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Abstract 

This thesis describes the recent development in the Multiple Mapping Conditioning (MMC) 

method for non-premixed turbulent combustion focussing on differential diffusion effects. 

Turbulent combustion is a considerable issue in different engineering fields during the last 

decades. Nowadays, there are more global concerns on sustainability, environmental 

impacts and efficiency of fuels. These challenges have motivated additional research to 

maximize the efficiency and reduce pollutants of future combustion systems. 

Modelling of turbulent combustion is a complementary approach to experimental analysis 

of combustors. In general, mixture-fraction based methods and joint Probability Distribution 

Function (PDF) methods are two main categories for turbulent combustion modelling. 

MMC, which is the subject of this thesis, combines the useful features of the two 

aforementioned categories and is applicable to both premixed and non-premixed 

combustion. One of the great advantages of MMC is localising mixing within an 

independent reference space, which enforces localness of mixing in the composition 

space. 

Differential diffusion effects due to differences in molecular diffusivity of species are 

neglected in most turbulent combustion models for simplification. However for the cases of 

fuels containing highly diffusive species (e.g. hydrogen), ignoring these effects leads to 

errors evidenced by many experimental and numerical works in literature. Hydrogen and 

hydrogen-enriched fuels are of interest as an alternative to fossil fuels, which can address 

environmental concerns. Therefore, combustion models need to be improved to include 

differential diffusion.  

In the present thesis, two MMC models are suggested and implemented for emulating 

differential diffusion effects in a homogeneous turbulent non-reacting flow. A side stepping 

approach is developed to obtain benefits of MMC in conjunction with and theoretical 

analysis of differential diffusing scaling of physical parameters of flow. This approach 

accounts for differential decay rate of scalar variances, which is one of the key effects of 

differential diffusion. It is shown that this novel MMC model can also emulate the 

decorrelation of scalars, which is a more refined differential diffusion effect. Results 

indicate good agreement with the previous DNS studies. 
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Chapter 1 - Introduction 

Combustion is a major class of reactions, in which chemical energy is converted to heat 

due to a sequence of reactions involving a fuel and an oxidiser. Combustion is very 

important for a broad range of residential, commercial and industrial uses such as power 

generation, transportation, manufacturing, heating and cooling systems of buildings and 

even cooking. 

Fossil fuels are still the main source of energy, supplying more than 80% of the world’s 

demands in 2015 [1]. Depletion of fossil fuels due to rapid increase in their consumption 

raises concerns on energy security and the extent of reserves. Moreover, the 

environmental impact of fossil fuels and their huge contribution to global warming effects 

are under increasing scrutiny. An unavoidable by-product of burning hydrocarbon fuels is 

carbon dioxide (CO2), which is the gas responsible for exacerbating greenhouse effects 

High concentrations of CO2 in the atmosphere lead to increases in global average 

temperature [2]. Other pollutants of hydrocarbon combustion are carbon monoxide (CO), 

nitrous oxides (NOx), sulphur oxides (SOx) and soot. Therefore, fossil fuels consumption 

is linked to air pollution, climate change and energy security. 

These issues may be addressed in several ways. Firstly, a switch to renewable energy 

sources like solar and wind or nuclear energy may be chosen. Secondly, other alternatives 

to fossil fuels like biofuels and hydrogen may be used. Biofuels are any kinds of solid, 

liquid or gaseous fuels derived from biomass. Examples of biofuels include vegetable oil, 

biodiesel, bio-alcohols, biogas, solid biofuels and syngas [3]. Hydrogen is another 

attractive alternative to fossil fuels which has motivated recent research (e.g. [4],[5], 

[6],[7],[8],[9]). The main advantages of hydrogen are that it burns easily and can be used 

almost directly in well-developed systems. More importantly, burning hydrogen eliminates 

hydrocarbon emission, which is a big challenge of current decade. The final feasible way is 

to improve methods for emissions control of hydrocarbon fuels. These methods can be 

divided to the pre-processing of fuels, the post-treatment of exhaust gases and the 

modification of the combustion process. 

All the aforementioned challenges in combustion technology are evidence of the vitality of 

new research and development in this area. Turbulent combustion flow is complicated to 

predict due to the complexity of coupled interactions between chemistry and turbulence as 

well as its multiscale nature. Considerable contribution and investment are essential for 
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both advanced model improvement approaches as well as high quality experimental 

studies to provide a depth of physical insights and basis for model validation. 

Turbulent combustion modelling approaches belong either exclusively, or as a combination 

of two main categories as follow. The first one is mixture fraction based methods such as 

Fast chemistry by Bilger [10] , the Flamelet model of Peters [11] , [12] and the Conditional 

Moment Closure (CMC) model of Klimenko and Bilger [13]. The second category is 

Probability Density Function (PDF) method of Pope [14] , [15]. The main advantage of 

PDF methods is the closure of the chemical source term, although the conditional scalar 

dissipation term is still unclosed and needs to be modelled by a mixing operation.  

The Multiple Mapping Conditioning (MMC) model of Klimenko and Pope [16] is a relatively 

recent approach that effectively combines the useful and beneficial features of two above 

mentioned categories. MMC is the subject of this study and is explained in further detail in 

Chapter 2.  

Most turbulent combustion models, however, have limited predictive capabilities in some 

practical applications. One of the deficiencies is the neglect of differential diffusion or the 

difference in molecular diffusivity of various chemical species. Differential diffusion is 

neglected in many models because it is assumed that turbulent mixing is dominant over 

molecular mixing, leading to great model simplifications. However, there are numerous 

experimental and numerical DNS studies in the literature that indicate the importance of 

differential diffusion effects especially in flows with specifically low or highly diffusive 

species.  

One of the most important thermo-physical properties of hydrogen is its high diffusivity 

relative to other gases. Therefore, considering differential diffusion is essential for accurate 

combustion predictions of hydrogen and hydrogen-rich fuels. This leads to the motivation 

of this work to improve turbulent combustion models to predict differential diffusion effects. 

It is the objective of this thesis to advance the development of the Multiple Mapping 

Conditioning (MMC) method to include differential diffusion effects.  

The remainder of this thesis is organised as follows. 

Chapter 2 contains a brief review of different scales of turbulent motions followed by 

governing equations and numerical methods of turbulent combustion. Different turbulent 

combustion models for non-premixed combustion, which is the combustion category in this 
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research, are discussed with particular attention devoted to the Multiple Mapping 

Conditioning (MMC) model. Deterministic, stochastic and generalised versions of MMC are 

addressed briefly. 

In Chapter 3, the literature and physics of differential diffusion are discussed. Numerical 

and experimental studies as well as different turbulent combustion model developments 

for differential diffusion are reviewed. 

In Chapter 4 differential diffusion of unreactive, passive scalars in statistically stationary, 

isotropic turbulent flow is studied. In the first part, the Reynolds and Schmidt number 

scaling of differential diffusion is theoretically developed and compared with available 

results in literature. This is achieved by in-depth analysis of the energy and variance 

spectrum of two passive scalars in wide range of wavenumber band. In the second part, 

two improved MMC models for differential diffusion are suggested and implemented: i) a 

one reference variable model and ii) a two reference variable model. The ability of these 

models to account for differential diffusion effects are demonstrated and successfully 

validated against DNS results of Yeung and Pope [17] and Yeung and Luo [18].  

The overall conclusions and discussion are presented in Chapter 5. 
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Chapter 2 - Fundamentals of turbulent combustion modelling  

Literature relevant to this thesis is presented in this chapter. First, an overview of different 

scales of turbulent motion is discussed. This is followed by conservation equations, which 

govern turbulent combustion flows as well as the numerical methods to solve them. Then 

the concept of non-premixed combustion, which is considered in this research, is 

addressed. Different turbulent combustion modelling approaches are discussed briefly with 

more details on Multiple Mapping Conditioning, MMC, model that is the subject of this 

study.  

2.1. The scale of turbulent motion    

Turbulence generally occurs when laminar flows become unstable at a critical Reynolds 

number. The Reynolds number, Re, is defined as the ratio of advection (inertia) to diffusion 

(viscous) force: 

Re
uL

ν
=  (2.1) 

where L  is a characteristic length scale, u  is a characteristic velocity and ν  is the 

kinematic viscosity of the fluid.  

The first concept of Richardson’s [19] energy cascade is the occurrence of eddies of 

different length scales in turbulent flow. “In brief, the idea of energy cascade is that kinetic 

energy enters the turbulence through the production mechanism at the largest scales of 

the motion. This energy is then transferred by inviscid processes to smaller and smaller 

scales until at the smallest scales, the energy is dissipated by viscous action." [15] . The 

four scales, in decreasing order of size, are: macroscale, L , integral scale, 0l , Taylor 

microscale,λ , and Kolmogorov microscale,η .  

The most accepted theory of turbulence is based on the energy cascade concept 

developed by Kolmogorov [20]. It is based on three important hypotheses:  

• Kolmogorov’s hypothesis of local isotropy- at sufficiently high Reynolds numbers, 

the small-scale turbulent motions ( 0l l≪ ) are statistically isotropic. 
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• Kolmogorov’s first similarity hypothesis - in every turbulent flow at sufficiently high 

Reynolds number, the statistics of the small scale motions have a universal form 

that is uniquely determined by the dissipation rate ,ε , and the kinematic viscosity ,

ν . 

• Kolmogorov’s second similarity hypothesis- in every turbulent flow at sufficiently 

high Reynolds number, the statistics of the motions of scale l  in the range 

0l l η≫ ≫  have a universal form that is uniquely determined by ε  independent of 

ν  [15]. 

Figure 2.1 illustrates the energy cascade at high Reynolds number. The subscripts EI  

and DI  indicate that EIl  is the demarcation line between energy , E , and inertial , I , 

ranges, as DIl  is between the dissipation , D , and inertial , I , ranges [15]. 

 

 

 

 

 

 

Figure 2.1. A schematic diagram of the energy cascade at high Reynolds number [15] 

The second similarity hypothesis of Kolmogorov leads to the well- known 
5

3k
−

 law for the 

kinetic energy spectrum, ( )E k , and variance spectrum of a passive scalar, ( )E kθ , in the 

inertial subrange. These spectral regimes of the kinetic energy and scalar variance are 

found in wavenumber bands determined by the integral scales of turbulence and three 

dissipation scales depend on the Schmidt number.  

The Schmidt number, Sc , is defined as  

0l  
L  

Transfer of energy to 
successively smaller scales 

 
Dissipation  Production  

Energy containing range 

Inertial subrange 

Dissipation range 

  EIl  
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D
Sc

ν=  (2.2) 

where ν  is the kinematic viscosity and D  is the molecular diffusivity. 

The above mentioned dissipation length scales and their corresponding wavenumbers are 

as follow: 

The Kolmogorov scale: 
ην

ε 14
1

3
=







=Kk  (2.3) 

The Batchelor scale : 

B

KB Sck
D

k
ην

ε 1
2

14
1

2
==







=  (2.4) 

The Obukhov-Corrsin scale 
OC

KOC Sck
D

k
η

ε 1
4

34
1

3
==







=  (2.5) 

Based on Kolmogorov’s eddy cascade hypothesis, in the inertial subrange,
1 1

l
k η

< < , the 

kinetic energy spectrum scaled as  

( ) 3
5

3
2 −

= kCkE kε
 

(2.6) 

where k
C  is a universal Kolmogorov constant. Figure 2.2 represents the turbulent energy 

spectrum in the entire ranges as a function of wavenumber in log-log plot. 

