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Abstract 

In the general population, obesity is associated with significantly higher cardiovascular disease 

(CVD) and all-cause mortality risk compared to normal weight. Among patients with type 2 diabetes 

mellitus (T2DM), some studies reported significantly higher mortality risk for those with normal 

weight at the time of diagnosis compared to their obese counterparts – indicating the presence of the 

obesity paradox. However, a detailed exploration of the possible reasons for the obesity paradox in 

patients with T2DM has not been conducted. 

 

The clinical-epidemiological aim of this thesis was to conduct an extensive exploration of the 

potential role of weight change before the diagnosis of T2DM and ethnicity in the association between 

BMI and CVD / mortality risk in patients with T2DM, using a large nationally representative patient-

level electronic medical record (EMR) database. Given the methodological and analytical challenges 

in using such databases to design and conduct epidemiological outcome studies, the methodological 

aims were to  compare and generalise (1) statistical methodological approaches for the robust 

extraction of a disease cohort and (2) methods for imputation of missing longitudinal risk factor data. 

 

This thesis used the patient-level primary care EMR database from the United Kingdom –The Health 

Improvement Network (THIN) database. A robust methodological framework that incorporates 

several biostatistical methods was used to address the aims of this thesis. First, an extensive machine 

learning (ML) classification algorithm was used to identify and extract a cohort of patients with 

T2DM from the THIN database. Second, an exact matching algorithm was developed and used to 

match four non-diabetic controls to each patient with T2DM based on age, sex, and ethnicity. 

Longitudinal measurements of anthropometric, cardiovascular, and glycaemic risk factors were 

extracted and arranged in 6-monthly non-overlapping windows. Third, the predictive mean matching 

technique of multiple imputation was used to impute missing longitudinal cardiovascular and 

glycaemic risk factor data. These applied methodological tasks were conducted to ensure the ability 

to draw robust inferences on the epidemiological aims of this thesis, including the use of different 

study designs, inclusion, and exclusion criteria. Generalised linear model under general estimating 

equations setup, with unstructured covariance was used to evaluate body weight trajectories before 

and after diagnosis of T2DM while multivariate stratified Cox proportional hazards regression was 

used to assess the association of BMI at diagnosis with mortality risk in patients with T2DM. 
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For large EMR databases like THIN (n=~11 million patients), the use of extensive data mining / ML 

algorithms are required to robustly identify patients with a disease of interest. Furthermore, multiple 

imputation of missing longitudinal risk factor data was a valid approach as the distributions of 

imputed data over 24 months post diagnosis of T2DM were similar longitudinally compared to that 

of the unimputed data. While patients with T2DM had a significantly higher mean BMI levels and 

prevalence of comorbidities at diagnosis compared to non-diabetic controls, similar prevalence of 

cardiovascular multi-morbidity was observed among White European, African-Caribbean, and South 

Asian patients who were normal weight at diagnosis.  

 

Weight trajectory analysis among patients with T2DM and no established comorbidities at diagnosis, 

showed that normal weight and overweight patients experienced a small but significant reduction in 

body weight six months before diagnosis, followed by significantly increasing trend post-diagnosis. 

For patients in all obese categories, consistently increasing body weight was observed six months 

before diagnosis followed by a decreasing trend after diagnosis. Furthermore, a paradoxical 

association of BMI with mortality risk was observed among patients who did not lose body weight 

before diagnosis – where normal weight patients had 35% significantly higher adjusted mortality risk 

compared with the grade 1 obese patients. However, among patients experiencing weight loss before 

diagnosis, BMI at diagnosis was not associated with mortality risk. The obesity paradox was further 

observed among White Europeans and South Asians where those with normal body weight at 

diagnosis were significantly more likely to die earlier by 0.6 years and by 2.5 years respectively, 

compared to their respective obese patients. 

 

The findings of this thesis add to the evidence base that patients with T2DM, who were normal weight 

at the time of clinical diagnosis have significantly higher mortality risk compared to those who were 

obese, and this may partially be driven by different cardiovascular and glycaemic risk profiles of 

different ethnic groups. Empirical results from this thesis suggest that there was no evidence of pre-

existing latent or severe disease conditions being overrepresented in normal weight patients. In fact, 

dynamic changes in body weight before clinical diagnosis of T2DM were independent of pre-existing 

latent or severe disease conditions. The increased mortality risk in the normal weight group may 

reflect differences in the aetiology of diabetes in normal weight people and emphasises the 

importance of addressing risk factors for excess mortality in this group 
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Chapter 1: Introduction 

The prevalence of both type 2 diabetes mellitus (T2DM) and obesity are continuing to rise despite 

efforts by the international community to halt their progress. Even though there is evidence supporting 

the link between obesity and an increased risk of developing T2DM, the exact mechanism still eludes 

the scientific community. Moreover, recent reports have also indicated that obesity offers a survival 

advantage to patients suffering from certain diseases like T2DM. This phenomenon is called the 

“obesity paradox in T2DM”, where patients who were normal weight at the time of diagnosis, were 

found to have significantly higher mortality rates than their overweight or obese counterparts. My 

thesis further explores the obesity paradox in T2DM by identifying (1) longitudinal changes in body 

weight, in conjunction with dynamic changes in other cardiovascular and glycaemic risk factors, (2) 

the possible ethnicity-based differences in the risk paradigm, (3) exposure to various anti-diabetic 

therapies, and (4) specific causes of death in the association of obesity and mortality in patients with 

T2DM. 

1.1 THESIS OUTLINE 

There are nine chapters in this thesis. In the introductory chapter (Chapter 1), the aims and objectives 

are highlighted and a review of the global distribution of diabetes and the current treatments available, 

as well as the risk factors and management of obesity, are provided. The obesity paradox in T2DM is 

also discussed in the context of statistical and methodological limitations of existing research. Finally, 

the implications from the literature and the conceptual framework for the study are discussed. Chapter 

2 describes the design adopted to achieve the aims and objectives of this thesis, while Chapter 3 

discusses the different approaches used to robustly identify and extract a cohort of T2DM patients 

from a relational database called The Health Improvement Network (THIN) database. In Chapter 4, 

an exact matching method is used to match non-diabetic patients to patients with T2DM in a pre-

specified ratio. Furthermore, Chapter 4 addresses the difference between complete and imputed 

longitudinal data on different outcomes. Chapters 5, 6, 7 and 8 contain the primary results of this 

thesis. These chapters cover the relationship between BMI and cardiovascular risk, death due to 

cardiovascular diseases in patients with incident T2DM. Finally, a discussion and conclusion that 

puts the findings of this study into perspective are provided in Chapter 9. 
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1.2 BACKGROUND 

Type 2 diabetes mellitus (T2DM) is a chronic disease that is mainly associated with an increasingly 

sedentary lifestyle and high prevalence rates of obesity, along with other factors 1,2. With an 

exponentially increasing prevalence worldwide 3, the implications for the lifetime complications of 

the disease are enormous because of possible long-term damage to multiple organs 4. Among various 

risks factors, higher body weight (obesity) has played a central role in the history and development 

of T2DM. The most commonly used measure of obesity is the body mass index (BMI) due to its 

simplicity and reproducibility. It examines body weight relative to height and is calculated by dividing 

a person's weight in kilograms by the square of height in metres. The World Health Organisation 

(WHO) defines an obese person as having BMI greater than or equal to 30 kg/m², while overweight, 

normal, and underweight persons have BMI measurements in the ranges of 25-29.9 kg/m², 18.5-24.9 

kg/m², and <18.5 kg/m² respectively 5. Despite the significant health burden of both diabetes and 

obesity, the relationship between them remains a complicated one 6. While obesity is a standard 

feature of T2DM patients, likely due to insulin sensitivity and resistance, obesity is also known to 

precede T2DM 7. 

 

Obesity is considered a major risk factor for cardiovascular disease, hypertension, and diabetes. A 

recent meta-analysis has reinforced the fact that compared to normal weight, obesity is associated 

with significantly higher cardiovascular and all-cause mortality risk in the general population 8. 

However, in some specific clinical populations, obese or overweight patients appear to have a better 

survival prognosis compared to normal weight patients in a phenomenon referred to as the “obesity 

paradox” 9-11. Patients with T2DM are among clinical populations in which the paradoxical 

association between body weight, measured as BMI and mortality have been observed 12. This 

paradox is also seen in heart failure 13, coronary heart disease 14, hypertension 15,  and chronic kidney 

diseases 16,17. This leads to the challenge of exploring the optimum adult body weight that best 

advances health, minimizes the risk of chronic disease like diabetes, and promotes longevity. This 

quest for optimum adult body weight has recently engaged the interest of the clinical investigators 

and public health professionals since weight loss is so frequently a focus of management of T2DM. 

Some recent observational studies have evaluated the cardiovascular and mortality risks in normal 

weight and overweight patients compared to obese patients with incident diabetes 12,18-20. Patients 

with T2DM who were normal and overweight at the time of diagnosis had 60%, and 10% increased 

mortality risk respectively, compared to their counterpart obese patients. Other investigations into the 

obesity paradox in T2DM have produced conflicting results. Some studies did not observe lesser 

mortality in obese or overweight participants compared with normal weight 21-24, while others have 
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shown that both normal weight and obese patients had significantly higher mortality outcomes than 

overweight patients (U-shape association) 25,26. 

 

To the best of our knowledge, the exact mechanism of this observed obesity paradox in patients with 

T2DM is not fully explained. It is possible that unrecognized underlying comorbidities (pre-existing 

diseases) are overrepresented in the normal weight group, leading to weight loss in this group and 

subsequent increased risk of death (reverse causation). In addition,  mortality risk may be reduced for 

individuals in the overweight/obese category because of treatment (e.g., more aggressive therapy, use 

of metformin), or adiposity in the overweight range is genuinely healthy. Also, given the interplay 

between ethnicity, BMI and mortality 27-30, ethnicity could play a role in explaining the obesity 

paradox in patients with T2DM. 

 

While weight loss as a treatment has provided compelling evidence for diabetes control 31-33, lack of 

full understanding of the observation of higher mortality risk in normal weight patients with diabetes 

significantly limits the ability to provide appropriate weight targets for patients. Therefore, there is a 

need for further research to focus on potential mechanisms of this observed paradox in T2DM. I have 

addressed this issue by conducting a set of extensive clinical-epidemiological evaluations in terms of 

risk factor dynamics, and cardiovascular and mortality outcomes, using the patient-level primary care 

database from the United Kingdom. In this comparative longitudinal case-control study based on 

retrospective real-world data, the dynamics of obesity paradox would be explored by evaluating (1) 

body weight trajectory before diagnosis and (2) the trajectories of body weight and clinical risk factors 

following diagnosis of diabetes in different BMI categories, after adequately taking care of 

confounding factors and on-going treatment regimens. 

 

1.2.1 Hypotheses 

1. Patients who were normal weight at the time of diagnosis of T2DM may have higher 

mortality risk compared to overweight or obese patients. 

2. Presence of underlying illness, the influence of glycaemic and other cardiovascular risk 

factors, and the anti-diabetic treatment may modify the association of body weight with 

mortality risk in patients. 
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1.2.2 Aims and objectives 

AIM 1: To compare and generalise statistical methodological approaches for the extraction of disease 

events and dealing with missing data issues from national electronic medical records (EMRs) 

containing large patient-level longitudinal data. 

Specific objectives: 

a. To develop robust data mining techniques that deal with the large and complex 

relational database containing longitudinal patient-level information. 

b. To design a comparative longitudinal study of patients with T2DM and their matched 

non-diabetic controls.  

c. To evaluate the difference between the association of complete and imputed 

longitudinal data on outcomes. 

 

AIM 2: To evaluate the association of BMI at diagnosis of T2DM with long-term cardiovascular risk 

and mortality. 

Specific objectives: 

a. To conduct a systematic review of current studies evaluating the association of BMI 

with cardiovascular and mortality risks in patients with T2DM.  

b. To investigate the association between BMI at diagnosis and mortality risk, accounting 

for weight change patterns before the diagnosis of T2DM. 

c. To investigate the possible roles of ethnicity, collider-stratification bias, and reverse 

causation in explaining the obesity paradox in patients with T2DM. 
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1.3 LITERATURE REVIEW 

1.3.1 Diabetes Mellitus: A Brief Epidemiological Review 

Diabetes mellitus (DM) is a chronic metabolic disease of different origins, with a hallmark feature of 

sustained high plasma glucose resulting from defects in insulin secretion, insulin action or both 4,34. 

Insulin deficiency or a defect in insulin secretion is central to all the pathogenic processes involved 

in the development of DM. Insulin is a hormone that is secreted by the β-cells of the islets of 

Langerhans found in the pancreas. It is the primary regulator of carbohydrate metabolism in the whole 

body and is secreted or degraded in response to nutritional or hormonal states. In the fed state, high 

plasma glucose is detected by the β-cells of the pancreatic islets, and in turn, an essential peptide 

hormone insulin is synthesised and secreted from the β-cells of the pancreatic islets mainly in 

response to glucose. With insulin, the cells of the body are now able to take up glucose. Glucose is 

then taken through the glycolytic pathway to produce adenosine triphosphate which is the primary 

energy currency of the body 35.  

 

When insulin is not produced, or the amount produced is not enough to enable glucose uptake into 

the cells from the blood, glucose is left to circulate in the blood resulting in the state of 

hyperglycaemia, a major feature of DM. Metabolic pathways of major macromolecules like 

carbohydrate, lipid, protein, and fats are affected by sustained hyperglycaemia which subsequently 

leads to long-term damage, failure or dysfunction of several organs 4,34. There are many forms or 

manifestations of DM but the American Diabetes Association (ADA) and a report from WHO 

consultation, have grouped diabetes cases into two broad categories, based on clinical symptoms. The 

two major categories are type 1 diabetes mellitus (T1DM) and T2DM. In addition to these are 

gestational diabetes and “other specific types” that do not fall under either the T1DM, T2DM, or 

gestational diabetes, mainly due to the process that led to the particular type of diabetes and their 

clinical manifestation 4,34.  

 

In T1DM, there is complete destruction of the β-cells of the pancreatic islets resulting in an absolute 

deficiency in insulin production and secretion. Patients with this form of diabetes are usually 

characterised by the presence of anti-glutamic acid decarboxylase (GAD), islet cell or insulin 

antibodies which identify the autoimmune processes that lead to beta-cell destruction and hence 

require insulin for survival. On the other hand, patients with T2DM are predominantly insulin 

resistant with relative insulin deficiency to a predominantly secretory defect with or without insulin 

resistance. Here the degree of hyperglycaemia sufficient to cause pathologic and functional changes 

in various target tissues, but without clinical symptoms, may be present for an extended period before 
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diabetes is detected 4,34. Gestational diabetes occurs when any degree of glucose intolerance appears 

during pregnancy, regardless of whether different treatment was used or whether the condition 

persists after pregnancy 2. 

 

In addition to T1DM, T2DM, and gestational diabetes, other types of diabetes have been identified. 

This is where diabetes is associated with other conditions, for example, diabetes secondary to diseases 

of the exocrine pancreas, drugs and other endocrinopathies 36. As such, patients may require oral 

agents or insulin depending on the ability of the pancreas to produce insulin. Also, monogenic defects 

in β cells can cause maturity-onset diabetes of the youth (MODY), a form of diabetes that is 

characterised by hyperglycaemia at an early age (25 years) and impaired insulin secretion with 

minimal or no defects in insulin action. 

 

Globally, the prevalence of DM in all age groups is increasing exponentially. The WHO predicted 

that 366 million people will be living with DM by 2030 37, but given the latest survey by the 

International Diabetes Federation (IDF), it is clear that the WHO may have underestimated the 

prevalence of DM – because by 2017 there were already 425 million people (equivalent to 1 in 11 

adults) with DM 3,38, far above the predicted estimate for 2030. The IDF projects the prevalence of 

DM to rise to 642 million by 2040. If prevalence data is not available for a country, it is extrapolated 

from another country using regional data, World Bank income, ethnicity and language 38. Given the 

fact that these extrapolations are less reliable, the current IDF estimates may still be underestimated 
39. 

 

The prevalence of DM is disproportionately high in some ethnic groups and socioeconomically 

deprived societies (e.g., South Asians, African-Caribbean). South Asians develop DM earlier and at 

lower BMI levels, compared to White Europeans 40,41. In India alone, 72 million individuals (~5%) 

were living with DM in 2017, with a projected rise to 123.5 million by 2040 3. A population-based 

survey conducted in China in 2010 suggests that about 12% of the adult population had diabetes and 

about 50% of total population had pre-diabetes (impaired glucose tolerance, defined as 2-hour oral 

glucose tolerance levels 7.8–11.0 mmol/l, and impaired fasting glucose, defined as fasting glucose 

levels 6.1–6.9 mmol/l) 42. 

 

It is estimated that more than 75% of people with DM live in low and middle-income countries, and 

more than 70% of them are in the working age of 20-64 years. It is known to also occur more in 

females than males 36 with the estimated number of females (20-79 years) living with diabetes in 2017 

being 204 million 3. Accordingly, the associated cost of managing DM and its related complications 
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worldwide is also increasing exponentially 43 (i.e. 12% of global health expenditure ~ USD 730 

billion). 

 

T2DM accounts for 90% of diabetes cases worldwide and occurs mostly in adults but is also seen in 

younger patients. With the average age of onset dropping, the incidence of T2DM among adolescents 

has increased 15- to 20-fold since 1982 4,34,44. Advances in epidemiological research on T2DM has 

shown that the determinants of T2DM consist of many contrasting and interacting genetic, epigenetic 

and lifestyle factors 39. Several reasons have been postulated for the escalating epidemic of T2DM. 

These include population ageing, economic development, urbanization, unhealthy eating habits and 

sedentary lifestyles 43. Since adverse lifestyle changes primarily cause T2DM, populations that have 

undergone radical changes from traditional to western lifestyles relating to poor nutrition have very 

high adult prevalence. For example, Aboriginal people of Australia, North American Indians, and 

Pacific Islanders are known to have a high prevalence of T2DM than their surrounding communities 
43,45. High-calorie diets that lead to excess body fat, hypertension, and dyslipidaemia are considered 

to be a major contributor to the disease burden. People with a history of diabetes in first- and second- 

degree relatives have increased the risk of developing T2DM.  

 

T1DM, which mostly occurs in children, accounts for 5-10% of DM cases. With a peak incidence 

during adolescence, it is estimated that over 500 million children are living with T1DM 43. Developed 

countries have the highest prevalence of T1DM with Finland, Denmark, Norway, and Sweden taking 

the lead. Japan has the lowest incidence among developed countries. The United Kingdom (UK) alone 

has seen a doubling of the incidence of T1DM in persons under the age of 16 years in recent years. 

Moreover, because T1DM can affect persons of any age group, about 20% of patients initially 

diagnosed with T2DM are eventually found to have evidence of autoimmune activity typical of 

T1DM. This form of clinical manifestation is called latent autoimmune diabetes in adults 2. 

 

Gestational diabetes, a pregnancy complication defined as glucose intolerance with onset or first 

recognition during pregnancy, significantly influences T2DM risk in exposed women and their 

offspring. The prevalence of gestational diabetes varies depending on the diagnostic criteria used and 

the study population. According to IDF 2017 estimate, about 16% of live births had some form of 

hyperglycaemia in pregnancy, and 1 in every 7 births was affected by gestational diabetes. Women 

with gestational diabetes had a seven-fold increased risk of developing T2DM compared to those 

without the condition 46-48. In the children of women with gestational diabetes, exposure to 

intrauterine hyperglycaemia was found to be associated with an 8-fold risk of developing 

diabetes/prediabetes at 19-27 years of age 49. 
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Patients with T1DM are treated with insulin as they require it for survival, but there is an extensive 

range of oral antidiabetic drugs available for the treatment and management of T2DM. Based on their 

mode of action, they are classified as agents that: (1) stimulate insulin secretion (e.g. sulphonylureas), 

(2) reduce hepatic glucose production (e.g. biguanide such as metformin), (3) delay digestion and 

absorption of intestinal carbohydrate (e.g. α-glucosidase inhibitors), and (4) improve insulin action 

(e.g. thiazolidinediones). As a rule of thumb, patients with T2DM are usually treated with lifestyle 

interventions therapies including exercise, dietary modifications, smoking, and alcohol cessation. 

Oral antidiabetics are then initiated at low doses and titrated upwards according to the glycaemic 

response as measured by glycated haemoglobin (HbA1c) levels. Insulin is introduced when lifestyle 

interventions and other oral antidiabetic medications fail to achieve the desired glycaemic targets 50,51. 

 

1.3.2 Obesity 

Obesity is a condition characterised by excessive fat accumulation which poses adverse risks to health 
35,52. Simply, intake of food more than the human body can use leads to accumulation and storage of 

excess energy as fat. This phenomenon of a positive energy balance and weight gain is compounded 

by (1) lack of physical activity (most cases), (2) genetics, (3) mental illness, (4) lack of sleep, and (5) 

endocrine disruptors 53-58. Excess body weight is now one of the most important risk factors 

contributing to the overall burden of disease worldwide. In fact, the WHO describes obesity as one 

of the most visible, yet most neglected public health problems that threaten to overwhelm developed 

and underdeveloped countries 52,59. 

 

Measurement and classification of obesity 

A variety of techniques are available for the measurement and accurate approximation of body fatness 

and include methods like underwater weighing, dual-energy X-ray absorptiometry (DEXA), total 

body water, total body electrical conductivity, total body potassium, body average density 

management, whole body air displacement plethysmography, bioelectric impedance analysis and 

computed tomography. However, these methods have limitations such as cost and complexity of use. 

For example, DEXA has the ability to distinguish between bone minerals from non-bone fat-free and 

fat soft tissue and measure the whole body as well as individual segments 60. However, use of DEXA 

as a gold standard remains to be fully evaluated as its main limitation is that DEXA scanners have a 

weight and scanning bed area limit of about 136 kg and 60 cm respectively, making it impossible to 

measure obese patients. Despite these challenges, an approach of estimating total body composition 

from half body scans have been explored and validated in two separate studies. The results from both 
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studies showed that half-body scans can accurately predict whole-body per cent 60. Anthropometry-

based tools for the clinical evaluation of body fatness has proven beyond doubt to be most useful 

because of their simplicity and low cost of operation 61 62,63. Examples of anthropometry-based tools 

used in assessing body fatness are (1) body fat percentage (2) body mass index (BMI), (3) waist 

circumference (WC), (4) hip circumference and (5) waist-to-hip ratio (WHR). 

 

Body Fat percentage  
Measurement of body composition is increasingly becoming important in clinical practice with the 

gold standard for body composition analysis being cadaver analysis 64 in which the cadaver is divided 

into parts and analysed completely. However, a close to accurate measure of body fat (essential fat 

and storage fat) is body fat percentage which is calculated as total body fat mass divided by the total 

mass, multiplied by 100.  

 

Body Mass Index (BMI) 
BMI is calculated mathematically as weight in kilograms divided by the square of height in meters 5. 

As one of the clinically accepted methods of assessing total body fat, the WHO defines an obese 

person as a patient whose measurement is greater than or equal to 30 kg/m². It follows that overweight, 

normal and underweight have BMI measurements in the ranges of 25-29.9 kg/m²,18.5-24.9 kg/m², 

and <18.5 respectively. Also, grade 1, grade 2, and grade 3 obesity are defined by BMI in the ranges 

30-34.9 kg/m2, 35-39.9 kg/m2, and ≥ 40 kg/m2 respectively 5. Though BMI is a crude measure of 

body fat 65,66, it has been recommended as an essential component of the initial clinical assessment of 

obesity due to its simplicity and reliability. Its main limitation is that BMI cannot distinguish between 

lean and fat mass so when age and sex-related differences in body composition come into play, it 

cannot correlate well with body fat in some age, sex, and ethnic groups 5. 

 

Waist Circumference (WC) 
Though BMI may prove to be simple and easy to use method of assessing obesity in the clinical 

setting, there are other measurements of adiposity that can also be used to define obesity in a more 

accurate and specific manner than BMI. In assessing central obesity, WC has been shown to be more 

effective and associated with a high risk of CVD and mortality 63. It is easily measured while the 

patient is standing or in expiring position, but it has not been fully accepted in clinical practice. This 

is due to the variability in measurement of waist circumference mainly due to the subjective nature 

of measuring site. For instance, evidence from literature has revealed 8 different sites for WC: (1) 
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halfway between the lowest rib and the iliac crest (midpoint), (2) point of minimal circumference, (3) 

immediately above the iliac crest, (4) umbilicus, (5) 1 inch above the umbilicus, (6) 1 cm above the 

umbilicus, (7) at the lowest rib, and (8) point of largest circumference around the waist 62,67. As a 

result of this variability in measurement locations, different health authorities have recommended the 

use of different locations for the estimation of WC. While the WHO recommends the use of midpoint 

WC measurement, the National Institutes of Health and National Heart, Lung, and Blood Institute 

and the American Heart Association recommend the iliac crest. The iliac crest has the advantage of 

being easily found even in patients with lots of body fat because it is a bone. With good training and 

a measuring tape, using the iliac crest as the measurement location may yet prove to be a standardised 

method for WC measurement 62. 

 

Waist-to-Hip Ratio (WHR) 
WHR is defined as waist circumference divided by hip circumference with the hip circumference 

measured as the largest circumference around the buttocks. Both WC and WHR have been shown to 

independently predict the incidence of CVD, T2DM and mortality 68. In a meta-regression analysis, 

de Koning and others 68 pooled data from over 250,000 participants followed over 6 years with more 

than 4000 cardiovascular endpoints and found significantly increased risk cardiovascular events 

(defined as myocardial infarction, ischemic heart disease, and coronary artery disease). In particular, 

a 1 cm increase in WC was associated with a 2% increase whereas a 0.01cm increase in WHR was 

associated with 5% increased risk of a cardiovascular event after adjusting for confounders. 

 

Brief epidemiology of obesity 

As a modifiable risk factor for death due to cardiovascular diseases and all-cause mortality 

worldwide, obesity affects people of all ages. Despite efforts by the international community to halt 

obesity rates to those of 2010, the global burden of obesity is still enormous. Current epidemiological 

indices of obesity have doubled since 1980, with 13% of the world’s population being obese as of 

2014 69. Estimates of regional trends indicate that the Americas, Europe, and Eastern Mediterranean 

regions have the highest burden of obesity whereas South East Asia has the lowest burden (Figure 

1.1) 69. However, considering that Asians are at higher risk of obesity-related complications at 

relatively lower BMI, a small increase in prevalence translates into millions of cases of chronic 

diseases 70. Furthermore, the developing world is now set to endure a double burden of disease and 

will soon equal or overtake the developed world regarding obesity prevalence mainly due to the 

abandonment of traditional lifestyles in exchange for western lifestyles 71.  
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Figure 1.1: Age-standardised prevalence of obesity in adults aged 18 years and over (BMI ≥ 30 
kg/m2), by WHO regions  
 
(Picture adapted from Global status report on non-communicable diseases, 2014; AFR=African Region, 
AMR=Region of the Americas, SEAR =South-East Asia Region, EUR=European Region, EMR=Eastern 
Mediterranean Region, WPR=Western Pacific Region). 

 

While the prevalence of obesity in Western Pacific countries is low, the actual rate of obesity in this 

region far outweighs that of the USA. Nonetheless, the USA alone has about one-fifth of the 

worldwide cases and the highest obesity rates, and none of its 50 states has a prevalence of less than 

20%. The associated medical cost of obesity was $147 billion in 2008 alone and with increasing 

trends in obesity; this cost is projected to increase 69. Currently, the mean BMI  for men and women 

in the UK are 27.6 kg/m2 and 27.1 kg/m2 , respectively and the prevalence of overweight and obesity 

among adults in the UK is at a staggering 27% 72. 

 

1.3.3 The obesity paradox 

Obesity and overweight have been implicated as risk factors in most disease conditions including 

heart-related diseases 10. However, the effect of weight, most often measured as BMI, on mortality in 

certain disease states remains unclear, as several studies have yielded contrasting results ranging from 

a direct association, no association, to U or J shaped associations 20-26. So far, findings have indicated 

associations suggesting high mortality in individuals with BMI in the overweight and obese ranges. 

In the general population, a recent meta-analysis, based on a sample of more than 2.88 million 

individuals with more than 270,000 deaths, has reinforced the fact that compared to normal weight, 

obesity was associated with significantly higher all-cause mortality 8. The risk of death ranged from 

18% in the overall obesity category to 29% for grade 2 and 3 obesity, although grade 1 obesity was 
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not associated with higher mortality. In fact, being overweight was protective and associated with 

significantly lower all-cause mortality by 6% compared with normal weight individuals. 

 

Consequently, mounting evidence in recent studies points to an inverse relationship rather than a 

direct relationship, suggesting that overweight and obesity confers a survival advantage 9-11. This 

inverse relationship is a phenomenon that has been observed in many clinical conditions and has been 

termed the "obesity paradox". The obesity paradox has been observed in patients with T2DM; 

however, results have been controversial. While some studies found evidence in support of the obesity 

paradox 7,12,19,25,26,73-82 others did not 7,21-24,83-91. A summary table of 31 studies investigating the 

phenomenon of the obesity paradox in patients with T2DM is presented in Table 1.1. 

 

Obesity paradox in T2DM 

Twenty-four studies found evidence supporting the obesity paradox in patients with T2DM 
7,12,19,25,26,73-82,92-100 (Table 1.1). Obese and overweight participants in the Translating Research Into 

Action for Diabetes (TRIAD) 80 and the PROactive trial 93 experienced lower mortality compared to 

persons who were either normal weight or those who lost weight in the course of the trial. Although 

the findings from these studies supported the obesity paradox, there was no data on the duration of 

diabetes of the participants. Furthermore, participants in the PROactive study also had cardiac 

diseases before enrolling in the study. These factors limited the findings of the study as cardiovascular 

diseases and variations in diabetes duration could independently influence mortality in patients with 

diabetes. 

 

Even when normal weight and underweight categories were collapsed into one (BMI<24.9 kg/m²), 

Dallongville and colleagues 76 reported better outcomes with increasing obesity among diabetic 

patients who had established atherosclerotic arterial disease in the REACH registry 76. This study was 

limited by the shorter follow-up period of 2 years and the fact the patients were already undergoing 

lipid-lowering therapy, thus a true causal inference cannot be drawn. Secondly, it is impossible to 

evaluate if the adverse effect found in the lower BMI categories as defined in this study was due to 

underweight associated complications like death due to malnutrition and anaemia.



 

 13 

Table 1.1: Summary of studies reporting evidence in favour of or against the obesity paradox in patients with T2DM 
 Author Exposure groups Adiposity measure FU (yrs.) Outcome Risk model Finding 

1 Sasaki, 81 T2DM only (n=1,939) % BW 9.4 α ACM  Survival, Logistic regression Obesity paradox 
2 Balkau, 74 T2DM (n=1,005), Non-diabetic (n=6,161) BMI, HTR 15.6 α ACM Cox proportional regression Obesity paradox 
3 Chaturvedi, 75 T2DM (n=2,690) BMI 13 ACM Cox proportional regression Obesity paradox 
4 Zoppini, 7 T2DM (n=3,398) BMI 10 ‡ ACM Cox proportional regression Obesity paradox 
5 McEwan, 80 T2DM (n=8,733) BMI 3.7 α ACM Cox proportional regression Obesity paradox 
6 Khalangot,  78 T2DM (n=89,443) BMI 2.7 α ACM Cox proportional regression Obesity paradox 
7 Weiss,  82 T2DM (n=122) BMI 3.7 α ACM Cox proportional regression Obesity paradox 
8 Carnethon, 19 T2DM (n=2,625) BMI 27,125 p-yrs. ACM Cox proportional regression Obesity paradox 
9 Dallongeville, 76 T2DM (n= 19,579)  BMI, WC 2 α ACM, CVD-M Cox proportional regression Obesity paradox 
10 Doehner, 93 T2DM (n=5202) BMI 2.9 ACM, CVD-M Cox proportional regression Obesity paradox 
11 Kokkinos ,  79 T2DM (n=4,156) BMI 7.5# ACM Cox proportional regression Obesity paradox 
12 Ma 95 Diabetic (n=1,712), IGT (n=2,545), Non-

diabetic (n=11,791) 
BMI 9.4‡ CVD-M, CHD Cox proportional regression Obesity paradox 

13 Logue,25 T2DM (n= 106,640) BMI 4.7α ACM Cox proportional regression Obesity paradox 
14 Jackson, 77 Diabetic (n=4,740), Non-diabetic (n=69,970) BMI 9 ‡ ACM Cox proportional regression Obesity paradox 
15 Perotto 96 T2DM (n=1475) BMI, WHR 10.2‡ ACM, CVD-M Cox proportional regression Obesity paradox 
16 Thomas, 12 T2DM (n= 47,509) BMI 5 # ACM Cox proportional regression Obesity paradox 
17 Lajous, 92 Free of diabetes BMI 16.7 α ACM Cox proportional regression Obesity paradox 
18 Tseng, 94 T2DM (89,056) BMI 12 ACM Cox proportional regression Obesity paradox 
19 Murphy 97 T2DM (n=637)  BMI 6.1‡ ACM Cox proportional regression Obesity paradox 
20 Zhao, 26 T2DM (n= 34,832) BMI 8.7 α ACM Cox proportional regression Obesity paradox 
21 Badrick 73 T2DM (n=10,464), Non-diabetic (n=31,020) BMI 8.7 # ACM Cox proportional regression Obesity paradox 
22 Lee 98 Diabetic (n=546,232), IFG(n=2,505,235), 

Non-diabetic (n=9,403,894) 
BMI 10.5 α ACM Cox proportional regression Obesity paradox 

23 Xu 99 T2DM (n=52,488) BMI 6 α ACM Cox proportional regression Obesity paradox 
24 Jenkins100 T2DM (n=23,842) BMI, WC, WHR  ACM Cox proportional regression Obesity paradox 
25 Pettitt 88 Diabetic (n=499), Non-diabetic (n=1,968) BMI 23,608 p-yrs. ACM Survival model No paradox 
26 Rosengren,89 Diabetic (n=232) *, Non-diabetic (n=6,665) BMI 7.1 α CHD, ACM Logistic regression No paradox 
27 Ford, 23 Diabetic (n=602) *, Non-diabetic (12,562) BMI 10 α CHD, ACM Cox proportional regression No paradox 
28 Ross, 90 T2DM (n=373) BMI 14‡ ACM Cox proportional regression  No paradox 
29 Cho, 83 T2DM (n=5,897) BMI 57,909 p-yrs. Fatal CHD  Cox proportional regression  No paradox 
30 Church,  21 Diabetic (n=2,196) * BMI 32,161 p-yrs. ACM Cox proportional regression  No paradox 
31 Mulnier, 87 T2DM (n=28,725), Non-diabetic (n=15,505) BMI 7 ‡ ACM Cox proportional regression  No paradox 
32 McAuley,  86 T2DM (n=831) BMI 4.8 α ACM Cox proportional regression  No paradox 
33 Sluik,  91 Diabetic (n=5,434)  BMI, CA 9.3 # ACM Cox proportional regression  No paradox 
34 Tobias, 24 T2DM (n= 11,427) BMI 15.8 α ACM Cox proportional regression No paradox 
35 Bozorgmanesh 101 Diabetic (n=1322) BMI, WC, WHR 9.1‡ ACM Parametric survival model No paradox 
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36 Costanzo, 22 T2DM (n= 10,568) BMI 10.6 # ACM Cox proportional regression No paradox 
37 Kuo, 85 T2DM (n=2,161) BMI 5.6 α ACM Cox proportional regression No paradox 
38 Edqvist 84 T2DM (n=149,345), Non-diabetic 

(n=734,097) 
BMI 5.5 # ACM Cox proportional regression No paradox 

 

α: mean; #: median; ‡: maximum;  
p-yrs.: person-years; 
*authors included patients with diabetes (no distinction between types provided); 
FU: Follow up duration;  
ACM: All-cause mortality;  
CHD: coronary heart disease;  
CVD-M: CVD mortality;  
CA: Central adiposity;  
%BW: Percent body weight; 
WC: Waist circumference; 
WHR: Waist-to-hip ratio; 
IGT: Impaired glucose tolerance;  
IFG: Impaired fasting glucose;  
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In evaluating the possible association between BMI and mortality among patients with diabetes, sex 

and ethnicity were important modifying factors, as in some instances, mortality risk was more 

pronounced in men than women or in one ethnic group compared to others. Using the diabetes 

duration of within one year from diagnosis, Logue and colleagues 25, evaluated the association of 

BMI with the risk of cause-specific mortality in Scottish cohort of 106,640 participants. They showed 

a U-shaped association of BMI with mortality where both normal weight and obese patients had 

significantly higher mortality outcomes compared to overweight patients. Notably, mortality risk was 

22% and 32% higher in normal weight (20-25kg/m²) men and women respectively compared to their 

overweight counterparts. Although the study was based on a large sample size with over 9,000 deaths, 

the authors were limited by their inability to evaluate the differential risk among patients with and 

without the history of cardiovascular disease. Nevertheless, evidence supporting the obesity paradox 

in T2DM have also been reported in studies that used male subjects only where an inverse association 

of quintiles of BMI with mortality have been reported 7,79,82,91. 

 

Furthermore, a similar U-shaped association of BMI with all-cause mortality was observed by Zhao 

and colleagues 26, in their prospective cohort study of 19,478 African-Caribbean and 15,354 White 

European patients with T2DM. The authors found a significantly increased risk of all-cause mortality 

among African-Caribbeans with BMI <30 kg/m2 and ≥ 35 kg/m2 and among White Europeans with 

BMI < 25 kg/m2 and ≥ 40 kg/m2 compared with patients with BMI of 30 to 34.9 kg/m2. In a Taiwanese 

population of diabetes patients, higher mortality from all causes, cancer, and DM complications were 

reported when patients with BMI < 18.5 kg/m² were compared to patients with BMI in the range of 

18.5-22.9 kg/m². Given that BMI classifications in the purely Asian population are slightly different 

from the WHO accepted classification, Tseng and colleagues 94 may have actually found an obesity 

paradox in an Asian (Chinese) population using a relatively large sample of about 89,000 diabetes 

patients. These studies highlight the importance of evaluating potential differences in risk at different 

BMI levels in subgroups of patients defined by ethnicity or sex. 

 

In a study to investigate the relationship between weight status and mortality, Carnethon and 

colleagues 19 used adults with new-onset T2DM to mitigate the possibility of participants developing 

any diabetes-related complication which is likely to influence the weight status and mortality and 

subsequently influencing the study findings. The researchers showed that mortality was higher in 

adults with normal weight at the time of incident diabetes than obese or overweight cohorts 19. 

Furthermore, another group of researchers independently found that adults with normal weight at 

diagnosis of T2DM have significantly higher mortality risk compared to those who were obese 12. 
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Using data on 47,509 patients from the UK general practice (GP) database with onset T2DM, Thomas 

and colleagues 12 showed that among incident T2DM patients without prior CVD, overall mortality 

risk was 47% higher for normal weight patients compared their counterpart, obese patients. The 

findings by Carnethon and colleagues19 and Thomas and colleagues 12 have abridged the limitations 

of potential baseline disparities in diabetes durations as was the case in the TRIAD study as well as 

the findings from Logue and colleagues 25. 

 

No obesity paradox in T2DM 

Fourteen studies found no evidence to support the obesity paradox in patients with T2DM 7,21-24,83-

91,101 (Table 1.1). Ford and colleagues 23 used data on 602 diabetic participants from NHANES 

epidemiologic follow-up study and reported no association of obesity with overall mortality but a 

direct association with coronary heart disease (CHD) mortality. Using data on men with diabetes from 

the Aerobic Center Longitudinal Study and the Veteran Exercise Test Study respectively, Church and 

colleagues 21 and McAuley and colleagues 86, reported no difference in total mortality with increasing 

BMI in men with diabetes. They found that reduced exercise capacity or cardiorespiratory fitness was 

to blame for adverse effects of BMI on mortality in persons with DM. Furthermore, even when a 

limited set of clinical factors (smoking, diabetes duration, sex, insulin use and metformin use) were 

adjusted for, Landman and colleagues 20 found no association between BMI and cause-specific 

mortality like cancer mortality among diabetes outpatients enrolled in the ZODIAC trial in the 

Netherlands. The authors, having previously observed an inverse relationship between weight status 

and cancer mortality, now argued that this trend disappeared because of the relatively large sample 

size and longer follow-up duration of about ten years. More so, Tobias and colleagues, 24 did not 

observe any lesser mortality in obese or overweight participants than others with normal weight. 

Nonetheless, the cohorts in this study were free of any cardiovascular diseases or cancer at the onset 

of diabetes diagnosis as was observed in the PROactive trial 93. Therefore, any possible bias that could 

have been introduced by these conditions was reduced. 

 

In a more recent study, Costanzo and colleagues 22 observed an inverse association in mortality and 

overweight patients with T2DM but not in their obese counterparts, with median diabetes duration 

ranging from 1 to 3 three years over the BMI categories at baseline. It appears that weight / BMI 

measured at the first visit was used as a baseline data and for all the risk analyses.  Without the 

knowledge of anti-diabetic and weight-modifying medications, it would be difficult to ascertain the 

possible changes in body weight from diagnosis of diabetes to the study baseline.  Also, without 

information on the longitudinal changes in weight / BMI post baseline, this essentially sets the 
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baseline BMI as a random measure, with the potential to bias the inference. While the obesity paradox 

was reported in the context of BMI measured at the time of diagnosis of T2DM, Paul and colleagues 
102 further reported the longitudinal changes in the BMI compared between those who died and who 

remained alive. This clearly suggested that the longitudinal measures of BMI for those who died were 

consistently lower on average by 2.4 kg/m2 (p<0.01) during two years of follow-up, compared to 

those who remained alive. A 3 kg/m2 higher BMI during follow-up was also associated with 3-14% 

reduced likelihood of mortality (p=0.025), adjusting for longitudinal measures of blood pressure, 

lipids, concomitant anti-diabetic and cardio-protective medications, and the competing risk of 

cardiovascular and renal events. The protective effect of higher BMI trajectory on mortality risk was 

evident irrespective of co-morbidity status, including cardiovascular and renal disease 103. 

