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Abstract. Several recent experiments have demonstrated the viability of a
passive device that can generate spin-entangled currents in two separate leads.
However, manipulation and measurement of individual flying qubits in a solid
state system has yet to be achieved. This is particularly difficult when a
macroscopic number of these indistinguishable qubits are present. In order to
access such an entangled current resource, we therefore show how to use it
to generate distributed, static entanglement. The spatial separation between the
entangled static pair can be much higher than that achieved by only exploiting
the tunnelling effects between quantum dots. Our device is completely passive,
and requires only weak Coulomb interactions between static and flying spins. We
show that the entanglement generated is robust to decoherence for large enough
currents.
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1. Introduction

Entanglement is an enabling resource for quantum computing (QC). It must be created and
consumed in the process of executing any quantum algorithm [1], something which is most
obviously apparent in the measurement-based model of QC [2, 3]. In this picture, entanglement
is first generated to build cluster states, before being consumed by single qubit measurements
during the execution of an algorithm. The initial entanglement can be generated between
distant qubit nodes [4–6], each of which can have its own, dedicated, measurement apparatus.
Distributed entanglement would also enable secure communication over long distances [7, 8]
and quantum teleportation [9].

Devices that generate entangled currents of pairs of electron spins propagating down
different leads have been proposed in theoretical work [10–12], and recent experiments
[13, 14] have begun to demonstrate their feasibility [15–17]. However, it is not clear how such an
entangled resource could be used for any of the applications discussed above, since the control
and measurement of a single flying solid state qubit has yet to be demonstrated experimentally.
Furthermore, the macroscopic nature of the currents makes this even more difficult, especially
when there are times when spin pairs enter the same lead [13, 14]. In this paper, we will
show that it is possible to convert such mobile entanglement to a static form in a completely
passive way, in a very simple device—thus opening up the possibility of quantum information
processors based on entangled currents. Notably, our scheme produces a static pair of entangled
electron spins that can have a much higher degree of separation (see section 4.2) than more
conventional protocols for entanglement generation for which the separation is limited by
quantum tunnelling or similar local interactions [15–17].

At the centre of our device is a spin-entangled current generator that outputs entangled
pairs of spins fi down two different leads i . Each spin encounters a further, static, spin si

downstream of the generator and interacts with it, as shown in figure 1. The generator is based
on earlier proposals of a passive device that produces pairs of spin-entangled electrons, with
each pair maximally entangled in the singlet Bell state |S〉 f =

1
√

2
(|↑ f1↓ f2〉 − |↓ f1↑ f2〉) [10–12].

New Journal of Physics 13 (2011) 103004 (http://www.njp.org/)

http://www.njp.org/


3

lead 1

lead 2

Current 1

Current 2

static electron 1

static electron 2
Spin interactions
between flying &
corresponding 
static electrons

flying electron 1

flying electron 2

Spin Entangled 
Currents Generator

Figure 1. Illustration of our entanglement generation device. Two currents,
composed of successive electron pairs that are maximally spin-entangled,
emerge from a generator and pass down two leads. A static electron is situated
downstream of the generator close to each lead, and the static pair is spatially
well separated. The mobile spins in each lead interact with corresponding static
spins as they pass. Note that the two flying spins of the same Bell pair are not
required to, and will normally not, arrive at the sites of interaction with their
corresponding static spins at the same time.

The nature of the static spins is not important, but one possibility is that a single electron
is confined in each of the two quantum dots that are fixed close to the leads. Other suitable
architectures include endohedral fullerenes in carbon nanotube peapods [18], carbon nanobud
structures [19], and surface acoustic waves whose minima isolate single electrons [20].

2. Model and basic results

Let us start with an effective Hamiltonian coupling the flying and static spins of the following
form:

Hi =
gi

2
(σ si

x σ fi
x + σ si

y σ fi
y ) = gi(σ

si
+ σ

fi
− + σ si

−
σ fi

+ ), (1)

where the σ± = (σx ± iσy)/2 are the usual Pauli operators. The gi are XY exchange coupling
strengths that depend on the separation of the two spins. Each gi is time dependent since one
of the two interacting spins is mobile. The time evolution operator Ui(t) for a general state
|9i(t)〉 = Ui(t)|9i(0)〉 of the static-mobile pair i , is then