As can be seen in Figure 2.2, for small wavenumbers the energy per unit wavenumber 

increases with a power law between 
2k  and. 

4k . The spectrum reaches a maximum value 

at the integral scale wavenumber. In the inertial subrange or larger wavenumbers, the 

energy spectrum decreases following the 
5

3k
−

 law. At the Kolmogorov scale there is a 

cutoff while in the viscous subrange the energy decreases exponentially due to viscous 

effects. 
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A similar hypothesis predicts that the variance spectrum of a passive scalar, ( )E kθ , also 

has a 
5

3k
−

 inertial–convective regime [21, 22]. The inertial-convective subrange of the 

scalar-variance spectrum for the wavenumbers below the Obukhov-Corrsin, scaled as  

( ) 3
5

3
1 −−

= kCkE χεθθ  (2.7) 

where Cθ is the Obukhov-Corrsin constant. 

 

 

 

 

 

 

 

 

 

 

Figure 2.2. Turbulent kinetic energy spectrum as a function of the wavenumber [12] 

Batchelor [23] predicted that the variance spectrum between the inertial-convective 

subrange and the scalar-dissipation regime is determined by the Schmidt number and the 

ordering of the wavenumber cutoffs. 

Two cases are considered:  

I. High Schmidt number , Dν ≫  

In this case the wavenumber cutoffs are ordered as 
k B OCk k k< <  and the scalar variance 

dissipates at the Batchelor scale while the turbulent kinetic energy dissipates at the 

Inertial  
subrange 

Energy 
Containing 

Integral 
scale 

Large 
 scale 

 

Slope -5/3 

  

viscous 
subrange 

0 
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Kolmogorov microscale. Moreover, the inertial-convective subrange is more extensive than 

the inertial subrange [24]. Batchelor [23] predicted the viscous-convective spectrum in this 

range as follow 

( ) 1
2

1

−






= kqkE
ε
νχθ  (2.8) 

where q  is the Batchelor constant. 

Figure 2.3 illustrates spectra of variance and energy for this case in log-log plot. As can be 

seen, for the case of high Schmidt number the scalar variance dissipates at the Batchelor 

scale while the turbulent kinetic energy dissipates at the Kolmogorov scale. 

II. Low Schmidt number , Dν ≪  

For this case the wavenumber cutoffs are ordered as these are ordered as 
OC kk k<  and the 

scalar variance dissipates at Obukhov-Corrsin scale while the turbulent kinetic energy 

dissipates at the Kolmogorov microscale. Figure 2.4 shows log-log plot of the ( )E kθ  and 

( )E k  for case II. 

 

Figure 2.3. Energy and variance spectrum for case I- high Schmidt number 

 

 

 

 

  

Slope (-1) 

����� 

E��� 

Slope(-5/3) 
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Figure 2.4. Energy and variance spectrum for case II- low Schmidt number 

 

2.2. Conservation equations 

The numerical modeling of turbulent combustion problems is based on the solution of a set 

of conservation equations for momentum and scalars, plus additional auxiliary equations 

such as state equations. These equations for reacting ,ideal gas mixtures are summarized 

below [25]. In the following equations, ∇  is the gradient operator, U  is the unit tensor, two 

dots (:)  indicate that the tensors are to be contracted twice and the superscript T  denotes 

the transpose of the vector. Simplifying assumptions can be made for following described 

set of equations. 

• Continuity 

The continuity equation states that mass can be transported by convection but cannot be 

created or destroyed. As the flow is reacting, density changes and the continuity equation 

cannot be simplified 

( ) = 0V
t

ρ ρ∂ + ∇⋅
∂

�

 (2.9) 

where ρ  is density and V
�

 is the mass average-velocity vector of the gas mixture. 

• Momentum 

����� 

E��� 

OCk  kk

 

 

log k
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The momentum conservation, equation accounts for external and internal forces which act 

on a control volume of fluid, is as follow  

 

where if
�

 is the external force per unit mass on species i  and P
�

 is the stress tensor 

defined as follow 

2
= ( ) [( ) ( ) ]

3
T

P p k V U V Vµ µ  + − ∇ ⋅ − ∇ + ∇  
  

� � � � �

 (2.11) 

and p  is hydrostatic pressure, µ  is the coefficient of shear viscosity and k  is the bulk 

viscosity coefficient. 

• Conservation of species  

For 1,...,i N=   

 

= / [ ( )] /i
i i i i

Y
V Y w YV

t
ρ ρ ρ∂ + ⋅∇ − ∂ ⋅

∂
�

 (2.12) 

where iV  is the diffusion velocity of species i  , iY  is mass fraction of species i  and iw  is 

the reaction rate which defines in equation (2.15). 

• Energy 

Conservation of energy is given by  

iii

N

i

VfYvPquv
t

u ⋅+∇−⋅−∇∇⋅+
∂
∂

∑
�����

1=

)(:= ρρρ  (2.13) 

where u  is the intenal energy per unit mass for the mixture and q
�

 is the heat flux vector 

which is defined as 

Rji

jii

iTj
N

j

N

i

iii

N

i

qVV
DW

DX
TRVYhTq

����� +−









++∇− ∑∑∑ )(=

,

,

1=1=

0

1=

ρλ  (2.14) 

=1

= ( ) /
N

i i

i

V
V V P Y f

t
ρ∂ + ⋅∇ − ∇⋅ +

∂ ∑
�

�� � �

 (2.10) 
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where λ  is thermal conductivity , i
h  is specific enthalpy of species i  , 0R  is universal gas 

constant, i
X  is mole fraction of species i  , i

W  is molecular weight of species i  , ,T iD  is 

thermal diffusion coefficient for species i , ,i jD  is binary diffusion coefficient and. Rq
�

 is the 

radiant heat flux vector. 

• Chemical reaction rate 

The chemical reaction rate, iw , from equation (2.12) can be determined through chemical 

kinetics for M number of reactions and a combination of simpler expressions for the 

reaction rate, law of mass action and forward and reverse reaction rate constants as follow 

For 1,...,j N=  

0( / )' '
, , 0

=1 1

= ( )
NM

E R T jk k
i i i k i k k

k j

X p
w W v v B T e

R T

α −′

=

 
−  

 
∑ ∏  (2.15) 

where. iW  is molecular weight of species i , kiv ,
′  and kiv ,

′′  are the stoichiometric coefficients 

for species i  appearing as reactant and product respectively in reaction k . kB  is a constant 

in the frequency factor for the k th reaction and kα is the exponent determining the 

temperature dependence of the frequency factor for the k th reaction and kE .is activation 

energy for the k th reaction. 

• State equations 

State equations enable to evaluate thermodynamics properties from known properties .A 

common relation involves the ideal gas law are as follow 

For 1,...,i N=   

The hydrostatic pressure: 

0

1

N

i

ii

Y
p R T

W
ρ

=

 =  
 ∑  (2.16) 

The internal energy per unit mass for the gas mixture: 
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The specific enthalpy of species i : 

dTchh ip

T

T
ii ,0

0= ∫+  (2.18) 

The mole fraction of species i  : 

)/(

/
=

1=
jj

N
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ii
i

WY

WY
X

∑
 

(2.19) 

2.3. Computational approaches for turbulent combustion 

In Computational Fluid Dynamics, the solution of turbulent combustion can be achieved at 

three different levels. The highest level of simulation is Direct Numerical Simulation (DNS) 

where the full instantaneous Navier-Stokes equations are solved with no model 

requirements for turbulent motions. It is necessary to use minor time step and very fine 

mesh in this level. As a result, resolving the entire spectrum needs large number of grid 

points proportional to Reynolds number cubed, Re3. 

Large Eddy Simulation (LES) is the second level simulation approaches for solving the 

Navier-Stokes equations. In LES the turbulent large scales are calculated explicitly while 

the effects of smaller scales are modelled using sub grid closure models. Filtering is the 

main concept of LES that consider which scales to keep and which scales to discard. 

 

Figure 2.5 Time evolution of local temperature in a turbulent flame computed with DNS, 
RANS and LES [26] 

 

DNS 

RANS 

LES 
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Figure 2.6 Turbulent Energy spectrum as a function of wave number [26] 

 

Table 2.1 Comparison between RANS, LES and DNS [26] 

Approach Advantages Drawbacks 

RANS 

 

• coarse numerical grid 

• geometrical 

simplification (2D 

flows, symmetry,...) 

• reduced numerical 

costs 

• only mean flow field 

• models required 

LES 

• unsteady features 

• reduced modelling 

impact (compared to 

RANS) 

• models required 

• 3D simulations 

required 

• needs precise codes 

• numerical costs 

DNS 

• no models needed for 

turbulence/ combustion 

interaction  

• tool to study models 

• prohibitive numerical 

costs(fine grids, 

precise codes) 

• limited to academic 

problems 

 

Modelled in LES 

Modelled in RANS 

Computed in DNS 

Computed in LES 
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Reynolds Averaged Navier Stokes (RANS) is the most computationally efficient solving 

model for combustion simulation, which only solves the mean value for all quantities. 

RANS, LES and DNS models are summarised [26] in terms of frequency and energy 

spectrum in Figures 2.5 and 2.6 respectively. All frequencies in the spectrum are resolved 

in DNS while only the largest scales up to a cut-off wave number are computed in LES and 

the effects of the smaller motions are modelled. In RANS, only the mean flow fields are 

resolved. 

Comparisons between RANS, LES and DNS are briefly summarised in Table 2. 1 [26]. 

2.4. Turbulent non-premixed combustion 

The combustion categories are divided into premixed and non-premixed. In non-premixed 

combustion, the reactants, fuel and oxidizer, enter separately into the combustor where 

mixed and burnt. In premixed combustion, reactants are completely mixed before 

combustion takes place. 

Many combustors operate in the non-premixed mode, often for safety reasons and 

elimination of the risk of explosion. Moreover, non-premixed burners are relatively simpler 

to design. Gas turbine, diesel engines; boilers, furnaces, chemical lasers and rocket 

exhaust plumes are some examples of non-premixed flows. 

A very important dimensionless number associated with the non-premixed flames is known 

as the Damköhler number, Da. It is defined as the ratio of the mixing phenomena time 

scale that is the time required for both convection and diffusion in the system to the 

chemical reaction time scale. There are two categories of turbulent non-premixed 

combustion models based on Da number: i) infinite-rate chemistry or fast chemistry and ii) 

finite-rate chemistry. 

In infinite-rate chemistry, the chemical reactions are much faster than the other processes 

so the chemical time is typically smaller than mixing time and the Da number is large. 

Moreover, the flame can be consider as a laminar flame while the chemical reactions are 

irreversible [12]. The elimination of all finite rate chemical kinetics parameters introduces 

important simplifications while the fast chemistry assumption is valid. 

In some situations where diffusion time scales are not so large in comparison to the 

chemical reaction times, the fast chemistry assumption is invalid and unsteady effects 
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should be considered. This case is known as finite rate chemistry that is typically 

associated with low Da numbers.  

Table 2.2 Summary of turbulent combustion models in non-premixed combustion [12] 

Infinitely fast chemistry Finite rate chemistry  

• Conserved Scalar Equilibrium 
model 

• Flamelet model  

• Linear Eddy model 

• Probability Density Function (PDF) 
model 

• Conditional Moment Closure 
(CMC) model 

• Multiple Mapping Conditioning 
(MMC) model 

 

Table 2.2 [12] reviews list of important turbulent combustion models for non-premixed 

combustion for the two categories. It should be mentioned that some of these models like 

the PDF model and Linear Eddy model, are applicable for premixed combustion as well. In 

the following sections of this chapter, these non-premixed combustion models are briefly 

reviewed. 