 

1.3.4 Methodological limitations of existing research 

The limitations of existing studies can be broadly grouped into design and analytical issues. The 

design issues include (1) the use of any available measure of BMI as the baseline measure, (2) non-

inclusion of pre-diabetes weight change scenario before the clinical diagnosis of diabetes, and (3) no 

consideration on the history or prevalence of cardiovascular and other diseases at the time of baseline 

assessment. The analytical issues include (1) inconsistent BMI classifications, (2) missing BMI and 

risk factor data, (3) non-proportional risk for the five BMI categories, and (4) the potential for 

confounding by medication use. The detailed explanation of the design and analytical limitations of 

existing studies are discussed below. 

 

Measurement of BMI at diagnosis of T2DM 

One of the primary weaknesses of most of the existing studies is that the time of clinical diagnosis of 

diabetes (or close time-window around it) was not considered as the baseline or index date for the 

follow-up risk evaluation. The time at which BMI was measured has the potential to impact on the 

estimates obtained from risk assessment models and the resulting clinical inferences. Several time 

points at which BMI was measured have been used in the literature and these include measurement 

at adulthood, menarche, diagnosis, and entry into study or registry. By the definition of the obesity 

paradox in T2DM, the evaluation of the association of BMI with mortality or cardiovascular risk 

should use BMI measured at diagnosis as the baseline measure. However, only 5 of the 24 studies 

that reported an obesity paradox used a BMI measure obtained around the time of diagnosis of 

diabetes 12,19,25,26,73. Of these, only studies by Carnethon and colleagues 19, Thomas and colleagues 12, 

and Zhao and colleagues 26 obtained BMI status at diagnosis (exact), within 3 months, and within 6 

months of diagnosis respectively as their baseline BMI measurement. Similarly, only 2 of the studies 
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that reported no evidence for the obesity paradox in T2DM used BMI measured around diagnosis as 

the baseline measure in their mortality risk assessment 24,87. These studies by Tobias and colleagues 
24 and Mulnier and colleagues 87 used BMI obtained within 11 months before diagnosis and within 3 

years of diagnosis respectively. The other 31 studies either used a random measure of BMI or used 

BMI obtained at the entry into the study. In the context of the obesity paradox in T2DM, the use of 

BMI measured at random, study entry, and more than 6 months before and after diagnosis may be 

misleading as these have different clinical impacts. Studies investigating the obesity paradox in 

T2DM should include in their design, BMI measured as close as possible to the time of diagnosis (i.e. 

± 3 months). 

 

Inconsistent use of BMI Classifications 

While the WHO has provided a uniform classification for BMI categories 104, the BMI categories 

reported in the 31 studies included in this review have been inconsistent. Quintiles of BMI 7,76, 

modified cut off points (e.g. 20-25 kg/m2 for normal weight instead of 18.5-24.9 kg/m2) 87 and 

addition of extra BMI cut off points (e.g. 18.5-22.9 kg/m2, 23-24.9 kg/m2) 26 are among the different 

classifications used. This limits the ability to conduct a thorough comparison of effect estimates 

across studies. Also, some studies included underweight patients or lump together underweight and 

normal weight patients. Being underweight is associated with complications like death due to 

malnutrition and anaemia, so in the context of evaluating the obesity paradox, studies that included 

patients in the underweight category may not be able to provide robust inferences 76. Even in the 

meta-analysis by Kwon and colleagues 105, an approach that fixed the reference BMI to 18.5 kg/m2 

was used. In this study, most of the risk was shown to be low for BMI < 40 kg/m2 [all hazard ratios 

(HR) ≤ 1 compared to 18.5 kg/m2] and this is a misleading synthesis of studies on the obesity paradox 

in T2DM. 

 

Missing BMI and longitudinal risk factor data 

It is clear from Table 1.1 that the most common study design employed was a prospective cohort 

study, where exposure was defined as diabetes status (i.e., diabetic vs. non-diabetic). Both prospective 

and retrospective study designs are prone to missing or incomplete information which can impact the 

generalisability of study findings. Despite the availability of standard statistical techniques for 

addressing the problem of missing covariate data in longitudinal studies, only a few studies have 

provided sufficient information on the distribution of missing longitudinal data on body weight or 

BMI and the methods used for imputing missing data 106. A review of the 38 studies that have 

evaluated the obesity paradox in T2DM reveal that only 17 of these studies mentioned missing values 



 

 19 

either on BMI or on some other covariate 21,23-26,73,74,76,80,84,86,87,91,98,99,107,108. Of this, only 2 reported 

the imputation method used 80,84. The other 15 of the 17 studies that reported missing adiposity 

measures simply excluded patients based on missing values 21,23-26,73,74,76,86,87,91,98,99,107,108 (Table 1.1). 

 

Studies investigating the obesity paradox in T2DM require a measure of adiposity in the form of BMI, 

waist circumference, or weight. Therefore, it is not out of place to exclude patients with missing 

adiposity measures. While such exclusions did not result in smaller sample sizes in these studies, it 

would be prudent to apply the exclusion criteria after imputing for missing data. Furthermore, in 

studies that will incorporate longitudinally collected covariate data, multiple imputation of missing 

data could prove beneficial as single imputation does not reflect the uncertainty about the prediction 

of unknown missing values and the resulting estimated variance of the parameter estimates obtained 

will be biased towards zero 109. 

 

Pre-existing disease conditions 

Reverse causality has been proposed as one of the possible reasons for the obesity paradox in chronic 

diseases 110. The term itself was traditionally used to denote the event where an outcome precedes 

and causes the exposure 111. However, the applicability of this concept to studies investigating the 

relationship between BMI and mortality has been questionable. In particular, studies that investigated 

the obesity paradox have been meticulous in defining the outcome of the study as all-cause mortality 

or cardiovascular mortality (Table 1.1). In such settings, reverse causality by its traditional 

definition—where death would precede weight/BMI status is not applicable. Nonetheless, several 

modified and inconsistent definitions of reverse causality with regards to the relationship between 

BMI and mortality has been proposed 111, and one of such definitions is that some chronic diseases 

or latent diseases lead to weight loss before diagnosis of a disease and such weight loss before 

diagnosis would have an impact on the association between BMI and mortality 111,112. 

 

Technically, this can be considered as confounding by pre-existing disease and some studies 

investigating the obesity paradox in patients with T2DM have taken steps like exclusion of patients 

with prevalent disease at baseline 12, limiting analysis to patients with more than one year of follow-

up 25, and adjusting for prevalent diseases 86. While it was demonstrated by Thomas and colleagues 
12 that the obesity paradox in T2DM exists irrespective of existing cardiovascular diseases before or 

after diagnosis of T2DM, no other study has investigated the impact of pre-existing diseases on 
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weight levels before diagnosis. Addressing such a question would further our understanding of 

possible mechanisms of the obesity paradox in patients with T2DM. 

 

Non-proportional risk  

The obesity paradox can be holistically evaluated only with observational data, as randomised control 

trials would be long, expensive, unethical or impractical to randomise a patient to a BMI category. 

However, given the observational nature of all the studies included in this review (Table 1.1), 

significant differences in risk factors between groups being compared could impact any inferences 

obtained. Most of the risk analyses reported were based on multivariate Cox regression model, the 

validity of which depends on the proportional hazards assumption. This is unlikely to be true for 

patients with incident T2DM under different adiposity levels. To account for the inherent differences 

in risk factors between the defined BMI categories and the fact that risk may not be proportional, 

survival time treatments effects modelling approach can be used to provide robust inferences 113-116. 

This modelling approach uses the potential outcomes in a counterfactual framework to allow 

comparison of survival time for CVD and all-cause mortality for patients with different BMI 

categories. Primarily this novel methodological approach allows us to balance the categories of 

comparisons on the basis of global risk paradigm within the cohort, generally using the weighted 

propensity-score type adjustments. To the best of our knowledge, no study investigating the obesity 

paradox in T2DM has adopted robust approaches to proving inferences. 

 

The potential for confounding by medication use 

There is an extensive range of oral anti-diabetic drugs available for the treatment and management of 

T2DM. Despite helping maintain good glycaemic control, some anti-diabetic treatments are known 

to cause an increase (sulphonylureas, insulin, thiazolidinedione), or decrease (GLP-1 receptor 

agonists and SGLT-2 inhibitors) in body weight, while others have neutral effects (metformin, α-

glucosidase inhibitors, DPP-4 inhibitors) on body weight 117,118. Thus, the weight loss or gain after 

diagnosis and exposure to anti-diabetic therapy may have different effects on mortality and 

cardiovascular risk. This necessitates the need to explore the possible association of weight changes 

with cardiovascular or mortality outcomes in patients treated with different anti-diabetic medications. 

To date, none of the 31 studies that have investigated the obesity paradox in T2DM has conducted a 

dedicated analysis of the effect of drug classes on the association of BMI at diagnosis with mortality 

or cardiovascular risk. 
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1.3.5 Significance of the study 

The question of optimal BMI and the effects of being underweight or overweight on the risks of 

cardiovascular diseases and mortality remain controversial 8,119-121. This has led to the challenge of 

exploring the optimum adult body weight that best advances health, minimizes the risk of chronic 

disease like diabetes, and promotes longevity since weight loss is so frequently a focus of 

management of T2DM.  

 

The obesity paradox significantly challenges the centrality of weight reduction in diabetes 

management. The consequences of answering this question have profound health and socio-economic 

implications for individuals and the population. Therefore, a holistic evaluation of the complex 

relationship between weight change and long-term risk at the population level, based on a robust 

methodological framework, is required to evaluate the phenomenon of the obesity paradox in patients 

with T2DM. With the strength of extensive long-term longitudinal data on both diabetic and non-

diabetic patients, this thesis is ideally poised to address this critical issue of clinical and public health 

importance. 

 

Firstly, this thesis will use BMI classification cut points defined by the WHO in keeping with the 

majority of the previous studies. Second, to ensure maximum use of available information of 

longitudinal weight, BMI, blood pressure and lipids, multiple imputations of these risk factors will 

be conducted before any inclusion and exclusion criteria are applied. Third, to disentangle the 

contribution of pre-existing diseases to weight loss before the diagnosis of T2DM, I argue that it is 

necessary to exclude patients with prevalent diseases before the diagnosis of T2DM and then conduct 

an analysis of weight trajectory before diagnosis. Also, for further clarification, an evaluation of the 

impact of weight change (gain or loss) before the diagnosis of T2DM on the association between BMI 

at diagnosis and mortality risk is necessary. To date, no study investigating the obesity paradox in 

T2DM has performed such an analysis. Finally, it is necessary to evaluate pre-existing conditions and 

outcomes of interest in diabetes and non-diabetes populations. Therefore, in this thesis, a retrospective 

longitudinal study design is employed in which data is obtained on cohorts of patients with T2DM 

and their matched non-diabetic controls. This thesis will address the emerging challenge regarding 

diabetes and weight status, as the findings could directly inform timely prevention and management 

practices to reduce adverse outcomes in all patients with T2DM, especially in those with normal body 

weight, who may have a false sense of protection because they are not overweight or obese.  
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Chapter 2: Research Design 

2.1 DATA DESCRIPTION 

2.1.1 Data Source 

The data used for this thesis was extracted from The Health Improvement Network (THIN) database, 

a nationally representative individual patient-level primary care database from the UK. In the UK 

Department of Health system, patients are registered with a GP, while secondary care treatment can 

be provided elsewhere. Under terms specified by the UK’s National Health Service (NHS), GPs 

contribute data to THIN, and the database is updated continuously within the centralised data capture 

system. Although data collection for THIN’s robust scheme started in 2002, primary care EMRs in 

THIN are available for some patients since 1987 122. The database is linked to other sources of hospital 

and national statistics data and is demographically representative of the UK population in terms of 

age, sex and patients with T2DM 123-125. Currently, the THIN database contains comprehensive 

longitudinal data on more than 17 million patients from over 700 GP centres from across England, 

Wales, Scotland and Northern Ireland. For this thesis longitudinal data on about 13 million patients 

from 1990 till September 2014 was used, of which 85% were identified to have records that are 

considered valid and acceptable for research (decided by THIN). The majority of these patients were 

registered with practices within England (79%) and Scotland (12%) (Table 2.1). The UK primary 

care databases (THIN and Clinical Practice Research Database) are considered the most exhaustive 

collection of all possible demographic, clinical, laboratory, medications and event history data 

worldwide. A schematic representation of the THIN database is presented in Figure 2.1. 

 

Table 2.1: Distribution of practices within the version THIN database used for this thesis. 
 

Country Health authority Number of practices Number of patients (%) 
England East Midlands 19 356,702 (3) 
 East of England 40 815,454 (7) 
 London 73 1,500,498 (14) 
 North East 15 247,254 (2) 
 North West 69 1,000,072 (9) 
 South Central 57 1,442,637 (13) 
 South East Coast 47 1,028,292 (9) 
 South West 57 1,018,951 (9) 
 West Midlands 49 940,088 (9) 
 Yorkshire & Humber 20 342,094 (3) 
Wales Wales 49 768,162 (7) 
Scotland Scotland 89 1,289,931 (12) 
Northern Ireland Northern Ireland 27 267,890 (2) 
Total   611 11,018,025 (100) 



 

 23 

 

2.1.2 Demographic and anthropometric data 

Demographic data in the THIN database includes age at registration with the practice, date of birth, 

gender, ethnicity, smoking, alcohol use, death dates for those who have died, and the transfer out 

dates for patients who have moved away. The ethnicity data in the UK primary care databases are 

limited, with only 35% of patients in our database having their ethnicity defined. Self-reported 

ethnicity was used to classify patients as White European, African-Caribbean, South Asian, other 

Asian, Middle Eastern, Mixed, and other. This primary care database provides a validated score on 

the socio-economic status of individuals, by estimating a socioeconomic “deprivation score” using 

four parameters: (1) unemployment (as a percentage of those aged 16 and over who are economically 

active); (2) non-car ownership (as a percentage of all households), (3) non-home ownership (as a 

percentage of all households), and (4) household overcrowding. Finally, a score from one to five is 

assigned with score 1 representing the most affluent and score 5 representing the least affluent 126. 

 

The anthropometric data includes longitudinal data on body weight, height and BMI. The last known 

measures of these variables are made available at the time point of the updated database release. All 

longitudinal data contains the date of measurement. Behavioural data includes longitudinal 

information on smoking and drinking status. The most updated information on these variables is 

provided at the time of updated data release. However, this information is not necessarily collected 

at all GP visits for an individual. The basic demographic characteristics of patients in the THIN 

database are presented in Table 2.2. The median follow-up for patients in the THIN database was 13 

years [median (Q1, Q3): 13 (6, 22)] and there were more females (52%) than males. Patients who 

self-identified as White European and mixed ethnicity formed 19% and 10% of the entire population 

respectively in the THIN database. The proportion of South Asian and African-Caribbean patients 

were 5% and 3% respectively (Table 2.2). 
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Table 2.2: The distribution of basic demographic characteristics of patients in the THIN database 
 

Patients in THIN 11,018,025 
Age at last date of collection α 45 (25) 
Age at last date of collection #  

<=20 1,876,724 (17) 
21-30 1,478,108 (13) 
31-40 1,792,669 (16) 
41-50 1,779,530 (16) 
51-60 1,246,761 (11) 
61-70 972,119 (9) 
70+ 1,872,114 (17) 

  
Sex #  

Female 5,715,579 (52) 
Male 5,302,446 (48) 

  
Ethnicity #  

White European 2,079,461 (19) 
African-Caribbean 130,632 (1) 
South Asian 180,873 (2) 
Other Asian 82,305 (1) 
Middle Eastern 11,824 (<1) 
Mixed 1,049,975 (10) 
Other 277,915 (3) 
Missing 7,205,040 (65) 

  
Deprivation #  

Lowest  1,554,601 (14) 
Lower  2,065,291 (19) 
Middle  2,122,244 (19) 
Higher  2,001,463 (18) 
Highest  2,229,501 (20) 
Unknown 1,044,925 (9) 

  
Nation #  

England 8,692,042 (79) 
Wales 768,162 (7) 
Scotland 1,289,931 (12) 
Northern Ireland 267,890 (2) 
  

Follow-up (years) * 13 (6, 22) 
α: mean (SD); *: median (Q1, Q2); # n (%) 
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Figure 2.1: Schematic representation of The Health Improvement Network (THIN) database 
[GB: Gigabytes] 
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2.1.3 Clinical, laboratory, and prescription data 

Individual-level longitudinal data on clinical and laboratory measurements are captured as and when 

such measures are obtained in the GP centre or laboratories. The clinical data include BMI, systolic 

and diastolic blood pressure. For patients with T2DM, the laboratory measures include HbA1c (%), 

random and fasting blood glucose (mmol/L), lipids, serum and urine albumin, and creatinine levels. 

All clinical and laboratory measures contain dates of measurements. The lipid measures include total 

cholesterol, high- and low-density lipoprotein cholesterols, and triglycerides. Furthermore, data on 

the immunological status of infectious diseases, including hepatitis A, B and C, yellow fever, typhoid, 

influenza, rabies, and smallpox, are also available. Biological markers include cardiac enzymes, liver 

enzymes, urine biochemistry, sex hormones, HIV test, red blood cell count, shape and size, and 

adrenal autoantibodies. 

 

Medication data is recorded for any prescription given to a patient from a nurse or GP. This includes 

information on dates of prescription, duration of the prescription, formulation, strength, dose, and 

quantity. The coding of medication data is based on both the British National Formulary (BNF) codes 

and Anatomical Therapeutic Chemical (ATC) codes. Medications captured in the THIN database 

include antidiabetic drugs, cardio-protective drugs, aspirin, and nonsteroidal anti-inflammatory drugs 

(NSAIDs), antibiotic, anti-parasitic, vaccines, and vitamin supplements. 

 

2.1.4 Disease event data  

Disease status of patients in the THIN database is recorded using the most comprehensive medical 

coding system in the world−Read codes. These classification codes are not used only for disease 

coding but also for history and symptoms, examination findings and signs, diagnostic procedures, 

preventive, operative, therapeutic, administrative procedures, drugs, appliances, occupations, and 

social information 127,128. Event dates are recorded for each disease event experienced by patients and 

the occurrences of medical conditions such as myocardial infarction (MI), stroke, heart failure (HF), 

CHD, peripheral artery disease (PAD), angina, angioplasty, coronary artery bypass graft (CABG), 

neuropathy, retinopathy, and renal complications are available. Also, medical histories including 

amputations, atherosclerosis, coma, seizures, multiple sclerosis, fractures, revascularisations, and 

surgeries are also available. The data from the primary care is linked with hospital episode statistics 

(HES). The hospitalisation statistics include the reason(s) for hospitalisation, treatment (invasive and 

non-invasive) received, duration of hospitalisation, and the records on adverse events. The 

distribution of selected clinically diagnosed disease is presented in Table 2.3. 
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Table 2.3: The distribution of some clinically diagnosed diseases in the THIN database 
 

 n (%) 
Patients in THIN 11,018,025(100) 
DM 444,148 (4) 

T1DM 46,238 (0.4) 
T2DM 379,657 (3.4) 
Gestational diabetes 15,814 (0.1) 

Angina 214,798 (2) 
Coronary artery disease (CAD) 284,063 (3) 
Heart failure (HF) 413,364 (4) 

Hospitalisation for HF 209,541 (2) 
Myocardial infarction (MI) 1,417,821 (13) 
Peripheral artery disease (PAD) 229,472 (2) 
Kidney disease 524,621 (5) 
Stroke 497,426 (5) 
Arrhythmia 362,453 (3) 
Cancer 291,013 (3) 
Rheumatoid arthritis 600,016 (5) 
Retinopathy  13,388 (<1) 
Neuropathy 98,788 (1) 

 

2.1.5 Strengths 

The major strength of the THIN database is the size, as the version of THIN used for this thesis 

includes data on over 13 million patients drawn from over 600 practices across the UK. The database 

also draws on long follow-up of individuals [median (Q1, Q3): 13 (6, 22) years] as one of its key 

features. In addition to GP consultation data collected from practices in the UK, additional data is 

also obtained from other healthcare professionals, and the database can be linked to external data 

sources like HES which is provided by Health and Social Information Centre (HSCIC). More than 

75% of THIN practices are now electronically linked to pathology laboratories 122. Compared to UK 

national Quality of Outcomes Framework (QOF) data, THIN provides similar estimates of crude 

prevalence for diabetes, chronic obstructive pulmonary disease (COPD), HF, epilepsy hypertension, 

mental health, cancer and asthma 124. All these key advantages combined present researchers with a 

unique opportunity to investigate chronic as well as rare disease conditions, with long latency and the 

study of long-term outcomes. 

 

2.1.6 Limitations 

As with all observational studies in which longitudinal data is obtained on patients, the major 

limitations of the THIN database include (1) loss to follow-up, (2) missing data on specific variables, 

(3) misdiagnosis, misclassification and miscoding, and (4) unreliable data on some relevant variables. 
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Patients are lost to follow-up when they move to different locations or transfer out of practice. They 

either move to another participating GP or to a practice that does not participate in contributing data 

to THIN. Continuous recording of vital longitudinal information ceases for patients who moved to 

GPs that do not participate in THIN. For those who move to another participating practice, recording 

of longitudinal information is continued.  

 

Missing communications from specialists, discharge summaries from hospitals, and test results from 

pathology laboratories among others are some of the reason missing values exist for some variables 

in the THIN database. This missing data usually follows a complex pattern and requires skilled 

expertise for analysis of any related data 129. Due to the nature of GP settings, some variables are 

recorded more often than others. For example, systolic and diastolic blood pressure measurements 

may be recorded at every GP encounter because of the relative ease with which it can be measured. 

Also, the capture of the common adiposity measurements within the THIN database varies.  Body 

weight is measured more often than waist circumference due to the simplicity and standard way it is 

measured—leading to many missing values on waist circumference. 

 

The potential for misdiagnosis, misclassification, and miscoding of diagnostic codes in EMRs such 

as the THIN database cannot be understated 130-133. However, according to a number of studies, based 

on extensive data mining and quality assessments, most of the diagnosis codes in the UK primary 

care database are well recorded 134-136. The Read code system allows easy recording of clinical 

information on a computer by the GP, without advance knowledge of coding and classification. 

However, major types of data entry errors like omissions, typing or communicating errors usually 

result in a relatively small number of false positives, and larger numbers of false negatives patients 

identified by Read codes. This is usually a problem for disease conditions that are phenotypically 

heterogeneous. Often, expert domain knowledge, statistical, and programming skills are required to 

classify patients accurately and distinguish between prevalent and incident diagnosis 137. Finally, 

there is also non-availability of complete and reliable data on ethnicity and smoking cessation during 

follow-up, information on diet, exercise or weight lowering medications. 
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2.2 STUDY DESIGN 

2.2.1 Inclusion criteria 

This thesis uses a large comparative longitudinal case-control design to address the main hypothesis 

that body weight category at the time of diagnosis influences survival outcome in patients with 

T2DM. Patients were considered for inclusion in this study if they were 18-90 years of age with at 

least one episode of care between January 1990 and September 2014, and complete data on gender. 

A cohort of patients with T2DM was identified using modifications of validated approaches 133,138 

and machine learning algorithms. The machine learning algorithms used were; (1) Naïve Bayes 139,140, 

(2) Logistic regression 141, (3) Support Vector Machine (SVM) 142-144,  (4) Multilayer Perceptron 

(MP) 145,146, (5) Decision Tree with J48 modification 147,148, and (5) One Rule 149. The use of these 

clinical and machine learning algorithms to extract specific DM subgroups from the THIN database 

is discussed later in Chapter 3. 

 

2.2.2 Control subjects 

The control (non-diabetic) cohort was defined as patients without any diagnostic codes suggestive of 

diabetes or an antidiabetic medication or elevated blood glucose measurement or glycated 

haemoglobin (HbA1c) measurement during the whole period of follow-up. Appropriate controls from 

the pool of non-diabetic control patients were matched to each T2DM patient in a ratio of 1:4 using 

an exact matching algorithm. The dynamic matching conditions were the year of birth, sex, and 

separately for ethnicity where ethnicity data were available. Furthermore, the index date for controls 

was defined as the date of the T2DM diagnosis for the matched cases (discussed in Chapter 4). 

 

2.2.3 The arrangement of longitudinal covariate data 

Longitudinal measures of body weight, BMI, waist circumference, systolic and diastolic blood 

pressure, HbA1c, random blood glucose, fasting blood glucose, low-density and high-density 

lipoprotein cholesterols, triglycerides, serum albumin and creatinine, and glomerular filtration rate in 

the 36 months prior to the diagnosis of T2DM and 84 months following the diagnosis date were 

extracted and arranged in six-monthly windows. All available measures on or within three months 

before the diagnosis date were considered as the index date (date of diagnosis of T2DM) measures. 

If more than one measurement existed within this interval, the closest to index date was taken.  
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2.2.4 Extraction of longitudinal anti-diabetic drugs (ADD)  

The complete list of generic and brand names used to extract ADDs from THIN database are 

presented in Appendix A, Table 4. Complete information on ADDs including prescription dates and 

classes of ADD was extracted for each patient with T2DM. Among patients who had at least two 

prescriptions of ADDs, time spent before first-line therapy, type of first-line therapy, those who 

remained on first-line therapy as well as those who added or switched to another ADD(s) were 

extracted. By comparing prescription initiation and cessation dates, the addition of a second anti-

hyperglycaemic drug was defined if cessation date of the first drug is more or equal to the start date 

of the second drug. In contrast, if the cessation date of the first drug is less than the start of the second 

drug then this was defined as switching to a second drug (Appendix B, Table 5 and 6).  

 

Subsequently, body weight, BMI, systolic and diastolic blood pressure, and HbA1c measured at 

initiation of the first line and second line therapy was included on the basis of a 3-month window on 

or within the start of first- and second-line therapy respectively. Follow-up measures of body weight, 

BMI, systolic and diastolic blood pressure, and HbA1c during 36 months were arranged longitudinally 

on the basis of non-overlapping 6-monthly intervals which were defined progressively from initiation 

of first and second line therapy respectively. 

 

2.2.5 Other covariate data 

Complete records on the prescriptions of different classes of antihypertensive drugs, weight lowering 

drugs, anti-depressant drugs, and lipid-modifying drugs were extracted along with the dates of 

prescriptions. Other covariate data included the date of registration with practice, health authority, 

nation, date of birth, deprivation score (a socioeconomic status measure based on residential address 
126), and ethnicity.  

 

2.2.6 Outcome variables 

The primary outcome was all-cause mortality and time to death was calculated as the time from 

diagnosis of T2DM to occurrence of death. Information on deaths with dates and possible cause of 

death were also extracted. Secondary outcomes of interest were comorbid diseases that occurred 

before or after diagnosis of T2DM. These were identified using Read codes and included CKD, 

cancer, angina, non-fatal MI, coronary artery disease (including bypass surgery and angioplasty), HF, 

bariatric surgery, depression, rheumatoid arthritis, and stroke. Time to a specific disease event or 

death was calculated as the time from the diagnosis date to the first occurrence of the disease event 
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or date of death respectively. Patients who were still alive at the end of the study (September 2014) 

were censored on the end date or censored on drop out date. 

 

2.3 STATISTICAL METHODS 

2.3.1 Dealing with missing longitudinal measurements 

Where necessary, missing clinical and laboratory data were imputed for under varying follow-up 

scenarios. A complete assessment of missing covariate data including the description of missing data 

mechanisms and patterns is provided in Chapter 4. Missing data patterns were explored using 

exploratory analysis and an assumption about the underlying missing data mechanism made. 

Subsequently, multiple imputation approaches were used to impute for missing longitudinal covariate 

data. Estimates of central tendency were used to assess the consistency of imputation. 

 

2.3.2 The distribution of study variables  

Checks for normality of continuous variables were performed using density plots and histograms. All 

variables were checked for outliers, and inconsistent values were put to missing before imputation. 

For categorical variables like smoking status, exercise, and ethnicity, dummy variables were created 

to indicate missing status. Summary statistics of the study population was summarised as number 

(percentage), mean (SD) or median (Q1, Q3), as appropriate. A two-sample t-test or Scheffe's 

multiple comparison post hoc ANOVA test were used to test for significant difference in means 

between two and more than two groups respectively, where appropriate. Similarly, a non-parametric 

Kruskal Wallis test was used to compare medians across groups of interest. Finally, the chi-square 

test was used to identify significant differences in different categorical study parameters across 

groups. 

 

2.3.3 Presentation of longitudinal distribution of risk factors  

For continuous longitudinal measurements, a generalised linear model under general estimating 

equations setup, with unstructured covariance fitted. Separate analyses were conducted for each BMI 

category, and the unadjusted and adjusted mean (95% confidence intervals, CI) of longitudinal 6-

monthly measures of body weight before and after T2DM diagnosis were estimated respectively.  
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2.3.4 Analysis of disease event data: calculation of rates/risk (hazard ratios) 

Disease events and mortality rates were calculated using standard life-table analysis technique, after 

calculating the time to such events from the index date. The event rates per 1000-person-years along 

with their 95% CIs were calculated.  

For evaluating the possible association of exposure, including the BMI at diagnosis of T2DM, with 

the risk of cardiovascular diseases and all-cause mortality, different multivariate regression based risk 

models were used. These include the stratified multivariate Cox regression models and the novel 

treatment-effect models.  

An example of the multivariate Cox regression model for investigating the association between BMI 

at diagnosis and all-cause mortality, with adjustments for covariates and confounders, is presented 

below:  

i. Simple Model: Risk of Event ~ function of (age, sex, smoking status, and baseline SBP, 

DBP, HbA1c, oral ADDs, insulin and BMI categories) 

ii. Extended Model: Risk of Event ~ function of (all components of Simple Model plus LDL, 

HDL and triglyceride measures at baseline) 

Separately inferences of HRs for each BMI category compared to the grade 1 obese category were 

obtained for patients with and without a history of diseases at diagnosis (defined as the occurrence of 

cardiovascular disease, cancer and renal diseases before the index date).  

 

2.3.5 Treatment effects model 

Given the observational nature of this study, significant differences in risk factors between groups 

being compared could impact any inference obtained. To account for the inherent differences in risk 

factors between the defined BMI categories, the novel "treatments effects" modelling approach was 

used to provide robust inferences. This modelling approach uses the potential outcomes or 

counterfactual framework to allow comparison of survival time for CVD and all-cause mortality for 

patients with different BMI categories. Briefly, given an observed outcome (Y0), for a patient with 

normal weight, the potential outcome or the counterfactual (Y1) for this same patient is the outcome 

if the patient had belonged to another BMI category and vice versa.  Therefore, the average of the 

difference between the observed outcomes given a specific BMI category and the potential outcome 

is the average treatment effect [i.e., average treatment effect (ATE) = average (Y1-Y0)] 113-116. Since 

the outcome of interest is survival time, a survival model with inverse-probability weight estimator 

was used to estimate ATE for each BMI category, with appropriate adjustments and balancing of 

confounders.  
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2.4 ETHICAL CONSIDERATIONS 

The THIN data collection was approved by the NHS South-East Multi-Centre Research Ethics 

Committee (MREC) in 2003. Access to this database for research purposes is granted in the form of 

a sub-license which enables access to the entire dataset for the period of the sub-license. QIMR 

Berghofer Medical Research Institute has obtained formal access to this database. The protocol for 

this study was approved by the Scientific Review Board managed by the THIN database vendor 

company (15THIN030, 17th August 2015). 
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Chapter 3: Cohort Identification from Primary Care Database  

This body of this chapter contains one published paper that discusses different approaches used to 

robustly identify and extract a cohort of type 2 diabetes (T2DM) patients using rule-based clinically 

guided algorithms and a machine learning algorithm from the THIN database. The citation of the 

published paper is as follows:  

 
Owusu Adjah ES*, Montvida O*, Agbeve J, Paul SK. Data Mining Approach to Identify Disease Cohorts 
from Primary Care Electronic Medical Records: A Case of Diabetes Mellitus. The Open Bioinformatics 
Journal 2017;10:16-27. * Joint first authors 

 

All the listed have agreed to the inclusion of this published scholarly work in this thesis and the 

statement of my contribution to the authorship of this published scholarly work is included below: 

Contributor Statement of contribution 
Owusu Adjah Ebenezer S. 
(Candidate) 

Responsible for the primary design of the study and the 
methodological developments. Conducted the data extraction from 
the THIN database. Responsible for data manipulation, 
aggregation, transformation in SAS. Performed data manipulation 
and built the data mining/machine learning workflow in WEKA. 
Conducted the statistical analyses in SAS and contributed towards 
the interpretation of results. Developed first draft and contributed 
towards finalisation of the manuscript. 

Montvida Olga Contributed to the primary design of the study. Evaluated the 
methodological approach, contributed towards the data extraction, 
building of data mining/machine learning workflow in WEKA, 
interpretation of results and finalisation of the manuscript. 

Agbeve Julius Evaluated the methodological approach and contributed towards 
finalisation of the manuscript.  

Paul Sanjoy K Conceived the idea, was responsible for the primary design of the 
study and the methodological developments and contributed 
towards finalisation of the manuscript.  
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3.1 ABSTRACT  

 

Background 

Identification of diseased patients from primary care based electronic medical records (EMRs) has 

methodological challenges that may impact epidemiologic inferences. 

 

Objective 

To compare deterministic clinically guided selection algorithms with probabilistic machine learning 

(ML) methodologies for their ability to identify patients with type 2 diabetes mellitus (T2DM) from 

large population-based EMRs from nationally representative primary care database. 

 

Methods 

Four cohorts of patients with T2DM were defined by deterministic approaches based on disease 

codes. The database was mined for a set of best predictors of T2DM, and the performance of six ML 

algorithms was compared based on cross-validated true positive rate, true negative rate, and area 

under receiver operating characteristic curve. 

 

Results 

In the database of 11,018,025 suitable research individuals, 379 657 (3.4%) were coded to have 

T2DM. Logistic Regression classifier was selected as the best ML algorithm and resulted in a cohort 

of 383,330 patients with potential T2DM. Eighty-three percent (83%) of this cohort had a T2DM 

code, and 16% of the patients with T2DM code were not included in this ML cohort. Of those in the 

ML cohort without disease code, 52% had at least one measure of elevated glucose level, and 22% 

had received at least one prescription for antidiabetic medication. 

 

Conclusion: 

Deterministic cohort selection based on disease coding potentially introduces significant 

misclassification problem. ML techniques allow testing for potential disease predictors, and under 

meaningful data input, can identify diseased cohorts holistically. 
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3.2 INTRODUCTION 

Recent advances in the design and implementation of large patient-level electronic medical records 

(EMRs) from national primary care databases have created opportunities in clinical, epidemiological 

and public health research 150,151.  In a typical primary or ambulatory care setting, large volumes of 

data are generated as patients go through various phases of treatment. Individual patients' longitudinal 

data on demographics, lifestyle, disease and treatment history, clinical and laboratory parameters, 

hospitalisation statistics, and clinical events are typically organised and stored in the form of a 

relational database. Such databases present unique challenges in terms of efficient and effective 

extraction of data for various investigative interests 152. One of the challenging aspects in this context 

is the identification of disease cohorts for retrospective or prospective clinical, epidemiological 

studies 133,153.  

 

Diagnostic codes, such as the International Classification of Diseases (ICD) codes or Read codes 128, 

are generally used to identify disease cohorts from EMRs 153. The reliability of diagnosis coding for 

various diseases has been extensively examined for many primary care databases including The 

Health Improvement Network (THIN) database from the United Kingdom 135 154,155. However, there 

are four specific issues in relation to identifying cohorts by diagnostic codes: (1) differentiating 

between disease subtypes from high-level codes, (2) overlapping codes of disease subtypes 

longitudinally at individual patient level, (3) absence of codes for diseased patients (false negatives), 

and (4) presence of disease-specific codes for patients without the specific disease (false positives). 

 

With regards to diabetes mellitus (DM), identification and appropriate classification of different types 

of diabetes in the primary care databases are particularly challenging 130,131,133,156,157. These challenges 

border mostly on inaccurate coding leading to misclassification, misdiagnosis, and undiagnosed 

diabetes 157. Algorithms based on laboratory, clinical, and medication data have thus been proposed 

as tools for distinguishing between type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus 

(T2DM) 138,156,158,159. However, the overall accuracy and reliability of derived disease cohorts based 

on diagnostic codes can be improved by implementing advanced machine learning (ML) or statistical 

data mining techniques and clinically guided cohort selection algorithms that robustly capture 

comprehensive patient-level information available in the EMRs 130,133,153,157.  

 

Shivade and colleagues (2014) have conducted a systematic review of various techniques used for 

the identification of different disease cohorts from different sources of clinical databases 151. Some of 

these proposed algorithms have been criticised for their appropriateness in the context of other studies 
160. While several studies compared or applied ML techniques to identify T2DM patients, to the best 
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of our knowledge, there is no study that employed an extensive assessment of diagnostic codes, 

deterministic clinical selection algorithms, and ML algorithms simultaneously to identify T2DM 

cohorts from primary care EMRs.  

 

The aims of this exploratory methodological study were to (1) explore technical challenges in the 

extraction of disease cohorts, (2) compare the ability of different clinically guided cohort selection 

algorithms to identify the disease cohorts, and (3) compare the disease cohorts identified by ML 

algorithms and clinically guided cohort selection algorithms using a large nationally representative 

primary care database from the UK. 

 

3.3 METHODS 

In this section, the challenges in identifying a cohort of patients with specific disease (i.e., T2DM), 

as well as an explanation of the clinically guided cohort selection algorithms, and the data mining and 

computational processes leading to the comparison of different supervised ML techniques are 

provided. 

 

3.3.1 Challenges in identifying disease cohorts 

THIN uses the UK’s standard Read code classification system which is useful for hierarchical 

classification of patients’ specific circumstances and lifestyles, thereby enhancing scalability and 

retrieval 128. However, the Read coding system is complex as a disease or an encounter with a GP can 

be coded in several ways including the use of existing codes or by creating new user-defined codes 
161. This way, considerable variation, and inconsistency are introduced into the coding system as seen 

in the case of DM 131,138,162. 

 

Differentiating between disease subtypes 

Typically, many diabetes-related codes are available for a single patient, some of which are high- 

level codes (e.g., C10 - "Diabetes mellitus") or disease-related codes that are unspecific in the 

description of the diabetes type (e.g., C106.12-"Diabetes mellitus with neuropathy"). Common 

practice has been to exclude any high-level codes 138,163 which may lead to underestimation of the 

disease cohort. When it is impossible to identify disease subtype (type 1 or type 2 diabetes) from the 

diagnostic codes, data on surrogate markers (like glutamic acid carboxylase) could be useful, but such 

information is not available in the THIN database. Nevertheless, combinations of available 

biomarkers (such as age, weight or HbA1c) and medication prescriptions have been used to distinguish 

types of diabetes in some studies 138,156. 
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Longitudinally overlapping disease subtypes  

Patients may have different disease subtypes coded longitudinally as a result of data entry errors or 

the natural progression of the disease. While the former can lead to any combinations of subtypes, 

the latter may result in developing T1DM from T2DM or T2DM from gestational diabetes. To 

distinguish between contradictory codes, longitudinal exploratory techniques were applied in some 

studies 133. Also, the techniques described above that deal with unspecific codes may be considered. 

To address the issue of contradictory diagnostic codes longitudinally, the following was adopted to 

distinguish between T1DM and T2DM: 

i. Use of Read codes that uniquely distinguish between T1DM and T2DM  

ii. In patients with unspecific codes or longitudinally overlapping subtypes, the following 

is used: 

a. If an oral antidiabetic drug is taken ≥ 2months, then T2DM. 

b. Otherwise, if age at first available diagnosis date ≤ 18 years and insulin initiated 

within 1 year, then T1DM. 

c. Otherwise, if age at first available diagnosis date > 18 years and insulin initiated 

within 3 months then T1DM. 

d. Else T2DM.  

iii. Patients with codes for gestational diabetes and other forms of diabetes were excluded. 

 

The absence of codes for diseased patients and the presence of codes for non-diseased patients 

Data entry errors such as omissions, typing, communicating errors and patients' temporary loss of 

follow-up in EMRs usually result in a relatively small amount of false positive, and larger numbers 

of false negative patients identified by diagnostic codes. Earlier studies have addressed this complex 

issue by employing deterministic or probabilistic algorithms 151,158,159. We further focus on this 

challenging aspect by comparing deterministic (clinically guided), and probabilistic (ML) cohort 

identification approaches. 

 

3.3.2 Clinically guided cohort selection algorithms 

Four separate cohorts were created by applying logical, clinically guided algorithms that select 

patients from those who have at least one record of Read code for T2DM (Figure 3.1). The complete 

list of Read codes used is presented in Appendix A, Tables 1, 2, and 3.  