Ui(t) = exp[−iθi(t)(σ
si
+ σ

fi
− + σ si

−
σ fi

+ )], (2)

where θi(t) =
∫ t

0 gi(t ′) dt ′/h̄. θi(t) is constant when [0, t] is chosen so that gi(0) and gi(t) are
negligible. In the basis |↑si ↑ fi 〉, |↑si ↓ fi 〉, |↓si ↑ fi 〉, |↓si ↓ fi 〉,

Ui =


1 0 0 0
0 cos θi −i sin θi 0
0 −i sin θi cos θi 0
0 0 0 1

 . (3)
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2.1. Attractor

We first consider the case where θ1 = θ2 = θ and initially the static spins are in the state |↑s1↑s2〉.
The starting state of the two static and the first pair of flying spins is then 1

√
2
(|↑s1↑ f1〉|↑s2↓ f2〉 −

|↑s1↓ f1〉|↑s2↑ f2〉). Using the product of 2 unitary operators of the form of equation (3), we find
that after interaction the state becomes cos θ |↑↑〉s|S〉 f − i sin θ |S〉s|↑↑〉 f . Since this first flying
pair will no longer interact with the static spins nor with the following flying pairs, we can trace
out this first flying pair to find the density matrix describing the static pair after the interaction:
cos2 θ |↑↑〉s〈↑↑| + sin2 θ |S〉s〈S|.

In order to find the behaviour of our system for multiple passages of flying qubits, we
require the following four maps which describe a single interaction event, U1, U2:

|↑↑〉s〈↑↑| 7→ cos2 θ |↑↑〉s〈↑↑| + sin2 θ |S〉s〈S|;

|↓↓〉s〈↓↓| 7→ cos2 θ |↓↓〉s〈↓↓| + sin2 θ |S〉s〈S|;

|S〉s〈S| 7→
1
4 sin2 2θ(|↑↑〉s〈↑↑| + |↓↓〉s〈↓↓|) + sin4 θ |T0〉s〈T0| + cos4 θ |S〉s〈S|;

|T0〉s〈T0| 7→ |T0〉s〈T0|,

(4)

where |T0〉 =
1

√
2
(|↑↓〉 + |↓↑〉), another maximally entangled Bell state. These maps imply that

the state |T0〉s is an attractor for this process, and by tracking the states of the static spins
through multiple passages of the flying spins it is clear that the system will converge towards
this maximally entangled attractor; we need not consider any further maps since other static
spin states are never accessed. This fixed point is also consistent with spin-invariant scattering
of the flying singlets from a static |T0〉 triplet, as can be verified directly from the Schrödinger
equation.

2.2. Convergence

We now calculate the probabilities of obtaining the |T0〉s state after a number of flying
spin passages. The reduced density operator for the static spins after n iterations is, by
definition, ρ(n)

s = Pn · P , where P ≡ (|↑↑〉s〈↑↑|, |↓↓〉s〈↓↓|, |S〉s〈S|, |T0〉s〈T0|)
T is the vector

of projection operators for the base states and Pn ≡ (P↑↑(n), P↓↓(n), PS(n), PT0(n))T is the
corresponding vector of probabilities. Under the map, equation (4), P 7→ LP and hence
ρ(n)

s 7→ ρ(n+1)
s = Pn · (LP) = (LT Pn) · P , i.e.

Pn 7→ Pn+1 = M0Pn (5)

where, by direct substitution,

M0 ≡ LT
=


cos2 θ 0 1

4 sin2 2θ 0

0 cos2 θ 1
4 sin2 2θ 0

sin2 θ sin2 θ cos4 θ 0

0 0 sin4 θ 1

 .

Note that the map, equation (5), preserves total probability, as it should. Since the matrix
M0 describes the evolution of the state probabilities, its eigenvalues λi must satisfy |λi |6 1.
Except when θ is a multiple of π , there is always one (and only one) eigenvalue equal to unity,
and the corresponding eigenvector is then our attractor state |T0〉〈T0|. Using Mathematica and
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Figure 2. Plots of the probabilities of obtaining the |T0〉s〈T0| state (a) against
θ

π
, after 10, 50, 100, 500 rounds of interactions, respectively; (b)–(d) against the

number of rounds of interactions, n, for θ = 0.1, 0.03 and 0.01, respectively.

equation (5), we have derived closed analytic expressions for Mn
0 and PT0(n). For the initial

conditions P0 = (1, 0, 0, 0)T, we have

1 − PT0(n) = 2−4n−1

[
(Bn + Cn) −

5 + cos 2θ

A
(Bn

− Cn)

]
, (6)

where

A =

√
2 cos2 θ(17 + cos 2θ),

B = 7 + 8 cos 2θ + cos 4θ − 4A sin2 θ, (7)

C = 7 + 8 cos 2θ + cos 4θ + 4A sin2 θ.

