
HAL Id: hal-01991857
https://hal.inria.fr/hal-01991857

Submitted on 24 Jan 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Uniform Sampling of SAT Solutions for Configurable
Systems: Are We There Yet?

Quentin Plazar, Mathieu Acher, Gilles Perrouin, Xavier Devroey, Maxime
Cordy

To cite this version:
Quentin Plazar, Mathieu Acher, Gilles Perrouin, Xavier Devroey, Maxime Cordy. Uniform Sampling of
SAT Solutions for Configurable Systems: Are We There Yet?. ICST 2019 - 12th IEEE International
Conference on Software Testing, Verification, and Validation, Apr 2019, Xian, China. pp.240-251,
�10.1109/ICST.2019.00032�. �hal-01991857�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/195883712?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01991857
https://hal.archives-ouvertes.fr

Uniform Sampling of SAT Solutions for
Configurable Systems: Are We There Yet?

Quentin Plazar∗, Mathieu Acher∗, Gilles Perrouin†, Xavier Devroey‡ and Maxime Cordy§
∗Univ Rennes, Inria, CNRS, IRISA, Rennes, France. Emails: quentin.plazar@gmail.com, mathieu.acher@irisa.fr

†PReCISE/NaDI, Faculty of Computer Science, University of Namur, Namur, Belgium. Email: gilles.perrouin@unamur.be
‡Delft University of Technology, Delft, The Netherlands. Email: x.d.m.devroey@tudelft.nl
§SnT, University of Luxembourg, Luxembourg, Luxembourg. Email: maxime.cordy@uni.lu

Abstract—Uniform or near-uniform generation of solutions for
large satisfiability formulas is a problem of theoretical and prac-
tical interest for the testing community. Recent works proposed
two algorithms (namely UniGen and QuickSampler) for reaching
a good compromise between execution time and uniformity
guarantees, with empirical evidence on SAT benchmarks. In the
context of highly-configurable software systems (e.g., Linux), it is
unclear whether UniGen and QuickSampler can scale and sample
uniform software configurations. In this paper, we perform a
thorough experiment on 128 real-world feature models. We find
that UniGen is unable to produce SAT solutions out of such
feature models. Furthermore, we show that QuickSampler does
not generate uniform samples and that some features are either
never part of the sample or too frequently present. Finally, using
a case study, we characterize the impacts of these results on
the ability to find bugs in a configurable system. Overall, our
results suggest that we are not there: more research is needed to
explore the cost-effectiveness of uniform sampling when testing
large configurable systems.

Index Terms—configurable systems, software testing, uniform
sampling, SAT, variability modeling, software product lines

I. INTRODUCTION

A. Configurable Systems and Feature Models

Configurable systems form a vast and heterogeneous class
of software systems that encompasses: Software Product Lines
[1], [2], operating systems kernels, web development frame-
works/stacks, e-commerce configurators, code generators, Sys-
tems of Systems (SoS), software ecosystems (e.g., Android’s
“Play Store”), autonomous systems, etc. While being very dif-
ferent in their goals and implementations, configurable systems
see their behaviour affected by the activation or deactivation
of one or more feature(s), i.e. units of variability, configura-
tion options. Configurable systems may involve thousands of
features with complex dependencies. In order to represent the
set of valid combinations of options a configurable system can
have – its variants (which we also name configurations) – we
can use a tree-like structure, called feature model [3]. Each
feature may be decomposed into sub-features and additional
constraints may be specified amongst the different features.
Within feature models, features can be mandatory (present

Gilles Perrouin is a research associate at the FNRS. This research was
partially funded by the EU Project STAMP ICT-16-10 No.731529, the
NIRICT 3TU.BSR (Big Software on the Run) project, the FNRS Grant
O05518F-RG03, and the ANR-17-CE25-0010-01 VaryVary project. This work
was done when Maxime Cordy worked at the University of Namur.

in every configuration) or selected depending on the groups
they belong to (OR, XOR, etc.) and cross-tree constraints
(dependence on or exclusion of other feature selections).
To support automated reasoning, feature models have been
equipped with formal semantics and in particular based on
first-order logic [4], [5]. These efforts led to a variety of tool-
aided analyses that use constraint solvers [6]. In particular,
satisfiability (SAT) solvers have shown to scale for large
feature models [7], [8].

B. Sampling of Configurations

One important issue when testing configurable systems is
that the number of variants grows exponentially with the
number of features, preventing the exhaustive enumeration of
all valid configurations authorized by the feature model in
most cases. Therefore, a simple strategy to cope with this
issue is to sample configurations of interest before testing
the corresponding variants. There are many ways of sam-
pling configurations depending on testing objectives. T-wise
sampling adopts a Combinatorial Interaction Testing (CIT)
approach, which relies on the hypothesis that most faults
are caused by undesired interactions of a small number of
features [9]. T-wise sampling being an NP-complete problem
in the presence of constraints, various heuristics have been
proposed [10], from greedy algorithms [11], [12] to meta-
heuristics [13], [14]. Meta-heuristics are also at the heart of
dissimilarity sampling techniques that maximize distances be-
tween configurations [15], [16]. There are also approaches that
combines several objectives (coverage, cost of configurations,
etc.) [17]–[19]. These techniques exhibit different tradeoffs
between the need to maximise the distances and preserving
the validity of generated solutions, this validity being checked
typically using SAT solvers. Evolutionary algorithms generally
start from initial random solutions, and the way they are
produced matters [20]. For example, Maaranen et al. observed
an improvement of 10% on average when using uniformly
distributed random numbers for initialization [21]. De Perthuis
de Laillevault et al. theoretically demonstrated the relevance of
repeated uniform random sampling to initialize the population
of evolutionary algorithms [22]. For configurable systems,
Henard et al. noticed that SAT solvers’ internal order yields
non-uniform (and predictable) exploration of the search space
potentially biasing results of search-based configuration selec-

1

tion and prioritization [15]. Other criteria rely on the idea of
minimal (as few features selected as possible) and maximal (as
many features selected as possible) configurations [23], [24].
Randomness is involved in such criteria too. For example, one-
enabled selects one random configuration having only one fea-
ture enabled, most-enabled-disabled selects minimal/maximal
configurations (several pairs of configurations may satisfy the
criterion). In their experiments, Medeiros et al. relied on the
first configuration returned by the SAT solver [24]. However,
Halin et al. showed that taking the first configuration did not
reveal faults in their studied system, while an approach relying
on random sampling was effective [25]. In the absence of
constraints between the options, Arcuri et al. theoretically
demonstrate that a uniform random sampling strategy may
outperform t-wise sampling [26]. Random sampling thus typ-
ically serves as a baseline to evaluate and compare sampling
strategies.

