8 and 12 hours for dogs 1 and 2, and 

at 0, 12, 24 and immediately prior to euthanasia for dogs 3-6.  

 

Dog 1 was given 70 mg/kg (x 18 kg = 1.26 g CHB). Dog 2 commenced 10 hours after Dog 1 but was 

given a reduced dose of 50 mg/kg (x 15kg = 750 mg CHB). Both dogs were kept sedated and 

comfortable using incremental doses of acepromazine and methadone, given to effect. The first dog 

was euthanased by an IV overdose of pentabarbitone sodium 12 hours after CHB administration, the 

second at 20 hours after CHB. The experiments were terminated at these time points when it was 

clear that dogs had severe liver damage, likely to be fatal, on the basis of numerous physical and 

laboratory findings.  

 

Given the apparent hepatotoxic effect on dogs 1 and 2 (Table 1), the CHB dose was reduced in 

subsequent experiments, and the drug was administered more slowly. As serum biochemistry 

demonstrated hypoglycaemia, blood glucose was monitored in subsequent experiments using a point-

of-care glucometer so that glucose infusions and boluses could be given to maintain euglycaemia. 

Two dogs received 30 mg CHB/kg (x 18 kg = 575mg; x 15.5 kg = 465 mg); two received 40 mg/kg 

(x 20 kg = 820 mg; x 12 kg = 450 mg). The IV infusion of CHB was given over 30 minutes, rather 

than 15 minutes. It was intended that one dog from each pair be euthanased at 24 hours, and the other 

dog at 48 hours. Dogs were kept sedated, analgesed and comfortable as above with continuous 

monitoring of behaviour, biochemical measurements and continuous support with intravenous fluids 

and glucose.  
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In order to assess whether a dose of CHB could be found that was consistently ‘safe’ and to assess 

the effect of CHB on tissue over a longer timeframe, dogs 7-10 were given 35 mg/kg with euthanasia 

planned for 96 hours. As the mechanism of action of CHB is thought to consist of membrane 

oxidation, a further experiment was conducted with dogs 11 – 14 following premedication with 

antioxidants vitamin C (200 mg) and vitamin E (200 mg) given orally (by mouth) 90 minutes prior 

to the 35 mg/kg dose of CHB. The intention was to use the first-pass effect following oral 

administration of these antioxidants to selectively protect the liver from CHB toxicity. 

 

Complete necropsies were performed on each of the dogs by a veterinary pathologist. Tissues were 

fixed in buffered formalin and paraffin-embedded for haematoxylin and eosin (H&E) staining (4 µm 

sections).  

 

7.3.1 Immunohistochemistry 

 

PCNA IHC was used to examine proliferation of cells in pancreatic sections. The mouse anti-human 

monoclonal PCNA (Calbiochem Oncogene Research Products cat#NA03) was used at a 

concentration of 1:100. Sections were pre-treated with 0.2N HCl for 20 minutes and processed using 

a Dako EnVision+ Dual Link System-HRP (DAB+) kit (DakoCytomation) and lightly counterstained 

with Mayer’s haematoxylin. Total acinar cells and PCNA-positive acinar cells were counted in 10 

high powered fields (HPF) for each pancreatic sample. The PCNA index was calculated as a 

percentage of total acinar cells.  

 

7.4 RESULTS 

 

7.4.1 Biochemical parameters and gross pathology 

 

Biochemical parameters after treatment with CHB are presented in Table 1. There was a marked 

variation in response to the dose of CHB. Doses up to approximately 35 mg/kg were mostly tolerated 

with eight dogs clinically normal. Doses in excess of 35 mg/kg were fatal to six dogs due to a severe 

hepatotoxic effect.  

 

Dogs given 70 mg/kg and 50 mg/kg over 15 minutes (dogs 1 & 2) after 11-12 hours showed marked 

thrombocytopenia, moderate leukopenia, slightly elevated bilirubin concentration. Alanine 

aminotransferase (ALT), alanine aminotransferase (AST) and creatine kinase (CK) activities were 

markedly elevated, while amylase and lipase were normal. These dogs were euthanased early. At 
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necropsy the liver was enlarged, dark and friable, the pancreas edematous and pale. Petechial 

haemorrhage was evident throughout the gall bladder and stomach and a large volume of free blood 

was present in the abdominal cavity in one dog.  

 

Dogs with dosage 40 mg/kg over 30 mins (dogs 4 & 6), 35 mg/kg over 30 minutes (dog 7), and 35 

mg/kg over 30 mins after oral antioxidants (dog 12) were unwell from 7-24 hrs. Blood results showed 

reduced platelet and white cell counts (WCC), markedly elevated bilirubin, AST, ALT, and CK 

activities. Amylase and lipase dropped but remained within reference intervals. One dog died at 21 

hours. The others were euthanased at 22, 24 and 33 hrs. At necropsy, the pancreata were edematous 

and swollen, the livers ranged between normal size with multiple areas of darkened parenchyma, to 

swollen and friable. There were multiple haemorrhages into the intestinal wall, urine was dark and 

there was a serous nasal discharge with dog 12.   

 

Dogs with dosage of 30 mg/kg over 30 minutes (dogs 3 & 5) were well throughout the experiment 

and were euthanased at 24 and 48 hrs. Glucose dropped slightly at 12 and 24 hours. There was 

moderate elevation of AST, ALT and CK activities. Platelets remained within the reference interval, 

but neutrophils were elevated at 12 hours, settling by 24 hours. Both liver and pancreas appeared 

normal at necropsy examination. Dogs with dosage 35 mg/kg over 30 minutes (8-10) and 35 mg/kg 

after oral antioxidants (dogs 11, 13, 14) remained clinically well, eating and evacuating normally, 

bright and responsive until euthanased.  

 

7.4.2 Histopathology 

 

7.4.2.1 Pancreas 

Compared to the normal pancreatic tissue reviewed from the archives, all dogs showed some evidence 

of histological change within the pancreas, from relatively normal pancreatic architecture with mild 

cellular damage (Figure 7.1A) to increased and variable amounts of injury. These changes varied 

within and between lobules of the same organ. Isolated single cells displayed either classic apoptosis 

7 or necrosis, both being randomly distributed (Figure 7.1A). Large clusters of acinar cells displayed 

cell shrinkage and loss of adhesion with varying degrees of pyknosis from partial to fully condensed 

nuclei (Figure 7.1B, 7.1F). Many nuclei exhibited pallor; nuclei often appeared pale with chromatin 

clumping towards the nuclear membrane. Areas of ‘dark’ cells 7 were prominent. The cytoplasm of 

acinar cells was vacuolated both apically and basally and increased basophilia was noted. (Figure 

7.1D and 7.1E). Periacinar oedema was usually evident (Figure 7.1C and 7.1D). The ductal system 

remained microscopically intact with the exception of periductal fibrosis in dog 1, most probably 
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from a pre-existing lesion. Some islet cells appeared apoptotic and occasional mitotic figures were 

seen in acini. Neutrophil numbers were increased marginally compared to control tissues in some 

sections. PCNA immunohistochemistry was positive above control levels in acinar cells, centroacinar 

cells, macrophages and stellate cells to various degrees in all tissue specimens tested (Figure 7.1G 

and 7.1H; Table 7.1).  

