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Results of optical spectroscopy reveal strong influence of plasmon excitations in silver

nanowires on the fluorescence properties of poly(3-hexylthiophene) (P3HT), which is one of

the building blocks of organic solar cells. For the structure where a conductive polymer

poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) was used as a spacer in order to minimize

effects associated with non-radiative energy transfer from P3HT to metallic nanoparticles, we

demonstrate over two-fold increase of the fluorescence intensity. Results of time-resolved

fluorescence indicate that the enhancement of emission intensity can be attributed to increased

absorption of P3HT. Our findings are a step towards improving the efficiency of organic solar

cells through incorporation of plasmonic nanostructures. VC 2013 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4829623]

Optically induced plasmon excitations make metallic

nanoparticles promising structures for enhancing the effi-

ciency or sensitivity of various devices including optical

emitters,1 biosensors,2 and medical imaging agents.3 It has

also been postulated and demonstrated that incorporating

properly selected metallic nanostructures into photovoltaic

and water-splitting assemblies can lead to measurable

improvement of their performance. It has been shown that the

combination of strongly catalytic TiO2 nanoparticles with

strongly plasmonic Au nanoparticles yields significant

improvement of the efficiency of catalytic water splitting

upon visible light illumination. This effect is attributed to

plasmonically induced increase of absorption of the electro-

magnetic radiation in such a hybrid system.4,5 Similar conclu-

sions have also been derived for structures involving silver

(Ag) nanoparticles.6 Appropriately chosen metallic nanopar-

ticles have also been used to increase the absorption of natu-

rally evolved photosynthetic complexes and it was found that

enhancement can be obtained for silver island films7 as well

as for spherically shaped Au and Ag nanoparticles. Recently,

strong modifications of the optical properties of photosyn-

thetic complexes were demonstrated upon coupling them to

silver nanowires (AgNWs).8 All these results provide solid

evidence that incorporation of metallic nanoparticles can be

used with a wide range of architectures and materials.9

In this paper, we focus on semiconducting polymers

because of their promise for low-cost, lightweight solar cells.

Several approaches have been reported and in most cases the

incorporation of silver nanoparticles indeed results in an

improvement of the overall efficiency of a solar cell based

upon P3HT:PCBM (Poly(3-hexylthiophene):Phenyl-C61-

butyric acid methyl ester) bulk heterojunction device.

Theoretical studies6 focused on spherical nanoparticles em-

bedded in the active layer of the solar cell suggest that the

absorption can be increased by a factor of 1.6 for a structure

with optimal spacing between the nanoparticles of a well-

defined size. The effect of a dielectric coating of metallic

nanoparticles upon the absorption increase in organic solar

cells was investigated in this work. Experimental attempts

concern incorporation of silver spherical nanoparticles as

well as nanowires into the active layer.10 The plasmon-

induced increase of the absorption of 50% in the spectral

range around 500 nm resulted in approximately 4% effi-

ciency of the solar cell.10 Incorporation of metallic nanopar-

ticles directly into the active layer places them essentially in

direct contact with absorbing molecules. In this case, part of

the absorbed energy is lost via non-radiative energy transfer

from the absorber to the metallic nanostructures.11 There

have also been several attempts to fabricate structures incor-

porating metallic grids or nanowires into the back electrode

of a device, mainly in order to replace ITO as the electrode

material.12–15 In all these cases, the correlation between plas-

mon excitations in metallic nanostructures and improvement

of the efficiency of the solar cell was to some degree specu-

lative, as no fluorescence imaging experiments aimed at

proving such a correlation were carried out.