C. Motivation & Problem Statement

The current body of knowledge emphasizes the importance
of random uniform sampling and its potential for configurable
systems. It can indeed act as a standalone sampling method to
select one configuration amongst all the valid ones, such that
each valid configuration receives an equal probability to be se-
lected. It can also support other techniques (e.g., evolutionary
algorithms). To assess its applicability in practice, the first step
is to experiment actual state-of-the-art implementations on fea-
ture models. To this end, we selected two approaches from the
literature, UniGen [27], [28] and QuickSampler [29] because
they exhibit interesting trade-offs with respect to uniformity
and scalability (e.g., QuickSampler sacrifices some uniformity
for a substantial increase in performance). While there ex-
ist benchmarks [29] that evaluate and compare these tools,
those do not consider feature models and their peculiarities.
For example, the uClinux-config model, representing
the configuration options of an embedded Linux for micro-
controllers, has 7.7 ∗ 10417 possible solutions. In contrast, the
largest formula used by UniGen and QuickSampler has ≈ 1048

solutions [29]. Considering these differences, our objective
is to investigate: (i) whether UniGen and QuickSampler are
efficient enough (in terms of computation time) to be applied
on such feature models and (ii) whether they do so while
guaranteeing to generate a reasonably-uniform sample of
configurations.

D. Contributions

The contributions of this paper are the following:
1) An empirical assessment of UniGen and QuickSampler

on boolean formulas stemming from 128 feature mod-
els of various sizes and taken from real-world bench-
marks [8], [30], [31]. Some of them exhibit more than
10,000 features.

2) Given that some feature models are huge, we show that
conventional methods for evaluating the uniformity of
a sample distribution are not appropriate. Accordingly,
we propose an adapted new method of assessing sample

distributions based on the frequency of features com-
pared to the ground truth. This method has the merit of
pinpointing some weaknesses (regarding deviation) of
sampling techniques while being intuitive to interpret in
the context of configurable systems.

3) A presentation of the results showing that while Quick-
Sampler scales on the most significant models, sample
distributions deviate from up to 800% from a uniform
distribution. Furthermore, UniGen guarantees uniformity
to the price of scalability: it cannot process feature
model models of more than 1,000 features.

4) A first assessment of the ability of QuickSampler
to cover buggy features on JHipster [32], a config-
urable web development stack. QuickSampler can over-
represent a feature (+116%) involved in a rare bug
(appearing in only 0.49% of all configurations) but also
one (+94%) involved in three of six the JHipster’s in-
teraction bugs. We explore these deviations with respect
to a uniform distribution (also achieved by UniGen) and
provide recommendations for the future.

Section II describes the experimental protocol we followed
to asses performance and uniformity of QuickSampler and
UniGen and Section III presents the results we obtained.
Section IV presents the assessment of generated samples on
JHipster. Section V discusses our findings. Section VI presents
the threats to our empirical analyses. Section VII discusses
additional related work, and Section VIII concludes the paper.

II. STUDY DESIGN

A. Research Questions

Uniform sampling is an interesting approach to testing
configurable systems. However, practitioners and researchers
ignore whether state-of-the-art algorithms are applicable over
feature models. Specifically, we aim to address three research
questions:
• RQ1 (scalability and execution time): Are UniGen and

QuickSampler able to generate samples out of feature
models? To study scalability and execution time when
applied to feature models.

• RQ2 (uniformity): Do UniGen and QuickSampler gen-
erate uniform configurations out of feature models? We
aim to assess the quality of the sample with respect to
uniformity (prior work [29] suggests that QuickSampler
is close to uniformity).

• RQ3 (relevance for testing): How does QuickSampler’s
sacrifices on uniformity impact its bug-finding ability in
JHipster? By relating sampled frequencies of features
with their associated bugs on the JHipster case [25], we
perform an early exploration of how these techniques
behave with respect to bug distribution [26].

B. UniGen and QuickSampler

Several SAT samplers exist in the literature [27]–[29], [33]–
[36] and achieve varying compromises between performance
and theoretical properties of the sampling process (e.g., uni-
formity, near-uniformity). We will focus our study on two

2

samplers that achieve state-of-the-art results, UniGen [27],
[28], and QuickSampler [29]. A recent ICSE’18 paper [29]
compares the two algorithms on large real-world benchmarks
(SAT instances), showing that QuickSampler is faster than
UniGen, with a distribution reasonably closed to uniform.

On the one hand, UniGen uses a hashing-based algorithm
to generate samples in a nearly uniform manner with strong
theoretical guarantees: it either produces samples satisfying
a nearly uniform distribution or it produces no sample at all.
These strong theoretical properties come at a cost: the hashing
based approach requires adding large clauses to formulas so
they can be sampled. These clauses grow quadratically in size
with the number of variables in the formula, which can raise
scalability issues.

On the other hand, QuickSampler’s algorithm is based on a
strong set of heuristics, which are shown to produce samples
quickly in practice on a large set of industrial benchmarks [29].
However, the tool offers no guarantee on the distribution of
generated samples, or even on the termination of the sampling
process and the validity of generated samples (they have to be
checked with a SAT solver after the generation phase).

C. Input Feature Models

We use a large number of well-known and publicly available
feature models in our study, which are of various difficulty.
Specifically, we rely on the benchmarks used in [8], [30],
[31]. Specifically, feature models were used to assess the SAT-
hardness of feature models, to investigate the properties of
real-world feature models [31] and to evaluate a configuration
algorithm for propagating decisions [30].

1) Feature model benchmark properties: In total, we use
the feature models of 128 real-world configurable systems
(Linux, eCos, toybox, JHipster, etc.) with varying sizes and
complexity. We first rely on 117 feature models used in
[30], [31]. The majority of feature models contain between
1,221 and 1,266 features. Of these 117 models, 107 comprise
between 2,968 and 4,138 cross-tree constraints, while one
has 14,295 and the other nine have between 49,770 and
50,606 cross-tree constraints [30], [31]. Second, we include
10 additional feature models used in [8] and not in [30], [31];
they also contain a large number of features (e.g., more than
6,000). Third, we also add the JHipster feature model [25],
[32] to the study, a realistic but relatively smaller feature model
(45 variables, 26,000+ configurations). We later refer to these
benchmarks as the feature model benchmarks.

Once put in conjunctive normal form, these instances typ-
ically contain between 1 and 15 thousand variables and up
to 340 thousand clauses. The hardest of them, modelling the
Linux kernel configuration, contains more than 6 thousand
variables, 340 thousand clauses, and is generally seen as a
milestone in configurable system analysis.

2) Replication of [29]: In addition to these feature models,
we have replicated the initial experiments on industrial SAT
formulas as conducted in [29]. We use these results as a
sanity check, to ensure that we are using the tools with the
same configurations that were previously compared. Moreover,

since these original formulae are much smaller than the feature
models we use (typically a few thousand clauses), they will
provide a basis of results for statistical analysis, in case a
solver cannot produce enough samples on the harder formulas.
We later refer to these benchmarks as the non-feature model
benchmarks.

D. Experimental Setup

We are interested in several characteristics of the samplers
under study, which include scalability (execution time) as
well as the quality of generated samples (regarding their
statistical distribution). For scalability, we evaluate execution
time by running each sampler on every benchmark, until it
generates 1 million samples or execution times out after 2
hours. For QuickSampler, the timeout duration is split equally
between sample generation and validity check (one hour each).
Experiments were run on an Intel(R) Core(TM) i7-5600U (2,6
GHz, 2 cores), 16GB RAM, running Linux Fedora 22.