 

 

 

Figure 7.1 Range of pancreatic damage after treatment with CHB 

A. dog 3 x 1000 B. dog 14 x400, C. dog 14 x1000, D. dog 7 x1000, E. dog 10 x 1000, F.) dog 11. 

All x 400, all H&E. Apoptotic cells and nuclei with halos (short arrows) are shown in A,C,F. Cells 

with condensed cytoplasm and disrupted cell attachment are shown in B. and F.  D and e show 

cytoplasmic vacuoles in acinar cells, overall increased basophilia and periacinar oedema. Apoptosis 

and mitosis (arrow head) coexist F.. (G. dog 12 x 400 and H. dog 11 x 400 show range of PCNA 

immunohistochemistry with brown staining of centroacinar cell nuclei (white arrows) and stellate 

cells (thin arrows); counterstain haematoxylin.   
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7.4.2.2 Liver 

Normal dog liver from archival blocks consisted of multiple lobules organised around a central vein, 

in which hepatocytes form single cell cords from portal area to central vein, separated by sinusoidal 

spaces 8. The livers of dogs 3, 5, 8, 9, 10, 11 and 14 were histologically normal, some showing mild 

hydropic change (Figure 7.2A). Apoptosis was scattered, predominantly in Küpffer cells, and there 

was mild periacinar congestion. 

 

The livers from the other dogs demonstrated moderate to severe changes ranging from periportal 

necrosis (dogs 6, 13) to massive necrosis and haemorrhage with complete disruption of lobular 

architecture (dogs 1, 2, 4, 7, 12). Hydropic change with sinudoidal congestion is depicted in Dog 3 

(Figure 7.2B). Hepatic cells in dog 4 demonstrated necrosis, pyknosis, karyolysis and karyorrhexis, 

with haemorrhage (Figure 7.2C). In general, neutrophilic infiltration was prominent and margination 

was apparent in blood vessels, especially the central vein. The liver of dog 6 showed periportal 

necrosis with inflammation and haemorrhage whilst in dog 13 coagulative necrosis was midzonal to 

periportal with haemorrhage (Figure 7.2D, E). Periportal activation of stellate cells was noted in dog 

13. Congestion in dog 7 was extreme, with haemorrhagic necrosis, loss of sinusoidal integrity and 

haemorrhage (Figure 7.2 F).  

 

In dogs with massive liver injury, haemorrhage in other organs such as bladder and intestinal wall 

was noted consistent with thrombocytopaenia plus likely disseminated intravascular coagulation. 

Quantification of the apparent haemorrhagic diathesis was not performed apart from platelet counts 

(Table 7.1). 
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Figure 7.2. Range of liver damage after treatment with CHB. 

All images are H&E stained sections at x 400. Normal liver is demonstrated A.. Dog 3 showed 

hydropic change with sinusoidal congestion B.. Dog 4 had massive necrosis with pyknosis, 

karyolysis, karyorrhexis and haemorrhage C.. Dog 6 had periportal necrosis with inflammation and 

haemorrhage D.. Dog 13 had periportal coagulative necrosis E. Dog 7 had extreme congestion, 

massive haemorrhagic necrosis with loss of sinusoidal integrity and haemorrhage F. 
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Table 7.1  
 

DOG 1 2 3 4 5 6 7 8 9 10 11 12 13 14 
 

Weight (kg) 18 15 18 20 15.5 12 17.6 15.4 16.2 17.8 20.6 14 29 19 
Time blood 
taken 

8hrs 12hrs 15hrs 14hrs 24hrs 24hrs 18hrs 15hrs 15hrs 15hrs 15hrs 15hrs 15hrs 15hrs 

Dose CHB 70mg/k
g 

50mg/
kg 

30mg/
kg 

40mg/k
g 

30mg/
kg 

40mg/
kg 

35mg/k
g 

35mg/
kg 

35mg/
kg 

35mg/k
g 

35mg/
kg 

35mg/k
g 

35mg/k
g 

35mg/
kg 

Absolute 
dose 

1260m
g 

750mg 575mg 800mg 465mg 480mg 616mg 539mg 567mg 605mg 700mg 490mg 850mg 665mg 

Clinical state Sick sick well sick well sick sick well well well well sick well well 
Platelets 
(200-900) 

125 4 485 11 414 247 37 324 351 clumped 176 clumped 158 248 

Neutrophil 
(4.1-9.4) 

1.0 0.8 7.4 2.5 10 15.3 2.9 13.4 11.7 6.0 14.9 4.4 13.6 16.7 

AST(1-80) 328 1348 118 4822 1738 13815 7,750 110 157 50 355 8494 730 458 
ALT(0-80) 166 1668 42 5652 1763 16795 7180 44 49 59 174 11301 809 137 
GGT(0-5) <5 5 6 6 6 10 21 6 6 6 9 7 5 <5 
CK (0-400) 5938 2888 1155 2071 1832 1830 1658 1064 2613 405 1377 1073 5074 4769 
Bilirubin 
(0-10) 

17 30 4 19 <2 23 27 3 <2 2 12 24 13 8 

Amylase 
(0-2400) 

260 310 300 370 370 350 200 550 400 610 310 140 740 460 

Time of 
death 
Early (E) 
Scheduled 
(S) 

13hrs 
E 

20hrs 
E 

48hrs 
S 

22hrs 
E 

25hrs 
S 

24hrs 
S 

22hrs 
E 

48hrs 
S 

96hrs 
S 

96hrs 
S 

72hrs 
S 

33hrs 
E 

72hrs 
S 

72hrs 
S 

PCNA % 2.5 1.2 36.6 1.5 34.6 30.3 8.1 48.1 31.9 10.2 66.9 1.4 59.6 78.9 

Aspartate aminotransferase AST, alanine aminotransferase ALT, gammaglutamyl transferase GGT, creatine kinase CK 
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7.5 DISCUSSION 

 

This experiment was an attempt to reproduce in dogs the CHB pancreatopathy which occurs in 

rats 1. The rat pancreatic lesion is unusual in that there is marked early oedema with an acute 

inflammatory infiltrate, rapid synchronous onset of acinar cell apoptosis and total acinar 

atrophy with only a very limited regenerative response. In contrast, the dog pancreas exhibited 

cellular damage of acinar cells consistent with both reversible and irreversible injury. Apoptotic 

and necrotic acinar cells were present, with cytoplasmic vacuolisation, cell shrinkage and 

increased basophilia. In acinar injury, vacuolation of the apical cytoplasm of acinar cells is due 

to loss of zymogen granules whereas in basal areas it is due to distension and whorling of rough 

endoplasmic reticulum (RER) a common feature in apoptosis of acinar cells 1,9,10. Increased 

basophilia in H&E-stained sections reflects loss of zymogen granules and subsequent cell 

shrinkage. Dark cells as described by Walker et al. 7, have markedly condensed cytoplasm and 

nuclear compaction, and are considered to be necrotic and dying.  In this study, by 96 hours, 

whilst loss of acinar cells had occurred to some extent this was not nearly as complete an effect 

as in the rat.  