For large n, when (4A sin2 θ)/(7 + 8 cos 2θ + cos 4θ) ∈ (0, 2), i.e. when θ . 0.89, Cn dominates
over Bn and we have

ln(1 − PT0(n)) ' α(θ) n + β(θ) (8)

where α(θ) = ln(C/16)6 0 and β(θ) = ln[(A + 5 + cos 2θ)/(2A)]. For θ � 1, (5 + cos 2θ)/

A → 1, and β(θ) → 0. We plot the probability of obtaining the |T0〉s〈T0| state against θ , for
different values of n in figure 2(a).

As the number of rounds increases, the range of θ values for which there is a high
probability of obtaining the static |T0〉 state becomes wider; we plot the probability PT0(n)

against the number of rounds, n, for some weak coupling strengths in figures 2(b)–(d). For the
tunnelling rates 0 in [14], the time interval t0 between successive flying qubits are on the order of
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h̄
0

' 67 ps, and therefore the time it takes for the static spins to converge to the |T0〉 state would
be 20 µs, 2 ms and 0.2 s for θ = 0.1, 0.03 and 0.01, respectively. These time intervals t0 are at
least one order less in [13], and have the potential of being shortened further. Within the electron
spin coherence time (>200 µs) observed in [21], the convergence can occur for θ as small as
0.03 with the tunnelling rates achieved in [13]. We also point out that molecular systems have
the potential for phase shifts θ ' 1 due to larger exchange interactions arising from nanometre
length scales; for example the exchange coupling in a nanotube/fullerene system may be several
orders of magnitudes greater than in gated semiconductor devices [22].

3. Generalisations

Let us now generalize our analysis to include arbitrary coupling strengths (θ1 6= θ2) and
arbitrary starting states for the static qubits. With the time evolution operators Ui defined as
in equation (3), we can find a completely positive map Ls which represents the effect on the
static spin density operator ρs of a passing flying qubit pair:

ρ(k+1)
s = Ls[ρ

(k)
s ] = Tr f [(U1

⊗
U2)(ρ

(k)
s

⊗
ρ

(k)

f )(U1

⊗
U2)

†], (9)

where Tr f denotes the partial trace [1] over the mobile spins, and ρ f = |S〉 f 〈S|.
Equation (9) corresponds to a set of 16 recurrence relations for the elements of ρ(k)

s .
When θ1 = θ2, four of these relations decouple from all the others, as we found in our
argument earlier. The superoperator Ls is not a linear map, and we thus vectorize the
density operator states by listing the entries in the following order as a column vector:
(ρ11ρ12 . . . ρ14ρ21 . . . ρ24ρ31 . . . . . . ρ44)

T
=: ρ̃. The map corresponding to the action of the

superoperator Ls,

L̃s : ρ̃(k)
s 7−→ ρ̃(k+1)

s (10)

is then linear and can be written as a simple 16 × 16 matrix M, whose entries can be easily
calculated using equation (9).

We find that M always has an eigenvalue λ = 1, independent of the values of the coupling
strengths. The multiplicity of this eigenstate is one, unless θ1 and θ2 are multiples of π . The
corresponding eigenvector ρ̃1 is then a single attractor state that is independent of the initial
configuration of the static spins, which when transformed back to its density matrix form is

ρ1 =
1

2(a + b)


a 0 0 0

0 b 1
√

2
0

0 1
√

2
b 0

0 0 0 a

 , (11)

where

a =
(cos θ1 − cos θ2)

2(1 + cos θ1 cos θ2) csc3 θ1 csc3 θ2

2
√

2
> 0,

b =
csc θ1 csc θ2(csc2 θ1 + csc2 θ2) − cot θ1 cot θ2(2 + csc2 θ1 + csc2 θ2)

2
√

2
>

1
√

2
. (12)

When θ1 = θ2, we have a = 0 and b =
1

√
2
, and ρ1 reduces the |T0〉〈T0| state as in the simple

case. When θ1, θ2 ∈ (0, π/2], all the other eigenvalues are numerically in the range (−1, 1),
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Figure 3. Contour plots of (a) the fidelity between the attractor ρ1 and the |T0〉〈T0|

state; and (b) the entanglement of formation EF of ρ1; each are plotted as a
function of θ1 and θ2 ∈ (0, π/2].

