
HAL Id: hal-02010603
https://hal.inria.fr/hal-02010603

Preprint submitted on 7 Feb 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

When Theory Meets Practice: A Framework for Robust
Profiled Side-channel Analysis

Stjepan Picek, Annelie Heuser, Cesare Alippi, Francesco Regazzoni

To cite this version:
Stjepan Picek, Annelie Heuser, Cesare Alippi, Francesco Regazzoni. When Theory Meets Practice: A
Framework for Robust Profiled Side-channel Analysis. 2019. �hal-02010603�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/195867498?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-02010603
https://hal.archives-ouvertes.fr

When Theory Meets Practice: A Framework for
Robust Profiled Side-channel Analysis

Stjepan Picek1, Annelie Heuser2, Cesare Alippi3,4, and Francesco Regazzoni3

1 Delft University of Technology, Delft, The Netherlands
2 CNRS, IRISA, Rennes, France

3 Università della Svizzera Italiana, Lugano, Switzerland
4 Politecnico di Milano, Milano, Italy

Abstract. Profiled side-channel attacks are the most powerful attacks
and they consist of two steps. The adversary first builds a leakage model,
using a device similar to the target one, then it exploits this leakage model
to extract the secret information from the victim’s device. These attacks
can be seen as a classification problem, where the adversary needs to
decide to what class (corresponding to the secret key) the traces col-
lected from the victim’s devices belong to. For a number of years, the
research community studied profiled attacks and proposed numerous im-
provements. Despite a large number of empirical works, a framework with
strong theoretical foundations to address profiled side-channel attacks is
still missing.
In this paper, we propose a framework capable of modeling and evaluat-
ing all profiled analysis attacks. This framework is based on the expec-
tation estimation problem that has strong theoretical foundations. Next,
we quantify the effects of perturbations injected at different points in our
framework through robustness analysis where the perturbations repre-
sent sources of uncertainty associated with measurements, non-optimal
classifiers, and methods. Finally, we experimentally validate our frame-
work using publicly available traces, different classifiers, and performance
metrics.

1 Introduction

Embedded and cyber-physical devices, connected together to form the Internet
of Things (IoT), are pervading every aspect of our lives. They make our lives
simpler, but their use for handling sensitive data and for managing critical in-
frastructure poses new challenges. Because of this, security becomes one of the
most important extra-functional requirements that designer should provide to
the units. Designing secure embedded devices is extremely challenging because of
two main reasons. First, the limited area and energy budget available in these de-
vices are often not sufficient to implement full flagged and robust cryptographic
primitives. Second, these devices should be resistant against physical attacks. In
fact, the pervasive diffusion of these devices makes them physically available to
adversaries willing to exploit the physical weaknesses of the implementation to
extract the stored secret information (typically, the secret key).

2

To achieve resistance against physical attacks, it is necessary to have a com-
plete understanding of the adversary’s capabilities. Side-channel attacks (SCAs),
in particular profiled ones, are by far the most studied (and the most powerful)
physical attacks since they have been proved to be very effective both in the
lab and in real-world applications. In the rest of this paper, when we talk about
side-channel attacks, i.e. profiled side-channel attacks, we consider those attacks
that use power or electromagnetic radiation as side-channel. In profiled attacks,
the adversary first profiles the power consumption of a device identical (or, at
least similar) to the one that will be attacked. In the second phase, using this
profile and the power traces measured from the victim device, the adversary
attempts to recover the target secret key. Well-known examples of such profiled
attacks are template attack [1, 2] as well as supervised machine learning-based
attacks [3–6].

While it is well-known that template attack is the most powerful one from
the information theoretic point of view (given that certain assumptions hold) [2],
for machine learning techniques the full characterization of their performance is
open. From one perspective, a large number of works experimentally show how
machine learning techniques perform extremely well in many realistic scenarios
and even surpass template attack [4]. At the same time, there is no theoretic
guarantee how machine learning techniques would behave is some different sce-
nario, even if it is a similar one. As such, the results we can obtain are always
somewhat “lacking” and need to be taken cum grano salis. Naturally, giving gen-
eral theoretic findings is very difficult, even impossible. For instance, the “No
Free Lunch” theorem, which states that when averaged over all classification
problems, all supervised machine learning behave the same [7] gives us an in-
sight about the difficulty of the problem. Still, one could hope to give answers to
some more specific questions of the form (in the increasing order of difficulty):

1. What machine learning algorithm is the best one for a given side-channel
scenario?

2. What machine learning algorithm is the best one for multiple side-channel
scenarios?

3. What machine learning algorithm is the best one for side-channel scenarios?

As already said, the current state-of-the-art does not offer us any results giv-
ing theoretical insights into the performance of machine learning-based attacks
nor their robustness. In this paper, we aim to fill in this gap and offer the first
results considering the general performance of machine learning attacks (and in
fact, all profiled attacks). To that end, we propose a general framework intended
to analyze the behavior of profiled SCAs and give insights into the robustness of
such algorithms. Here, by robustness, we understand the ability of a system to
tolerate perturbations (random changes inserted into the system). Although we
use the robustness analysis as a tool to obtain insights into the general behav-
ior of profiled attacks, we note perturbations are also an integral part of such
attacks. In fact, there are several sources of perturbations that occur in profiled
SCA due to:

– Environment noise,

3

– Countermeasures,
– The differences between the profiling device and the device under attack.

While the first source of perturbation is clear, the other two deserve further
explanation. Consider a system with a countermeasure. There, the profiling at-
tack method does not “know” what is the countermeasure but can only “see”
its consequence in the form of noise, i.e., perturbation causing the problems
in system’s functionality. For this setting, we only require that the generated
perturbation has a Gaussian distribution (which does not present a limitation
in practical settings). Finally, in a realistic setting, the measurements for pro-
filed attacks we obtain from two devices: profiling device and the device under
attack, Yet, usually we omit this fact in the experiments and then all the mea-
surements come from the same device. This simplification is a reasonable one
but still bound to introduce some error where the real behavior of profiled at-
tack will be somewhat lower than the one measured in experiments with only
one device. Additionally, the difference in the measurements in practice can also
arise for instance from different probes positions when we use electromagnetic
(EM) SCA.

By considering the robustness problem, we actually consider a setting that
approximates the realistic one where perturbations must occur and uncertainty
is present. That paradigm is also in the core of the well-known Provably Ap-
proximate Correct (PAC) learning [8] where PAC learning theory formalizes the
way a computation is carried out within an uncertainty affected environment.

The main contributions of this paper are:

– We propose a framework capable of modeling and evaluating all profiled side-
channel attacks where we provide theoretical foundations for the framework.

– We consider the robustness of profiled attacks in 1) the presence of counter-
measures and 2) when there are two devices: one for profiling and second to
be attacked.