Specifically, the T2DM cohorts were selected from available records for T2DM as follows: 

i. Selection algorithm 1: T2DM Read code (Cohort 1); 

ii. Selection algorithm 2:  Lifestyle modification advice + T2DM Read code (Cohort 2);  
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iii. Selection algorithm 3: At least one prescription for antidiabetic medication + lifestyle 

modification advice + T2DM Read code (Cohort 3); 

iv. Selection algorithm 4: At least one prescription for antidiabetic medication or lifestyle 

modification advice + T2DM Read code (Cohort 4); 

3.3.3 Supervised machine learning techniques  

The process of selecting one most appropriate probabilistic algorithm to identify patients with 

T2DM is described below. 

 

Feature selection 

The THIN database was mined to detect the most frequent medications, comorbidities, laboratory and 

anthropometric measurements among patients with T2DM identified on the basis of Read codes. The 

resulting 280 variables were combined with current clinical considerations, practices, and guidelines 

for T2DM management 164, and 11 potential disease predictors were obtained through an iterative 

process (Table 1). Correlation-based Feature Selection (CFS) algorithm was applied to determine best 

of these predictors 165 166. This scheme independent attribute subset selection approach is particularly 

useful when attributes are correlated with one another, and with the class attribute. Bi-directional, 

forward and backward greedy search methods were applied using 10-fold cross-validation 146, and 

they all agreed on the same seven features described in Table 3.1. 

 

Training dataset 

From the 11,018,025 patients in the THIN database, a training dataset of 150,000 instances, 

containing an equal number of positive and negative representatives was extracted. Positive instances 

were randomly selected from patients with (1) available T2DM Read code, (2) at least one year of 

follow-up, and (3) 18-90 years old at the time of T2DM diagnosis. Negative instances were also 

randomly selected from those without Read code for any subtype of DM and at least one year of 

follow-up (Figure 3.2, training set). 
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Table 3.1: Features selected as best T2DM predictors.  
 

 Feature name Feature type Selected 
for ML 

1 Two measurements of HbA1c>6% or fasting blood glucose 
> 7 mmol/l or random blood glucose > 11.1 mmol/l within 
1 year 

Binary Yes 

2 Any antidiabetic drug prescriptions for at least 6 months Binary Yes 
3 Average BMI Continuous Yes 
4 Hypertension diagnosis or antihypertensive drug use 

greater or equal to 6 months or beta blockers prescription 
for 6 months or more 

Binary Yes 

5 Chronic kidney diagnosis Binary Yes 
6 Retinopathy or neuropathy diagnosis Binary Yes 
7 Average systolic blood pressure Continuous Yes 
8 Lifestyle modification advice Binary No 
9 Average HbA1c Continuous No 
10 Average Random Glucose Continuous No 
11 Heart Failure or Myocardial Infarction or Stroke or 

Coronary Artery Disease 
Binary No 

 
 

Classification algorithm selection 

Keeping the selected subset of 7 robust predictors of T2DM, six classification algorithms were 

applied to the training set. Ten repeat 10-fold cross-validation was applied to calculate true positive 

rate (sensitivity), true negative rate (specificity), and area under receiver operating characteristic 

curve (AUC). Percent of correctly classified instances and required central processing unit (CPU) 

time for training the algorithms were also derived. The algorithms for comparison were: Naïve Bayes 
139,140, Logistic regression 167, Support Vector Machine (SVM) 168,169, Multilayer Perceptron (MP) 145, 

Decision Tree with J48 modification 147, and One Rule 149. 

 

One Rule algorithm performed significantly worse. Except for differences in CPU time, the 

performance of other algorithms was similar. Among them, Naïve Bayes had lower sensitivity 

misclassifying approximately 500 additional patients compared to other approaches. AUC was 

smaller for SVM and J48, while SVM and MP required significantly higher CPU time (Table 2). 

Interestingly, neither body mass index nor blood pressure contributed significantly to any model. 

Logistic regression was selected as the most appropriate model for predicting T2DM. The model 

obtained from full training dataset was applied to all THIN database patients with no record of Read 

code for diabetes diagnosis other than T2DM, and with available follow-up for at least one year 

(Figure 2, prediction set). 
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Figure 1.1: Flowchart for the selection of type 2 diabetes (T2DM) cohorts by clinically guided algorithms.  
[Selection algorithm 1:  T2DM Read code only; Selection algorithm 2: T2DM Read code + lifestyle modification advice. Selection algorithm 3: T2DM 
Read code + antidiabetic medication + lifestyle modification advice. Selection algorithm 4: T2DM Read code + (antidiabetic medication or lifestyle 
modification advice)] 
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Table 1.2: Performance of machine learning algorithms on the training dataset.  
 

 Naïve 
Bayes 

Logistic 
Regression 

Multilayer 
Perceptron 

Support 
Vector 

Machine 

J48 
Decision 

Tree 

One 
Rule 

Percent correct 95.6 95.9 95.9 95.9 95.9 91.7 
TPR 0.98 0.99 0.99 0.99 0.99 0.99 
TNR 0.93 0.93 0.93 0.93 0.93 0.84 
AUC 0.98 0.98 0.98 0.96 0.96 0.92 

CPU time 0.09 3.36 68.03 191.9 1.78 0.21 
 
TPR: True Positive Rate, TNR: True Negative Rate; AUC: Area Under receiver operating 
characteristic Curve; CPU: Central Processing Unit 
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Figure 1.2: Flowchart for creating a dataset for machine learning training, and of the dataset for predicting diabetes status  
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3.4 RESULTS  

The distributions of basic characteristics of patients identified by all four clinically guided algorithms 

and the ML algorithm were similar (Table 3.3). Clinically guided algorithms 1-4 and the ML 

algorithm resulted in cohorts of 379,657; 243,597; 197,326; 346,993; and 383,330 patients with 

T2DM respectively. For patients identified by the ML algorithm who did not have a Read code, the 

first available date of entry of the significant predictors was used as their date of diagnosis.  At the 

time of diabetes diagnosis, identified patients were on average 60 years old, 86 kg in weight with 

55% male. The proportions of those who had two elevated glucose level measurements within one 

year were 75, 86, 90, 79, and 82% of cohorts identified by selection algorithms 1-4 and ML 

respectively. With median 11 years of follow-up post-diagnosis, proportions of those who received 

at least one prescription for antidiabetic medication were 79, 81, 100, 87, and 75 % in cohorts 

identified by rules 1-4 and ML respectively. Among the cohort of T2DM patients identified by ML 

algorithm, 317,979 (83% of 383,330) patients had Read code for T2DM (Table 3.4). It is worth noting 

that 59,678 (16% of 379,657) patients with a record of T2DM Read code were not selected by ML 

approach. Almost a fifth (17% of 383,330) of the patients in the ML cohort were without a record of 

T2DM Read code. Of them, 52% had at least one measure of elevated glucose level, and 22% had 

received at least one prescription for antidiabetic medication (Table 3.4). To assess the proportion of 

patients that remain undetected by the algorithms used in this study, complement cohort-specific 

analysis was performed (data not shown). Among patients not selected by ML as T2DM, only 884 

patients had at least two elevated glucose measurements (HbA1c > 6% or fasting blood glucose > 7 

mmol/l or random blood glucose > 11.1 mmol/l) within 1 year, compared to 32,039, 106,671, 

137,796, and 42,583 patients not selected by selection algorithms 1-4. 
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Table 1.3: Baseline characteristics of T2DM patients identified by selection algorithms and logistic regression classifier (ML).  
 

 Selection 
algorithm 1 

Selection 
algorithm 2 

Selection 
algorithm 3 

Selection 
algorithm 4 ML 

Patients, n 379,657 243,597 197,326 346,993 383,330 
Age at diagnosis (years) α 60 (15) 59 (14) 58 (14) 60 (15) 59 (15) 
Age at diagnosis (years) * 61 (50,71) 60 (50,69) 58 (49,67) 60 (50,70) 60 (50,70) 

≤40 32,644 (9) 19,761 (8) 17,969 (9) 29,701 (9) 71,752 (19) 
41-50 62,656 (17) 43,872 (18) 39,289 (20) 59,608 (17) 58,813 (15) 
51-60 90,464 (24) 62,610 (26) 54,006 (27) 85,587 (25) 84,277 (22) 
61+ 193,893 (51) 117,354 (48) 86,062 (44) 172,097 (50) 168,488 (44) 

Male # 208,155 (55) 134,393 (55) 110,178 (56) 191,107(55) 200,447 (52) 
At least one prescription#  300,722 (79) 197,326 (81) 197,326 (100) 300,722 (87) 287,095 (75) 
Prescription duration ≥ 6 months# 243,064 (64) 171,800 (71) 171,800 (87) 243,064 (70) 254,255 (66) 
RBG (mmol/l) α § 11.5 (5.1) 11.4 (5.1) 12.1 (5.3) 11.6 (5.2) 11.3 95.2) 
RBG (mmol/l) α ‡ 9.5 (3.4) 9.4 (3.3) 9.9 (3.4) 9.6(3.4) 9.1 (3.5) 
FBG (mmol/l) α § 8.4 (2.3) 8.4 (2.3) 8.9 (2.4) 8.5 (2.3) 8.3 (2.3) 
FBG (mmol/l) α ‡ 7.8 (2.1) 7.7 (2.0) 8.0 (2.1) 7.8(2.1) 7.5 (2.1) 
HbA1c (%)α § 8.4 (2.1) 8.4 (2.1) 8.7 (2.2) 8.5 (2.2) 8.3 (2.1) 
HbA1c (%)α ‡ 7.5 (1.4) 7.5 (1.3) 7.7 (1.3) 7.5(1.4) 7.4 (1.3) 
Composite measure# ‡  283,419 (75) 208,787 (86) 177,689 (90) 272,875 (79) 314,574 (82) 
Weight (kg) α § 89.4(20.8) 90.3 (21.0) 91.1 (21.1) 89.6 (20.9) 89.3 (21.0) 
Weight (kg) α ‡ 85.0 (19.8) 86.6 (19.9) 87.6 (20.0) 85.5 (19.8) 86.1 (20.6) 
BMI (kg/m2) α § 31.6 (6.7) 32.0 (6.7) 32.2 (6.7) 31.7 (6.7) 31.7 (6.8) 
BMI (kg/m2) α ‡ 30.2 (6.1) 30.7 (6.1) 31.0 (6.2) 30.4(6.1) 30.7 (6.7) 
Normal weight # 22311(12) 15,821 (11) 12,339 (11) 21,108 (12) 24,453 (13) 
Overweight #  58,447 (32) 44,283 (32) 35,289 (31) 55,885 (32) 61,846 (32) 
Grade 1 obese #  52,465 (29) 41,323 (30) 33,669 (30) 50,423 (29) 55,684 (29) 
Grade 2 obese #  27,168 (15) 22,163 (16) 18,497 (16) 26,336 (15) 29,178 (15) 
Any CVD# 106,523 (28) 67,011 (28) 51,905 (26) 96,147 (28) 93,703 (24) 
CKD# 10,547 (3) 8,035 (3) 4,609 (2) 9,445 (3) 12,404 (3) 
Cancer# 24,159 (6) 15,998 (7) 11,084 (6) 21,536 (6) 22,112 (6) 
Hypertension# 149,752 (39) 104,916 (43) 79,193 (40) 137,440 (40) 140,341 (37) 
Follow-up (years) * 11 (6,17) 10 (6,15) 11 (6,16) 11(6,17) 10 (5,16) 

 
Legend: Selection algorithm 1: Read code only; Selection algorithm 2: Read code and lifestyle modification advice; Selection algorithm 3: Read code and medication and lifestyle 
modification advice; Selection algorithm 4: Read code and (medication or lifestyle modification advice); ML: Machine learned cohort; RBG: random blood glucose; FBG: fasting 
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blood glucose; Composite measure: fasting blood glucose > 7mmol/l or random blood glucose >11.1mmol/l or HbA1c >6; BMI: Body Mass Index (kg/m²); Normal : (18.5-24.99), 
Overweight: (25-29.99); Grade 1 obese: (30-34.99), Grade 2 obese (35-39.99); α : Mean(SD); *: median (IQR); #: n (%); CKD: Chronic kidney disease ; Any CVD: any cardiovascular 
disease defined as occurrence of angina, MI, coronary heart disease (CHD), HF, stroke, and peripheral artery disease (PAD) on or before diagnosis of T2DM; §: measured at diagnosis 
and  ‡ : an average over of all available measurements. 
 
 
 
 

Table 1.4: Baseline characteristics and distribution of glycaemic markers among patients identified by ML.  
 

 Machine Learned T2DM cohort 
(n=383,330) 

 With Read code Without Read code 
Patients #  319,979 (83) 63,351 (17) 
Age at diagnosis (years) α 60 (14) 54 (24) 
Age at diagnosis (years) * 60 (50, 70) 56 (33, 73) 

≤ 40 25,645 (8) 46,107 (73) 
41-50 56,583 (18) 2,230 (4) 
51-60 81,262 (25) 3,015 (5) 
61+ 156,489 (49) 11,999 (19) 

Male # 176,568 (55) 23,879 (38) 
At least one prescription # 273,272 (85) 13,823 (22) 
Prescription duration ≥ 6 months # 241,517 (76) 12,738 (20) 
RBG >11.1 mmol/l #, 101,135 (32) 1,471 (2) 
FBG > 7 mmol/l# 50,446 (16) 1,695 (3) 
HbA1c > 6 %# 274,565 (86) 29,793 (47) 
Composite measure# 274,565 (86) 29,793 (47) 

 
Legend: RBG: random blood glucose; FBG: fasting blood glucose; Composite measure: fasting blood glucose > 7mmol/l or random blood glucose >11.1mmol/l or HbA1c > 6; *: 
median (IQR), #: n (%), α: mean (SD) 
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3.5 DISCUSSION 

In this study, a number of problems encountered by computer-based methods in the complex tasks of 

identifying a disease cohort from large EMR databases are addressed. Specifically, (1) the common 

technical challenges in differentiating diabetes subtypes were defined and discussed, (2) combining 

clinical, medication and morbidity information with database patterns, a set of best predictors as feeds 

to ML algorithms that can be used to identify patients with T2DM in the absence of any disease code 

were selected, and (3) a comparison of T2DM cohorts identified by clinically guided selection 

algorithm and ML algorithm was made. The results of this study are of particular interest to 

researchers who work with the THIN database. However, methods explored in this study are 

generalizable for any EMR with different disease coding systems. 

 

Although there was no difference in distributions of basic characteristics among cohorts obtained by 

deterministic and probabilistic approaches, ML algorithms were found to be superior. With the use 

of selected features, we could confirm that 83% of the patients identified by the ML algorithm had a 

Read code for T2DM (Table 4.3). Those without Read code had a comparable high risk as identified 

by the significant predictors. While 25 / 21% of patients with Read code / Read code + (medication 

or lifestyle advice) for T2DM did not have at least two elevated measures of blood glucose within 

one year, only 18% of ML identified cohort did not have such measures. Among Read code / ML 

defined patients without elevated composite glucose measure, 69 / 41 % did not receive ADD for at 

least 6 months. It is important to note that the patients without a Read code for diabetes are highly 

less likely to have a 2 elevated blood glucose measures within one year unless they were known to 

be diabetic or pre-diabetic. 

 

Five of the six ML algorithms demonstrated similar performances in the training-testing data sets. 

Logistic regression approach was chosen as the best classifier for THIN database, however different 

feature patterns within other EMRs could potentially lead to better performance of other ML 

techniques to predict T2DM cohort. Tapak and colleagues 170 reported SVM as the better classifier, 

while Mani and colleagues 171 reported decision trees to outperform other ML algorithms. In this 

context it is important to mention that, ML algorithms cannot operate without meaningful data fed-in 

(“Garbage in, garbage out” principle). Although the use of different datasets makes it difficult for 

direct comparisons, a critical part of ML steps is the feature engineering or selection. Some recent 

studies have used large sets of variables associated with diabetes with the aim of enhancing the 

predictive accuracy 172,173. However, this may be limited by the inclusion of irrelevant and redundant 

variables, and model overfitting in cases where the number of observations are less than the number 
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of variables. While earlier studies were primarily based on clinically guided feature selection, a more 

holistic approach was adopted in the current study, initially to identify the data-driven candidates as 

potential predictors of T2DM from the whole database. Combining clinical knowledge and data-

driven candidate predictors, the selection of the most robust set of 7 predictors, was ensured. Although 

selected features were not surprising, it was observed that BMI, lifestyle modification advice, and 

hypertension did not contribute to the models, while microvascular complications did.   

 

The performances of six classification algorithms on a set of 150,000 instances were evaluated and 

reconfirmed to be large enough by assessing the performance curves of several incremental 

classifiers. Nevertheless, training dataset was small compared to the whole database; therefore, to 

ensure that the results were not prone to selection bias, the same analyses were performed on two 

other randomly selected training datasets and almost identical results obtained. 

 

Unlike most ML applications that focus on training to ensure best fit for future predictions, in this 

study, various techniques to correct available labelling with the ultimate goal to improve quality of 

diseased cohort (Type 2 Diabetes) was used. It would be of great interest to compare ML error, Rule-

based error, and human error in terms of predicting disease from available data. For this task, a "gold 

standard" dataset would consist of random patients whose true disease state was reconfirmed 

approaching both clinician and patient. The current study was not able to conduct this task, as the 

THIN database contains de-identified patient-level data, which is true for all large EMR databases 

that are used for research purposes. The THIN database also does not have data on surrogate markers 

that could improve the quality of the cohort identification algorithms. Miscoding between type 1 and 

type 2 diabetes in the primary care database is not uncommon 106,174. It is important to mention that 

ML techniques may poorly distinguish between disease subtypes without incorporating additional 

classification rules. We have excluded patients with other diabetes Read codes from the dataset on 

which our ML algorithm was applied. Furthermore, for patients identified as T2DM without Read 

codes, the ML techniques are not able to provide an exact diagnosis date, therefore requiring 

incorporation of additional techniques. 

 

3.6 CONCLUSION 

Careful investigation of diagnostic codes patterns within the databases is essential before conducting 

analyses on the disease cohort. Direct extraction of a disease cohort using diagnostic codes may lead 

to the inclusion of falsely diagnosed patients and omitting patients with a true disease state. Rule-

based techniques represent a conservative approach, which results in minimizing only false positive 
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cases. ML techniques that minimize both false positives and false negatives cases represent a more 

robust approach. However, ML techniques heavily rely on meaningful input and use diagnostic codes 

for training purposes. Combining human expertise and machine power represents the best strategy 

that allows to test hypotheses on potential disease predictors, lower human interventions, and to 

reduce the burden of selection bias. 
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Chapter 4: The design of a comparative longitudinal case-control 
study and the imputation of missing longitudinal 
covariate data 1 

This chapter covers two methodological goals of this thesis and follows the identification of a T2DM 

cohort from a relational database in Chapter 3. A comparative longitudinal study design from which 

causal inferences can be drawn was developed. This is essential because significant differences 

between characteristics of cases and controls may be influenced by selection bias 175, which impacts 

on the ability to draw correct inferences about the internal and external validity of the study in 

question. With the study design of choice being a case-control study, the first goal of this chapter was 

to develop matched control subjects for the T2DM patients identified in Chapter 3. In Section 4.1, I 

demonstrate via algorithms, how to generate age- and sex-matched controls subjects for T2DM 

patients identified from a relational database. The matching method developed here has general 

applicability as it has been used on other projects unrelated to this thesis. 

Given that missing data observed in the outcome of interest or other covariate data is common in 

longitudinal studies, the second goal of this chapter was to address the issue of missing longitudinal 

covariate data extracted for the cohort of T2DM patients (from Chapter 3) used in this thesis. In 

Section 4.2, exploratory data analysis was used to evaluate missing data patterns, and multiple 

imputations of missing covariate data was conducted. This section discusses and justifies the use of 

advanced multiple imputations techniques in this thesis. 

 

 

 

 

  

                                                
1 This chapter contains an exploratory analysis of missing data patterns and mechanisms within the cohort of T2DM 
patients used for this thesis. As a methodological chapter, results from the exploratory analyses were not published in 
any journal but illustrates how statistical methodologies can be generalised to EMR databases for robust inferences.  
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4.1 DEVELOPMENT OF CASE-CONTROL MATCHES WITHIN EMR DATABASES  

This section describes the development and implementation of an algorithm for obtaining matched 

controls for patients with T2DM (cases) identified in Chapter 3. 

4.1.1 Introduction 

Matching as a means of establishing a similarity or comparability between groups (usually cases and 

control subjects) in observational studies can be performed either at the design stage or during the 

analysis stage. For this thesis, matching of controls to cases during the design stage is desired. For 

example, a 67-year old male Caucasian with T2DM should have a 67-year old male Caucasian 

without T2DM as his matched control, and so on. Given that there are half a million patients with 

diabetes in the THIN database (Chapter 3, Figure 3.1), the set of potential non-diabetic controls to be 

matched to each T2DM case are close to ~10 million patients. This large set of potential non-diabetic 

control subjects may guarantee at least one matched control for each case. Therefore, it was 

hypothesised that in a large EMR database like the THIN database, four control subjects could be 

exactly matched to a case on age, sex, and ethnicity. My objectives were to (1) develop an algorithm 

that will allow for 1: N case-control matching within EMRs and (2) apply the algorithm to obtain a 

matched case-control dataset for use in this thesis. 

 

4.1.2 Methods 

Algorithm for case-control matching in EMRs 

Under the basic principle that once a match is made, it is never broken, 1: N matches  can be obtained 

by building on the initial theory provided by Iacus and colleagues 176 as described mathematically 

below: 

Let n be sample units that are subsets of a population of N units, where n ≤ N. 

Let 𝑁𝑁1 and 𝐶𝐶1 represent the total number of T2DM cases and potential controls respectively, with 𝑁𝑁1 

+ 𝐶𝐶1 = N. 

Let X denote the set of dynamic matching covariates, where  X= (X1, X2, X3, X4,⋯ ,  Xk), and  Xj  is 

the subject-covariate dimension of observed values for variable j of n observations 

i.e., X=[X𝒊𝒊𝒊𝒊, i =1,…,n, j=1,…,k]. 

Given a T2DM case, i ∈ N1 with its vector of covariates 𝑿𝑿𝑖𝑖, the aim of matching is to discover a 

control unit l ∈ C1 with covariates 𝑿𝑿𝑙𝑙 such that, the dissimilarity between 𝑿𝑿𝑖𝑖 and 𝑿𝑿𝑙𝑙 is very small in 

some metric (distance measure, d), that is d (𝑿𝑿𝑖𝑖,𝑿𝑿𝑙𝑙) ≈ 0. 
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Now, under the assumption that “once a match is made, it is never broken”, the following 

modification is made to allow for selection of more than one control for a case (Figure 4.1).  

(1) 𝒅𝒅𝟏𝟏(𝑿𝑿𝑖𝑖1,𝑿𝑿𝑙𝑙1) ≈ 0 is the metric used to generate first the set of matches, MC1; 

(2) Remove from C1, the matched controls generated by 𝒅𝒅𝟏𝟏 to obtain a new set of potential 

controls 𝑪𝑪𝟐𝟐 such that 𝑪𝑪𝟐𝟐 < 𝑪𝑪𝟏𝟏 ; 

(3) Generate a new set of matches MC2 from 𝑪𝑪𝟐𝟐using the metric, 𝒅𝒅𝟐𝟐(𝑿𝑿𝑖𝑖2,𝑿𝑿𝑙𝑙2); 

(4) Repeat step (2) this time to obtain, 𝑪𝑪𝟑𝟑 such that 𝑪𝑪𝟑𝟑 < 𝐶𝐶𝟐𝟐 and repeat step (3) to generate 

match set MC3 using   𝒅𝒅𝟑𝟑(𝑿𝑿𝑖𝑖3,𝑿𝑿𝑙𝑙3); 

(5) 1: N matches can be achieved by following the logic in steps [(2), (3), and (4)] until the 

desired matching ratio is obtained. Finally, the matched sets MC1, … , MCn can be 

pooled together. 

 

Implementation 

Cases (patients with T2DM) were defined as previously described in Chapter 3. A set of non-diabetic 

control patients (control pool) were obtained by selecting patients who had no diagnosis of T2DM or 

any other type of diabetes. Matching was then done on sex, year of birth, and ethnicity. The index 

date for controls was defined as the date of the diabetes diagnosis for their matched cases.  Differences 

between patients with T2DM and their non-diabetic controls were evaluated using the rank sum test 

for continuous variables and the chi-squared /McNemar’s test for binary data (presented in Table 4.1). 

Basic demographic characteristics of each ethnic group were summarized using the median and 

interquartile range for continuous variables and frequencies and percentages for categorical data. 

Scheffe's multiple comparison post hoc ANOVA test, a non-parametric Kruskal Wallis test, and the 

chi-square test were used to identify significant differences in different study parameters across the 

ethnic groups. 

 

4.1.3 Results  

The basic clinical characteristics of patients with T2DM with matched and unmatched patients are 

presented in Table 4.1. Before matching, the distribution of age at registration, sex, ethnicity and ex-

smokers among patients with T2DM was significantly different from that of the non-diabetic controls.  

However, the significant difference between the characteristics of the patient with T2DM and their 

matched non-diabetic controls was no longer observed after matching. This shows the utility of 

matching techniques in improving the balance between the patients with T2DM and non-diabetic 

controls from the THIN database. 
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Figure 4.1: Illustration of the algorithm for obtaining matched controls for cases within a large EMR database 
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Table 4.1: Comparison of matching variables between patients with T2DM, matched and 
unmatched control patients 

 
 T2DM (Cases) Unmatched 

Controls 
Matched Controls 

Total patients, n 338,089 10,487,077 1,320,804 
Age,     

at registration 49 (20) 27(22) 49 (20) 
at diagnosis 60(14) - 60 (14) 
at end of data collection 72 (16) 44 (25) 72 (16) 

Male,  185,745 (55) 5,020,437 (48) 742,980 (55) 
    
Ethnicity,     

White  83,371 (25) 1,947,680 (19) 323,776(25) 
Black  4,164 (1) 122,618 (1) 11,580 (1) 
South Asians 7,337 (2) 165,085 (2) 15,880 (1) 

    
 
Legend: α: Mean (SD); ‡: n (%); 
Unmatched Controls: the original pool of non-diabetic control subjects;  
Matched Controls: control subjects obtained from 1:4 matching using the modified algorithm. 
 

4.1.4 Post matching processing  

Demographic, anthropometric, clinical, and laboratory measurements along with the relevant dates 

of measurements were also extracted for the matched pairs (patients with T2DM and their matched 

controls). Notably, dates of exit of a patient from the database, generally through transfer to another 

practice/country or less commonly through death, previous medical history including any episode of 

cardiovascular events (myocardial infarction, stroke, coronary revascularisation, carotid or peripheral 

arterial revascularisation, or angina of cardiac origin), along with times of event were extracted. The 

longitudinal measures of anthropometric, clinical and laboratory parameters were arranged in 6-

month windows (from 36 months pre-onset date to 84 months post onset date). The matched dataset 

generated from this process was used for the primary results included in Chapters 5 and 6.  
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4.2 MULTIPLE IMPUTATION OF MISSING LONGITUDINAL RISK FACTOR DATA  

4.2.1 Introduction  

Longitudinal studies (retrospective or prospective) are usually prone to missing or incomplete 

information which can impact the generalisability of study findings. Despite the availability of 

standard statistical techniques for addressing the problem of missing covariate data in longitudinal 

studies, few studies have provided sufficient information on the imputation methods used 106.  

 

Several strategies for handling missing data are available and include methods such as complete case 

(CC) analyses, single imputation, and multiple imputation 109,177,178. While CC analyses offer a 

straightforward approach, it ignores observations with missing data and in the process, loses 

information contained in the incomplete cases. Inferences from such analyses may not be 

generalizable to the population, particularly when the complete cases are small. Single imputation 

methods allow for substitution of missing data with a value. With information from complete cases, 

each missing value can be imputed with (1) the mean of the complete cases, (2) the mean conditional 

on observed values of other variables, (3) last observation carried forward, among others 109. 

However, as pointed out by Rubin 109, single imputation does not account for variability of the 

predicted missing values, leading to bias in the resulting estimated variance of the parameter 

estimates. 

 

Multiple imputation replaces each missing value with a set of plausible values that represent the 

uncertainty about the right value to impute. Multiple imputation does not attempt to estimate each 

missing value through simulated values. Instead, it draws a random sample of the missing values from 

its distribution. This process leads to valid statistical inferences that properly reflect the uncertainty 

due to missing values 109. There is a large body of literature on the theoretical and methodological 

applications of various multiple imputation techniques. The choice of method depends on the 

assumption of missing data mechanism and underlying missing data pattern. This information is 

usually obtained via exploratory analysis to investigate missing data mechanism and patterns. 

Subsequently, under the assumptions that the missing data (1) mechanism is ignorable [i.e., missing 

at random (MAR) or missing completely at random (MCAR)], (2) are from a continuous multivariate 

distribution, and (3) can occur for any of the variables, missing values can be multiply imputed via 

regression methods or Bayesian-based Markov Chain Monte Carlo methods 109,177,178.  

 

However, given the underlying nature of longitudinal studies, most multiple imputation methods are 

not adequately suited to account for the temporal order in which measurements are recorded 106. This 
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inherent problem is due to the assumption that variables in the imputation model follow a multivariate 

normal distribution. The full conditional specification (FCS) approach to multiple imputation has 

flexible properties that make it a good candidate for imputing longitudinal data as it does not depend 

on the assumption of multivariate normality 106,179. This method fits a model for each variable with 

missing data (dependent) using all other variables as predictors, then iteratively imputes the missing 

values for the variable being fit 106,179. With regards to longitudinally measured risk factor data 

collected on patients within a real-world primary care setting, there is an implementation of the FCS 

approach that is theoretically and pragmatically appealing. The FCS via predictive mean matching 

(PMM) imputes a value randomly from a set of observed values whose predicted values are closest 

to the predicted value from a specified regression model. Specifically, consider a series of variables 

𝑋𝑋1, … ,𝑋𝑋𝑛𝑛 where 𝑋𝑋1 is missing and let Z = (Z1,⋯, Zr) denote a set of variables with no missing data 

(fully observed). The variable 𝑋𝑋1 is imputed by fitting a linear regression model of  𝑋𝑋1 on Z. If the 

random draw of posterior predictive distribution of coefficients produced by the regression of 𝑋𝑋1 on 

Z is denoted by b*, then a set of predicted values for 𝑋𝑋1can be generated for both subjects with or 

without missing values on 𝑋𝑋1. Using these predicted values, a set of subjects with predicted values 

close to the predicted value of subject with missing data are identified. Missing value is now 

substituted by assigning the predicted value of one of the close subjects that is randomly chosen. The 

whole process is repeated for the desired number of imputations.  

 

For this thesis, longitudinal data on weight, BMI, SBP, and HbA1c were extracted for the cohort of 

patients with T2DM identified in Chapter 3 and arranged in 6-monthly non-overlapping windows. 

However, as with all EMRs, a non-trivial amount of missing data exists for the longitudinally 

collected covariate data. Therefore, my objectives were to (1) compare uncertainty around inferences 

obtained from data imputed by PMM with complete data and (2) evaluate if the inference related to 

the association of BMI, SBP, and HbA1c with the risk of death differed between complete and imputed 

data sets. 

 

4.2.2 Methods 

Data structure 

To demonstrate the feasibility of multiple imputation approaches with this thesis, longitudinal data 

on weight, BMI, SBP, and HbA1c obtained at diagnosis, 6, 12, 18, and 24 months post diagnosis were 

used. A generalised data structure that represents all possible scenarios under which follow-up data 

was recorded for patients with T2DM was postulated (Figure 4.2). As with common data structures, 

the first row represents variable names where “Dx” captures measurements recorded at diagnosis. 
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Follow-up data captured at 6, 12, 18, and 24 months post-diagnosis are represented by “Dx+6”, 

“Dx+12”, “Dx+18”, and “Dx+24” respectively. A value of 1 is assigned to the event of a recorded 

measurement for a patient and 0 for a missing measurement. Given that there are five variables 

representing measurements taken in 6 monthly windows over 2 years, patients can have missing 

values for: 

i. All five variables [0/5 recorded],  

ii. Four variables [1/5 recorded] 

iii. Three variables [2/5 recorded], 

iv. Two variables [3/5 recorded],  

v. One variable [4/5 recorded], and  

vi. None of the five variables [5/5 recorded].  

  

recorded
recorded
recorded
recorded
recorded
recorded

DxDxDxDxDx

5/000000
5/100001
5/200011
5/300111
5/401111
5/511111

24    18    12      6    

→
→
→
→
→
→

++++

 

Figure 4.2: Data structure representing all scenarios of recording longitudinal follow-up data. 
[Dx: At diagnosis; Dx+6: at 6 months post diagnosis; Dx+12: at 12 months post diagnosis; Dx+18: 
at 18 months post diagnosis; Dx+24: at 12 months post diagnosis] 
 

Multiple imputation and data analyses 

Among patients with a minimum of 2 years of follow-up post-diagnosis, the proportion of patients 

who had at least two 6-monthly longitudinal measures of weight, BMI, SBP, and HbA1c were 

calculated. The missing 6-monthly longitudinal measures of these risk factors were imputed 

separately, only if at least two measures of longitudinal body weight were available for an individual 

patient. The multiple imputation technique used was PMM, conditioning on the age at diagnosis, sex, 

smoking status, deprivation status, the usages of ADDs and other relevant drugs as appropriate. 

Twenty imputations were conducted and the results were pooled together according to Rubin’s rules 
109. For each time point during the 24 months, mean (95% CI) of imputed and complete data were 

estimated and plotted separately for each of the risk factors considered. Furthermore, a multivariate 
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Cox regression model was fitted to imputed and complete data to assess the relationship between risk 

factors measured at diagnosis and all-cause mortality. This model adjusted for age at diagnosis, sex, 

ethnicity, smoking status, deprivation status, use of ADDs, and use of cardioprotective medications. 

The hazard ratios and their 95% CI obtained were used to check the consistency of clinical inference. 

 

4.2.3 Results 

The proportion of patients with missing 6-monthly longitudinal measurements of weight, BMI, HbA1c 

and SBP within two years of T2DM diagnosis are presented in Table 4.2. Among patients with a 

minimum 2 years of follow-up, the proportions patients who had at least 2 of the 5 measures missing 

was 16 % for weight, BMI, and SBP and 11% for HbA1c. 

 

A comparison of the mean (95% CI) of weight, BMI, SBP, and HbA1c for the complete and imputed 

datasets are presented in Figure 4.4. The average (95% CI) weight, BMI, SBP and HbA1c at diagnosis 

was 88.7 (88.6, 88.8), 31.4 (31.4, 31.5), 141.3 (141.2, 141.4), and 8.3 (8.3, 8.3) respectively. The 

distributions of imputed weight, BMI, and SBP over 24 months post diagnosis of T2DM were similar 

longitudinally compared to the complete data. However, imputed values of these three risk factors at 

6 months post diagnosis was lower than to the respective values in the complete data. Also, only 

imputed values of HbA1c at diagnosis and 6 months post diagnosis had similar distribution compared 

to their respective values in the complete data. Estimates of imputed HbA1c were marginally lower 

from 12 to 24 months post diagnosis compared to the complete data. This clearly suggests that 

multiple imputation by PMM captured the true longitudinal distributions of the weight, BMI, and 

SBP but not HbA1c (Figure 4.3).  

 

When risk factors were considered as continuous measures in the assessment of mortality risk for the 

two imputation methods (Table 4.3), the confidence intervals of the risk estimates overlapped 

suggesting no statistically significant difference between the two methods. Also, when the continuous 

measures were converted to categorical variables [i.e. BMI categories (normal weight, overweight, 

and obese), SBP categories (< 140mmHg and ≥140mmHg), and HbA1c groups (≤ 7%, 7.1-8.0%, 8.1-

9.0%, and ≥ 9%)], there was agreement between the imputed data and the complete data.  
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Table 4.2: Proportion of missing 6-monthly longitudinal measurements of weight, BMI, HbA1c and SBP within two years of T2DM diagnosis 
 

Proportion of 6-monthly longitudinal measurements missing n (%) 
 Weight, kg BMI, kg/m2 HbA1c, % SBP, mmHg 

At least 2 of 5 measurements missing 62,126 (16) 62,126 (16) 41,653 (11) 58,977 (16) 
At least 3 of 5 measurements missing 60,507 (16) 60,507 (16) 39,674 (10) 45,079 (12) 
At least 4 of 5 measurements missing 53,123 (14) 53,123 (14) 40,868 (11) 44,283 (12) 

 

 
Table 4.3: Hazard ratios (HR) and 95% CI for all-cause mortality for from complete and imputed data 

 
 HR (95% CI) for ACM 
 Complete data PMM  
BMI at diagnosis 1.03 (1.02,1.03) 1.01 (1.00,1.03) 

Normal weight 1.62(1.43, 1.84) 1.26 (1.11,1.44) 
Overweight 1.13 (1.03,1.23) 0.98 (0.90,1.06) 
Obese Reference Reference 
   

SBP at diagnosis 1.00 (1.00,1.01) 1.00 (1.00,1.01) 
≥140 mmHg 1.12(1.05,1.19) 1.12 (1.05,1.19) 
<140 mmHg Reference Reference 
   

HbA1c at diagnosis 1.06 (1.04,1.08) 1.05 (1.05,1.07) 
≤ 7.0 % Reference Reference 
7.1-8.0 % 1.14 (1.01,1.29) 1.16 (1.06,1.29) 
8.1-9.0 % 1.35 (1.18,1.55) 1.36 (1.23,1.50) 
≥ 9.1 % 1.44(1.29,1.61) 1.36 (1.23,1,51) 
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Figure 4.3: Comparison of original (complete) with imputed (PMM) weight, BMI, SBP, and HbA1c from diagnosis of T2DM to 24 months post-
diagnosis.  
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4.2.4 Discussion  

This exploratory section evaluated the frequency and patterns of missingness in longitudinal clinical 

data collected on patients with T2DM from the time of diagnosis over 2 years. Multiple imputation 

of missing 6-monthly longitudinal clinical data (weight, BMI, SBP, and HbA1c) was done using 

PMM. The uncertainty around imputed and complete (unimputed) data was compared and differences 

in the association of these risk factors with the risk of death between imputed and complete datasets 

were evaluated. It was observed that multiple imputation via PMM (1) captured the true longitudinal 

distribution of weight, BMI, and SBP over 24 months post diagnosis, (2) estimated similar HbA1c 

values at diagnosis and 6 months post-diagnosis and marginally lower HbA1c values from 12 months 

to 24 months post diagnosis when compared to complete data, and (3) leads to similar clinical 

inferences between complete data (CC) and imputed data based on analyses drawn on these risk 

factors. 

 
Many patients had at least 2 missing 6-monthly longitudinal measurements over 24 months post-

diagnosis.  Primary care based EMR databases present a formidable challenge because “missing data”  

have an intermittent pattern of missingness over time (non-monotone) and are NMAR, so approaches 

such as CC analyses produces biased and statistically inefficient results180. Also, the prediction of 

unknown missing values from a set of known values can be biased as seen in the case of single 

imputation methods [65]. Multiple imputation approaches replace each missing value with a set of 

plausible values that represent the uncertainty about the right value to impute 109. The PMM technique 

uses this underlying principle and imputes a value randomly from a set of observed values whose 

predicted values are closest to the predicted value from a specified regression model. The observation 

of similar longitudinal distribution of risk factors from the imputed data and complete data shows the 

robustness of using multiple imputation for making clinical inferences in this thesis.  

 

The clinical contexts of evaluating the association of BMI at diagnosis with long-term cardiovascular 

and mortality risk, using continuous measures of risk factors or clinical categorisation of these risk 

factors, were well supported with confidence in making robust inferences using PMM method of 

imputation in the current thesis. More importantly, the observation that inferences about the 

association of the risk factors under consideration with mortality risk were similar between complete 

and imputed data ensures that the use of the imputed data in the current thesis will provide reliable 

results. 
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Chapter 5: Comparison of body mass index at diagnosis of diabetes 
in a multi-ethnic population: A case-control study with 
matched non-diabetic controls  

This body of this chapter contains one published paper that discusses the distribution of BMI at 

diagnosis of diabetes in comparison to non-diabetic controls. The citation of the published paper is 

as follows: 

 

Paul SK*, Owusu Adjah ES*, Samanta M, Patel K, Bellary S, Hanif W, Khunti K. Comparison of body mass 
index at diagnosis of diabetes in a multi-ethnic population: A case-control study with matched non-diabetic 
controls. Diabetes, Obesity and Metabolism 2017;19(7):1014-1023. * Joint first authors 
 

All the listed have agreed to the inclusion of this published scholarly work in this thesis and the 

statement of my contribution to the authorship of this published scholarly work is included below: 
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Paul Sanjoy K. Conceived the idea and was responsible for the primary design 
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first draft and contributed towards finalisation of the manuscript. 

Owusu Adjah Ebenezer S. 
(Candidate) 

Conceived the idea and was responsible for the primary design 
of the study. Responsible for extracting data from THIN 
database. Developed and applied exact case-control matching 
algorithm for matching of diabetes patients with non-diabetic 
controls within the THIN database. Responsible for data 
manipulation, aggregation, transformation in SAS and 
contributed towards the statistical analyses in STATA. 
Contributed towards the interpretation of results. Developed first 
draft and contributed towards finalisation of the manuscript. 

Samanta Mauykh Contributed to the interpretation of the results and manuscript 
finalisation.  