In this Letter, we show that plasmon excitations in silver

nanowires strongly enhance the absorption of the polymer

P3HT in a structure, in which the nanowires are embedded

in a poly(3,4-ethylenedioxythiophene):poly(styrenesulfo-

nate) (PEDOT:PSS) layer. In such a hybrid nanostructure,

we reduce the influence of the non-radiative energy transfer

by introducing a separation layer between absorbing mole-

cules and metallic nanoparticles. The results of time-

resolved fluorescence show that the fluorescence lifetime of

the P3HT emission is unaffected by the interaction with plas-

monic excitations in silver nanowires. We conclude that the

dominant mechanism responsible for the observed increase

of the P3HT fluorescence is an increase of the absorption

rate. This result can be considered important for devising

plasmonic organic solar cells.
a)Authors to whom the correspondence should be addressed. Electronic

addresses: idws@st-andrews.ac.uk and mackowski@fizyka.umk.pl
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AgNWs were synthesized using the polyol process, in

which ethylene glycol (EG) served as the reducing and solvent

reagent.16 The product was purified by centrifugation process,

and the mixture was diluted with isopropyl alcohol and centri-

fuged. The supernatant containing silver particles and

unreacted substrates was removed. Finally, the product was

redispersed in 2 ml of pure water. Scanning electron micros-

copy yields diameters of the nanowires in the range from 50

to 150 nm, while their lengths range from 4 to 30 lm.8

P3HT is a semiconducting polymer commonly used in

organic solar cells and was purchased from Rieke Metals. In

this work, 7 mg of P3HT of molecular weight of 50 000 g/mol

were dissolved in 1 ml of toluene and then stirred and heated

at 60 �C for complete dilution. An aqueous solution of the

conductive polymer PEDOT:PSS (1:6) from Heraeus was

used either as a spacer between the AgNWs and P3HT or as

an embedding medium for the AgNWs. In this way, we test

the impact of a particular geometry upon the enhancement

effect. Also, changing the geometry of the nanostructure

allows for assessing possible influence of light scattering by

metallic nanoparticles on the observed effects.

Absorption spectra of AgNWs, P3HT solution, and

P3HT films were measured using a Cary 50 UV-VIS spectro-

photometer in the spectral range from 250 to 800 nm. The

fluorescence spectrum of P3HT solution and a spin-coated

layer was acquired using a Fluorolog 3 spectrofluorometer

with a Xenon lamp as an illumination source. Slits were set

to assure spectral resolution better than 1 nm.

Hybrid assemblies studied in this work were obtained in

two ways. In the first case, we spin-coated a mixture contain-

ing PEDOT:PSS and AgNWs solutions with 1:1 volume

ratio on a glass coverslip and then P3HT solution was spin-

coated on top of it. In the second case, we first spin-coated

the AgNWs solution on a glass coverslip and then covered it

with PEDOT:PSS and finally P3HT was deposited on the

PEDOT:PSS surface. All the solutions were spin-coated for

10 s at 3600 rpm giving a film thickness of undiluted

PEDOT:PSS of about 40 nm and P3HT of about 30 nm.

Fluorescence intensity maps were measured on a Nikon

Eclipse Ti inverted wide-field microscope equipped with an

oil immersion objective (Plan Apo, 100�, Nikon) and

coupled with Andor iXon Du-888 EMCCD camera. Due to

the plasmon excitation of AgNWs near 400 nm and the

P3HT absorption maximum near 530 nm, we used 405 nm

and 485 nm LED illuminators as excitation sources, at exci-

tation power of 120 lW and 70 lW, respectively. The sam-

ple was illuminated from the AgNW side, next exciting the

P3HT layer. In order to directly compare fluorescence inten-

sities, images were acquired for the same area of the sample

for both excitation wavelengths. For spectral selection, we

used a dichroic beam splitter (Chroma 505DCXR) coupled

with a narrow band-pass filter (Chroma HQ675-20).

Fluorescence spectra and transients were measured using

a home-built scanning confocal microscope based on the

Olympus microscope objective LMPlan 50�.17 The sample

was placed on a XYZ piezoelectric stage (Physik Instrumente),

which enabled us to position a laser beam on or off a nanowire.

Fluorescence was excited with a 485 nm laser at an excitation

power of 5 lW. For spectrally resolved detection, we used an

Amici prism coupled with a CCD detector (Andor iDus DV

420A-BV). Fluorescence lifetimes were measured using a

time-correlated single photon counting module (Becker &

Hickl) equipped with a fast photodiode (idQuantique id100-

50) triggered by a 50 ps laser pulse at 20 MHz repetition rate

and temporal resolution of about 100 ps.

