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ABSTRACT

Aims. Solar photospheric footpoint motions can produce strong, localised currents in the corona. A detailed understanding of the
formation process and the resulting heating is important in modelling nanoflares, as a mechanism for heating the solar corona.
Methods. A 3D MHD simulation is described in which an initially straight magnetic field is sheared in two directions. Grid resolutions
up to 5123 were used and two boundary drivers were considered; one where the boundaries are continuously driven and one where
the driving is switched off once a current layer is formed.
Results. For both drivers a twisted current layer is formed. After a long time we see that, when the boundary driving has been
switched off, the system relaxes towards a lower energy equilibrium. For the driver which continuously shears the magnetic field
we see a repeating cycle of strong current structures forming, fragmenting and decreasing in magnitude and then building up again.
Realistic coronal temperatures are obtained.
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1. Introduction

The Sun’s corona is much hotter than its visible surface: the pho-
tosphere’s average temperature is 6000 K compared to over a
million K in the corona. Back in 1974, Levine (1974) proposed
a new theory for heating the corona involving the dissipation of
many tiny little current sheets, which built on the resistive insta-
bility ideas first proposed by Parker (1972). This heating theory
is better known today as nanoflare heating and was developed
in a series of papers by Parker (Parker 1987, 1988). Various ob-
servational papers (e.g., Krucker & Benz 2000; Parnell & Jupp
2000; Vekstein & Jain 2003) and theoretical papers (e.g., Cargill
1993; Cargill & Klimchuk 1997, 2004; Klimchuk & Cargill
2001) lend support to this idea, but there are still many open
questions. In particular, in Parker’s nanoflare heating theory the
strong, localised currents in the solar corona were produced by
the braiding of magnetic fields whose photospheric footpoints
are moved about by convective motions. Although there are
a multitude of magnetic features with a wide range of fluxes
(Schrijver & Zwaan 2000; Parnell et al. 2009) which are con-
tinuously emerging, moving, cancelling, fragmenting and coa-
lescing (Schrijver et al. 1997), it is unclear whether the braiding
motions envisaged by Parker really do occur.

Tangential discontinuities, or current sheets (current layers)
as they are better known, are regions where the gradient of the
magnetic field and, therefore, the electric currents are very large.
These currents may then dissipate due to a resistive instability,
leading to magnetic reconnection, which allows the field lines
to break and reconnect with some of the magnetic energy being
released as heat. An aim of this paper is to follow the formation
and break-up of current layers and investigate the flow of energy
from the footpoint motions into the magnetic field and, through
the conversion of magnetic energy, into heat in the regions of
strong current. This paper investigates the heating of the plasma
at the site of a single heating event.

It is well known that current layers can form at null
points in both two dimensions (e.g. Green 1965; Syrovatskiı̌
1971; Bungey & Priest 1995; Craig & Litvinenko 2005;
Fuentes-Fernández et al. 2011) and three dimensions (e.g.,
Rickard & Titov 1996; Pontin & Craig 2005; Pontin et al.
2007a,b; Masson et al. 2009; Priest & Pontin 2009; Al-Hachami
& Pontin 2010; Fuentes-Fernández & Parnell 2012, 2013). They
also develop at other topological features such as separators
(e.g., Lau & Finn 1990; Longcope & Cowley 1996; Priest et al.
2005; Haynes et al. 2007; Parnell et al. 2010a) and separatrix
surfaces (e.g., Priest et al. 2005; Mellor et al. 2005; De Moortel
& Galsgaard 2006a,b). However, they may also develop at ge-
ometrical features, such as quasi-separatrix layers (e.g., Priest
& Démoulin 1995; Démoulin et al. 1996; Aulanier et al. 2006;
De Moortel & Galsgaard 2006a,b; Wilmot-Smith & De Moortel
2007). Indeed, a considerable body of work also exists on the
formation and dissipation of current layers in initially simple
fields that have been driven in a variety of different ways through
shearing or rotating motions or through compressive motions
(e.g., Galsgaard & Nordlund 1996a; Browning et al. 2008; Hood
et al. 2009; Janse & Low 2009; Bhattacharyya et al. 2010; Huang
et al. 2010).

Recently, using reduced magnetohydrodynamics (MHD),
Rappazzo et al. (2007, 2008, 2010) have investigated the forma-
tion and evolution of current sheets and the cascade of energy to
small-scales. In their system which is continuously driven at the
photospheric boundary, they study the turbulent cascade of en-
ergy injected at large photospheric scales down to its dissipation
at numerous current layers at the small scale. In their simula-
tions, the energy equation is replaced by ∇⊥ ·u⊥ = 0. This means
there is no information about the thermodynamic response due to
any loss of magnetic energy. Here, we investigate the formation
and dissipation of a single current structure using full 3D MHD,
where energy is conserved if the resistivity η is greater than the
numerical dissipation.
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Gudiksen & Nordlund (2006) produced a model of the com-
plete solar atmosphere. They imposed an observed velocity pat-
tern on the photosphere and showed that all the Poynting flux
injected into the corona is dissipated. However, the scale of the
simulation meant that individual energy release sites were not
fully resolved and so it was not possible to identify the loca-
tions and nature of these energy release sites. Recently though,
a detailed analysis of the currents and reconnection in a numer-
ical model of flux emergence has revealed that a complex web
of separators through the current accumulations are responsible
for the reconnection of newly emerged flux into the solar atmo-
sphere with an overlying coronal magnetic field (Parnell et al.
2010b).

In this paper, we investigate the evolution of an initially
straight magnetic field, which has first been sheared analyti-
cally and relaxed to an equilibrium. This field is then stressed
by shearing motions on two boundaries similar to the models of
Longbottom et al. (1998) and Galsgaard & Nordlund (1996b).
Unlike in Longbottom et al. (1998), where a magnetic relaxation
technique is used, our experiments use a 3D MHD code. Due to
the considerable advancements in computing hardware over the
past 15 years, we run simulations with grid resolutions of 5123.
These are of a much higher resolution than the maximum of 1363

achieved in Galsgaard & Nordlund (1996b). Another difference
to Galsgaard & Nordlund (1996b) is that we do not consider
multiple random shearing of the uniform field, instead just two
shears are preformed in our experiments. These create a single
initial current layer, as opposed to the many transient current ac-
cumulations seen in Galsgaard & Nordlund (1996b), Rappazzo
et al. (2010) and Dahlburg et al. (2012). By looking closely at
the energetics of our single current layer system we investigate
whether the dissipation of such a layer provides sufficient energy
for either a single nanoflare on its own or many nanoflares when
the system is continuously driven. Hence, we aim to determine if
these types of current layers really can be the building blocks of
coronal heating and, if so, what the characteristics and properties
are of these building blocks.

The numerical code, basic equations and boundary condi-
tions used in this paper are described in Sect. 2. The model is
based on two shears; the first shear is described in Sect. 3 and
the second shear is discussed in Sect. 4. Subsequently the evolu-
tion of the magnetic field (Sect. 5), the energetics (Sect. 6) and
the current layer structure (Sect. 7) are analysed. A discussion of
the results and general conclusions can be found in Sect. 8.

