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DWELL-TIME CONTROL SETS AND APPLICATIONS TO THE STABILITY

ANALYSIS OF LINEAR SWITCHED SYSTEMS

FRANCESCO BOAROTTO AND MARIO SIGALOTTI

Abstract. We propose an extension of the theory of control sets to the case of inputs satis-

fying a dwell-time constraint. Although the class of such inputs is not closed under concate-
nation, we propose a suitably modified definition of control sets that allows to recover some

important properties known in the concatenable case. In particular we apply the control set

construction to dwell-time linear switched systems, characterizing their maximal Lyapunov
exponent looking only at trajectories whose angular component is periodic. We also use such

a construction to characterize supports of invariant measures for random switched systems

with dwell-time constraints.

1. Introduction

Control sets are geometric objects reflecting the structural properties of the family of all
reachable sets of a given control system [14]. They also happen to be a very helpful geometric
tool for investigating the stability properties of linear switched systems. For a linear switched
system on Rd with set of modes S ⊂ Md(R), one can consider the induced switched system on
the projective space RPd−1 obtained by looking at the angular component of the state. Under
the assumption that the set of projected modes, seen as vector fields on RPd−1, satisfies the Lie
algebra rank condition, there exists a unique nonempty set D ⊂ RPd−1 such that the closure
of the reachable set from any point in D is equal to D itself. Moreover, the set D, which is
called invariant control set, has nonempty interior in RPd−1 and is contained in the closure of
the reachable set from any other point in RPd−1. An important application of this property is a
useful characterization of maximal and minimal Lyapunov exponents. Under the Lie algebra rank
condition mentioned above, indeed, these exponents that characterize the asymptotic behavior
of the system, and in particular its stability, can be computed by looking solely at periodic inputs
which generate trajectories whose angular components are also periodic. The idea of looking
at the Lyapunov exponents associated with the restricted class of periodic trajectories has been
introduced in [3] in order to relate the asymptotic stability of linear stochastic systems with
the behavior of their large deviations, measured in terms of p-th mean Lyapunov exponents.
The characterization in terms of periodic trajectories turns out to be useful also to prove the
continuity of Lyapunov exponents (see [13] and also [11], where invariant control sets are used to
prove continuity for Lyapunov exponents associated with systems subject to persistently exciting
inputs).
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Another important property of control sets, which is the original motivation for their intro-
duction in the literature [2], is that they allow to characterize supports of invariant measures for
piecewise deterministic Markov processes on compact manifolds [7]. (See also [8], where some
ad hoc construction of control set is developed for two-dimensional linear switched systems.)

A limitation of the control set approach is that it has been developed for the point of view
of controllability theory, hence control signals are allowed to vary arbitrarily as time goes. This
paper, motivated by the study of switched systems, aims at presenting a first extension of
the theory of control sets to classes of input signals with restrictions on the switching rule. The
most studied of these classes consists of signals satisfying dwell-time constraints, i.e., the interval
between two successive switching times has length larger than a given positive constant. The
most important structural difference between the classes of dwell-time and arbitrary switching
signals is that the former is not closed under concatenation, in the sense that concatenating
two pieces of switching signals satisfying the dwell-time constraint does not necessarily yield a
dwell-time signal. Such a lack of concatenability induces the most relevant technical difficulties
that we are lead to tackle in this paper.

Our contribution is based on a new suitable notion of control set adapted to the dwell-time
setting. Instead of basing the construction on reachable sets as in the case of arbitrary switching,
we restrict the attention to points which can be attained at the final time of a concatenation
of constant signals of length larger than the dwell-time. This leads to a inner estimate of the
reachable set, not necessarily connected, but which is shown to be sufficient to yield a proper
notion of dwell-time control set. The latter shares most existence, uniqueness, and topological
properties with its counterpart for arbitrary switching. (Similar results could have been obtained
following the approach in [23], at least when the Lie algebra generated by the modes of the
switched system is finite-dimensional.) As a consequence, in the linear case, we extend the
results of [13] on the characterization of the maximal Lyapunov exponent by trajectories with
periodic angular component. We also describe the support of invariant measures for random
switched systems with dwell-time. Most of the paper deals with general systems on a (mostly
compact) manifold. The results for linear switched systems are then obtained by considering the
induced system on the projective space.