2.5. Flamelet model 

The Flamelet model for non-premixed combustion describes the turbulent flame as a 

collection of laminar flame elements. Peters [27] and Kuznetsov [28] independently 

derived Flamelet equations based on the mixture fraction. In fact, mixture fraction 

decouples the turbulent transport and the flame structure. 

The scalar dissipation rate is an important parameter in Flamelet model. It represents the 

inverse of diffusion time scale and relates to the flow velocity gradients.  

Separation of the complex chemical structure from the flow dynamics of the flames is the 

main advantage of the Flamelet model. However, steady Flamelet model is limited to fast 

chemistry flames. So the non-equilibrium effects like ignition and extinction cannot be 

captured by this model. 

2.6. Conditional Moment Closure (CMC) model 

Conditional Moment Closure (CMC) was conceptually derived as a mixture fraction based 

approach for non-premixed turbulent combustion by Klimenko [29] and Bilger [30].  
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Exploiting a strong correlation between reactive scalar species and the mixture fraction is 

the basic idea behind CMC approach for non-premixed combustion. As a result, there is a 

correlation between fluctuations of reactive scalars with respect to the mixture fraction 

fluctuation. Conditioning of the reactive species on mixture fraction then leads to relatively 

small fluctuations around the conditional mean and a simple first order closure for the 

chemical source term can be found. It should be mentioned that CMC was extended to 

premixed turbulent combustion with conditioning on a reaction progress variable in 

subsequent work [13] . 

For a given scalar Y , we can decompose it into a mean and a fluctuation: 

kkk YYY ′+=
 (2.20) 

Fluctuations kY ′  are usually very strong in time and space, which makes the closure of 

chemical source term very difficult.  

The alternative decomposition is 

 kkk YzYY ′′+=
 

(2.21) 

Where z  is the scalar sample space and kY ′′  is the fluctuation around the conditional mean 

or the conditional fluctuation. A basic assumption of the CMC method which is 

experimentally proven is that kk YY ′<<′′  [13].  

The CMC transport equations for turbulent reacting flows were derived by Klimenko and 

Bilger [13] using somewhat different methodologies which are “the joint PDF method” and 

“the decomposition method” respectively. 

The basic CMC transport equation for single conditioning on mixture fraction is as follow. 

This equation governs the evolution of conditional expectation ηξ == YQ  (where ξ is 

the mixture fraction and η is its sample space)  
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where ( )2ξ∇= DN  is the scalar dissipation, ηiii uuu −=′′  is the velocity fluctuation about 

the conditional mean and subscript η indicating conditioning on mixture fraction. 
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The first order closure for chemical reaction is a good approximation in zones that are not 

close to extinction. The conditional velocity and the conditionally averaged scalar 

dissipation are unclosed terms that need to be modelled in CMC transport equation. These 

terms can be neglected under high Reynolds number and equal molecular diffusivity 

assumptions.  

2.7. Probability Density Function (PDF) method 

Probability Density Function (PDF) method [31], [32] is a very effective solution for the 

closure problems provided by averaging or filtering chemical source terms in chemically 

reacting turbulent flows. 

Joint PDF methods are applicable for premixed, non-premixed and partially premixed 

combustion as they do not depend on the selection of the conserved scalar. Since the 

relationship between particle methods and PDF methods was established by Pope [14], 

particle methods have become a powerful approach for solving PDF transport equations. 

The method discussed here is the transport equation for the joint pdf of velocity and 

reactive scalars. If we denote the set of reactive scalars by the vector ψ , then ( ), ; ,P V x tψ

is the joint pdf at point x  and time t . There are several ways to derive the transport 

equation for the ( ), ; ,P V x tψ  [14]. Formulation of the PDF transport equation is presented 

below. 

( ) ( ) [ ]
=1

N

V i
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ρ ρ ρ ρ ω
ψ

∂ ∂+ ∇⋅ + − ∇ ⋅∇ +
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∂′∇ ⋅ 〈−∇ ⋅ + ∇ 〉 − 〈∇ ⋅ ∇ 〉  ∂∑  

(2.23) 

here N  is the number of reactive species, i  is any reactive scalar, V∇  denotes the 

divergence operator with respect to the components of velocity and angular brackets 

denote conditional averages with respect to fixed values of V .  

The first two terms on the left hand side of equation (2.23) are the local rate of change and 

convection of the PDF in physical space respectively. The third term represents transport 

in velocity space by gravity and mean pressure gradient. The last term contains the 
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chemical source term. For complex chemical kinetics, the closed form of the source terms 

gives the transported PDF formulation great advantage over other formulations. All four 

terms on the left hand side are computed in physical space and are in closed form. On the 

right hand side of equation (2.23), the first term describes the transport of the PDF in 

velocity space caused by the viscous stresses and the fluctuating pressure gradient. The 

second term represents transport in reactive scalar space by molecular fluxes. This 

molecular mixing term is unclosed and needs mixing models. Therefore, the quality of the 

mixing models controls the predictive capability of the PDF transport equation. 

The PDF transport equation, which is a partial differential equation, can be solved with 

finite volume or finite difference methods. Since computational cost increases 

approximately exponentially with the number of dimensions, these methods are not 

effective due to high dimensionality of PDF transport equations. Therefore, most numerical 

implementations of PDF methods for turbulent reactive flows employ Monte Carlo 

Lagrangian particle simulation techniques. While these methods are still computationally 

expensive, cost increases linearly with dimensionality of the problem. 

In the Lagrangian approach, particles are not restricted to grid nodes. Lagrangian particles 

are notional, have a position, move through the computational domain with instantaneous 

velocity and are characterised by values of the reactive scalars. Although these particles 

behaved similarly to real fluid particle in some way, they should not confused with them 

[12]. In some publications, Lagrangian particles are termed Pope particles [33] . 

The concept of the particle approach is to develop a system of stochastic particles whose 

evolution yields the same one-point, one-time Eulerian PDF as a real fluid system. Models 

for notional particle interactions then effectively provide closure for the Eulerian PDF 

equations, and solving for the evolution of notional particles corresponds to solving a 

modelled PDF transport equation. The particle distributions are effectively determined by 

solving stochastic differential equations. The statistics of the turbulent reacting flow are 

represented by the estimation of the stochastic particle field. 

Conventionally, in Lagrangian approach for turbulent combustion over one hundred 

particles are present in each cell. So for simulations of laboratory flames with grids with 

thousands of cells, this can result in the order of hundreds of thousands to tens of millions 

of particles [34]. Performing mixing and reactions over this huge number of particles is 

computationally expensive. Recent advances in PDF methods like those that improved 

mixing models in particle-based methods can consider as a remedy for this.  
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2.7.1. Filtered Density Function (FDF) method  

The Filtered Density Function (FDF) method is an approach to extending PDF-based 

modelling to the LES method. The main advantages of FDF method, same as PDF 

method, are that the chemical source term remains in closed form. The FDF method was 

introduced by Pope [35], and a transport equation for a composition FDF first was derived 

and modelled by Gao [36].  

The procedures of driving FDF transport equations are very similar to the approach used 

for driving PDF transport equations and the resulting equations of both models have the 

same structure. 

However, there are two main differences between PDF and FDF methods. First, the mean 

quantities in the PDF equations are replaced by spatially filtered quantities in the FDF 

equations. Second, the sub-filter turbulence scales in FDF equations replace the mean-

quantity-based turbulence scales in PDF equations.  

A review of developments and applications of FDF method can be found in Drozda et al. 

[37]. 

2.7.2. Different mixing models 

Mixing models are a central research topics of lots of transport PDF/FDF methods. The 

most essential characteristics of scalar mixing models for PDF methods proposed by 

Subramanian and Pope [38] are as follows: 

• Conservation of Means: The mean quantities of scalars should not be affected as 

a result of mixing 

• Decay of Variances: Scalar variances should decay at the correct rate due to 

mixing process. 

• Boundedness: Scalar quantities should remain bounded due to conservation of 

mass. It is necessary for all scalars to remain between the minimum and maximum 

values. 

• Linearity and Independence: The set of governing equations of scalar fields is 

linear with respect to the scalar fields. This linearity criteria should keep unchanged 
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during mixing process when the scalars are subject to linear transformation. 

Additionally, the evolution of each scalar field should be independent from others. 

• Relaxation to Gaussian: In homogeneous isotropic turbulence, the mixing model 

should relax a scalar PDF towards a Gaussian distribution as is indicated by both 

experiments and DNS results.  

• Localness: Mixing of scalars should be governed by their presence in a 

composition and scalar space.  

The commonly used particle mixing models for Lagrangian particles are summarised 

below. 

Interaction by Exchange with the Mean (IEM) [31] - The IEM model is the simplest mixing 

model which relaxes all scalar values to the local mean. IEM model possess the first three 

characteristics but is not local in the composition space. 

Modified Curl’s model [39] - The Modified Curl mixing model is a particle interaction model 

based on Curl’s model [40] where mixing takes place between randomly selected particle 

pairs. This model, similar to the IEM model, is nonlocal in composition space. 

Mapping closure [41] - In this model the scalar field is mapped to a Gaussian reference 

field. Mapping closure is local in reactive scalar space. 

Euclidean Minimal Spanning Tree (EMST) [38] - The basic idea of the EMST model is that 

mixing of scalar particles should be governed by those in their close neighbourhood in 

reactive scalar space. This model does not satisfy the linearity and independence 

principles. 

Shadow Position Mixing Model (SPMM) [42] - This model conceptually addresses issues 

related to combining conditioning of mixing with spatial transport properties. SPMM 

performs conditioning based on taking into account alternative trajectories of Lagrangian 

particles in a turbulent flow. Depending on exact implementation, this model may perform 

as original MMC or as generalised MMC that will be discussed more in section 2.8. 
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2.8. Multiple Mapping Conditioning (MMC) 

2.8.1. Overview and basic concept of MMC model 

Multiple Mapping Conditioning (MMC) was introduced by Klimenko and Pope in 2003 [16] 

as a new turbulent combustion modelling framework that unifies the features of the PDF 

model and CMC model by incorporating a generalised mapping closure method. 

MMC developed in order to improve modelling efficiency by manifold reduction. The idea is 

that while the complete composition space in a turbulent flow is highly dimensional, it is not 

necessary in a practical model to allow all species to fluctuate in all possible directions. 

This concept leads to projection of a full dimensional composition space to a reduced 

dimensional manifold. 

There are two methodologies in this regards to investigate. The first one is achieved by 

reducing the number of species in the chemical kinetics scheme. Intrinsic Low-

Dimensional Manifold (ILDM) suggested by Mass [43] is a primary example of this method. 

The second approach is deriving transport equations that effectively restrict the 

compositions to a certain manifold. CMC and Flamelet models are examples of the latter 

methodology. With its reduced manifold consisting of reference variables, MMC belongs to 

the second methodology as well. 

The main idea of MMC is modelling turbulent fluctuations and micro mixing in physical 

composition space by using turbulent fluctuations and micro mixing in a reference space 

with a known PDF. 