2. Numerical model

The simulations are carried out using the 3D MHD, Lagrangian
remap, shock capturing code Lare3d (described in detail in
Arber et al. 2001). The Lagrangian step is a straight forward
predictor-corrector scheme and is fully 3D. After the Lagrangian
step, the variables are remapped, preserving conserved quanti-
ties, onto the original grid. Artificial viscosity is used to deal
with shocks and van Leer gradient limiters (van Leer 1979) are
applied at the remap step to preserve monotonicity, with the ap-
propriate shock heating applied to the energy equation. The nu-
merical grid is staggered so that: the density, pressure and spe-
cific internal energy density are defined at the cell centres; the
velocities at the vertices; the magnetic field components at the
cell faces and the current components along the edges of the nu-
merical cell. The staggered grid reduces the amount of averaging
required in some of the calculations, thus reducing the associated
error, and avoids the chequerboard instability. Further details of
the code can be found in Arber et al. (2001).

2.1. MHD equations

The resistive MHD equations are

∂ρ

∂t
= −∇.(ρu), (1)

Du
Dt
=

1
ρ

j × B − 1
ρ
∇P, (2)

∂B
∂t
= −∇ × E, (3)

ργ

(γ − 1)
D
Dt

(
P
ργ

)
= η j2, (4)

E + u × B = η j, (5)

∇ × B = μ0 j, (6)

where B is the magnetic field, j is the current density, u is the
velocity, E is the electric field, P is the plasma pressure, γ =
5/3 is the ratio of specific heats, ρ is the mass density, η is the
resistivity and μ0 is the magnetic permeability and t is time.
Lare3d runs with a normalised versions of these equations,

where the normalisation is through the choice of normalising
magnetic field B0, density ρ0 and length L0. Thus, we define di-
mensionless quantities as x = L0 x̂, B = B0B̂ and ρ = ρ0ρ̂. These
three basic normalising constants are then used to define the nor-
malisation for velocity, pressure, time, current density, electric
field and temperature through

v0 =
B0√
μ0ρ0
, P0 =

B2
0

μ0
, t0 =

L0

v0
,

j0 =
B0

μ0L0
, E0 = v0B0, T0 =

μ̃v20
R
, (7)

so that u = v0û, j = j0 ĵ, t = t0 t̂ and P = P0P̂. The magnetic
permeability is μ0 = 4π × 10−7 H m−1, μ̃ = 0.5 and the gas con-
stant is R = 8.3 × 103 m2 s−2 K−1. The resistivity is normalised
through

η̂ =
η

μ0L0v0
, (8)

or η0 = μ0L0v0. Since v0 is the normalised Alfvén speed this
means that η̂ = 1/S , where S is the Lundquist number.

Dropping all of the hats on the normalised variables the final
normalised resistive MHD equations, in Lagrangian form, are

Dρ
Dt
= −ρ∇.u, (9)

Du
Dt
=

1
ρ

(∇ × B) × B − 1
ρ
∇P, (10)

DB
Dt
= (B.∇)u − B(∇.u) − ∇ × (η∇ × B), (11)

Dε
Dt
= −P
ρ
∇.u + η

ρ
j2, (12)

where ε = P/ρ(γ−1) is the specific internal energy density. Note
that, if ∇.B = 0 is initially satisfied, it remains at round-off error
throughout.

We neglect gravity in our simulations and initially set ρ = 1
and ε = 0.01, corresponding to a gas pressure of 0.00667 and
plasma β of 0.013. The physical viscosity is set to zero, but
Lare3d also uses an artificial viscosity to deal with shocks and
includes the corresponding shock heating in (12).

In a solar context, if we choose the unit of magnetic field
strength B0 = 10 G, the electron number density ne = 5 ×
1014 m−3 and the unit of length L0 = 50 Mm (corresponding to
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a short loop over the top of a single supergranule cell), we have
normalising values of velocity v0 = 975.5 km s−1, time t0 = 51 s
and temperature T0 = 5.7 × 107 K.

2.2. Resistivity

The resistivity, η, is varied depending on the aim of the exper-
iment. In the solar corona, the typical values of η are in gen-
eral believed to be less than 10−10 m2s−1. Since such values are
not achievable in today’s numerical experiments, we choose the
smallest possible value of ηwe can. This is done by setting η = 0
and thus assuming an ideal evolution of the field. However, as
will be shown in Sect. 6, even in this case we still get some re-
connection. This is because when very fine scales are formed
numerical diffusion occurs which results in reconnection. The
consequences for the evolution and energetics of this numerical
dissipation of the current sheet are discussed in detail in Sect. 6.

We also perform a series of resistive MHD experiments in
which constant normalised η values of 10−5 and 10−4 are used.
These experiments are compared with those of the “ideal” MHD
runs in order to determine the effects of resistivity on the for-
mation of the current layer and to follow the energetics of the
system. The choice of η has implications for conservation of en-
ergy; too small and numerical dissipation can be important.

2.3. Boundary conditions

The equations are solved in a 3D Cartesian box, −w < x < w,
−w < y < w and −L < z < L. As in Longbottom et al. (1998), we
set w = 0.3, L = 0.5. We assume periodic boundary conditions
in both x and y (the sides of the box) and the boundary at z = ±L
is line-tied (the top and base of the box). The magnetic field
components, specific internal energy density and mass density
on the top and bottom boundaries have zero normal derivative,
i.e. ∂Bx

∂z =
∂By
∂z =

∂Bz

∂z =
∂ε
∂z =

∂ρ
∂z = 0. On the top and bottom

boundaries, the components of the velocities vy and vz are both
set to zero and vx is discussed later in Sect. 4.

3. Initial magnetic field: first shear

The initial magnetic field we will use in our numerical simu-
lations already includes a first shear and is analytically derived
below. However, we also discuss a numerical experiment imple-
menting the first shear in order to confirm our approach of start-
ing from the analytical magnetic field derived and to demonstrate
the limitations that should be imposed on the speed of the driver
to ensure the intended displacement.

We assume the initial magnetic field has been reached by
ideal MHD after a first sinusoidal shear. Such a state can be
derived analytically as shown below. This initial state was also
reached numerically by Longbottom et al. (1998). Assuming that
the field has been sheared and that is has relaxed to an equilib-
rium, we can model this by considering a flux function

A = [0, A(x, z), 0]. (13)

The first shear will be in the y direction, as in Longbottom et al.
(1998). So although there is no variation in the y direction, this
shear will introduce a y component to the magnetic field, so we
have

B =
[
−∂A
∂z
, By(A),

∂A
∂x

]
· (14)

The resulting force-free field satisfies the 2D Grad-Shafranov
equation

∇2A + By(A)
dBy
dA
= 0. (15)

Previous work, most notably that by Lothian & Hood (1989) and
Browning & Hood (1989), helps to simplify our model. Lothian
& Hood (1989) looked at the effect of a small twist on magnetic
flux tubes. For a cylindrical loop that is much longer than it is
wide, they showed that variations in the axial direction can be
neglected, apart from boundary layers near the two footpoints.
Hence, a theory was developed, based on straight loops with a
constant cross sectional area, to show that the main properties of
the loop could be explained by a simple 1D model rather than
solving the 2D Grad-Shafranov equation. Mellor et al. (2005)
used this idea to analytically verify the location of current accu-
mulations when two sources are moved relative to two stationary
sources. Using the approach of Mellor et al. (2005), we see that
the flux function can be approximated by a function of x alone.