 

By 18 hrs in CHB-induced pancreatitis in the rat, the apoptotic acinar cells are swollen with 

secondary necrosis followed by ingestion by macrophages. By 3-4 days no acinar cells remain 

and duct cells proliferate to convert the lobules into small groups of tubular complexes. In the 

dog, although substantial cell injury had occurred, this was not sufficient to cause considerable 

atrophy of acinar cells, nor the conversion into tubular complexes. Periacinar oedema, loss of 

zymogen granules, whorling of RER and loss of adhesion between acinar units was present in 

the necropsy specimens similar to that found in the rat. Centroacinar cells, stellate cells and 

macrophages were positive for PCNA indicating proliferation and activation of these cell 

populations, as occurs in the rat CHB model and other rat models of pancreatitis 1,9,11. PCNA 

counts varied between animals but not between lobules in the same animal (Table 1). In rat 

pancreas, the percentage of PCNA positive cells reflects the pool of cycling cells, not only 

representing S-phase cells but also cells that have recently completed the cell cycle 12. The high 

PCNA positive counts in dog acinar cells indicates that in some instances the pancreas was 

attempting to maintain a regenerative balance of cells. This was particularly, but not 

exclusively so, for those animals with less severe liver pathology.  
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All dogs had histological changes in the hepatic parenchyma ranging from mild hydropic 

change to moderate or massive liver necrosis with haemorrhage, neutrophilic vascular 

margination and parenchymal infiltration. Hepatocellular damage was more severe in dogs that 

received higher doses of CHB. The necrotic changes in liver were comparable to those 

observed in rats given high doses of CHB orally 13 and mice dosed with CHB (previous 

Chapter). In this experiment in dogs, liver toxicity appeared to occur at comparable  doses to 

those which cause pancreatic toxicity, similar to the toxicity profile in mice, but  dissimilar to 

the rat. In rats, the dose of CHB which elicited an apoptotic response in the pancreas is lower 

than that which causes liver damage. From studies of varying sized rats, as well as our 

comparative study of mice, CHB is much more toxic on a mg/kg basis in large animals, as is 

true for most toxins. It is difficult to extrapolate the variation in effect of toxins from one 

species to another.  

 

As CHB is thought to damage cells by oxidizing membranes, we attempted to protect the liver 

with antioxidants given orally, and expected this to work preferentially on the hepatic 

parenchyma because of the first-pass effect. The most effective ameliorating agent in rat 

pancreas 6, reducing both edema and apoptotic cell counts was the antioxidant 2-

octadecylascorbic acid, a synthetic vitamin C analogue with a small molecular weight and a 

high affinity for biomembranes 14,15. Recent work showed the most likely initiating lesion in 

CHB toxicity to pancreatic acinar cells in vitro was loss of mitochondrial membrane potential 

with consequent release of cytochrome c 16. Carbon tetrachloride is also a potent hepatotoxin. 

It oxidizes the hepatocyte membrane and thereby initiates a cascade of necrosis by being 

metabolized to oxygen free radicals which peroxidise fatty acids in the phospholipid 

membrane, activating both Kupffer cells and an inflammatory cascade 17. This effect is 

ameliorated by vitamins C and E. This is in contrast with our experiments where no protective 

effect could be discerned. Indeed one of 4 dogs pre-treated with these antioxidants died early 

and the others also developed liver damage as evidenced by liver enzyme elevations (Table 

7.1).  

 

The pancreatic acinar cell changes indicated damage which might proceed to cell death, or 

resolve. Ninety-six hour studies were therefore undertaken to show the progression of the 

lesion. They showed that the lesions resolved rather than progressed, but reduced cell numbers 

in acini were noted subjectively indicating apoptotic cell drop out. However, liver damage 
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worsened, indicating a possible inflammatory cytokine cascade as occurs following ingestion 

of carbon tetrachloride 17. 

 

Early and sometimes severe thrombocytopenia (dogs 2, 4 and 7) developed. We postulate this 

to be due to sequestration and a consumption of platelets on sinusoid walls as liver necrosis 

developed. The timing of venepuncture for dog 1 probably precluded observation of this effect. 

Thrombocytopenia has been reported after liver damage due to radiation in children and is 

worse with both increasing dose and volume irradiated 18. The underlying histological lesion 

is thought to be congestion of the sublobular veins, with venous congestion of both spleen and 

liver, leading to a hypersplenism with platelet sequestration. In the therapeutic setting it is rare 

for this effect to have discernible clinical consequences.  

 

Liver failure in this experiment was so fulminant that glucose metabolism was disordered. This 

could be due to either a loss of glycogen stores or a failure of gluconeogenesis, or both. It is 

quite possible also that CHB caused insulin release. This would likely be an early effect in all 

dogs and at lower doses. When euglycaemia was restored in dog 4, its mental state improved 

temporarily. Disordered glucose metabolism after CHB has been reported in rats also 19 with 

increased urine glucose at eight hours and lower than control serum levels from 24 hours, 

indicating a possible effect on the endocrine pancreas.  

 

Xylitol ingestion in dogs is associated with hypoglycaemia following increased insulin release 

20. It is known that dogs who accidentally ingest xylitol develop acute hepatic failure with a 

moderate to severe increase in liver enzyme activities, hyperbilirubinemia, hypoglycaemia (due 

in part to increased insulin release), hyperphosphatemia, prolonged clotting times and 

thrombocytopenia 21. Like CHB, xylitol is also a 5-carbon molecule. It may be that xylitol and 

CHB are metabolized to a similar compound which is the actual toxicant. Necropsy and 

laboratory findings on dogs with naturally-occurring xylitol intoxication are remarkably similar 

to those seen in our experimental subjects treated with CHB. Xylitol at a dose of 1.4-2.0 g/kg 

consistently causes increased insulin release. It is unknown whether CHB also causes this 

elevation of insulin, as acute liver failure per se can result in hypoglycemia. Direct 

measurement of insulin in subsequent studies will be able to resolve this issue. Xylitol is safe 

in humans but toxic to dogs. Interestingly, CHB also shows inter-species variability in toxic 

effects between rats and dogs.  
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Another model of experimental pancreatitis in dogs has been described, copying a well-

established model in rats and mice 22. D, l-ethionine produced exocrine necrosis in dogs leading 

to complete acinar atrophy 23. These dogs were mature pound dogs of mixed breed of either 

sex weighing 15-22 kg similar to our study. Regeneration was not complete four weeks after 

the onset of the experiment, with areas of fibrosis and inflammatory infiltrate coinciding with 

regenerative acini. As in the current study, the largest dogs, given higher absolute doses of 

ethionine, were more severely affected.   