The major and minor spices terms are introduced into the MMC model while the term 

species can include chemical species, mixture fraction, enthalpy as well as other related 

quantities. The reference space is determined by the major manifold and its turbulent 

fluctuation is considered as major fluctuation where can freely fluctuate in any physically 

way. The remaining minor species are only permitted to fluctuate jointly with the major 

species and are therefore conditioned on the mean concentrations of the major species 

[44]. 

Beginning with original MMC in this section, two MMC subsets, deterministic and 

stochastic MMC, and generalised MMC will be discussed briefly in next two sections. 
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2.8.2. Deterministic and stochastic MMC model 

MMC was proposed with both deterministic and stochastic formulations by Klimenko and 

Pope [16]. 

Deterministic MMC was the natural extension of CMC with a consistent closure of the 

mixture fraction PDF and conditional mean scalar dissipation. Stochastic MMC was first 

derived as a stochastic realization of the deterministic MMC for numerical efficiency only. 

By adopting a probabilistic interpolation, stochastic MMC is in fact a complete joint PDF 

method with MMC enforcing CMC properties on the mixing model by using reference 

variables to emulate turbulence properties and localised mixing in the reference variable 

space. 

In fact, in the probabilistic MMC model, the dissipation of minor fluctuations is modelled by 

mixing between particles in a close neighbourhood in reference variable space, which 

gives MMC its localness. In conventional joint PDF methods the mixing models account for 

the dissipation of all fluctuations, whereas in MMC the mixing operator dissipates only the 

minor fluctuations and the dissipation of major fluctuations is modelled by diffusion in 

reference space. 

2.8.3. Generalised MMC and Sparse- Lagrangian Simulation 

Generalised MMC was first proposed by Klimenko in 2005 [45] in order to develop the 

reference variables concept beyond conditioning or localisation in MMC method. 

In this more flexible MMC version, severe restrictions on the formulation of reference 

variables are removed. In the original stochastic MMC, all reference variables are 

modelled by Markov processes. Although, using a standard Gaussian distribution to model 

reference variables is conventional and mathematically convenient, it is not necessarily a 

good model for the physical property of interest. In generalised MMC, reference variables 

can be modelled by any physically relevant process. Therefore, by obtaining reference 

variable from resolved LES fields at an instant, generalised MMC can build a very 

computationally efficient method for solving FDF equations. 

As discussed before, Lagrangian particle methods are used to solve FDF transport 

equations. In conventional Lagrangian approaches, the target is to reproduce the joint 

composition PDF in every Eulerian cell. Hence, mixing is between particles within the 

same Eulerian cells and many particles per cell are required. Application of this intensive 
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method to large-scale practical cases is not feasible with current computing power. For 

example, for a laboratory scale flame, simulations require one or two million LES grid cells 

but as many as 15 to 50 million Lagrangian particles. 

Sparse models, on the other hand, are characterised by a relatively small number of 

Lagrangian particles used in simulations which results in similar reduction of the 

computational cost. 

It must be emphasised that there are two mixture fractions in sparse-Lagrangian 

simulations. The first one is the mixture fraction, f
~

, given by solving the balance equation 

in the LES scheme which is used as reference mixture fraction and enforces localisation in 

the MMC mixing model. The second one is the stochastic mixture fraction, z , used for 

evaluating the reactive scalar field. 

The instantaneous Eulerian FDF transport equation can be recast into the form of the 

following stochastic differential equations that govern the evolution of the PDF: 
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where iu~  is the filtered velocity, W  is the reaction rate, D  is the molecular diffusivity, t
D is 

the Smagorinsky turbulent diffusivity ,ω  is a Gaussian Weiner process and i
S is the mixing 

operator which emulates subgrid scale scalar dissipation. 

The MMC-Curl’s mixing model is similarly to Curl’s model, but the particle pairs are 

selected specifically rather than randomly .The sparse-Lagrangian MMC approach in LES 

for non-premixed flames introduces a metric that defines the effective distance between 

particles p and q in an extended space of physical location and reference mixture fraction 

by 
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where asterisks denote stochastic quantities, *

,

j

p q

x
d  and *

,p q

f
d  are the absolute distances 

between particle pairs in physical space and reference mixture fraction space, 

respectively. m
r  and m

f  are global characteristic scales whose ratio m

m

f
r

 controls the 

degree of MMC localisation. m
f  is treated as a free parameter while the choice of m

r  is 

constrained by a fractal/gradient model as discussed by Cleary and Klimenko [46]. 

2.9. Summary 

As discussed in this chapter, the modelling of turbulent combustion is based on the 

numerical solution of a set of partial differential conservation equations. Out of the different 

modelling approaches, MMC which is the subject of this thesis, combines the joint PDF 

and CMC methods while inheriting the advantages of both. The use of reference variables 

is the common feature to both original and generalised versions of MMC model. MMC 

essentially enforces the desired conditional properties on the mixing operation. 

Therefore, considering its features, the development of the MMC model is pursued in this 

thesis in order to emulate differential diffusion effects. It should be mentioned that 

differential diffusion is neglected in the original version of MMC. 

The overview and literature of differential diffusion is discussed in the next chapter while 

the theoretical features and implementation of MMC model for differential diffusion are 

addressed in Chapter 4. 
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Chapter 3 - Differential Diffusion 

3.1. Overview  

In theoretical models of turbulent combustion, a great simplification is introduced by 

assuming that the molecular diffusivity of all species is equal. For instance in the mixture 

fraction based methods of non-premixed flames, based on the above assumption, mixture 

fraction is the single conserved scalar that can completely describe the state of mixing. 

On the other hand, there exist numerous investigations on the subject of differential 

diffusion effects in turbulent combustion; over four decades evidence indicates a strong 

impact of differential diffusion for some flows. Such flows include turbulent flows with low 

to moderate Reynolds number, non-reacting laboratory flows and flames containing 

species like hydrogen, which has a higher diffusivity than other species while molecular 

transport plays an important role. 

For better understanding of the significant effects of differential diffusion on flow quantities, 

the energy and variance spectrums of turbulent flow should be considered. Both kinetic 

energy and variance spectrums behave based on Kolmogorov’s eddy cascade hypothesis. 

The energy spectrum dissipates by viscosity at the Kolmogorov scale, while scalar 

variance dissipation depends on Schmidt number. It can occur at equal ( Sc  of O (1)), 

smaller or larger length scales than Kolmogorov dissipation length scale. More details in 

this area discussed in Chapter 2. 

Thus, it can be expected that for hydrogen containing species, 1Sc≪ , molecular transport 

has great effects on the low wave number end of the spectrum. 

In light of the above discussion, it is clear that neglecting differential diffusion effects is not 

valid for all flows. Thus, understanding the physics of differential diffusion in depth as well 

as improving predictive turbulent combustion models to account for differential diffusion 

effects motivate several studies on the subject. 

Numerical, experimental and model-development works on differential diffusion have been 

reviewed in this chapter. As non-premixed combustion is the focus of the present 

research, most of following cited investigations fall in this category .While the effect of 

differential diffusion on premixed flames are also significant and discussed in many 

publications. 
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3.2. Literature review 

Differential diffusion in early stages observed by Bilger [47] while studying the methane 

diffusion flame data of Tsuji and Yamaoka [48]. Subsequently, Bilger and Dibble [49] 

described differential diffusion theoretically and developed equations to quantify its effects 

in turbulent diffusion flames. The differential diffusion variable, i jZ ξ ξ= − , is defined in 

this study as difference in two species mixture fractions ( iξ  and jξ ).This variable is used to 

quantify differential diffusion effects in many studies in literature.  

3.2.1. Numerical study 

Direct numerical simulations (DNS) of differential diffusion in homogenous isotropic 

turbulent are performed by Yeung and Pope [17]. The complete de-correlation of two 

scalars with identical initial conditions due to different in their molecular diffusivity is 

observed. It was also shown that during the initial stages of mixing, only the small scales 

of the scalars are affected by differential diffusion. Effects on large scales indicated in the 

late stages of mixing. 

Yeung and coworkers [50] performed another DNS work of a spectral study of differential 

diffusion in stationary, isotropic turbulence. It was observed that in the presence of mean 

scalar gradient, as a source of scalar production, differential diffusion only affected small 

scales. While in decaying scalar fields, the whole spectrum, from the small to the large 

scales were affected. 

Nilsen and Kosaly [51] performed a DNS study in a decaying isotropic turbulence field. 

The scalar de-correlation is captured in their study as well.  

Kerstein et al. [52] predicted the mean square of the conserved scalars differences is 

proportional to 
0.5Re−

  while validating the results with numerical simulation. 

Jaberi et al. [53] investigated DNS of the binary mixing of two scalars with unequal 

molecular diffusion coefficients. The simulation was performed in both non-reacting and 

reacting homogeneous turbulent flows with and without the presence of mean scalar 

gradients. The complexity of the coupled influences of differential diffusion and chemical 

reaction was indicated. 
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A DNS study of Reynolds number scaling of passive scalars in statistically stationary 

homogeneous turbulence has also been conducted by Smith [54]. 

Nilsen and Kosály [55] presented DNS examining differential diffusion effects on reacting 

scalars in isotropic, decaying turbulence with one-step, isothermal reaction. Results 

demonstrated decreasing of effects with increasing Reynolds number. 

Yeung and coworkers [56] , [57] expanded previous DNS studies for higher Reynolds and 

Schmidt numbers.  

The above DNS simulations of differential diffusion provide sufficient data for comparison 

purposes. 

3.2.2. Experimental works 

There are numerous experimental studies of differential diffusion effects in both reacting 

and non-reacting flows in literature. 

Drake et al. [58] , [59] investigated differential diffusion experimentally in a non-reacting jet 

flame of H2 in air with Reynolds number of 1500 and up to 8500 respectively. 

Masri et al. [60] showed the differential diffusion effects of hydrogen/carbon dioxide 

turbulent nonpremixed flame. The joint Raman-Rayleigh-LIF technique is used. 

Smith et al. [61] studied non-reacting jets of H2/CO2 into air over a range of Reynolds 

numbers from 1000 to 64000. Pulsed laser Raman scattering spectroscopy is used to 

measure species concentrations. Measurements of average species concentrations 

showed significant differential diffusion effects in a laminar jet (Re=1000) while in jet flows 

of higher Reynolds numbers, only instantaneous species concentrations are affected by 

differential diffusion.  

Measurement of differential diffusion of a non-reacting propane-helium jet flowing into air is 

presented by Su [62]. Planar Rayleigh scattering at Reynolds numbers ranging from 1000 

to 3550 is used in this experiment. It is found that the root- mean- square of the differential 

diffusion variable , Z , varied as 
0.47Re−  in this flow which is similar to the prediction of 

Kerstein et al. [52]. 
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A series of laser Rayleigh-scattering experiments at various Reynolds numbers in a 

turbulent non-reacting jet flow of Freon and Hydrogen into co-flowing air was performed for 

showing differential diffusion effects by Dibble and Long [63].  

Study of differential diffusion in a turbulent jet of high-Schmidt-number scalars , between 

2000 and 50000, was performed by Lavertu et al. [64]. In this work the root-mean-square 

of normalized concentration difference of scalars was shown to scale as 
0.1Re−

, similar to 

the prediction of Fox [65]. 

Brunel and Su [66] described quantitative measurements of the differential diffusion 

variable in a turbulent propane-helium jet issuing into air. Planar laser Rayleigh scattering 

is used for jet exit Reynolds number ranges from 1000 to 3000. 

Several researchers have experimentally studied differential diffusion effects in reacting 

flows. 