– We consider the robustness of profiled attacks for all commonly used figures
of merit: accuracy, success rate, and guessing entropy.

2 Related Work

In 1996, Kocher demonstrated the possibility to recover secret data by intro-
ducing a method for exploiting the leakages from the device under attack [9]. In
other words, implementations of cryptographic algorithms leak relevant infor-
mation about the data processed through physical side-channels like timing [9],
power consumption [10], EM emanation [11], or sound [12]. Today, when consid-
ering SCA and symmetric-key cryptography, there are two main directions one
could follow:

1. direct attack, see e.g., Simple Power Analysis (SPA) and Differential Power
Analysis (DPA).

2. profiled attacks, see e.g., Template Attack (TA) or a number of machine
learning-based techniques.

4

Differing from the direct attacks, profiled attacks require a profiling stage,
i.e., a step during which the cryptographic hardware is under a full control of
the adversary to estimate the probability distribution of the leaked information.
Such attacks have received a lot of attention in the last years due to the fact they
define the worst case security assumptions. There, template attack is de-facto
standard in the SCA community. TA is the best (optimal) technique from an
information theoretic point of view if the attacker has an unbounded number of
traces and the noise follows the Gaussian distribution [13,14]. After the template
attack, the stochastic attack emerged using linear regression in the profiling
phase [15]. In years to follow, researchers recognized certain shortcomings of
template attacks and tried to modify them in order to deal better with the
complexity and portability issues. One example of such an approach is the pooled
template attack where only one pooled covariance matrix is used in order to cope
with statistical difficulties [1].

Alongside such techniques, the SCA community realized that a similar ap-
proach to profiling is used in other domains in the form of supervised machine
learning. Consequently, some researchers started experimenting with different
machine learning (ML) techniques and evaluating their effectiveness in the SCA
context. There, a survey of available works reveals a number of papers discussing
different machine learning algorithms, targets, experimental settings, etc. When
considering attacks on AES (as we do in this paper) and machine learning tech-
niques, one can find a number of papers, see e.g., [3,5,14,16–22]. More recently,
deep learning techniques started to capture the attention of the SCA commu-
nity. Accordingly, the first results confirmed that expectations where most of the
attention went to convolutional neural networks [4, 23].

When trying to find a common denominator for those works, the most obvious
one is that they report machine learning being able to reach high performance
and often outperform template attack. Additionally, all of these works have
“only” experimental results with some attempts (ranging from obvious ones to
purely speculative ones) in explaining why such results are obtained. At the same
time, as far as we are aware, there are no papers discussing on a more general
level what are the limitations when using machine learning.

3 General Framework

In this section, we present a generic approach for modeling supervised machine
learning algorithms and we show how, from this, we derive a framework to model
all profiled side-channel attacks. First, we introduce the framework in an intuitive
way, showing the motivation and goals. Then, we introduce the background
definitions and the numerical problems on which our framework is based. Finally,
we formally present the framework for modeling profiled side-channel attacks and
show how this is tightly connected with the PAC learning concept.

5

3.1 Intuitive Description of the Framework

The previous works on profiled side-channel attacks discussed in Section 2 pro-
vide a detailed overview of the attacks and methodology used. Still, they to not
abstract the specificity of the attack to a higher-level framework. As a result,
a complete analysis of the attack characteristics is still empirical, and so is the
direct comparison of different profiling techniques.

Figure 1 depicts the generic framework we propose in order to model pro-
filed side-channel attacks. Recall, during such attacks, the adversary attempts
to recover the secret (typically, the key) of a cryptographic device in two phases,
commonly known as the profiling and attacking phase. The profiling of the de-
vice D (the physical realization of a cryptographic primitive), depicted on the
right part of the figure, consists of collecting several leakage traces xi, 1 ≤ i ≤ n
where n is the number of measurements taken corresponding to the encryp-
tion of a certain number of plaintexts PT and a number of known keys K. For
each measurement xi, we obtain a T time samples (also known as features or
attributes): xi = xi,1,...,xi,T . During the profiling phase, for each of the measure-
ments xi we additionally obtain the label of the measurement yi, which denotes
the actual value the measurement has. The leaked traces are typically altered
by a perturbation δ1 that can be caused by measurement or algorithmic noise
but also by the operation of a side-channel countermeasure. The leakage trace
and the corresponding plaintext are used to derive an estimate of the secret key
K̂. These estimates of the secret key along with the traces are used to train a
classifier C, depicted in the left part of Figure 1. The specific classifier can be
arbitrarily selected from the corpus of all possible classifiers suitable for side-
channel recovery. Each classifier is trained on the training set, in the sense that
different training sets of the same size will generate different classifier models. In
order to model this, we consider the output of the given classifier influenced by
a certain perturbation δ2. Without loss of generality, we consider δ1 and δ2 to be
equal to δ since here we do not differentiate between the perturbations coming
from one or the other source. The estimated values of the labels ŷi are compared
to the actual ones and used to estimate the robustness of the classifier.

The problem we consider here can be connected to the one of analyzing the
robustness of randomized algorithms [24]. In the randomized algorithm setting,
we are interested in quantifying the robustness of an algorithm by means of a
suitable figure of merit. In our setting, we aim to quantify the robustness of a
profiled side-channel attack (first seen as a supervised machine learning problem)
to the perturbations caused by the measurement noise or countermeasures but
also the intrinsic noise of a specific classifier. The framework we consider is
general, which means it supports any profiled/supervised algorithm and model
as well as any figure of merit. To validate our framework, in Section 4, we select
to work with a number of common SCA classifiers and figures of merit.

Our framework proposes one theoretical interpretation for an analysis which,
to date, was mostly done empirically. Consequently, we are able to achieve two
goals:

6

C

D

PT1, ... PTm

δ

ŷ

K1, ... Kg

0101001.
1100001.
1100001.

0101001.
0101001.
1100001.
1100001.

0101001.

y1, ... yn
0101001

x1, ... xn

D

PT1, ... PTmK1, ... Kg

0101001.
1100001.
1100001.

0101001.
0101001.
1100001.
1100001.

0101001.

x1, ... xn

Traning

Attack

Figure of Merit Correct
Target

Robustness analysis
of a classifier

C1

D

PT1, ... PTm K1, ... Kg

0101001.
1100001.
1100001.

0101001.
0101001.
1100001.
1100001.

0101001.

y1, ... yn
0101001

x1, ... xn

y1̂

C2

D

PT1, ... PTm K1, ... Kg

0101001.
1100001.
1100001.

0101001.
0101001.
1100001.
1100001.

0101001.

y1, ... yn
0101001

x1, ... xn

y2̂

C3

D

PT1, ... PTm K1, ... Kg

0101001.
1100001.
1100001.

0101001.
0101001.
1100001.
1100001.