and their corresponding eigenvectors, when back in matrix form, all have trace zero and hence
do not correspond to physical density operators. This has to be the case, as can be seen from
the following argument. We can express any density state as ρ =

∑16
i=1 aiρi , since the set of

eigenvectors ρ̃i (vectorized ρi ) form a basis for M. The coefficients ai can take any values, so
long as Tr(ρ) = 1 and ρ is positive semi-definite and Hermitian. Hence, Ls[ρ] =

∑16
i=1 aiλiρi ,

or more generally Ln
s [ρ] =

∑16
i=1 aiλ

n
i ρi , which also has trace 1 as a density matrix. As n → ∞,

λn
i → 0 ∀|λi | < 1 which is when i = 2, 3, . . . , 16, and thus Ln

s [ρ] → a1ρ1. So, Tr(Ln
s [ρ]) → a1

since we defined Tr(ρ1) = 1, and this requires a1 = 1. We thus obtain ρ = ρ1 + 616
i=2aiρi , and

the trace requirement result in 616
i=2ai Tr(ρi) = 0, which holds for various combinations of ai ’s.

This can only be true when Tr(ρi) = 0 ∀i = 2, 3, . . . , 16. �.
Now, we can find how close ρ1 is to the |T0〉〈T0| state, for various values of θ1 and θ2, by

calculating the fidelity F as defined in [23]. In our case, we have

F(ρ1, |T0〉〈T0|) = Tr(
√

√
ρ1|T0〉〈T0|

√
ρ1) =

√
b + 1

√
2

2(a + b)
, (13)

which takes a value of unity when θ1 = θ2, as expected. Its contour plot in figure 3(a) illustrates
that even when θ1 and θ2 are different, ρ1 is still very close to the |T0〉〈T0| state for any (θ1, θ2)

in the central region. The fidelity values also indicate the levels of degradation in our entangled
resource through unequal coupling, the degree of which can be further established by calculating
the Entanglement of Formation [24] EF that the bipartite state ρ1 has [25]. We construct the
contour plot for EF in figure 3(b) showing that the degree of entanglement ρ1 possesses is very
large, higher than 0.9, for any (θ1, θ2) in the central red region.

The attractor state ρ1 remains similar for (θ1, θ2) values in the same colour region in
figure 3, and close to |T0〉〈T0| for the central red region. As a result, a high degree of
entanglement with EF > 0.9 is achieved for the static spins even when θi(k) varies with the
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Figure 4. (a) Plot of the maximum allowed percentage difference κ(θ1) against
θ1/π for obtaining final EF(ρs)> 0.9; (b,c) Example plots of the evolutions
of EF for the static spins as a function of the number of flying pairs n, for
strong and weak random couplings, respectively. The inset in (c) zooms in on
the corresponding fluctuations.

iteration k, as long as in each round 1θ = |θ1–θ2| satisfy the condition set in figure 3(b) such
that (θ1, θ2) lies in the central red region. The maximum possible percentage difference in
coupling strengths needed to maintain a highly entangled state may be defined as κ(θ1) :=
maxEF>0.9(1θ/θ1), and this quantity depends on θi itself, as shown in figure 4(a). The maximum
value for κ(θ1) occurs at a θ1 value away from π/2 because the maximum allowed 1θ values
for final EF(ρs)> 0.9 do not vary much for θi close to π/2. For θi as weak as 0.1, the maximum
allowed percentage difference κ(0.1) ' 1.6%. We show two example plots for the evolutions
of EF for the static spins versus n for θi values that can vary within some range from round to
round, in figures 4(b) and (c). From these results we see that the convergence times are of the
same order as for the case when θ1 = θ2 (see figure 2) for both strong and weak couplings. We
can also see that the condition on κ(θ1) in each round as specified in figure 4(a) only needs to
be satisfied by the majority of the interaction rounds.

4. Decoherence

In practice, the environment interacts weakly with both static and flying spins, causing their
decoherence. This will degrade our final entangled resource to some extent, and we shall
consider such effects in this section.