 

In this study there was marked variation in response between animals of the same weight given 

the same dose – in some, the dose was fatal, others were clinically normal. The effects of CHB 

on the hepatic parenchyma appeared to have a marked threshold effect. Doses up to ~30 mg/kg 

appeared to be tolerated, whereas doses in excess of 40 mg/kg were almost always fatal, 

indicating that up to a certain level, the oxidant effect could be reversed, and although there 

was obvious evidence of hepatocellular injury, the changes could be somehow circumvented. 

If a threshold was exceeded, perhaps as a result of glutathione depletion, then an irreversible 

cascade of changes ensued, consisting of neutropenia (often with a left shift), 

thrombocytopenia and hyperbilirubinemia. These changes are remarkably similar to those seen 

in dogs with xylitol intoxication, and it is unclear to us whether this is because both toxicants 

have a common cellular mechanism of action such as damage to mitochondrial membranes, or 

whether they cause diffuse hepatic injury by different initial mechanisms, with an identical 

‘final common pathway’ culminating in acute liver failure. More work is required to shed light 

on this issue, however it is of great interest that recent data has shown dogs with xylitol 

intoxication appear to benefit from acetylcysteine +S-adenosyl methionine (SAM-E),  agents 

whose presumptive effect is due to repletion of glutathione levels within the liver 24. In rat liver, 

CHB initially depletes glutathione levels to about 17% 2. Bohus 19 found that the major CHB 

metabolite in urine of rats was a conjugate of N-acetyl-cysteine. Clearly further work should 

examine the benefit of acetylcysteine in CHB toxicity. 

 

Our histological observations suggest that neutropenia is due to loss of mature neutrophils into 

the damaged liver, with overwhelming demand exceeding the capacity for the bone marrow to 

respond acutely. We suspect a similar mechanism causes thrombocytopenia with loss of 

platelets into the liver, and secondary hypersplenism due to hepatic vascular congestion and 

acute portal hypertension. Although disseminated intravascular coagulation is another 

possibility, we could find no evidence for this in histological specimens examined. Another 
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consistent biochemical finding was moderate to severely elevated CK activity in plasma, 

suggesting diffuse damage to muscle cell membranes in skeletal muscle and possibly the 

myocardium.  

 

7.6 CONCLUSION 

 

One purpose of this experiment was to see if a safe drug-induced exocrine pancreatectomy 

could be achieved with CHB in the dog. In rats, this is routinely achieved with a dose of 150 

mg/kg subcutaneously. It is clear that there will not be a safe and reliable medical 

pancreatectomy with CHB in the dog. Even more importantly, extensive primate studies would 

be required before any attempt is made to trial it in humans. This study indicates there is a 

possibility of unpredictable fatal hepatotoxicity. From a veterinary standpoint, the similarity 

between toxicity due to CHB and xylitol is of interest, and further studies may shed light on a 

final common pathway involved in the pathogenesis of both intoxicants.  
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CHAPTER 8 

DISCUSSION 
 

8.1 OVERVIEW 

 

Pancreatitis is an inflammatory disorder of the exocrine pancreas in both acute and chronic 

forms. It causes considerable morbidity and mortality, as the disease varies widely in severity, 

and the approach to management and outcome is uncertain. Due to the relative inaccessibility 

of pancreatic tissue for examination, animal models are used to investigate the pathogenesis of 

the disease. Fibrosis is a serious complication of pancreatitis and leads to the destruction of the 

exocrine gland, pancreatic insufficiency and ultimately death. Understanding the processes of 

fibrosis and its role in the imbalances that drive the pancreas to regenerate or not is the basis 

for this study. 

 

8.2 MODELS 

 

Experimental animal models of pancreatitis vary in their relevance to clinical disease, their 

ease of use, reproducibility and the basic features of injury and reparation. For this reason it 

was decided as wise to compare more than one model to examine the progressive and 

overlapping pathology of the disease. The caerulein and duct ligation models are well-

established models in rats with simplicity, strong reproducibility and predictable results. 

Fibrosis can be established in mice with both models however depends on the right mouse 

strain in the case of caerulein.257 The CHB model is not reported widely, is simply achieved 

with one subcutaneous dose and is reproducible with the caveat that results do vary between 

rat colonies. This latter effect is not restricted to the CHB model and creates substantial 

inconvenience for researchers from personal experience. Unfortunately, CHB does not 

translate into a mouse model, however the beauty of the CHB model in rat pancreatitis is that 

regeneration does occur briefly, but does not persist. This provides a perfect medium between 

the caerulein and duct ligation models and a good model to investigate how the pancreas can 

retain the capacity to regenerate but cannot sustain the regenerated population. One would 

suppose that this has some relevance to the human chronic disease. A summary and comparison 

of results of the parameters studied in the three models is presented in Figure 8.1. 
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Figure 8.1 Timeline of events in pancreatitis in the rat models 

Experimental animal models of pancreatitis vary in their relevance to clinical disease, including 

the basic features of injury and repair, regeneration, proliferation, atrophy, cell death and 

inflammation. These models form a basis for studying pancreatic regeneration during 

pancreatitis, because of their inherent similarities and differences. The caerulein model 

regenerated quickly and comprehensively, whereas the regeneration was focal and non-

progressive in the CHB model and the duct ligation model did not show any regeneration. 

 

8.3 REGENERATION  

 

In humans one of the issues with the pancreas being inaccessible to direct observation applies 

to regeneration. That the pancreas regenerates when symptoms wane is an assumption but there 

is no direct evidence that this occurs. Tissue replacement and turnover, the role of pluripotent 

stem cells and the mechanical aspects of embryonic development are central to understanding 

regeneration. Stem cells play a role in other organs, for example liver, during regeneration, 

however a true stem cell has not been identified in pancreas. The tubular complexes, also 

known as acinar to ductal metaplasia, are the epithelial structures remaining after injury and 

they upregulate normally duct specific proteins, such as cytokeratins, as seen in this report. In 

the caerulein model though large numbers of acinar cells are destroyed, viable acinar cells 
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remain in most lobules. Ultrastucturally and in immunohistochemistry regenerating acinar cells 

are seen protruding from tubular complexes, in duct to acinar differentiation however one can 

assume that many acinar cells are replaced by expansion of the surviving cells in this model as 

has been reported before.222 Duct to islet differentiation was noted in this caerulein model, as 

also seen in other pancreatic injury.105, 258 In a diphtheria toxin transgenic mouse model where 

acinar cells are obliterated regeneration of acinar cells is due also to duct to acinar 

differentiation and not self-renewal.56 In the CHB and duct ligation models no acinar cells 

remain. In the CHB model no acinar cells were seen in electron microscopy forming from the 

tubular complexes however they were seen frequently forming next to islet cells and forming 

in nests in the middle of connective tissue as did new islet tissue. The source of this regeneration 

was not determined and the acinar cells though normal looking did not persist. Acini, duct cells 

and tubular complexes died by apoptosis until rats had pancreatic exocrine insufficiency, 

maldigestion and muscle wasting and were euthanased. The duct ligation model showed no 

regeneration at all. Persistent injury in the form of ductal ligation ensured that the tubular 

complexes did not retain the capacity to regenerate acinar cells. How or if the tubular complex 

cells contribute signals towards ongoing inflammation is a question that requires answers. 