0101001.

y1, ... yn
0101001

x1, ... xn

y3̂

Fig. 1: The framework for the profiled side-channel analysis. The red line denotes
the possible perturbations. There are two phases of the attack. Profiling phase
(left part of the figure in bold) and attack phase (right part of the figure in
bold). Since the framework is generic, it supports any type of profiled attack
as denoted by several different classifiers on the far left side. This framework
supports any: 1) profiled attack, 2) leakage model, 3) dataset (considering side-
channel information, level of noise, countermeasures used, dataset size, etc.).

7

1. The connection with well-understood problems (expectation estimation prob-
lem and robustness problem) allows us to model each profiled side-channel
attack and thus compare, in a sound way, the performance of different clas-
sifiers in a specific scenario.

2. A quantitative estimate of the confidence of our results. Ultimately, we will
be able to answer in a sound way to questions such as “Which classifier
behaves better in some specific scenario?” and “How to compare different
profiled side-channel attacks?”.

3.2 Expectation Estimation Problem and Robustness

In this section, we aim to answer two questions which will be used in subsequent
derivations and provide some common nomenclature. First, how to estimate the
expected value of a function, i.e., the minimum number of samples granting to
build an approximation with an arbitrary level of accuracy ε and confidence δ
(Section 3.2). Second, how to estimate the robustness of a system once affected
by perturbations (Section 3.2).

Lebesgue Measurability A generic function u(ψ), ψ ∈ Ψ ⊆ Rl is Lebesgue
measurable with respect to Ψ when its generic step-function approximation SN
obtained by partitioning Ψ in N arbitrary domains grants that

lim
N→∞

SN = u(ψ)

on set Ψ − Ω, Ω ⊆ Rl being a null measure set [25]. Basically, no engineering-
related mathematical computations are Lebesgue non-measurable.

The Chernoff Bound The Chernoff bound allows determining the number of
samples needed to estimate a probability with arbitrary accuracy in the estimate
approximation and confidence in the made statement. The Chernoff bound can
be used also to estimate the expected value of random variable according to
estimation accuracy and confidence levels set by the designer [26]. The Chernoff
bound for a generic probability density function and continuous variable ψ can
be derived from the Hoeffding inequality for the empirical mean [27].

Let x1, · · ·xn be a sequence of independent random variables so that each xi
is almost surely bounded by the interval [ai, bi], i.e., Pr(xi ∈ [ai, bi]) = 1. Then,
defining the empirical mean Ên = 1

n

∑n
i=1 xi, we have that for any ε value the

Hoeffding inequality for the empirical mean:

Pr
(
|Ên − E[Ên]| ≥ ε

)
≤ 2e

−2ε2n2∑n
i=1

(bi−ai)2 (1)

holds where E is the expectation operator. Eq. (1) can be rewritten as:

Pr
(
|Ên − E[Ên]| < ε

)
> 1− 2e

−2ε2n2∑n
i=1

(bi−ai)2 . (2)

8

If Ên is the estimate p̂n(γ) of a probability e.g., (p(γ) = Pr(u(ψ) ≤ γ) for
a given positive scalar γ and a loss function u(ψ)), we have that for a generic
random variable ψi the indicator function

xi = I (u(ψi) ≤ γ) =

{
1 if u(ψi) ≤ γ
0 if u(ψi) > γ

assumes values in {0, 1}. As a consequence, ai = 0, bi = 1 and Eq. (2) becomes

Pr
(
|Ên − E[Ên]| < ε

)
> 1− 2e−2nε

2

.

Since, p̂n(γ) = Ên and E[p̂n(γ)] = p(γ) we derive

Pr (|p̂n(γ)− p(γ)| < ε) > 1− 2e−2nε
2

. (3)

Finally, we derive the Chernoff bound by requesting δ ≤ 2e−2nε
2

:

n ≥ 1

2ε2
ln

2

δ
. (4)

The Chernoff bound states that if we sample from the domain of random
variable ψ according to its probability density function then the (3) holds with
confidence δ. In other words, we can build an approximation p̂n of unknown
probability p(γ) with accuracy ε; the statement holds with confidence δ.

The Expectation Estimation Problem The expectation estimation problem
consists in identifying the minimum number of samples needed to achieve an
arbitrary level of accuracy and confidence in approximating the expected value
of a given function u(ψ).

Let u(ψ) ∈ [0, 1] be a Lebesgue measurable function over Ψ ⊆ Rl and fψ
be the probability density function of a random variable ψ defined over Ψ . The
expectation estimation requires evaluation of the expected mean

E[u(ψ)] =

∫
Ψ

u(ψ)fψ(ψ)dψ. (5)

Since the evaluation of the expected mean defined in Eq. (5) is generally
computationally hard problem for a generic function, an approximation is built
starting from n i.i.d. samples ψ1, · · · , ψi, · · · , ψn drawn from ψ according to fψ.
We call

Ên(u(ψ)) =
1

n

n∑
i=1

u(ψi) (6)

the empirical mean. It should be commented that Ên(u(ψ)) is a random variable
depending on the particular realization of the n samples. The Chernoff bound
can be used to build an accurate approximation of Eq. (5) through Eq. (6) at
accuracy level ε and confidence δ.

9

Ên(u(ψ)) is the estimate of the figure of merit. By assuming that the condi-
tion u(ψ) ∈ [0, 1] we immediately derive the bound on n thanks to the Hoeffd-
ing’s inequality. In general, it is enough to require u(ψi) to be bound, e.g., to the
same ai = a, bi = b, i = 1, . . . , n. If that is the case, the bound on the number of
samples becomes:

n ≥ (b− a)2

2ε2
ln

2

δ
. (7)

Robustness Robustness of a system refers to the ability to tolerate perturba-
tions that might affect its structural parameters and, in turn, its performance,
measured by means of a given figure of merit.

More formally, system/function g(θ, x) is robust with respect to pertur-
bations δθ ∈ ∆ ∈ Rl at level γ ∈ R+ when, given a discrepancy function
u (g(θ, x), g(θ, δθ, x)) ∈ U ⊂ R the system experiences a degradation in per-
formance within γ:

u(δθ) = u (g(θ, x), g(θ, δθ, x)) ≤ γ, ∀δθ ∈ ∆, ∀x ∈ X̃. (8)

In the rest of the paper, we assume that the level of perturbations can be-
come arbitrarily large so that no small perturbation theories are viable.. u(δθ)
represents the perturbation impact on the behavior of the system as observed
through the figure of merit. Note, u(δθ) does not have an explicit function in the
inputs in the sense that if inputs are in there, they are finite in number and fixed
and belong to the set X̃, which is the discrete set containing a finite number of
input instances.

In this setting, we need to determine the smallest γ satisfying the previ-
ous expression. Since this can be computationally intractable, we move to a
probabilistic setting. There, a computation is robust at level γ with probabil-
ity 1 − η for the perturbation space ∆ when γ is the smallest value such that
Pr(u(δθ) ≤ γ) ≥ 1 − η, ∀δθ ∈ ∆. Here, η is a small positive value in [0, 1] and
1− η is the confidence level.