Patel Kiran Contributed to the interpretation of the results and manuscript 
finalisation.  

Bellary Srikanth Contributed to the interpretation of the results and manuscript 
finalisation. 

Hanif Wasim Contributed to the interpretation of the results and manuscript 
finalisation. 

Khunti Khunti Contributed to the interpretation of the results and manuscript 
finalisation. 
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5.1 ABSTRACT 

Aims: To investigate the probability of developing type 2 diabetes mellitus (T2DM) at different body 

mass index compared to matched non-diabetic controls in a multi-ethnic population. 

 

Materials and Methods:  Case-control study of 90,367 patients with incident diabetes and 362,548 

age-sex-ethnicity matched controls from UK primary care. The probability of developing T2DM was 

estimated. 

 

Results: Case and control patients were 56 years old at index and 56% were male. Patients with 

T2DM had significantly higher mean BMI level by about 5 kg/m2 at diagnosis (32.2 kg/m2), compared 

to the matched controls (27.4 kg/m2). White European (n=79,270), African-Caribbean (n=4,115) and 

South Asians (n=7,252) were 58, 48, and 46 years old with mean BMI of 32.5, 31.1, 29.2 kg/m2 

respectively at diagnosis. More South Asians developed T2DM at BMI below 30 kg/m2 (38%) than 

White Europeans (26%) and African-Caribbeans (29%), (all p<0.01). Within the 18-70-year age 

range, South Asian males and females had significantly higher probability of developing diabetes in 

the continuously measured BMI range of 18-30 kg/m2, compared to White Europeans and African-

Caribbeans. Across all age groups < 70 years, South Asians and African-Caribbeans had significantly 

higher probability of developing T2DM in the normal weight and overweight categories, compared 

to White Europeans. However, this risk patterns of developing diabetes was reversed amongst the 

obese at all age groups.  

 

Conclusion: Risk patterns of developing diabetes at different levels of obesity varies between ethnic 

groups across all age groups, while South Asians and African-Caribbeans carry the highest risk at 

younger age and at lower adiposity burden. 
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5.2 INTRODUCTION 

Obesity [body mass index (BMI) ≥ 30 kg/m2] is a worldwide epidemic affecting people of all ages 

and is a major risk factor for type 2 diabetes mellitus (T2DM) and cardiovascular diseases (CVD) 69. 

Current epidemiological indices of obesity have doubled since 1980, with about 13% of the world’s 

population being obese as of 2014 69,181. Some population-based studies have been conducted to 

assess the impact of BMI classification, including overweight and various grades of obesity, on the 

risk of T2DM 30,182,183. The BMI cut-points of 25 kg/m2 and 30 kg/m2 were defined as the basis for 

identifying overweight and obesity based on epidemiological studies investigating the association 

with mortality and morbidity, primarily in White population. However, there is increasing evidence 

that levels of risk associated with the classification of overweight and obesity vary across ethnic 

groups 28,104,184-187.  

 

The propensity to develop T2DM varies considerably between ethnic groups and identifying the BMI 

cut points within specific ethnic groups at which the risk of T2DM increases is useful to inform public 

health policy. Some studies have evaluated the ethnicity-specific diabetes incidence rates in 

association with prior BMI levels using population level and primary care data 28,29,185,188. These 

studies were limited by the number of subjects in the non-white ethnic groups. The pooled analysis 

of survey data from various countries conducted by the DECODE-DECODA study group in 2003 

evaluated the association of ethnicity, BMI and prevalence of T2DM 188. However, the BMI 

measurements were not consistently taken at the time of diagnosis of diabetes. Only one previous 

study has compared the distribution of BMI at diagnosis of T2DM with non-diabetic controls 30. Ganz 

and colleagues defined BMI at diagnosis as the last measurement of BMI taken within one year prior 

to diagnosis of T2DM, and randomly matched controls to cases 30. While this study reported an 

increased risk of developing T2DM with higher BMI levels, the differential aspects of ethnicity in 

the relationship between BMI and risk were not addressed.  

 

No study has compared the distribution of BMI at diagnosis of T2DM by ethnicity with non-diabetic 

controls. In addition, we are not aware of any population-based study evaluating differences in the 

risk of developing T2DM in men and women in different age levels between different ethnic groups 

over the whole spectrum of BMI distribution at diagnosis. Using a large cohort of incident T2DM 

patients, and an age-sex-ethnicity matched non-diabetic control cohort from United Kingdom primary 

care, the aims of this study were to evaluate for each ethnic group (1) the distribution of BMI, 

glycaemic, and vascular risk factors at diagnosis of T2DM, and (2) the probability of developing 

T2DM over the entire spectrum of BMI and age.  
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5.3 MATERIALS AND METHODS 

5.3.1 Data source 

Data for this study were obtained from The Health Improvement Network (THIN) database, a large 

anonymised longitudinal dataset derived from a network of more than 600 primary care providers 

across the United Kingdom.  With longitudinal data on approximately 11 million individuals 

registered with the primary care system, the THIN database has been extensively used for academic 

research in various disciplines 122. The accuracy and completeness of this database has been 

previously described 124,125. Notably, the database has a similar distribution of major chronic diseases 

including diabetes, heart failure and obesity when compared to UK national statistics 87,124. Clinically 

diagnosed diseases are recorded using Read codes 128 and with each diagnosis, an event date is 

entered. THIN database provides comprehensive patient-level longitudinal information on 

demographic, anthropometric, clinical and laboratory measures, clinical diagnosis of diseases/events, 

along with complete information on prescriptions for medications with dates and doses. Formal 

access to the database has been obtained and the study protocol approved by the Scientific Review 

Committee of the THIN database, UK (reference number: 15THIN030).  

 

5.3.2 Identification of T2DM cases 

Patients with T2DM were identified through various steps of clinically guided iterative processes. 

Specifically, the T2DM cases were selected if: 

(i) Patient had a record of Read code related to T2DM,   

(ii) Patient from step (i) above had received at least one prescription for an antidiabetic drug in 

addition to the clinical diagnosis, or  

(iii) Patient in step (i) above had received a lifestyle modification intervention.  

A set of 345,013 patients with newly diagnosed T2DM (from January 1990 to September 2014) was 

identified, who had complete information on age at diagnosis (≥18 years) and sex. Of these patients, 

only 90,754 patients had their ethnicity identified as White European, African-Caribbean or South 

Asian, (Figure 6.1). South Asians were defined as patients with Indian, Pakistan, Sri Lanka, and 

Bangladesh origin while African-Caribbeans were defined as patients with Black-African and/or 

Caribbean origin. White Europeans were patients with self-reported ethnicity as White, European, 

Caucasian, and/or New Zealand European. 

 



 

 66 

 

 

Figure 5.1: The identification of T2DM study cohort and their matched controls from THIN database.  
[1: T2DM Read code + (antidiabetic medication or lifestyle modification intervention, excludes patients with any other type of diabetes (e.g. Type 1 diabetes, Gestational diabetes); 2: 

Age at index date greater or equal to 18, complete information on gender and ethnicity (White European, African-Caribbean and South Asian only]; 3 Excludes patients who have ever 

received anti-hyperglycaemic drugs. 
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5.3.3 Development of control subjects  

A control pool of patients without T2DM was obtained by selecting individuals who had no diagnosis 

of any type of diabetes and had never received an antidiabetic prescription. Exact matches based on 

ethnicity, age, and sex were obtained from this pool of potential controls without replacement. To the 

90,637 eligible T2DM cases with identified three ethnic groups, 362,548 controls were successfully 

matched in a 1:4 ratio. The index date for controls was defined as the date of the diabetes diagnosis 

for their matched cases. 

 

The following information on index date was extracted for all patients where available: smoking 

status, deprivation score, weight, BMI, glycated haemoglobin (HbA1c), systolic blood pressure (SBP), 

diastolic blood pressure (DBP), low density lipoproteins (LDL-C), high density lipoproteins (HDL-

C), and triglycerides. All available measures on or within 3 months prior to the index date were 

considered as the baseline measures. Anti-glycaemic agents, anti-hypertensive agents, cardio-

protective medications (CPM), weight lowering drugs and anti-depressants were also obtained along 

with dates of prescription. The CPMs were defined as the use of statins or angiotensin-converting 

enzyme inhibitors or angiotensin II receptor blockers or beta blockers on or before diagnosis. BMI 

categories were defined following WHO established criteria 5 as follows: normal weight (18.5-24.99 

kg/m2), overweight (25-29.99 kg/m2), Grade 1 obese (30-34.99 kg/m2), Grade 2 obese (35-39.99 

kg/m2) and Grade 3 obese (≥ 40 kg/m2). In addition, records of cardiovascular diseases (CVDs), renal 

diseases and cancer on or before the index date were also obtained.  A composite variable for CVD 

(any CVD) was defined as the occurrence of angina or myocardial infarction or coronary artery 

disease (including bypass surgery and angioplasty) or heart failure or stroke before diagnosis.  

 

5.3.4 Statistical analysis 

Basic characteristics of incident T2DM patients and their matched non-diabetic control population, 

separately for ethnic group, were summarized using number (%), means ± SD or median (first 

quartile, third quartile) as appropriate. Differences between patients with T2DM and their matched 

controls were evaluated using the rank sum test for continuous variables and the chi-squared for 

binary data. The distributions of BMI at diagnosis of T2DM in three different ethnic groups were 

compared using analysis of variance models, separately for different age groups at diagnosis.  

 

To explore the association of BMI at diagnosis with the risk of developing T2DM, in interaction with 

different ethnic groups, multivariate logistic regression models were fitted. The covariates for 

adjustments were age, sex, smoking status, deprivation score, and the history of CVD, cancer, and 

chronic kidney disease (CKD) on or prior to the index date. The probability of developing T2DM 
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over the whole distribution of BMI in different ethnic groups was evaluated, using both continuous 

measures of BMI and the World Health Organisation defined categories of BMI. To explore the 

possible differences in the patterns of association of BMI with the risk of developing T2DM in 

different ethnic groups for male and female, and also over different age groups at index date, separate 

adjusted models were fitted. The differences in predicted probabilities between ethnic groups were 

calculated using the methodology described by King and colleagues (2000) 189 and Zelner (2009) 190. 

The estimated probabilities and the 95% confidence intervals were presented as appropriate. 

Sensitivity analyses to support the above analyses include (1) an extended model incorporating 

measures of SBP, LDL-C, HDL-C and triglyceride at index, the use of CPMs, weight lowering drugs, 

anti-hypertensives, and anti-depressants before diagnosis, and (2) comparison of distribution of BMI 

and HbA1c at diagnosis for patients diagnosed after 01 Jan 2006. 
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5.4 RESULTS 

The basic demographic and clinical profiles of 90,367 patients with T2DM and 362,548 age-sex-

ethnicity matched controls, separately for ethnic groups, are shown in Table 5.1. Case and control 

patients were 56 years old at index and 56% were male. Patients with T2DM had significantly higher 

mean BMI level by about 5 kg/m2 at diagnosis (32.2 kg/m2), compared to the matched controls (27.4 

kg/m2). However, this difference was smaller in the African-Caribbean (2.4 kg/m2) and South Asians 

(2.8 kg/m2). Furthermore, cases were more likely to receive anti-hypertensives, cardio-protective 

medications, and anti-depressants and were more likely to have any CVD before diagnoses than 

controls. South Asians were more likely to develop diabetes at a significantly lower age (mean age 

46 years, 31% below 40 years) compared to the White Europeans (mean age 58 years, 9% below 40 

years) and African-Caribbeans (mean age 48 years, 23% below 40 years). Compared to male patients, 

females developed T2DM at a significantly higher BMI level across all ethnic groups. More South 

Asians developed T2DM at BMI below 30 kg/m2 (38%) than White Europeans (26%) and African-

Caribbeans (29%), (all p<0.01). Those not included in the study because of non-availability of 

ethnicity data were older (mean age 61 years compared to 56 years in the study cohort) but had a 

similar distribution of sex, BMI, current smokers, ex-smokers, and never smokers. 

 

The average SBP in South Asians at the time of diagnosis of T2DM (132 mmHg) was significantly 

lower with only 20% having SBP ≥ 140 mmHg, compared to the two other ethnic groups (p<0.01). 

Among those who developed T2DM, only 28% of South Asians were current or ex-smokers at index 

date, compared to 60% and 33% in the White and African-Caribbean ethnic groups respectively. 

African-Caribbean and South Asians had significantly higher LDL-C levels at diagnosis of T2DM 

(LDL-C ≥ 100 mg/dl: 34% and 28% respectively) compared to the White Europeans (LDL-C ≥ 100 

mg/dl: 23%, Table 5.1). African-Caribbean patients had significantly higher mean HbA1c level at 

diagnosis [9.1% (76 mmol/mol), 30% with HbA1c ≥ 7.5 % (58 mmol/mol)] compared to South Asians 

[8.5% (69mmol/mol), 28% with HbA1c ≥ 7.5% (58 mmol/mol)] and White Europeans [8.2% (66 

mmol/mol), 22% with HbA1c ≥ 7.5% (58 mmol/mol)].  

 

The distributions of BMI at diagnosis of T2DM in different ethnic groups, by age groups at diagnosis, 

are presented in Table 5.2. South Asians and African-Caribbeans aged 18-70 years at diagnosis 

developed T2DM at significantly lower BMI than White Europeans. Over the whole distribution of 

BMI level, the probability of developing T2DM in South Asians compared with other ethnic groups, 

separately for male and female and by different age groups, are presented in Figure 1 and Figure 2 

respectively. When analysed with a continuous measure of BMI, compared to both White Europeans 
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and African-Caribbeans, South Asians had a significantly higher probability of developing T2DM 

within the range of BMI from 18 kg/m2 to about 30 kg/m2, for both males and females (Figure 7.1 A-

D). The adjusted probability (95% CI) of developing T2DM at different BMI category levels 

compared between the three ethnic groups, separately for different age groups, are presented in Figure 

7.2. Across all age groups within the age of 70 years, South Asians and African-Caribbeans had a 

significantly higher probability of developing T2DM in the normal weight and overweight categories, 

compared to White Europeans. Sensitivity analysis with an extended list of covariates revealed 

similar results.  
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Table 5.1: Distribution of basic characteristics of T2DM patients and their matched controls, stratified by ethnicity 
 

 
White European 

(N=396,350) 
African-Caribbean  

(N=20,575) 
South Asian 
(N=36,260) 

ALL  
(N=453,770) 

 T2DM Control T2DM Control T2DM Control T2DM Control 
Patients* 79,270 317,080 4,115 16,460 7,252 29,008 90,637 362,548 
Age at diagnosis (years) † 58 ± 12 58 ± 12 48 ± 12 48 ±12 46 ± 12 46 ± 12 56 ±  13 56 ± 13 
Age at diagnosis (years) ‡ 58 (49, 67) 58 (49, 67) 48 (40, 56) 48 (40, 56) 45 (38, 54) 45 (38, 54) 57 (47, 66) 57 (47, 66) 

Age group *         
≤40 6,724 (9) 26,896 (9) 949 (23) 3,796 (23) 2,204 (30) 8,816 (30) 9,877 (11) 39,508 (11) 
41-50 15,614 (20) 62,456 (20) 1,511 (37) 6,044 (37) 2,598 (36) 10,392 (36) 19,723 (22) 78,892 (22) 
51-60 22,425 (28) 89,700 (28) 1,007 (25) 4,028 (25) 1,529 (21) 6,116 (21) 24,961 (28) 99,844 (28) 
61-70 21,751 (27) 87,004 (27) 491 (12) 1,964 (12) 688 (10) 2,752 (10) 22,930 (25) 91,720 (25) 
71+ 12,756 (16) 51,024 (16) 157 (4) 628 (4) 233 (3) 932 (3) 13,146 (15) 52,584 (15) 

Male * 44,651 (56) 178,604 (56) 2,102 (51) 8,408 (51) 4,005 (55) 16,020 (55) 50,758 (56) 203,032 (56) 
Current smokers * 15,581 (20) 59,060 (19) 527 (13) 2,307 (14) 967 (13) 3,460 (12) 17,075 (19) 64,827 (18) 
Ex-smokers * 31,966 (40) 114,099 (36) 808 (20) 2,612 (16) 1,058 (15) 3,497 (12) 33,832 (37) 120,208 (33) 
Never smokers * 31,427 (40) 138,903 (44) 2,769 (67) 11,130 (68) 5,195 (72) 21,162 (73) 39,391 (44) 171,195 (47) 
Highest affluence * 3,391 (4) 15,054 (5) 564 (14) 1,954 (12) 665 (9) 2,525 (9) 4,620 (5) 19,533 (5) 
Lowest affluence * 16,923 (21) 56,124 (18) 994 (24) 4,290 (26) 1,852 (26) 7,073 (24) 19,769 (22) 67,487 (19) 
HbA1c (%) ,[mmol/mol] § 8.2 ± 2.1 

[66 ± 23.0] 
 9.1 ± 2.7 

[76 ± 29.5] 
 8.5 ±  2.1 

[69 ± 23.0] 
 8.3 ± 2.1 

[67 ± 23.0] 
 

HbA1c ≥ 7.5%*§ 17,730 (22)  1,234 (30)  2,021 (28)  20,985 (23)  
Weight (kg) † 92.2 ± 21.0 77.8 ± 16.8 88.3 ± 18.7 81.0 ± 16.2 78.8 ± 17.1 71.3 ± 14.6 91.0 ±  21.0) 77.5 ± 16.8 
Weight (kg) ‡ 90.0 (78, 104) 76.2 (66, 88) 86.0 (75, 99) 79.7 (70, 90) 76.0 (67, 88) 70.0 (61, 80) 88.9 (76, 103) 76.0 (66, 87) 
BMI (kg/m²) †   -- All  32.5 ± 6.8 27.4 ± 5.2 31.1 ± 6.2 28.7 ± 5.6 29.2 ± 5.7 26.5 ± 4.8 32.2 ± 6.8 27.4 ± 5.2 
BMI (kg/m²) †   -- Male  31.7 ± 6.0 27.5 ± 4.7 29.3 ± 5.3 27.3 ± 4.6 28.4 ± 5.4 26.2 ± 4.6 31.4 ± 6.0 27.4 ± 4.7 
BMI (kg/m²) †  -- Female 33.4 ± 8.0 27.4 ± 5.8 33.0 ± 6.6 30.0 ± 6.2 30.2 ± 5.8 26.6 ± 5.1 31.5 ± 6.8 27.0 ± 5.3 
BMI (kg/m²) ‡ 31.4 (28, 36) 26.8 (24, 30) 30.2 (27, 35) 28.0 (25, 32) 28.3 (25, 32) 26.0 (23, 29) 31.1 (28, 36) 26.8 (24, 30) 
Normal weight* 4,958 (6) 24,052 (8) 365 (9) 834 (5) 921 (13) 2,374 (8) 6,244 (7) 27,260 (8) 
Overweight* 15,439 (20) 30,135 (10) 820 (20) 1,283 (8) 1,830 (25) 2,376 (8) 18,089 (20) 33,794 (9) 
Grade 1 obese* 15,592 (20) 13,654 (4) 719 (18) 764 (5) 1,050 (15) 896 (3) 17,361 (19) 15,314 (4) 
Grade 2 obese* 8,973 (11) 4,073 (1) 383 (9) 288 (2) 386 (5) 251 (1) 9,742 (11) 4,612 (1) 
SBP (mmHg) † 141 ± 19 136 ± 19 137 ± 19 133 ± 19 132 ± 18 128 ± 17 140 ± 19 135 ± 18 
SBP  ≥ 140 mmHg * 28,971 (37) 52,256 (17) 1,104 (27) 1,742 (11) 1,461 (20) 2,092 (7) 31,536 (35) 56,090 (16) 
DBP (mmHg) † 82 ± 11 80 ± 10 83 ± 11 81 ± 11 82 ± 11 79 ± 10 82 ± 11 80 ± 10 
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LDL-C(mg/dl) † 117 ± 42 120 ± 40 126 ± 39 124 ± 35 119 ± 39 121 ± 35 117 ± 42 120 ± 39 
LDL-C ≥ 100 mg/dl* 17,944 (23) 25,328 (8) 1,388 (34) 1,531 (9) 2,003 (28) 2,684 (9) 21,335 (24) 29,543 (8) 
HDL-C (mg/dl)† 46 ± 14 56 ±17 48 ± 13 58 ± 17 44 ± 11 51 ± 14 46 ± 13 56 ± 17 
HDL-C ≤ 45 mg/dl* 19,024 (24) 11,941 (4) 924 (23) 501 (3) 2,041 (28) 1,452 (5) 21,989 (24) 13,894 (4) 

Triglycerides (mg/dl) ‡ 159 
(122, 213) 

115 
(87, 159) 

115 
(81, 159) 

82 
(62, 115) 

151 
(115, 204) 

115 
(89, 168) 

159 
(115, 213) 

115 
(84, 159) 

Triglyceride ≥ 150 mg/dl* 18,654 (24) 13,323 (4) 601 (15) 260 (2) 1,681 (23) 1,316 (5) 20,936 (23) 14,899 (4) 
Complications*         

CKD (≥ stage 3) 1,752 (2) 4,493 (1) 52 (1) 146 (1) 34 (1) 143 (1) 1,838 (2) 4,782 (1) 
Cancer  4,746 (5) 18,793 (6) 100 (2) 278 (2) 68 (1) 339 (1) 4,914 (5) 19,410 (5) 
Myocardial Infarction 4,802 (6) 9,120 (3) 34 (1) 85 (1) 181 (3) 355 (1) 5,017 (6) 9,560 (3) 
Heart Failure 1,743 (2) 2,635 (1) 29 (1) 38 (0) 41 (1) 76 (<0.1) 1,813 (2) 2,749 (1) 
Angina 6,529 (8) 12,975 (4) 48 (1) 93 (1) 196 (3) 440 (2) 6,773 (8) 13,508 (4) 
Stroke 4,014 (5) 9,521 (3) 105 (3) 198 (1) 111 (2) 275 (1) 4,230 (5) 9,994 (3) 
Any CVD 15,769 (20) 33,155 (11) 225 (6) 443 (3) 519 (7) 1,101 (4) 16,513 (18) 34,699 (10) 
Hypertension 33,234 (42) 62,749 (20) 1,419 (35) 2,852 (17) 1,803 (25) 2,941 (10) 36,456 (40) 68,542 (19) 

Anti-hyperglycaemic drugs 
(Ever prescribed)*         

None 10,767 (14) 317,080 (100) 294 (7) 16,460 (100) 536 (7) 29,008 (100) 11,597 (13) 362,548(100) 
Insulin 17,693 (22)  917 (22)  1,381 (19)  19,991 (22)  
Biguanides 62,598 (79)  3,530 (86)  6,324 (87)  72,452 (80)  
Sulphonylureas 38,281 (48)  2,090 (51)  3,739 (52)  44,110 (49)  
Thiazolidinedione  14,481 (18)  622 (15)  1,411 (20)  16,514 (18)  
GLP1-RA 3,769 (5)  117 (3)  225 (3)  4,111 (5)  
DPP-4 11,078 (14)  633 (15)  1,231 (17)  12,942 (14)  
Alpha glucosidase 1,545 (2)  58 (1)  117 (2)  1,720 (2)  
SGLT2 615 (1)  21 (1)  59 (1)  695 (1)  
Metglinides 902 (1)  58 (1)  100 (1)  1,060 (1)  

Other medications (Ever 
prescribed) *         

Antihypertensive 3,577 (5) 7,496 (2) 173 (4) 390 (2) 145 (2) 320 (1) 3,895 (4) 8,206 (2) 
Diuretics 20,688 (26) 41,226 (13) 585 (14) 1,421 (9) 684 (9) 1,508 (5) 21,957 (24) 44,155 (12) 
Beta blockers 18,938 (24) 42,580 (13) 427 (10) 1,103 (7) 758 (11) 1,913 (7) 20,123 (22) 45,596 (13) 
Calcium blockers 15,070 (19) 30,059 (10) 724 (18) 1,588 (10) 703 (10) 1,386 (5) 16,497 (18) 33,033 (9) 
Statins 19,376 (24) 35,419 (11) 627 (15) 811 (5) 1,219 (17) 1,679 (6) 21,222 (23) 37,909 (11) 
Ace inhibitors 17,145 (22) 30,152 (10) 558 (14) 889 (5) 823 (11) 1,370 (5) 18,526 (20) 32,411 (9) 
CPMs 34,595 (44) 73,919 (23) 1,272 (31) 2,473 (15) 1,997 (28) 3,671 (13) 37,864 (42) 80,063 (22) 
Anti-depressants 17,419 (22) 54,807 (17) 393 (10) 1,413 (9) 926 (13) 3,025 (10) 18,738 (21) 59,245 (16) 
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Anti-obesity 3,213 (4) 2,940 (1) 121 (3) 171 (1) 200 (3) 229 (1) 3,534 (4) 3,340 (1) 
 
*: n (%); †: mean ± SD; ‡: median (Q1, Q3);§: Not presented for control subjects; Any CVD: Defined as the occurrence of angina or myocardial 
infarction or coronary artery disease (including bypass surgery and angioplasty) or heart failure or stroke before diagnosis 
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Table 5.2: Mean ± SD of BMI in three ethnic groups at the time of diagnosis of T2DM, by different age groups at diagnosis among patients diagnosed 
from 01 Jan 2006.  
 

   Absolute difference in mean (p-value) BMI categories* 

Age group: n BMI† WE Vs SA WE Vs AC AC Vs SA Grade 1 
Obese 

Grade 2 
Obese 

Grade 3 
Obese 

≤ 40 years         
White European 2051 36.3 ± 8.6 6.6 (<0.001) 5.2(<0.001) 1.4 (<0.022) 509 (24) 468 (23) 615 (30) 

African-Caribbean  311 31.1 ± 6.5    89 (29) 43 (14) 28 (9) 
South Asian 892 29.8 ± 6.2    212 (24) 90 (10) 64 (7) 

41-50 years         
White European 5717 35.1 ± 7.4 5.3 (<0.001) 3.6 (<0.001) 2.1 (<0.001) 1635 (29) 1360 (24) 1263 (22) 

African-Caribbean  716 31.5 ± 6.3    215 (30) 128 (18) 57 (8) 
South Asian 1092 29.4 ± 5.8    278 (26) 109 (10) 44 (4) 

51-60 years         
White European 7907 33.4 ± 6.7 3.8 (<0.001) 2.2 (<0.001) 1.6 (<0.001) 2537 (32) 1644 (21) 1139 (14) 

African-Caribbean  497 31.2 ± 6.2    132 (27) 82 (17) 43 (9) 
South Asian 679 29.6 ± 5.7    167 (25) 73 (11) 27 (4) 

61-70 years         
White European 8487 32.1 ± 6.2 3.5 (<0.001 1.1 (<0.038) 2.3 (<0.001) 2849 (34) 1446 (17) 824 (10) 

African-Caribbean  188 30.9 ± 5.4    65 (35) 27 (14) 12 (6) 
South Asian 264 28.6 ± 5.4    56 (21) 21 (8) 9 (3) 

70+ years         
White European 5198 30.2 ± 5.4 2.7 (<0.001) 0.44 (1.000) 2.3 (0.015) 1554 (30) 637 (12) 255 (5) 

African-Caribbean  80 29.7 ± 6.6    19 (24) 9 (11) 8 (10) 
South Asian 100 27.4 ± 5.5    18 (18) 8 (8) 3 (3) 

Female         
White European 12,292 33.9 ± 7.7 3.4 (<0.001) 0.6 (0.051) 2.8 (<0.001) 3414 (28) 2534 (21) 2328 (19) 

African-Caribbean  823 33.3 ± 6.4    265 (32) 194 (24) 107 (13) 
South Asian 1303 30.5 ± 6.0    344 (26) 193 (15) 86 (7) 

Male         
White European 17068 32.3 ± 6.2 3.7 (<0.001) 2.8 (<0.001) 0.9 (0.002) 5,670 (33) 3,012 (16) 1768 (10) 
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African-Caribbean  969 29.5 ± 5.4    255 (26) 95 (10) 41 (4) 
South Asian 1724 28.6 ± 5.6    387 (22) 108 (6) 61 (4) 

 
*: n (%); †: mean ± SD;  
The p values are estimated to present the significance of differences in the distribution of BMI between each combination of two ethnic groups. The 
proportions of patients under different obesity grades are presented by number (%). WE: White European; SA: South Asian; AC: African-Caribbean 
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Figure 5.2: The association between BMI at diagnosis and risk of T2DM (95% CI) compared between three ethnic groups. 
[A: Adjusted probability of developing T2DM (95% CI) at different levels of BMI for male South Asians, compared to male White Europeans; B: Adjusted probability of developing 

T2DM (95% CI) at different levels of BMI for female South Asians  compared to female White Europeans ; C: Adjusted probability of developing T2DM at different BMI levels for 

male South Asians compared to male African-Caribbeans; D:Adjusted probability of developing T2DM at different BMI levels for female South Asians compared to female White 

Europeans ;  Probability estimated in Figures 1A, 1B, 1C, & 1D are adjusted for age, smoking status, deprivation score, and history of CVD, cancer and CKD on or prior to the index 

date.]. 
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Figure 5.3: The adjusted probability of developing T2DM (95% CI) across levels of BMI for different age groups.  

[A: South Asians compared to White Europeans; B: South Asians compared to African-Caribbeans; Estimates are adjusted for sex, smoking status, deprivation score, and history of 

CVD, cancer and CKD on or prior to the index date; SA: South Asian; WE: White European; AC: African-Caribbean]. 
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Figure 5.4: The adjusted probability of developing T2DM (95% CI) across levels of BMI categories for different age groups.  
[Adjusted for sex, smoking status, deprivation score, and history of CVD, cancer, and CKD on or prior to the index date; NW: Normal weight; OW: Overweight; G1O: Grade 1 
Obese; G2O: Grade 2 Obese; G3O: Grade 3 Obese]. 
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Given the different patterns of risk of developing T2DM among obese patients between ethnic groups 

across different age groups (Figure 5.3 and 5.4), we evaluated the odds of developing T2DM in 

African-Caribbeans and South Asians, compared to White Europeans, separately for each age group. 

Within each age group, the probability of developing T2DM was greater amongst South Asians at 

lower BMI. This relationship was reversed at higher BMI levels and compared to White Europeans, 

the South Asians had 22% (95% CI of OR: 0.65,0.95), 30% (95% CI of OR: 0.62,0.81), 24% (95% 

CI of OR: 0.65,0.88) and 39% (95% CI of OR: 0.48,0.77) lower odds (adjusted) of developing T2DM 

in the age groups ≤ 40, 41-50, 51-60 and 61-70 years respectively. African-Caribbean patients had 

43% (95% CI of OR: 0.45, 0.73), 43% % (95% CI of OR: 0.50, 0.66), 33% (95% CI of OR: 0.57, 

0.78) and 35% (95% CI of OR: 0.52, 0.82) lower adjusted odds of developing T2DM in the respective 

age groups. However, these odds were not statistically significantly different between African-

Caribbeans and South Asians (Table 5.3).  

 

Table 5.3: Odds ratio (95% CI) for development of T2DM among obese African-Caribbean and South 
Asian compared to obese White European, separately for each age group.  
 
 

 White European African-Caribbean South Asian 
 OR (95% CI) OR (95% CI) OR (95% CI) 

Age group: ≤ 40 years Reference 0.57 (0.45,0.73) 0.78 (0.65,0.95) 
Age group: 41-50 years Reference 0.57 (0.50,0.66) 0.67 (0.57,0.78) 
Age group: 51-60 years Reference 0.67 (0.57,0.78) 0.76 (0.65,0.88) 
Age group: 61-70 years Reference 0.65 (0.52,0.82) 0.61 (0.48,0.77) 
Age group: 70+ years Reference 0.84 (0.58,1.23) 0.91 (0.61,1.34) 
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5.5 DISCUSSION 

This case-control study with a large number of White European, South Asian and African-Caribbean 

individuals from a nationally representative primary care database reveals significantly different (1) 

distributions of body weight, BMI and other cardiovascular risk factors at the time of diagnosis of 

T2DM and (2) probability of developing T2DM over the whole spectrum of BMI, in interaction with 

age and sex. This study also reveals that the risk patterns of developing diabetes at different levels of 

obesity varies between ethnic groups across all age groups. To the best of our knowledge, this is the 

first study exploring the variations in T2DM risk over the whole distribution of BMI at the time of 

diagnosis across the South Asian, African-Caribbean and White European populations.   

 

Our findings confirm the association of increased risk of T2DM with increasing BMI. More 

importantly, it adds to the evidence that for any given age, South Asians have a greater risk of T2DM 

at lower BMI. Typically, African-Caribbeans and South Asians in our study were significantly 

younger and had a distinct metabolic risk profile compared to White Europeans characterised by 

lower body weight, systolic blood pressure, and lower rates of smoking but significantly higher HbA1c 

levels. The observed higher HbA1c level in South Asians and African-Caribbeans is in line with earlier 

findings191. While different possible reasons, including ethnic differences in pre- and post-prandial 

glycaemia and glycation rate of haemoglobin have been postulated, no confirmatory mechanistic 

study has yet been reported on this aspect. At the population level, evaluation of longitudinal patterns 

of pre- and post-prandial glucose changes along with the measures of insulin deficiency from the pre-

diabetes state may reflect some light on this issue. Based on a US population with 12,179 T2DM 

patients and 25,177 controls, Ganz and colleagues (2014) reported a mean age and BMI of 55 years 

and 35 kg/m2 respectively at diagnosis 30. With similar age at diagnosis of T2DM, our UK study 

cohort had a significantly lower BMI level (32 kg/m2). However, this distribution of BMI at diagnosis 

is consistent with other studies reporting BMI at diagnosis of T2DM in the UK population 12,192,193. 

Similarly, our finding that women developed T2DM at significantly higher BMI level compared to 

men across ethnicity is consistent with earlier reports 194,195. Earlier studies have shown that the onset 

of T2DM occurs up to a decade early amongst South Asians. A Canadian cohort based diabetes 

incidence study reported that the median age at diagnosis was lowest among South Asians (49 years), 

followed by African-Caribbeans (57 years), and Whites (58 years) 185. Our data is consistent with 

these observations and on average South Asians were 12 years younger at diagnosis compared to their 

White European counterparts. Factors that influence the predisposition of South Asians to develop 

T2DM at younger are largely unknown and may be related to a combination of genetic and 

environmental factors that have not yet been fully characterised 194 195. 
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Ganz and colleagues (2014) reported significantly increased odds of developing T2DM with 

increasing BMI 30. While this study also evaluated the risk of developing T2DM in various age groups 

using additive models, the interaction of age and body weight in the risk of developing T2DM was 

not explored. Given that age and obesity are two major risk factors for T2DM, we explored the 

interaction of age and BMI levels (separately for male and female) in evaluating the risk of developing 

T2DM across the three ethnic groups. One of the novelties of this study is a comparative exploration 

of the probability of developing T2DM over the whole continuous distribution as well as categories 

of BMI by ethnic groups. When BMI was analysed as a continuous variable, we found that South 

Asians aged 40 years and above had a significantly greater probability of T2DM at lower BMI levels 

(18-30kg/m2) compared to the other two ethnic groups. When analysed with BMI as a categorical 

variable, the higher probability of T2DM for South Asians with lower BMI extended from those 

younger than 40 years to those less than 70 years of age.  This difference in observed probability of 

developing T2DM using continuous BMI versus BMI categories is reflective of the fact that there is 

a loss of statistical information when converting a continuous variable to a categorical variable. 

Interestingly, in both the analyses, we identified a distinct pattern of risk between South Asians and 

White Europeans with the probability of T2DM being greater at lower BMI for South Asians and at 

higher BMI for White Europeans. 

 

Earlier ethnicity-specific studies evaluating the association of prior BMI with the incident rates of 

T2DM reported higher risk in South Asians at a lower BMI level 28,185,196. During a median follow-

up of 6 years, Chui and colleagues reported higher T2DM incidence rates T2DM in South Asians at 

lower ages and BMI compared to the White Europeans 185. A similar observation was made in another 

follow-up study reported by Tillin and colleagues 28. Our study elaborates on the significantly higher 

likelihood of developing T2DM at lower BMI levels among South Asians, compared to White 

Europeans and African-Caribbeans. We have also identified a significant change in the risk pattern 

at higher BMI levels while compared between ethnic groups at different age levels (Figure 5.3 and 

5.4). Additionally, our study provides detailed information on the contrasting probability of 

developing T2DM at different age groups and ethnicity across the entire spectrum of BMI. There are 

several possible explanations for this contrasting effects of obesity on the probability of diabetes 

between ethnic groups. While BMI is an accepted measure of obesity, it does not differentiate 

between patterns of obesity (visceral vs. subcutaneous). It is well known that South Asians have 

excess visceral adiposity even at lower BMI and that may explain the higher propensity of South 

Asians to develop T2DM at lower BMI. However, that pattern would be expected to persist even at 

higher levels of BMI and therefore South Asians would be expected to have a greater risk in 

comparison with White Europeans for any level of BMI. Our observation that this difference is only 
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evident at lower BMI but not at higher BMI range would suggest that the excess visceral adiposity 

alone does not explain this variance. An alternative explanation could be that relative contribution of 

obesity to the risk of T2DM may be greater amongst White Europeans compared to that in South 

Asians and that the risk of T2DM in South Asians may additionally be determined by underlying beta 

cell dysfunction. Clearly, this needs to be addressed in future studies. 

  

The strength of this study is that it includes a large number of T2DM patients from a primary care 

system with a large number of South Asians; a representative age and sex-matched non-diabetic 

control cohort; use of anthropometric, clinical risk factor measures at index date; and a robust analysis 

approach to explore the potential interactions between age, sex and BMI in different ethnic groups. 

Patient-level data from electronic health records present challenges in terms of accuracy and 

completeness of the study variables of interest. The limitations of this study include (1) availability 

of ethnicity data on a limited number of patients, (2) missing risk factor data, (3) potential for residual 

confounding, and (4) inability to draw a causal link between BMI and T2DM, as with all observational 

studies. However, ethnicity recording for South Asians and African-Caribbeans in the electronic 

database used for this study is comparable to the general population of UK 197. We also attempted to 

minimize bias introduced by confounders through the use of multivariate models with a detailed list 

of possible confounders. However, unavailability of information on education, physical activity, diet, 

and other risk factors may have introduced bias into the risk estimates.  

 

5.6 CONCLUSION 

The South Asian and African-Caribbean populations have an increased burden of T2DM with its 

complications. In this large case control data analysis, we have demonstrated that T2DM occurs in 

South Asians at least 12 years earlier with mean age 46 years, when compared to White Europeans, 

with about a third developing under the age of 40 years. We believe the early presentation of diabetes 

in this ethnic population contributes to the glycaemic load and the burden of complications. Hence, 

the early diagnosis of diabetes, recognising the lower age of presentation may help to ameliorate the 

glycaemic burden and to do this a lower age cut-off for screening in national programmes for South 

Asians is required. This is the first large cohorts that we are aware of in which it has been 

demonstrated that South Asians develop diabetes at a mean lower BMI by 5 kg/m2 when compared 

to White Europeans. This has implications both in terms of diagnosing obesity in South Asians along 

with appropriate management interventions.  
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Chapter 6: Prevalence and incidence of complications at diagnosis 
of T2DM and during follow-up by BMI and ethnicity: a 
matched case-control analysis 

This body of this chapter contains one published paper that discusses the prevalence of complications 

at diagnosis of diabetes, and incidence of complications during follow-up in comparison to non-

diabetic controls. The citation of the published paper is as follows: 

 

Owusu Adjah ES, Bellary S, Hanif W, Patel K, Khunti K, Paul SK. Prevalence and incidence of complications 
at diagnosis of T2DM and during follow-up by BMI and ethnicity: a matched case-control analysis. 
Cardiovascular Diabetology 2018;17(1):70. 
 

All the listed have agreed to the inclusion of this published scholarly work in this thesis and the 

statement of my contribution to the authorship of this published scholarly work is included below: 

 

Contributors Statement of contribution 
Owusu Adjah Ebenezer S. 
(Candidate) 

Conceived the idea and was responsible for the primary 
design of the study. Responsible for the data extraction 
from THIN database. Responsible for data 
manipulation, aggregation, transformation in SAS. 
Conducted the statistical analyses in STATA and 
interpretation of results. Developed first draft and 
contributed towards finalisation of the manuscript. 

Samanta Mayukh Contributed to the interpretation of the results and 
manuscript finalisation. 

Patel Kiram Contributed to the interpretation of the results and 
manuscript finalisation. 

Bellary Srinath Contributed to the interpretation of the results and 
manuscript finalisation.  

Hanif Wasim Contributed to the interpretation of the results and 
manuscript finalisation.  

Khunti Khunti Contributed to the interpretation of the results and 
manuscript finalisation.  

Paul Sanjoy K. Conceived the idea and was responsible for the primary 
design of the study. Contributed to the statistical 
analyses. Developed first draft and contributed towards 
finalisation of the manuscript. 
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6.1 Abstract 

Aims: To estimate the risk of developing long-term major cardiovascular and renal 

complications in relation to levels of body mass index (BMI) in a population of White European 

(WE), African-Caribbean (AC), and South Asian (SA) patients with type 2 diabetes mellitus 

(T2DM). 

 

Materials and methods: Patients with a new diagnosis of T2DM, aged ≥18 years from January 

2000 (n=69,436) and their age-sex-ethnicity matched non-diabetic controls (n =272,190) were 

identified from UK primary care database. Incidence rates ratios (IRRs) for non-fatal major 

cardiovascular events (MACE) and chronic kidney disease (CKD) in patients with T2DM 

compared to controls were estimated using multivariate Mantel-Cox model. 