While proving these results we also partially extend the results known for arbitrarily switching,
in particular by removing the Lie algebra rank condition from the characterization of Lyapunov
exponents in terms of trajectories with periodic angular components. This is made possible by
a new result dealing with the representation of Lie groups, which ensures that the action of the
group of flows associated with the lifted linear switched system has at least one compact orbit
on Sd−1 (or RPd−1). This result, which we believe to be of independent interest, seems not to
be present in the literature. We are indebted to Uri Bader and Claudio Procesi for their crucial
help in providing its proof (presented in the appendix).

The paper is organized as follows. In Section 2 we state the main results on linear switched
systems contained in the paper. Section 3 contains the definition and construction of dwell-
time control sets, establishing their basic properties and illustrating them on a simple example
on the projective circle. In Section 4 dwell-time control systems are specified to the case of
linear switched systems and their induced dynamics on the projective space. In particular, we
show in Theorem 24 that if we restrict a projected linear switched systems to a compact orbit
of the corresponding matrix Lie group, then the restricted system admits an unique invariant
dwell-time control set (where invariance is defined in a suitable way that takes into account the
dwell-time constraint). Based on this result, we prove in Theorem 29 that the maximal Lyapunov
exponent can be achieved looking only at trajectories with periodic angular component. Finally,
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in Section 5 we relate dwell-time control sets and the support of invariant measures for piecewise
deterministic dwell-time random processes.

2. Linear switched systems: main results

We present in this section the main results that we obtain for linear switched systems, simpli-
fying when necessary the assumptions and the notations with respect to the following sections,
in order to avoid technicalities.

Given an integer d ≥ 1, a set S of d× d matrices, and a scalar τ ≥ 0, we consider on Rd the
system

(2.1) ẋ(t) = A(t)x(t),

with A(·) in the set Sτ of all piecewise constant functions from [0,+∞) to S such that

(2.2) tj+1(A)− tj(A) ≥ τ, ∀j ≥ 1,

where (tj(A))j is the (possibly finite) increasing sequence of discontinuities of A. A solution to
(2.1) is characterized by A and the initial condition x0, and is denoted by x(·;x0, A).

Notice that the dwell-time condition (2.2) is equivalent to asking that m({tj(A)}j) ≥ τ ,
where m(·) is the function computing the lower bound of the distance between distinct points
of a subset of R.

For every x0 ∈ Rd, define the reduced reachable set from x0

Rτ (x0) = {x(t;x0, A) | t ≥ 0, A ∈ Sτ , m({0} ∪ {tj(A)}j ∪ {t}) ≥ τ}.

For the case τ = 0, the constraint m({0}∪{tj(A)}j ∪{t}) ≥ τ is empty and the set R0(x0) is the
usual reachable set from x0 for system (2.1), in which A is seen as a piecewise constant control
with values in S. For τ > 0, the constraint m({0} ∪ {tj(A)}j ∪ {t}) ≥ τ does play a role. The
reduced reachable set is defined in this way in order to ensure, in particular, the property that

Rτ (x1) ⊂ Rτ (x0) if x1 ∈ Rτ (x0).

2.1. Closed orbits for zero-dwell systems. A technical result that we use several times in
the paper is the following.

Proposition 1. Let d ≥ 1 and consider a set S of d × d matrices such that A ∈ S if and only
if −A ∈ S. Then there exists x0 ∈ Rd \ {0} such that the set{ x

‖x‖
| x ∈ R0(x0)

}
is compact.

The above result can be deduced from the following property of the actions of linear Lie
groups.

Theorem 2. Let B be a connected Lie subgroup of GL(R, d). Then the action

ϕ : B × Sd−1 → Sd−1, ϕ(b, x) =
bx

‖bx‖
,

induced by B on the (d− 1)-dimensional unit sphere Sd−1 ⊂ Rd, admits at least one closed orbit
in Sd−1.