Acinar cells are normally a source of inflammatory cytokines in pancreatic injury, however 

once destroyed, other cells, presumably the inflammatory cells provide ongoing signalling 

towards fibrosis or regeneration.  

 

8.4 FIBROSIS  

 

Excess fibrosis deposition is a system failure. The deposition of ECM in response to injury 

provides a scaffold so that injured tissue may repair in a supported environment.  The repair of 

tissue such as in wound healing is usually fast and efficient, however restoration of cell 

populations in pathological repair often fails due to miscommunication of the ECM to 

coordinate regeneration. This malfunction leads to chronic conditions. Fibrosis, produced by 

the stellate cells, is a known feature of chronic pancreatitis and pancreatic cancer.169 The 

disappearance or persistence of stellate cells correlates with regeneration in the models. In the 

caerulein model, stellate cells disappear as regeneration occurs. In the duct ligation model, 

stellate cells persist and regeneration does not occur. In the CHB model stellate cells wane, 

though fibrosis remains, which suggests that once deposited stellate cells are not required to 

maintain fibrosis. The persistence of fibrosis may depend on the type of collagen deposited as 
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the difference between the deposition of collagen I and collagen III in these models was clear. 

Fibrosis in the caerulein model consisted mainly of collagen III the thinner collagen, however, 

in the CHB and duct ligation models the collagen laid progressed to more dense collagen I. 

Collagen I was unable to be degraded by the balance of MMPs and TIMPs in these models.  

Stellate cells in the duct ligation model may have continued to deposit collagen as they 

persisted around ducts and tubular complexes.  

 

Mast cells and neutrophils are reported as the first responders in inflammation for host 

defence,259 and macrophages and neutrophils in parallel influx in pancreatitis.95 Dendritic cells, 

B cells and T cells are reported to infiltrate the injured pancreas early and are able to modulate 

repair,53 however, they were not studied here. Early in the rat pancreatitis large numbers of 

macrophages and stellate cells were observed migrating in the inflammatory infiltrate. 

Counting of the inflammatory cells was carried out in random fields though concentrated on 

the areas containing the parenchyma, acinar cells and tubular complexes, rather than areas 

containing mostly or only connective tissue. For this reason mast cell counts are perhaps lower 

in totals than the other inflammatory cells as they were often in larger numbers congregated 

around blood vessels or in connective tissue at the periphery of lobules compared to in the 

parenchyma and interlobular inflammatory infiltrate.  The stellate cells were assessed by area 

of stained cytoplasm and not as individual cells. As the αSMA immunohistochemistry, a 

standard method for stellate cells,79 is a cytoplasmic stain and stellate cells had extremely long 

processes it was more difficult to separate individual cells, particularly when they were 

overlapped, encircling tubular complexes. Fibroblasts were not easily distinguished from 

macrophages in light microscopy. In the literature there are conflicting views on the definition 

of fibroblasts/myofibroblasts/stellate cells.148 Their derivation, progenitors, phenotype and 

function clearly differ in different tissues and they comprise heterogeneous populations. At 

present, there is no reliable marker to differentiate between quiescent stellate cells versus 

resident fibroblasts in the pancreas.148 In this study, ultrastructurally, fibroblasts were identified 

in the control tissue, just few residing in inter-acinar spaces, containing no lipid droplets. Soon 

after insult, stellate cells were filled with RER and full and emptied lipid droplets but by day 

two of the experiments most of the stellate cells had no remaining lipid droplets. Only in the 

caerulein model after regeneration cells resembling fibroblasts without lipid were seen. Some 

unidentified inflammatory cells appeared to be apoptotic at later time points in CHB and duct 

ligation sections, however this was not noted in electron microscopy samples which may have 

facilitated identification. Stellate cells and macrophages disappeared with regeneration and 
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fibrosis in the caerulein model, only mast cells remained higher than normal. CHB stellate cell 

numbers declined much faster and further from 10 days than fibrosis which began to decline 

from 18 days but still remained higher than control levels. Macrophages paralleled the decline 

of stellate cells, however mast cell numbers remained high. It appears in the CHB model that 

stellate cells and macrophages were not required to maintain the level of fibrosis. In duct 

ligation fibrosis, stellate cells, macrophages and mast cells remained at high levels.  

 
Macrophages are also labelled by phenotype, position and activity. The labelling of 

macrophages into pro and anti-inflammatory macrophages is perhaps overly simplistic as they 

are highly plastic cells that change their active state via a spectrum of chemical and physical 

signals from cellular and environmental cues.190, 260 Whether resident tissue macrophages were 

supplemented here by an active recruitment of blood monocytes as has been shown by others261 

was not obvious. Resident macrophages can proliferate in intestinal tissue in response to IL-4 

without requirement for blood monocyte recruitment.262 Mitosis of macrophages was not noted 

but could have been easily missed as inflammatory cells that were seen in mitosis were not 

readily identifiable. Macrophages are considered the main inflammatory cell in pancreatitis 

although peritoneal macrophages are largely responsible for the severity of pancreatitis.189 

Early in the rat pancreatitis the macrophages actively phagocytosed apoptotic acinar cells as 

previously reported.216, 222, 263 Macrophages were closely associated with stellate cells in all 

models and persisted with fibrosis in the CHB and duct ligation models. They may be 

regulating both inflammation and fibrosis in this pancreatitis. Cross talk between macrophages 

and stellate cells via the IL-4/IL13 pathway has been demonstrated in chronic pancreatitis in 

vivo and in vitro.264 Pancreatic stellate cells expressed the cytokines that are required to 

alternatively activate macrophages to a pro fibrotic phenotype and alternatively, macrophages 

expressed levels of TGFβ and PDGFβ to directly promote stellate cell activation and 

proliferation. These macrophages also regulated ECM turnover by expressing higher levels of 

MMPs and TIMPs. Cytokines and growth factors from macrophages regulate the balance of 

MMPs and TIMPs during nerve repair that potentiates the rate of regeneration.265 This 

interaction between macrophages and stellate cells likely determines the balance between 

fibrosis deposition and resolution and this provides the diversion from the regenerative to the 

fibrotic state.  