Smith et al. [67] measured temperature and species concentrations in reacting jets of 

H2/CO2 into air over a range of jet Reynolds numbers from 1000 to 30000 using Pulsed 

Raman Scattering spectroscopy. 

Bergmann et al. [68] and Meier et al. [69] also investigated differential diffusion effects of 

reacting jet diffusion flames in different Reynolds numbers. 

3.2.3. Model Developments 

Many publications consider differential diffusion in the context of different turbulent 

combustion models. 

Bilger and Dibble [49] studied differential diffusion in a jet of hydrogen and propane at a 

Reynolds number of 2700 by using a k ε−  model. 

Kerstein [70] and Kerstein et al. [52] used the linear-eddy model to study differential 

diffusion. In the former study, a turbulent jet of a hydrogen/propane mixture at Reynolds 

numbers of 5000 and 20000 is simulated. In the latter one, the Reynolds number ranged 

from 100 to 8000 for scalars with Schmidt number ranging from 0.01 to 1 is investigated. 

The results showed the differential diffusion variable variance scaled as 
0.5Re−

. 
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Kronenburg and Bilger [71] developed a Conditional Moment Closure (CMC) model to 

account for differential diffusion effects for non-reacting and for reacting flows [72]. It is 

discussed that when considering differential diffusion, the terms involving the fluctuations 

around the conditional means in CMC transport equation, the ye -terms, need modeling 

and cannot be neglected  

A Flamelet [11] , [73] model for inclusion differential diffusion is improved by Pitsch and 

Peters [74] and Pitsch [75] by applying a Lagrangian Flamelet model to a steady, turbulent 

CH4/H2/N2–air diffusion flame.  

Sannan and Kerstein [76] , [77] employed the LEM3D model based on the Linear Eddy 

Model (LEM) to simulate differential diffusion effects in a turbulent round jet of Hydrogen 

and Freon 22 into air. 

A number of differential diffusion models for transported PDF methods are available in the 

literature as follow. 

Chen and Chang [78] developed a method for stochastic mixing models and applied it in 

the modified Curl’s [39] and IEM [79] mixing models The numerical results have been 

assessed by comparisons with experimental work of Smith et al. [61] , [67] with a fuel 

mixture of 36% H2 and 64% CO2 and the Meier et al. [69] with a fuel mixture of 50% H2 and 

50% N2. 

Fox [65] extended the Lagrangian Spectral Relaxation Model (LSR) for differential diffusion 

in forced homogeneous isotropic turbulence. Four different values of turbulence Reynolds 

number, Re =538, 90, 160, and 230, with and without uniform mean scalar gradients were 

used. Results predicted the 
0.3Re−

 scale for variance of the scalar difference which is 

weaker than decay predicted by Kerstein et al. [52]. This difference can be attributed to 

backscatter, which its rate from the diffusive scales towards the large scales was found to 

be the key parameter in this model. 

McDermott and Pope [80] presented a new approach in PDF methods for treating 

differential spatial diffusion. The IEM model [79] was used for mixing in this study.  

Richardson and Chen [81] proposed an approach for differential diffusion of turbulent 

premixed methane–air combustion which ensured reliability of mixing. The method is 

applied in the IEM [79] and the Euclidean Minimum Spanning Tree (EMST) [38] models.  
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Chapter 4 - A Multiple Mapping Conditioning model for 

differential diffusion 

Chapter 4 is to achieve the main objective of this research, which is developed Multiple 

Mapping Conditioning (MMC) model in order to account for differential diffusion effects. 

4.1. Paper 1 - A multiple mapping conditioning model for differential 

diffusion 

A multiple mapping conditioning model for differential diffusion 

L. Dialameh,1 M. J. Cleary,2 and A. Y. Klimenko1) 

1School of Mechanical and Mining Engineering, The University of Queensland, 

Queensland 4072, Australia 

2School of Aerospace, Mechanical and Mechatronic Engineering, The University of 

Sydney, 

New South Wales 2006, Australia 

(Received 15 August 2013; accepted 22 January 2014; published online 12 February 

2014) 

This work introduces modelling of differential diffusion within the multiple mapping 

conditioning (MMC) turbulent mixing and combustion framework. The effect of differential 

diffusion on scalar variance decay is analysed and, following a number of publications, is 

found to scale as Re−1/2. The ability to model the differential decay rates is the most 

important aim of practical differential diffusion models, and here this is achieved in MMC 

by introducing what is called the side-stepping method. The approach is practical and, as it 

does not involve an increase in the number of MMC reference variables, economical. In 

addition, we also investigate the modelling of a more refined and difficult to reproduce 

differential diffusion effect – the loss of correlation between the different scalars. For this 

we develop an alternative MMC model with two reference variables but which also makes 

use of the side-stepping method. The new models are successfully validated against DNS 

results available in literature for homogenous, isotropic two scalars mixing. 
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I. Introduction 

Fundamental studies of turbulent mixing are of importance to a broad range of engineering 

disciplines such as combustion, environmental fluid dynamics and chemical processing. 

Due to the complexity of turbulent flows, the majority of fundamental scalar mixing studies 

consider the evolution of a single scalar only. In practice, of course, more than one scalar 

is usually mixed. For example, the structure of a turbulent flame is strongly influenced by 

the complex reactive-diffusive interactions involving numerous chemical species. In 

general, each scalar has its own molecular diffusivity and may evolve differently to other 

species due differential diffusion. This effect is most noticeable in flows where turbulent 

mixing is less dominant than molecular mixing; for example in low Reynolds number flows 

and small scale mixing processes. Differential diffusion is especially important in mixtures 

containing species that are substantially more or less diffusive than the other constituents. 

An example of this latter case is the combustion of hydrogen. Due to the high diffusivity of 

hydrogen relative to other species (because its much lower molecular weight) and the 

importance of hydrogen containing species on carbon monoxide oxidation, it is speculated 

that differential diffusion plays an important role in the burn-out of carbon monoxide (a 

dangerous pollutant), and also in flame extinction and re-ignition processes which affect 

combustor stability [78]. The ability to predict these effects is increasingly important as the 

focus turns to hydrogen containing fuels such as syngas. However, many existing 

predictive models neglect differential diffusion. This has usually been based on the 

assumption that turbulent mixing is dominant over molecular mixing thus simplifying the 

theory behind many turbulent mixing models and becoming an integral part of them. In 

light of the above discussion it is apparent that this assumption is not valid for all flows 

thus motivating several studies to better understand the physics of differential diffusion and 

to suggest improved predictive models. A brief review follows. 

A number of differential diffusion models for transported probability density function (PDF) 

[14], [82] methods are available in the literature. Chen and Chang [78] develop a method 

for stochastic mixing models and demonstrate its application in the context of the modified 

Curl's [39] and IEM [79] mixing models. A differential diffusion form of the Lagrangian 

spectral relaxation (LSR) model is developed by Fox [65]. More recently McDermott and 

Pope [80] consider the inclusion of differential spatial diffusion, while Richardson and Chen 

[81] propose a new approach for treating differential diffusion using both the IEM and 

Euclidean minimum spanning tree (EMST) [38] micro-mixing models. Various publications 

consider differential diffusion in the context of other combustion models; Kronenburg and 
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Bilger [71] , [72] and Smith [54] extend conditional moment closure (CMC) [13] to account 

for differential diffusion while differential diffusion in flamelet [11] , [73] models are reported 

in Pitsch and Peters [74] and Pitsch [75]. Differential diffusion for the linear-eddy model 

and the eddy-damped quasinormal Markovian (EDQNM) model are developed by Kerstein 

[70] and Ulitsky et. al. [83], respectively. Theoretical and DNS investigations of differential 

diffusion are also widely reported. Following on from Bilger’s [47] observation of differential 

diffusion effects in methane diffusion flames, Bilger and Dibble [49] introduce a differential 

diffusion variable that is the difference between two mixture fractions (or passive scalars). 

That quantity is subsequently used by Kerstein et al. [52] in their analysis of the Reynolds 

number scaling of differential diffusion, and in a series of DNS studies by Yeung and 

coworkers [17] , [50], [56], [18], Jaberi et al. [53] and Nilsen and Kosály [51] , [55]. 

Experimental studies of differential diffusion are reported for both reacting and non-

reacting flows. For example, differential diffusion in non-reacting flows is explored by 

Drake et al. [59] , [58], Masri et. al [60], Smith et. al.[61] and Dibble and Long [63]. While 

reacting flows are considered by Smith et al. [67] and Bergmann et al. [68]. Most of the 

above cited works are for non-premixed combustion, which is also the focus of the present 

research, but it is noted that the effect of differential diffusion on premixed flames are 

significant and discussed in many publications (e.g. Kuznetsov and Sabelnikov [73]) but 

not specifically considered here. 

In the present work, we develop an extension to the multiple mapping conditioning (MMC) 

model so that it too can account for differential diffusion effects. MMC, which was first 

derived by Klimenko and Pope [16], is a modelling framework for turbulent combustion 

which effectively unifies the features of CMC and PDF models. Deterministic and 

stochastic formulations of MMC have been derived and tested for various flame 

configurations; see Cleary and Klimenko [44] for a recent review. The stochastic 

formulation of MMC is a full-scale PDF method but one where turbulent mixing is local to a 

low-dimensional reference variable manifold. Mixing localness is a key principle of high 

quality turbulent mixing models [38] along with other important attributes also satisfied by 

MMC such as independence, linearity and relaxation to a Gaussian scalar distribution in 

homogeneous turbulence. For non-premixed combustion of equally diffusing species, it is 

possible to select a one-dimensional reference variable space representing mixture 

fraction. This effectively imposes a CMC-type closure onto a PDF model, giving MMC the 

advantages of both of those methods. MMC models with multiple-dimensional reference 
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variable spaces containing specific enthalpy and scalar dissipation [84] have also been 

developed for partially premixed combustion. 

In general there are two aspects of molecular diffusion in PDF methods which need to be 

considered: the first is spatial transport [78] , [80], which appears in the PDF transport 

equation as gradient diffusion in physical space; and the second is the process of mixing 

of scalars at a fixed location [65] , [71] which appears as transport in composition space. 

Differential diffusion may affect both of these. Spatial transport by molecular diffusion can 

be significant in low Reynolds number turbulent mixing. Moreover, in large eddy 

simulations (LES) the locally dominant physical processes depend on the filter width and 

the local viscous length scale. When the filter width becomes small relative to the viscous 

scale, molecular diffusion needs to be considered. While an MMC-consistent treatment of 

differential spatial transport can be achieved with the use of the shadow position mixing 

model (SPMM), which has been recently suggested by Pope [85], the focus of this present 

study is on the effects of differential diffusion on the local mixing in composition space. We 

examine one-point joint characteristics and avoid complications associated with 

inhomogeneity and chemical reactions by considering differential diffusion of unreactive 

passive scalars in statistically-stationary, isotropic turbulent flow. Two different MMC 

models for treating differential diffusion are introduced: the first model has one reference 

variable and is able to predict the differential rate of decay of scalar variances, while the 

second model which has two reference variables is also able to predict the loss of 

correlation between differentially diffusing scalar fields. 

The remainder of this paper is organised as follows. Fundamentals of differential diffusion 

are presented in Section II, covering the governing scalar transport equations and some 

new theory on the Reynolds and Schmidt number scaling of differential diffusion. In 

Section III extensions of the MMC model for differential diffusion are developed and 

validated against DNS results of Yeung and Pope [17] and Yeung and Luo [18]. The 

dependence of the model parameters on the Reynolds and Schmidt number are also 

demonstrated. Conclusions are drawn in section IV. 