The proof of the theorem is based on rather different arguments from those developed in the
rest of the paper and is postponed to the appendix.
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2.2. Periodization of trajectories. Let the set S of d×d matrices be bounded. The maximal
Lyapunov exponent for (2.1) is defined as

(2.3) λ = sup
A∈Sτ ,x0 6=0

lim sup
t→+∞

log(‖x(t;x0, A)‖)
t

.

The goal of periodization is to offer a way to approximate λ by solving finite-horizon max-
imization problems. In order to do so, instead of maximizing over all trajectories x(t;x0, A)
with x0 6= 0 and A ∈ Sτ , we might restrict our attention to those for which there exists T > 0
such that A is T -periodic and x(T ;x0, A) is parallel to x0. Let us define λper by taking the sup
in (2.3) restricted to these trajectories (see Section 4.4 for a detailed definition). Then clearly
λper ≤ λ. In the case τ = 0 Colonius and Kliemann proved in [13] that the two quantities are
actually equal, under the assumption that S satisfies the Lie algebra rank condition on RPd−1,
that is, if the family of vector fields on the projective space RPd−1 induced by the elements of
S satisfies the Lie algebra rank condition. We extend their result by proving equality for every
τ ≥ 0 and removing the Lie algebra rank condition assumption.

Theorem (Theorem 29). Let d ≥ 1 and consider a bounded set S of d × d matrices. Then
λ = λper.

2.3. Support of invariant measures. Consider now the case where S is finite and the switch-
ing signal is a random variable. In order to guarantee that the dwell time-condition is verified,
we assume that the switching times are independent random variables with identical probability
distributions having support in [τ,+∞). The probability of switching from one element of S to
another is encoded by a stochastic matrix. Under these hypotheses, it is possible to associate
with the random switching system a probabilistic maximal Lyapunov exponent χτ , which is al-
most surely attained by a trajectory of the system. (For details, see Section 5 and, in particular,
Section 5.4.)

We then have the following.

Proposition (Proposition 38). Let S be finite and assume that it satisfies the Lie algebra rank
condition on RPd−1. For every θ ∈ RPd−1, let Rτ (θ) be the projection on RPd−1 of Rτ (x) for

any vector x ∈ Rd \ {0} projecting to θ. Set D = ∩θ∈RPd−1Rτ (θ). Then there exists a probability
measure ν on RPd−1 × S with

suppν ⊂ ∪A∈S, t∈[0,τ ]etA(D)× {A},

absolutely continuous with respect to the Lebesgue measure, and such that

χτ =

∫
RPd−1×S

〈θ,Aθ〉dν(θ,A).

3. Dwell-time control sets

We introduce in this section a general construction of control sets in the framework of nonlinear
switching systems with a dwell-time constraint. In analogy with [14], we are going to establish
the existence and some crucial geometric properties of these sets that we will extensively use
later on in this paper, in particular for studying stability properties of switched systems with
dwell-time.

3.1. Krener accessibility theorem with dwell-time constraints. LetM be a d-dimensional
manifold and U any nonempty set. We consider the control system

(3.1) q̇(t) = X(q(t), u(t)), u ∈ U,
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where X : M × U → TM is such that X(·, u) is a smooth complete vector field for every u ∈ U
and

U = {u : [0, T ]→ Rm | T ≥ 0, u(t) ∈ U for every t ∈ [0, T ], u is piecewise constant}.
Let us denote by T : U → [0,+∞) the function associating with u ∈ U the length of the time-
interval on which u is defined. We write φ(·, q0, u) for the trajectory of (3.1) starting at a point
q0 ∈M , and driven by the control u ∈ U on the time-interval [0, T (u)]. Let, moreover,

F = {X(·, u) | u ∈ U}
and denote by Lie(F) the Lie algebra of vector fields on M generated by F (with respect to the
Lie bracket operation).