 

 Mast cell mediators, chemokines and cytokines are diverse and heterogeneous in both humans 

and animals.192 Granule-stored specific proteases and heparin have significant biological 
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effects relevant to fibrosis including increased collagen synthesis, fibroblast proliferation or 

differentiation and activating TGFβ.  Clinical data from fibrotic pathogenesis in human lung, 

kidney, cardiac, skin and liver indicates that activated mast cells are implicated in the 

progression and severity of fibrosis which is supported by pro-fibrotic cell-to cell contact 

between human mast cells and fibroblasts in co-culture and strong evidence that, in humans, 

mediators secreted by mast cells exert pro-fibrotic effects directly to fibroblasts.192 In contrast, 

mouse and rat models of fibrosis in lung, skin, cardiac, liver, lymph node, adipose tissue using 

deletion of mast cells has given rise to the incongruity of anti-fibrotic, pro-fibrotic or not 

involved in fibrosis results.192 As mast cell numbers were increased, they degranulated and 

persisted to a certain degree in all models, a role for mast cells in fibrosis in these models is 

indicated. TGFβ which is upregulated in duct cells in chronic pancreatitis is a stimulator of 

mast cells and they have been known to induce collagen 1 gene expression in mouse skin 

fibroblasts.195 In the fibrotic rat pancreata they were found around tubular complexes, close to 

stellate cells and macrophages and in the stroma.  Mast cells are a source of pro fibrotic stimuli 

such as TGFβ, PDGF, FGF2 and granulocyte macrophage colony-stimulating factor and they 

store and release into the interstitial space, matrix components such as hyaluronic acid and 

chondroitin sulphate all of which can contribute to ECM remodeling.266 

 

IHC showed that laminin a component of the basement membrane was disrupted early in the 

rat pancreatitis, presumably as cells shrank and rounded up with apoptosis. Basement 

membrane progressed to lay thickly and unevenly around tubular complexes. In the caerulein 

model laminin levels and basement membrane returned to normal appearance by 10 days, in 

the CHB and duct ligation models expression was strong and the thick fuzzy appearance looked 

to be interweaved with stellate cells around some tubular complexes. The abnormal deposition 

remained in the CHB and duct ligation models at day 18 however were more ordered around 

regenerating acini in the CHB model. The basement membrane contains laminins and collagens 

and proteins that crosslink and anchor these fibres. Cellular skeletal architecture and tissue 

cohesion maintained by laminin and collagen integrity is regulated by integrins. The βintegrin 

receptor group is largely responsible for cell attachment to the ECM and the lack of integrins 

interferes with laminin and basement membrane assembly in various other tissues.267 

Pancreatic acini have integrin receptors in their basal lamina268 but which pancreatic cells 

express the proteins for cell/basement membrane linkage is unknown. The group of Riopel et 

al used a loxP-mediated recombination and col1a2-CreERT transgene and tamoxifen 

administration to remove integrinβ1 from mouse pancreatic cells.  This resulted in decreased 
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ECM protein and integrin loss from acinar cells that further caused disrupted basement 

membrane and impairment of acinar function. This indicates that integrin-ECM interactions 

are essential for maintaining exocrine epithelial integrity and that stellate cells regulate 

pancreas function through maintenance of basement membrane.269 In the CHB model stellate 

cell numbers were reduced considerably by 18 days, basement membrane was abnormally laid 

around tubular complexes and regeneration continued to fail. In the duct ligation model stellate 

cells remained in high numbers, basement membrane was abnormally laid around tubular 

complexes and regeneration was non-existent. Basement membrane appeared normal around 

blood vessels. It follows in the CHB model that absence of stellate cells may have contributed 

to the failure of basement membrane integrity to influence regeneration however this theory 

does not hold true in the duct ligation model. Future studies exploring the role of integrins in 

these models may provide some answers. Macrophage-derived MMPs also facilitate basement 

membrane disruption to expedite movement of inflammatory cells to injury sites.190  

 

Indisputable in the rat models is that stellate cells, macrophages and mast cells increased in 

number with the onset of pancreatitis. Local and circulating inflammatory cytokines from 

inflammatory cells acting through inflammatory signalling pathways such as NFκB and JAK-

STAT pathways and developmental signals such as Pdx1, Notch, hippo and Wnt pathways 

regulate pancreatic regeneration. These complex interactions are the subject of debate and 

findings are conflicting however recent literature alludes to their important roles in promoting 

or inhibiting pancreatic regeneration.53 This suggests that interactions between fibrotic and 

developmental mechanisms regulate pancreatic regeneration.   

 
8.5 SURVIVIN 

  

Survivin expression was increased in the pancreatitis of the rat models in cells that were 

proliferating, differentiating and pro or anti apoptotic. Its expression early in pancreatitis may 

reflect that survivin is involved in determining the cell death pathway that proceeds by either 

inhibiting or promoting caspase activation. Other authors have reported a role for members of 

the IAP family, including survivin, to regulate the cell-death response in caerulein-induced 

pancreatitis.242, 270 The role of survivin in regeneration is more difficult to define. Survivin 

expression indicated that cells proliferating, acinar, ductal and inflammatory cells correlated 

with PCNA staining for cycling cells. Tubular complexes were positive for survivin both in the 

nucleus and cytoplasm. Tubular complexes showed mitosis when forming so will express 



163 
 

survivin as proliferating cells. They do become apoptotic as was seen particularly in the CHB 

model so the effect cannot be seen as anti-apoptotic. In the duct ligation model where rats were 

kept up to 52 weeks the duct cells and tubular complexes persist for many months but finally 

atrophy (personal communication, Prof Neal Walker, Envoi Pathology, Brisbane, Australia). 

Tubular complexes were also survivin positive in the caerulein model where acinar cells appear 

to transdifferentiate from them. Survivin expression in tubular complexes may indicate then 

that these cells are not terminally differentiated. Survivin expression in alpha cells of islets and 

in ganglion cells may also reflect their differentiation status or propensity to undergo apoptosis. 

The adult cells of the islets of Langerhans have little regenerative capacity although conversion 

of δ and α cells into β cells has been reported in ablation approaches in animal examples271 and 

neurons are known to be changed in pancreatitis and contribute to fibrosis.14 Exactly how or if 

survivin is involved in the process of regeneration in these models is not clear. The availability 

of antibodies for the individual splice variants of survivin would be advantageous towards 

teasing out functions of survivin in pancreatitis. What is apparent is that survivin has increased 

expression in the cell populations that feature in pancreatitis and therefore provides a subject 

for future investigation.  