1) Frequency of features: The quality of a sampler’s dis-
tribution is very hard to evaluate on large benchmarks, since
the huge size of the solution space makes standard statistical
testing inapplicable. For example, the uClinux-config
feature model has 7.7 ∗ 10417 possible solutions. Instead,
we rely on an approximate measure of statistical indicators,
namely the frequency of observation of certain features in the
samples generated. These indicators are not sufficient to show
if the distribution of samples is uniform, but they may show
it is not. Importantly, our indicators can pinpoint flaws in the
sampling process that are critical for testing purposes, such as
a feature never being selected in the produced samples (despite
the ground truth states this feature should be selected 80% of
the time). We give more details about the computation of this
indicator in the next section.

2) MIS: As a final note, both QuickSampler and UniGen
can benefit from the knowledge of an independent support
for the formula they sample. An independent support is a
subset of the formula’s variables which, when assigned a truth
value, leaves at most one possible satisfying valuation for the
remaining variables. We used some tool1 to compute Minimal
Independent Supports (MIS). We attempted to compute the
MIS for all our benchmarks and followed the procedure
provided by QuickSampler’s authors to detect invalid MIS
[29]. Indeed, we ensured that the number of solutions for a
given model was not larger than 2|S|, where |S| represents
the number of variables of the independent support. Should
it be the case, this means that the MIS cannot be used to
enumerate all the valid instances of the model. On benchmarks
shared by QuickSampler, we found the same incorrect MIS
as a sanity check. For feature models, we found that two
Linux kernel variants (2.6.3X) on which MIS computation
either ran out of memory or could not be computed within
an hour. Additionally, there was one more Linux model
(2.6.28) as well as buildroot and freetz for which it was not

1We used the implementation https://bitbucket.org/kuldeepmeel/mis based
on algorithm presented in [37]

3

https://bitbucket.org/kuldeepmeel/mis

possible to compute the exact number of solutions within
10 minutes with SharpSAT [38]. We nevertheless note that
for other feature models both MIS computation and validity
check were possible. On some selected feature models, we
successfully computed multiple MIS and gave them as input
to QuickSampler and UniGen and found no impact on these
models. In particular, for UniGen, giving the MIS did not help
to compute any sample within one hour on 24 feature models,
UniGen was only able to compute a sample for the JHipster
feature model (both with and without MIS). This, combined
with the fact that the Linux feature models are reference cases
in the configurable systems’ community, led us to a different
choice than our predecessors [29]: instead of removing these
intractable MIS cases and missing out on (some) reference
models, we chose not to use MIS for feature models in our
experiments. This threat to validity is discussed in Section VI.

E. Reproducibility

We provide a Git repository with all feature models of the
benchmarks, Python scripts to execute experiments, Python
scripts to compute plots, figures, and statistics of this paper as
well as additional ones, and instructions to reuse our work:

https://github.com/diverse-project/samplingfm

III. RESULTS

A. RQ1 (scalability and execution time)

1) Reproduction of [29]: Though comprehensive results
can be found online in our repository, we do not report here the
detailed performance results for the non-feature model bench-
marks. They are indeed very similar to the ones published in
the previous studies. In particular, we reproduce the fact that
UniGen was not able to scale for some SAT instances. Another
interesting phenomenon is that UniGen never produces more
than a 10th of the samples produced by QuickSampler (we
have tried to produce more samples than reported in [29]).

2) Results on feature model benchmarks.: The first notice-
able fact is that UniGen was not able to produce samples
for any of the feature model benchmarks in the allowed time
limit. This can in most cases be explained by the fact that
feature model benchmarks are in general much larger than the
previous benchmarks used, and therefore imply a substantial
overhead during the algorithm initialization and for solving
hashing clauses. Interestingly, there are some feature model
benchmarks which are comparable in size to their non-feature
model counterparts. One of them is the toybox feature
model, which has 544 variables and 1,020 clauses. Using MIS,
we were able to compute a minimal independent support of
size 64. Given this independent support, UniGen was not able
to compute a single sample in 24 hours. In comparison, the
ProcessBean.sk_8_64 also has an independent support
of size 64, 4,768 variables, 14,458 clauses, and UniGen can
compute several thousand samples for this benchmark. Of
course, size metrics do not provide an accurate account of
a formula’s intrinsic hardness, but these results clearly show
that UniGen does not scale well enough to tackle complex
feature models.

On almost all feature model benchmarks, QuickSampler
is able to produce 1 million samples in less than one hour.
On 4 instances, namely embtoolkit, freetz, and the
two linux kernel representations, QuickSampler runs out of
memory. Manual inspection revealed that QuickSampler is
in fact able to produce samples for these benchmarks, but
crashes before outputing them to a file, making their validation
impossible. Table I shows the detailed performance results on
a selection of feature model benchmarks. The first column
shows the benchmark’s name, the next three columns show
formula metrics (number of variables, clauses and solution).
The number of solutions were computed using SharpSAT [39]
with a time limit of 5 minutes, which was not always sufficient
to obtain a result. The last 3 columns show QuickSampler’s
performance measures:

• Samples is the number of samples generated;
• Valid is the proportion of generated samples which turned

out to be correct after validation;
• Time/sample (tq ∗ (µs)) is the time elapsed per generated

valid sample. This time is calculated as the ratio between
the number of valid samples and the sum of both the
generation time and the validation time.

These numbers were obtained without the use of independent
support. However, we expect them to be similar with their
use, since most of the time of QuickSampler is spent on
sample validation, which is virtually unaffected by the use
of independent supports. The results show QuickSampler’s
good scalability (it is able to produce around one valid sample
per millisecond on most feature model benchmarks), which is
largely due to its heuristic nature: the overhead of dealing
with large benchmarks is low. Figure 1 depicts a boxplot
showing this trend: the median time is 1.1 millisecond, closed
to the first and third quartile. There are some outliers (see
the violin plot of Figure 1) that can be classified in two
categories: (1) very low execution time (JHipster: 84.4
nanosecond and toybox2: 59.2 nanosecond); (2) very high
execution time (Linux 2.6.28.6-icse11, buildroot,
and coreboot that take around 30 millisecond).

In practice, the majority of the samples produced by Quick-
Sampler turn out to be valid. Figure 2 shows that the median
is 0.74, closed to the first quartile (0.68) and third quartile
(0.78). There are some outliers: on some benchmarks, such
as buildroot, the results show a very low proportion of
valid samples, but this is in most case due to the validation
process timing out, which has the effect of considering every
unchecked sample as invalid. Hence such outliers are due to
our experimental measurements and can be ignored. However
there are two remaining outliers for which the validation
timeout did not occur: the JHipster and fiasco feature
models for which QuickSampler has a remarkably low success
rate (resp. 0.118 and 0.047). We recall that the Valid ratio
has no incidence on the quality of the sample since after the
validation step, only valid solutions are kept in the sample.
Our results simply show that the heuristic of QuickSampler
is effective in general but can also have difficulties for some

4

https://github.com/diverse-project/samplingfm

TABLE I
PERFORMANCE EVALUATION RESULTS FOR QUICKSAMPLER (WE SHOW ONLY AN EXCERPT OF THE 128 FEATURE MODELS)