 

Results: Among normal weight patients with T2DM, WEs had a similar prevalence of 

cardiovascular multi-morbidity (95% CI: 9.5, 11.3) compared to SAs (95% CI: 4.8, 9.5). 

African-Caribbean (AC) and SA overweight and obese patients had similar prevalence, while 

obese WEs had a significantly higher prevalence. During a median 7 years of follow-up, the 

risk of MACE was significantly higher for overweight (95% CI of IRR: 1.50, 2.46) and obese 

(95% CI of IRR: 1.49, 2.43) SAs compared to their WE counterparts. However, similar risk 

levels were observed for normal weight WEs and SAs respectively. Risk of CKD was higher 

and uniform for BMI ≥ 25 kg/m2 amongst WEs and ACs, whereas only overweight patients 

had a significantly higher risk of CKD amongst SA [IRR: 2.08 (95 % CI: 1.49, 2.93)]. 

 

Conclusion: Risk of MACE / CKD varies over levels of BMI within each ethnic group, with 

overweight SAs having a disproportionate risk of CKD.  

 

 

Keywords  
Type 2 diabetes, Body Mass Index, Complications, Ethnicity, Prevalence, and Incidence 
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6.2 Introduction 

Ethnicity remains one of the key risk factors for type 2 diabetes mellitus (T2DM) and the 

predisposition of certain ethnic groups to develop T2DM is now well known 198. Not only does 

diabetes occur early in some ethnic groups 41,199, but there is also a greater predisposition to 

develop diabetes-related complications 36. This disproportionate predisposition of certain 

ethnic groups to T2DM and its complications is commonly attributed to the complex interaction 

of genetic and environmental factors 200,201. Several studies have compared the prevalence and 

severity of diabetes complications between South Asians and White Europeans 202-207. 

Although some studies have generally reported a higher prevalence of some complications 

(particularly nephropathy and retinopathy) 206,208, other studies have shown these differences 

are not as significant as thought 205,209.   

 

The UK Prospective Diabetes Study Group (UKPDS) evaluated the incidence of myocardial 

infarction (MI) by ethnicity and found no additional risk of MI among South Asian (SA) and 

African-Caribbean (AC) participants respectively compared to White European (WE) 

participants 205. While this study accounted for some cardiovascular risk factors in their risk 

assessment model, body mass index (BMI) which is an important cardiovascular risk factor in 

patients with T2DM was not included.  Furthermore, while other studies have evaluated the 

ethnicity-related differences in the incidence of cardiovascular events in patients with T2DM 
204,210-212, no separate assessment of the potential differences in the risk paradigm by adiposity 

levels were evaluated for each ethnic group. 

 

Given that BMI and ethnicity play important roles in cardiovascular risk profiles of patients 

with T2DM, we are not aware of any study that has evaluated ethnicity-specific long-term 

cardiovascular and non-cardiovascular complications in T2DM by BMI categories at the 

population level. Such evaluations are of immense public health importance given the increased 

burden of complications associated with T2DM 187,213,214, and will address the knowledge gap 

in terms of the interplay between ethnicity, BMI, cardiovascular, and non-cardiovascular 

complications in patients with T2DM 3. Therefore, the aims of this primary care data based 

retrospective longitudinal case-control study were to evaluate (1) comorbidities and 

cardiovascular risk factors at diagnosis of T2DM in different ethnic groups, and (2) the 

likelihood of developing long term complications by BMI categories in different ethnic groups 

compared to non-diabetic controls. 
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6.3 Methods 

6.3.1 Data source 

Data from the primary care database of UK [The Health Improvement Network (THIN)] was 

used. Patients are registered with one general practitioner (GP) even though secondary care 

treatment can be provided elsewhere, and under terms specified by the UK’s National Health 

Service (NHS), GPs contribute data to THIN. Thus, daily electronic medical records (EMRs) 

of patients in participating practices are regularly submitted to THIN using the INPS ViSion 

software 122. The database is linked to other sources of hospital and national statistics data and 

is demographically representative of the UK. Currently, data from over 600 general practices 

involved with THIN from 1990 to 2014 is available. The source population includes over 13 

million patients, 85% of whom have records that are considered valid and acceptable for 

research. The accuracy and completeness of this database have been previously described 

elsewhere 124,125. This database provides comprehensive patient-level longitudinal information 

on demographic, anthropometric, clinical and laboratory measures, clinical diagnosis of 

diseases and events, along with complete information on prescriptions for medications with 

dates and doses. Clinically diagnosed diseases are recorded using Read codes 128,  and with 

each diagnosis, an event date is entered. Similarly, prescriptions are recorded with both British 

National Formulary (BNF) codes and Anatomical Therapeutic Chemical (ATC) codes along 

with their prescription dates.  

 

6.3.2 Study population 

The primary design and results have already been published 41. Briefly, from THIN database  

69,436 patients with newly diagnosed T2DM from January 2000 were identified using a robust 

machine-learning algorithm, which uses the disease Read codes 128, antidiabetic medications, 

and lifestyle modification interventions as feeds. Patients were included if they had (1) 

complete information on age at diagnosis (≥ 18 years) and sex, and (2) self-identified ethnicity 

as WE, AC or SA. South Asians (SAs) were defined as patients with Indian, Pakistani, 

Sinhalese, and Bangladeshi origin, while ACs were defined as patients with Black-African 

and/or Caribbean origin. White Europeans (WEs) were patients with self-reported ethnicity as 

White, European, European, and/or New Zealand European. Those with Read codes for type 1 

diabetes mellitus (T1DM) and gestational diabetes were excluded. Non-diabetic patients were 

patients in the THIN database with no diagnosis of any type of diabetes and had never received 
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a prescription of an anti-diabetes therapy. Up to four non-diabetic control patients (n=272,190) 

were matched to each identified T2DM patient based on age, sex and ethnicity using an exact 

matching algorithm. The index date for controls was defined as the date of the diabetes 

diagnosis for their matched cases.   

 

6.3.3 Study variables and outcome measurements 

Clinical and demographic variables including smoking status, deprivation score (measure of 

socioeconomic status based on residential address), weight, BMI, glycated haemoglobin 

(HbA1c), systolic blood pressure (SBP), diastolic blood pressure (DBP), low density 

lipoproteins (LDL), high density lipoproteins (HDL), and triglycerides were extracted for each 

patient where appropriate. All available measures on or within 3 months prior to the index date 

were considered as baseline measures. For all clinical parameters, longitudinal data 12 months 

prior to index date and 2 years post index date were extracted on a 6-monthly window. 

Categories for BMI were defined following WHO established criteria as follows: normal 

weight (18.5-24.9 kg/m2), overweight (25-29.9 kg/m2), and obese (≥ 30 kg/m2). For South 

Asians, BMI in the ranges 18.5-22.9, 23-27.4, ≥27.5kg/m2 were used to define normal weight, 

overweight and obese patients respectively 104. Prescription information on anti-diabetes 

therapies, antihypertensive agents, cardio-protective medications (CPM), weight-lowering 

drugs and anti-depressants were also obtained, where appropriate. 

 

Patients with a recorded diagnosis of stroke, heart failure (HF), angina, MI, coronary artery 

disease (including bypass surgery and angioplasty), cancer, or renal diseases (including chronic 

kidney disease (CKD)) before diagnosis were considered to have relevant comorbidities at 

diagnosis. Subsequently, cardiovascular multi-morbidity was defined as ≥ 2 episodes of a 

major cardiovascular condition at diagnosis. A composite variable for major cardiovascular 

events (MACE) was defined as the occurrence of non-fatal MI, HF or stroke during follow-up. 

Time to a specific disease event was calculated as the time from diagnosis date to the first 

occurrence of the disease event and patients were censored on the end date (September 2014) 

or on drop out date.  
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6.3.4 Statistical analysis  

Baseline characteristics of patients with incident T2DM and their matched non-diabetic 

controls were summarized using number (%), means (95% CI) or median (first quartile, third 

quartile) as appropriate. Age-sex standardised proportions of existing comorbidities at 

diagnosis were calculated with indirect standardisation to the internal data structure. Age 

groups (18-40, 41-50, 51-60, 61-70, and 71+ years) and sex (male vs. female) were used to 

achieve stratum-specific proportions for indirect standardisation. 

 

Major cardiovascular event (MACE) and CKD (stage ≥ 3) incident rates (rates per 1000 person-

years) were estimated by BMI categories for T2DM cases and controls separately for each 

ethnic group. To estimate MACE and CKD (stage ≥ 3) incidence rate ratio (IRR) for T2DM 

cases compared to controls, a multivariate Mantel-Cox model was fitted: adjusting for age, sex, 

baseline SBP, smoking status (current, ex, and never smokers), and deprivation score by 

stratification. Robust estimates of IRRs (95% CI) were obtained, and Bayesian information 

criteria (BIC) was used to compare the model fits. 

 

6.4 Results 

6.4.1 Demographic and clinical characteristics 

The demographic and clinical profiles of T2DM patients (n=69,436) and matched non-diabetic 

controls (n =272,190) are presented in Table 6.1. Overall, the mean age at diagnosis was 57 

years, 57% were male, and median follow-up time was similar across T2DM cases and their 

non-diabetic controls (7 years). Within subgroups defined by ethnicity, T2DM patients and 

their non-diabetic controls were well matched on age and sex distributions. The distribution of 

current or ex-smokers in T2DM patients and controls were 55% and 50% respectively, and the 

proportions of patients with SBP ≥ 140 mmHg were 39% and 18% respectively.  

 

Compared to WEs and ACs, SAs developed diabetes significantly earlier by (~10 and 2 years) 

and at lower BMI (3 and 2 kg/m2, Table 6.1). More SAs (66%) developed T2DM within the 

age of 50 years, while 27% and 59% of WEs and ACs developed the disease within the same 

age limit respectively. Significantly higher proportions of WE cases and controls had SBP 

above 140 mmHg (41 and 21%), compared to ACs (30 and 12%) and SAs (23 and 9%) 

respectively.
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Table 6.1: Baseline clinical characteristics of patients with T2DM and their matched non-diabetic controls separately for each ethnic group 
 

 White European  
(296,288) 

African-Caribbean 
(16,958) 

South Asian 
(28,380) 

Overall 
(341,626)  

 T2DM Control T2DM Control T2DM Control T2DM Control 
Patients† 60,233 (20) 236,055 (80) 3,425 (20) 13,533 (80) 5,778 (20) 22,602 (80) 69,436 (20) 272,190 (80) 

Age at index (years) ‡ 58 
(58.2,58.4) 

58 
(58.3,58.4) 

49 
(48.2,49.0) 

49 
(48.4,48.8) 

47 
(46.3,46.9) 

47 
(46.4,46.7) 

57 
(56.8,57.0) 

57 
(56.8,56.9) 

Age groups †         
18-40 4,530 (8) 17,912 (8) 744 (22) 2,932 (22) 1,707 (30) 6,685 (30) 6,981 (10) 27,529 (10) 
41-50 11,297 (19) 44,306 (19) 1,278 (37) 5,063 (37) 2,097 (36) 8,196 (36) 14,672 (21) 57,565 (21) 
51-60 16,552 (28) 65,033 (28) 843 (25) 3,326 (25) 1,217 (21) 4,767 (21) 18,612 (27) 73,126 (27) 
61-70 17,010 (28) 66,485 (28) 415 (12) 1,641 (12) 559 (10) 2,185 (10) 17,984 (26) 70,311 (26) 
71+ 10,844 (18) 42,319 (18) 145 (4) 571 (4) 198 (3) 769 (3) 11,187 (16) 43,659 (16) 

Male † 34,342 (57) 134,630 (57) 1,778 (52) 7,040 (52) 3,232 (56) 1,2631 (56) 39,352 (57) 154,301 (57) 
Current smokers † 12,830 (21) 46,926 (20) 449 (13) 1,984 (15) 820 (14) 2,839 (13) 14,099 (20) 51,749 (19) 
Ex-smokers † 23,196 (39) 80,860 (34) 614 (18) 2,066 (15) 756 (13) 2,605 (12) 24,566 (35) 85,531 (31) 
Deprivation Status         
         Highest affluence † 12,856 (21) 41,726 (18) 833 (24) 3,548 (26) 1,483 (26) 5,586 (25) 15,172 (22) 50,860 (19) 
         Lowest affluence † 2,500 (4) 11,462 (5) 457 (13) 1,595 (12) 518 (9) 1,989 (9) 3,475 (5) 15,046 (6) 
HbA1c (%), ‡ ¶ 8.2 

(8.2,8.2)  
9.1 

(9.0,9.2)  
8.5 

(8.4,8.6)  
8.3 

(8.3,8.3)  
Weight (kg) ‡ 92.9 

(92.8,93.1) 
78.7 

(78.5,78.8) 
88.7 

(87.9,89.4) 
81.6 

(81.0,82.1) 
79.2 

(78.7,79.8) 
72.2 

(71.8,72.5) 
91.7 

(91.5,91.9) 
78.3 

(78.2,78.4) 
BMI (kg/m²) ‡ 32.6 

(32.6,32.7) 
27.8 

(27.8,27.8) 
31.5 

(31.3,31.7) 
28.2 

(28.1,28.2) 
29.6 

(29.5,29.8) 
26.3 

(26.3,26.4) 
32.3 

(32.3,32.4) 
27.7 

(27.7,27.7) 
Normal weight † 4,242 (7) 29,128 (12) 359 (11) 1,174 (9) 360 (6) 1,517 (7) 4,961 (7) 31,819 (12) 
Overweight † 14,446 (24) 178,671 (76) 842 (25) 10,611 (78) 1,505 (26) 16,750(74) 16,793 (24) 206,032 (76) 
Obese † 41545 (69) 28256 (12) 2224 (65) 1748 (13) 3,913(68) 4,335 (19) 47,682 (69) 34,339 (13) 

SBP (mmHg) ‡ 140 
(139.7,140) 

136 
(135.6,135.8) 

136 
(135.7,137.2) 

133 
(132.3,133.3) 

132 
(131.0,132.1) 

128 
(127.7,128.5) 

139 
(138.9,139.2) 

135 
(135,135.2) 
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SBP ≥ 140 mmHg † 24571 (41) 46081 (20) 1029 (30) 1624 (12) 1302 (23) 1926 (9) 26902 (39) 49631 (18) 
LDL(mg/dl) ‡ 119 

(118.6,119) 
122.3 

(122.2,122.3) 
127 

(126.4,128.3) 
128.7 

(128.4,128.9) 
121 

(120.3,121.8) 
123.9 

(123.7,124.1) 
119 

(119.2,119.6) 
122.7 

(122.7,122.8) 
HDL (mg/dl) ‡ 46 

(45.6,45.8) 
55 

(55.3,55.4) 
48 

(47.4,48.2) 
57 

(56.4,56.6) 
43 

(43.1,43.6) 
51 

(51.3,51.5) 
46 

(45.5,45.7) 
55  

(55.0,55.1) 
Triglycerides (mg/dl) § 159 

(121, 213) 
115 

(88, 159) 
115 

(81, 159) 
82 

(62, 115) 
151 

(115, 204) 
115 

(89, 168) 
159 

(115, 213) 
115 

(84, 159) 
Comorbidities  18,014 (30) 46,449 (20) 382 (11) 963 (7) 647(11) 1,741(8) 19,043 (27) 49,153 (18) 
Cardio-protective drugs †         

Beta blockers 17042 (28) 38032 (16) 393 (12) 1041 (8) 710 (12) 1783 (8) 18145 (26) 40856 (15) 
Calcium blockers 13736 (23) 27188 (12) 694 (20) 1535 (11) 673 (12) 1283 (6) 15103 (22) 30006 (11) 
Statins 18971 (32) 33604 (14) 620 (18) 794 (6) 1205 (21) 1618 (7) 20796 (30) 36016 (13) 
ACE inhibitors 16165 (27) 27922 (12) 532 (16) 857 (6) 793 (14) 1290 (6) 17490 (25) 30069 (11) 

Follow-up § 7.0 (4, 11) 8.0 (4, 11) 7.0 (4, 10) 7.0 (4, 10) 6.0 (3, 10) 7.0 (4, 10) 7.0 (4, 11) 7.0 (4, 11) 
 
†: n (%);  
‡: mean (95% CI); 
§: Median (Q1, Q3); 
¶: Not presented for non-diabetic controls. 
 

Abbreviations and definitions: 
ACE, angiotensin-converting enzyme;  
SBP, systolic blood pressure;  
DBP, diastolic blood pressure,  
LDL-C, low-density lipoprotein cholesterol;  
HDL, high-density lipoprotein cholesterol;  
Comorbidities: Pre-existing cardiovascular (myocardial infarction, stroke, heart failure, angina, or coronary heart disease) or non-cardiovascular 
disease (renal diseases including chronic kidney disease, cancer, or depression) at the time of diagnosis. 
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Table 6.2: Age-sex-adjusted prevalence (95% CI) of cardiovascular complications at diagnosis by BMI categories among patients with T2DM, 
separately for each ethnic group 
 

  Prevalence (95% CI) 
  MACE MI HF STROKE 

Normal weight White European 10.4(9.5,11.3) 4.6(4.0,5.2) 4.6(4.1,5.2) 5.0(4.4,5.6) 
 African-Caribbean 6.5(4.0, 10.4) 2.0(0.9,4.9) 2.1(0.9,4.7) 4.2(2.3,7.7) 
 South Asian 6.8(4.84, 9.5) 4.0 (2.6,6.2) 4.0(2.6,6.2) 3.1(1.8,5.1) 
      

Overweight White European 11.7(11.3,12.2) 6.1(5.7,6.5) 6.1(5.7,6.5) 5.2(4.9,5.6) 
 African-Caribbean 7.2(5.1,9.9) 2.1(1.0,4.1) 2.1(1.0,4.1) 4.9(3.4,7.2) 
 South Asian 9.0(7.4,10.9) 5.3(4.1,6.9) 5.3(4.1,6.9) 3.7(2.7,5.1) 
      

Obese White European 12.6(12.3,12.9) 6.5(6.3,6.7) 6.5(6.3,6.7) 5.4(5.2,5.6) 
 African-Caribbean 5.5(4.1,7.4) 1.1(0.5,2.5) 1.1(0.5,2.5) 4.4(3.2,6.2) 
 South Asian 8.5(6.2,11.7) 4.7(2.9,7.4) 4.7(2.9,7.4) 2.5(1.5,4.1) 
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6.4.2 Prevalence of comorbidities at diagnosis  

T2DM cases had a significantly higher proportion of existing comorbidities at diagnosis 

compared to controls (27% vs. 18%, Table 6.1). The prevalence (95% CI) of cardiovascular 

complications at diagnosis by BMI categories among patients with T2DM, separately for each 

ethnic group are presented in Table 6.2. Among normal weight patients with T2DM, WEs had 

similar prevalence of cardiovascular multi-morbidity (prevalence: 10.4%; 95% CI: 9.5, 11.3), 

compared to SAs (prevalence: 6.8%; 95% CI: 4.8, 9.5), and ACs (prevalence; 95% CI: 4.0, 

10.4). African-Caribbean and SA overweight and obese patients had a similar prevalence of 

cardiovascular multi-morbidity across all adiposity levels, while obese WEs had significantly 

higher prevalence compared to their normal weight population and also compared to other 

ethnic groups (Table 6.2).  

 

The prevalence of cardiovascular and non-cardiovascular diseases at diagnosis between T2DM 

cases and their non-diabetic controls, separately for each ethnic group are presented in Figure 

6.1 and 6.2 respectively. White Europeans with or without diabetes had a significantly higher 

prevalence of cancer, compared to SA cases and controls (Figure 6.2A). The prevalence of 

depression among WE cases and controls were significantly higher (95% CI of proportion - 

cases: 21.8 - 22.5%; controls: 17.3 - 17.5%) compared to other ethnic groups, while SA and 

AC cases and controls had similar prevalence (range of 95% CI of prevalence: 6.6 - 9.7%). The 

prevalence of CKD at diagnosis was similar across all ethnic groups and did not differ 

significantly between T2DM cases and their non-diabetic controls (Figure 6.2). 

 

6.4.3 The incidence of major cardiovascular diseases during follow-up 

In individuals without any history of comorbidities at index date, the rates per 1000 person-

years and incidence rate ratios for non-fatal major cardiovascular events and chronic kidney 

disease during follow-up in patients with T2DM, compared to non-diabetic controls, are 

presented in Tables 6.3 and 6.4, and Figure 6.3 separately for ethnic groups and BMI categories 

at index date.  

Overall, the risk of developing MACE in patients with T2DM, compared to non-diabetic 

controls, were similar for WEs (95% CI of IRR: 1.29, 1.38) and ACs (95% CI of IRR: 1.34, 

2.25), but significantly higher for SAs (95% CI of IRR: 1.56, 2.22) compared to WEs (Table 

6.3). 
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The risk of developing MACE was significantly higher for overweight (95% CI of IRR: 1.50, 

2.46) and obese (95% CI of IRR: 1.49, 2.43) SAs compared to their WE counterparts (95% CI 

of IRR: 1.29, 1.42 in overweight; 1.29, 1.43 in obese). However, similar risk levels were 

observed for WEs and SAs who were normal weight (Figure 6.3A, Table 6.3). 

 

White European patients with T2DM had similar rates of MACE (range of 95% CI of rate/1000 

person-years: 10.55, 14.66, Table 6.3) across all BMI level, and these rate estimates were 

almost two-fold higher compared to that across all adiposity levels in ACs (range of 95% CI 

of rate/1000 person-years: 2.96, 8.78) and SAs (range of 95% CI of rate/1000 person-years: 

4.69, 12.91, Table 6.3). 

 

6.4.4 The incidence of chronic kidney disease (Stage 3 and above) during follow-up 

Across all BMI categories, the rates of CKD were consistently higher among WE cases (range 

of 95% CI of IR: 12.89, 19.73) and controls (range of 95% CI of IR: 6.31, 8.48), compared to 

AC cases (range of 95% CI of IR: 3.04, 10.89) and controls (range of 95% CI of IR: 2.52, 7.20), 

and SA cases (range of 95% CI of IR: 2.66, 9.21) and controls (range of 95% CI of IR: 1.11, 

3.54, Table 6.4). While obese WEs with T2DM had significantly lower CKD incidence rate 

compared patients with BMI < 30 kg/m2, the observed CKD incidence rates were similar across 

all BMI groups in WEs without diabetes. The incidence rates for CKD were similar across all 

BMI categories among AC and SA cases.  Obese SAs with diabetes had almost half the 

incidence rate for CKD (IR: 3.9) compared to ACs (IR: 7.3) and about one fourth compared to 

WEs (IR: 13.4).  

 

The risk of developing CKD in normal weight and obese patients with T2DM, compared to 

non-diabetic controls, was significantly higher among WEs only (Figure 6.3B). However, 

overweight individuals with T2DM had significantly higher and similar risk of developing 

CKD (range of 95% CI of IRR: 1.5, 3.4), across ethnic groups (Figure 6.3B, Table 6.4).  
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Figure 6.1: Age-sex standardised proportions [% (95 CI)] of macrovascular diseases at diagnosis for patients with T2DM and their matched 

controls, separately for each ethnic group.  
[(A) The proportion of patients with at least one episode of a macrovascular event at diagnosis; (B) The proportion of patients with two or more episodes of 
macrovascular disease events at diagnosis. [HF: Heart failure; MACE: Three (3) point major cardiovascular event defined as the occurrence of myocardial 
infarction, heart failure or stroke before diagnosis]. WE: White European; AC: African-Caribbean; SA: South Asian.] 
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Figure 6.2: Age-sex standardised proportions [% (95 CI)] of selected non-cardiovascular diseases at diagnosis for patients with T2DM and their 
matched controls, separately for each ethnic group. 
[(A) Proportion of patients with at cancer at diagnosis; (B) Proportion of patients with depression at diagnosis; (C) Proportion of patients with CKD (stage 1 
to 5) at diagnosis. CKD: Chronic kidney disease; WE: White European; AC: African-Caribbean; SA: South Asian] 
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Figure 6.3: Adjusted incidence rate ratios [IRR (95% CI)] for MACE, and CKD  in T2DM cases vs. matched non-diabetic controls without 
established comorbidities at index date. 

[Data are presented separately by ethnicity for each BMI category at index date. WE: White European; AC: African-Caribbean; SA: South Asian] 
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Table 6.3: Incidence rates, and adjusted incidence rate ratios (95% CI) for major cardiovascular events (myocardial infarction, heart failure or 
stroke) in T2DM cases and matched non-diabetic controls without established comorbidities at index date.  
 

 T2DM Non-diabetic controls  
 Follow-up § Events (%) IR (95% CI) Follow-up § Events (%) IR (95% CI) IRR (95% CI) ¶ 
White European (WE) n=42,219 n=189,606  

All WE 8 (4,11) 3378(8) 11.24(10.87,11.63) 8(5,11) 10854(6) 7.88 (7.73, 8.03) 1.33 (1.29,1.38) 
Normal weight 7 (4,11) 252(1) 12.96 (11.46,14.66) 7 (4, 10) 1145(1) 8.18 (7.72, 8.67) 1.20 (1.10, 1.32) 
Overweight  8 (4,11) 762(2) 11.58 (10.79,12.43) 8(5,11) 8809(5) 8.01 (7.85, 8.18) 1.35 (1.29,1.42) 
Obese  8 (4,11) 2364(6) 11.00 (10.55,11.43) 7 (4,10) 900(<1) 6.51 (6.10, 6.95) 1.35 (1.29,1.43) 

African-Caribbean(AC) n=3,043 n=12,570  
All AC 7 (4,10) 107(4) 5.23 (4.33, 6.32) 7 (4,10) 238(2) 2.82 (2.48, 3.20) 1.74 (1.34,2.25) 
Normal weight 7 (3, 9) 9(<1) 4.57 (2.38, 8.78) 6 (4, 9) 24(<1) 3.79 (2.54, 5.65) 0.99 (0.43,2.27) 
Overweight  6 (3,9) 20(1) 4.58 (2.96, 7.10) 7 (4,10) 189(2) 2.76 (2.39, 3.18) 1.62 (1.11, 2.37) 
Obese  7 (4,11) 78(3) 5.53 (4.43, 6.90) 6 (3, 9) 25(<1) 2.62 (1.77, 3.9) 2.07 (1.40, 3.06) 

South Asian (SA) n=5,131 n=20,861  
All SA 7 (3,10) 213(4) 6.38 (5.58, 7.30) 7 (4,10) 410(2) 2.98 (2.71, 3.28) 1.86 (1.56, 2.22) 
Normal weight 6 (3, 9) 15(<1) 7.78 (4.69,12.91) 6(4,10) 30(<1) 3.76 (2.63,5.37) 2.53 (1.17, 5.49) 
Overweight  6 (3, 10) 53(1) 6.45 (4.93,8.44) 7 (4,10) 316(2) 3.00 (2.69, 3.35) 1.85 (1.50, 2.46) 
Obese  7 (4,10) 145(3) 6.24 (5.30,7.34) 5 (3, 8) 64(<1) 2.63 (2.06, 3.36) 1.80 (1.49, 2.43) 

 
§: Median (Q1, Q3), ¶: Incident rate ratios (IRRs) were adjusted for age, sex, smoking status (never, current, or ex-smoker), deprivation score (i.e lowest 
affluence to highest affluence), baseline systolic blood pressure.  
The follow-up period was from 2000 to 2014. 
Three (3) point major cardiovascular event defined as the occurrence of myocardial infarction or heart failure or stroke during follow-up. 
IR: Incidence rates per 1000 person-years.  
IRR: Incidence rate ratio 
Data are presented for all subjects, and separately by BMI categories at index date. 
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Table 6.4: Incidence rates, and adjusted incidence rate ratios (95% CI) for chronic kidney disease (stage ≥ 3) in T2DM cases and matched non-
diabetic controls without established comorbidities at index date. 
 

 T2DM Non-diabetic controls  
 Follow-up § Events (%) IR (95% CI) Follow-up § Events (%) IR (95% CI) IRR (95% CI) ¶ 
White European (WE) n=42,219 n=189,606  

All WE 8 (4,11) 4574(11) 14.39 (13.98,14.81) 8(5,11) 9571(5) 6.68 (6.55, 6.82) 1.47 (1.42,1.52) 
Normal weight 7 (4,11) 370(1) 17.82(16.10, 19.73) 7 (4, 10) 1045(1) 7.19 (6.77, 7.64) 1.51 (1.37,1.67) 
Overweight  8 (4,11) 1168(3) 16.72(15.79, 17.71) 8(5,11) 7389(4) 6.46 (6.31, 6.61) 1.96 (1.87,2.07) 
Obese  8 (4,11) 2119(5) 13.36(12.89, 13.84) 7 (4,10) 1137(1) 8.00 (7.55, 8.48) 1.10 (1.04,1.16) 

African-Caribbean(AC) n=3,043 n=12,570  
All AC 7 (4,10) 152(5) 7.25 (6.18, 8.50) 7 (4,10) 270(2) 3.16 (2.80,3.56) 1.56 (1.20,2.03) 
Normal weight 7 (3, 9) 11(<1) 5.49 (3.04, 9.91) 6 (4, 9) 33(<1) 5.12 (3.64, 7.20) 0.67 (0.26,1.77) 
Overweight  6 (3, 9) 35(1) 7.82 (5.61,10.89) 7 (4,10) 201(2) 2.89 (2.52, 3.32) 2.31 (1.59,3.36) 
Obese  7 (4,11) 106(3) 7.31 (6.05, 8.85) 6 (3, 9) 36(<1) 3.74 (2.70, 5.19) 1.29 (0.86,1.93) 

South Asian (SA) n=5,131 n=20,861  
All SA 7 (3,10) 146(3) 4.23 (3.60,4.98) 7 (4,10) 317(2) 2.27 (2.04, 2.54) 1.17 (0.95,1.44) 
Normal weight 6 (3, 9) 10 (<1) 4.95(2.66,9.21) 6(3,10) 15 (<1) 1.85(1.11,3.06) 1.17 (0.51,2.69) 
Overweight  6 (3, 10) 42 (<1) 4.95(3.66,6.69) 7 (3,10) 233 (1) 2.18(1.92,2.48) 2.08(1.49, 2.93) 
Obese  7 (4,10) 94 (<1) 3.92(3.20,4.80) 5 (3, 8) 69 (<1) 2.80(2.21,3.54) 0.81(0.61,1.09) 

 
§: Median (Q1, Q3), ¶: Multivariate incident rate ratios (IRRs) were adjusted for age, sex, smoking status (never, current, or ex-smoker), deprivation score (i.e 
lowest affluence to highest affluence), baseline systolic blood pressure.  
The follow-up period was from 2000 to 2014. 
IR: Incidence rates per 1000 person-years.  
IRR: Incidence rate ratio; 
Data are presented for all subjects, and separately by BMI categories at index date. 
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6.5 Discussion 

This longitudinal case-control study of patients with newly diagnosed T2DM and their matched 

non-diabetic controls evaluated the prevalence of comorbidities at diagnosis of T2DM and the 

risk of developing long-term major cardiovascular and renal complications by BMI categories 

in different ethnic groups. There are several important findings from our study. Firstly, the 

relationship between obesity and risk of MACE /CKD does not appear to be linear. Secondly, 

at all levels of BMI, diabetes is associated with a significantly greater risk of MACE. Thirdly, 

there are important distinctions between the ethnic groups, with South Asians showing greater 

susceptibility to MACE and CKD even at lower BMI levels.  

 

Obesity is a major risk factor for T2DM and is an independent risk factor for cardiovascular 

disease (CVD) as well as CKD 215,216. Few studies, however, have explored the relationship 

between levels of adiposity and CVD in patients with T2DM and any underlying differences 

between ethnic groups given their differential susceptibility to T2DM. The large size of our 

cohort matched with a non-diabetic control population has allowed us to not only compare the 

effects of obesity on people with and without diabetes within each ethnic group but also to 

examine the differences between ethnic groups.  

 

The independent effect of BMI on CVD risk has been confirmed in several population studies. 

Moreover, the linearity of this relationship has been shown in both Caucasian and Asian 

populations. In a study involving the Asian population, the risk of CVD increased significantly 

with each 2 kg/m2 increase in BMI 217. In patients with diabetes, however, this relationship is 

less clear and existing data suggest that the relationship may not be linear 218. In our study, we 

did not find a linear relationship between BMI and CVD or between BMI and CKD. On the 

contrary, our data show that patients with diabetes have the same or even greater degree (in the 

case of SAs) of risk even when they are of normal weight. The absence of this linear 

relationship between BMI and CVD may be due to the fact that the mechanisms by which BMI 

and diabetes influence CVD risk are different. Alternatively, the higher burden of other known 

risk factors for CVD (i.e., hypertension, dyslipidaemia and insulin resistance) seen in patients 

with diabetes could have a greater impact on the overall CVD risk thus mitigating the effects 

of obesity. In this context, it is worth noting that interventions in patients with diabetes targeting 

weight loss have been less successful in lowering cardiovascular (CV) risk 219.  
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Across all ethnic groups, diabetes was associated with greater risk of MACE. This relationship 

did not change with levels of adiposity, except in ACs, suggesting that in some ethnic groups 

diabetes confers excess risk of MACE. These findings are not surprising given that patients 

with diabetes have a significantly greater burden of CV risk factors and are likely to be exposed 

to these risk factors for a much longer time. Similar trends were observed in relation to CKD, 

except in SAs, where the overall risk of CKD amongst diabetic and non-diabetic controls was 

similar in the overweight group, diabetes was associated with increased risk. Our data show 

that in addition to the elevated HbA1c, a greater proportion of patients with diabetes had poorly 

controlled blood pressure, elevated triglycerides and more likely to be obese or overweight 

than their non-diabetic counterparts. Despite the adverse risk profile, the use of cardio and reno-

protective agents such as statins and ACE inhibitors was low suggesting there may have been 

opportunities for better control of risk factors. It must, however, be noted that these figures date 

back to the year 2000 and that management of these known risk factors has improved 

considerably since then 220.  

 

Although there are many common features, our data has highlighted important differences 

between ethnic groups. As expected, SAs were significantly younger than WEs and ACs 

whereas, WEs were more likely to have a diagnosis of cancer or depression and had higher 

systolic blood pressure levels. The overall IR for MACE and CKD was significantly greater 

amongst WEs compared to ACs or SAs and this risk was evenly distributed amongst all levels 

of adiposity in WEs. On the other hand, the risk of MACE and CKD was greater for SAs who 

were either normal and/or overweight when compared to WEs. We have previously shown that 

SAs develop diabetes much earlier and at significantly lower BMI than other ethnic groups 41. 

It is possible that exposure to diabetes at a much younger age may result in adverse vascular 

profile which in turn influences the risk of MACE and CKD. It is well known that SAs have 

excess visceral adiposity which may contribute to the overall metabolic risk in this ethnic group 

even at lower levels of BMI. It is also possible that BMI may not be an ideal measure of 

adiposity in SA and other measures such as waist/hip ratio could instead be more appropriate 

when assessing adiposity in this ethnic group 221. While there is a need for better understanding 

of the effects of adiposity on MACE / CKD in different ethnic groups, the clear message from 

this study is to recognise that SAs have a disproportionate risk of cardiovascular disease even 

at normal BMI. 
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Although the large multi-ethnic cohort and the availability of longitudinal data for a population 

sharing the same health care system have been the strengths of this study, it has some 

limitations. First, there was a small number of events in BMI subgroups among African-

Caribbean and South Asians. Second, we have in this study used BMI as a measure of obesity 

and it can be argued that BMI is not an ideal measure of obesity especially in certain ethnic 

groups such as SA. We are aware that this may have limited our ability to explore the 

relationship between adiposity and the risks of MACE/CKD. On the other hand, BMI is a 

commonly used measure of obesity and is well recorded than other measures such as waist/hip 

or waist/height ratios. Further, we have used ethnic-specific cut-offs for BMI 104 to provide as 

reliable an estimate of adiposity as possible. 

 

Our understanding of the differences between ethnic groups towards susceptibility to diabetes 

has improved considerably in recent times. The findings of this study add to this knowledge 

and provide a greater understanding of the relationship between levels of adiposity and diabetes 

complications in different ethnic groups. The results of this study should enable clinicians to 

better diagnose and manage diabetes amongst people of different ethnicities. 

 

6.6 List of abbreviations 
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. 

 



 

 102 

6.7 Declarations 

6.7.1 Ethics approval and consent to participate 

Formal access to the THIN database has been obtained from the Independent Scientific Review 

Committee for the THIN database (Protocol Number: 15THIN030) and the study was approved 

by the Institutional Review Board of QIMR Berghofer Medical Research Institute. 

 

6.7.2 Consent for publication 

Not applicable  

 

6.7.3 Availability of data and material 

The datasets generated and/or analysed during the current study are available from the 

corresponding author on reasonable request. 

 

6.7.4 Competing interests 

S. K. P. has acted as a consultant and/or speaker for Novartis, GI Dynamics, Roche, 

AstraZeneca, Guangzhou Zhongyi Pharmaceutical and Amylin Pharmaceuticals LLC. He has 

received grants in support of investigator and investigator-initiated clinical studies from Merck, 

Novo Nordisk, AstraZeneca, Hospira, Amylin Pharmaceuticals, Sanofi Aventis and Pfizer. K. 

K. has acted as a consultant, speaker and has received funds for research from Novartis, Novo 

Nordisk, Sanofi Aventis, Lilly, Merck Sharp & Dohme, Janssen, Astra Zeneca, Boehringer 

Ingelheim, Roche and Servere. W. H. has received travel grants, research grants and 

consultancy fees from Novo Nordisk, Eli Lilly, Sanofi, MSD, Jansen, Astra Zeneca and 

Boehringer Ingelheim. S. B. has received research grants from The Binding Site and Novo 

Nordisk (UK) and has received honoraria for speaking and for participation in advisory boards 

of Astra Zeneca, Boehringer Ingelheim, Janssen, Sanofi Aventis, Eli Lilly, MSD and Novo 

Nordisk. E. S. O. A. has no conflicts of interest to declare 

 

6.7.5 Funding 

E.S.O.A. was supported by QIMR Berghofer International Ph.D. Scholarship and The 

University of Queensland International Scholarship.  No separate funding was obtained for this 

study. University of Melbourne and Melbourne EpiCentre gratefully acknowledges the support 

from the Australian Government’s National Collaborative Research Infrastructure Strategy 

(NCRIS) initiative through Therapeutic Innovation Australia and the research project funding 



 

 103 

from the National Health and Medical Research Council of Australia (Project Number: 

GNT1063477). 

 

6.7.6 Authors' contributions 

S.K.P. and K.K. developed the concept of study and E.S.O.A and S.K.P. contributed to the 

study design. E.S.O.A. conducted the data extraction, data manipulation, statistical analyses 

and developed the first draft of the manuscript. E.S.O.A., S.B., W.H., K.P., K.K., and S.K.P. 

contributed to the finalization of the manuscript. S.K.P. contributed to the statistical analyses 

and had full access to all the data in the study and is the guarantor, taking responsibility for the 

integrity of the data and the accuracy of the data analysis. 

 

6.7.7 Acknowledgements 

Not applicable 

 
 
 



 

 104 

Chapter 7: Weight loss and mortality risk in patients with different 
adiposity at diagnosis of type 2 diabetes: a longitudinal 
cohort study  
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7.1 ABSTRACT 

Background: Undiagnosed comorbid diseases that independently lead to weight loss before type 2 

diabetes mellitus (T2DM) diagnosis could explain the observed increased mortality risk in T2DM 

patients with normal weight. 

 

Objectives: To evaluate the impact of weight change patterns before the diagnosis of T2DM on the 

association between body mass index (BMI) at diagnosis and mortality risk. 

 

Methods: This was a longitudinal cohort study using 145 058 patients from UK primary care, with 

newly diagnosed T2DM from January 2000. Patients aged 18-70, without established disease history 

at diagnosis (defined as the presence of cardiovascular diseases, cancer, and renal diseases on or 

before diagnosis) were followed up to 2014. Longitudinal 6-monthly measures of body weight three 

years before (used to define groups of patients who lost body weight or not before diagnosis) and two 

years after diagnosis were obtained. The main outcome was all-cause mortality. 

 

Results: At diagnosis, mean (SD) age was 52 (12) years, 56% were male, 52% were current or ex-

smokers, mean BMI was 33 kg/m2, and 66% were obese. Normal weight and overweight patients 

experienced a small but significant reduction in body weight six months before diagnosis. Among all 

categories of obese patients, consistently increasing body weight was observed within the same time 

window. Among patients who did not lose body weight pre-diagnosis (n=117 469), compared with 

the grade 1 obese, normal weight patients had 35% (95% CI of HR: 1.17, 1.55) significantly higher 

adjusted mortality risk. However, among patients experiencing weight loss before diagnosis (n=27 

589), BMI at diagnosis was not associated with mortality risk (all p>0.05). 

 

Conclusions: Weight loss before the diagnosis of T2DM was not associated with the observed 

increased mortality risk in normal weight patients with T2DM. This emphasises the importance of 

addressing risk factors post diagnosis for excess mortality in this group. 
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7.2 INTRODUCTION  

Recent epidemiological studies have raised the controversy of the obesity paradox in type 2 diabetes 

mellitus (T2DM). While some studies reported significantly higher mortality risk in those with 

normal body weight at diagnosis of T2DM, compared to those with obesity 7,12,19,25,26,79,82,87, others 

could not find such evidence 22,24. Latent diseases that independently lead to weight loss before T2DM 

diagnosis could explain the observed increased mortality risk in those with normal weight 222. This is 

particularly important, because the undiagnosed conditions leading to weight loss may also increase 

the risk of developing or being diagnosed with diabetes, but may be clinically diagnosed after the 

diagnosis of diabetes, and falsely appear as a consequence of diabetes. In this context, evaluation of 

weight change before and after diagnosis of diabetes along with comorbidities is crucial. However, 

data on these aspects at pollution level is scarce.   