Therefore, we assume an initial magnetic field of the form

B = [0, By(x), Bz(x)], (16)

where, in order to satisfy j × B = 0, we have

B2
y + B2

z = constant. (17)

As in Galsgaard & Nordlund (1996b), we choose a sinusoidal
shear profile for By(x), with Bz(x) chosen to satisfy Eq. (17).

B =

⎡⎢⎢⎢⎢⎣0, λ sin
(
πx
w

)
,

√(
1 + λ2 cos2

(
πx
w

))⎤⎥⎥⎥⎥⎦ · (18)

We can now calculate the footpoint displacement that generates
these magnetic field components. The exact profile of the first
shear is not important. All that is necessary is that the first shear
produces sheared fields. Thus, the first shear we actually impose
is given by∫ L

−L

dz
Bz(x)

=

∫ d

−d

dy
By(x)

which, after integrating, gives the footpoint displacement as

d =
LBy(x)

Bz(x)
· (19)

For our simulations, with L = 0.5 and By, Bz, as defined above,
the displacement is

d =
Lλ sin

(
πx
w

)
√(

1 + λ2 cos2
(
πx
w

)) � Lλ sin
(
πx
w

)
for λ < 1. (20)

As we shear on both the top and bottom boundaries, but in op-
posite directions, the overall maximum footpoint displacement
is D = 2max(d) = 2λL.

Hence, as we have L = 0.5 and w = 0.3, we find that the
maximum shear displacement is equal to the value of λ. The
particular λ used is given in the next section when implementing
the second shear.

Although we present results here with the first shear taken
analytically, we have also investigated it numerically by start-
ing from a vertical magnetic field (shear parameter λ = 0) and
implementing a driving profile of

vy(x, y,∓L) = ±V0

2
sin

(
πx
w

) (
tanh

(
t − t1

td

)
− tanh

(
t − t2

td

))
, (21)
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Fig. 1. Maximum value of By as a function of time with 1283 grid points.
Dashed curve is the ideal MHD case. Solid curve is η = 10−5, dot-
dashed curve is η = 10−4 and triple dot-dashed curve is η = 10−3.

where t1 is the time the driver ramps up, t2 is the time the driver
starts to reduce back to zero and td is the duration over which
the driver is ramped up or down. So the driving ramps up to a
maximum normalised speed of V0 before reducing back to zero.
This means that the footpoint displacement reaches a maximum
value and does not increase after that.

Importantly we note that the first shear does not excite any
instabilities and there is no evidence of tearing. The Lare code
has been used for reconnection studies and has successfully in-
vestigated tearing modes with both uniform and non-uniform re-
sistivity.

The dominant velocity component is given by vy =
V0z sin(πx/w))/L and this generates By = By(t) sin(πx/w). The
y component of the induction equation can be expressed as

∂By
∂t
=

V0

L
Bz − ηπ

2

w2
By. (22)

We can illustrate the evolution of the maximum of By as a func-
tion of time by taking Bz = B0 as a constant. If η = 0, then we
simply have the maximum of By given by

By(t) = B0
V0t
L
= B0

d
L
, (23)

where d = V0t is the distance the footpoints have been sheared
and from Eq. (20) our parameter λ = d/L. However, if η � 0,
then the solution (as also shown by Rappazzo et al. (2010)) is

By =
B0V0w

2

Lηπ2

(
1 − e−ηπ

2t/w2)
=

B0

Lη̃

(
1 − e−η̃d

)
, (24)

where η̃ = ηπ2/V0w
2. Figure 1 shows By(t) for three values of η

and for ideal MHD. Obviously, if η̃d is small, then solution (24)
agrees with the ideal evolution of (23). However, this assump-
tion that η̃d is small depends on the choices for both η and V0.
The comparison between the numerical solution from the Lare
code for the maximum of By as a function of time and the ap-
proximation given by Eq. (24) is exceptionally good.

During the first shear, there are no small length scales gen-
erated and the choice of the value of η is not restricted by the
need to resolve any strong current regions. Choosing η = 10−5,
we have conservation of total energy. With L = 0.5, w = 0.3
and V0 = 0.01, we have η̃ = 0.1 and, for t = 25, we have
d = 0.25. Hence, the maximum of By will be approximately
given by 0.45, rather than by 0.5 had the evolution been under
ideal MHD. However, for η = 10−3, the maximum of By = 0.17.
Thus, there is significant resistive slippage of the field lines for
this choice of η and the field is not as sheared as expected. In

fact, regardless of how long the shearing motions are applied the
maximum By can reach is 0.18 for η = 10−3.

One way to reduce this slippage, for a given footpoint dis-
placement, is to increase the value of V0. For example, increas-
ing V0 by a factor of 5 means that, for η = 10−3, By = 0.36 for
d = 0.25.

The choice for η is not too important for the first shear, and
a small value of η is possible, but, it is important for the second
shear as the transverse length scale, w, rapidly shortens when
the current layer starts to form. The value of η needed must be
increased (or the number of grid points increased significantly)
to ensure that the layer is resolved and that energy is conserved.
We show in Sect. 6.2 that η = 10−5 is not large enough to resolve
the dissipation within the current layer during the second shear
but that η = 10−4 is large enough for a 5123 grid.

Now the speed of the shearing motion becomes important
once η is chosen for current sheet resolution. Too small a value
for V0 and the evolution is not that intended from the driving
velocity. Driving does not necessarily continue to increase the
magnetic field components. Thus, we need to select V0 such that,
as we stated above, the various timescales are well separated.
Obviously on the Sun, the various timescales are well separated
and the observed driving velocity is slow enough for sequences
of equilibria but fast enough to exceed any resistive slippage.
However, since computational experiments have the value of η
limited by grid resolution, the speed at which the boundaries are
driven is chosen as a balance between computational time and a
more realistic driving velocity.

The results from the numerical simulation for the first shear
can be compared with our predicted form for By (Eq. (18)).
Using η = 10−5, we obtain an excellent agreement with the
equilibrium predictions of analytical studies such as Browning &
Hood (1989) and numerical studies such as Mellor et al. (2005)
and Rappazzo et al. (2010).

4. Drivers: second shear

Next we drive a second shear in the x direction by imposing vx on
the top and bottom boundaries (positive direction on the bottom
boundary and negative direction on the top boundary).

We choose the same type of sinusoidal shear profile as in
Sect. 3,

vx(x, y,∓L) = ± sin
(
πy

w

)
f (t), (25)

where f (t) is a function, discussed in detail below, determining
how fast and how much the field is sheared. The actual displace-
ment achieved with our second shear is found from integrating
vx in time and then multiplying by two, as the shear is in oppo-
site direction on the top and bottom boundaries. Hence, we have

D = 2 sin
(
πy

w

) ∫ t

0
f (τ)dτ. (26)

Many simulations, for example varying parameter values such as
the maximum first shear displacement, λ, have been carried out.
We find that, as expected, an increase in the magnitude of the
first shear, λ, results in a decrease in the magnitude of the second
shear required to produce a localised current layer. For the results
shown in this paper, we fix the value of λ at 0.5 and find that a
strong localised current layer is produced with a second shear of
magnitude 0.5. Note, in Longbottom et al. (1998) a first shear of
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magnitude 0.8 was used and a possible current sheet was formed
after a shear in the second direction of 0.6−0.7.