II. Fundamentals of differential diffusion 

In this section, we present some fundamentals of turbulent mixing of differentially diffusing 

scalars. Part A presents the transport equations governing the advection-diffusion of two 

passive scalars in homogenous turbulent flow, along with equations for the transport of 
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their variances and covariance. In Part B the spectral view of diffusion, in general, and 

differential diffusion, in particular, is reviewed and in that context we analyse the Reynolds 

and Schmidt number scaling of differential diffusion. 

A. Governing equations 

We consider two passive scalars 
IY  and 

IIY  in a homogeneous, isotropic turbulent flow with 

decaying turbulence and without a mean scalar gradient. This latter simplification allows 

the mean value of each scalar to be taken as zero without a loss of generality. Each scalar 

has a different molecular diffusivity denoted by 
ID  and 

IID , respectively, with 

corresponding Schmidt numbers 
ISc  and 

IISc . The fluctuations of each scalar evolve by 

the advection-diffusion equations 
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where ( )xuu ii =  is the turbulent velocity field. The mean scalar variances 2
ΙY  and 2

ΙΙY

decay with time according to 

Ι
Ι

Ι
Ι −=









∂
∂−=

∂

∂
χ

22

2
ix

Y
D

t

Y

 

(4.3) 

ΙΙ
ΙΙ

ΙΙ
ΙΙ −=









∂
∂−=

∂

∂
χ

22

2
ix

Y
D

t

Y

 

(4.4) 

where 
Iχ  and 

IIχ  are the scalar dissipation rates. The most important joint statistic is the 

covariance, ΙΙΙYY , which evolves according to 
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Where ΙΙΙ,χ  denotes the joint scalar dissipation. We also make use of the cross-correlation 

coefficient, ΙΙΙ,ρ , which is defined as 

[ ] .
2/122

,

ΙΙΙ

ΙΙΙ
ΙΙΙ =

YY

YY
ρ
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B. Reynolds and Schmidt number scaling of differential diffusion 

In this section, we first review the general spectral properties of turbulent scalar mixing 

before looking specifically at the spectra of two differentially diffusing scalars. Whereas 

much previous literature [49], [51], [65] ,[52, 83] has chosen to quantify differential diffusion 

in terms of the difference of two passive scalars, we instead quantify differential diffusion in 

terms of the ratio of scalar dissipation timescales. The advantage is that this quantity is 

stationary in time. We develop relations for the Reynolds and Schmidt number scaling of 

the differential timescale ratio and make comparison to the scaling that is suggested in the 

previous literature. 

The characteristic feature of any turbulent flow is the occurrence of eddies of different 

length scales. In decreasing order of size the four scales bounding different turbulent 

energy regimes are: the macroscale ( L ); the integral scale ( l ); the Taylor microscale (λ ); 

and the Kolmogorov microscale (η ). According to Kolmogorov’s eddy cascade theory [86] 

the kinetic energy contained in the integral scale eddies is transferred down to the 

Kolmogorov scales where it is dissipated by viscosity. Turbulent fluctuations of transported 

scalars follow a similar cascade; the scalar variance generated at the large scales is 

transferred and dissipated by molecular diffusion at either the Batchelor or Oboukov-

Corrsin scales depending on whether the molecular diffusivity is relatively larger or smaller 

than the kinematic viscosity (i.e. Schmidt number dependence). These dissipative length 

scales (η ,
Bη  and 

OCη ) and their corresponding wavenumbers (
Kk ,

Bk  and 
OCk ) are as 

follows: 

The Kolmogorov scale: 
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The Batchelor scale : 
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The Oboukov-Corrsin scale: 
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where ε  is the kinetic-energy dissipation rate, ν  is the kinematic viscosity, D  is the 

molecular diffusivity and 
D

Sc
ν=  is the Schmidt number. 

Based on Kolmogorov’s eddy cascade hypothesis [86], in the inertial subrange (
Kkkk <<0 ) 

the turbulence is unaffected by viscosity and the kinetic energy spectrum scales according 

to the well-known 
35−k  law. The scaling of the turbulent scalar spectrum is Schmidt 

number dependent. For 1<Sc , the scales are ordered as 
KBOC kkk <<  and the scalars 

dissipate at Oboukov-Corrsin scale while the kinetic energy dissipates at the smaller 

Kolmogorov scale. Following Oboukov [21] and Corrsin [87] the passive scalar variance 

spectrum in the inertial-convective subrange ( OCkkk <<0 ) also follows a 
35−

k  rule 

( ) 3531
1

−−= kCkE χεθ  
(4.10) 

where 1C  is the Oboukov-Corrsin constant. Alternatively, for 1>Sc  the wavenumber cut-

offs are ordered as 
OCBK kkk <<  and the scalar variance dissipates at the Batchelor scale 

while the turbulent kinetic energy dissipates at the relatively larger Kolmogorov scale. 

Batchelor [23] predicted that in the viscous-convective subrange (
OC B

k k k< < ) the 

spectrum scales as 
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where 2C  is the Batchelor constant. It is noted that there are differences between gaseous 

and liquid flows. The former typically have Schmidt numbers of O(1) hence the dissipative 

Oboukov-Corrsin scale is of the same order as the Kolmogorov scale, and the later 

typically have Schmidt numbers of O(103) hence the scalar dissipation extends to the 

dissipative Batchelor scale which is much smaller than the Kolmogorov microscale. 
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Figure 4.1. Energy and variance spectrum of two scalars with different diffusivity for the 
case 1≤< III ScSc  

We now consider the spectral properties of two differentially diffusing scalars. For the 

passive scalars 
IY  and 

IIY  introduced in the previous section, the scalar dissipation time 

scales are defined as 
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In general, two scalars with different dissipation times may have scalar dissipations and 

scalar variances, which are both different. For theoretical analysis, however, it is 

convenient to consider two scalars with different variances but the same scalar dissipation,  

.χχχ == III
 Figure.4.1 illustrates the variance spectrum of the two scalars in the inertial-

convective subrange for a low Schmidt number flow with 1≤< III ScSc . As discussed above, 

the dissipation occurs at the Oboukov-Corrsin scales denoted in wavenumber space by 

IOCk −  and 
IIOCk − . The scalar variance is equal to the integral over the entire wave number 
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space and therefore the difference between the two scalar variances (the cross-hatched 

area in Figure 4.1) is given by 

( )dkkEYY
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Now, by substituting ( )kEθ  from equation (4.10) into equation (4.14) we get 
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Further, by substituting lu3=ε , lul Re=ν  and ulTl =  into equation (4.15), where u  is 

the turbulent velocity, l  is the integral length scale, Re
l  is the integral Reynolds number 

and 
lT  is the integral time scale, and dividing the result by χ  we get 
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Next, substituting equations (4.12) and (4.13) on the left side of equation (4.16) then 

dividing both sides by 
lT  yields 

( )212121
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loss of generality, we set 1=ISc  as a reference value. We also know that at high Reynolds 

number the ratio of the integral to dissipation timescales, 1τlT , is a constant value [15, 

88] which we will denote by 3C . With these last two simplifications we finally arrive at a low 

Schmidt number relationship for the ratio of the dissipation timescales as a function of 

Reynolds and Schmidt numbers 

( )1Re1 21 −−= − m
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where 2/1−=m  and 313 CCC =   
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Figure 4.2. Energy and variance spectrum of two scalars with different diffusivity for the 
case 1>> III ScSc  

We now turn our attention to the high Schmidt number case with 1>> III ScSc . Figure 4.2 

illustrates the variance spectrum ( )kEθ  for this case, showing both the 35−  and 1−  

spectra and dissipation at the Batchelor scales, 
IBk −  and 

IIBk − . As before, the difference 

between the two scalar variances (the cross-hatched area in Figure 4.2) is given by 
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Substituting ( )kEθ  from equation (4.11) into equation (4.19) gives 
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and putting lu3=ε , lul Re=ν  and ulTl =  into equation (4.20) and dividing by χ  

leads to 
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Now, substituting equations (4.12) and (4.13) on the left side of equation (4.21) then 

dividing through by lT  while setting 1=ISc  (as previously explained) leads to the high 

Schmidt number relationship for the ratio of the dissipation time as a function of Reynolds 

and Schmidt numbers 
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2
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It is interesting to compare the scaling developed above with other forms reported in the 

literature. We consider only the 1<Sc  case which is most typical of combustion gases. 

First we need to formulate our result in terms of the scalar difference, so following Bilger 

and Dibble [49] we define 

III YYz −=  (4.23) 

which is rearranged to 

zYY III +=  (4.24) 

Since the mean values of 
IY and 

IIY  are zero, the mean value of z  is also zero and we 

simply find the variance of equation (4.24) as 

zYzYY IIIII 2222 ++=
 

(4.25) 

Differential diffusion occurs in the wavenumber band that is larger than the dissipative 

Oboukov-Corrsin scale of the most diffusive scalar. So for the case being considered, 

fluctuations of z  occur mainly for IIOCkk −>  (see Figure 4.1). Furthermore, if the hypothesis 

of stochastic independence of large-scale and small-scale fluctuations in turbulent flows is 

taken into account [73], we can assume that 0≈zYII  since the fluctuations of z  overlap 

with fluctuations of 
IY  but not with the fluctuations of 

IIY  (note that 0≠zYI ). Upon 

substitution of this approximation and 
IIIIII YY ττ=22  into equation (4.25) we find that 
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Finally, by substituting equation (4.18) into equation (4.26) we get 

 

This 
2/1Re−
 scaling is consistent with the theory developed by Kerstein et al. [52] and later 

corroborated by the DNS of Nilsen and Kosály [51]. Reynolds number dependence is also 

analysed by Fox [65] for the study of differential diffusion in forced homogeneous isotropic 

turbulence and scales as 
3.02 Re~ −

z  which is close to the 21−  theoretical value 

discussed above. The literature contains far fewer studies of the Schmidt number scaling 

but the result in equation (4.27) with 21−=m  seems to be consistent with the finding of 

Ulitsky et al. [83]. 

III. A MMC mixing model for differential diffusion 

Extensions of MMC to account for the effects of differential diffusion are developed and 

tested against DNS data [17] , [18] for binary mixing of two scalars, IY  and IIY  , with 

differential diffusivities characterized by Schmidt numbers 1≤< III ScSc . In Part A we 

present the basic MMC model. In Part B an extended MMC model with a single reference 

variable is developed for the prediction of differential decay of scalar variance. In Part C an 

alternative MMC model with two reference variables is developed. In addition to correct 

prediction of differential decay of variance this second model can also predict the rate of 

decorrelation of the differentially diffusing scalars. We also demonstrate correct Schmidt 

and Reynolds number scaling of the two models. Predictions for both differential decay of 

scalar variance and the rate of decorrelation are validated against two DNS with different 

Schmidt numbers [17]. Additionally decorrelation predictions are compared against three 

DNS over a range of Reynolds numbers [18]. 