An assumption that we will require for several results is that

(H) Lieq(F) = TqM, for every q ∈M,

which is known as the Lie algebra rank condition. Here Lieq(F) denotes the evaluation of Lie(F)
at q, that is, Lieq(F) = {Y (q) | Y ∈ Lieq(F)}.

Definition 3. Let u1, u2 ∈ U. Then the concatenation u1 ∗ u2 ∈ U is the piecewise constant
function defined on [0, T (u1) + T (u2)] by

(u1 ∗ u2)(t) =

ß
u1(t) on [0, T (u1)],
u2(t− t1) on (T (u1), T (u1) + T (u2)].

Definition 3 immediately extends to an arbitrary finite number of elements of U.

Definition 4. Let τ ≥ 0. Let us consider the subset of U defined by

Uτ = {u1 ∗ · · · ∗ um | m ∈ N, ui ∈ U is constant on [0, T (ui)] and T (ui) ≥ τ for i = 1, . . . ,m} .
In particular, U0 = U. When the parameter τ is positive, it is commonly referred to as the
dwell-time. Dwell-time constraints are used to model systems where, for technological, safety,
or other reasons, the actuation of each control value cannot last less than a common bound τ .

Let us define

Sτ
F = {φ(T (u), ·, u) | u ∈ Uτ} ,

that is, Sτ
F is the subset of diffeomorphisms of M given by the collection of all the flows associated

with controls in Uτ . Observe that Sτ
F admits the following alternative characterization

(3.2) Sτ
F = {etmXm ◦ · · · ◦ et1X1 | m ∈ N, X1, . . . , Xm ∈ F, t1, . . . , tm ≥ τ}.

Notice that Sτ
F has the semigroup property. Indeed, for every two elements g1, g2 ∈ Sτ

F, their
composition g1 ◦ g2 is again an element of Sτ

F.

Definition 5 (Dwell-time attainable set). For every T > 0, τ ≥ 0, and q0 ∈M , we set

AT,τq0 = {φ(T (u), q0, u) | u ∈ Uτ , T (u) ≤ T}.

Notice that Sτ
F(q0) =

⋃
T>0A

T,τ
q0 , where Sτ

F(q0) stands for the set {ψ(q0) | ψ ∈ Sτ
F}. The

semigroup property of Sτ
F implies that Sτ

F(q0) is dwell-time positively invariant, according to
the following definition.

Definition 6. A set A ⊂M is said to be dwell-time positively invariant if Sτ
F(q) ⊂ A for every

q ∈ A.

The following is an adaptation of the well-known Krener’s theorem to our current situation,
that is, in presence of a dwell-time constraint.
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Proposition 7. Assume that (H) holds true. Then, for every T > dτ and q0 ∈M , int(AT,τq0 ) 6=
∅.

Proof. Fix T > dτ and let ε = T
d − τ > 0. Since Lieq0(F) 6= 0, there exists X1 ∈ F such that

X1(q0) 6= 0. For any τ1 > τ we have

d

dr1
e(τ1+r1)X1(q0)

∣∣∣∣
r1=0

= eτ1X1
∗ (X1(q0)) = X1(q1) 6= 0,

where we set q1 = eτ1X1(q0) for some τ1 ∈ (τ, τ + ε) to be fixed later. Next, if d ≥ 2, there exist
τ1 ∈ (τ, τ + ε) and X2 ∈ F such that X1(q1) ∧ X2(q1) 6= 0, for otherwise Lieq1(F) would be of
dimension one, and (H) would be violated. Notice moreover that X1(q1) ∧ X2(q1) 6= 0 is still
true if we vary τ1 in a small neighborhood. Then, for any τ2 ∈ (τ, τ + ε), we compute

d

dr1
e(τ2+r2)X2 ◦ e(τ1+r1)X1(q0)

∣∣∣∣
(r1,r2)=0

= eτ2X2
∗ (X1(q1)) = (eτ2X2

∗ X1)(eτ2X2(q1)),

d

dr2
e(τ2+r2)X2 ◦ e(τ1+r1)X1(q0)

∣∣∣∣
(r1,r2)=0

= eτ2X2
∗ (X2(q1)) = X2(eτ2X2(q1)).