We run two sets of experiments which have the same spa-
tial profiles in vx, but they have different temporal dependen-
cies. The first set use driver 1, which continuously drives the
boundaries throughout the simulation, while the second set use
driver 2, which drives the boundaries up until a localised current
layer forms and then the driver is switched off.

4.1. Driver 1

Driver 1 has a velocity profile that ramps up to a constant nor-
malised value of 0.05, corresponding to a photospheric velocity
of roughly 50 km s−1, namely

vx(x, y,∓L) = ±0.025 sin
(
πy

w

) (
1 + tanh

(
t − t1

td

))
, (27)

where t1 and td are chosen to be 2.0 and 0.5, respectively.
This velocity is high compared with observed photospheric val-
ues, but is necessary due to computational time constraints.
Nonetheless, the velocity is still highly sub-Alfvénic and the
magnetic field evolves slowly through a sequence of equilibria.
Since the transit time for any waves propagating through the box
is about one, in our dimensionless variables, they have time to
settle down. Thus the evolution of the magnetic field, although
sped up, will be equivalent to that found for much slower, more
realistic, speeds. Mellor et al. (2005) and Galsgaard & Parnell
(2005) have shown that, provided the driving speeds are slower
than the Alfvén speed, it is the actual footpoint displacement that
is important for the formation of current layers. The hyperbolic
tanh profile is chosen so that we have a gradual rise up to our
constant value. This prevents any impulsive motion at t = 0.
Simulations with a slower shear were also performed. The max-
imum of By was found to match for both shears up to a displace-
ment of 0.2. The maximum of jz agreed up to a displacement
of 0.15 and, beyond that, the faster shear had a smaller maxi-
mum value. The maximum value of the maximum of jz, while
different for the two shears, occurred at the same displacement
of 0.22. So qualitatively, there was no significant different be-
tween the two cases.

As already mentioned, driver 1 continuously drives the field
at a constant value. Inevitably, whether we are using ideal or
resistive MHD, reconnection will occur (due to either numerical
diffusion or components of the induction equation). Since one of
our aims is to look at the formation of a current layer we want
to switch off the driver at some time so we stop driving the field
and stop injecting more energy. This enables us to investigate
the current layer. Hence, we run a series of experiments using a
second driver, driver 2.

4.2. Driver 2

The imposed boundary shearing motion in driver 2 has the same
spatial profile as driver 1, but now has a temporal variation so
that it rises to a maximum speed and then reduces back to zero,
similar to the driving profile implemented in Sect. 3.

vx(x, y,∓L) = ±0.025 sin
(
πy

w

) (
tanh

(
t − t1

td

)
− tanh

(
t − t2

td

))
,

(28)

where t1 and td are chosen to be 2 and 0.5, respectively, as for
driver 1. The value for t2 is chosen to be 7 after a consideration

Fig. 2. Contour plots of the logarithm of the current magnitude in the
mid-plane, z = 0, for normalised times 0, 5, 7 and 10 (a)–d), respec-
tively) for the experiment using driver 1, η = 0 and with a grid resolu-
tion of 5123. Red corresponds to a maximum of 400 while blue corre-
sponds to a minimum value of 1.

of the behaviour of the maximum current as shown below. Note
that if t2 is too small, no current layer forms and there is no
dynamic evolution.

5. Evolution of the magnetic field

As already explained, the uniform field is first sheared analyt-
ically in the x direction. A cut of the magnitude of the current
in the mid-plane, z = 0, shows that at this stage there is no real
accumulation of current within the domain Fig. 2a. The second
shear in the y direction, which is created by driving the top and
bottom boundaries, moves the field at an angle of 90◦ to the mo-
tion of the first shear. The evolution of the magnitude of the cur-
rent in the mid-plane for the experiment with driver 1 and η = 0
is illustrated in Fig. 2 for the normalised times 0, 5, 7 and 10. An
η of zero is chosen to allow the maximum possible current to be
obtained. The maximum current in this plane increases and starts
to accumulate along the y-axis (Fig. 2b) until, at t = 7, an intense
long thin current layer has formed (Fig. 2c). By t = 10, the cur-
rent layer has dramatically evolved (Fig. 2d): the main layer has
shortened and strong currents have formed in numerous smaller
regions throughout the domain. This behaviour is likely to be a
result of numerical reconnection occurring and will be discussed
later in Sect. 6.

The solid curve in Fig. 3 shows the maximum current in the
whole domain as a function of time for the same case shown
above (driver 1, η = 0). As we can see, the current in the domain
starts off fairly small and only rises slightly over the first 5 di-
mensionless time units, but then the maximum current begins to
rise sharply. This corresponds to the initial formation of the cur-
rent layer which can be seen at t = 7 in Fig. 2c. Since η = 0,
it is unlikely that this current structure is resolved. The maxi-
mum current dips slightly at about t = 8, before rising again. At
about t = 8 or 9 the strong current layer starts to fragment, as
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Fig. 3. Maximum current in the domain as a function of time for the
experiments with η = 0, a grid resolution of 5123 and using driver 1
(solid line and diamonds) and driver 2 (dashed line and squares). The
symbols denote each time the current was recorded.

Fig. 4. As for Fig. 2 at times a) t = 7 and b) t = 10, but with driver 2.

seen in Fig. 2d. This is then followed by a significant decrease
in maximum current as numerical effects cause it to dissipate.
However, as the boundaries continue to be driven, the magnetic
field continues to be stressed such that at around t = 17 the cur-
rent starts to once again build up. We would expect this process
to repeat since the boundaries are continuously driven.

If we now consider the same setup as the above experiment,
except that the driver is ramped down around t = 7 (driver 2) we
naturally find a similar behaviour to that shown in Figs. 2a−c.
Figure 3 (dashed curve) shows that as the driver starts decreas-
ing, the maximum current in the domain increases less rapidly
than in the driver 1 case, as one might expect. After t = 7
the maximum current drops but at this time the current in the
mid plane for this experiment looks the same as it does for the
driver 1 experiment (compare Figs. 4a and 2c). However, by
t = 10 the current in the mid-plane of the driver 2 experiment
looks quite different to that seen at the same time for driver 1
(compare Figs. 4b and 2d). The main current layer is still clearly
visible and a series of much shorter current sheets are found, but
these are not distributed throughout the domain, instead they are
clustered around the end of the main current layer forming a bub-
ble. The drop off in maximum current that has occurred (Fig. 3)
suggests that at t = 10 numerical reconnection has once again
kicked in. The horizontal velocity arrows shown in Fig. 5, at this
time, indicate that the flow pattern is very similar to that occur-
ring in 2D reconnection. There is a fast outflow from the ends of
the current sheets, a clear indication that numerical reconnection
is occurring. It is possible that fast outflows from this numerical
reconnection in the main current sheet, which are heading to-
wards each other due to the periodic boundary conditions, lead

Fig. 5. As for Fig. 2, but taken at time t = 10 with η = 0, but with a)
driver 1 and b) driver 2. Arrows show the projected velocity in the plane
with the length of the arrows representing the magnitude of the velocity.

to the formation of other short current layers and a disruption of
the outflow.