Once defined p(γ) to be the probability that u(δθ) ≤ γ for an arbitrary but
given γ value:

p(γ) = Pr(u(δθ) ≤ γ) for eachδθ ∈ ∆. (9)

Eq. (9) can be estimated with Chernoff and the minimum γ identified through
set Γ = {γ1, · · · , γk}).

3.3 The Profiled SCA Framework

We now express profiled side-channel attacks as the expectation estimation prob-
lem. The starting point is to map the steps of profiled analysis attacks to the
framework depicted in Figure 1. The first phase of profiled side-channel attacks
is the training phase, which is represented by the bold part of Figure 1. The
training phase begins with the collection of the traces corresponding with the
encryption of several plaintext and keys.

10

Formally, during the encryption the secret key k∗ is processed with t plain-
texts or ciphertexts of the cryptographic algorithm, while the attacker collects
q amount of measurement traces Xq = [X1, X2, . . . , Xq]. In the case of AES,
typically k∗ and t are processed in bytes which reduces the attack complexity.
The mapping y maps the plaintext or the ciphertext t ∈ T and the key k∗ ∈ K
to a value that is assumed to relate to the deterministic part of the measured
leakage x. We denote the output of y as the label which is coherent with the
terminology used in the machine learning community. For profiled analysis, there
exist two main models to define y(t, k∗) in order to calculate the labels of the
measurement traces:

– intermediate value model : in this model, the attacker considers an interme-
diate value of the cipher or the distance between two consecutive values
processed, or

– Hamming weight (HW) model : in this model, the attacker assumes the HW
of the intermediate value model.

Considering the intermediate value, the model may be more accurate but
requires more resources. In particular, to gain stable estimations for each possible
value an attacker needs a sufficient amount of measurement traces per value.
Additionally, as the attacker needs to iterate through all values in the profiling
phase as well as for each measurement in the attacking phase the computational
complexity may become high - especially when targeting ciphers operating on
more than 8-bit.

The preference for HW model is related to the underlying device (e.g., for
some devices the power consumption is assumed to be roughly proportional to
the number of bit transitions) and the lower complexity. In our analysis, we
consider both models for all datasets and algorithms.

The adversary first profiles the clone device with the known keys and uses
the obtained profiles for the attack. In particular, the attack operates in two
phases:

– profiling phase: N traces xp1 , . . . ,xpN , plaintext/ciphertext tp1 , . . . , tpN and
the secret key k∗p, such that the attacker can calculate the labels y(tp1 , k

∗
p), . . . , y(tpN , k

∗
p).

– attacking phase: Q traces xa1 , . . . ,xaQ (independent from the profiling traces),
plaintext/ciphertext ta1 , . . . , taQ .

In the attack phase, the goal is to make predictions about the occurring labels

y(ta1 , k
∗
a), . . . , y(taN , k

∗
a),

where k∗a is the secret unknown key on the device under the attack.

4 Framework Validation

In this section, we empirically validate the proposed framework using a repre-
sentative set of profiled algorithms on publicly available datasets.

11

4.1 Datasets

In our experiments, we use three datasets that we consider to be a representative
sample of commonly encountered scenarios. More precisely, the first dataset
has no countermeasures and only a small amount of noise, which represents an
easy scenario for profiled attack when the number of measurements is sufficient.
Next, we consider a dataset without countermeasures but with a large amount
of noise. With this dataset, we are approaching more realistic scenarios where
profiled techniques have problems reaching high performance. Finally, the last
dataset has implemented a countermeasure in the form of random delays which
represents a realistic scenario for evaluation.

DPAcontest v4 Dataset The 4th version provides measurements of a masked
AES software implementation [28]. As the mask is known, one can easily turn
it into an unprotected scenario. As it is a software implementation, the most
leaking operation is not the register writing but the processing of the S-box
operation and we attack the first round. Accordingly, the leakage model changes
to

Y (k∗) = Sbox[Pb1 ⊕ k∗]⊕ M︸︷︷︸
known mask

, (10)

where Pb1 is a plaintext byte and we choose b1 = 1. Compared to the mea-
surements from version 2, the SNR is much higher with a maximum value of
5.8577.

AES HD Dataset This dataset is chosen to target an unprotected implemen-
tation of AES-128. The core of AES-128 was written in VHDL in a round based
architecture, taking 11 clock cycles for each encryption. A UART module is
wrapped around the core in order to enable external communication. The mod-
ule is designed to allow accelerated measurements in order to avoid any DC shift
due to environmental variation over prolonged measurements. The total area
footprint of the design contains 1 850 LUT and 742 flip-flops. Xilinx Virtex-5
FPGA of a SASEBO GII evaluation board was used to implement the design.
Side-channel traces were measured using a high sensitivity near-field EM probe,
which was placed over a decoupling capacitor on the power line. Measurements
were sampled on the Teledyne LeCroy Waverunner 610zi oscilloscope. A suit-
able and commonly used (HD) leakage model, when attacking the last round
of an unprotected hardware implementation, is the register writing in the last
round [28], i.e.,

Y (k∗) = HW (Sbox−1[Cb1 ⊕ k∗]︸ ︷︷ ︸
previous register value

⊕ Cb2︸︷︷︸
ciphertext byte

), (11)

where Cb1 and Cb2 are two ciphertext bytes, and the relation between b1 and b2
is given through the inverse ShiftRows operation of AES. b1 = 12 was chosen,

12

which resulted in b2 = 8, as it is one of the easiest bytes to attack. The obtained
measurements that form the dataset are relatively noisy and the resulting model-

based SNR (signal-to-noise ratio), i.e., var(signal)
var(noise) = var(y(t,k∗))

var(x−y(t,k∗)) , has a max-

imum value of 0.0096. In total, 500 000 traces were captured corresponding to
500 000 randomly generated plaintexts, each trace with 1 250 features. Since this
implementation leaks in the HD model, we denote it as AES HD. This dataset
is publicly available at https://github.com/AESHD/AES HD Dataset.

Random Delay Dataset As our third use case, we use an actual protected
implementation. Our target is a software implementation of AES on an 8-bit
Atmel AVR microcontroller with implemented random delay countermeasure as
described by Coron and Kyzhvatov in [29]. We mounted our attacks against the
first AES key byte by targeting the first S-box operation. The dataset consists of
50 000 traces of 3 500 features each. For this dataset, the SNR has a maximum
value of 0.0556. This dataset is publicly available at
https://github.com/ikizhvatov/randomdelays-traces.