The optical spectra of P3HT and AgNWs are shown in

Fig. 1. The absorption of the AgNWs is similar to that pub-

lished previously.8 The plasmon resonance of AgNWs

appears at around 430 nm and extends towards the near-

infra-red. The optical spectra of P3HT depend on the sample

preparation, and for toluene solution, the P3HT absorption

reaches a maximum at 450 nm, while the emission peak

appears at 570 nm. These values are typical.18 In contrast,

for thin films, the absorption of P3HT exhibits a redshift by

approximately 80 nm. At the same time, the maximum emis-

sion of the P3HT layer appears at 660 nm. Such huge shifts

of the electronic transitions are of key importance when con-

sidering coupling of organic polymers with other nanostruc-

tures, for instance, metallic nanoparticles.

Silver nanowires, due to their length reaching frequently

tens of lm, are one of the few metallic nanoparticles, the posi-

tions of which can be directly determined using optical mi-

croscopy. In Fig. 2, we show wide-field microscopy images of

the P3HT/AgNWs structure obtained using the mixture of

PEDOT:PSS and AgNWs. The images were acquired for the

same area of the sample for two excitation wavelengths of (a)

405 nm and (b) 485 nm. For both cases, we find elongated

shapes with increased fluorescence intensity, and their posi-

tions and overall distribution on the surface are identical for

the two excitation energies.16 By correlating the fluorescence

image with transmission image measured using a halogen

lamp, the stripes of increased intensity occur at positions

where silver nanowires are present onto the surface. This ob-

servation indicates that the optical properties of P3HT are

strongly affected by the presence of the AgNWs. Namely, the

interaction leads to increase of the fluorescence intensity of

P3HT. In the case of the sample prepared by spin-coating a

layer of P3HT on a PEDOT:PSS spacer covering the nano-

wires, the results were qualitatively similar.

In order to quantify the effect of plasmon excitations

upon the fluorescence of P3HT, we calculated intensities of

FIG. 1. Absorption and emission spectra of P3HT dissolved in toluene (red

and blue dashed lines) compared with absorption and emission spectra of

P3HT layers (red and blue solid lines). Emission spectra were excited at

485 nm. For comparison, we also show the extinction spectrum of the silver

nanowires in aqueous solution (black).
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P3HT emission on and off the nanowires for both excitation

wavelengths. Since the intensity along the nanowires is quite

homogeneous, we estimated the fluorescence intensity of a

given nanowire by taking a cross-section along a single, well-

separated nanowire and determining the average intensity per

pixel. Next, reference values were extracted using the same

procedure for an identical shape as the nanowire, but in the

area free of nanowires. The fluorescence intensities of P3HT

obtained in such a way are summarized in Fig. 3 for both ex-

citation wavelengths for the sample with AgNWs mixed with

PEDOT:PSS prior deposition on a substrate. In each case, we

analyzed approximately 80 individual AgNWs.

In agreement with the qualitative result shown in Fig. 2,

the intensities of P3HT fluorescence measured at the nano-

wires are considerably higher than for the reference P3HT.

In the case of 405 nm excitation, the average value of emis-

sion intensity for the mixed sample was 470 cps and 880 cps

for P3HT off and on the nanowires, respectively.