The evolution of the current for both drivers reveals some
interesting features which we address in the following sections.
Firstly, in Sect. 6, we consider the energetics of the system, to
determine whether the current really has dropped due to numer-
ical dissipation and to investigate the effects of this for a real
physical situation. Secondly, in Sect. 7, we evaluate the three-
dimensional nature of the current layer at t = 7 and the magnetic
structure.

6. Energy: total energy and Poynting flux
In order to properly understand the energetics, we consider, in
Sect. 6.1, the ideal (η = 0) behaviour, before investigating the
effects of uniform resistivity (η = constant) in Sect. 6.2.

First we discuss the total energy equation. Taking appropri-
ate combinations of Eqs. (1) to (5), the total energy equation is

∂

∂t

(
1
2
ρv2+

p
γ − 1

+
B2

2μ0

)
+∇·

(
1
2
ρv2u+

γp
γ − 1

u+
E × B
μ0

)
= 0. (29)
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Integrating over the volume of the computational box and using
Gauss’s theorem, we have

detot

dt
+

∫
S

Q · dS = 0, (30)

where the total volume integrated energy, etot(t), given by

etot(t) =
∫

1
2
ρv2dV +

∫
p
γ − 1

dV +
∫

B2

2μ0
dV, (31)

is the sum of the integrated kinetic energy, internal energy and
magnetic energy, respectively and

Q =
1
2
ρv2u +

γp
γ − 1

u +
E × B
μ0
, (32)

is the energy flux into or out of the plasma. Since the side bound-
aries are periodic and the top and bottom boundaries have vz = 0,
the total inflow/outflow of energy is just the Poynting flux, in di-
mensionless variables, namely∫

S
E × B · dS, (33)

where E = −u×B+η j. The integral (33) need only be evaluated
on the top (z = +L) and bottom (z = −L) boundaries because the
sides are periodic. The total energy in the computational box can
only increase, in response to the boundary motions, since there
is a net flow of Poynting flux into the domain.

6.1. Ideal MHD energetic behaviour (η = 0)

In this section, we restrict our attention to the “ideal” evolu-
tion with η = 0. This allows us to assess the importance of nu-
merical diffusion, which is of course a numerical error, in these
simulations.

The simulations presented are for runs with a grid resolution
of 5123 (our maximum resolution). Coarser grids were also run
and a similar behaviour was observed. Choosing the highest res-
olution for the η = 0 runs ensures there is minimal numerical
diffusion of the magnetic field up to about t = 7 or 8, after the
formation of the current layer. Figure 6 shows the time evolution
of all energies for driver 1 (solid) and driver 2 (dashed). The as-
terisk denotes the time (t = 6.5) when the shearing velocity of
driver 2 starts to slow down and the triangle corresponds to the
time (t = 8.5) when it has completely stopped.

For both drivers the magnetic energy dominates over the
other energies and is some 50−100 times larger. It is initially al-
most constant until about t = 3 when it begins to rise. Naturally,
when driver 2 is ramped down, the energies in the two runs start
to differ, with the magnetic energy for driver 1 peaking at t = 9,
whilst, for driver 2, the magnetic energy levels off between t = 7
and = 8.5

The kinetic energy for both drivers remains extremely small
until the current layer has formed at around t = 7, when it starts
to increase. After a tiny dip the kinetic energy rises rapidly at
around t = 8.5. This sudden and dramatic increase in kinetic
energy is almost certainly due to numerical diffusion causing
the magnetic field to reconnect. The rise is more dramatic for
driver 1 than driver 2, since driver 1 is continuously driven and
so, at the same time that the system is trying to dissipate the
strong currents, the driver is continuing to stress the field and so
maintain/rebuild the currents. In response to the reconnection,
the internal energy begins to rise for both drivers, indicating that
the plasma is being heated. Since driver 2 stops at t = 8 and,

Fig. 6. Volume integrated energies a) kinetic, b) internal, c) magnetic,
and d) total energy as functions of time for η = 0 and driver 1 (solid)
and driver 2 (dashed). For the driver 2 experiment, the start (asterisk)
of the ramp down and end (triangle) of the ramp down of driver 2 are
indicated. These experiments have a grid resolution 5123.

thus, the currents in the system are not built up again after they
are dissipated, the plasma is only heated whilst the reconnection
is dissipating the original current layer. Thus, the internal energy
levels off, at about t = 17, to a value of 0.025 in the driver 2
case. This also corresponds to the time when the kinetic energy
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Fig. 7. Instantaneous Poynting flux (driver 1 – plus signs and driver 2 –
asterisks) and the rate of change in the total energy, detot/dt, (driver 1
– solid and driver 2 – dotted line) versus time. This experiment was
carried out with a grid resolution of 5123.

for driver 2 is once again almost back to zero. The magnetic en-
ergy drops off during this reconnection phase and levels off to an
energy slightly below the initial magnetic energy of the numeri-
cal run (i.e., to an energy less than that after the first shear of the
field). Note, that the final internal energy is only one tenth the
final magnetic energy.

For driver 1, on the other hand, the internal energy contin-
ues to increase, but at a slightly lower rate, as the Poynting flux
continues to add energy into the system which is converted into
heat. The kinetic energy in the system is maintained significantly
above zero, although at a much lower level than the high peak
seen at the start of the numerical diffusion. This suggests that
after the rapid onset of reconnection, which results in a drop in
magnetic energy, the system adjusts to a quasi-steady state where
the injection of magnetic energy, via the Poynting flux, is ap-
proximately balanced by the loss of magnetic energy through nu-
merical reconnection. Hence, from t = 11 to t = 16 the magnetic
energy is approximately constant. At t = 16, when the magnetic
reconnection has essentially abated, the magnetic energy starts
to increase again as the continued driving stresses the field as
indicated by an increase in current (Fig. 3, solid line).

The total energy, as calculated directly by the code, is plotted
in Fig. 6d. It rises continually in the experiment with driver 1, but
decreases after t = 9 for driver 2.

The Poynting flux, as defined in (33), has been calculated
numerically and is plotted in Fig. 7 for each driver, along with
the rate of change of total energy (detot/dt) (where etot is de-
termined using Eq. (31)) in the plasma. From conservation of
energy (Eq. (30)), these two should lie on top of each other, but
clearly they do not for t > 8. The Poynting flux corresponds to
the change in total energy, as plotted in Fig. 6d, confirming that
the increase in the total energy seen in this figure is due to the
energy injected from the boundary driving.

For driver 1, we see that the Poynting flux matches the rate of
change in total energy exactly, until a time of around t = 7. Then
the effects of the numerical diffusion become significant and the
two curves start to deviate. At a much later time, the two terms
seem to approach each other again, before diverging at the end
of the experiment. From t = 7 onwards, when the two curves do
not agree, the code is not conserving energy exactly. Clearly, the
lack of energy conservation will have consequences. The main
concern is with the evolution of the plasma pressure and tem-
perature. The changes in magnetic energy should be accounted
for by a corresponding change in internal energy (the kinetic en-
ergy is much too small to be able to account for these changes),
but, since they are not, it is difficult to trust the subsequent evo-
lution of the plasma pressure and temperature. This is not just a

consequence of our code, but something that all codes will suffer
from. If numerical diffusion occurs, energy is not conserved.