4.2 Feature Selection

For all the experiments, we use only the 50 most important features. To select
those features, we use the Pearson correlation coefficient [30]:

Pearson(x, y) =

∑N
i=1((xi − x̄)(yi − ȳ))√∑N

i=1(xi − x̄)2
√∑N

i=1(yi − ȳ)2
. (12)

4.3 Profiled Algorithms

It is not a trivial task to select the best classifier for the given problem. Still,
there are some classifiers that can be regarded as a usual choice when a highly
accurate classification is sought [31]. In order to provide relevant experiments, we
select several classifiers that are a common choice in SCA as given in Section 2.

Naive Bayes The Naive Bayes (NB) classifier [32] is also based on the Bayesian
rule but is labeled “Naive” as it works under a simplifying assumption that the
predictor features (measurements) are mutually independent among the D fea-
tures, given the class value. The existence of highly-correlated features in a
dataset can influence the learning process and reduce the number of successful
predictions. NB assumes a normal distribution for predictor features. NB classi-
fier outputs posterior probabilities as a result of the classification procedure [32].
The Bayes’ formula is used to compute the posterior probability of each class
value y given the vector of N observed feature values x.

13

Radial Kernel Support Vector Machines Radial Kernel Support Vector
Machines (denoted SVM) is a kernel based machine learning family of methods
that are used to accurately classify both linearly separable and linearly insep-
arable data. The idea for linearly inseparable data is to transform them to a
higher dimensional space using a kernel function, wherein the data can usually
be classified with higher accuracy. Radial kernel based SVM that is used here
has two significant tuning parameters: the cost of the margin C and the kernel
parameter γ. The scikit-learn implementation we use considers libsvm’s C-SVC
classifier that implements SMO-type algorithm [33]. The multi-class support is
handled according to a one-vs-one scheme.

Random Forest Random Forest (RF) is a well-known ensemble decision tree
learner [34]. Decision trees choose their splitting attributes from a random sub-
set of k attributes at each internal node. The best split is taken among these
randomly chosen attributes and the trees are built without pruning, RF is a
parametric algorithm with respect to the number of trees in the forest. RF is a
stochastic algorithm because of its two sources of randomness: bootstrap sam-
pling and attribute selection at node splitting. The most important parameter
to tune is the number of trees I (note, we do not limit the tree size.)

Multilayer Perceptron The multilayer perceptron (MLP) is a feed-forward
neural network that maps sets of inputs onto sets of appropriate outputs. MLP
consists of multiple layers (at least three) of nodes in a directed graph, where
each layer is fully connected to the next one and training of the network is done
with the backpropagation algorithm [35]. Since we have more than one hidden
layer in our experiments, this implementation of MLP represents a deep learning
algorithm. We investigate the behavior of MLP with various activation functions,
solvers, number of layers, and the number of nodes.

Template Attack The template attack (TA) relies on the Bayes theorem and
considers the features as dependent. In the state-of-the-art, template attack relies
mostly on a normal distribution. Accordingly, template attack assumes that
each P (X = x|Y = y) follows a (multivariate) Gaussian distribution that is
parameterized by its mean and covariance matrix for each class Y . The authors
of [1] propose to use only one pooled covariance matrix averaged over all classes Y
to cope with statistical difficulties and thus a lower efficiency. In our experiments,
we use the version of the attack that uses only one pooled covariance matrix.

Hyperparameter Tuning First, we conduct a tuning phase to select hyper-
parameters for which classifiers perform well over datasets. We emphasize that
the tuned parameters represent a reasonable choice that exhibits good behavior
but they should not be considered as the best possible ones. Indeed, if concen-
trating on any specific scenario, a more detailed tuning could probably result in
a somewhat improved performance. Yet, since we consider scenarios where we

14

introduce perturbations in the testing phase, there is no guarantee that initial
good parameters would be still good for the measurements with the added noise.
At the same time, by having the suboptimal parameters we could prevent the
classifiers from overfitting in the training phase, which can be beneficial when
considering the testing phase with the added noise.

For template attack and Naive Bayes, there are no parameters to tune.
For radial SVM, we conduct a grid search for C = [0.001, 0.01, 0.1, 1] and
γ = [0.001, 0.01, 0.1, 1] and we select C = 0.001, γ = 0.001. For Random Forest,
we experiment with a different number of trees I = [10, 50, 100, 200, 500, 1 000]
and we select I = 500. Finally, for multilayer perceptron, we investigate activa-
tion functions tanh and ReLU , solvers lbfgs and adam, and number of layer-
s/nodes [(50, 10, 50), (50, 30, 20, 50), (50, 25, 10, 25, 50)]. In the end, we select to
use tanh activation function, adam solver, and (50, 30, 20, 50) configuration of
layers/nodes.

4.4 Figures of Merit

We consider three standard metrics when conducting SCA: accuracy, success
rate, and guessing entropy. After running profiled attacks, we first obtain accu-
racy as the measure of performance. The accuracy is defined as:

ACC =
TP + TN

TP + TN + FP + FN
. (13)

TP refers to true positive (correctly classified positive), TN to true negative
(correctly classified negative), FP to false positive (falsely classified positive),
and FN to false negative (falsely classified negative) instances. TP, TN, FP, and
FN are well-defined for hypothesis testing and binary classification problems.
In the multiclass classification, they are defined in one class–vs–all other classes
manner and are calculated from the confusion matrix.

Most of the time, in side-channel analysis, an adversary is not only interested
to predict the labels y(·, k∗a) in the attacking phase for which accuracy is a good
metric, but aims at revealing the secret key k∗a. For this, common measures are
the success rate (SR) and the guessing entropy (GE) of a side-channel attack. In
particular, let us assume, given Q amount of samples in the attacking phase, an
attack outputs a key guessing vector g = [g1, g2, . . . , g|K|] in a decreasing order
of probability with |K| being the size of the keyspace. So, g1 is the most likely
and g|K| the least likely key candidate.

The success rate is defined as the average empirical probability that g1 is
equal to the secret key k∗a. The guessing entropy is the average position of k∗a in
g. As SCA metrics, we report the number of traces needed to reach a success
rate SR of 0.9 as well as a guessing entropy GE of 10.