Benchmark Vars Clauses Solutions Samples Valid tq ∗ (µs)
JHipster 45 104 26256 1001212 0.118 84.4
mpc50 1213 3728 3.16818e122 1006608 0.823 982.2
pc i82544 1259 3179 1.83678e127 1159521 0.872 1014.6
refidt334 1263 3140 2.94575e134 1104609 0.731 1212.7
dreamcast 1252 3168 1.09233e123 1127845 0.775 1117.7
XSEngine 1260 3803 2.04657e133 1174443 0.656 1266
aim711 1264 3873 1.82286e127 1107607 0.771 1103.2
p2106 1249 3824 3.71280e124 1028172 0.763 1096.9
integrator arm9 1267 50606 4.05835e129 1056238 0.847 1916.6
uClinux-config 11254 31637 7.78028e417 1149017 1 11548.7
toybox 544 1020 1.44991e17 1021556 0.895 59.3
coreboot 12268 47091 1.40174e94 1149017 0.144 30019.9
busybox-1.18 6796 17836 8.49902e216 1149017 0.725 5098.2
axTLS 684 2155 4.28726e20 1098865 0.386 581.9
2.6.28.6-icse11 6888 343944 N.A. 1089245 0.13 31766
fiasco 1638 5228 3.58108e14 1080270 0.047 9715.6
uClinux 1850 2468 1.62962e91 1149017 1 358.9
toybox2 544 1020 1.44991e17 1129007 0.892 59.2
buildroot 14910 45603 N.A. 1085562 0.14 31226.5
ecos-icse11 1244 3146 4.97468e125 1173038 0.816 987.5
freebsd-icse11 1396 62183 8.38866e313 1152001 0.402 8228.4

900

1000

1100

1200

1300

1400

tq
* (

tim
e

in

s p
er

 v
al

id
 sa

m
pl

e)

(a) Time/sample (box plot, without outliers)

5000

0

5000

10000

15000

20000

25000

30000

35000

tq
* (

tim
e

in

s p
er

 v
al

id
 sa

m
pl

e)

(b) Time/sample (violin plot, with outliers)

Fig. 1. Time (in µs) per valid sample for QuickSampler

feature model instances.

UniGen is not able to produce samples for any of
the feature model benchmarks (except the smallest one,
JHipster) and thus cannot be used in the context of large
configurable systems. QuickSampler does scale and is
able to produce one valid sample per millisecond on most
feature models. In general, the heuristic of QuickSampler
is effective to select valid configurations, but can also
exhibit low valid ratios for some feature models.

B. RQ2 (uniformity)

1) Replication of [29] and limitations of uniformity as-
sessment: In previous work [29], the quality of the sample
distribution is estimated by generating a large number of
samples on a given benchmark, and counting how many times

each possible solution was generated. Solutions are grouped
according to how many times they are generated, and the
size of each obtained group is measured. The results are then
compared to those obtained by performing the same opera-
tions on the output generated by a uniform random number
generator. The main limitation of this estimation method is
that it requires the samplers to generate at least 4 times as
many samples as the used benchmark has solutions for the
results to be statistically significant. For the feature model
benchmark, generating as many benchmarks is almost never
possible, because the number of solutions routinely reaches
1050 and more (see column Solutions in Table I). For the same
reason, we cannot perform standard statistical tests, such as the
Pearson Chi-squared test.

Another drawback of this approach is that in order to com-
pare two samplers, the same number of samples has to be used
for both. This is generally achieved by sub-sampling uniformly

5

0.0

0.2

0.4

0.6

0.8

1.0

Va
lid

 (p
ro

po
rti

on
 o

f v
al

id
 sa

m
pl

es
)

Fig. 2. Proportions of valid samples (QuickSampler)

from the larger of the two set of samples generated, but
sub-sampling affects the size of the grouping later calculated
and make them look closer to those obtain from a uniform
generator. To show this, we had QuickSampler compute 5
million samples on the non-feature model benchmarks. We
then successively sub-sampled 1 million and 500 thousand
samples from this sample set. For each subset, we draw
the following curve (in Figure 3): the x-axis represents the
number of times each possible solution was generated and
on the y-axis is how many samples were generated x times.
On each graph we also show the results obtained from a
uniform random number generator. On the first graph we also
show the curve obtained from UniGen’s samples on the same
benchmark. It is clear that sub-sampling has an impact on the
shape of the curve, making it closer to uniformity.

Therefore, we have opted for another measure to estimate
the quality of sample distribution: the deviation between the
frequencies of individual features evaluated to true in the
samples. If φ is a SAT formula, we denote #SAT (φ) the
number of solutions to φ, and given a solution s, we say that
a variable v appears in s if it evaluates to true in this solution.
We can calculate the frequency of appearance of v in solutions
to φ as:

fth(v) =
#SAT (φ ∧ v)
#SAT (φ)

Given a set of sample solutions to φ, we can also observe the
frequency of v in that set, as being the proportion fobs(v)
of solutions in the set in which v evaluates to true. We
compute the deviation between the theoretical frequency and
the observed one as:

dev(v) = 100 ∗ |fth(v)− fobs(v)|
fth(v)

Figure 4 shows for each feature, the deviation between
the observed and theoretical frequency for the non-feature
model benchmarks, sorted in ascending order. The lower green
horizontal line shows the 10% threshold, below which we

consider a deviation as very low, and the upper red line
shows the 50% threshold, above which we consider a deviation
as very high. Overall, our results confirm the relatively low
deviation between the theoretical and observed frequencies for
QuickSampler, as reported in [29]. The frequency deviations
of UniGen are in line with the theoretical properties. More-
over, our frequency-based method also reveals insights that
could not been visualized with the sub-sampling method. For
instance, in Figure 5, it is clear that QuickSampler is not uni-
form (whereas the original histogram, based on subsampling,
suggests QuickSampler is very close to uniform behavior).

2) Results on feature model benchmarks: We recall that
UniGen is not able to produce samples out of feature models
(see RQ1) and we can only report frequency results of Quick-
Sampler. Figure 6 presents the deviations for QuickSampler
for a subset of our benchmark. We observe that deviations
frequently go above the 50% threshold and can be as high
as 800%. For axTLS (resp. toybox, uClinux) around
90% (resp. 80%, 95%) of features are above the red line
(50% threshold). That is, the vast majority of features have
large frequencies deviation w.r.t. uniform distribution. The
frequency deviations of ecos and aim711 are less severe
compared to axTLS, toybox, and uClinux but remain
much more important than with non-feature model instances.

We also observe that for some feature models, features may
have a non-zero theoretical frequency (fth > 0) but are never
picked in the samples (fobs = 0). In theory, QuickSampler
always produces at least one sample where each feature is
present (and one where it is absent) if such a solution exists.
But practically, this relies on the termination of asynchronous
solver calls for every variable. When the first solver calls ter-
minate, QuickSampler can begin generating samples. Hence,
the required number of samples may be generated before all
the solver calls terminate, which explains why some variables
are never present in the produced samples. This can be a
problem if the samples are used directly because some features
will be ignored and the potential bug(s) associated to them may
be missed. If used as seeds for evolutionary algorithms, while
there remains chances for these features to be finally selected
after recombination of solutions, these samples may hamper
the initialization phase.