If we now consider the conservation of energy in the experi-
ment with driver 2 (Fig. 7 dotted line and asterisks) we see that
the Poynting flux increases, matching the rate of change in en-
ergy exactly, until the time at which the driver is switched off: at
this time the Poynting flux returns to zero as the driver ceases.
However, the rate of change of total energy (as calculated from
the individual components) continues to evolve after t = 8, as
does the current layer. So again, the energy budget is not prop-
erly accounted for.

The simulations with η = 0 result in the formation of a
strong, thin current layer. However, numerical diffusion causes
magnetic reconnection and this results in a loss of energy con-
servation. We have conducted these η = 0 experiments as they
allow for the best indication of current layer formation, the de-
tails of which we consider in the next section. However, since
we are also interested in the energetic consequences of the dissi-
pation of the current layer, we also conduct a series of constant
η experiments, as discussed below.

6.2. Resistive MHD energetic behaviour (η = constant)

First, we choose an appropriate constant for η. The value of this
uniform physical resistivity needs to be chosen so that it is larger
than the numerical diffusion, but is still small. In particular, we
aim to pick a value such that the current layers are adequately
resolved. This will inevitably reduce the value of the maximum
current, as discussed below.

The numerical diffusivity of the code, taking into account the
size of our domain and the grid resolution used, is of the order
of vA(Δx)2/2w ≈ 2.3 × 10−6, where vA ≈ 1 is the maximum
Alfvén speed, 2w ≈ 0.6 is the dynamical length scale and Δx ≈
0.6/512 = 1.2 × 10−3 is the maximum grid spacing across the
current layer (for details see Arber et al. 2007). We select two
values for η larger than this, namely 10−5 and 10−4.

In Fig. 8, we compare the evolution of the energies from ex-
periments using driver 1 and with three different resistivities:
η = 0, 10−5 and 10−4. Unfortunately, due to the time step re-
strictions and computational resources, it was only possible to
run the experiment with η = 10−4 up to a time of t = 15. The ini-
tial magnetic energy (Fig. 8c) increase is smaller as η increases.
This is due to the fact that the Poynting flux injected into the
domain decreases as η increases (see Fig. 10). The Poynting flux
depends on the size of the horizontal magnetic field component
at the boundaries (as discussed by Galsgaard & Parnell 2005)
which changes depending on how the magnetic field evolves (in
particular how it is stressed, e.g. whether it reconnects or not).
For larger η (more reconnection) these field components are re-
duced, leading to a reduction in the amount of energy entering
the plasma.

A larger η gives not only more reconnection, but also recon-
nection at an earlier time. Both of these factors result in a larger
increase in internal energy for larger η due to the greater Ohmic
heating and its earlier onset (Fig. 8b).

A plot of the temporal evolution of the maximum current
(Fig. 9) clearly shows a rapid rise as the current layer starts to
form just before t = 7 in the η = 0 case. There is a similar
trend for η = 10−5 but the maximum current values are generally
smaller. For η = 10−4, the maximum current is much smaller,
reaching a maximum value of around 300. So although the max-
imum current still grows substantially, the rise is rapid if η is
small enough, but a more steady build up if η is larger.
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Fig. 8. Volume integrated a) kinetic, b) internal, c) magnetic, and d)
total energies versus time for experiments with driver 1 and resistivities
of η = 0 (solid), η = 10−5 (dotted) and η = 10−4 (dashed). These
experiments were carried out with a grid resolution of 5123.

In all cases, the magnetic reconnection that occurs, whether
numerical or associated with the imposed η, converts most of the
energy injected by the Poynting flux, and stored as currents by
the magnetic field, to internal energy. The kinetic energy changes
are really small since only about 10% of total Poynting flux
is also converted into kinetic energy (Fig. 8a). However, since

Fig. 9. Maximum current magnitude is shown as a function of time for
the driver 1 experiments with a 5123 grid for η = 0 (black, triangles),
η = 10−5 (red, squares), and η = 10−4 (blue, crosses). The symbols
correspond to the times at which the current is actually recorded in each
experiment.

Fig. 10. Poynting flux and the rate of change in the total energy (detot/dt)
are shown as functions of time for experiments using a 5123 grid and
driver 1 and resistivity η = 0 (black, plus signs), η = 10−5 (red, dia-
monds), and η = 10−4 (blue, asterisks).

the maximum current decreases with increasing η, the magnetic
stresses also decrease. Thus, as η increases, the reconnection be-
comes weaker resulting in slower flows and, hence, a smaller
maximum kinetic energy.

In Fig. 8d we plot the evolution of the total energy for the
cases with driver 1, but different values of η. Not surprisingly,
the total energy increases in all cases over time due to the injec-
tion of Poynting flux from the boundary driving. However, as η
increases the increase in total energy decreases due to the fact
that the Poynting flux crossing the boundary is smaller for larger
η, as explained above. However, as we see in Fig. 8d, at a time
of approximately t = 11 the total energy for the η = 10−5 case
becomes larger than the η = 0 case. This does not appear to hap-
pen for the η = 10−4 case and we believe this is due to the fact
that we can more accurately follow the flow of energy for this
case. This is explained more fully below.

Finally, we look at the conservation of energy for each of
these cases (Fig. 10), by plotting the Poynting flux (as calcu-
lated by Eq. (33)) and the rate of change of total energy, using
Eq. (31). For the experiment with η = 10−4 the two terms match
exactly and for this value of ηwe can correctly follow the flow of
energy from the magnetic field to the plasma pressure and tem-
perature. With η = 10−5, the two terms are extremely close, al-
though there is evidence that numerical diffusion is also present
after t = 7, but it is fairly small and does not dominate over our
physical magnetic diffusion.

As mentioned above, there is a difference between these two
terms in the η = 0 case just after η = 7 when the system abruptly
switches from an ideal to a non-ideal evolution, due to the sys-
tem failing to satisfy the ideal assumption. This switch in the
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Fig. 11. Isosurface of current at 13% of the maximum current magni-
tude at time a) t = 7 and b) t = 8 for the driver 1 experiment with η = 0
and a grid resolution of 5123.

evolution of the system occurs as the numerical diffusion begins
to dominate. For the two non-zero values of η, we are confident
that the numerical errors do not dominate and remain small dur-
ing the simulations.

7. Current layer structure

We consider the experiment with driver 1 and η = 0 and a grid
resolution of 5123 at a time of t = 7. As we have discussed
above, this experiment has an ideal evolution, with no reconnec-
tion, up until approximately t = 8, unlike the constant non-zero
η experiments. Shortly before t = 7 the maximum current in
the experiment shows a sudden very rapid increase. Although
the current continues to climb after t = 7 we pick this time
because after this there is evidence of numerical diffusion. We
could use either the experiment with driver 1 or driver 2, since
both look almost the same, but we choose driver 1 since it has the
marginally greater maximum current. Note, that at this stage the
plasma pressure and temperature in this experiment should still
be correct, since energy conservation still holds as no noticeable
numerical diffusion has yet occurred (Fig. 10).