4.5 Experiments

We conduct our experiments for a scenario where ε = 0.1 and δ = 0.1. Accord-
ing to the Chernoff bound (Eq. (4)), we need to use n ≥ 149.7 to achieve the

15

Algorithm 1 Algorithm to solve the probabilistic robustness evaluation prob-
lem.
Identify the perturbation space ∆ and the random variable δθ with pdf fδθ over ∆;
Select the accuracy ε and confidence δ
Identify the interested performance level set Γ = {γ1, · · · , γk}
p̂n,Γ (γ)= verification-problem(∆, fδθ, u(δθ), Γ, ε, δ)
use p̂n,Γ (γ)

function verification-problem (∆, fδθ, u(δθ), Γ, ε, δ):
Draw n ≥ 1

2ε2
ln 2

δ
samples δθ1, · · · , δθn from δθ according to fδθ

For each γ ∈ Γ estimate

p̂n(γ) =
1

n

n∑
i=1

I (u(δθi) ≤ γ) , I (u(δθi) ≤ γ) =

{
1 if u(δθi) ≤ γ
0 if u(δθi) > γ

Return p̂n,Γ

desired level of accuracy and confidence. Consequently, we set n = 150 in our
experiments. Next, we select to work with the noise α equal to 0.005 that goes
in the range [−α · f, α · f], where f denotes the factor going in the range [1, 50].
Consequently, we can consider our scenario as working with 50 different noise
intensities. Note, by using this noise level and factor range, we evaluate the effect
of perturbations of magnitude up to the 25% of the signal, which represents a
significant perturbation. Indeed, consider a realistic profiled attack where the
profiling device and the device under the attack differ in measurements magni-
tude up to 25%. For sure, this represents a system that should be difficult to
attack. Recall, since the δ = 0.1, this means the probability equals 0.9. In all
figures, we display 3 lines for each classifier. The full line depicts the behavior
of the classifier while dotted lines depict ±ε. To assess the performance for a
specified intensity level, we need to compare the values for the behavior of the
classifier and ±ε. That range gives us how robust is the classifier, i.e., what kind
of performance we can expect. Finally, in order to improve the readability of
graphs, when success rate or guessing entropy are not able to reach the defined
performance level for any number of test measurements, we say the value equals
−1 and we denote it with lines plotted with ∗ symbol.

In Algorithm 1, we give the pseudocode of the procedure we follow in order to
assess the robustness of a certain classifier. Note, since n = 150 and the number
of intensities f equals 50, this means that for each scenario we need to run the
attack phase 7 500 times. Note, due to the lack of space, all figures for success
rate are given in Appendix A.

DPAv4 Results Figures 2a until 2f give results assuming the HW model. One
can see a different behavior of algorithms with respect to the change in intensi-
ties. In particular, Naive Bayes and SVM stay nearly constant, while MLP, RF,
and TA decrease slowly with the increase in the intensities. It is also possible to
determine the intensity level up to which it seems better to use MLP/TA/RF

16

while after it, we see that SVM/NB result in better performance. This is inter-
esting since it gives an intuition to the evaluator what kind of classifier should
select with respect to the expected level of noise or the worst-case scenario.
When looking at the guessing entropy and success rate, it is obvious that TA
is performing the worst in the presence of the increasing intensities. We give a
zoom in into guessing entropy in Figure 2c, showing that although all algorithms
experience the decrease in the performance with the increasing intensities, the
slope of RF and MLP is steeper than for SVM and NB. Accordingly, SVM and
NB appear more resistant to noise addition.

Additionally, in this context, we evaluate one instance of SVM with subopti-
mal parameters and one instance with optimally trained parameters on the orig-
inal datasets. Our experiments indicate that the optimal parameters for DPAv4
are C = 1, γ = 1. Figures 6a and 6b in Appendix B show their accuracies and
guessing entropies. When considering accuracy, SVM with optimal parameters
is performing better for small intensities as one would expect. Additionally, even
for larger noise intensities, we can observe that accuracy of the optimally tuned
SVM to be better than for SVM with suboptimal hyperparameters. For guess-
ing entropy, SVM with optimal parameter values is performing better than SVM
with suboptimal parameter values, but one can observe that when the noise is
large, both SVM versions have almost the same performance. This points us that
if the perturbations are very large, it could happen that there is no benefit from
detailed tuning (in fact, since such tuning takes extra time, a reasonable choice
would be to run only a coarse tuning).

The results for the intermediate value model are given in Figures 2d until 5b.
First, we observe that the accuracy is much lower than for the HW model,
which is natural as now there are 256 classes while in the HW model there
are only 9. SVM is the only algorithm that stays constant for all intensities
(a consequence of the selected hyperparameters), while all the other methods
experience a slow decrease in accuracy with the increase in intensity. In terms
of guessing entropy, one can see that RF does not succeed in any scenario in the
intermediate value model, while SVM and NB are relatively stable for differing
intensities. For MLP, we observe a very graduate increase in the guessing entropy
value with the increase in intensity. Again, TA is highly affected when increasing
intensities. Finally, MLP, NB, and SVM are slightly more efficient considering
the intermediate value model (256 classes) than for the HW model (9 classes).

AES HD Results The results for the AES HD are depicted in Figures 3a
until 3e. Observe how in the HW model, accuracy stays relatively constant over
intensities (see Figure 3a) and is naturally much lower than for DPAv4 dataset
(since SNR is much lower).

For guessing entropy, Figure 3c shows that TA and NB are performing the
best and stay nearly constant over intensities. Recall that on the DPAv4 dataset,
TA was nearly exponentially increasing with the increasing intensities. Interest-
ingly, we see that MLP is failing for nearly all intensities. From the algorithms
that manage to break the implementation, SVM performs the worst and we see

17

(a) DPAv4, HW model, accuracy (b) DPAv4, HW model, guessing entropy

(c) DPAv4, HW model, guessing entropy
(zoom in) (d) DPAv4, value model, accuracy

(e) DPAv4, value model, guessing entropy
(f) DPAv4, value model, guessing entropy
(zoom in)

18

that its performance deviates slightly with the change in the intensity of the
noise. Differing from that, for RF we see large deviations over intensities. In
Figure 5c, we see that only TA and NB reach the success rate level of 0.9 and
TA stays constant while NB deteriorates slightly with the increase in intensities.

When considering the intermediate value model, we see a significantly dif-
ferent behavior of the algorithms. Accuracies decrease to almost 0 for all the
algorithms (see Figure 3d and the zoom in in Figure 3b). At the same time,
Figures 3e and 5d show that it is possible to reach the threshold levels for guess-
ing entropy and success rate. In particular, MLP performs the best and stays
nearly constant over intensities. NB is the second best with a slight decrease in
the performance for increasing intensities. SVM is the third best with a constant
behavior. TA shows high deviations which differs from the behavior seen for the
HW model. Finally, RF fails for nearly all intensities.

Random Delay Results In terms of accuracy, all algorithms show a similar
behavior for the Random Delay dataset (the performance is basically the same).
For the guessing entropy and success rate, we see in Figures 4b and 5e that
TA and NB perform constant over intensities and are better than RF for smaller
intensities. For medium intensities, RF becomes much more efficient but it starts
to fail for higher intensities. This interesting and novel behavior is discussed in
more detail in Section 4.5.

Considering the value model we see that SVM, RF, and TA are failing. MLP
is failing for small intensities but succeeding to reach the guessing entropy thresh-
old level for medium and higher intensities. NB is succeeding throughout all in-
tensities but displays large deviations. When considering the success rate, only
NB is reaching the success rate threshold while decreasing over intensities. We
concentrate on explaining this behavior in Section 4.5.