The two tangent vectors at eτ2X2 ◦ eτ1X1(q0) are linearly independent, since eτ2X2
∗ is a diffeomor-

phism of the tangent space. Again, if d ≥ 3, we set q2 = eτ2X2 ◦ eτ1X1(q0), and, up to eventually
modifying τ1, τ2 ∈ (τ, τ + ε), we can find X3 ∈ F such that

(eτ2X2
∗ X1)(q2) ∧X2(q2) ∧X3(q2) 6= 0,

for otherwise Lieq2(F) would be contained in the tangent plane to the surface parameterized by

(r1, r2) 7→ e(τ2+r2)X2 ◦ e(τ1+r1)X1(q0) (with (r1, r2) in a neighborhood of (0, 0)) and (H) would
not hold. Repeating the argument above, suppose that d ≥ k and that at the k-th step we define

qk−1 = eτk−1Xk−1 ◦ · · · ◦ eτ1X1(q0).

Then, up to slightly modifying τ1, . . . , τk−1 ∈ (τ, τ + ε), we can find Xk ∈ F such that

Xk(qk−1) ∧ · · · ∧ ((eτk−1Xk−1 ◦ · · · ◦ eτ1X1)∗X1)(qk−1) 6= 0.

Differentiating at zero the map

(3.3) (r1, . . . , rk) 7→ e(τk+rk)Xk ◦ · · · ◦ e(τ1+r1)X1(q0),

we find that

(3.4)

d

dri
eτkXk ◦ · · · ◦ e(τi+ri)Xi ◦ · · · ◦ eτ1X1(q0)

∣∣∣∣
ri=0

= eτkXk∗ ((eτk−1Xk−1 ◦ · · · ◦ eτiXi)∗Xi)(qk−1)

= ((eτkXk ◦ · · · ◦ eτi+1Xi+1)∗Xi)(qk)

for i = 1, . . . , k. The differential of (3.3) is then of maximal rank locally at (0, . . . , 0) and the
claim is proved after d steps. �

Remark 8. The proof of Proposition 7 actually shows that if (H) holds true, then, for every δ > 0
and q0 ∈M there exist τ1, . . . , τd ∈ (τ, τ + δ) and X1, . . . , Xd ∈ F such that Rd 3 (t1, . . . , td) 7→
etdXd ◦ · · · ◦ et1X1(q0) is a local diffeomorphism at (τ1, . . . , τd).

Proposition 9. Let q0 ∈M and

g : Rd →M, g : (t1, . . . , td) 7→ etdXd ◦ · · · ◦ et1X1(q0),
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be a local diffeomorphism at (τ1, . . . , τd). Let q1 = g(τ1, . . . , τd)(q0). Then

h : Rd →M, h : (t1, . . . , td) 7→ e−t1X1 ◦ · · · ◦ e−tkXk(q1),

is also a local diffeomorphism at (τ1, . . . , τd).
In particular, there exist an arbitrarily small neighborhood N of (τ1, . . . , τd) in Rd and Ω0,

Ω1 neighborhoods of q0, q1, respectively, such that for every p0 ∈ Ω0 and p1 ∈ Ω1 there exists
(t1, . . . , td) ∈ N such that p1 = g(t1, . . . , td)(p0).

Proof. By assumption (compare with (3.4)), the vector fields X1, . . . , Xd appearing in the defi-
nition of g satisfy the relation

(3.5)
d∧
i=1

(
(eτdXd ◦ · · · ◦ eτi+1Xi+1)∗Xi

)
(q1) 6= 0.