Figure 11 shows isosurfaces of the current magnitude, at ap-
proximately 13% of the maximum current in this experiment.
Isosurfaces at t = 7 and t = 8 are shown in (a) and (b), re-
spectively. We clearly see the twisted nature of the current layer.
The current layer rotates from bottom to top through an angle of
approximately 90◦, since both the first and second shears have
approximately equal magnitude. At t = 8 we see that the sheet
has started to fragment due to numerical reconnection.

The dominant force is the Lorentz force and its x component
is plotted in Fig. 12 across the layer (y = 0) at the mid-plane
(z = 0). The Lorentz force is zero everywhere except inside
the current layer. The width of the nonzero behaviour shown in
Fig. 12 is calculated to be 0.007, which is equivalent to the width
of the current layer at this resolution.

7.1. Current layer rotation

Figure 11 shows a gentle rotation of the current layer from the
bottom of the box to the top of the box. This rotation appears
smooth and, since the plasma is very close to equilibrium when
the residual Lorentz forces are analysed, we might expect to

Fig. 12. x-component of the Lorentz force, [ j×B]x, across the layer (y =
0) at the mid-plane (z = 0-plane) at time t = 7. Note, that here −0.02 <
x < 0.02 to highlight the nonzero behaviour here. The experiment is the
driver 1, η = 0 case with 5123 grid resolution.

see some form of helical symmetry in the current. Hence, at
t = 7, we analyse horizontal slices of the current magnitude
at z = 0.0, 0.2 and 0.4 from the middle of the layer working
upwards (Fig. 13). Due to symmetry the lower section of the
current layer is the mirror image of these slices. These slices
highlight both the strong currents in the current layers and also
show the structure of the weaker current regions in the mid plane.
Figure 13 shows that the current layer twists in an anticlockwise
manner for increasing z (for decreasing z it rotates in the clock-
wise direction). The layer rotates at an approximately uniform
rate with height. The angle of the current layer is approximately
−45◦ to the y-axis at z = 0.4, close to the top boundary and ap-
proximately half that at z = 0.2. The layer is essentially straight
in each z plane but there is a slight bend in the shape at the layer
ends due mainly to the imposed periodic boundaries. The ar-
rows over plotted denote the vector (Bx, By, 0). The field has a
squashed elliptical structure near the current layer and there is a
clear indication of anti-parallel field on either side of the current
layer. The regions of stronger field (i.e. longer arrows) tend to
align with the contours of the current magnitude.

The field lines do not cross the current layer. If they did there
would be an extremely large Lorentz force. This can be seen in
Fig. 14 which shows field lines plotted in both directions from
the mid-plane, z = 0, with starting points along a line −0.2 <
y < 0.2 that lies either side of the current layer at x = 0.01 (red
lines) and x = −0.01 (green lines). It is clear that the field lines
lie along the current layer, following the same twisted structure
as the isosurface of the current. In addition, it is obvious that the
green and red field lines are at a different angle to each other.
This is expected since the field lines lie on either side of the
current layer.

We now investigate the rotation of the current layer by deter-
mining the straight line that the layer lies along at each height z.
The current layer passes through x = 0 and y = 0 for all z and
so we choose a value for y and determine the value of x = xmax,
where xmax is the location of the maximum current. Then, we
use y/xmax = tan θ(z), to calculate θ(z), the angle between the
current layer and the x axis. θ = π/2 corresponds to the current
layer lying along the y axis. Figure 15 shows how θ varies with
z as we move up the current layer from z = −0.5 to z = 0.5 for
y = 0.05. Apart from the regions near the boundaries, the twist
appears linear in height.

7.2. Magnetic structure

The magnetic field components at the mid-plane are plotted, at
t = 7, across the current layer as functions of x in Fig. 16. It is
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Fig. 13. Slices of the current magnitude in horizontal planes a) z = 0, b)
z = 0.2, and c) z = 0.4. The arrows denote the vector [Bx, By, 0] in the
planes. The experiment is the driver 1, η = 0 case with a grid resolution
of 5123. Red corresponds to a maximum of 100 while blue corresponds
to a minimum value of 0.

clear that there is a rapid change in the component of the mag-
netic field parallel to the current layer, By, across the layer and
that the perpendicular component, Bx, is essentially zero. Since
jz =

∂By
∂x − ∂Bx

∂y
and, ∂Bx

∂y
is essentially negligible, we expect the

jump in By (1.62) to be approximately equal to
∫

jzdx (1.61)
which it is. Hence, we are satisfied that the magnetic field’s

Fig. 14. Magnetic fieldlines drawn from starting points along the line
−0.2 < y < 0.2 at z = 0, x = 0.01 (red lines) and x = −0.01 (green
lines) at t = 7 taken from the experiment using driver 1, η = 0 and 5123

resolution.

Fig. 15. Current layer angle as a function of z using y = 0.05. This
is taken at t = 7 with the experiment using driver 1, η = 0 and 5123

resolution.

behaviour is consistent with the behaviour of the current. Bz ap-
pears to have a rapid rise inside the current layer. This is to be ex-
pected. The total pressure, i.e. the magnetic and plasma pressure,
across the current layer must be continuous and this is clearly
seen in Fig. 16c. The gas pressure remains small compared to
the magnetic pressure. Therefore, as By vanishes at the centre of
the current layer, Bz must increase rapidly at the centre of the
layer to ensure that total pressure is continuous.

We have generated a twisted current layer and the only loca-
tion so far assessed is the z = 0 plane, where the layer is straight
and lying along the y axis. Moving away from z = 0, the an-
gle of the current layer changes and we must calculate magnetic
field components along a cut perpendicular to the current layer
at various heights. The orientation of the current layer at various
values of z is determined and a cut perpendicular to the current
layer at z = 0.2 is analysed here. In Fig. 17a we plot the normal
and tangential components of B at z = 0.2. Here, as expected,
the normal component is much smaller than the tangential. We
also see in Fig. 17b that the total pressure perpendicular to the
layer at z = 0.2 is similar to that at z = 0.

The simulations were continued up to a time of t = 25 and it
is interesting to see how the magnetic field and currents behave
after the current layer has formed. Figure 18 shows plots of the
magnetic field lines at t = 25, drawn in both directions from
starting points along a line −0.2 < y < 0.2 for x = 0, z = 0.
When driver 2 is used, the magnetic field lines that lie along this

A89, page 11 of 14

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201116652&pdf_id=13
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201116652&pdf_id=14
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201116652&pdf_id=15


A&A 560, A89 (2013)

Fig. 16. Magnetic field components plotted at t = 7 across the layer
(y = 0) at the mid-plane. a) Shows Bx (dashed line) and By (solid line),

b) shows Bz, and c) shows the total pressure (p + B2

2μ ). These are taken

at t = 7 with the experiment using driver 1, η = 0 and 5123 resolution.

line straighten out. Hence, as expected, when boundary driving
stops, the magnetic field lines start to untangle and relax back
towards a lower energy state.