 

Only a few epidemiological studies have evaluated body weight or BMI before and after diagnosis of 

diabetes 223-227. However, these studies were limited by small sample sizes 224-226, measurement of 

weight at only two-time points usually many years apart 223,227, and they did not include evaluation 

of the mortality risk in association with weight change. To the best of our knowledge, none of the 

studies that have evaluated the obesity paradox in T2DM patients conducted a dedicated analysis of 

body weight changes pre- and post-diagnosis of T2DM. With a large cohort of patients with incident 

T2DM, the aims of this real-world primary care based longitudinal study were to evaluate: (1) body 

weight changes over 3 years pre-diagnosis of T2DM, (2) body weight changes over 24 months post 

diagnosis of T2DM, stratified by BMI category at time of T2DM diagnosis separately for those who 

have died and those who have not, and (3) the impact of weight change pattern before diagnosis on 

the association of BMI at time of T2DM diagnosis with mortality risk. 

 

7.3 MATERIALS AND METHODS 

7.3.1 Participants  

Primary care patients with T2DM were identified from Read codes or the date of the first prescription 

for an anti-diabetes drug (ADD), through various steps of a clinically guided iterative machine 

learning algorithm based on regression methodologies 228 (see expanded procedure in Chapter 3). The 

algorithm identified a cohort of 406,098 patients with T2DM between January 1990 and September 

2014. The cohort of T2DM patients for this study  (1) were newly diagnosed with T2DM from January 

2000 onwards, (2) had a minimum follow-up of 1 year, (3) had complete data on age, sex, and BMI 

(≥ 15 kg/m2), and (4) were without an established diagnosis of cardiovascular diseases (CVD), 
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chronic kidney disease (CKD) or cancer at time of diagnosis of T2DM (Figure 7.1). Those with Read 

codes for type 1 diabetes mellitus (T1DM) or gestational diabetes, those who received insulin as the 

first ADD, and those who had undergone bariatric surgery before or after diagnosis were excluded.  

 

7.3.2 Study variables 

Patients with CVDs, CKD (any stage), and cancer with dates of diagnoses after the T2DM diagnosis 

date were identified using Read codes. A composite variable for CVD (any CVD) was defined as the 

occurrence of angina, myocardial infarction, coronary artery disease (including bypass surgery and 

angioplasty), heart failure or stroke.  Complete records on the prescriptions of different classes of 

ADDs, antihypertensive drugs, weight lowering drugs, anti-depressant drugs, and lipid-modifying 

drugs were extracted along with the dates of prescriptions. 

 

Information on deaths with dates and possible cause of death were also extracted. Time to a specific 

disease event or death was calculated as the time from the diagnosis of T2DM to the first occurrence 

of the disease event or date of death respectively. Patients who were still alive at the end of the study 

(September 2014) or had dropped out were censored on the end date or drop out date.  

 

Demographic, clinical and laboratory data extracted at time of T2DM diagnosis included: smoking 

status, deprivation score (a socioeconomic status measure based on residential address126), ethnicity, 

body weight, BMI, glycated haemoglobin (HbA1c), systolic blood pressure (SBP), diastolic blood 

pressure (DBP), low density lipoproteins (LDL-C), high density lipoproteins (HDL-C), and 

triglycerides. BMI categories at diagnosis of T2DM were defined as normal weight (18.5-24.99 

kg/m2), overweight (25-29.99 kg/m2), grade 1 obese (30-34.99 kg/m2), grade 2 obese (35-39.99 

kg/m2) and grade 3 obese (≥ 40 kg/m2)104. 

 

Longitudinal measures of body weight and BMI in the 36 months before and 24 months after the 

T2DM diagnosis date were extracted and arranged in six-monthly windows. All available measures 

on or within three months before the T2DM diagnosis date were considered as the baseline measures. 

If more than one measurement existed within this interval, the closest to the T2DM diagnosis date 

was taken. 
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Figure 7.1: Study cohort selection flowchart. 
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To identify patients who lost body weight (LBW) by at least 2 kg before the diagnosis of T2DM, 

two different approaches were used based on 6 possible longitudinal body weight measures over 36 

months as follows:  

i. Approach 1: the body weight measure in the 6 months prior to diabetes 

diagnosis was ≥ 2 kg less than the mean of the 5 possible prior measures;  

ii. Approach 2: the body weight measure in the 6 months prior to diabetes 

diagnosis was ≥ 2 kg less than all of the other weight measures in the three 

years before diagnosis.    

Those who did not lose body weight or increased body weight during 36 months before diagnosis 

were identified as “no weight loss” (NWL).  

 

The study protocol was approved by the Independent Scientific Review Committee for the THIN 

database (Protocol Number: 15THIN030) and the Institutional Review Board of QIMR Berghofer 

Medical Research Institute. 

 

7.3.3 Statistical Methods 

The summary statistics were presented by number (percentage), mean (SD) or median (first quartile, 

third quartile), and by survival status (alive or dead) where appropriate. Age-weighted rates (per 1000 

person-years) for CVD, CKD, cancer, hypertension during follow-up were estimated by BMI 

categories and mortality status. Age-weighted mortality rates were also computed for patients under 

each BMI category.  

 

Weight trajectories before and after diagnosis were evaluated by fitting a generalised linear model 

under general estimating equations setup, with unstructured covariance. Separate analyses were 

conducted for each BMI category. Among patients who did not die within two years post diagnosis 

of T2DM or remained censored, the unadjusted and adjusted mean (95% confidence intervals, CI) of 

longitudinal 6-monthly measures of body weight before and post T2DM diagnosis were estimated 

respectively. Adjustment factors for post-diagnosis weight trajectory were age, sex, smoking status, 

the incidence of CVD, CKD or cancer, and the use of insulin, GLP-1 receptor agonists or sulfonylurea 

during two years of follow-up.  

Under the hypothesis that the pattern of weight change before T2DM diagnosis could be a modifying 

factor on the association between BMI categories at the time of diagnosis and mortality risk, a 

multivariate stratified Cox regression model was fitted separately for patients under different weight 

loss pattern before the diagnosis of diabetes (i.e., LBW and NWL groups). Under the null hypothesis 
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of no difference in risk patterns by BMI categories at diagnosis of T2DM, we aim to evaluate the 

alternative hypothesis of risk difference in patients with normal body weight compared to those with 

grade 1 obesity (BMI 30-34.9 kg/m2) at 5% level of significance. The hazard ratio (HR) for all-cause 

mortality was calculated for each BMI category using individuals with grade 1 obesity as the 

reference group. The adjustment factors were - age, sex, deprivation score, and smoking status at 

diagnosis; use of insulin, oral anti-diabetes drugs, and cardio-protective medications during follow-

up as fixed covariates. Age groups (defined as 18-40, 41-50, 51-60, 61-70 years) at T2DM diagnosis 

were used as the stratification factor. Robust estimates of hazard ratios (95% CI) were obtained, and 

Bayesian information criteria (BIC) was used to compare the model fits. The proportional hazards 

assumption was assessed using scaled Schoenfeld residuals, and variables that violated the 

proportional hazards assumptions (incidence of cancer, any CVD or CKD during follow-up) were 

included in the model as time-varying covariates. All primary analyses were conducted using the 

imputed body weight data, with additional analyses based on complete cases for sensitivity analyses. 

In sensitivity analyses for mortality, an extended model was fitted incorporating measures of HbA1c, 

SBP, LDL-C, HDL-C, and triglyceride at baseline. Other sensitivity analyses involved (1) excluding 

the time-varying covariates that violated the proportionality assumption (see Appendix D); (2) 

excluding current and ex-smokers; (2) including patients who never developed cancer, (3) possible 

interaction of age groups and BMI categories (stratified by weight loss patterns). Data extraction from 

the THIN database was conducted using SAS® 9.4 (SAS Institute), and statistical analyses were 

performed using STATA version 14 MP, at a 2-tailed α level of 0.05. 

 

Data access 

Data were made are available to the corresponding author (SKP) under a licensing agreement from 

IMS Health UK (now IQVIA). All data access enquiries should be forwarded to Professor Sanjoy K. 

Paul. 

 

Code availability 

The programming code is available from ESOA 
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7.4 RESULTS  

7.4.1 Cohort characteristics at diagnosis  

In this cohort of 145,058 patients with incident T2DM, the mean (SD) age at diagnosis was 52 (12) 

years, 56% were male, 52% were current or ex-smokers, and 66% were obese. Among patients who 

were censored at the end of study (still alive or moved out of practice), the mean (SD) age at diagnosis 

was 51 (12) years with 26% aged above 60 years, 56% were men, and the proportion of patients in 

the normal weight, overweight and obese categories were 7%, 27%, and 67% respectively. Over a 

median follow-up of 8 years, those who died were significantly older (mean age: 60 years vs 51 

years), had a higher prevalence of current and ex-smokers (63% vs 51%), and had a higher SBP level 

(mean: 144 mmHg vs 139 mmHg) at diagnosis compared to those who were censored (Table 7.1). 

Across all BMI categories the incidence rates (per 1000 person-years) for any CVD, cancer, and CKD 

were significantly higher among those who died compared to those censored (Table 7.2, all p<0.01).  

 

7.4.2 Weight changes before the diagnosis of T2DM 

A small but significant drop in body weight during the six months before diagnosis of T2DM was 

observed in patients belonging to the normal and overweight categories at diagnosis, although a stable 

body weight trajectory was observed during 30 months before that time window (Figure 7.2A). 

Among all categories of obese patients, consistently increasing body weight was observed before the 

diagnosis of diabetes, followed by a sharp drop in body weight during the 12 months after the 

diagnosis of T2DM.  The proportions of patients who lost body weight in the 36 months before 

diagnosis date in the normal weight, overweight, grade 1 obese, grade 2 obese, and grade 3 obese 

categories were 28%, 21%, 18%, 17% and 16% respectively (Table 7.3).  

 

7.4.3 Weight change after diagnosis of T2DM 

Among normal weight patients who died, there was no indication of any weight loss during 24 months 

before death, while a consistently increasing body weight trajectory was observed among those who 

did not die (Figure 7.3). With an initial significant decline in body weight within six months post 

diagnosis of diabetes, overweight, grade 1 and 2 obese patients slowly gained weight over the 

following 18 months, with no difference in the longitudinal patterns by mortality status. For grade 3 

obesity, those who died had a higher weight throughout the post-diagnosis period than those who 

remained alive. The trajectories of body weight were similar for both imputed data and the complete 

case analyses. 
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Table 7.1: Baseline characteristics of patients with T2DM and without a history of CVD, CKD and cancer at the time of T2DM diagnosis, by mortality 
status. 

 
 Mortality status at study end date  
 Alive Dead All 
Patients, number (%) * 136,832 (94) 8,226 (6) 145,058 (100) 
Age in years, mean (SD)† 51 (12) 60 (9) 52 (12) 

Age group *    
≤40 years 25,693 (19) 304 (4) 25,997 (18) 
41-50 years 33,313 (24) 824 (10) 34,137 (24) 
51-60 years 43,069 (32) 2,420 (29) 45,489 (31) 
61-70 years 34,757 (26) 4,678 (57) 39,435 (27) 

Male * 76,054 (56) 4,890 (60) 80,944 (56) 
Smoking status *    

Current smoker 28,875 (21) 2,385 (29) 31,260 (22) 
Ex-smoker 40,821 (30) 2,805 (34) 43,626 (30) 
Never smoked 66,182 (48) 2,823 (34) 69,005 (48) 

Townsend deprivation *    
Least deprived  21,542 (16) 1,443 (18) 22,985 (16) 
Most deprived 26,678 (20) 1,400 (17) 28,078 (19) 

Weight in kg, mean (SD) † 93.4 (19.3) 90.4 (19.1) 93.2 (19.3) 
BMI (kg/m2),† mean (SD) 32.7 (6.3) 31.8 (6.4) 32.7 (6.3) 
BMI categories *    

Underweight 208 (<0.1) 52 (1) 260 (<0.1) 
Normal weight 9,770 (7) 764 (9) 10,534 (7) 
Overweight 36,404 (27) 2,444 (30) 38,848 (27) 
Grade 1 Obese 52,400 (39) 3,159 (38) 55,559 (39) 
Grade 2 Obese 22,790 (17) 1,054 (13) 23,844 (16) 
Grade 3 Obese 15,260 (11) 753 (9) 16,013 (11) 

SBP (mm/Hg) † 139 (17) 144 (18) 140 (17) 
SBP ≥ 140 * 64,881 (47) 4,973 (60) 69,854 (48) 
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HbA1c, mmol/mol† 69 (18.6) 68 (17.5)  69 (18.6) 
HbA1c ≥ 58 mmol/mol * 96,567 (70) 5,956 (72) 102,523 (71) 
LDL-C, mmol/L † 3.26 (0.75) 3.15 (0.67)  3.23(0.75) 
HDL-C, mmol/L † 1.16 (0.28) 1.21 (0.31) 1.16(0.28) 
Triglycerides, mmol/L‡ 1.90 (1.50, 2.36) 1.87 (1.5, 2.29) 1.90 (1.50, 2.35) 
Follow-up (years) ‡ 7 (4, 11) 11 (8, 13) 8 (4, 11) 

 
*: n (%) 
†: mean (SD) 
‡: median (Q1, Q3) 
Abbreviations: BMI: Body mass index; SPB: Systolic blood pressure; LDL-C: Low-density lipoprotein cholesterol; HDL-C: High-density lipoprotein 
cholesterol 
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Table 7.2: Proportion and event rates per 1000 person-years (95% CI) for patients without established disease history at diagnosis by baseline BMI 
categories. 
  

Normal weight  
(10,534) 

Overweight 
(38,848) 

Grade 1 Obese 
(55,559) 

Grade 2 Obese 
(23,844) 

Grade 3 Obese 
(16,013)  

Alive 
(9,770) 

Dead 
(764) 

Alive 
(36,404) 

Dead 
(2,444) 

Alive 
(52,400) 

Dead 
(3,159) 

Alive 
(22,790) 

Dead 
(1,054) 

Alive 
(15,260) 

Dead 
(753) 

MI * 186(2) 30(4) 712(2) 151(6) 922(2) 184(6) 322(1) 56(5) 197(1) 23(3) 
MI † 2.6 

(2.2,3.0) 
4.0 

(2.8,5.8) 
2.6 

(2.4,2.9) 
6.1 

(5.23,7.20) 
2.4 

(2.2, 2.5) 
5.8 

(5.0, 6.7) 
2.0 

(1.8, 2.3) 
5.3 

(4.0,6.8) 
1.9 

(1.7, 2.2) 3.1 (2.0,4.6) 
HF * 110(1) 34(4) 380(1) 179(7) 563(1) 204(6) 289(1) 92(9) 234(2) 80(11) 
HF † 1.5 

(1.3, 1.8) 
4.6 

(3.3, 6.4) 
1.4 

(1.3,1.5) 
7.3 

(6.3,8.5) 
1.4 

(1.3, 1.6) 
6.5 

(5.6,7.4) 
1.8 

(1.6,2.0) 
8.9 

(7.2,10.9) 
2.3 

(2.0, 2.6) 
11.2 

(9.0,   14.0) 
Stroke * 308(3) 58(8) 1103(3) 252(10) 1428(3) 258(8) 531(2) 93(9) 345(2) 43(6) 
Stroke † 4.3 

(3.8, 4.8) 
8.1 

(6.2,10.4) 
4.1 

(3.9, 4.3) 
10.6 

(9.3,12.0) 
3.7 

(3.47,3.9) 
8.3 

(7.3, 9.3) 
3.3 

(3.0,3.6) 
8.9 

(7.3,10.9) 
3.4 

(3.0,3.7) 
5.9 

(4.4,7.9) 
Any CVD * 1125(12) 184(24) 4319(12) 687(28) 5406(10) 800(25) 2115(9) 290(28) 1292(8) 171(23) 
Any CVD † 16.7 

(15.8,17.7) 
29.5 

(25.5,34.1) 
17.1 

(16.6,17.6) 
34.2 

(31.8,36.9) 
14.7 

(14.3,15.1) 
29.8 

(27.8,32.0) 
13.8 

(13.2,14.4) 
32.8 

(29.2,36.8) 
13.2 

(12.5,13.9) 
26.7 

(23.0,  31.0) 
CKD * 970(10) 126(16) 3748(10) 404(17) 4318(8) 436(14) 1978(9) 222(21) 1277(8) 155(21) 
CKD † 14.5      

(13.6,15.4) 
19.2 

(16.1,22.9) 
14.8 

(14.4,15.3) 
18.3 

(16.6, 20.1) 
11.7 

(11.3,12.0) 
14.9 

(13.6, 16.3) 
13.1      

(12.5,13.7) 
24.5 

(21.5, 27.9) 
13.3 

(12.6,14.0) 
24.5 

(20.9, 28.7) 
Cancer * 498(5) 271(35) 2043(6) 930(38) 2473(5) 1068(34) 962(4) 368(35) 623(4) 204(27) 
Cancer † 7.0 

(6.4,7.7) 
46.0 

(40.8,51.8) 
7.7 

(7.3, 8.0) 
46.5 

(43.6, 49.6) 
6.4 

(6.2, 6.7) 
40.1 

(37.8, 42.6) 
6.0 

(5.7, 6.4) 
41.2 

(37.2, 45.7) 
6.1 

(5.7,6.6) 
31.1 

(27.1, 35.6) 

 
n (%); †: rate per 1000 person-years (95%CI); 
MI: Myocardial infarction; HF: Heart failure; Any CVD: any cardiovascular disease defined as the occurrence of angina, MI, coronary heart disease 
(CHD), stroke, and HF post diagnosis of T2DM. 
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Table 7.3: Mortality risk by Body Mass Index (BMI) category at the time of diabetes diagnosis stratified by weight trajectory patterns prior to 
diagnosis. 
 

 BMI category 
 Normal weight 

(N=10,534) 
Overweight 
(N=38,848) 

Grade 1 Obese 
(N=55,559) 

Grade 2 Obese 
(N=23,844) 

Grade 3 Obese 
(N=16,013)  

Lost Body weight (LBW, n=27,589)      
Patients * 2,983 (28) 8,266 (21) 9,721 (17) 3,977 (17) 2,544 (16) 
Deaths * 205 (2) 543 (1) 520 (1) 171 (1) 120 (1) 
Person-time in years † 1,093 2,957 2,327 1,008 667 
Rate per 1000 person-years 11.0 (9.6,12.7) 11.1 (10.2,12.1) 10.6 (9.7,11.6) 8.6 (7.42, 10.1) 9.8 (8.2,11.9) 
HR (95% CI) ‡ 0.89 (0.65,1.22) 0.93 (0.77,1.12) 1.00 (reference) 1.01 (0.81,1.27) 1.30 (0.86,1.95) 
      

No Weight Loss (NWL, n=117,469)      
Patients * 7,551 (72) 30,582 (79) 45,838 (83) 19,867 (83) 13,469 (84) 
Deaths * 559 (5) 1,901 (5) 2,639 (5) 883 (4) 633 (4) 
person-time in years † 3,069 10,981 14,443 5,411 3,826 
Rate per 1000 person-years 12.4 (11.4, 13.5) 10.0 (9.5,10.4) 9.7 (9.3,10.1) 8.1 (7.6,8.7) 8.9 (8.2,9.7) 
HR (95% CI) ‡ 1.35 (1.17,1.55) 0.99 (0.91,1.07) 1.00 (reference) 0.95 (0.86,1.04) 1.06 (0.89,1.25) 

 
*: Number (proportion)  
†: Person-time (years) contributed by patients who died during follow-up. Follow-up period from 2000 to 2014  
‡: Estimates of hazards ratios were adjusted for baseline BMI, sex, smoking status, deprivation score, insulin, oral antidiabetic drugs, cardio-protective 
medicine and time-varying incidence of cancer, chronic kidney disease and incidence of any cardiovascular disease using age group at baseline as a 
stratification factor.   
 
 
 
 
 



 

 116 

 Table 7.4: Mortality rates (per 1000 person-years) and risk with their 95% CIs, by BMI categories and age groups in patients without established 
disease history before diagnosis. 
 
 BMI category 
 Normal weight Overweight Grade 1 Obese Grade 2 Obese Grade 3 Obese 
18-40 years       

Patients * 1644(16) 4427(11) 10390(19) 5409(23) 4071(25) 
Rate/1000 person-years 2.12 (1.42, 3.16) 1.37 (1.02,1.84) 1.52 (1.27,1.81) 1.24 (0.94,1.63) 2.17 (1.70,2.79) 
HR (95% CI) § 1.76 (0.96, 3.21) 1.00 (0.66,1.52) 1.00 (reference) 0.79 (0.54,1.16) 1.15 (0.59,2.25) 

41-50 years       
Patients * 2000(19) 7813(20) 12985(23) 6297(26) 5,097 (31) 
Rate/1000 person-years 3.77 (2.89,4.91) 2.92 (2.51,3.40) 3.17 (2.84,3.55) 3.28 (2.79,3.86) 4.15 (3.52,4.90) 
HR (95% CI) § 1.65 (1.18, 2.28) 1.12 (0.91,1.37) 1.00 (reference) 0.97 (0.78,1.21) 0.98 (0.71,1.34) 

51-60 years      
Patients * 3070(29) 12983(33) 17612(32) 7246(30) 4,584 (28) 
Rate /1000 person-years 8.59 (7.47,9.88) 6.63 (6.14,7.16) 7.16 (6.72,7.63) 6.61(5.95,7.35) 9.01 (8.00,10.15) 
HR (95% CI) § 1.49 (1.21,1.83) 1.05 (0.93,1.19) 1.00 (reference) 0.89 (0.77,1.03) 1.04 (0.81,1.32) 

61-70 years      
Patients * 3820(36) 13625(35) 14572(26) 4892(21) 2,470 (15) 
Rate/1000 person-years 17.13 (15.68,18.72) 15.47 (14.72,16.25) 17.06 (16.29,17.87) 15.29 (14.02,16.67) 17.31 (15.39,19.47) 
HR (95% CI) § 1.02 (0.85,1.22) 0.91 (0.82,1.00) 1.00(reference) 1.04 (0.91,1.18) 1.21 (0.96,1.53) 

 
 
§: Estimates of hazards ratios (HR) were adjusted for baseline BMI, sex, smoking status, deprivation score, insulin, oral antidiabetic drugs, cardio-

protective medicine and time-varying incidence of cancer, chronic kidney disease and incidence of any cardiovascular disease using weight loss pattern 

prior to diagnosis as a stratification factor. 
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7.4.4 Mortality rate and risk by BMI categories 

Overall, 6% of the patients died during a median 8 years of follow-up (n=8,226, Table 7.1). The 

median follow-up time was similar among all BMI categories, and separately for patients in the NWL 

and LBW groups. The number, proportions and person-time (in years) of patients who died during 

follow-up under different BMI categories, separately for each weight change pattern before diagnosis, 

are presented in Table 7.4. Overall, patients with normal weight had significantly increased the 

adjusted risk of mortality compared to those with grade 1 obesity (Figure 7.2B). 

 

Among patients with NWL before diagnosis (n=117,469), the age-weighted mortality rate per 1000 

person–years in normal weight patients at diagnosis was significantly higher (rate=12.4; 95% CI: 

11.4, 13.5) than for those who were grade 1 obese (rate= 9.7; 95% CI: 9.3, 10.1), grade 2 obese (rate 

8.1; 95% CI: 7.6, 8.7) and grade 3 obese (rate 8.9; 95% CI: 8.2, 9.7) (Table 7.3). With grade 1 obese 

patients as reference, normal weight patients in the NWL group had 35% increased risk of mortality 

(Adjusted HR = 1.35; 95% CI: 1.17, 1.55; p<0.01).  

 

For patients in the LBW group, mortality rate 1000 person-years in normal weight patients at 

diagnosis was not significantly higher (rate=11.0; 95% CI: 9.6, 12.7) than for those who were grade 

1 obese (rate= 10.6; 95% CI: 9.7, 11.6), grade 2 obese (rate= 8.6; 95% CI: 7.4, 10.1), grade 3 obese 

(rate 9.8; 95% CI: 8.2, 11.9). Subsequently, there was no significant association between BMI 

categories and mortality risk in the LBW group (all p>0.05) (Table 7.3).  

 

7.4.5 Sensitivity analyses  

The mortality risk estimates were similar in subgroups of patients who did not develop cancer and 

those who never smoked. The extended risk analyses by incorporating HbA1c, blood pressure and 

lipids at diagnosis as covariates, also revealed similar mortality risk estimates, separately for groups 

of patients with and without weight loss prior to diagnosis. Sensitivity analysis with identification of 

weight loss by Approach 2 also provided similar results.  

 

Compared to grade 1 obese patients, normal weight patients in the age groups 41-50 years and 51-60 

years had significantly higher mortality risk by 65% (95% CI of HR: 1.18, 2.28), 49% (95% CI of 

HR: 1.21, 1.83) respectively.  Across all age groups, grade 2 or grade 3 obese patients did not have 

higher mortality risk compared to grade 1 obese patients (Table 7.4). 
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Figure 7.2: (A) Six-monthly trajectory [mean (95% CI)] of body weight (kg) over 3 years prior to diagnosis of T2DM, at diagnosis and one-year post 
diagnosis separately for different BMI categories at diagnosis of T2DM, for patients without a history of diseases at diagnosis.  (B) The cumulative 
hazard function for all-cause mortality in patients without disease history, by BMI categories at diagnosis. 
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Figure 7.3: Weight (in kg) trajectory by mortality status post diagnosis of T2DM for patients without disease history.  
Weight trajectory estimates were adjusted for age at diagnosis, sex, smoking status, the incidence of chronic kidney disease or cancer or any CVD, and 
the use of insulin or sulphonylureas or GLP1RA within 2 years of diagnosis. 
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7.5 DISCUSSION 

In this longitudinal study of a large number of incident T2DM patients from the UK, we observed:  

(1) a significant drop in body weight over the 6 months before diagnosis of T2DM in normal weight 

and overweight patients, followed by a marginal increases in body weight post-diagnosis; (2) no 

significant weight change over 24 months post diagnosis among normal weight patients who died; 

(3) patients with normal body weight at time of T2DM diagnosis had a significantly higher adjusted 

rate and risk of all-cause mortality compared to grade 1 obese patients, and this was not explained by 

weight loss before diagnosis, (4) a significant age and BMI interaction, with elevated mortality risk 

for normal weight patients aged 41 – 60 years; and (5)  patients with BMI ≥ 35 kg/m2 at diagnosis 

did not have significantly higher mortality risk compared to grade 1 obese patients across all age 

groups.  

 

One novel aspect of this study was the evaluation of 6-monthly longitudinal changes in body weight 

over 24 months post diagnosis of T2DM by mortality status and BMI at diagnosis. In the normal 

weight category, patients had an increasing weight trajectory over 24 months irrespective of mortality 

status, suggesting no sudden weight loss in these patients post-diagnosis. This observation coupled 

with the fact that underlying comorbidities/latent diseases were not over-represented in the normal 

weight group contradicts the assertion of possible weight loss due to underlying diseases 222. While 

this study was not designed to assess the impact of lifestyle modifications on weight in patients with 

T2DM, the observed weight changes in overweight and obese groups post diagnosis of T2DM are 

consistent with previous studies that studied this effect 229,230. We observed a marginal decrease in 

body weight during the six months post diagnosis of diabetes in overweight and obese patients, 

followed by a plateau, similar to that observed in other studies 229,230. In the study by Aucott and 

colleagues, using approximately 30 000 obese or overweight Scottish adults with incident diabetes, 

weight change was not associated with mortality risk, while 36% reduced body weight at two years 

post-diagnosis 229. Furthermore, given the adjusted trajectories of body weight by mortality status 

over two years across BMI categories in our study (Figure 3), weight change that occurs post 

diagnosis rather than pre-diagnosis is likely to be associated with long-term mortality risk. 

 

The obesity paradox in T2DM is the phenomenon whereby significantly higher mortality risk is 

observed among those with normal body weight at diagnosis of T2DM, compared to those with 

obesity. Our finding of significantly higher mortality risk in normal weight T2DM patients at the time 

of diagnosis corroborates other findings and contributes to the current debate on the obesity paradox 

in T2DM 12,25,78,79,231. We report an obesity paradox regardless of disease history at diagnosis, an 
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observation previously reported by Thomas and colleagues 12. Some researchers have suggested that 

the obesity paradox could be explained by unmeasured confounders (e.g., unrecognised underlying 

comorbidity/latent diseases) that lead to weight loss and are therefore over-represented in the normal 

weight group 110,112,232. By considering the weight loss pattern before the diagnosis of T2DM as a 

potential confounder in the relationship between adiposity status at diagnosis and mortality risk, and 

by undertaking separate analyses for patients with and without co-morbid disease at diagnosis, our 

observation is unlikely to be biased by underlying diseases. Furthermore, a detailed exploration of 

the patterns of weight change over 24 months post diagnosis of diabetes establishes the robustness of 

our finding.  

Our study reveals that patients who were obese at the time of T2DM diagnosis experienced a steady 

rise in body weight before diagnosis, an observation which is consistent with a previous study in Pima 

American Indians 225.  While only two studies either statistically modelled the trajectory of body 

weight or evaluated one-point observed weight 10 years prior to diagnosis of T2DM, our study 

explored the 6-monthly trajectory of observed body weight during the 36 months prior to diagnosis, 

accounted for prevalence of diseases, and assessed  weight change over 24 months post diagnosis of 

diabetes 226,233. We also note that normal weight and overweight patients experienced significant 

weight loss during six months before diagnosis of diabetes –a rather common, yet unexplained clinical 

manifestation. Our study identifies patients who consistently lost body weight and patients who 

remained weight neutral over three years before clinical diagnosis of diabetes. We found that, though 

a significantly larger proportion of the normal weight patients lost body weight before the diagnosis 

of T2DM, compared to overweight, grade 1 and grade 2 obese patients, weight loss before diagnosis 

was not associated with increased mortality in normal weight patients.  

 

The strengths of this longitudinal study include a large number of incident T2DM patients with 8 

years of median follow-up, a nationally representative cohort, a thorough assessment of the 

longitudinal trajectory of body weight before and post diagnosis of T2DM, and identification of 

weight loss patterns and comorbid conditions before diagnosis. Clinically diagnosed T2DM patients 

with a diagnosis from January 2000 were selected to ensure the quality of diagnosis. Age at diagnosis 

was also restricted to a maximum of 70 years to avoid including older patients who were already at 

significantly increase mortality risk. We attempted to minimise possible confounding by adjusting 

for several possible confounders including antidiabetic treatment, cardio-protective medications, and 

smoking status while evaluating the cohort with no history of major diseases at diagnosis. However, 

electronic health records present challenges in terms of the accuracy and completeness of the required 

data. The limitations of this study include non-availability of complete and reliable data on ethnicity 
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and smoking cessation during follow-up, missing body weight data during the 36 months before 

diagnosis of diabetes, information on diet, exercise or weight lowering medications, and the potential 

residual confounders as is common in observational studies. Also, there is the potential for 

misdiagnosis, misclassification, and miscoding of diagnostic codes in electronic medical records 130-

133. We utilised other clinical data to minimize potential misclassification of T2DM (see Chapter 3). 

Although we excluded all T2DM patients, who received insulin as their first anti-diabetes drug from 

our study cohort, some patients with T1DM might still be misclassified as having T2DM.  

 

7.6 CONCLUSION 

In conclusion, weight loss before the diagnosis of T2DM occurred independently of established 

severe disease conditions and was not associated with the observed increased mortality risk in normal 

weight patients with T2DM. While the cause of this excess mortality in T2DM who were normal 

weight at diagnosis remains unclear, it may reflect differences in the aetiology of diabetes in normal 

weight people and emphasises the importance of addressing risk factors for excess mortality in this 

group. 
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Chapter 8: Ethnicity-Specific association of BMI levels at 
diagnosis with cardiovascular disease and all-cause 
mortality risk  

This body of this chapter contains one published paper that evaluates the potential role of 

ethnicity in the observed increased mortality in individuals with normal weight (BMI: 18.5-25 

kg/m2). The citation of the published paper is as follows: 

 
Owusu Adjah ES, Ray KK, Paul SK. Ethnicity-specific association of BMI levels at diagnosis of type 
2 diabetes with cardiovascular disease and all-cause mortality risk. Acta Diabetologica 2018;56(1):87-
96. 
 

All the listed have agreed to the inclusion of this published scholarly work in this thesis and 

the statement of my contribution to the authorship of this published scholarly work is included 

below: 

 

Contributor Statement of contribution 
Owusu Adjah Ebenezer S 
(Candidate) 

Conceived the idea and was responsible for the 
primary design of the study. Conducted the data 
extraction from THIN. Performed data 
manipulation, aggregation, and transformation in 
SAS. Conducted statistical analyses in STATA and 
interpreted the results. Developed first draft and 
contributed towards finalisation of the manuscript. 
 

Ray K Contributed to the interpretation of the results and 
manuscript finalisation. 

Paul SK Responsible for the primary design of the study. 
Contributed to the statistical analyses. Developed 
first draft and contributed towards finalisation of 
the manuscript. 
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8.1 ABSTRACT  

Aim: To evaluate the risk of CVD and all-cause mortality at different BMI levels in conjunction 

with weight change prior to the diagnosis of T2DM in a multi-ethnic population. 

 

Materials and Methods: Longitudinal study of 51,455 patients with T2DM and without a 

history of comorbid diseases at diagnosis. Weight changes prior to the diagnosis of T2DM were 

evaluated and the risk of CVD and all-cause mortality at different BMI levels among three 

ethnic groups estimated. 

 

Results: White Europeans (n=40,575), African-Caribbeans (n=3,605), and South Asians 

(n=7,275) were 52 , 49, and 47 years old with a mean BMI of 33.0, 32.0, and 30.0 kg/m2 at 

diagnosis, respectively. Among White Europeans, normal weight patients developed CVD 

significantly earlier by 0.5 years (95% CI: 0.1, 0.9 years; p=0.018) compared to obese patients 

(mean time to CVD 4.6 years). Furthermore, those with normal body weight at diagnosis were 

significantly more likely to die earlier by 0.6 years (95% CI: 0.03, 1.2 years; p=0.037) among 

White Europeans and by 2.5 years (95% CI: 0.3, 4.6 years; p=0.023) among South Asians 

compared to their respective obese patients. 

 

Conclusion: This study suggests a paradoxical association of BMI with cardiovascular and 

mortality risks in different ethnic groups. Normal weight White Europeans and South Asians 

appear to have significantly higher mortality risk compared to those who were obese at the time 

of T2DM diagnosis. 

  

Keywords: Body mass index; Type 2 Diabetes; Cardiovascular Disease; Obesity; Race and 

Ethnicity; Weight Change Pattern. 
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8.2  INTRODUCTION  

Recent studies have reported an inverse association of body mass index (BMI) with mortality 

risk among adults with type 2 diabetes mellitus (T2DM), where patients who were normal 

weight [BMI 18.5 - 24.9 kg/m2] at diagnosis had significantly elevated mortality risk compared 

to their obese counterparts [BMI ≥ 30 kg/m2] 12,19,25,26,87. While the explanation for this 

phenomenon, referred to as the obesity paradox in T2DM remains unclear, weight loss before 

the diagnosis of T2DM as a result of underlying/undiagnosed medical condition was postulated 

as one of the possible reasons 110,112,232. However, an analysis of body weight changes over 3 

years before diagnosis in patients with T2DM under different BMI categories have shown 

otherwise 234. It is possible that ethnicity might play an essential role in understanding the 

underlying mechanism, as the distribution of adiposity levels in relation to cardiovascular 

disease (CVD) and mortality risk has been shown to be different for different ethnic groups 
28,29,186,199.  

 

Previous studies have evaluated the incidence of CVDs either in different ethnic groups 
204,205,207,209,235 or in relation to BMI 236,237. However, these studies did not evaluate the possible 

difference in the BMI related risk paradigm in different ethnic groups. Among Asians, a pooled 

analysis of 20 prospective cohort studies in Asia reported increased cardiovascular mortality 

risk at lower BMIs 238. However, this study was conducted in the general population, adjusting 

for diabetes status where appropriate. Wright and colleagues (2016) reported significantly 

lower mortality risk in South Asian and African-Caribbean individuals with T2DM compared 

to White Europeans 239. However, this UK primary care-based study did not evaluate the 

interplay of BMI in this context. 

 

To the best of our knowledge, only one study has examined the modifiable association of 

ethnicity on the observed phenomenon of the obesity paradox in T2DM. Kokkinos and 

colleagues 79 used data from two Veteran Affairs Medical Centres in the US to assess the 

association between BMI, fitness, and mortality in African-Americans and Caucasians. 

However, this study was based on only male patients, and the BMI measures were not evaluated 

at the time of diagnosis of diabetes.  

 

A better understanding of the potential role of ethnicity in the obesity paradox in both male and 

female patients with T2DM is important as this would enable clinicians to better manage 
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diabetes amongst patients of different ethnicity and adiposity. Therefore, to address these 

knowledge gaps, the aim of this study was to use a cohort of incident T2DM patients  from 

United Kingdom primary care database, to evaluate for each ethnic group, (1) the CVD and 

mortality rate in each BMI category, by weight change pattern before diagnosis and (2) the 

association of BMI categories at diagnosis with CVD and mortality risk, controlling for weight 

change pattern before diagnosis and other risk factors. 

 

8.3 MATERIALS AND METHODS 

8.3.1 Identification of T2DM cohort 

The data for this study were obtained from The Health Improvement Network (THIN) 

database. The detailed description of this database has been previously presented 41, and formal 

access to the database has been obtained from the Independent Scientific Review Committee 

for the THIN database (Protocol Number: 15THIN030). Patients diagnosed with T2DM 

between January 1990 and September 2014 (n=406,098) were identified using a robust 

machine learning algorithm, which uses a combination of Read codes 128, anti-diabetes 

medications, and lifestyle modification interventions 228. Those included in this study satisfied 

the following criteria: (1) complete data on age (18 – 70 years), sex, BMI (≥ 18.5 kg/m2) and 

date of diagnosis of T2DM from January 2000 with a minimum 1 year of follow-up), (2) 

ethnicity identified as White European, African-Caribbean or South Asian, and (3) no history 

of CVD, renal diseases, cancer, retinopathy, neuropathy or bariatric surgery at diagnosis. South 

Asians were defined as patients with Indian, Pakistani, Sinhalese, and Bangladeshi origin, 

while African-Caribbeans were defined as patients with Black-African and Caribbean origin. 

White, European, Caucasian, and New Zealand European were defined as White Europeans. 

Those with Read codes for type 1 diabetes mellitus (T1DM) or gestational diabetes, and those 

who received insulin as the first antidiabetic drug (ADD, highly likely to be patients with 

T1DM) were excluded. A final cohort of 51,455 patients with T2DM was used for this study. 

Given the fact that only a proportion of the patients in the THIN database have ethnicity record, 

to explore the potential selection bias in this study, we have provided a flow-chart and table of 

basic statistics for patients from the database under the inclusion-exclusion criteria for this 

study (Figure 8.1 and Table 8.4). 

 



 

 127 

 

Figure 8.1: Cohort selection flowchart. 
*: History of disease defined as clinical diagnosis of CVD or renal diseases or cancer at diagnosis or retinopathy or neuropathy or bariatric 
surgery before the diagnosis of T2DM; ML: machine learning; ADD: Anti-diabetes drug. 
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8.3.2 Demographic and longitudinal measurements 

Data on deprivation score (based on residential address) was extracted where available, and the 

smoking status for individuals were classified as current, ex, or never smokers. Longitudinal 

anthropometric, clinical and laboratory measurements including BMI, body weight, glycated 

haemoglobin (HbA1c), blood pressure and lipids were extracted for all patients. All available 

measures at or within three months before the diagnosis of T2DM were considered as the 

baseline measures. If more than one measurement existed within this interval, the closest to the 

T2DM diagnosis date was taken. After that, longitudinal measures before and after the T2DM 

diagnosis were arranged in six-monthly windows.  BMI categories for White Europeans and 

African-Caribbeans were defined as normal weight (18.5-24.9 kg/m2), overweight (25-29.9 

kg/m2), and obese (≥ 30 kg/m2). For South Asians, BMI in the ranges 18.5-22.9, 23-27.4, ≥ 

27.5 kg/m2 were used to define normal weight, overweight and obese patients respectively 104.  

 

As weight loss before clinical diagnosis of T2DM is a common clinical manifestation, it was 

hypothesized that a weight loss of at least 2 kg before the diagnosis of diabetes was clinically 

significant 240. Therefore, using 6 possible longitudinal body weight measures over 36 months 

before diagnosis, we classified patients who lost body weight (LBW) by at least 2 kg before 

diagnosis (if average of 5 prior measurements minus the body weight measure in the 6 months 

prior to diabetes diagnosis was ≥ 2 kg) and those who did not lose body weight (NWL) – i.e., 

they remained on the same level or increased body. Complete records on the prescriptions for 

different classes of ADDs, antihypertensive drugs, weight lowering drugs, anti-depressant 

drugs, and lipid-modifying drugs were extracted along with the dates of prescriptions. 