4.1. Static

We first take into account the decoherence of the static spin pair, which in general will be
coupled to the surrounding environment. The process can be modelled by a Markovian master
equation [26] with decoherence channels k and corresponding decay rates γk:

d

dt
ρs(t) =

15∑
k=1

γk(Akρs A†
k −

1
2 A†

k Akρs −
1
2ρs A†

k Ak) (14)

where we have ignored the unitary term −i[H, ρs] on the assumption that the duration of the
spin–spin interaction is much shorter than time interval t0 between successive flying qubits.
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Figure 5. Plots of the state of the static spin pair in the presence of pure dephasing
errors at random θi ∈ [1.3, 1.4] and γ1 = γ2 = 1 MHz: (a) fidelity of final states
at equilibrium against current with the higher and lower lines representing the
states right after and before XY couplings, respectively; (b) EF against time for
a spin-entangled current of 10 pA, with the dashed and solid lines representing
the initial static spins being in the |T0〉 and the pure |↑↑〉 states, respectively. For
the latter case, the initial rise and the subsequent fall in EF is due to the presence
of the singlet state.

This assumption about the much shorter timescale also means that we do not need to
consider decoherence during interactions events. Therefore, the evolution of ρs(t) can be tracked
through application of the map L̃ s to describe interaction events and using the solution of the
master equation between events. The resulting behaviour is a function of the products γkt0, and
we assume t0 to be constant for simplicity.

For certain decoherence models, analytical results can be found. For example, if we assume
that there are two independent dephasing channels σ s1

z

⊗
I s2 and I s1

⊗
σ s2

z with rates γ1 and γ2

respectively, then for θ1 = θ2 the final fidelity of the state of the static spins with respect to |T0〉

is, immediately prior to an interaction events:√
2 + 2e2(γ1+γ2)t0 csc4 θ − cot2 θ(2 + 2 csc2 θ)

4e2(γ1+γ2)t0 csc2 θ(2 csc2 θ − 1) − 4 cot2 θ(1 + 2 csc2 θ)
. (15)

We know that for the device to generate a large degree of static entanglement, we need
θ1 and θ2 to be in the central red region of figure 3. For example, working with random
θi ∈ [1.3, 1.4], calculations show that robustness to decoherence requires that γkt0 are at most on
the order of 10−2. For γ1 = γ2 = 1 MHz (i.e. a coherence time of 1 µs), figure 5(a) illustrates the
behaviour of the fidelity against current of flying pairs e

t0
, with e the electronic charge. When the

current is large enough, more than 10 pA (i.e. t0 . 10 ns) in this case, the fidelity only fluctuates
slightly. Figure 5(b) then shows that the final state of the static spin pair possesses a large degree
of entanglement and does not depend on the initial set up. A similar effect is observed for the
bit-flip errors, with slightly reduced final fidelity. This 10 pA is much smaller than the nA scales
observed in [13, 14], i.e. the strong coupling regime is robust to decoherence of the static spins.
For weak couplings, a higher current is required for the same decoherence rates, e.g. at ∼100 nA
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(t0 ∼ 1 ps) is needed for θi ' 0.03 (or at ∼1 nA with spin coherence times in [21]). We see that
decoherence will reduce the fidelity and hence the degree of entanglement of the steady state for
the static spins, and thus in figure 3 the regions for high fidelity and high degree of entanglement
will be narrower in the presence of decoherence.

4.2. Flying

Next, let us consider the decoherence of the flying singlets before they interact with the static
spins. The whole analysis in section 3 applies when we refine our model by allowing random
error deviations ε(k) of ρ

(k)

f from the singlet state in each round such that

ρ
(k)

f = (1 − ε(k))|S〉 f 〈S| +
3∑

j=1

ε
(k)

j σ
f1
j |S〉 f 〈S|σ

f1
j , (16)

where the errors ε(k)
=

∑3
j=1 ε

(k)

j for each k are due to spin-orbit coupling and interactions with
the environment as the flying qubit propagates. The σ j ’s are the Pauli σ1,2,3 ≡ σx,y,z matrices that
correspond to different errors on one of the two flying qubits. We find that the single attractor
state now has small error-dependent terms c for the corner entries on the minor diagonal of ρ1 in
equation (11), and both a and b now also depend on ε

(k)

j . As a result, the final EF(ρ1) is reduced,
and the larger the errors the smaller it will be. We also find that the strong coupling regime can
tolerate larger errors compared with weak coupling. This is because the static entanglement built
up per round of interaction is much smaller for weak couplings and the errors ε

(k)

j can drastically
reduce the accumulated entanglement. In either case, the average of ε(k) mainly determines the
final EF for the static spins for fixed θi . For strong couplings, the error tolerance on ε(k) is of
order 0.01, which corresponds to flying pairs with an average EF of ∼0.8–0.9. This results
in a travelling distance on the millimetre scale for the flying spins at the Fermi velocity with
typical coherence time of microseconds, before their interactions with the static pair. This error
tolerance is much smaller for weak couplings, but this could also be feasible experimentally
since couplings become weaker at high carrier speed, which also means a smaller interaction of
the flying qubits with the environment before they arrive at the static qubit sites.