However, for driver 1, when the shearing motion is contin-
ued, the field lines remain sheared and the isosurface of current
still shows a fragmented current layer. Once the current layer
forms and reconnection starts, the internal energy continues to
rise (as shown in Fig. 6) as the Poynting flux crossing the bound-
aries is continually dissipated as heat.

7.3. Plasma response

Figure 19 shows how the temperature at x = y = z = 0 varies,
for the η = 10−5 and η = 10−4 experiments with driver 1, as a
function of time. Initially the temperature is only 0.00667. What
is clear is that the temperature remains low, in both cases, until
the current layer forms around t = 7 and strong reconnection
begins. For η = 10−5, the temperature rises to around 1.0, which

Fig. 17. a) Normal (B⊥) and tangential (B‖) components of B across
and along the current layer are plotted in the z = 0-plane (solid lines)
and the z = 0.2-plane (dashed lines). Obviously, the components that
show a sudden switch in sign are the B⊥ components. b) Total pressure
perpendicular to the current layer in the z = 0-plane (solid line) and the
z = 0.2-plane (dashed line). These are taken at t = 7 for the experiment
using driver 1, η = 0 and 5123 resolution.

Fig. 18. Magnetic fieldlines drawn from starting points along a line
−0.2 < y < 0.2 at x = 0, z = 0 at a time t = 25 for the experiments with
η = 0 and grid resolution 5123 and a) driver 1 and b) driver 2.

corresponds to a coronal temperature of just under 6 × 107 K
for our choice of physical values. The extremely rapid rise in
temperature from around 0.1 to 1.1 occurs between t = 7.5 and
t = 8 followed by a steep drop to around 1/5 of this value at
t = 8.5. As the photospheric boundary continues to be driven, the
general trend of the temperature is upwards, with a few isolated
sharp peaks. For η = 10−4, a similar trend is observed, but the
values are generally higher, reaching 1.4 at t = 7.5 and 1.6 at
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Fig. 19. Temperature at x = y = z = 0 as a function of time for the
experiment using driver 1, a grid resolution of 5123 and with η = 10−5

(red, asterisks) and η = 10−4 (blue, plus signs).

t = 14. Obviously, the larger value of η increases the Ohmic
heating term and increases the temperature at the expense of the
magnetic energy (see Fig. 8). The temperature response of the
plasma will be investigated in more detail in future work. It is
suffice to state that the temperature can easily reach the required
coronal values.

8. Conclusions and future work

In this paper, we have performed a series of numerical exper-
iments to investigate in more detail the formation of current
layers. The initial field was sheared analytically in the x direc-
tion, which was justified when numerical simulations showed
agreement with the analytical form used. A second, perpendicu-
lar shear was then imposed numerically through photospheric
boundary motions. A choice of two different photospheric
drivers were used for the second shear. While both shearing ve-
locities are gradually ramped up to a constant value, one remains
steady thereafter, while the other is ramped down to zero once
the strong current layer has formed. Until the current layer for-
mation, the magnetic energy dominates both the kinetic energy
and the internal energy. The magnetic energy rises due to the
stresses injected through the boundary motions. There are dif-
ferences only after the twisted current structure has formed.

While the η = 0 experiment does produce the largest current
values, total energy is not conserved once numerical reconnec-
tion begins. Hence, caution must be taken when following the
ideal evolution. For a nanoflare model for coronal heating this is
a problem, since it is not possible to account for all the energy
released when the magnetic energy is reduced. The main error is
in the calculation of the internal energy and, hence, the temper-
ature and pressure. Non-zero values of η were also considered
and it was shown that the total energy was indeed conserved
throughout the simulations. So although physically too large, we
can correctly follow the flow of energy into heat.

The current structure is twisted at a uniform rate with height.
The projection of the magnetic field onto a z plane shows that
the field lines are essentially elliptical in nature. The regions of
strong field tend to align with the contours of the current mag-
nitude, as one would expect. Examining the current components
we find jz to be dominant, which agrees with previous numerical
studies, for example Galsgaard & Nordlund (1996b).

Before the current layer forms, the boundary motions gen-
erate a Poynting flux that results in an increase in the magnetic
energy. It is only after the strong currents form and reconnec-
tion starts, that this magnetic energy is released. A continued

driving of the photospheric boundary, as for driver 1, means
that Poynting flux continues to be fed into the system and is
almost immediately converted into internal energy and, hence,
temperature. Thus, if there are current layers already present in
the corona, any photospheric motions that increase the stresses
(currents) in the field, could produce heating. In the absence of
current layers, the motions result in an increase of magnetic en-
ergy and the possible formation of current layers, but no sig-
nificant heating. This is in agreement with the results found by
Rappazzo & Parker (2013) who show that an initial configura-
tion with a large-scale magnetic field develops small scales only
above a magnetic intensity threshold.

Isosurfaces of temperature show that its maximum value oc-
curs around the central plane at z = ±0.15. The temperature
at the centre of the simulation reaches a dimensionless value
between 1.1 and 1.4, depending on the value of η. Although
this value is quite localised, thermal conduction will spread the
temperature along the field lines, reducing the maximum value.
Further work is needed to understand the thermodynamic impli-
cations in detail. Using the typical values of Sect. 2.1, namely
B0 = 10 G, ne = 5 × 1014 m−3 and L0 = 50 Mm, the velocities
are scaled by v0 = 975.5 km s−1, the time is in units of t0 = 51 s
and the temperature in units of T0 = 5.7 × 107 K. The maxi-
mum temperature is about 6 × 107 K for η = 10−5 and the rapid
heating due to the rapid release of magnetic energy occurs over
nearly 2 time units or 100 s. It is slightly higher when η is larger.
This temperature is high but is consistent with the temperatures
found by Hood et al. (2009), when considering heating by Taylor
relaxation. Botha et al. (2011) showed that these high localized
temperatures were reduced by a factor of 10 and spread out along
the field when thermal conduction, parallel to the magnetic field,
is included.

These illustrative temperatures depend on the choice of
background parameters. Considering a stronger magnetic region,
with B0 = 50 G, slightly denser plasma, ne = 1015 m−3, but the
same length for L0, we find that the maximum temperature is
now around 8 × 108 K for η = 10−5 and the rapid rise in temper-
ature occurs within only 30 s.

There various extensions to this work that will be presented
in future articles.

1. Once the photospheric driving is switched off, the magnetic
field tries to relax towards its lowest energy state. Since, the
boundary motions have injected helicity into the plasma, the
final state should be a linear force-free field with the same
magnetic helicity as that at the time the driving is stopped.

2. A detailed study into the reconnection process could be un-
dertaken. There are no null points in the magnetic field and
so the reconnection may be due to quasi-separator reconnec-
tion. However, this must be checked by investigating the par-
allel component of the electric field to see where the recon-
nection is occurring.

3. There is some evidence that the current layer starts to frag-
ment once reconnection begins. It is likely that there is a
turbulent cascade to smaller and smaller current structures.
Thus, a comparison with the work of Rappazzo et al. (2007,
2008) should be carried out.

4. The inclusion of parallel thermal conduction and optically
thin radiation will provide predictions of the temperature
and, using forward modelling techniques, we can compare
with observed properties of coronal loops.
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