On the other hand, differentiating at 0 with respect to ri, i = 1, . . . , d, the map

(r1, . . . , rd) 7→ e−(τ1+r1)X1 ◦ · · · ◦ e−(τd+rd)Xd(q1),

we obtain

d

dri
e−τ1X1 ◦ · · · ◦ e−(τi+ri)Xi ◦ · · · ◦ e−τdXd(q1)

∣∣∣∣
ri=0

= −((e−τ1X1 ◦ · · · ◦ e−τi−1Xi−1)∗Xi)(q0)

= −((e−τ1X1 ◦ · · · ◦ e−τiXi)∗Xi)(q0).(3.6)

To see that the collection of vectors obtained in (3.6) is a basis of Tq0M , it is sufficient to
observe that they can be mapped to the collection appearing in (3.5) applying the push-forward
(eτdXd ◦ · · · ◦eτ1X1)∗. Since this latter family is a basis of Tq1M , then h is a local diffeomorphism
at (τ1, . . . , τd).

The last part of the statement follows by a standard compactness/continuity argument. �

Combining Remark 8 and Proposition 9 yields the following.

Corollary 10. Assume that (H) holds true. Then, for every T > dτ and q0 ∈ M , there exist
u ∈ Uτ with T (u) < T and a neighborhood Ω of q0 in M such that for every q1 ∈ Ω there exists
w ∈ Uτ with T (w) < T and φ(T (w), q1, w) = φ(T (u), q0, u).

3.2. Control sets. Let us denote by Uτ∞ the set of all piecewise constant functions u : [0,+∞)→
U such that there exists Tn → +∞ for which u|[0,Tn] ∈ Uτ for every n ∈ N. With a slight abuse
of notation, given u : [0, T ] → U (respectively, u : [0,+∞) → U) and 0 ≤ t1 ≤ t2 ≤ T
(respectively, 0 ≤ t1 < +∞), we say that u|[t1,t2] is in Uτ (respectively, u|[t1,+∞) is in Uτ∞) if
[0, t2 − t1] 3 s 7→ u(s+ t1) (respectively, [0,+∞) 3 s 7→ u(s+ t1)) does.

A special role in what follows is played by those times in [0,+∞) at which a signal u ∈ Uτ∞ is
split into two subsignals which both satisfy the dwell-time condition. Such times are interesting
because they can be used to modify u by concatenating one of the subsignals with any other
dwell-time signal. Such partial concatenability allows to prove the interesting properties that we
seek to bring to light in control sets.

Definition 11. A subset D ⊂ M is said to be a τ dwell-time control set (τ -CS, for short) for
system (3.1) if it satisfies the following conditions:

(i) For every q ∈ D there exists u ∈ Uτ∞ such that φ(t, q, u) ∈ D for all t > 0 for which both
u|[0,t] is in Uτ and u|[t,+∞) is in Uτ∞;

(ii) For every q ∈ D, one has that D ⊂ Sτ
F(q);

(iii) D is maximal with these properties, i.e., if D′ ⊃ D satisfies both (i) and (ii), then
D′ = D.
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Moreover, a τ -CS D ⊂ M is said to be an invariant τ -CS (τ -ICS, for short) if D = Sτ
F(q) for

every q ∈ D.

Remark 12. Observe that, if D is a subset of M such that

(3.7) D = Sτ
F(q) ∀q ∈ D,

then automatically D is a τ -ICS. Moreover, if (H) holds true, then any τ -ICS is closed. Indeed,
consider a τ -ICS C and let us prove that D = C satisfies (3.7). The conclusion then follows

by maximality. It is clear that for every q ∈ C, the set Sτ
F(q) (and hence Sτ

F(q)) is contained

in C. In order to conclude, fix q ∈ C and let us notice that it is enough to show that Sτ
F(q)

intersects C, since for every p ∈ Sτ
F(q) ∩ C we have C = Sτ

F(p) ⊂ Sτ
F(q). Thanks to Remark 8

and Proposition 9, there exists u ∈ Uτ such that Sτ
F(q) covers a neighborhood of φ(T (u), q, u).

Since, moreover, φ(T (u), q, u) is in C, we indeed have that Sτ
F(q) intersects C.

Remark 13. Observe that if (H) holds true then M contains at most countably many distinct
τ -ICS. Indeed, M admits a countable dense subset {qn}n∈N. Let D be any τ -ICS. Then D is
characterized by (3.7) according to Remark 12. By Proposition 7, int(D) 6= ∅, hence there exists

N ∈ N such that qN is in int(D). But then D = Sτ
F(qN ). The family of all τ -ICS is therefore

contained in {Sτ
F(qN ) | N ∈ N}.