 

8.6 MOUSE  

 

The attempt to produce a model of pancreatitis in the mouse with CHB that had apoptosis as 

the model of cell death was unsuccessful. Apoptosis occurred arbitrarily between lobules, was 

not in great numbers except in random areas and coexisted with necrosis. Liver damage 

occurred at higher doses such that the mice died before sufficient acinar cell death of any type 

could lead to the loss of parenchyma and pancreatitis. Mice dosed with 50µg/kg caerulein 

appeared to develop both apoptosis and necrosis to the same degree as this experiment272 or no 

cell death effect.273 Other mouse models have shown necrosis to be the primary mode of cell 

death in mice. Mice treated with arginine or fed a choline-deficient diet supplemented with 

DL-ethionine developed necrotic pancreatitis.274 These models in mice do proceed to 

pancreatitis of various degrees. The difference in cell death responses between rats and mice 

was demonstrated as a caspase block in mice.270 Mice appear to be more susceptible to necrosis 

than apoptosis through blockage of caspases -8 and-9 in acinar cells. Although this was a failure 

for our purposes CHB in mice would be an appropriate model to investigate the early events in 

cell death pathways and a model for investigating liver damage.  
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8.7 DOG  

 

The CHB model in dogs did not produce complete apoptotic cell death in the pancreas. Results 

in the dogs were inconsistent probably because they were pound dogs of indeterminate history 

and therefore with possible unknown pre-existing condition. Nonetheless, the result of CHB 

administration was primarily liver damage before a significant pancreatic effect, useful 

information if your small dog has a passion for over consumption of cruciferous vegetables or 

your forage animals escape into the wrong field. The similarity to xylitol poisoning in dogs is 

particularly interesting as this is a veterinary presentation in the USA and increasingly in 

Australia as xylitol is used in snack foods. Further research to elucidate the mechanism of CHB 

liver damage in dogs may be the key to unlock the mechanism of xylitol poisoning with clinical 

translation. Speculation on the pancreatic cell death response in dogs is not possible with these 

results. Assuming pound cats would have the same issues with history as the dogs it would be 

useful to investigate the effect of CHB in a different higher mammal with purpose breeding 

such as pigs with due regard to the age of the animals. Pancreatitis in dogs remains a clinical 

issue for veterinarians and is worthy of further investigation.  

 

8.8 FUTURE DIRECTIONS  

 

Currently I am collaborating with a group of researchers at the University of Otago, Dunedin, 

New Zealand on a project with activins. Activins are members of the TGFβ family likely 

involved with pancreatic stellate cell activation, and fibrosis. We are investigating 

immunohistochemistry for activins and their regulators Smads on tissue microarrays made 

from the paraffin tissue blocks from the rat models along with a commercial tissue array for 

human pancreatic pathologies. This work is novel and thus far shows promising results.  

 

8.9 CONCLUSION  

 

This research has the potential to add to the emerging field of regeneration biology. We must 

understand the mechanisms to restore cell populations and their function to damaged tissues. 

Understanding embryonic development, analysing cell and tissue growth, identifying 

pluripotent and stem cells and the supportive cells that promote tissue repair is required to 

develop cell-based therapies for those with chronic disease. It is clear from this report that 
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inflammatory cells and basement membrane play an important role as a permissive or 

detrimental local environmental in regeneration from pancreatitis. The roles of the individual 

cell populations, their mechanisms and mediators are complex but interconnected.  Uncovering 

the obstacles to tissue regeneration remains an important goal for researchers to develop 

clinical therapies especially in organs with limited regenerative capacity. There are differences 

between humans and rats in metabolic terms, in genetic background, with laboratory rats 

subject to clinical inbreeding and strict environmental conditions and diet likely affecting 

disease mechanisms and phenotypes. Human tissue is collected mainly in the later stages of 

pancreatitis or is rarely available consequently it is necessary to continue the search for suitable 

animal models that share general histological and pathological responses with regards to 

inflammation, cell death and regeneration in pancreatitis. 
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APPENDIX 1 
 

Puchtler’s (Picro-) Sirius Red for fibrosis 

 

Picro-sirius red solution 

Sirius red F3B     0.5g 

Saturated aqueous picric acid   500ml 

Acetic Acid water    5ml 

Distilled water     110ml 

 

Bring sections to water. Optionally stain nuclei with an acid resistant nuclear stain. Wash well 

with water. Stain in Picro-Sirius red solution for 1 hour. Wash with 2 changes of acetic acid 

water. Dehydrate with ethanol, clear in xylol, mount with depex. 

 

Nuclei=blue, cytoplasm=yellow, collagen=red 

Histological and Histochemical Methods, J.A. Kiernan (1999), Butterworth Heinemann 

Oxford, England, and Woburn, MA., USA; Sirius Red F3B,BDH laboratory supplies, Poole, 

England. 

 

Alcian Blue/Nuclear-fast Red for mast cells 

 

1% Alcian Blue in 0.7N HCl 

0.7N HCl rinse 

Nuclear Fast Red    0.1g 

5% aluminium sulphate aqueous  100ml 

Filter before use 

 

Bring sections to distilled water. Stain in Alcian blue solution for 1.5 hours. Rinse quickly in 

distilled water. Wash in 0.7N HCl for 1 minute. Stain in Nuclear Fast Red solution 10 minutes. 

Rinse quickly in water. Dehydrate in ethanol, clear in xylol, mount with depex.  

 

Alcian Blue 8GX, BDH Laboratory Supplies, Poole England. 

Nuclear Fast Red, Chroma 1A 402, Chroma-Gesellschaf, Stuttgart. 
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Toluidine Blue stain for semi thin epoxy sections 

 

Epoxy sections cut 0.5-1.0 µm thick 

 

Distilled water    100 mls 

Toluidine blue    1 gram 

Sodium tetraborate    1 gram 

 

Add chemicals to boiling water and agitate for 30 minutes. Allow to cool before use. Heat 

slides on the hot plate for 5 minutes; apply 3 drops of stain; leave for 30-60 seconds. Do not 

let slide dry. Rinse under running water to remove excess stain. Differentiate in three changes 

1-2 mins each of absolute ethanol. Wipe back of slide and dry on hotplate. Blow gently on slide 

to avoid ‘tide’ lines. Coverslip with depex.  

 

Mayer’s Acid Haemalum  

 

Haematoxylin     1.0g 

Sodium iodate     0.2g 

Potassium aluminium sulphate  50g 

Distilled water     1000 mls 

Dissolve overnight then add 

Chloral hydrate     50g 

Citric acid      1.0g 

 

The stain has a working life of one month and may be stored for six months. The original 

formula of Mayer (Mitth. Zool. Stat, Neapel., X, 1, 1891; Toxic) differed in detail from that 

given, however the latter is accepted as Mayer’s formulation. 
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Eosin 

 

Eosin     1 gm  

70% Ethanol     1 litre 

 

[HCl precipitated Eosin Y, C.I. 45380] 

 

10% neutral buffered formalin 

 

37% formaldehyde is the approximate saturation point for formaldehyde gas in water. 10% 

formalin is a histologist’s term and refers to a 1:10 dilution of 37% formaldehyde in buffer, 

effectively 4% formaldehyde. 

 

NaH2PO4.2H2O   4.5 grams 

Na2HPO4    5.85 grams 

Formaldehyde 37%   100 mls  

Distilled water    900 mls 

 

4% neutral buffered paraformaldehyde 

 

Made by mixing 4 grams of paraformaldehyde powder in 0.1M phosphate buffer pH 7.4. 