A. The basic MMC model 

In MMC (as in other PDF methods) the turbulent scalar fields, whose mean and 

covariance evolves according to equation (4.3) through equation (4.5), are modelled using 
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an ensemble of Pope particles which are notional particles which possess scalar quantities 

subject to a mixing operation [33]. In homogenous turbulence the passive scalars IY  and 

IIY  are modelled by a discrete mixing operation. We use the MMC-Curl particle interaction 

mixing model whereby particles are mixed in pairs and evolve as 

( ) αα Ι
∗∗ +−= YYY II

ˆ1new,

 (4.28a) 

( ) αα ΙΙ
∗

ΙΙ
∗ +−= YYYII

ˆ1new,

 (4.28b) 

Here the asterisk denotes values assigned to individual Pope particles, the acute symbol 

indicates the two-particle average of the scalars prior to mixing and [ ]1,0∈α  is the mixing 

extent which is related to the turbulent mixing timescale. The mixing operation should 

ideally satisfy the set of principles suggested by Subramaniam and Pope [38]. The most 

important of these, at least within the current context, are decay of variance consistent with 

equations (4.3) and (4.4) to a Gaussian distribution, linearity and independence of mixing, 

and localness in composition space. Traditional mixing models satisfy some but not all of 

these principles. Curl’s model [40] satisfies linearity and independence but violates the 

localness requirement leading to significant over prediction of conditional fluctuations of 

reactive scalars in jet flames [46]. EMST is local and predicts Gaussian decay but violates 

linearity and independence. MMC, on the other hand, satisfies all of these principles. 

Localness is achieved in MMC by forcing mixing to be between pairs of particles which are 

local in a reference variable space. The reference variables are modelled to emulate the 

major statistics of the turbulent scalar fields but, at the same time, they are mathematically 

independent of the stochastic scalar values ∗
Y . Various types of MMC reference variables 

have been tested. In this work the reference variables, ξ , are modelled by Ornstein-

Uhlenbeck processes [15] of the following form  

( ) ( )tdWdt
t

d
2

1

2







+−=
θθ

ξξ  (4.29) 

where W(t) is a Wiener process and θ the reference variable dissipation timescale. 

In most conventional joint PDF models, the dissipation of scalar variance is controlled 

exclusively by the mixing model in equation (4.28) and the parameter α  has a major 

influence. In this respect, MMC is substantially different. Mixing is local within a reference 
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space which has the effect of causing scalar fluctuations to decay towards the scalar mean 

that is conditionally averaged on that reference space. Therefore the parameter α is linked 

to what we call the minor dissipation timescale, denoted here as Dτ . Following Klimenko’s 

analysis [45] of conditional dissipation in various mixing models, a new parameter γ  is 

defined as 

( )2
11 αγ −−=  (4.30) 

Its ensemble mean is a function of the numerical time step and minor dissipation timescale  

D

dt

τ
γ 4=

 
(4.31) 

The major dissipation of scalar variance occurs due to the diffusion in reference variable 

space and the parameter θ in equation (4.29) is called the major dissipation timescale. The 

MMC localness parameter, Λ , is defined as the ratio of the minor to major dissipation 

timescales, θτ D=Λ . Of course, this interpretation of major and minor scalar fluctuations 

is made on the assumption that the reference space adequately represents the 

multidimensional space that is accessed by the fluctuating scalar field. The concepts of 

major and minor dissipation timescales are discussed in detail in previous publications 

[45]. 

B. A MMC model for predicting differential decay of scalar variance (one reference 

variable method) 

The primary objective of any differential diffusion model, especially those for practical 

applications, is the ability to model the differential rates of decay of scalar variance. For 

this purpose we propose an MMC model where the mixing of both 
∗

IY  and 
∗

IIY   is localised 

in the space of a single reference variable Iξ  which is modelled according to equation 

(4.29). The major dissipation time scale Iθ  is related to the physical dissipation timescale, 

Iτ ; the dissipation timescale for the less diffusive species 
∗

IY . Conventionally these two 

values are close to each other and if Iθ  is properly selected (below this is achieved by 

matching the modelled decay of 
∗

IY  to DNS data [17]) then the correct evolution of 
∗

IY  

ensues. Since III ScSc <  then 1<III ττ  according to equation (4.18). The faster rate of 
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dissipation for 
∗

IIY  is modelled by extending the mixing window for that scalar. Such an 

extension of the mixing window can be achieved in a number of practical ways; but here it 

is handled by taking an additional side step in time at which point the particle mixing pairs 

are reselected based on the updated reference variable field. The full implementation of 

the model is as follows. The reference variable Iξ  is advanced by a time increment dt  at 

which point scalar 
∗

IY  is mixed after localizing in Iξ -space. At that point Iξ  is advanced by 

a further time increment dtrdt ss =  at which point scalar 
∗

IIY  is localised in the updated Iξ -

space and mixed. That second time increment is a temporary side step and sr  is so called 

side step parameter in this model. Essentially the side step increases the mixing of the 

more diffusive scalar by increasing the mixing window or the modelled time available in 

which mixing takes place. As described below sr  is modelled so that 
∗

IIY  evolves correctly. 

After 
∗

IIY  is mixed the side step of Iξ  is discarded and the simulation continues. The 

process is shown schematically in Figure 4.3. 

 

 

 

 

 

Figure 4.3. Conceptual sketch of the side-stepping method 

 

It is emphasised that only the reference variable is modelled discontinuously and the 

conservation equations of the physical scalars IY  and IIY are not violated.  

In this model the major dissipation time Iθ  determines the variance decay rate of the less 

diffusive species while sr  determines the differential decay rate and in turn the decay rate 

of the more diffusive species. For closure, therefore, we require a model for sr . First, we 

note the existence of the additional diffusion in reference space, which is associated with 

mixing. The intensity of this diffusion is given by [89]  

 

dt 

dts 

t=0 
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D
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τβ~
2

= ,    
α
α

β
−

−
=

1

1~
2

  (4.32) 

where mD  is the corresponding effective diffusion coefficient and 
2
md  is the square of the 

characteristic distance between mixing particles. In the side stepping model, there is an 

increase in the mixing window by an additional side step of sdt  which results in additional 

stirring of the particles leading to 

sm Bdtdd 22
0

2 +=
 (4.33) 

where 
2
0d  is the average of the square distance between nearest particles. In the present 

work where a large number of particles are used in order to minimize stochastic errors, we 

can assume that 
2
0d  is negligible in comparison with the term sBdt2  in equation (4.33). In 

cases with larger inter-particle spacing, for example sparse-Lagrangian MMC simulations, 

2
0d  is finite and the numerical diffusion associated with that should be taken into account 

[33]. Hence, additional diffusion is created without varying the mixing extent α. As a result, 

the effective diffusion coefficient after side stepping and mixing is equal to 

ms DBB +=
 (4.34) 

where 
IB θ/1= . Substituting equation (4.32) into equation (4.34) where dtrdt ss =  and Dτ  

is substituted from equation (4.31) we have 

β
γ

τ
τ

~
2

1 s

II

Is r
B

B +==
 

(4.35) 

This last equation is the relationship between scalar dissipation time scale ratio and the 

side step parameter sr . From equation (4.18) we see that this ratio is also related to the 

physical flow properties, characterized by the Reynolds and Schmidt numbers. By 

substituting equation (4.35) into equation (4.18) the side stepping parameter is itself 

related to the flow physics by 
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The MMC model developed above is now validated against the DNS data of Yeung and 

Pope [17] for the binary mixing of two differentially diffusing scalars in statistically 

stationary, homogeneous, isotropic turbulence. Two different DNS simulations are 

considered; in the first the scalar pairs have 1=ISc  and 25.0=IISc  while in the second 

simulation 1=ISc  and 5.0=IISc . The flow has a Taylor Reynolds number of 38Re =λ , an 

integral Reynolds number of 6.216Re =l  and an eddy turn-over time of 62.5s. The MMC 

simulations are performed using 10,000 Pope particles and a numerical time step of 0.1s. 

Additional simulations with as many as 30,000 Pope particles and with a numerical time 

step of 0.01s indicated that the results are relatively insensitive to changes in the 

numerical setup. Although a large number of particles are used in these simulations, so 

that time resolved variances and covariances can be obtained with small stochastic errors, 

practical implementations of the model within a CFD solver would typically use far few 

particles. The scalar fields are initialized by ∗∗ = III YY  and given a standard normal 

distribution such that 0== ∗∗
III YY  and 1

22
== ∗∗

III YY . Similarly, the reference variable 

is initialized with a standard normal distribution. The MMC localness parameter, Λ , the 

constant, C, in equation (4.36) and the mixing extent α  are the three model parameters 

requiring explicit selection. The first is a time-invariant quantity whose value can be flow 

dependent [45]. Here it is selected manually so that the decay of 
2∗

IY  matches the DNS 

data while the decay of 
2∗

IIY  is modelled implicitly through the side stepping process with 

sr  given by equation (4.36). The value of α  is not critical and any value (or even random 

values [90]) between 0 and 1 can be used since the other parameters γ  and β~  in 

equation (4.36) will be correspondingly adjusted through equations (4.30) and (4.32). The 

results presented in this work are for 02.0=α . 

Figure.4.4 shows the scalar variances versus normalized time which is defined as the 

simulation time divided the DNS eddy turn-over time. The results for the two simulations 

with ( 1=ISc  , 25.0=IISc ) and ( 1=ISc  , 5.0=IISc )  are shown on the same set of axes. As 

can be seen the dissipation of scalar fluctuations by mixing occurs at different rates due to 
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their different diffusivities. The results show exponential decay of the variances, indicated 

by approximately straight lines of constant slope on the linear-log plot 

Figure 4.4. Scalar variances versus normalized time. Symbols denote DNS data of 
Yeung and Pope [17]; solid lines denote predictions by the MMC model with one reference 

variable. 

A reasonable match between the MMC predicted decay rate and the DNS data of Yeung 

and Pope [17] for the first scalar ( 1=ISc ) is obtained by setting 1.0=Λ , which is close the 

value of 1/8 used by Wandel and Klimenko [91] for a reacting but non-differentially 

diffusing case. 

To match the decay rate of the second scalar we found that the best match was obtained 

with 24.1=C . Importantly the same set of model parameters are used for the two 

simulations and the model correctly predicts increasing scalar variance decay with 

decreasing Schmidt number.  

C. A MMC model for predicting differential decay of scalar variance with controlled 

rate of decorrelation (two reference variable method) 

In this section, we present a second MMC model which is capable of predicting both the 

differential scalar variance decay rates (as was the first model) and the rate of 

decorrelation of those differentially diffusing scalars. The first objective is handled with the 

side stepping method described in the preceding section. The second objective, to predict 
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the loss of correlation, is a much more difficult task. We propose a model with two 

independent reference variables, Iζ  and IIζ  , which are related to two independent 

Ornstein-Uhlenbeck processes, Iξ  and IIξ , modelled according to equation (4.29). We set 

the major dissipation time scales as III θθ = . The reference variables are define as 

functions of Iξ  and IIξ : 

II ξζ =  

( )IIIII f ξξζ ,=  

(4.37a) 

(4.37b) 

Mixing occurs by localizing 
∗

IY  in Iζ -space and 
∗

IIY  in IIζ -space and the function f  

therefore determines the rate of decorrelation of Iζ  and IIζ  and subsequently the 

decorrelation rate of 
∗

IY  and 
∗

IIY . A simple linear function is used here 

IIIIIIII baf ξξξξζ +== ),(  (4.38) 

where ( )ta µ−= exp  and 21 ab −= . The parameter µ  is called the decorrelation 

parameter; a value of 0=µ  corresponds to complete correlation of Iζ  and IIζ at all times, 

while 0>µ  results in an increasing rate of decorrelation. Note that if we set 0=µ  the two-

reference variable model is equivalent to the previous one-reference variable model. 