Our first result on control sets is an existence property for invariant dwell-time control sets
when M is compact.

Theorem 14. Let M be compact. For each q ∈M there exists a nonempty τ -ICS Dq contained

in Sτ
F(q). If, moreover, (H) holds true, then Dq has nonempty interior.

Proof. Let q ∈ M . Consider the collection Vq = {Sτ
F(p) | p ∈ Sτ

F(q)}. Then Vq is nonempty,
and all elements of Vq are dwell-time positively invariant, since

(3.8) Sτ
F(z) ⊂ Sτ

F(p) ∀z ∈ Sτ
F(p).

To check this, we let w = g(z), for some g ∈ Sτ
F. We need to prove that w ∈ Sτ

F(p). Let Ow be

any neighborhood of w. Since z ∈ Sτ
F(p), then, for any neighborhood Vz of z, Vz ∩Sτ

F(p) 6= ∅.
We choose Vz so small that g(Vz) ⊂ Ow, and then for any y ∈ Vz ∩ Sτ

F(p), we have that
g(y) ∈ Ow ∩Sτ

F(p), since g(Sτ
F(p)) ⊂ Sτ

F(p).
Now observe that Vq is a partially ordered (with respect to the inclusion) collection of

nonempty compact sets. The Cantor intersection theorem implies then that every descend-
ing chain {Sτ

F(qi) | i ∈ I} is such that
⋂
i∈I S

τ
F(qi) 6= ∅. Therefore, thanks again to (3.8), every

chain has a lower bound of the form Sτ
F(p), for some p ∈

⋂
i∈I S

τ
F(qi).

The dual form of Zorn’s lemma applies, and yields that Vq has a minimal element Dq of

the form Sτ
F(p), for some p ∈ Sτ

F(q). In particular, Dq is dwell-time positively invariant. By

Remark 12, in order to prove that Dq is a τ -ICS it remains to show that Dq = Sτ
F(y) for all

y ∈ Dq. Since Dq is closed and dwell-time positively invariant, then Sτ
F(y) ⊂ Dq. Equality then

follows from the minimality property of Dq.
Finally, Proposition 7 implies that Dq has nonempty interior whenever (H) holds true. �

3.2.1. Properties of dwell-time control sets.

Lemma 15. Let D be a subset of M which is maximal with respect to property (ii) in Defini-
tion 11. Let q ∈ D and u ∈ Uτ be such that φ(T (u), q, u) ∈ D. Then φ(t, q, u) ∈ D for all
0 ≤ t ≤ T (u) such that both u|[0,t] ∈ Uτ and u|[t,T (u)] ∈ Uτ .
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Proof. Let us write T for T (u). It suffices to prove that for every 0 ≤ t ≤ T such that both

u|[0,t] ∈ Uτ and u|[t,T ] ∈ Uτ , and every p ∈ D, both p ∈ Sτ
F(φ(t, q, u)) and φ(t, q, u) ∈ Sτ

F(p).
Indeed if this were true and φ(t, q, u) 6∈ D, then D ∪ {φ(t, q, u)} would be a set strictly larger
than D that satisfies (ii) in Definition 11.

To check the second assertion, fix a neighborhood V of φ(t, q, u). Then there exists a neigh-
borhood U of q such that φ(t, z, u) in V for all z ∈ U . Since q ∈ D, for every p ∈ D we have

that q ∈ Sτ
F(p), and then there exists u1 ∈ Uτ with φ(T (u1), p, u1) ∈ U . We concatenate u1 and

u|[0,t] on [0, T (u1) + t] to see that u1 ∗ u ∈ Uτ and φ(T (u1) + t, p, u1 ∗ u) ∈ V , so we are done.