Paraformaldehyde will readily dissolve in neutral to alkaline-buffered solutions. It will not 

dissolve in distilled water or acidic solutions without the addition of large quantities of 

sodium hydroxide.  

 

Paraformaldehyde    4 grams 

0.1M phosphate buffer   100 mls 

 

Heat the buffer to 50oC and add the paraformaldehyde, stir till dissolved. It is important that 

the temperature of the buffer is not significantly higher than 50oC as 1 or more small NaOH 

pellets may need to be added to help dissolve the paraformaldehyde. Cool and check pH Fix 

for 12 to 24 hours depending on size, use/store at room temperature. 
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Fixed tissues are transferred to 70% ethanol, or 0.1M phosphate buffer if the samples are for 

electron microscopy. Paraformaldehyde solutions should be prepared fresh or used within a 

month. 

 

0.1M Phosphate buffer  

 

Add 36 mls of dibasic sodium phosphate with 14 mls of mono sodium phosphate and 50 mls 

of distilled water, pH to 7.4  

 

Karnovsky’s fixative 

 

Fixative/perfusate for electron microscopy. Addition of calcium chloride to the solution will 

improve the preservation of cell membranes. 

 

4% paraformaldehyde, 4% glutaraldehyde, 0.1% calcium chloride in 0.1M sodium cacodylate 

pH 7.3 buffer. 

Sodium cacodylate  2.14 grams 

Paraformaldehyde  4.0 grams 

Calcium chloride  0.1   gram 

Water   84    mls 

Glutaraldehyde 25% 16    mls 

 

Heat water to 50oC and add the paraformaldehyde, stir till dissolved. 1 small NaOH pellet 

may need to be added to help dissolve the paraformaldehyde. Cool to room temperature and 

add the sodium cacodylate and calcium chloride. Stir till dissolved and pH to 7.3. 

Immediately before use add the glutaraldehyde and mix thoroughly.  

 

Either perfuse animals with Karnovsky’s for 10 - 20 minutes, remove the target tissues, dice 

into blocks 1mm3 and fix for a further 2 hours by immersion or remove target tissues dice in 

to 1mm3 blocks and fix by immersion for a minimum of 4 hours 

 

Warning sodium cacodylate contains arsenic, a known carcinogen. Paraformaldehyde is a 

suspected carcinogen. Glutaraldehyde in highly toxic by contact and its vapours can cause 

sensitisation and respiratory distress. 
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Antigen Retrieval 

 

0.01M Citrate pH6.0, 5 minutes at 125oC  

0.001M EDTA/0.01M Tris pH 8.8, 15 minutes at 105oC   

0.1% porcine trypsin 30 minutes at room temperature 15 mins at 37oC 

20ug/ml proteinase K in 0.05M Tris-Hcl, 0.01M CaCl2 pH8.0 10 minutes at room 

temperature 

HCl  0.2N 15 mins at 37oC 

Chymotrypsin 0.5% 10 mins at 37oC 

Heat retrieval was performed in a Biocare Medical Decloaking Chamber 

 

Proteinase K Digestion 

 

To make 20μg/ml Proteinase K add: 

100 microlitres of 2.0 mg/ml Proteinase K to  

10 ml of 0.05M Tris.Cl /0.01M calcium chloride pH 8.0  

Proteinase K  Promega cat# V302B 155567 

 

Chymotrypsin Digestion  

 

Chymotrypsin 0.05g, Sigma Aldrich C4129-1G  

CaCl2  0.05g, Sigma Aldrich C2661-500g 

dH20, 10 ml 

Incubate for 10 min at 37oC, adjust pH to 7.8 using NaOH.  

 

0.01M (10mM) sodium citrate buffer pH 6.0 for antigen heat retrieval 

 

Sodium Citrate Buffer (10mM) - Tween 20 (0.05%) pH 6.0  

Dissolve 2.94 g Tri-sodium citrate in 1000 ml distilled water  

Adjust to pH 6.0  

Add 0.5 ml of Tween 20 and mix well 
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0.001M ethylenediamine tetra acetic acid (EDTA) pH 8.8-9.0 for antigen heat retrieval  

 

Tris/EDTA (10/1 mM) pH 9  

Add 1.21 g of Tris and 0.37 g of EDTA to 1000 ml of distilled water  

Adjust to pH 9 if necessary  

 

0.01M Phosphate buffered Saline  

 

100ml saline + 0.026g KH2PO4 + 0.115g Na2HPO4 

 

Tris buffer/Tween 

 

Tris Buffer (10mM) - Tween 20 (0.05%) pH 10  

Dissolve 1.21 g Tris Base in 1000 ml distilled water  

Adjust to pH 10 using 1M NaOH  

Add 0.5 ml Tween 20 and mix well 

 

Secondary antibody/detection reagent:  

 

DAKO EnvisionTM + Dual Link System-HRP (DAB+), Dako Code K4065 

MACH1 Universal HRP-Polymer detection, Biocare Medical 

Jackson donkey goat ant- rabbit 1:300 20 minutes at RT 

 

Glass slides, Menzel Superfrost Plus 

 

Selected antibody and supplier details 

 

Amylase rabbit anti-human, lot 86H8840, Sigma  

Caspase rabbit anti-cleaved caspase3, ASP175, Cell Signaling cat  no 9661S 

Caerulein sulfated C9026, lot 121H02111,  CAS No. 17650-98-5 Sigma peptides and amino 

acids 

CD68, monoclonal mouse anti-human clone PG-M1 code M0876, Lot 016, DAKO  

CD117/c-kit rabbit polyclonal cat CP151a, Biocare Medical   
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Cytokeratin AE1/AE3 mouse anti-human, lot 0019B, DAKO  

Glucagon porcine anti-human NCL-GLUCp, Novacastra  

PCNA (Proliferating cell nuclear antigen) (AB-1) Monoclonal mouse NA03, Oncogene 

research products, Calbiochem   

αSMA smooth muscle actin, monoclonal mouse IgG2a isotype, clone 1A4, Sigma A2547 

Survivin rabbit anti-human clone 71G4B7, Cell Signaling cat #2808 

Survivin rabbit polyclonal, NB500-201, lot P1, Novus Biologicals  

 

Biocare Medical, 60 Berry Drive, Pacheco, CA 94553, USA 

Calbiochem 10394 Pacific Centr Court, San Diego, CA 92121 

Dako Australia Pty Ltd  Berry Street, North Sydney, NSW.   

Jackson Immunoresearch Inc, 872 West Baltimore Pike, West Grove, PA, USA 19390 

Novacastra, Leica Biosystems, Wetzlar, Germany  

Novus Biologicals, In Vitro Technologies 7-9 Summit Road Noble Park North, VIC 3174 

Sigma-Alrich Merck, 12 Anella Ave, Castle Hill NSW 2154 
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