 

8.3.3 Mortality and comorbidity data 

Records of CVDs, renal diseases (including chronic kidney disease (CKD)), and cancer with 

dates of diagnoses before and after T2DM diagnosis date were obtained. Information on deaths 

with dates and possible reasons were extracted. A composite variable for CVD (any CVD) was 

defined as the occurrence of angina, myocardial infarction, coronary artery disease (including 

bypass surgery and angioplasty), heart failure, or stroke.  Patients with a recorded diagnosis of 

cancer, any CVD, retinopathy, neuropathy, or renal diseases before the T2DM diagnosis date 

were considered to have a relevant disease history. Time to a specific disease event and time 

to death were calculated as the time from T2DM diagnosis date to the first occurrence of the 
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disease event and date of death respectively. Patients who were still alive at the end of the study 

data collection (September 2014) or dropped out were censored on the respective end date or 

drop out date.  

 

8.3.4 Statistical analysis 

The basic summary statistics were presented by number (percentage), mean (SD) or median 

(first quartile, third quartile), by ethnicity as appropriate. Among patients without disease 

history who were identified to have lost body weight (LBW) or not (NWL), age-weighted CVD 

and ACM rates (per 1000 person-years) were estimated by BMI categories for each ethnic 

group. Cox proportional hazard regression is a widely used approach to analyse survival time 

data because of its flexible semi-parametric property. However, the key assumption of the 

proportional hazards regression model is unlikely to be true for patients with incident T2DM 

under different adiposity levels. To account for the inherent differences in risk factors between 

the defined BMI categories and the fact that risk may not be proportional, treatments effects 

modelling approach was used to provide robust inferences on the time to cardiovascular events 

or ACM. This modelling approach uses the potential outcomes or counterfactual framework to 

allow comparison of survival time for CVD and all-cause mortality for patients with different 

BMI categories, separately for each ethnic group. Briefly, given an observed outcome (Y0), for 

a patient with normal weight, the potential outcome or the counterfactual (Y1) for this same 

patient is the outcome if the patient had belonged to another BMI category and vice versa.  

Therefore, the average of the difference between the observed outcomes given a specific BMI 

category and the potential outcome is the average treatment effect [i.e., average treatment effect 

(ATE) = average (Y1-Y0)] 113-116. Since the outcome of interest is survival time, a survival 

model with an inverse-probability weight estimator was used to estimate average time to events 

for each BMI category. Variables that were conditioned on include sex, weight change pattern 

before diagnosis, age at diagnosis, smoking status, the incidence of cancer and renal diseases 

post-diagnosis, and receipt of lifestyle advice before and after diagnosis. Statistical analyses 

were performed using STATA version 15 MP, at a 2-tailed α level of 0.05.  
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8.4 RESULTS 

8.4.1 Basic demographic and clinical characteristics  

In this study of 40,575 White Europeans, 3,605 African-Caribbean, and 7,275 South Asians 

adults with T2DM, the median follow-up time was 7 years for all three ethnic groups. The 

demographic and clinical profiles of these patients at diagnosis of T2DM in the three ethnic 

groups are presented in Table 1. South Asians had the clinical diagnosis of T2DM at a younger 

age (47 years) and at lower BMI (30.0 kg/m2) compared to White Europeans (age: 52 years, 

BMI: 33 kg/m2) and African-Caribbeans (age: 49 years, BMI: 32.0 kg/m2). White Europeans 

had the highest proportion (58%) of ever-smokers (defined as current or ex-smokers) and a 

higher proportion of patients with systolic blood pressure above 140 mmHg (Table 8.1). 

 

While the proportions of obese patients were 70%, 60%, and 67% in the White European, 

African-Carribean and South Asian patients respectively, African-Caribbeans had higher 

proportions of patients in the normal weight (10%) and overweight (30%) groups, as well as 

highest LDL-cholesterol levels (129 mg/dl) at diagnosis compared to White European and 

South Asian patients. Furthermore, White Europeans were more likely to receive lifestyle 

advice before (32%) and after (69%) diagnosis of T2DM compared to African-Caribbeans 

(25% and 59%) and South Asians (27% and 60%) respectively (Table 8.1). 

 

The distribution of selected clinical characteristics among T2DM patients with no disease 

history at diagnosis, separately for each ethnic group within the three defined BMI categories 

are presented in Table 8.2. African-Caribbeans had similar levels of ever-smokers across BMI 

categories, while South Asians who were normal weight at diagnosis had a significantly higher 

proportion of ever-smokers (35%) compared to their counterparts who were overweight (26%) 

and obese (25%) at diagnosis. Furthermore, the proportion of ever-smokers among White 

Europeans who were normal weight at diagnosis (60%), was significantly higher compared to 

their White Europeans obese (57%) counterparts (Table 8.2).  

 

Across the three ethnic groups, the proportion of patients with clinically diagnosed 

hypertension was smaller in normal weight patients compared to obese patients. African-

Caribbeans and South Asians who were normal weight at diagnosis underwent more lifestyle 

intervention than their obese colleagues. The use of statins was significantly higher in normal 

weight patients compared to obese patients across ethnic groups (Table 8.2). While the 
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proportion of normal weight patients who lost at least 2 kg weight loss before diagnosis was 

almost double that of obese patients across BMI categories, a similar proportion of patients 

experienced this weight loss before diagnosis across the three ethnic groups. 

 

Table 8.1: Basic clinical and demographic characteristics of patients with T2DM by ethnicity. 
 

 White European African-Caribbean South Asian 
Patients †  40,575 3,605 7,275 
Age at diagnosis (years) ‡ 52 (12) 49 (11) 47 (12) 
       age group †     

≤40  6,936 (17) 923 (26) 2,228 (31) 
41-50 9,515 (24) 1,129 (31) 2,073 (29) 
51-60 12,971 (32) 902 (25) 1,848 (25) 
61-70 11,153 (28) 651 (18) 1,126 (16) 

Male † 22,534 (56) 1,851 (51) 3,911 (54) 
Smoking status, †    

Never smoker 17,132 (42) 2,496 (69) 5,371 (74) 
Current smoker 9,718 (24) 461 (13) 952 (13) 
Ex-smoker  13,649 (34) 640 (18) 917 (13) 

Weight (kg) ‡ 95 (19) 89 (16) 82 (15) 
BMI (kg/m2) ‡ 33 (6) 32 (5) 30 (5) 
BMI categories †    

Normal weight 2,423 (6) 359 (10) 439 (6) 
Overweight 9,904 (24) 1,075 (30) 1,945 (27) 
Obese 28,248 (70) 2,171 (60) 4,891 (67) 

SBP (mmHg) ‡ 139 (16) 137 (16) 134 (16) 
SBP ≥ 140 mmHg † 19,578 (48) 1,516 (42) 2,442 (34) 
HBA1c (%)‡ 9 (2) 9 (2) 9 (2) 
HBA1c ≥ 7.5% 28,510 (70) 2,651 (74) 5,262 (72) 
LDL (mg/dl) ‡ 125 (29) 129 (29) 125 (29) 
HDL (mg/dl) ‡ 45 (11) 47 (11) 44 (10) 
Triglycerides (mg/dl) § 170 (136-212) 127 (97-159) 160 (126-201) 
LBW prior to diagnosis †  7,595 (18) 662 (18) 1,225 (18) 
Lifestyle advice †    

Before diagnosis 12,861 (32) 909 (25) 1,983 (27) 
After diagnosis 27,855 (69) 2,130 (59) 4,352 (60) 

Follow-up (years) § 7 (4-11) 7 (4-10) 7 (4-10) 
 

†: n (%); ‡: mean (SD); §: median (Q1, Q3); BMI: Body mass index; SPB: Systolic blood pressure; 
LDL: Low-density lipoprotein cholesterol; HDL: High-density lipoprotein cholesterol; LBW: Lost at 
least 2kg body weight before diagnosis; 
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8.4.2 Cardiovascular disease and mortality event rates  

To avoid potential bias resulting from already existing severe diseases that may independently 

induce weight loss in patients, cardiovascular and mortality risk assessments were carried out 

excluding patients with clinically diagnosed cancer, any CVD, retinopathy, neuropathy, or 

chronic kidney disease (CKD) at diagnosis of T2DM. The age-weighted CVD and all-cause 

mortality rates per 1000 person-years (95 % CI), by BMI categories and weight change pattern, 

prior to diagnosis in patients without disease history at diagnosis, separately for the three ethnic 

groups are presented in Figures 8.2 and 8.3. Among White Europeans, CVD event rates per 

1000 person-years were significantly higher in normal weight patients (rate: 23.7; 95% CI: 

21.3, 26.5) compared to obese patients (rate: 20.3; 95% CI: 19.6, 21.0), independent of weight 

change pattern before diagnosis. In no other ethnic group did CVD event rates vary across 

different BMI categories and weight change pattern before diagnosis. However, the CVD event 

rates in White Europeans with normal weight were significantly higher than the rates in 

African-Caribbeans with normal weight (rate: 11.6; 95 % CI: 7.6, 18.6), and similar to the rates 

in South Asians with normal weight (rate: 21.3; 95 % CI: 16.1, 28.7) (Figure 8.2). 

 

Irrespective of weight change pattern before diagnosis (i.e. loss of at least 2 kg of body weight 

or not), mortality rates per 1000 person-years were significantly higher among White 

Europeans with normal weight (rate: 12.2; 95% CI: 10.6, 14.1) compared to obese White 

Europeans (rate: 7.6; 95% CI: 7.2, 8.0). Furthermore, these mortality rates among White 

Europeans with normal weight were about three-fold higher compared to African-Caribbean 

(rate: 3.2; 95% CI: 1.5, 8.4) and South Asians (rate: 4.6; 95% CI: 3.1, 7.0) with normal weight 

(Figure 8.3). 
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Table 8.2: Distribution of clinical characteristics among patients with T2DM by ethnicity in each BMI category.  
 

 Normal weight 
(n=3,221) 

Overweight 
(n=12,924) 

Obese 
(n=35,310) 

 WE 
(n=2,423) 

AC  
(n=359) 

SA  
(n=439) 

WE  
(n=9,904) 

AC 
(n=1,075) 

SA 
(n=1,945) 

WE 
(n=28,248) 

AC 
(n=2,171) 

SA 
(n=4,891) 

Age at diagnosis (yrs.) ‡ 55 (12) 49 (11) 49 (13) 55 (10) 50 (11) 49 (11) 51 (12) 48 (11) 47 (12) 
          
Male † 1,371 (57) 259 (72) 281 (64) 6,529 (66) 686 (64) 1,227 (63) 14,634 (51.8) 906 (41.7) 2,403 (49) 
          
Smoking status†          
       Never smokers  982 (41) 236 (66) 285 (65) 3,978 (40) 722 (67) 1,427 (73) 12,172 (43) 1,538 (71) 3,659 (75) 
       Current smokers  794 (33) 66 (18) 90 (21) 2,411 (24) 137 (13) 278 (14) 6,513 (23) 258 (12) 584 (12) 
       Ex-smokers  645 (27) 57 (16) 62 (14) 3,498 (35) 212 (20) 240 (12) 9,506 (34) 371 (17) 615 (13) 
          
HbA1c at diagnosis ‡ 9 (2)            10 (3)         9 (2) 9 (2) 9 (2) 9 (2) 9 (1) 9 (2) 9 (1) 
SBP at diagnosis ‡ 136 (19) 134(20) 129(18) 139 (17) 137 (17) 132 (17) 140 (16) 138 (16) 135 (15) 
          
Cardiovascular diseases 
during follow-up †          

Hypertension 822 (34) 125 (35) 109 (25) 4,091 (41) 452 (42) 610 (31) 11,813 (42) 867 (40) 1,593 (33) 
Angina 51 (2) 2 (0.6) 7 (2) 284 (3) 10 (0.9) 49 (3) 714 (3) 17 (0.8) 92 (2) 
MI 60 (3) 3 (0.8) 14 (3) 267 (3) 6 (0.6) 44 (2) 536 (2) 17 (0.8) 94 (2) 
CHD 111 (5) 6 (2) 25 (6) 563 (6 18 (2) 118 (6) 1,264 (5) 33 (2) 201 (4) 
HF 36 (2) 1 (0.3) 1 (0.2) 153 (2) 11 (1) 14 (0.7) 464 (2) 22 (1) 39 (0.8) 
Stroke 83 (3) 10 (3) 10 (2) 393 (4) 21 (2) 43 (2) 877 (3) 46 (2) 96 (2) 
Any CVD 331 (14) 22 (6) 48 (11) 1,416 (14) 62 (6) 183 (9) 3,183 (11) 107 (5) 395 (8) 
          

Lifestyle advice † 1,676 (69) 226 (63) 258 (59) 6,906 (20) 640 (60) 1,237 (64) 19,273 (68) 1,264 (58) 2,857 (58) 
          
LBW† 699 (29) 105 (29) 125 (29) 2,098 (21) 214 (20) 459 (24) 4,798 (17) 343 (16) 641 (13) 
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 Normal weight 
(n=3,221) 

Overweight 
(n=12,924) 

Obese 
(n=35,310) 

          
Antidiabetic drugs†          
    OAD  2,033 (84) 325 (91) 402 (92) 8,055 (81) 956 (89) 1,722 (89) 23,306 (83) 1,808 (83) 4,031 (82) 
    Metformin  1,867 (77) 295 (82) 370 (84) 7,751 (78) 908 (85) 1,658 (85) 22,750 (81) 1,758 (81) 3,897 (80) 
    Sulphonylureas  1,246 (51) 213 (59) 268 (61) 4,217 (43) 531 (49) 896 (46) 10,357 (37) 855 (39) 1,888 (39) 
    TZD  310 (13) 41 (11) 71 (16) 1,416 (14) 112 (10) 261 (13) 3,965 (14) 230 (11) 584 (12) 
    DPP4-i  292 (12) 48 (13) 51 (12) 1,347 (14) 123 (11) 245 (13) 4,228 (15) 260 (12) 645 (13) 
    GLP1-RA  9 (0.4) 1 (0.3) 1 (0.2) 179 (2) 12 (1) 11 (0.6) 2,007 (7) 71 (3) 130 (3) 
    SGLT2-i  11 (0.5) 1 (0.3) 0 (0) 55 (0.6) 5 (0.5) 13 (0.7) 352 (1) 10 (0.5) 46 (0.9) 
    Alpha-glucosidase  11 (0.5) 3 (0.8) 3 (0.7) 46 (0.5) 6 (0.6) 10 (0.5) 125 (0.4) 8 (0.4) 19 (0.4) 
    Meglitinide  29 (1) 5 (1) 5 (1) 66 (0.7) 7 (0.7) 14 (0.7) 190 (0.7) 20 (0.9) 40 (0.8) 
    Insulin  433 (18) 48 (13) 44 (10) 1,120 (11) 115 (11) 162 (8) 3,693 (13) 253 (12) 464 (10) 
          
Other medications †          
    CPM  1,967 (81) 281 (78) 333 (76) 8,609 (87) 852 (79) 1,601 (82) 23,669 (84) 1,631 (75) 3,629 (74) 
    Diuretics  579 (24) 64 (18) 55 (13) 2,901 (29) 273 (25) 317 (16) 9,419 (33) 582 (27) 965 (20) 
    Beta-blockers  482 (20) 46 (13) 55 (13) 2,373 (24) 164 (15) 326 (17) 6,759 (24) 332 (15) 839 (17) 
    Calcium blockers  592 (24) 111 (31) 92 (21) 3,197 (32) 412 (38) 497 (26) 8,883 (31) 912 (42) 1,272 (26) 
    Renin-angiotensin  1,152 (48) 169 (47) 192 (44) 5,803 (59) 553 (51) 954 (49) 16,863 (60) 1,055 (49) 2,364 (48) 
    Ace inhibitors  286 (12) 56 (16) 67 (15) 1,593 (16) 167 (15) 330 (17) 4,823 (17) 366 (17) 909 (19) 
    Statins  1,072 (44) 147 (41) 172 (39) 5,257 (53) 485 (45) 834 (43) 14,778 (52) 898 (41) 1,979 (41) 
    Lipid-modifiers  1,796 (74) 226 (63) 312 (71) 7,837 (79) 693 (65) 1,454 (75) 20,714 (73) 1,289 (59) 3,129 (64) 
    Anti-depressants  1,807 (75) 227 (63) 313 (71) 7,918 (80) 695 (65) 1,455 (75) 20,914 (74) 1,295 (60) 3,154 (65) 
 
†: n (%);  
‡: mean (SD);  
Data are presented for patients without a history of disease at diagnosis. 
MI: Myocardial Infarction; CHD: Coronary heart disease (including bypass surgery and angioplasty); HF: Heart failure; Any CVD: Cardiovascular disease 
defined as the occurrence angina, myocardial infarction, coronary heart disease (including bypass surgery and angioplasty), heart failure, and stroke on or 
before diagnosis of T2DM; OAD: use of oral antidiabetic drug; CPM: use of cardio-protective medications; LBW: lost at least 2kg body weight before 
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diagnosis; TZD: Thiazolidinedione; DPP4-i: Dipeptidyl peptidase 4 inhibitors; GLP1-RA: Glucagon-like peptide-1 receptor agonists; SGLT2-i: sodium-
glucose transport protein 2 inhibitors; WE: White European; AC: African-Caribbean; SA: South Asian. 
 
 
Table 8.3: Adjusted average time to first CVD event or all-cause mortality (95% CI) in obese patients, and the difference in time to such events in 
patients with normal body weight or overweight compared to their obese counterpart.  
 

 White European (n=40,575) African-Caribbean (n=3,605) South Asian (n=7,275) 
Any CVD       
Mean time (years) – Obese 4.6 (4.5, 4.7)  4.5 (3.9, 5.2)  4.9 (4.6, 5.3)  

Difference (years)  p-value  p-value  p-value 
    Normal weight vs Obese -0.5 (-0.9, -0.1) 0.018 -1.1 (-2.5, 0.3) 0.117 -0.3 (-1.4, 0.9) 0.659 
    Overweight vs Obese 0.1 (-0.2,0.3) 0.521 1.2 (0.1, 2.2) 0.040 -0.6 (-1.2, 0.0) 0.054 

       
All-cause mortality       
Mean time (years) – Obese 7.0 (6.8,7.2)  6.6 (5.6, 7.7)  7.3 (6.6, 7.9)  

Difference (years)       
    Normal weight vs Obese -0.6 (-1.2, -0.03) 0.037 -1.0 (-2.5, 0.6) 0.207 -2.5 (-4.6, -0.3) 0.023 
       
    Overweight vs Obese -0.3 (-0.6, 0.0) 0.048 -0.02 (-1.7, 1.6) 0.978 0.1 (-1.2, 1.3) 0.899 

 
Patients were without a history of disease at diagnosis. 

Any CVD: Cardiovascular disease defined as the occurrence angina, myocardial infarction, coronary heart disease (including bypass surgery and 

angioplasty), heart failure, and stroke post diagnosis of T2DM. 
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Table 8.4: Comparison of the distribution of age at diagnosis (in years), sex (%), and follow-up from diagnosis (in years) between patients who 
meet inclusion criteria for this study (n=51,455), patients excluded, and all patients† (n=191,953).  
 

 Study cohort 
(n=51,455) 

Excluded patients 
(n=140,498) 

All patients † 
(n=191,953) 

Age at diagnosis (years)    
Mean (SD) 54(11) 51(12) 54(11) 
Median (Q1, Q3) 57 (47-64) 52 (43-61) 56(46-63) 

Male, % 81,407 (58) 28,296 (55) 109703 (57) 
Follow-up from diagnosis (years)    

Mean (SD) 8(4) 7(4) 8(4) 
Median (Q1, Q3) 8 (4-11) 7(4-11) 8(4-11) 

 
† Patients diagnosed with T2DM who were aged between 18 and 70 with a minimum 1 year of follow-up, and BMI ≥ 18.5 kg/m2 
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Figure 8.2: Age-weighted CVD event rates per 1000 person-years (95% CI) by BMI categories and weight change pattern before diagnosis in  
patients without disease history at diagnosis separately for three ethnic groups.  
 
(Legend: CVD: Cardiovascular disease defined as the occurrence angina, myocardial infarction, coronary heart disease (including bypass surgery and 
angioplasty), heart failure, and stroke post diagnosis of T2DM). 
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Figure 8.3: Age-weighted all-cause mortality rates per 1000 person-years (95% CI) by BMI categories and weight change pattern before diagnosis 
in patients without disease history at diagnosis separately for three ethnic groups. 
 
 (Legend: ACM: All-cause mortality; rates were not calculated for events less than or equal to 5). 
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8.4.3 Association of BMI categories with survival time for CVD and mortality 

The adjusted average time to first CVD event (95% CI) and adjusted average time to ACM 

(95% CI) in normal weight and overweight patients compared to obese patients with T2DM 

and without a history of disease at diagnosis, within each ethnic group are presented in Table 

8.3. Among White Europeans, compared to obese patients (mean time to CVD of 4.6 years), 

normal weight patients developed CVD significantly earlier by 0.5 years (95% CI: 0.1, 0.9 

years; p=0.018). Furthermore, there was no significant difference between overweight White 

Europeans and obese White Europeans with regards to time to first CVD event (p > 0.05). The 

risk of developing CVD was not significantly higher in normal weight African-Caribbeans and 

South Asians, compared to their obese counterpart. However, overweight African-Caribbeans 

developed CVDs about 1.2 years (95% CI: 0.6, 2.2 years; p=0.040) later compared to obese 

African-Carribeans.  

 

With a mean time to death of 7.0 and 7.3 years among obese White Europeans and South Asians 

respectively, those with normal body weight at diagnosis were significantly more likely to die 

earlier by 0.6 years (95% CI: 0.03, 1.2 years; p=0.037) in the White European group and by 

2.5 years (95% CI: 0.3, 4.6 years; p=0.023) in the South Asian group. 

 

8.5 DISCUSSION  

The novelty of this electronic medical record-based study from a nationally representative 

primary care database in incident T2DM patients include assessment of risk profile for different 

ethnic groups at the time of clinical diagnosis of diabetes by different adiposity level, extensive 

exploration of weight change patterns prior to diagnosis of diabetes, a robust evaluation of the 

rates and risk of cardiovascular disease and all-cause mortality in different ethnic groups with 

different adiposity levels.  

 

In this longitudinal outcome study based on three well-defined ethnic groups, we found that 

(1) the paradoxical association of lower BMI with high CVD rate appeared only in White 

Europeans, and this was not modified by weight change pattern before diagnosis, (2) normal 

weight White Europeans and South Asians appear to have significantly higher mortality risk 

compared to their obese counterparts, independent of weight change patterns prior to diagnosis 

of T2DM, and (3) the BMI at diagnosis was not associated with increased risk of CVD and 

death among African-Caribbeans.  
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Obesity is a strong risk factor for cardiovascular diseases in the general population and in some 

clinical populations. However, increasing evidence is pointing to a paradoxical phenomenon 

where overweight or obese patients may have better survival outcomes regarding developing 

heart failure or coronary heart disease, compared to normal weight patients 237,241. Our analysis 

in patients with T2DM goes further to show that this paradoxical association between lower 

BMI and higher CVD risk was strong among White Europeans. In keeping with previous 

studies, our data show higher proportions of current smokers among normal weight White 

Europeans 242,243 and this could contribute to increased CVD risk among this group of patients. 

We previously reported that contrary to the notion that the observed obesity paradox could be 

due to weight loss from latent diseases, weight loss before the diagnosis of T2DM was not 

associated with increased mortality in normal weight patients 234. The current study shows that 

the significantly higher event rates for CVD and mortality among normal weight patients were 

independent of weight change pattern before the diagnosis of T2DM. This clearly supports the 

fact that weight change pattern before diagnosis does not impact the observed obesity paradox 

in patients with T2DM.  

 

Patients with many types of CVD may have a better prognosis if classified as overweight or 

obese. However, a previously published study with the same database has reported that among 

patients with a history of cardiovascular diseases at diagnosis of diabetes, those with normal 

weight at diagnosis had 30% (CI of HR: 1.11, 1.53) significantly higher adjusted mortality risk 

compared to the obese counterpart 12. While conducting exploratory analyses during my PhD 

project, I observed that: among those with history of CVD, CKD or cancer at diagnosis, normal 

weight patients who did not / did lose body weight prior to diagnosis had 18% (CI of HR: 1.02, 

1.37) / 48% (95% CI of HR: 1.24, 1.77) higher adjusted mortality risk (this data was not 

presented in the thesis). This clearly reflects the overall higher mortality risk paradigm in 

patients with established CVD / secondary care population. It is important to mention here that 

the people who are sicker tend to lose weight, which can artificially make obesity look 

protective. The relationship becomes confounded in this case and is difficult to draw a robust 

inference in this scenario.  

 

In evaluating the association of BMI levels with mortality risk, we adjusted for weight loss 

pattern before the diagnosis of T2DM, in addition to other known confounders in the risk 

estimation models and found the paradoxical association of lower BMI with higher mortality 
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risk was more prominent in South Asians than White Europeans. Some studies in patients with 

T2DM have compared all-cause mortality in different ethnic groups and different BMI 

categories, but to the best of our knowledge, none have provided ethnicity-specific mortality 

risk estimates by BMI categories at diagnosis. While the study by Kokkinos and colleagues 79 

reported significantly higher mortality risk among African-Caribbeans and Caucasians with 

normal weight compared to patients with BMI ≥ 35 kg/m2 (reference group), the BMI measure 

used in this study was not obtained at diagnosis of diabetes. Our risk assessments were based 

on BMI measured at diagnosis of T2DM and a more pragmatic approach of estimating the time 

to the events under consideration compared at different adiposity levels with an average 7 years 

of follow-up time, rather than estimating the hazard ratios which might provide misleading 

inference under highly heterogeneous characteristics in different ethnic groups. We also 

ensured the exclusion of patients with already existing diseases at diagnosis that are associated 

with increased mortality risk. 

 

One of the novel findings of this study was that South Asians with normal body weight at 

diagnosis were significantly more likely to die earlier by about 2.5 years compared to their 

counterparts who were obese at diagnosis. One may argue that the above finding was due to 

the fact that the proportion of ever-smokers in normal weight South Asians (35%) was 

significantly higher than that in the obese group (25%), while the distribution of ever-smokers 

was similar between normal weight and obese White Europeans. However, while we do not 

know the change in smoking behaviour during the 7 years of median follow-up, our analyses 

were balanced for such possible baseline differences. Our result is contrary to that by Wright 

and colleagues 239 who reported longer life expectancy and reduced all-cause mortality for older 

South Asians with diabetes compared to White Europeans. Our current observation of lower 

prevalence of current or ex-smokers among South Asians compared to White Europeans was 

consistent with our previous study 41 and the study by Wright and colleagues 239. Nonetheless, 

our observation agrees in principle with the study by Bellary and colleagues 209 who reported 

mean age at death for South Asians to be significantly lower by seven years compared to that 

in White Europeans. Findings from our study also suggest disparities in the receipt of lifestyle 

intervention advice, prescription of antidiabetic and cardio-protective drugs among patients 

with T2DM. These disparities are mostly skewed towards the majority White European 

population and could be the reason the obesity paradox was more prominent in South Asians 

than White Europeans. 
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Our findings should be interpreted considering the limitations of this study, which include: (1) 

availability of ethnicity data on a limited number of patients; (2) non-availability of 

longitudinal data on smoking cessation, and (3) potential for residual confounding as with all 

observational studies. Despite the issue of limited ethnicity data on some patients, previous 

work with this cohort by our research group showed that the distribution of sex, smoking status 

and BMI among persons with missing information on ethnicity was similar to the respective 

distributions among those with available information on ethnicity 41. Furthermore, we also 

attempted to minimize bias introduced by confounders by using the "treatment effect" 

modelling approach. With this approach, robust inferences are provided through appropriate 

adjustments and balancing of a detailed list of confounders. However, patient-level data from 

electronic health records still present challenges regarding accuracy and completeness. 

 

In conclusion, our study confirms a paradoxical association BMI and mortality among patients 

with T2DM and provides new insight into the possible role of ethnicity in explaining the 

obesity paradox both regarding CVD and total mortality. 
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Chapter 9: General Discussion and Conclusion 

In evaluating the obesity paradox in patients with T2DM, a robust methodological framework that 

incorporates several biostatistical and epidemiological methods was used to address the aims of this 

thesis. The obesity paradox is a phenomenon where patients with T2DM who were normal weight at 

diagnosis were found to have significantly higher mortality risk compared to their obese counterparts. 

As pointed out in the literature review section (Section 1.3.4), there are some methodological 

limitations of previous studies that evaluated the association of adiposity levels with mortality risk in 

patients with diabetes, which can be grouped into design and analytical issues. The current thesis has 

considered these limitations in addressing its main aims and the summary of primary results are given 

below.  

 

9.1.1 Difficulty in identifying patients from the THIN database. 

This thesis used a primary care-based EMR database from the UK called THIN (n=11,018,025 

patients). THIN, like other primary care databases, present clinical researchers with the opportunity 

to conduct epidemiologic studies on a host of disease conditions of interest. Disease events are 

recorded using Read codes in THIN. While most of the diagnosis codes are well recorded, data entry 

errors like omissions, typing, or communicating errors may result in undiagnosed, misdiagnosed and 

misclassification of disease status. 

 

Chapter 3 confirms the need for an extensive data mining/machine learning approach to correctly 

identifying patients with T2DM in a holistic way from the THIN database. Deterministic approaches 

based on disease Read codes were compared to a logistic regression classification algorithm to 

identify patients with T2DM. Of the patients identified by the classification algorithm to be living 

with T2DM, 17% did not have a T2DM Read code and 16% of those identified by the deterministic 

approach were not identified by the classification algorithm. Also, complement cohort-specific 

analyses based on markers of elevated glucose (at least two measurements of HbA1c > 6% or fasting 

blood glucose > 7 mmol/l or random blood glucose > 11.1 mmol/l within 1 year) clearly showed that 

the ML classification algorithm reduces the number of patients with uncoded or undiagnosed T2DM. 

This formed a crucial part of the current thesis because, by design, the time of clinical diagnosis of 

diabetes (or close time-window around it) was set as the baseline. By correctly identifying patients 

with T2DM, the corresponding date of diagnosis helped in obtaining BMI and other cardiovascular 
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and glycaemic risk factors within 3 months of diagnosis. These measurements obtained within this 

time window were considered as the baseline measures. 

 

9.1.2 Multiple imputation of missing longitudinal risk factor 

One of the critical problems with EMR data from a primary care setting, as with all longitudinal 

observational data, is the issue of missing data 106,244-246. It was a condition of inclusion that a patient 

must have at least two measures of a risk factor longitudinally. This thesis seeks to explore the 

longitudinal trajectory of risk factors, hence the reason to impose this condition before the multiple 

imputation of missing longitudinal. Among patients with a minimum 2 years of follow-up, the 

proportion of patients who had at least 2 of the 5 measures missing was 16 % for weight, BMI, and 

SBP and 11% for HbA1c. Although the problem of having significant proportions of missing data in 

longitudinal studies can be minimised through careful design, it is almost unavoidable in clinical and 

epidemiological studies 247-249.  

 

Several factors may affect the frequency of recording longitudinal risk factor data within the primary 

care as data entry in EMRs depends on the nature and level of engagement between the individual 

and the clinical service provider. First, younger patients are less likely to get blood tests done because 

of perceived low-risk profile. Second, full panel blood tests may be requested and performed more 

frequently given the severity of disease (e.g. patients with T2DM on dynamic anti-diabetic drug 

treatment regimens). Third, missing communications from pathology laboratories could lead to 

missing values on some risk factors for some patients. Fourth, the ease with which a test is performed 

also affects the frequency of recording results from the test within the EMR. For example, systolic 

and diastolic blood pressure measurements may be recorded at every GP encounter because of the 

relative ease with which it can be measured. Also, the capture of the common adiposity measurements 

may vary as body weight is measured more often than waist circumference due to the simplicity and 

standard way it is measured. Finally, the missing data may also arise simply because a patient failed 

to attend the scheduled consultation. 

 

These aspects complicate the process of evaluating the nature of missing data in EMRs making it 

difficult to appropriately differentiate between random and non-random missingness patterns. Before 

investigating and imputing for the missing data, understanding the mechanisms behind the missing 

data is crucial. In practice, incomplete data are typically considered as MAR even if they may not be 
248,250. In most EMRs, some variables would be expected to partially explain some of the variation in 

missingness, which indicates imputation under MAR setting 248.   
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As outlined in Chapter 4, I tried to account for variation in missingness by adjusting for age at 

diagnosis, sex, smoking status, deprivation status, the usages of ADDs during the multiple imputation 

process. Subsequently, the longitudinal distribution of body weight, BMI, SBP was similar for both 

complete and imputed datasets indicating that the multiple imputation via PMM captured the true 

longitudinal distribution of these risk factors. This result guarantees reliable inferences from any 

analysis that uses the imputed risk factor data.  

 

9.1.3 BMI, ethnicity, and the risk of developing T2DM 

Some studies have shown a link between obesity and an increased risk of developing T2DM, but little 

was known about the differences in risk of T2DM across BMI levels among a multi-ethnic group of 

patients. One of the novel components of this thesis was the extensive evaluation of the differences 

in risk of T2DM over the entire spectrum of BMI among a multi-ethnic group of patients in Chapter 

5. A comparison of the distribution of BMI at diagnosis between patients with T2DM and their age-

sex-ethnicity matched non-diabetic controls revealed significant differences in cardiovascular and 

glycaemic risk profiles at different BMI levels at diagnosis of T2DM among different ethnic groups. 

Most notably, South Asians developed T2DM significantly early (~2-10 years) and at a lower BMI 

compared to African Caribbeans and White Europeans respectively. These results are consistent with 

previous studies as well and are important for the evaluation of the obesity paradox in patients with 

T2DM, as ethnicity has been suggested as a possible reason for the observed increased mortality risk 

in normal weight patients with T2DM compared to obese patients with T2DM.  

 

9.1.4 Pre-existing disease conditions 

One proposed reason for the obesity paradox in patients with T2DM is that some pre-existing disease 

conditions are over-represented in the normal weight group and lead to weight loss before the 

diagnosis of a T2DM, hence the increased mortality rate in the normal weight group. Several studies 

have compared the prevalence and severity of diabetes complications between South Asians and 

White Europeans 202-207, but no separate assessment of the potential differences in the risk paradigm 

by adiposity levels was evaluated. The second novel aspect of this thesis is a dedicated evaluation of 

pre-existing cardiovascular and non-cardiovascular diseases before and after the diagnosis of T2DM 

in different ethnic groups for each BMI category in Chapter 6. The prevalence of pre-existing 

cardiovascular diseases among normal weight patients with T2DM ranged from 4.0% to 11.3% across 

White Europeans, African-Caribbeans and South Asians. Furthermore, obese White Europeans have 

significantly higher prevalence compared to their normal weight population and also compared to 
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other ethnic groups. These findings add to current literature and provide a greater understanding of 

the relationship between levels of adiposity and diabetes complications in different ethnic groups. 

The results of this study should enable clinicians to better diagnose and manage diabetes amongst 

people of different ethnicities. Given this interplay between ethnicity, BMI and cardiovascular 

diseases at diagnosis, patients with T2DM who had established pre-existing disease conditions were 

separated from those without these conditions at diagnosis in order to disentangle the contribution of 

pre-existing disease to weight loss before the diagnosis of T2DM. These analyses are presented in 

Chapter 7 and 8. 

 

9.1.5 Weight loss before diagnosis and the obesity paradox in patients with T2DM  

Weight loss before diagnosis as a result of pre-existing disease conditions could have an impact on 

the association between BMI and mortality. Chapter 7 of this thesis addresses the obesity paradox in 

a two-step approach. First, the influence of the presence or absence of pre-existing disease conditions 

(latent/underlying/undiagnosed) on changes in body weight before the diagnosis of T2DM were 

investigated. Second, an assessment of the possible impact of weight change pattern before diagnosis 

on the association between BMI at diagnosis and long-term mortality risk was conducted. 

 

An analysis of weight trajectory before diagnosis was conducted in patients without pre-existing 

disease conditions at diagnosis. This was the third novel aspects of the current thesis as it revealed 

that patients with T2DM who were normal weight and overweight at diagnosis experienced a small 

but significant reduction in body weight six months before diagnosis. However, unlike overweight 

patients who continued in the downward trend at 6 months after diagnosis before increasing at 12 

months after diagnosis, normal weight patients had a steady increase in body weight throughout the 

respective time post-diagnosis. If the observed weight loss in normal weight patients before diagnosis 

was due to pre-existing disease conditions, then their trajectory after diagnosis would have continued 

downward. This observation coupled with the fact that pre-existing disease conditions were not over-

represented in the normal weight group contradicts the assertion of possible weight loss due to pre-

existing disease.  

 

Furthermore, among patients with no established disease conditions at diagnosis, the association of 

BMI at diagnosis with mortality risk, separately for patients who lost body weight before diagnosis 

and those who did not was evaluated. This was the fourth novel analysis done to estimate the possible 

influence of weight change pattern before diagnosis on the association between BMI at diagnosis and 

long-term mortality risk. This analysis demonstrates that among those who did not lose body weight 
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before diagnosis, patients with normal weight at diagnosis had significantly higher mortality risk 

compared with grade 1 obese patients. However, among those who lost body weight before diagnosis, 

BMI at diagnosis was not associated with mortality risk. These results provided enough evidence that 

weight loss due to pre-existing diseases could not explain the obesity paradox in patients with T2DM. 

 

9.1.6 Survival-time treatment effects model  

Cox proportional hazard regression is a widely used approach to analyse survival time data because 

of its flexible semi-parametric property. This means that in using this regression method, an 

assumption of the underlying distribution of the outcome is not required. However, to develop a 

regression model, a metric influence of covariates is required. Therefore, an assumption that 

covariates modify a shared underlying hazard function is made (proportionality assumption). If a 

variable(s) violates the proportionality assumption, the options for robust results are to (1) include 

the variable(s) as stratification factor, (2) include the variable as time-varying variables (i.e. adding a 

term for the interaction of covariates with time), and (3) separate scale of analysis time into equal 

bands and perform the proportional hazards regression within each band.  

 

The key assumption of the proportional hazards regression model is unlikely to be true for patients 

with incident T2DM under different adiposity levels. As part of the preliminary model diagnostic test 

for the Cox proportional hazards model used in Chapter 7 of this thesis, the effect of some variables 

were not constant over time (i.e. violated the assumption). Therefore, the final model used to obtain 

the estimates of mortality risk reported in Chapter 7 was a stratified Cox regression model with age 

group at diagnosis as stratification factor and included terms for the interaction of covariates with 

time.  

 

To account for the inherent differences in risk factors between the defined BMI categories and the 

fact that risk may not be proportional, a method that allows for the balancing of categories is required. 

By means of weighted propensity-score type adjustments, the survival time treatments effects 

modelling can provide robust inferences 113-116 by adjusting and balancing comparison categories 

based on global risk paradigm within the cohort. The results from Chapter 8 have confirmed the use 

of this novel modelling approach to account for the limitations of the traditional proportional Cox 

regression model. To the best of our knowledge, no study investigating the obesity paradox in T2DM 

has adopted this robust approach. 
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9.1.7 Ethnicity and the obesity paradox in patients with T2DM  

For clinical management of diabetes among patients of different ethnicity to improve, a better 

understanding of the relationship between levels of adiposity and diabetes complications in different 

ethnic groups is required. Chapter 6 showed that the overall risk of developing MACE was 

significantly higher for patients with T2DM compared to non-diabetic controls at all levels of BMI 

within each ethnic group. While the risk was similar for White Europeans and African Caribbeans, it 

was significantly higher for South Asians compared to White Europeans. 

 

Furthermore, using data on patients with T2DM patients only, the potential role of ethnicity in the 

association of BMI with mortality was evaluated in Chapter 8. This work represents a major update 

on previous studies evaluating the observed phenomenon of the obesity paradox in T2DM. To the 

best of our knowledge, only one study has examined the modifiable effect of ethnicity on long-term 

mortality risks at different adiposity levels, but only male participants were included in this study 79. 

Survival time treatment effects modelling was used to examine cardiovascular and mortality risk for 

each ethnic group. White Europeans who were normal weight at diagnosis developed CVDs 

significantly earlier compared to their obese colleagues. However, BMI at diagnosis was not 

associated with increased risk of CVD among African-Caribbeans and South Asians. This clearly 

suggests that the paradoxical association of lower BMI with high CVD rate appeared only among 

White Europeans. 

 

9.2 FUTURE DIRECTIONS  

Exposure to or use of anti-diabetic therapy may lead to weight loss or gain after diagnosis 117,118, 

which may have different effects on the association of BMI at diagnosis with mortality and 

cardiovascular risk. In this thesis, the potential for confounding by medication use was reduced by 

adjusting for weight, use of insulin, as well as the use of oral ADDs during follow-up. However, 

within the context of evaluating the obesity paradox in patients with T2DM, it is possible that 

mortality risk may be reduced for individuals in the overweight/obese category because of more 

aggressive therapy for patients in this group. There is the need to explore the possible association of 

weight changes with cardiovascular or mortality outcomes in patients treated with different 

antidiabetic medications. With complete information on classes of ADD (including start and stop 

dates), exposure to different combination of ADDs can be defined and future studies might assess (1) 

the influence of specific drug class on the cardiovascular and mortality “risk spectrum” observed 
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between different BMI categories, and (2) if time spent on a particular drug class influences the “risk 

spectrum”, with its residual effect over-influencing the body weight factor. 