QuickSampler does not generate uniform samples out
of real-world feature models; the difference with a uni-
form distribution is much more severe than with non-
feature models (as in [29]). The majority of features
exhibit frequencies that deviate above 50%. Some features
have up to 800% frequencies differences or are never part
of the sample (despite their theoretical presence).

IV. CASE STUDY: JHIPSTER

To derive further insights on the relevance of QuickSampler
samples for testing, we consider the feature model of JHipster
used in [25] (45 features and 26,256 configurations, see
Table I). JHipster is an open-source, industrially used generator

6

(a) No sub-sampling (b) 1 million sub-samples (c) 500 thousand sub-samples

Fig. 3. Effect of sub-sampling on uniformity estimation

(a) QuickSampler (b) Unigen

Fig. 4. Frequency deviations for case110 (a non-feature model instance)
showing the non-uniformity of QuickSampler

Fig. 5. Frequency deviations for s820a_15_7_qs (a non-feature model
instance) showing the non-uniformity of QuickSampler. We do not depict
UniGen results since it is again closed to perfection with negligible deviations,
as in Figure 4

for developing Web applications. Prior work [25] tested all
configurations of JHipster and found that 35.70% configura-
tions fail. Importantly, features and feature interactions causing
the bugs have been identified. With the JHipster case, we
have an interesting opportunity to investigate the quality of the
sampling w.r.t. bug-finding ability. This section thus addresses
RQ3.

TABLE II
FEATURES INVOLVED IN JHIPSTER BUGS AND THEIR FREQUENCIES

DEVIATIONS IN QUICKSAMPLER

feature fobs fth dev rdev

MongoDB 0.039 0.018 116.0 116.0
Uaa 0.248 0.171 45.0 45.0
ElasticSearch 0.408 0.485 16.0 -16.0
Hibernate2ndLvlCache 0.573 0.647 11.0 -11.0
SocialLogin 0.237 0.268 11.0 -11.0
Docker 0.545 0.500 9.0 9.0
MariaDB 0.302 0.324 7.0 -7.0
Gradle 0.518 0.500 4.0 4.0
Monolithic 0.651 0.675 4.0 -4.0
EhCache 0.313 0.324 3.0 -3.0

As the JHipster feature model is manageable (only 26,256
configurations), both UniGen and QuickSampler can sample
a statistically significant number of samples. Therefore we
can plot and exploit the histogram that counts how many
times each configuration (SAT solution) has been sampled.
Figure 7 shows that UniGen is indistinguishable from uniform,
but QuickSampler is not close to uniform behavior. In the
following, we consider UniGen as uniform (thus having same
bug-finding ability as random uniform sampling study of
JHipster [25]) and therefore focus only on QuickSampler
ability to find bugs.

To better understand the difference with a uniform distribu-
tion, we apply our feature frequency methods (see Figure 8).
Beyond the clear difference with UniGen, for QuickSampler,
we can notice that 18 features have above 10% frequencies
deviations and 5 features deviate above 50%:
• dev(MongoDB) = 116%
• dev(Cassandra) = 107%
• dev(UaaServer) = 94%
• dev(Server) = 87%
• dev(MicroserviceApplication) = 84%

A. RQ3 (relevance for testing)

Table II lists all features involved in the 6 interaction
faults that cause 99% of failures. We also report rdev for
showing the positive or negative frequencies deviations for

7

(a) axTLS (b) toybox (c) uClinux

(d) ecos (e) aim711

Fig. 6. QuickSampler frequency deviations on feature model benchmarks

Fig. 7. JHipster feature model: comparison of UniGen, QuickSampler and
ground truth (uniform)

QuickSampler. For instance, the frequency of Uaa in Quick-
Sampler samples is greater than the ground truth (+45%) while
MariaDB is less frequent as it should be (-7%).

Specifically, for the different configuration bug reported
by Halin et al. [25], we have: MOSO, the 2-interaction of

(a) QuickSampler (b) UniGen

Fig. 8. Frequency deviations on the JHipster Feature Model

MongoDB and SocialLogin (0.49% out of 35.70% of
failures): It is the less important source of bug. MongoDB
is much more present than it should be (+116%), which has
a positive incidence of the finding of this bug. It should be
noted that the theoretical frequency of MongoDB is very low,
since this feature appears in a very few configurations. MAGR,
the 2-interaction of MariaDB and Gradle (16.179% out
of 35.70% of failures): It is the most severe source of bug.
Yet MariaDB is under-represented (-7%) in QuickSampler
samples while being important and present in 32% of con-
figurations. UADO, the 2-interaction of Docker and Uaa
(6.825 % out of 35.70% of failures). Both features are over-
represented (resp. +45% and +9%). As a result, there are more
chances to find this fault. OASQL, the 2-interaction of Uaa
and Hibernate2ndLvlCache (2.438 % out of 35.70%

8

of failures). Unfortunately Hibernate2ndLvlCache is
under-represented (-11%) despite a high presence in all
configurations (65%). UAEH, the 2-interaction of Uaa and
EhCache (2.194% out of 35.70% of failures). EhCache is
sightly under-represented (-3%). MADO, the 4-interaction of
MariaDB, Monolithic, Docker and ElasticSearch
(5.59% out of 35.70% of failures). ElasticSearch is
under-represented (-16%, only 40% of appearance versus 48%
theoretically), as well as MariaDB and Monolithic.

B. Practical implications

In practice, executing and testing a JHipster configuration
has a significant cost in resources and time (10 minutes
on average per configuration). The exhaustive testing of all
configurations at each commit or release is not an option.
Developers and maintainers of JHipster rather have a limited
testing budget at their disposal (i.e., a dozen of configura-
tions) [25]. As a result, we cannot take the whole sample
of QuickSampler or UniGen and we rather need to take an
excerpt of this sample. Various sub-sampling strategies can
be considered [24], [40] either based on random, t-wise, etc.
Without an uniform distribution, the sub-sampling process will
operate over a non-representative configuration set, which may
incidentally promote or underestimate some features. Overall,
it is an open issue how to effectively sub-sample out of UniGen
and QuickSampler solutions.

The sample of QuickSampler is not representative of
the real features’ distribution of JHipster. Yet QuickSam-
pler is fortunate to over-represent Uaa (a feature involved
in 3 interaction faults) while other large deviations have
luckily no incidence on bug finding.

V. DISCUSSION

A. Performance (RQ1)

Our experiments allow us to derive a first result on the
applicability of the tested uniform random sampling to feature
models. First, it was not possible to obtain any set of samples
for our feature model benchmarks (JHipster excepted) with
uniformity guarantees through UniGen. The exact impact of
minimal independent support on UniGen’s ability to produce
samples for configurable systems has to be fully explored in
future work, while our experiments shown that there are at
least some cases in which it was not helpful. We noticed that
the size of the independent support is not necessarily a good
indicator for the sampling task. In contrast, QuickSampler
produces samples quickly on all our models, for the largest
“Linux” ones, the tool would need a slight modification to
output samples as a stream to ease serialization and SAT
validity tasks in order to avoid observed timeouts.