Therefore, for a given separation between the static spins, e.g. 1 mm (�1 µm, of conven-
tional separations [15–17]), the time it takes the flying electrons (travelling at ∼105 m s−1)
to arrive at the static qubit sites is 10 ns, much less than a typical spin coherence time (µs).
Separations of centimetre scales can be achieved for longer spin coherence times [21].

5. Splitting efficiency

We now consider the efficiency of successful splittings of the Cooper pairs via the double dots
in the generator [13, 14] in figure 1. When unsuccessful, a singlet pair enters the same lead and
this has the effect of reducing the static entanglement (see figure 6(a)). For a success rate η of
50% in [14], the static spins converge to a completely mixed state regardless of the coupling
strengths. We therefore classify the usefulness of the entangled current resource depending on
the success rates in terms of final static entanglement we could achieve for the steady state of the
static spins. For large coupling strengths, EF(ρs) switches between close to 0 and almost 1 from
round to round depending on the success of splitting. Thus in this case, a threshold criterion
for η would be that the state of the static pair spends a certain fraction of its time in states
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Figure 6. Plots for the evolutions of EF for the static spins: (a) of the attractor
state ρ1 after one round of interactions with the flying singlet pair entering the
same lead, against various θ ∈ [0, π

2 ]; (b) and (c) examples of the corresponding
steady states against number of rounds n when no other errors are present. Once
the steady state is achieved, the success rates required could be lowered.

with EF close to 1, as shown in figure 6(b). In that case, the average EF ≈ 0.88 for η = 95%.
In the weak coupling regime, the steady state EF of the static spins is large and fluctuates
slightly for sufficiently high success rates, as shown in figure 6(c). The condition is that the
amount of reduction in static entanglement by a single unsuccessful event should be smaller
than the accumulated entanglement built up from a certain number N of consecutive successful
splittings. In this case then η =

N
N+1 , and we find for example, when θ ' 0.1, for η ' 99.9%,

then very high entanglement can be maintained (see figure 6(c)).
In either case, for the current resource to be useful in terms of our scheme, the success rates

for splittings should improve from those in [13, 14] to at least 90%. Stronger currents will also
make the scheme more robust to the various decoherence sources.

6. Other models

The above analysis was adapted to a Heisenberg exchange model by replacing the effective
Hamiltonian in equation (1) with

H ′

i =
gi

2
(σ si

x σ fi
x + σ si

y σ fi
y + σz

si σz
fi ). (17)

We then obtained similar results for the Heisenberg exchange model; the only difference is
that this time the singlet state is the only attractor for equation (9), and the condition of similar
coupling strengths is now replaced by the requirement of θ1(k) + θ2(k) ' π in each round of
interaction (see figure 7 in comparison with figure 3). Given this understanding, the results on
the decoherence effects as well as the splitting efficiency are also similar.

The Heisenberg and XY coupling models can be regarded as examples of a more
general anisotropic coupling [27], and both can be realized in suitable materials [27, 28].
For example, the Heisenberg exchange model can effectively describe the spin evolutions of
forward scattering electrons: The evolution of the total wavefunction of the scattering electrons
is determined by the Schrödinger equation with Coulomb repulsion terms, together with the
Pauli principle the spin evolution is determined [28].
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Figure 7. Contour plots for the single attractor state of the static spins in the
Heisenberg exchange model: (a) fidelity with respect to the singlet state as a
function of θi ∈ [0, π]; (b) EF as a function of θi ∈ [0, π].

7. Conclusion

We have shown that distributed and static spin entanglement can be generated from a source
of entangled current and weak, passive, Coulomb interactions. The entanglement generated
is robust to various error sources. We therefore anticipate that spin entangled currents can be
utilized in the way we have proposed in a wide range of experimental systems.
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