 

Another research question that may arise evolves around if there are any long-term interactions of 

cardiovascular (blood pressure, lipids) and glycaemic risk factors (e.g. glucose levels measured by 

HbA1c and hypoglycaemia) with body weight that modify the risks? Therefore, it is very important to 

evaluate the possible interactions of time-varying blood pressure, lipid measures and glucose control 

(measured by HbA1c) with the changes in body weight, while evaluating the associated risk. Further 

studies should also examine the level of interactions between body weight and HbA1c in relation to 

mortality risk. Identification of the patterns of possible interactions over time and their effects on 

cardiovascular and mortality risks, by baseline BMI status, will provide new clinical information to 

better manage the patients with diabetes. Further studies can be conducted by using measures of 

abdominal girth instead of BMI. This however depends on improved reporting of measures of 

abdominal girth within the UK primary care settings, in such a way that there will be enough 

longitudinal data for patients with T2DM. Opportunity also exists for further research on elucidating 

the genetic basis of the obesity paradox in patients with T2DM. 

 

9.3 CONCLUSION 

Overall, the findings of this thesis add to the evidence base that patients with T2DM, who were normal 

weight at the time of clinical diagnosis have significantly higher mortality risk compared to those 

who were obese, and this may partially be driven by different cardiovascular and glycaemic risk 

profiles of different ethnic groups. Empirical results from this thesis suggest that there was no 

evidence of pre-existing latent or severe disease conditions being overrepresented in normal weight 

patients. Infect, dynamic changes in body weight before clinical diagnosis of T2DM were 

independent of pre-existing latent or severe disease conditions. After untangling the roles of pre-

existing severe disease conditions in dynamic changes in body weight before clinical diagnosis of 

T2DM, the increased mortality risk in the normal weight group may reflect differences in the 

aetiology of diabetes in normal-weight people and emphasises the importance of addressing risk 

factors for excess mortality in this group.  
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Appendices  

Appendix A 

Appendix Table 1: T2DM Read codes used in extracting cohort of patients with T2DM 
 

Read Code Description Read Code Description 
C100100 Diabetes mellitus, adult onset, no mention of complication C109411 Type II diabetes mellitus with ulcer 
C100111 Maturity onset diabetes C109412 Type 2 diabetes mellitus with ulcer 
C100112 Non-insulin dependent diabetes mellitus C109500 Non-insulin dependent diabetes mellitus with gangrene 
C101100 Diabetes mellitus, adult onset, with ketoacidosis C109511 Type II diabetes mellitus with gangrene 
C102100 Diabetes mellitus, adult onset, with hyperosmolar coma C109512 Type 2 diabetes mellitus with gangrene 
C103100 Diabetes mellitus, adult onset, with ketoacidotic coma C109600 Non-insulin-dependent diabetes mellitus with retinopathy 
C104100 Diabetes mellitus, adult onset, with renal manifestation C109611 Type II diabetes mellitus with retinopathy 
C105100 Diabetes mellitus, adult onset, + ophthalmic manifestation C109612 Type 2 diabetes mellitus with retinopathy 
C106100 Diabetes mellitus, adult onset, + neurological manifestation C109700 Non-insulin dependent diabetes mellitus - poor control 
C107400 NIDDM with peripheral circulatory disorder C109711 Type II diabetes mellitus - poor control 
C109.00 Non-insulin dependent diabetes mellitus C109712 Type 2 diabetes mellitus - poor control 
C109.11 NIDDM - Non-insulin dependent diabetes mellitus C109900 Non-insulin-dependent diabetes mellitus without complication 
C109.12 Type 2 diabetes mellitus C109911 Type II diabetes mellitus without complication 
C109.13 Type II diabetes mellitus C109912 Type 2 diabetes mellitus without complication 
C109000 Non-insulin-dependent diabetes mellitus with renal comps C109A00 Non-insulin dependent diabetes mellitus with mononeuropathy 
C109011 Type II diabetes mellitus with renal complications C109A11 Type II diabetes mellitus with mononeuropathy 
C109012 Type 2 diabetes mellitus with renal complications C109A12 Type 2 diabetes mellitus with mononeuropathy 
C109100 Non-insulin-dependent diabetes mellitus with ophthalm comps C109B00 Non-insulin dependent diabetes mellitus with polyneuropathy 
C109111 Type II diabetes mellitus with ophthalmic complications C109B11 Type II diabetes mellitus with polyneuropathy 
C109112 Type 2 diabetes mellitus with ophthalmic complications C109B12 Type 2 diabetes mellitus with polyneuropathy 
C109200 Non-insulin-dependent diabetes mellitus with neuro comps C109C00 Non-insulin dependent diabetes mellitus with nephropathy 
C109211 Type II diabetes mellitus with neurological complications C109C11 Type II diabetes mellitus with nephropathy 
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C109212 Type 2 diabetes mellitus with neurological complications C109C12 Type 2 diabetes mellitus with nephropathy 
C109300 Non-insulin-dependent diabetes mellitus with multiple comps C109D00 Non-insulin dependent diabetes mellitus with hypoglyca coma 
C109311 Type II diabetes mellitus with multiple complications C109D11 Type II diabetes mellitus with hypoglycaemic coma 
C109312 Type 2 diabetes mellitus with multiple complications C109D12 Type 2 diabetes mellitus with hypoglycaemic coma 
C109400 Non-insulin dependent diabetes mellitus with ulcer C109E00 Non-insulin depend diabetes mellitus with diabetic cataract 
C109E11 Type II diabetes mellitus with diabetic cataract C10F711 Type II diabetes mellitus - poor control 
C109E12 Type 2 diabetes mellitus with diabetic cataract C10F900 Type 2 diabetes mellitus without complication 
C109F00 Non-insulin-dependent d m with peripheral angiopath C10F911 Type II diabetes mellitus without complication 
C109F11 Type II diabetes mellitus with peripheral angiopathy C10FA00 Type 2 diabetes mellitus with mononeuropathy 
C109F12 Type 2 diabetes mellitus with peripheral angiopathy C10FA11 Type II diabetes mellitus with mononeuropathy 
C109G00 Non-insulin dependent diabetes mellitus with arthropathy C10FB00 Type 2 diabetes mellitus with polyneuropathy 
C109G11 Type II diabetes mellitus with arthropathy C10FB11 Type II diabetes mellitus with polyneuropathy 
C109G12 Type 2 diabetes mellitus with arthropathy C10FC00 Type 2 diabetes mellitus with nephropathy 
C109H00 Non-insulin dependent d m with neuropathic arthropathy C10FC11 Type II diabetes mellitus with nephropathy 
C109H11 Type II diabetes mellitus with neuropathic arthropathy C10FD00 Type 2 diabetes mellitus with hypoglycaemic coma 
C109H12 Type 2 diabetes mellitus with neuropathic arthropathy C10FD11 Type II diabetes mellitus with hypoglycaemic coma 
C109J00 Insulin treated Type 2 diabetes mellitus C10FE00 Type 2 diabetes mellitus with diabetic cataract 
C109J11 Insulin treated non-insulin dependent diabetes mellitus C10FE11 Type II diabetes mellitus with diabetic cataract 
C109J12 Insulin treated Type II diabetes mellitus C10FF00 Type 2 diabetes mellitus with peripheral angiopathy 
C109K00 Hyperosmolar non-ketotic state in type 2 diabetes mellitus C10FF11 Type II diabetes mellitus with peripheral angiopathy 
C10F.00 Type 2 diabetes mellitus C10FG00 Type 2 diabetes mellitus with arthropathy 
C10F.11 Type II diabetes mellitus C10FG11 Type II diabetes mellitus with arthropathy 
C10F000 Type 2 diabetes mellitus with renal complications C10FH00 Type 2 diabetes mellitus with neuropathic arthropathy 
C10F011 Type II diabetes mellitus with renal complications C10FH11 Type II diabetes mellitus with neuropathic arthropathy 
C10F100 Type 2 diabetes mellitus with ophthalmic complications C10FJ00 Insulin treated Type 2 diabetes mellitus 
C10F111 Type II diabetes mellitus with ophthalmic complications C10FJ11 Insulin treated Type II diabetes mellitus 
C10F200 Type 2 diabetes mellitus with neurological complications C10FK00 Hyperosmolar non-ketotic state in type 2 diabetes mellitus 
C10F211 Type II diabetes mellitus with neurological complications C10FK11 Hyperosmolar non-ketotic state in type II diabetes mellitus 
C10F300 Type 2 diabetes mellitus with multiple complications C10FL00 Type 2 diabetes mellitus with persistent proteinuria 
C10F311 Type II diabetes mellitus with multiple complications C10FL11 Type II diabetes mellitus with persistent proteinuria 
C10F400 Type 2 diabetes mellitus with ulcer C10FM00 Type 2 diabetes mellitus with persistent microalbuminuria 
C10F411 Type II diabetes mellitus with ulcer C10FM11 Type II diabetes mellitus with persistent microalbuminuria 
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C10F500 Type 2 diabetes mellitus with gangrene C10FN00 Type 2 diabetes mellitus with ketoacidosis 
C10F511 Type II diabetes mellitus with gangrene C10FN11 Type II diabetes mellitus with ketoacidosis 
C10F600 Type 2 diabetes mellitus with retinopathy C10FP00 Type 2 diabetes mellitus with ketoacidotic coma 
C10F611 Type II diabetes mellitus with retinopathy C10FP11 Type II diabetes mellitus with ketoacidotic coma 
C10F700 Type 2 diabetes mellitus - poor control C10FQ00 Type 2 diabetes mellitus with exudative maculopathy 
C10FQ11 Type II diabetes mellitus with exudative maculopathy C10P100 Type II diabetes mellitus in remission 
C10FR00 Type 2 diabetes mellitus with gastroparesis C10P111 Type 2 diabetes mellitus in remission 
C10FR11 Type II diabetes mellitus with gastroparesis C10y100 Diabetes mellitus, adult, + other specified manifestation 
C10z100 Diabetes mellitus, adult onset, + unspecified complication   
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Appendix Table 2: T1DM Read codes used in extracting cohort of patients with T1DM 
 
 

Read Code Description Read Code Description 
C100000 Diabetes mellitus, juvenile type, no mention of complication C108H00 Insulin dependent diabetes mellitus with arthropathy 
C100011 Insulin dependent diabetes mellitus C108H11 Type I diabetes mellitus with arthropathy 
C101000 Diabetes mellitus, juvenile type, with ketoacidosis C108H12 Type 1 diabetes mellitus with arthropathy 
C102000 Diabetes mellitus, juvenile type, with hyperosmolar coma C108J00 Insulin dependent diab mell with neuropathic arthropathy 
C103000 Diabetes mellitus, juvenile type, with ketoacidotic coma C108J11 Type I diabetes mellitus with neuropathic arthropathy 
C104000 Diabetes mellitus, juvenile type, with renal manifestation C108J12 Type 1 diabetes mellitus with neuropathic arthropathy 
C105000 Diabetes mellitus, juvenile type, + ophthalmic manifestation C10E.00 Type 1 diabetes mellitus 
C106000 Diabetes mellitus, juvenile, + neurological manifestation C10E.11 Type I diabetes mellitus 
C107000 Diabetes mellitus, juvenile +peripheral circulatory disorder C10E.12 Insulin dependent diabetes mellitus 
C107300 IDDM with peripheral circulatory disorder C10E000 Type 1 diabetes mellitus with renal complications 
C108.00 Insulin dependent diabetes mellitus C10E011 Type I diabetes mellitus with renal complications 
C108.11 IDDM-Insulin dependent diabetes mellitus C10E012 Insulin-dependent diabetes mellitus with renal complications 
C108.12 Type 1 diabetes mellitus C10E100 Type 1 diabetes mellitus with ophthalmic complications 
C108.13 Type I diabetes mellitus C10E111 Type I diabetes mellitus with ophthalmic complications 
C108000 Insulin-dependent diabetes mellitus with renal complications C10E112 Insulin-dependent diabetes mellitus with ophthalmic comps 
C108011 Type I diabetes mellitus with renal complications C10E200 Type 1 diabetes mellitus with neurological complications 
C108012 Type 1 diabetes mellitus with renal complications C10E211 Type I diabetes mellitus with neurological complications 
C108100 Insulin-dependent diabetes mellitus with ophthalmic comps C10E212 Insulin-dependent diabetes mellitus with neurological comps 
C108111 Type I diabetes mellitus with ophthalmic complications C10E300 Type 1 diabetes mellitus with multiple complications 
C108112 Type 1 diabetes mellitus with ophthalmic complications C10E311 Type I diabetes mellitus with multiple complications 
C108200 Insulin-dependent diabetes mellitus with neurological comps C10E312 Insulin dependent diabetes mellitus with multiple complicat 
C108211 Type I diabetes mellitus with neurological complications C10E400 Unstable type 1 diabetes mellitus 
C108212 Type 1 diabetes mellitus with neurological complications C10E411 Unstable type I diabetes mellitus 
C108300 Insulin dependent diabetes mellitus with multiple complicatn C10E412 Unstable insulin dependent diabetes mellitus 
C108311 Type I diabetes mellitus with multiple complications C10E500 Type 1 diabetes mellitus with ulcer 
C108312 Type 1 diabetes mellitus with multiple complications C10E511 Type I diabetes mellitus with ulcer 
C108400 Unstable insulin dependent diabetes mellitus C10E512 Insulin dependent diabetes mellitus with ulcer 
C108411 Unstable type I diabetes mellitus C10E600 Type 1 diabetes mellitus with gangrene 
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C108412 Unstable type 1 diabetes mellitus C10E611 Type I diabetes mellitus with gangrene 
C108500 Insulin dependent diabetes mellitus with ulcer C10E612 Insulin dependent diabetes mellitus with gangrene 
C108511 Type I diabetes mellitus with ulcer C10E700 Type 1 diabetes mellitus with retinopathy 
C108512 Type 1 diabetes mellitus with ulcer C10E711 Type I diabetes mellitus with retinopathy 
C108600 Insulin dependent diabetes mellitus with gangrene C10E712 Insulin dependent diabetes mellitus with retinopathy 
C108611 Type I diabetes mellitus with gangrene C10E800 Type 1 diabetes mellitus - poor control 
C108612 Type 1 diabetes mellitus with gangrene C10E811 Type I diabetes mellitus - poor control 
C108700 Insulin dependent diabetes mellitus with retinopathy C10E812 Insulin dependent diabetes mellitus - poor control 
C108711 Type I diabetes mellitus with retinopathy C10E900 Type 1 diabetes mellitus maturity onset 
C108712 Type 1 diabetes mellitus with retinopathy C10E911 Type I diabetes mellitus maturity onset 
C108800 Insulin dependent diabetes mellitus - poor control C10E912 Insulin dependent diabetes maturity onset 
C108811 Type I diabetes mellitus - poor control C10EA00 Type 1 diabetes mellitus without complication 
C108812 Type 1 diabetes mellitus - poor control C10EA11 Type I diabetes mellitus without complication 
C108900 Insulin dependent diabetes maturity onset C10EA12 Insulin-dependent diabetes without complication 
C108911 Type I diabetes mellitus maturity onset C10EB00 Type 1 diabetes mellitus with mononeuropathy 
C108912 Type 1 diabetes mellitus maturity onset C10EB11 Type I diabetes mellitus with mononeuropathy 
C108A00 Insulin-dependent diabetes without complication C10EB12 Insulin dependent diabetes mellitus with mononeuropathy 
C108A11 Type I diabetes mellitus without complication C10EC00 Type 1 diabetes mellitus with polyneuropathy 
C108A12 Type 1 diabetes mellitus without complication C10EC11 Type I diabetes mellitus with polyneuropathy 
C108B00 Insulin dependent diabetes mellitus with mononeuropathy C10EC12 Insulin dependent diabetes mellitus with polyneuropathy 
C108B11 Type I diabetes mellitus with mononeuropathy C10ED00 Type 1 diabetes mellitus with nephropathy 
C108B12 Type 1 diabetes mellitus with mononeuropathy C10ED11 Type I diabetes mellitus with nephropathy 
C108C00 Insulin dependent diabetes mellitus with polyneuropathy C10ED12 Insulin dependent diabetes mellitus with nephropathy 
C108C11 Type I diabetes mellitus with polyneuropathy C10EE00 Type 1 diabetes mellitus with hypoglycaemic coma 
C108C12 Type 1 diabetes mellitus with polyneuropathy C10EE11 Type I diabetes mellitus with hypoglycaemic coma 
C108D00 Insulin dependent diabetes mellitus with nephropathy C10EE12 Insulin dependent diabetes mellitus with hypoglycaemic coma 
C108D11 Type I diabetes mellitus with nephropathy C10EF00 Type 1 diabetes mellitus with diabetic cataract 
C108D12 Type 1 diabetes mellitus with nephropathy C10EF11 Type I diabetes mellitus with diabetic cataract 
C108E00 Insulin dependent diabetes mellitus with hypoglycaemic coma C10EF12 Insulin dependent diabetes mellitus with diabetic cataract 
C108E11 Type I diabetes mellitus with hypoglycaemic coma C10EG00 Type 1 diabetes mellitus with peripheral angiopathy 
C108E12 Type 1 diabetes mellitus with hypoglycaemic coma C10EG11 Type I diabetes mellitus with peripheral angiopathy 
C108F00 Insulin dependent diabetes mellitus with diabetic cataract C10EG12 Insulin dependent diab mell with peripheral angiopathy 
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C108F11 Type I diabetes mellitus with diabetic cataract C10EH00 Type 1 diabetes mellitus with arthropathy 
C108F12 Type 1 diabetes mellitus with diabetic cataract C10EH11 Type I diabetes mellitus with arthropathy 
C108G00 Insulin dependent diab mell with peripheral angiopathy C10EH12 Insulin dependent diabetes mellitus with arthropathy 
C108G11 Type I diabetes mellitus with peripheral angiopathy C10EJ00 Type 1 diabetes mellitus with neuropathic arthropathy 
C10EJ11 Type I diabetes mellitus with neuropathic arthropathy C10P000 Type I diabetes mellitus in remission 
C10EJ12 Insulin dependent diab mell with neuropathic arthropathy C10P011 Type 1 diabetes mellitus in remission 
C10EK00 Type 1 diabetes mellitus with persistent proteinuria C10y000 Diabetes mellitus, juvenile, + other specified manifestation 
C10EK11 Type I diabetes mellitus with persistent proteinuria C10z000 Diabetes mellitus, juvenile type, + unspecified complication 
C10EL00 Type 1 diabetes mellitus with persistent microalbuminuria C10EP00 Type 1 diabetes mellitus with exudative maculopathy 
C10EL11 Type I diabetes mellitus with persistent microalbuminuria C10EP11 Type I diabetes mellitus with exudative maculopathy 
C10EM00 Type 1 diabetes mellitus with ketoacidosis C10EQ00 Type 1 diabetes mellitus with gastroparesis 
C10EM11 Type I diabetes mellitus with ketoacidosis C10EQ11 Type I diabetes mellitus with gastroparesis 
C10EN00 Type 1 diabetes mellitus with ketoacidotic coma C10EN11 Type I diabetes mellitus with ketoacidotic coma 
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Appendix Table 3: Gestational Diabetes Read codes used in extracting cohort of patients with gestational diabetes 
 

Read Code Description 
L180.00 Diabetes mellitus during pregnancy/childbirth/puerperium 
L180000 Diabetes mellitus - unspec whether in pregnancy/puerperium 
L180100 Diabetes mellitus during pregnancy - baby delivered 
L180200 Diabetes mellitus in puerperium - baby delivered 
L180300 Diabetes mellitus during pregnancy - baby not yet delivered 
L180400 Diabetes mellitus in pueperium - baby previously delivered 
L180800 Diabetes mellitus arising in pregnancy 
L180811 Gestational diabetes mellitus 
L180900 Gestational diabetes mellitus 
L180z00 Diabetes mellitus in pregnancy/childbirth/puerperium NOS 
ZV13F00 [V]Personal history of gestational diabetes mellitus 
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Appendix B 

Appendix Table 4: Anti-diabetic drug (ADD) generic, brand names in THIN, and SAS codes for their extraction 
 

generic names brand names SAS SQL CODE 
INSULIN 

  

insulin 
 

upcase (genericname) like '%INSULIN%' 
Insulin aspart Novolog upcase (genericname) like '%INSULIN ASPART%' 
Insulin glulisine Apidra upcase (genericname) like '%INSULIN GLULISINE%' 
Insulin lispro Humalog upcase (genericname) like '%INSULIN LISPRO%' 
Insulin human Afrezza Inhalation Powder upcase (genericname) like '%INSULIN HUMAN%' 
Regular insulin Humulin R, Novolin R upcase (genericname) like '%REGULAR INSULIN%' 
Insulin NPH Hagedorn NPH, Humulin N, Novolin N upcase (genericname) like '%INSULIN NPH%' 
Insulin detemir Levemir upcase (genericname) like '%INSULIN DETEMIR%' 
Insulin glargine Lantus upcase (genericname) like '%INSULIN GLARGINE%' 
Insulin aspart protamine NovoLog 50/50, NovoLog 70/30 upcase (genericname) like '%INSULIN ASPART 

PROTAMINE%' 
insulin aspart NovoLog 50/50, NovoLog 70/30 upcase (genericname) like '%INSULIN ASPART%' 
Insulin lispro protamine Humalog 50/50, Humalog 75/25 upcase (genericname) like '%INSULIN LISPRO 

PROTAMINE%' 
insulin lispro Humalog 50/50, Humalog 75/25 upcase (genericname) like '%INSULIN LISPRO%'      

BIGUADINES 
    

metformin Glucophage, Glucophage XR, Glumetza, Riomet, Fortamet upcase (genericname) like '%METFORMIN%' 
Phenformin Glucophage, Glucophage XR, Glumetza, Riomet, Fortamet upcase (genericname) like '%PHENFORMIN%' 
Buformin Glucophage, Glucophage XR, Glumetza, Riomet, Fortamet upcase (genericname) like '%BUFORMIN%'      

SULPHONYLUREAS 
    

Acetohexamide Dymelor upcase (genericname) like '%ACETOHEXAMIDE%' 
butanamide 

 
upcase (genericname) like '%BUTANAMIDE%' 

Daonil 
 

upcase (genericname) like '%DAONIL%' 
Chlorpropamide Diabinese upcase (genericname) like '%CHLORPROPAMIDE%' 
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Tolazamide Tolinase upcase (genericname) like '%TOLAZAMIDE%' 
Tolbutamide Orinase upcase (genericname) like '%TOLBUTAMIDE%' 
Glipizide Glucotrol, Minidiab, Glibenese upcase (genericname) like '%GLIPIZIDE%' 
Glyburide  Diabeta, Micronase, Glynase, Daonil, Euglycon upcase (genericname) like '%GLYBURIDE %' 
glibenclamide Diabeta, Micronase, Glynase, Daonil, Euglycon upcase (genericname) like '%GLIBENCLAMIDE%' 
Glimepiride Amaryl upcase (genericname) like '%GLIMEPIRIDE%' 
Gliclazide Uni Diamicron upcase (genericname) like '%GLICLAZIDE%' 
Glyclopyramide Deamelin-S upcase (genericname) like '%GLYCLOPYRAMIDE%' 
Gliquidone Glurenorm upcase (genericname) like '%GLIQUIDONE%' 
     

TZDs  upcase (genericname) like '%ROSIGLITAZONE%' 
Rosiglitazone Avandia upcase (genericname) like '%PIOGLITAZONE%' 
Pioglitazone Actos upcase (genericname) like '%TROGLITAZONE%' 
Troglitazone Tolinase    
     
ALPHA 
GLUCOSIDASE  upcase (genericname) like '%ACARBOSE%' 
Acarbose Precose, Glucobay upcase (genericname) like '%MIGLITOL%' 
Miglitol Glyset upcase (genericname) like '%VOGLIBOSE%' 
Voglibose Basen    
     
GLP1-RA  upcase (genericname) like '%EXENATIDE%' 
Exenatide Byetta upcase (genericname) like '%LIXISENATIDE%' 
Lixisenatide Lyxumia upcase (genericname) like '%LIRAGLUTIDE%' 
Liraglutide Victoza upcase (genericname) like '%ALBIGLUTIDE%' 
Albiglutide Tanzeum upcase (genericname) like '%DULAGLUTIDE%' 

Dulaglutide Trulicity upcase (genericname) like 
'%EXENATIDE ONCE 
WEEKLY%' 

Exenatide once weekly Bydureon    
     
DPP4 INHIBITORS  upcase (genericname) like '%ALOGLIPTIN%' 
Alogliptin Nesina, Vipidia upcase (genericname) like '%ANAGLIPTIN%' 
Anagliptin Suiny upcase (genericname) like '%LINAGLIPTIN%' 
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Linagliptin Trajenta upcase (genericname) like '%SAXAGLIPTIN%' 
Saxagliptin Onglyza upcase (genericname) like '%SITAGLIPTIN%' 
Sitagliptin Januvia upcase (genericname) like '%TENELIGLIPTIN%' 
Teneligliptin Tenelia    
     
AMYLIN 
ANALOGUES  upcase (genericname) like '%PRAMLINTIDE%' 
Pramlintide Symlin    
     
SGLT2  upcase (genericname) like '%CANAGLIFLOZIN%' 
Canagliflozin Invokana upcase (genericname) like '%DAPAGLIFLOZIN%' 
Dapagliflozin Forxiga, Farxiga upcase (genericname) like '%EMPAGLIFLOZIN%' 
Empagliflozin Jardiance    
     
METGLINIDE     
Nateglinide Starlix upcase (genericname) like '%NATEGLINIDE%' 
Repaglinide Prandin, NovoNorm upcase (genericname) like '%REPAGLINIDE%' 
     
OTHER ADDS     
Bromocriptine Parlodel, Cycloset upcase (genericname) like '%BROMOCRIPTINE%' 
Colesevelam Welchol, Cholestagel, Lodalis upcase (genericname) like '%COLESEVELAM%' 
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Appendix C 

Appendix Table 5: Number (N) and proportion (%) of patients with T2DM that have ever been prescribed an anti-hyperglycaemic drug.  
 

 All 1 prescription ≥2 prescriptions time to first ADD 
 N (%) N (%) N (%) Mean (SD) median (Q1,Q3) 

           
Insulin 74,626(19) 347(<0.1) 74,279(18) 8.6 (7.3) 7.3 (3.0,12.3) 
Metformin only  260,705(65) 4,251 (1) 256,454(64) 3.3 (5.0) 1.1 (0.0,4.8) 

Metformin - TZD Combination 10,584(3) 14(<0.1) 10,570(3) 6.3 (5.4)  5.0 (2.4,8.8) 
Metformin - DPP4 Combination  2,934(1) 11(<0.1) 2,923(1) 7.6 (5.7) 6.8 (3.3,10.6) 
Metformin - SGLT2 Combination   - - - - 

Sulphonylureas 184,146(46) 2,070 (1) 182,076(45) 4.1 (5.2) 2.3 (0.2,6.2) 
TZD Only 47,019(12) 19(<0.1) 47,000(12) 6.8 (5.6) 5.6 (2.7,9.5) 
DPP4 Only 34,463(9) 27(<0.1) 34,436(9) 8.4 (6.1) 7.5 (3.9,11.5) 
GLP1RA 11,472(3) 3(<0.1) 11,469(3) 9.1(5.6)  8.3(5.0,12.1) 
Alpha Glucosidase 8,789(2) 26(<0.1) 8,763(2) 7.3 (6.3) 6.0 (2.6,10.4) 
SGLT2 Only 2,072(1) - 2,072(1)  9.7 (5.8)  9.0 (5.4, 13.2)  
Metglinide 4,493(1) 10(<0.1) 4,483(1) 6.4 (6.0)  5.0 (1.9,9.3) 
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Appendix Table 6: Prescription patterns of anti-hyperglycaemic drugs among patients with type 2 diabetes  
 Metformin Sulphonylureas TZD Insulin 
1st line therapy  198,504 (65) 84,518 (28) 1,276 (0.4) 17,909 (6) 

remained on 1st line ADD 83,152 (42) 28,369 (34) 277 (22) 11684 (65) 
2nd line therapy 115,252 (58) 56,149 (66) 999 (78) 6225(35) 

Added on 2nd ADD 104,460 (98) 54,135 (96) 914(91) 5501(88) 
Switched to 2nd ADD 2,844 (2) 2014 (4) 85 (9) 724 (12) 

2nd line therapy name     
Metformin only - 45,672 (81) 542 (54) 4862 (78) 
Metformin-DPP4 combination  724 (0.5) 78 (0.1) 4 (0.4) 7 (0.1) 
Metformin-TZD combination 3,346 (3) 327 (0.6) 25 (2.5) 8 (0.1) 
Sulphonylureas 81,709(71) - 301 (30) 1014 (16) 
TZD only 12,853 (11) 2,898(5) - 79(1) 
DPP4 only 8,073 (7) 570(1) 30 (3) 87 (1) 
GLP1RA 706 (0.6) 27 (<0.1) 6 (0.6) 69 (1) 
α-glucosidase 800 (0.7) 1,441 (3) 2 (0.2) 70 (1) 
SGLT2 only 158 (0.1) 1 (<0.1) - 2(<0.1) 
Metglinide 1,118 (1) 258 (0.5) 23 (2) 27(0.4) 
Insulin 5,865 (5) 4,877(9) 66 (7) - 

min 1yr on 2nd  line therapy 53,118 (46) 37,151 (66) 322 (32) 3032 (49) 
Time to 2nd line from 1st line, months 9.4 (0.5,31.5) 23.7 (6.6,50.2) 2.6 (0.7,19.6) 11 (1.6,46.4) 
remained on 2nd line ADD 56,239 (50) 26,277 (47) 380 (38) 4303 (69) 

3rd line therapy 56,269 (50) 29,872 (53) 619 (62) 1922(31) 
Added on 3rd  ADD 50,592 (90) 26,442 (89) 589 (95) 1,744 (91) 
Switched to 3rd ADD 5,677 (10) 3,430 (11) 30 (5) 178 (9) 

3rd line therapy name     
Metformin only - 3675 (12) 214 (35) 597 (31) 
Metformin-DPP4 combination  772 (1) 141 (0.5) 8 (1) 8 (0.4) 
Metformin-TZD combination 2,619 (5) 1202 (4) 32 (5) 32 (2) 
Sulphonylureas 9,646 (17) - 181 (29) 596 (31) 
TZD only 14,439 (26) 9340 (31) - 216 (11) 
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DPP4 only 11,286 (20) 2647 (9) 84 (14) 190 (10) 
GLP1RA 2,156 (4) 176 (0.6) 21 (3) 202 (11) 
α-glucosidase 2,232 (4) 2414 (8) 7 (1) 50 (3) 
SGLT2 328(0.6) 20 (0.1) - 10 (0.5) 
Metglinide 792 (1) 670 (2) 4 (0.7) 21 (1) 
Insulin 1,248 (21) 9587 (32) 68 (11) - 
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Appendix Figure 1: Flow chart illustrating the proportion of patients who progressed to 2nd and 3rd line therapy from 1st line therapy 
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Appendix D 

 
 
 

Appendix Figure 2: Direct Acyclic Graph (DAG) showing the relationship between BMI (exposure), potential confounders, and mortality (outcome).  
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The model below is a mathematical representation of the variables depicted in Appendix Figure 1. The exposure is BMI and the outcome is all-cause 
mortality. Potential confounders (white circle) include smoking status, sex, socio-economic status (SES), use of insulin, use of oral antidiabetic 
medication, use of cardio-protective medications, and receipt of lifestyle advice post-diagnosis.  Clinically diagnosed cancer, CKD, and any 
cardiovascular disease are in the pathway to mortality. This framework was used in the statistical modelling during the mortality risk assessment. There 
is no adjustment for CVD, cancer, and CKD in equation 1, whereas, in equation 2, there is an adjustment for these variables. We show that adjusting for 
cancer, CKD and cancer does not introduce bias into our estimates. 

 
 

Model 1:  Pr(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 1) = 𝛽𝛽1(𝐵𝐵𝐵𝐵𝐵𝐵) + 𝛽𝛽2(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑑𝑑) + 𝛽𝛽2(𝑆𝑆𝑆𝑆𝑆𝑆) +  𝛽𝛽3(𝑆𝑆𝑑𝑑𝑆𝑆) + 𝛽𝛽4(𝐵𝐵𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼) +  𝛽𝛽5(𝑂𝑂𝑂𝑂𝑂𝑂) + 𝛽𝛽6(𝐶𝐶𝐶𝐶𝐵𝐵) + 𝛽𝛽7(𝐿𝐿𝐼𝐼𝐿𝐿𝑑𝑑𝐼𝐼𝐿𝐿𝐿𝐿𝐼𝐼𝑑𝑑 𝑑𝑑𝑑𝑑𝑎𝑎𝐼𝐼𝑎𝑎𝑑𝑑) +
𝛽𝛽8(𝐻𝐻𝐻𝐻𝑂𝑂1𝑎𝑎) + 𝛽𝛽9(𝐿𝐿𝑂𝑂𝐿𝐿) + 𝛽𝛽10(𝐻𝐻𝑂𝑂𝐿𝐿)            Equation 1                                                                               
 
Model 2:   Pr(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 1) = 𝑂𝑂𝐼𝐼𝐼𝐼 𝐶𝐶𝑆𝑆𝑎𝑎𝑑𝑑𝐶𝐶𝐼𝐼𝑑𝑑𝐿𝐿𝑑𝑑𝐼𝐼 𝑆𝑆𝐿𝐿 𝐵𝐵𝑆𝑆𝑑𝑑𝑑𝑑𝐼𝐼 1 + �𝛽𝛽12(𝐶𝐶𝐶𝐶𝑂𝑂) + 𝛽𝛽13(𝐶𝐶𝐶𝐶𝑂𝑂) + 𝛽𝛽14(𝐶𝐶𝑑𝑑𝐼𝐼𝑎𝑎𝑑𝑑𝐶𝐶)�   Equation 2 
 
 

Appendix Table 7: Mortality risk by BMI category at the time of diabetes diagnosis using two models 1 and 2. 
 

 All Lost body weight No weight loss  
 Model 1 Model 2 Model 1 Model 2 Model 1 Model 2 
Normal weight 1.29 (1.13,1.48) 1.31 (1.13,1.51) 0.89 (0.62,1.26) 0.92 (0.64,1.32) 1.43 (1.23,1.67) 1.44 (1.22,1.70) 
Overweight 1.05 (0.96,1.14) 1.05 (0.96,1.15) 0.98 (0.79,1.21) 0.99 (0.80,1.24) 1.05 (0.96,1.15) 1.05 (0.95,1.16) 
Grade 1 Obese Reference Reference Reference Reference Reference Reference 
Grade 2 Obese 1.00 (0.90,1.11) 1.04 (0.93,1.15) 1.05 (0.80,1.36) 1.04 (0.79,1.37) 1.00 (0.89,1.11) 1.04 (0.93,1.17) 
Grade 3 Obese 1.06 (0.90,1.25) 1.11 (0.93,1.33) 1.39 (0.89,2.17) 1.27 (0.79,2.04) 1.00 (0.84,1.21) 1.10 (0.90,1.33) 
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Appendix E 

 

 

 


	Abstract
	Declaration by author
	Table of Contents
	Table of Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Chapter 1: Introduction
	1.1 Thesis Outline
	1.2 Background
	1.2.1 Hypotheses
	1.2.2 Aims and objectives

	1.3 Literature Review
	1.3.1 Diabetes Mellitus: A Brief Epidemiological Review
	1.3.2 Obesity
	Measurement and classification of obesity
	Body Fat percentage
	Body Mass Index (BMI)
	Waist Circumference (WC)
	Waist-to-Hip Ratio (WHR)

	Brief epidemiology of obesity

	1.3.3 The obesity paradox
	Obesity paradox in T2DM
	No obesity paradox in T2DM

	1.3.4 Methodological limitations of existing research
	Measurement of BMI at diagnosis of T2DM
	Inconsistent use of BMI Classifications
	Missing BMI and longitudinal risk factor data
	Pre-existing disease conditions
	Non-proportional risk
	The potential for confounding by medication use

	1.3.5 Significance of the study


	Chapter 2: Research Design
	2.1 Data Description
	2.1.1 Data Source
	2.1.2 Demographic and anthropometric data
	2.1.3 Clinical, laboratory, and prescription data
	2.1.4 Disease event data
	2.1.5 Strengths
	2.1.6 Limitations

	2.2 Study Design
	2.2.1 Inclusion criteria
	2.2.2 Control subjects
	2.2.3 The arrangement of longitudinal covariate data
	2.2.4 Extraction of longitudinal anti-diabetic drugs (ADD)
	2.2.5 Other covariate data
	2.2.6 Outcome variables

	2.3 Statistical Methods
	2.3.1 Dealing with missing longitudinal measurements
	2.3.2 The distribution of study variables
	2.3.3 Presentation of longitudinal distribution of risk factors
	2.3.4 Analysis of disease event data: calculation of rates/risk (hazard ratios)
	2.3.5 Treatment effects model

	2.4 Ethical Considerations

	Chapter 3: Cohort Identification from Primary Care Database
	3.1 Abstract
	3.2 Introduction
	3.3 Methods
	3.3.1 Challenges in identifying disease cohorts
	Differentiating between disease subtypes
	Longitudinally overlapping disease subtypes
	The absence of codes for diseased patients and the presence of codes for non-diseased patients

	3.3.2 Clinically guided cohort selection algorithms
	3.3.3 Supervised machine learning techniques
	Feature selection
	Training dataset
	Classification algorithm selection


	3.4 Results
	3.5 Discussion
	3.6 Conclusion

	Chapter 4: The design of a comparative longitudinal case-control study and the imputation of missing longitudinal covariate data 0F
	4.1 Development of case-control matches within EMR databases
	4.1.1 Introduction
	4.1.2 Methods
	Algorithm for case-control matching in EMRs
	Implementation

	4.1.3 Results
	4.1.4 Post matching processing

	4.2 Multiple imputation of missing longitudinal risk factor data
	4.2.1 Introduction
	4.2.2 Methods
	Data structure
	Multiple imputation and data analyses

	4.2.3 Results
	4.2.4 Discussion


	Chapter 5: Comparison of body mass index at diagnosis of diabetes in a multi-ethnic population: A case-control study with matched non-diabetic controls
	5.1 Abstract
	5.2 Introduction
	5.3 Materials and methods
	5.3.1 Data source
	5.3.2 Identification of T2DM cases
	5.3.3 Development of control subjects
	5.3.4 Statistical analysis

	5.4 Results
	5.5 Discussion
	5.6 Conclusion

	Chapter 6: Prevalence and incidence of complications at diagnosis of T2DM and during follow-up by BMI and ethnicity: a matched case-control analysis
	6.1 Abstract
	6.2 Introduction
	6.3 Methods
	6.3.1 Data source
	6.3.2 Study population
	6.3.3 Study variables and outcome measurements
	6.3.4 Statistical analysis

	6.4 Results
	6.4.1 Demographic and clinical characteristics
	6.4.2 Prevalence of comorbidities at diagnosis
	6.4.3 The incidence of major cardiovascular diseases during follow-up
	6.4.4 The incidence of chronic kidney disease (Stage 3 and above) during follow-up

	6.5 Discussion
	6.6 List of abbreviations
	6.7 Declarations
	6.7.1 Ethics approval and consent to participate
	6.7.2 Consent for publication
	6.7.3 Availability of data and material
	6.7.4 Competing interests
	6.7.5 Funding
	6.7.6 Authors' contributions
	6.7.7 Acknowledgements


	Chapter 7: Weight loss and mortality risk in patients with different adiposity at diagnosis of type 2 diabetes: a longitudinal cohort study
	7.1 Abstract
	7.2 Introduction
	7.3 Materials and Methods
	7.3.1 Participants
	7.3.2 Study variables
	7.3.3 Statistical Methods

	7.4 Results
	7.4.1 Cohort characteristics at diagnosis
	7.4.2 Weight changes before the diagnosis of T2DM
	7.4.3 Weight change after diagnosis of T2DM
	7.4.4 Mortality rate and risk by BMI categories
	7.4.5 Sensitivity analyses

	7.5 Discussion
	7.6 Conclusion

	Chapter 8: Ethnicity-Specific association of BMI levels at diagnosis with cardiovascular disease and all-cause mortality risk
	8.1 Abstract
	8.2  Introduction
	8.3 Materials and Methods
	8.3.1 Identification of T2DM cohort
	8.3.2 Demographic and longitudinal measurements
	8.3.3 Mortality and comorbidity data
	8.3.4 Statistical analysis

	8.4 Results
	8.4.1 Basic demographic and clinical characteristics
	8.4.2 Cardiovascular disease and mortality event rates
	8.4.3 Association of BMI categories with survival time for CVD and mortality

	8.5 Discussion
	8.5.1 Acknowledgements
	8.5.2 Conflicts of interest


	Chapter 9: General Discussion and Conclusion
	9.1.1 Difficulty in identifying patients from the THIN database.
	9.1.2 Multiple imputation of missing longitudinal risk factor
	9.1.3 BMI, ethnicity, and the risk of developing T2DM
	9.1.4 Pre-existing disease conditions
	9.1.5 Weight loss before diagnosis and the obesity paradox in patients with T2DM
	9.1.6 Survival-time treatment effects model
	9.1.7 Ethnicity and the obesity paradox in patients with T2DM
	9.2 Future directions
	9.3 Conclusion

	Bibliography
	Appendices