B. Uniformity (RQ2 and RQ3)

On the only feature model on which UniGen was applicable
it achieved its uniformity promises. QuickSampler does not
offer such promises and it was indeed the case on our feature

models. While the deviation remains modest for small models,
it raises quickly above 50% for larger ones. Thus, we have to
give up completely on uniformity in these cases. Additional
research is needed to determine if such samples hinder the
performance of additional sampling algorithms. The JHipster
case revealed that QuickSampler may over represent some
features involved in rare bugs and ignore ones in more frequent
ones.

Our benchmarks also challenged the measure of uniformity
itself. With such large number of solutions for feature model
formulas, we had to define new heuristics to approximate
uniformity since sub-sampling was misleading. Ours was
based in individual frequencies of enabled feature occurrence,
which is both scalable and exploitable by test engineers and
uniform tool samplers’ developers.

C. Summary: Are We There Yet?

To summarize, there is still some way to go before we can
benefit from both fast and uniform random sampling for large
feature models. In short: we are not there yet. A theoretical
investigation should be conducted on UniGen to understand
why it fails on some feature model formulas that have similar
characteristics as some non-feature models. We also need to
understand the poor validity performance of QuickSampler on
some cases. We believe that our experiments form a first step
to address such questions both in the configurable systems and
SAT solving communities.

VI. THREATS TO VALIDITY

Internal Validity: A number of issues might threaten the
internal validity of our study. First, we did not use minimal
independent support (MIS) as inputs to QuickSampler and
UniGen. The threat mainly applies to UniGen since Quick-
Sampler is able to compute samples anyway. It would be
surprising that MIS has an effect on the sampling distribution,
since the algorithm of QuickSampler does not depend on
it; MIS is essentially exploited to further enhance execution
time. Though MIS can be computed for most of the feature
models, it was impossible to compute or to validate it for
some of the most important feature models. MIS also did not
improve UniGen’s scalability on at least 24 feature models.
This led us to abandon MIS for feature model benchmarks
given the importance of several of these models. MIS is not a
strict requirement of UniGen (neither QuickSampler) but we
acknowledge that its usage deserves an in-depth and future
attention.

Second, bugs or misuse of QuickSampler or UniGen might
cause wrong results. We mitigate this issue by first reproducing
prior results [29]. We compared the results and found no
significant difference w.r.t. execution time, including mag-
nitude order and timeouts. We also successfully reproduced
the histogram and properties of the sample distributions as
reported in [29]. It allows one to identify some weaknesses
of the method used for assessing uniformity. In addition, we
contacted the first author of UniGen to verify our settings when
processing feature models.

9

Construct Validity: Our way of assessing uniformity forms
a construct validity threat. It has been defined for cases when
the distribution of solutions cannot be assessed directly by
common statistical methods since the total number of solutions
is too large. We believe that this approximation of uniformity
distribution assessment is also for interest to study bug finding
ability when the samples are used for testing purposes.

External Validity: There are some threats that may affect
the generalizability of our study. The benchmarks might not be
representative of feature models used in practice. To mitigate
this issue, we tested 128 real-world feature models with a
varying number of features and constraints that have been
used in prior studies [8], [30], [31]. We also include the
JHipster feature model that comes with bugs associated to all
configurations [25]. Results obtained by Halin et al. on the
efficiency of an (ideal since a posteriori) uniform sampling
technique and our preliminary results on the efficiency of
QuickSampler need to be confirmed for other studies.

VII. RELATED WORK

To the best of our knowledge, we are the first to empir-
ically assess uniform or quasi-uniform SAT-based sampling
techniques to test configurable systems. Our work therefore
resides at the intersection of researches on SAT solving and
configurable systems testing.

Uniform Sampling of SAT formulas: We selected UniGen
[27], [28] and QuickSampler [29] because they implemented
different tradeoffs in terms of uniformity and performance,
these two objectives being conflicting [41]. Apart from the
hashing techniques using in UniGen and by other authors [35],
Monte-Carlo methods have been used (e.g., [42]). They do
provide guarantees on uniformity but they are sometimes too
slow in practice.

Other approaches focus on performance as their top priority
while offering some strategies to improve uniformity. For
example, Wei et al. combined random walks with simulated
annealing to “correct” uniformity of the samples [33]. Kitchen
et al. combines different statistical methods to tend towards
uniformity at each sampling step [34]. QuickSampler selects
values for variables as uniformly as possible and partially fixes
the validity of the solution afterwards.

Configurable Systems Sampling: As outlined by a recent
survey by Varshosaz et al. [40], many artifacts of configurable
systems have been considered for sampling, such as feature
models, code, tests, etc. The authors also indicate that feature
model remains the de facto standard input for many sampling
techniques and note a certain prominence of greedy and
metaheuristic-based algorithms, which are heavy consumers
of random samples. We have discussed these techniques in
Section I. Unfortunately the impact of random sampling on
resulting samples is not discussed in this survey, the authors
just mentioned that the non-determinism inherent to these
techniques can be an issue in a regression testing scenario.

Medeiros et al. compared 10 sampling algorithms and also
found that random sampling is difficult to combine with other
techniques because it detects different faults in different runs

[24]. Yet, they also found that it was able to find at least
66% of the faults. Halin et al. demonstrated that uniform
random sampling forms a strong baseline for faults and failure
efficiency on the JHipster case [25]. We need additional cases
with enumerable configuration spaces (like the BLAST model
studied by Cashman et al. [43]) to confirm or refute this result.

VIII. CONCLUSION

Can software developers and researchers employ uniform
samplers for testing configurable systems? Our empirical study
on 128 real-world feature models showed that we are not
there yet. State-of-the-art algorithms, namely UniGen and
QuickSampler, are respectively either not able to produce
any sample (UniGen only succeded on the smallest of our
128 feature models, JHipster) or unable to generate uniform
samples (deviations observed up to 800% with QuickSampler).
Our empirical results have several consequences.

At the current state, we cannot investigate whether uniform
sampling is a cost-effective strategy when testing configurable
systems. It remains a striking question whether configura-
tion bugs, due to (faulty interactions between) features, are
uniformly distributed in real-world configurable systems. Re-
searchers simply do not have at their disposal a scalable and
effective tool for exploring and comparing this solution with
other sampling algorithms (based on t-wise or dissimilarity
criterion). For instance, without a uniform sampler, a random
baseline may be impossible to instrument.

In the quest for an ideal uniform random sampler, the
first step is to understand the reasons for the poor perfor-
mance of the existing tools. Minimal independent supports and
structural metrics of the formulas do not appear to be very
good indicators of sampling hardness. Other metrics should
be provided. Then, a first direction is to scale up UniGen
that has the merit of providing strong theoretical guarantees
about the distribution. Another one is to have distributions
closer to uniformity with QuickSampler. The heuristic used
by QuickSampler suggests a tradeoff between uniformity and
diversity. There remains the question of how uniformity and
diversity correlate in practice, and what are their respective
benefits as coverage criteria to test configurable systems. In
particular, it would be interesting to characterize this tradeoff
with respect to diversity-based approaches (e.g., [15], [16]).

In practice, we cannot test billions of configurations since
the cost is too prohibitive; developers rather have a budget of
a dozen (or a hundred) of configurations. Another research
direction is thus to efficiently reduce the huge sample of
QuickSampler or UniGen. Several sub-sampling strategies
can be applied over the original sample. Yet a non-uniform
sample can have undesirable effects and ruin the sub-sampling,
since some features are never or infrequently included. More
research is definitely needed to improve the current situation.