Analogously, for the 485 nm excitation, the average values

of 500 cps and 1050 cps were extracted. Evaluation of the

data indicates that for P3HT coupled to the AgNWs mixed

with PEDOT:PSS we obtain robust enhancement of the

emission intensity that amounts to enhancement factors of

1.9 and 2.1 for 405 nm and 485 nm excitation wavelengths,

respectively. For the sample, where the nanowires were

covered with a PEDOT:PSS layer, the enhancement factors

are less, amounting to approximately 1.4, and they feature

little dependence upon the excitation wavelength. The histo-

grams displayed in Fig. 3 indicate also that the distributions

of fluorescence intensity for areas off the nanowires for both

geometries are extremely narrow, indicating high homogene-

ity of the P3HT layer thickness and reproducibility of sample

fabrication. On the other hand, the distribution of the fluores-

cence intensities of P3HT coupled to the AgNWs exhibits

significant broadening. This broadening is attributed to in-

herent inhomogeneity of the fabricated structure associated,

for instance, with distribution of distances between P3HT

and the nanowires. As the distance plays the key role in

determining the strength of the interaction and thus the

increase of the emission intensity, a much broader range of

fluorescence intensities for P3HT coupled to the silver nano-

wires is expected. In the case of the structure, where the

nanowires were covered with PEDOT:PSS layer, the disor-

der was less pronounced. Therefore, it is necessary to opti-

mize the structure geometry with respect to both the strength

and homogeneity of the plasmonic interactions. Although

there is need for future efforts aimed at optimizing the plas-

monic interactions in such structures, the effect of increased

fluorescence intensity is highly promising for possible

improvement of solar cell efficiency, in particular, in the

case where the increase of the emission is associated

FIG. 2. Fluorescence intensity maps of hybrid nanostructures containing

AgNWs mixed with a PEDOT:PSS layer, on top of which a layer of P3HT

was deposited. Excitation wavelength was (a) 405 nm and (b) 485 nm. In

both cases, the same region of the sample was imaged.

FIG. 3. (a) Fluorescence intensities of P3HT on and off AgNW for the sam-

ple where AgNWs were mixed with PEDOT:PSS prior deposition of P3HT.

(b) Fluorescence intensities of P3HT on and off AgNW for the sample where

PEDOT:PSS was deposited on AgNWs prior deposition of P3HT. In both

cases, the results obtained for lasers excitations of 405 nm (blue bars) and

485 nm (red bars) are displayed.
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primarily with improved absorption of the P3HT layer in the

vicinity of the silver nanowires. The difference in observed

fluorescence intensities for the two sample geometries points

towards plasmonic character of the measured enhancement.

Should the increase of the emission intensity be associated

with scattering of light by the NWs only, the enhancement

factors measured for the two geometries should be the same.

Therefore, we attribute the result displayed in Figs. 2 and 3

predominantly to plasmonic interactions between silver

nanowires and P3HT polymer.

The origin of the fluorescence enhancement can be deter-

mined using time-resolved fluorescence spectroscopy.19 In

the case of the hybrid nanostructure containing AgNWs in

PEDOT:PSS layer and P3HT emitter, the observed increase

of P3HT emission intensity can be attributed to either

increase of radiative rate or increase of absorption rate or a

combination of these two processes. For a structure, in which

radiative rate is enhanced through plasmonic interactions, a

shortening of the fluorescence lifetime is expected.19 In con-

trast, should the absorption rate get enhanced, it induces no

modifications to the fluorescence lifetime. Such a behavior

has been recently observed in the case of photosynthetic com-

plexes coupled to a silver island film.20 In Fig. 4, we compare

P3HT fluorescence transients measured for both geometries

excited at 485 nm. The decay curves were measured with

laser spot placed either on (black curve) or off (red curve) the

nanowire. As can be seen in Fig. 4, all the transients are iden-

tical. The emission of P3HT on and off the nanowires decays

biexponentially with decay constants of approximately

0.30 ns and 1 ns. The absence of any measurable change in

the fluorescence decay times of P3HT deposited on and off

the AgNWs suggests that the enhancement of emission is a

result of increase of the absorption rate of P3HT. We note

that prior to acquiring fluorescence decays we measured

emission spectra of P3HT. In all cases, the spectral shape of

the emission with the laser spot placed on the nanowires was

unchanged as compared to the reference measurements.

The results of optical spectroscopy and microscopy

demonstrate two-fold enhancement of fluorescence of P3HT

upon coupling with plasmon excitations in silver nanowires.

The enhancement factors measured for excitations at 405 nm

and 480 nm are comparable. Appearance of a robust

enhancement of emission indicates that by placing silver

nanowires in a PEDOT:PSS layer we diminish the influence

of non-radiative energy transfer between the emitter and the

metallic nanoparticles. The absence of any changes in fluo-

rescence decay times for P3HT interacting with AgNWs as

compared to the reference indicates that the dominant, and

perhaps only process responsible for the increase of fluores-

cence intensity is the increase of absorption rate. The result

can be applied in designing organic solar cells with plas-

monically improved efficiency.
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