General Observations and Remarks With our framework, we are able to
observe four different types of classifier behavior over intensities, i.e., levels of
perturbations. The most natural (and maybe expected behavior) is a slow de-
crease of performance with increasing level of noise. This behavior can be noticed
for accuracies for the DPAv4 dataset for both models and all algorithms (except
SVM with the intermediate value model). For guessing entropy and success rate,
TA is nearly exponentially decreasing in performance for DPAv4, while others
show a much slower decrease for these metrics. Thus, we state as the first finding
that in case of high SNR scenarios, TA is not robust in the presence of perturba-
tions. Differing from that, machine learning-based attacks like SVM, MLP, and
NB perform well and are robust in the presence of perturbations.

The second type of behavior is the constant performance in the presence of
various levels of perturbations. We emphasize that such a behavior is highly
desirable for side-channel algorithms in practical settings. This behavior can be
seen for the Random Delay and AES HD datasets when considering accuracy
and all algorithms. Thus, for datasets where the noise level is rather high, which
actually can point that the constant behavior comes from the fact that the

19

(a) AES HD, HW model, accuracy
(b) AES HD, value model, accuracy (zoom
in)

(c) AES HD, HW model, guessing entropy (d) AES HD, value model, accuracy

(e) AES HD, value model, guessing en-
tropy

20

(a) Random Delay, HW model, accuracy
(b) Random Delay, HW model, guessing
entropy

(c) Random Delay, value model, accuracy
(d) Random Delay, value model, guessing
entropy

21

classifier works poor even when there is no noise so added noise does not decrease
the performance. As two examples of robust classifiers for the HW model, we
note TA and NB. In the intermediate value model, TA is performing much
worse, while NB still keeps sufficiently good performance. Interestingly, MLP
is performing poorly (even failing) considering the HW model but is the most
efficient algorithm when considering the intermediate value model. We believe
this is mainly a consequence of the imbalancedness of classes. Consequently,
for high noise settings, NB is the most robust classifier as indicated by our
experiments.

The third (somewhat unexpected) type of behavior is an increase in perfor-
mance with increasing perturbations. This can be only observed on the Random
Delay dataset. More precisely, for the HW model, we observe that RF is drasti-
cally improving its performance (both guessing entropy and success rate) with
the increase in the perturbation level (until a certain perturbation value occurs
when performance drops to −1 indicating there is simply too much noise to per-
form the attack correctly). Similarly, for the intermediate value model, NB is
improving its performance with the increase in the perturbation level (mainly
observable for success rate). Since the Random Delay dataset has a countermea-
sure, we see that adding noise improves the generalization ability of the classifier
and allows it to avoid overfitting. Such behavior goes up to a certain level of noise
after which the performance quickly drops. Consequently, we see there are even
scenarios where robustness is not desirable quality since more robust classifier
would tend more to overfit.

Finally, the fourth type of behavior is the one we call statistical anomaly and
it can be seen for instance, for MLP classifier and the Random Delay dataset
when considering the value model. There, the classifier is unsuccessful already for
the scenario without noise and stays unsuccessful for most of the intensity levels.
Still, there are some (random) intensity levels where the performance becomes
very good. Unfortunately, this behavior cannot be really exploited since we do
not know when (and if) will it occur because it happens only due to random
changes.

When considering the hyperparameter tuning and perturbations, we see that
fine-tuned tuning is beneficial if perturbations are not too big. If we expect
to work in scenarios with large perturbations, actually it seems better to just
conduct a coarse-grained tuning since the performance will not suffer due to the
influence of noise.

5 Conclusions and Future Work

In this paper, we concentrate on the problem of profiled side-channel attacks and
uncertainties stemming from the experimental results. To that end, we propose
a general framework that can be used to analyze the behavior of any profiled
side-channel attack (i.e., classifier). Our framework supports datasets with any
type of characteristics as well as different leakage models. To be able to offer such
a general behavior, we model our setting as the expectation estimation problem

22

where we can achieve any desired accuracy and confidence level. After we model
the classifiers, we use the robustness analysis to estimate their performance in
the presence of perturbations. Such an analysis allows us to give an answer to
the question which classifier is the best for some scenario. We give robustness
analysis for all common figures of merit in SCA: accuracy, success rate, and
guessing entropy.

We believe our framework to be a powerful tool that will allow researchers to
compare the behavior of various classifiers in a more fair way than it is done up to
now. Since profiled SCA in realistic settings should consider different devices for
profiling and attacking, we actually see that our framework allows us more than
just connecting SCA with problems that have strong theoretical results. More
precisely, our framework actually allows us to model the realistic behavior of
profiled SCA where because of several different sources of noise, uncertainty must
occur. We note that our framework is demanding: to conduct a proper analysis
the Chernoff bounds requires a large number of samples, which potentially can be
a prohibiting factor for certain computationally intensive classifiers or very large
datasets. One easy way how to circumvent this is to parallelize the process for
different intensities. Another option, which we plan to explore in the future work
is to use Chernoff-Okamoto bound that is less conservative than the Chernoff
bound. Since it applies only when p ≤ 0.5, it remains to be seen how useful this
bound can be in the SCA domain.

References

1. Choudary, O., Kuhn, M.G.: Efficient template attacks. In Francillon, A., Rohatgi,
P., eds.: Smart Card Research and Advanced Applications - 12th International
Conference, CARDIS 2013, Berlin, Germany, November 27-29, 2013. Revised Se-
lected Papers. Volume 8419 of LNCS., Springer (2013) 253–270

2. Chari, S., Rao, J.R., Rohatgi, P.: Template Attacks. In: CHES. Volume 2523 of
LNCS., Springer (August 2002) 13–28 San Francisco Bay (Redwood City), USA.

3. Heuser, A., Zohner, M.: Intelligent Machine Homicide - Breaking Cryptographic
Devices Using Support Vector Machines. In Schindler, W., Huss, S.A., eds.:
COSADE. Volume 7275 of LNCS., Springer (2012) 249–264

4. Cagli, E., Dumas, C., Prouff, E.: Convolutional Neural Networks with Data Aug-
mentation Against Jitter-Based Countermeasures - Profiling Attacks Without Pre-
processing. In: Cryptographic Hardware and Embedded Systems - CHES 2017 -
19th International Conference, Taipei, Taiwan, September 25-28, 2017, Proceed-
ings. (2017) 45–68

5. Picek, S., Heuser, A., Jovic, A., Ludwig, S.A., Guilley, S., Jakobovic, D., Mentens,
N.: Side-channel analysis and machine learning: A practical perspective. In: 2017
International Joint Conference on Neural Networks, IJCNN 2017, Anchorage, AK,
USA, May 14-19, 2017. (2017) 4095–4102