REFERENCES

[1] K. Pohl, G. Böckle, and F. J. van der Linden, Software Product Line
Engineering: Foundations, Principles and Techniques. Springer-Verlag,
2005.

10

[2] S. Apel, D. Batory, C. Kästner, and G. Saake, Feature-Oriented Software
Product Lines: Concepts and Implementation. Springer-Verlag, 2013.

[3] K. Kang, S. Cohen, J. Hess, W. Novak, and S. Peterson, “Feature-
Oriented Domain Analysis (FODA),” SEI, Tech. Rep. CMU/SEI-90-TR-
21, Nov. 1990.

[4] D. Batory, D. Benavides, and A. Ruiz-Cortés, “Automated analysis
of feature models: Challenges ahead,” Communications of the ACM,
December 2006.

[5] P.-Y. Schobbens, P. Heymans, and J.-C. Trigaux, “Feature diagrams:
A survey and a formal semantics,” in RE ’06: Proceedings of the
14th IEEE International Requirements Engineering Conference (RE’06).
Washington, DC, USA: IEEE Computer Society, 2006, pp. 136–145.

[6] D. Benavides, S. Segura, and A. Ruiz-Cortes, “Automated analysis of
feature models 20 years later: a literature review,” Information Systems,
vol. 35, no. 6, 2010.

[7] M. Mendonca, A. Wasowski, and K. Czarnecki, “Sat-based analysis
of feature models is easy,” in Proceedings of the 13th International
Software Product Line Conference, ser. SPLC ’09. Pittsburgh, PA,
USA: Carnegie Mellon University, 2009, pp. 231–240. [Online].
Available: http://dl.acm.org/citation.cfm?id=1753235.1753267

[8] J. H. Liang, V. Ganesh, K. Czarnecki, and V. Raman, “Sat-based
analysis of large real-world feature models is easy,” in Proceedings
of the 19th International Conference on Software Product Line, ser.
SPLC ’15. New York, NY, USA: ACM, 2015, pp. 91–100. [Online].
Available: http://doi.acm.org/10.1145/2791060.2791070

[9] D. Kuhn, D. Wallace, and A. Gallo, “Software fault interactions and
implications for software testing,” IEEE Transactions on Software En-
gineering, vol. 30, no. 6, pp. 418–421, jun 2004.

[10] R. E. Lopez-Herrejon, S. Fischer, R. Ramler, and A. Egyed, “A
first systematic mapping study on combinatorial interaction testing for
software product lines,” in 2015 IEEE Eighth International Conference
on Software Testing, Verification and Validation Workshops (ICSTW).
IEEE, 2015, pp. 1–10.

[11] M. F. Johansen, Ø. Haugen, and F. Fleurey, “An algorithm for generating
t-wise covering arrays from large feature models,” in Proceedings of the
16th International Software Product Line Conference on - SPLC ’12
-volume 1, vol. 1. ACM, 2012, p. 46.

[12] M. Cohen, M. Dwyer, and Jiangfan Shi, “Constructing Interaction Test
Suites for Highly-Configurable Systems in the Presence of Constraints:
A Greedy Approach,” IEEE Transactions on Software Engineering,
vol. 34, no. 5, pp. 633–650, 2008.

[13] B. J. Garvin, M. B. Cohen, and M. B. Dwyer, “Evaluating improvements
to a meta-heuristic search for constrained interaction testing,” Empirical
Software Engineering, vol. 16, no. 1, pp. 61–102, 2011.

[14] F. Ensan, E. Bagheri, and D. Gašević, “Evolutionary Search-Based Test
Generation for Software Product Line Feature Models,” in Advanced
Information Systems Engineering: 24th International Conference, CAiSE
’12, J. Ralyté, X. Franch, S. Brinkkemper, and S. Wrycza, Eds.
Springer, 2012, pp. 613–628.

[15] C. Henard, M. Papadakis, G. Perrouin, J. Klein, P. Heymans, and
Y. L. Traon, “Bypassing the combinatorial explosion: Using similarity
to generate and prioritize t-wise test configurations for software product
lines,” IEEE Trans. Software Eng., 2014.

[16] M. Al-Hajjaji, T. Thüm, J. Meinicke, M. Lochau, and G. Saake,
“Similarity-based prioritization in software product-line testing,” in 18th
International Software Product Line Conference, SPLC ’14, Florence,
Italy, September 15-19, 2014, 2014, pp. 197–206. [Online]. Available:
http://doi.acm.org/10.1145/2648511.2648532

[17] J. Guo, J. H. Liang, K. Shi, D. Yang, J. Zhang, K. Czarnecki,
V. Ganesh, and H. Yu, “SMTIBEA: a hybrid multi-objective
optimization algorithm for configuring large constrained software
product lines,” Software & Systems Modeling, Jul 2017. [Online].
Available: https://doi.org/10.1007/s10270-017-0610-0

[18] A. S. Sayyad, T. Menzies, and H. Ammar, “On the value of user pref-
erences in search-based software engineering: a case study in software
product lines,” in ICSE’13, 2013, pp. 492–501.

[19] C. Henard, M. Papadakis, M. Harman, and Y. Le Traon, “Combining
multi-objective search and constraint solving for configuring large
software product lines,” in Proceedings of the 37th International
Conference on Software Engineering - Volume 1, ser. ICSE ’15.
Piscataway, NJ, USA: IEEE Press, 2015, pp. 517–528. [Online].
Available: http://dl.acm.org/citation.cfm?id=2818754.2818819

[20] E. Cantú-Paz, “On random numbers and the performance of genetic
algorithms,” in Proceedings of the 4th Annual Conference on Genetic

and Evolutionary Computation, ser. GECCO’02. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc., 2002, pp. 311–318. [Online].
Available: http://dl.acm.org/citation.cfm?id=2955491.2955546

[21] H. Maaranen, K. Miettinen, and M. M. Mäkelä, “Quasi-random
initial population for genetic algorithms,” Comput. Math. Appl.,
vol. 47, no. 12, pp. 1885–1895, Jun. 2004. [Online]. Available:
http://dx.doi.org/10.1016/j.camwa.2003.07.011

[22] A. de Perthuis de Laillevault, B. Doerr, and C. Doerr, “Money
for nothing: Speeding up evolutionary algorithms through better
initialization,” in Proceedings of the 2015 Annual Conference on
Genetic and Evolutionary Computation, ser. GECCO ’15. New
York, NY, USA: ACM, 2015, pp. 815–822. [Online]. Available:
http://doi.acm.org/10.1145/2739480.2754760

[23] I. Abal, C. Brabrand, and A. Wasowski, “42 variability bugs in the linux
kernel: A qualitative analysis,” in Proceedings of the 29th ACM/IEEE
International Conference on Automated Software Engineering, ser. ASE
’14. New York, NY, USA: ACM, 2014, pp. 421–432.

[24] F. Medeiros, C. Kästner, M. Ribeiro, R. Gheyi, and S. Apel, “A
comparison of 10 sampling algorithms for configurable systems,” in
ICSE’16.