The model works as follows. The Ornstein-Uhlenbeck processes Iξ  and IIξ  are advanced 

by a time increment dt  at which point scalar 
∗

IY  is localised in Iζ -space and mixed. At 

that point Iξ  and IIξ  are advanced by a further time increment dtrdt ss = at which point 

scalar 
∗

IIY  is localised in IIζ -space and mixed. As described for the one reference variable 

model, that second time increment is a temporary side step and after mixing of scalar 
∗

IIY  

both Iξ  and IIξ  are returned to their values prior to the side step. As before, the side step 

parameter sr  is modelled according to equation (4.36). 

The MMC model developed above is once again validated against the DNS data of Yeung 

and Pope [17] that was described in the previous section. In this section we also 

demonstrate correct scaling with Reynolds number by comparison with the DNS of Yeung 

and Luo [18] who looked at differentially diffusing scalar pairs ( 1=ISc  and 25.0=IISc ) over 



49 
 

a range of Taylor Reynolds numbers 38Re =λ , 70 and 90. Unless otherwise noted, the 

discussion below refers to the DNS of Yeung and Pope [17] with 38Re =λ . As before the 

MMC simulations are performed using 10,000 Pope particles and a numerical time step of 

0.1 s.  

Figure.4.5 shows the scalar variances versus normalized time for two scalars with 1=ISc  

and 25.0=IISc . As for the one reference variable model the best results are found by 

setting 1.0=Λ  and 24.1=C . Note that this simulation covers a longer time duration than 

does the previous result shown in Figure 4.4, but the inset in Figure 4.5 shows the initial 

period for which DNS data are available. 

 

Figure 4.5. Scalar variances versus normalised time. Symbols denote DNS data of Yeung 
and Pope [17]; solid lines denote predictions by the MMC model with two reference 

variables. 

We now analyse the scalar decorrelation. Figure 4.6 shows a scatter plot of ∗
IIY  versus ∗

IY  

for two scalars with 1=ISc  and 25.0=IISc  at 80 eddy turn-over times. 

This result is for a simulation with the decorrelation parameter set to 5105 −×=µ . Initially 

the two scalars are fully correlated and collapse to the red dashed line which has a slope 

of unity. Over time the scalars become decorrelated due to the action of differential 

diffusion as represented by the scatter data and the solid green mean line with a slope 
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less than one. A more quantitative perspective of the decorrelation is found in Figures 4.7 

,4.8 and 4.9. Figure 4.7 shows DNS data and model results for the correlation coefficient 

III ,ρ  that is defined in equation (4.6) for two scalar pairs ( 1=ISc , 25.0=IISc ) and ( 1=ISc  , 

5.0=IISc ). Modelling is performed for five different values of µ . As expected 0=µ  results 

in full correlation at all times. As previously mentioned the two reference variable model 

with 0=µ  is equivalent to the one reference variable model. In this situation, although that 

model can accurately predict the differential decay of scalar variance, the scalars remain 

fully correlated which is counter to physical expectations. As µ  is increased, the rate of 

decorrelation also increases.  

 

 

Figure 4.6. Particle scatter plot of ∗
IIY  versus ∗

IY  at normalized time 80=∗
t . 

The best results for this particular flow are obtained by setting 5105 −×=µ  for ( 1=ISc , 

25.0=IISc ) and 5104.1 −×=µ  for ( 1=ISc  , 5.0=IISc ) while 6105 −×=µ  yields excessively 

slow rate of decorrelation and 4105 −×=µ  gives a decorrelation time that is an order of 

magnitude smaller than the DNS decorrelation time. Figure 4.8 illustrates the evolution of 
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the cross-correlation coefficient III ,ρ  for two scalars with ( 1=ISc , 25.0=IISc ) at three 

different Reynolds numbers ( 38Re =λ ,70  and 90) . Here the model results are compared 

with the DNS of Yeung and Luo [18] who reported scalar decorrelation rates for three 

different Reynolds numbers (but not the scalar variance decay rates). An appropriate 

agreement with DNS results for 38Re =λ ,70  and 90  are achieved by setting ,102.2 5−×=µ

5103 −×  and 5105 −× , respectively . It should be noted that in high Re simulations the initial 

value of the cross-correlation coefficient of two reference variables Iζ  and IIζ , which is 

denoted by III ,
ζρ  and defined similarly to III ,ρ  in equation (4.6), is slightly reduced in order 

to account for the initial adjustment of the correlation coefficients between two scalars (

1=ISc , 25.0=IISc ) in the DNS [18]. From this simulation data, the decay rate of the scalar 

correlation coefficients can be scaled as 5.0Re~ −µ  which is close to the 

3.01 Re~/dtd −− ρρ scaling suggested by Fox [65].  

Figure 4.7. Evolution of the cross-correlation coefficient III ,ρ for different values of µ . 

Symbols denotes DNS data of Yeung and Pope [17]; blue solid lines denote predictions by 
the MMC model with two reference variables 
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It is clear from the results that the model correctly predicts a reduced rate of scalar 

decorrelation with increasing Reynolds number; which of course is indicative of the fact 

that differential diffusion is weaker at higher Reynolds number.  

Figure 4.8. Evolution of the cross-correlation coefficient III ,ρ  between two scalars ( 1=ISc  , 

25.0=IISc ) for three different Reynolds numbers . Symbols denote DNS data of Yeung and 

Luo [18] while solid lines denote predictions by the MMC model with two reference 
variables. 

It is worthwhile to note the mechanism by which decorrelation of 
∗

IY  and 
∗

IIY  is achieved in 

the model. The principles of MMC allow us to enforce the desirable decorelation rate on 

the simulated scalars without altering scalar values during mixing or adding any false 

source terms that can compromise the conservative properties of the model. . The scalars 

simply follow the decorrelation properties directly enforced on the reference variables Iζ  

and IIζ . The model directly controls III ,
ζρ , the cross-correlation coefficient between two 

reference variables Iζ  and IIζ  . 
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Figure 4.9. Evolution of the cross-correlation coefficients III ,ρ and III ,
ζρ  versus 

normalized time. 

Figure 4.9 shows the evolution of both cross-correlation coefficients against normalized 

time for the case ( 1=ISc , 25.0=IISc ) with 5105 −×=µ . The two values are closely aligned 

but as the inset figure taken at 57 eddy turn-over times shows III ,
ζρ  does have some 

scattering around III ,ρ .  

IV. Conclusion 

The current work focuses on spatially homogeneous effects of differential diffusion and on 

their modelling within the MMC framework. First, the effects of differential diffusion are 

evaluated theoretically and in comparison with published experimental and DNS data. The 

dissipation time ratio is found to be proportional to 
1
2Re

−
. Second, the standard MMC 

model is modified to emulate the effects of differential diffusion.  

The MMC mixing model is used to account for two important differential diffusion effects by 

using the reference variable concept. The difference in variance decay rates of two scalars 

with different diffusivities, which is the primary effect that is desired in practical simulations 

of differential diffusion, is modelled by using MMC with one reference variable. The 

concept of side-stepping which leads to an increase in the mixing window is discussed and 
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shown to be a practical and effective approach for modelling differential decay rates 

without need for a second reference variable. In this one reference variable MMC model 

the key parameter for controlling the difference in scalar decay rates have been linked to 

the ratio of the physical dissipation time scales. The second model, MMC with two 

reference variables, illustrates MMC’s capability of modelling the more refined process of 

scalar decorrelation due to differential diffusion, while at the same time continued to 

accurately predict the difference in variance decay rates. By enforcing the appropriate 

correlation rates on two stochastically independent reference variables, the required 

decorrelation characteristics are automatically enforced by MMC on the simulated scalars. 

This is done without compromising integrity and universality of the mixing operator. The 

models are validated against DNS data for joint mixing of two scalars and the level of 

agreement is very good. In line with the theoretical developments, the models are also 

found to correctly predict the Reynolds numbers dependence of differential diffusion. 

Future work will focus on the application of the new models for inhomogeneous shear 

flows.  
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Chapter 5 - Conclusion 

The focus of this thesis is developing the Multiple Mapping Conditioning (MMC) method to 

incorporate differential diffusion effects. Following this objective, this study developed in 

two main parts. 

In the first part, the theory of model has been developed. For further understanding of 

differential diffusion concept, its overview and several related numerical, experimental and 

model-development studies are reviewed. Moreover, the spectral view of turbulent motion 

based on eddy cascade hypothesis is discussed and developed for two cases of high and 

low Schmidt number. Then this spectral study has been continued for turbulent mixing of 

two differentially diffusing scalars IY  and IIY  for two cases 1≤< III ScSc  and 1>> III ScSc . 

The energy and variance spectrum of these scalars are considered for theoretical analysis 

of above-mentioned cases while the ratio of scalar dissipation timescales, I

II

τ
τ , is 

addressed to quantify differential diffusion effects. The Reynolds and Schmidt number 

scaling of this differential diffusion quantity are derived and compared with previous 

suggested results. This relation between differential diffusion and physical flow properties, 

characterised by Reynolds and Schmidt number, is used into the second part of the thesis 

to characterised the side stepping model parameter, sr . 

In the second part of this study, theoretical and methodological developments to standard 

MMC model have been implemented to deploy them to variants of MMC incorporating 

differential diffusion. 

Two important differential diffusion effects are considered: 

i. The difference in variance decay rates of two differentially diffusive scalars, which is 

the primary effect that needs to be emulated in practical simulations  

ii. Scalar decorrelation, which is a more refined effect of differential diffusion 

Both of the differential diffusion effects listed above are satisfied by two MMC models are 

presented in this research: a one reference variable model and a two-reference variable 

model. 

In the first method, one reference variable model, the mixing of two scalars IY  and IIY , 

while 1II ISc Sc< < , is localised based on a single reference variable which is modelled by 
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an Ornstein-Uhlenbeck stochastic processes. Modelling differential decay rate of two 

scalars is proposed by discussing the minor and major dissipation time scales in MMC and 

side-stepping approach. Essentially, in this approach mixing of more diffusive scalar is 

increased by increasing the available modelled time for its mixing to take place. The side 

step model parameter, sr , controls the correct difference in decay rates while remaining 

linked to physical properties of flow.  

The second model of MMC with two reference variables, can accurately predict both 

differential diffusion effects at the same time. Two stochastically independent reference 

variables that are related with a linear function were used to localise mixing of each scalar. 

Enforcing the appropriate correlation rates on two independent reference variables 

automatically results in the required decorrelation characteristics of two simulated 

differentially diffusive scalars. The model decorrelation parameter, µ  , is set to obtain the 

desired results. Difference of scalar decay rate is also predicted by the same approach 

used in one reference variable model.  

Both models are implemented numerically and validated against DNS data [17] , [18] with 

very good level of agreements. 

For future work, it is suggested that these MMC models be applied to scalars with high 

Schmidt number as the theoretical part for this case is also developed in this study. More 

numerical resolution would be required for simulation of this case as scalar fluctuations 

dissipate at Batchelor’s scale, which is smaller than Kolmogorov’s scale. 

Further interesting future work would be to generalise the new methodology for 

inhomogeneous, reacting flows and to apply the model to a practical hydrogen containing 

flame. The coupled influences of differential diffusion and chemical reaction would be more 

complex. This complexity is the challenging part of the above suggested development. 
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