6. Picek, S., Heuser, A., Jovic, A., Bhasin, S., Regazzoni, F.: The curse of class im-
balance and conflicting metrics with machine learning for side-channel evaluations.
IACR Transactions on Cryptographic Hardware and Embedded Systems 2019(1)
(Nov. 2018) 209–237

7. Wolpert, D.H.: The Lack of a Priori Distinctions Between Learning Algorithms.
Neural Comput. 8(7) (October 1996) 1341–1390

23

8. Valiant, L.: Probably Approximately Correct: Nature’s Algorithms for Learning
and Prospering in a Complex World. Basic Books, Inc., New York, NY, USA
(2013)

9. Kocher, P.C.: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,
and Other Systems. In: Proceedings of CRYPTO’96. Volume 1109 of LNCS.,
Springer-Verlag (1996) 104–113

10. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Proceedings of
the 19th Annual International Cryptology Conference on Advances in Cryptology.
CRYPTO ’99, London, UK, UK, Springer-Verlag (1999) 388–397

11. Quisquater, J.J., Samyde, D.: Electromagnetic analysis (ema): Measures and
counter-measures for smart cards. In Attali, I., Jensen, T., eds.: Smart Card
Programming and Security, Berlin, Heidelberg, Springer Berlin Heidelberg (2001)
200–210

12. Genkin, D., Shamir, A., Tromer, E.: Acoustic cryptanalysis. Journal of Cryptology
30(2) (Apr 2017) 392–443

13. Heuser, A., Rioul, O., Guilley, S.: Good is Not Good Enough — Deriving Optimal
Distinguishers from Communication Theory. In Batina, L., Robshaw, M., eds.:
CHES. Volume 8731 of Lecture Notes in Computer Science., Springer (2014)

14. Lerman, L., Poussier, R., Bontempi, G., Markowitch, O., Standaert, F.: Tem-
plate attacks vs. machine learning revisited (and the curse of dimensionality in
side-channel analysis). In Mangard, S., Poschmann, A.Y., eds.: Constructive Side-
Channel Analysis and Secure Design - 6th International Workshop, COSADE 2015,
Berlin, Germany, April 13-14, 2015. Revised Selected Papers. Volume 9064 of Lec-
ture Notes in Computer Science., Springer (2015) 20–33

15. Schindler, W., Lemke, K., Paar, C.: A Stochastic Model for Differential Side
Channel Cryptanalysis. In LNCS, ed.: CHES. Volume 3659 of LNCS., Springer
(Sept 2005) 30–46 Edinburgh, Scotland, UK.

16. Hospodar, G., Gierlichs, B., De Mulder, E., Verbauwhede, I., Vandewalle, J.: Ma-
chine learning in side-channel analysis: a first study. Journal of Cryptographic
Engineering 1 (2011) 293–302 10.1007/s13389-011-0023-x.

17. Lerman, L., Bontempi, G., Markowitch, O.: Power analysis attack: An approach
based on machine learning. Int. J. Appl. Cryptol. 3(2) (June 2014) 97–115

18. Lerman, L., Bontempi, G., Markowitch, O.: A machine learning approach against
a masked AES - Reaching the limit of side-channel attacks with a learning model.
J. Cryptographic Engineering 5(2) (2015) 123–139

19. Lerman, L., Medeiros, S.F., Bontempi, G., Markowitch, O.: A Machine Learn-
ing Approach Against a Masked AES. In: CARDIS. Lecture Notes in Computer
Science, Springer (November 2013) Berlin, Germany.

20. Picek, S., Heuser, A., Guilley, S.: Template attack versus Bayes classifier. Journal
of Cryptographic Engineering 7(4) (Nov 2017) 343–351

21. Gilmore, R., Hanley, N., O’Neill, M.: Neural network based attack on a masked
implementation of AES. In: 2015 IEEE International Symposium on Hardware
Oriented Security and Trust (HOST). (May 2015) 106–111

22. Heuser, A., Picek, S., Guilley, S., Mentens, N.: Lightweight ciphers and their side-
channel resilience. IEEE Transactions on Computers PP(99) (2017) 1–1

23. Maghrebi, H., Portigliatti, T., Prouff, E.: Breaking cryptographic implementations
using deep learning techniques. In: Security, Privacy, and Applied Cryptography
Engineering - 6th International Conference, SPACE 2016, Hyderabad, India, De-
cember 14-18, 2016, Proceedings. (2016) 3–26

24. Alippi, C.: Intelligence for Embedded Systems: A Methodological Approach.
Springer Publishing Company, Incorporated (2014)

24

25. Rudin, W.: Real and Complex Analysis, 3rd Ed. McGraw-Hill, Inc., New York,
NY, USA (1987)

26. Chernoff, H.: A measure of asymptotic efficiency for tests of a hypothesis based
on the sum of observations. Ann. Math. Statist. 23(4) (12 1952) 493–507

27. Hoeffding, W.: Probability inequalities for sums of bounded random variables.
Journal of the American Statistical Association 58(301) (1963) 13–30

28. TELECOM ParisTech SEN research group: DPA Contest (4th edition) (2013–2014)
http://www.DPAcontest.org/v4/.

29. Coron, J., Kizhvatov, I.: An Efficient Method for Random Delay Generation in
Embedded Software. In: Cryptographic Hardware and Embedded Systems - CHES
2009, 11th International Workshop, Lausanne, Switzerland, September 6-9, 2009,
Proceedings. (2009) 156–170

30. James, G., Witten, D., Hastie, T., Tibsihrani, R.: An Introduction to Statistical
Learning. Springer Texts in Statistics. Springer New York Heidelbert Dordrecht
London (2001)

31. Fernández-Delgado, M., Cernadas, E., Barro, S., Amorim, D.: Do we Need Hun-
dreds of Classifiers to Solve Real World Classification Problems? Journal of Ma-
chine Learning Research 15 (2014) 3133–3181

32. Friedman, N., Geiger, D., Goldszmidt, M.: Bayesian Network Classifiers. Machine
Learning 29(2) (1997) 131–163

33. Fan, R.E., Chen, P.H., Lin, C.J.: Working Set Selection Using Second Order Infor-
mation for Training Support Vector Machines. J. Mach. Learn. Res. 6 (December
2005) 1889–1918

34. Breiman, L.: Random Forests. Machine Learning 45(1) (2001) 5–32
35. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016) http:

//www.deeplearningbook.org.

A Supporting Figures

B The Influence of Hyperparameter Tuning

25

(a) DPAv4, HW model, success rate (b) DPAv4, value model, success rate

(c) AES HD, HW model, success rate (d) AES HD, value model, success rate

(e) Random Delay, HW model, success
rate

(f) Random Delay, value model, success
rate

26

(a) DPAv4, HW model, accuracy, SVM
and SVM with optimized hyperparameters
for this scenario

(b) DPAv4, HW model, guessing entropy,
SVM and SVM with optimized hyperpa-
rameters for this scenario