[25] A. Halin, A. Nuttinck, M. Acher, X. Devroey, G. Perrouin, and
B. Baudry, “Test them all, is it worth it? assessing configuration
sampling on the jhipster web development stack,” Empirical Software
Engineering, Jul 2018. [Online]. Available: https://doi.org/10.1007/
s10664-018-9635-4

[26] A. Arcuri and L. Briand, “Formal analysis of the probability of in-
teraction fault detection using random testing,” IEEE Transactions on
Software Engineering, vol. 38, no. 5, pp. 1088–1099, Sept 2012.

[27] S. Chakraborty, K. S. Meel, and M. Y. Vardi, “A scalable and nearly
uniform generator of sat witnesses,” in International Conference on
Computer Aided Verification. Springer, 2013, pp. 608–623.

[28] S. Chakraborty, D. J. Fremont, K. S. Meel, S. A. Seshia, and M. Y.
Vardi, “On parallel scalable uniform SAT witness generation,” in Tools
and Algorithms for the Construction and Analysis of Systems TACAS’15
2015, London, UK, April 11-18, 2015. Proceedings, 2015, pp. 304–319.

[29] R. Dutra, K. Laeufer, J. Bachrach, and K. Sen, “Efficient sampling of
SAT solutions for testing,” in Proceedings of the 40th International
Conference on Software Engineering, ICSE 2018, Gothenburg, Sweden,
May 27 - June 03, 2018, 2018, pp. 549–559. [Online]. Available:
http://doi.acm.org/10.1145/3180155.3180248

[30] S. Krieter, T. Thüm, S. Schulze, R. Schröter, and G. Saake, “Propagating
configuration decisions with modal implication graphs,” in Proceedings
of the 40th International Conference on Software Engineering, ICSE
2018, Gothenburg, Sweden, May 27 - June 03, 2018, 2018, pp. 898–909.
[Online]. Available: http://doi.acm.org/10.1145/3180155.3180159

[31] A. Knüppel, T. Thüm, S. Mennicke, J. Meinicke, and I. Schaefer, “Is
there a mismatch between real-world feature models and product-line
research?” in Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering, ESEC/FSE 2017, Paderborn,
Germany, September 4-8, 2017, 2017, pp. 291–302. [Online]. Available:
http://doi.acm.org/10.1145/3106237.3106252

[32] M. Raible, The JHipster mini-book. C4Media, 2015.
[33] W. Wei, J. Erenrich, and B. Selman, “Towards efficient sampling:

Exploiting random walk strategies,” in AAAI, vol. 4, 2004, pp. 670–676.
[34] N. Kitchen and A. Kuehlmann, “Stimulus generation for constrained

random simulation,” in Proceedings of the 2007 IEEE/ACM interna-
tional conference on Computer-aided design. IEEE Press, 2007, pp.
258–265.

[35] S. Ermon, C. P. Gomes, A. Sabharwal, and B. Selman, “Embed and
project: Discrete sampling with universal hashing,” in Advances in
Neural Information Processing Systems, 2013, pp. 2085–2093.

[36] S. Ermon, C. P. Gomes, and B. Selman, “Uniform solution sampling
using a constraint solver as an oracle,” arXiv preprint arXiv:1210.4861,
2012.

[37] A. Ivrii, S. Malik, K. S. Meel, and M. Y. Vardi, “On computing minimal
independent support and its applications to sampling and counting,”
Constraints, vol. 21, no. 1, pp. 41–58, 2016.

[38] M. Thurley, “sharpsat–counting models with advanced component
caching and implicit bcp,” in International Conference on Theory and
Applications of Satisfiability Testing. Springer, 2006, pp. 424–429.

[39] ——, “sharpsat – counting models with advanced component caching
and implicit bcp,” in Theory and Applications of Satisfiability Testing -
SAT 2006, A. Biere and C. P. Gomes, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2006, pp. 424–429.

11

http://dl.acm.org/citation.cfm?id=1753235.1753267
http://doi.acm.org/10.1145/2791060.2791070
http://doi.acm.org/10.1145/2648511.2648532
https://doi.org/10.1007/s10270-017-0610-0
http://dl.acm.org/citation.cfm?id=2818754.2818819
http://dl.acm.org/citation.cfm?id=2955491.2955546
http://dx.doi.org/10.1016/j.camwa.2003.07.011
http://doi.acm.org/10.1145/2739480.2754760
https://doi.org/10.1007/s10664-018-9635-4
https://doi.org/10.1007/s10664-018-9635-4
http://doi.acm.org/10.1145/3180155.3180248
http://doi.acm.org/10.1145/3180155.3180159
http://doi.acm.org/10.1145/3106237.3106252

[40] M. Varshosaz, M. Al-Hajjaji, T. Thüm, T. Runge, M. R. Mousavi,
and I. Schaefer, “A classification of product sampling for software
product lines,” in Proceeedings of the 22nd International Conference
on Systems and Software Product Line - Volume 1, SPLC 2018,
Gothenburg, Sweden, September 10-14, 2018, 2018, pp. 1–13. [Online].
Available: http://doi.acm.org/10.1145/3233027.3233035

[41] S. Chakraborty, K. S. Meel, and M. Y. Vardi, “Balancing scalability
and uniformity in sat witness generator,” in Proceedings of the
51st Annual Design Automation Conference, ser. DAC ’14. New
York, NY, USA: ACM, 2014, pp. 60:1–60:6. [Online]. Available:
http://doi.acm.org/10.1145/2593069.2593097

[42] V. Gogate and R. Dechter, “A new algorithm for sampling csp solutions
uniformly at random,” in Principles and Practice of Constraint Pro-
gramming - CP 2006, F. Benhamou, Ed. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2006, pp. 711–715.

[43] M. Cashman, M. B. Cohen, P. Ranjan, and R. W. Cottingham,
“Navigating the maze: the impact of configurability in bioinformatics
software,” in Proceedings of the 33rd ACM/IEEE International
Conference on Automated Software Engineering, ASE 2018, Montpellier,
France, September 3-7, 2018, 2018, pp. 757–767. [Online]. Available:
http://doi.acm.org/10.1145/3238147.3240466

12

http://doi.acm.org/10.1145/3233027.3233035
http://doi.acm.org/10.1145/2593069.2593097
http://doi.acm.org/10.1145/3238147.3240466

	Introduction
	Configurable Systems and Feature Models
	Sampling of Configurations
	Motivation & Problem Statement
	Contributions

	Study Design
	Research Questions
	UniGen and QuickSampler
	Input Feature Models
	Feature model benchmark properties
	Replication of DBLP:conf/icse/DutraLBS18

	Experimental Setup
	Frequency of features
	MIS

	Reproducibility

	Results
	RQ1 (scalability and execution time)
	Reproduction of DBLP:conf/icse/DutraLBS18
	Results on feature model benchmarks.

	RQ2 (uniformity)
	Replication of DBLP:conf/icse/DutraLBS18 and limitations of uniformity assessment
	Results on feature model benchmarks

	Case study: JHipster
	RQ3 (relevance for testing)
	Practical implications

	Discussion
	Performance (RQ1)
	Uniformity (RQ2 and RQ3)
	Summary: Are We There Yet?

	Threats to Validity
	Related Work
	Conclusion
	References