The other assertion is easier, for it suffices to observe that p ∈ Sτ
F(φ(T, q, u)) ⊂ Sτ

F(φ(t, q, u)),
as u|[t,T ] ∈ Uτ by assumption. �

Lemma 16. Let D be a subset of M that is maximal with respect to property (ii) in Definition 11.
Assume that int(D) 6= ∅. Then D is a τ -CS.

Proof. It is sufficient to show that, for every q ∈ D, there exists u ∈ Uτ∞ such that φ(t, u, q) ∈ D
for all t ≥ 0 such that u|[0,t] is in Uτ and u|[t,+∞) in Uτ∞.

Pick q ∈ D and fix two nonempty open subsets V,W of int(D) such that V ∩ W = ∅.
Applying twice property (ii) in Definition 11 , there exist u0, u1 ∈ Uτ , q1 ∈ V , and q2 ∈ W
such that q1 = φ(T (u0), q, u0) and q2 = φ(T (u1), q1, u1). Up to restricting V and W , we can
assume that W = φ(T (u1), V, u1). Applying iteratively property (ii) in Definition 11, we select
a sequence {qi}i∈N such that qi ∈ V for i odd and qi ∈ W for i even, and a sequence {ui}i∈N
in Uτ such that qi+1 = φ(T (ui), qi, ui) for every i ∈ N and ui = u1 for i odd. Notice that∑
i∈N T (ui) ≥

∑
i∈N T (u2i+1) =

∑
i∈N T (u1) = ∞. Hence, the concatenation of all ui is an

element of Uτ∞, which we denote by u.
Finally, if t ≥ 0 is such that both u|[0,t] is in Uτ and u|[t,∞) in Uτ∞, then let i ∈ N be such

that t ≤ Ti and notice that u|[t,Ti+1] is in Uτ . Applying Lemma 15 with u = u|[0,Ti+1], we deduce
that φ(t, q, u) is in D. Then D is a τ -CS. �

Lemma 17. Let (H) hold true and assume that D ⊂M is a τ -ICS. Then

(i) int(D) = D;
(ii) int(D) is dwell-time positively invariant;
(iii) There exists an open and dense subset C of D such that C ⊂

⋂
q∈DSτ

F(q);
(iv) There exists an open and dense subset C of D such that C = Sτ

F(q) for all q ∈ C.

Proof. Let us prove (i). Recall that int(D) 6= ∅ by Proposition 7. The inclusion of int(D) in D is
obvious from Remark 12. As for the reverse inclusion, let us choose q ∈ D and any neighborhood
Vq of q. We need to show that

(3.9) Vq ∩ int(D) 6= ∅.
Using Proposition 7 we first deduce that there exists a nonempty open set O contained in Sτ

F(q).
Since Sτ

F(q) ⊂ D, we have that O is contained in int(D). Let p ∈ O. By definition of τ -ICS,
Vq ∩ Sτ

F(p) 6= ∅, and we pick q′ ∈ Vq ∩ Sτ
F(p). Hence q′ = g(p), for some g ∈ Sτ

F. Since Vq
is open, we can find a sufficiently small neighborhood Vp ⊂ O of p such that Vq′ := g(Vp) is
a neighborhood of q′ entirely contained in Vq. Then Vq′ is a nonempty open set in Sτ

F(q), in
particular it is contained in int(D), and (3.9) is proved.

As for (ii) we proceed as follows. Let g ∈ Sτ
F and observe that since D is dwell-time posi-

tively invariant, then g(int(D)) is contained in D. Since, moreover, g is a diffeomorphism, then
g(int(D)) is open and hence contained in int(D).

Consider now point (iii). Let V be any nonempty open set in D. We should prove that⋂
q∈DSτ

F(q) ∩ V has nonempty interior. Fix some q0 ∈ D. According to Remark 8, there exist



10 FRANCESCO BOAROTTO AND MARIO SIGALOTTI

τ1, . . . , τd > τ and X1, . . . , Xd ∈ F such that (t1, . . . , td) 7→ etdXd ◦ · · · ◦ et1X1(q0) is a local
diffeomorphism at (τ1, . . . , τd). Notice that

q1 := eτdXd ◦ · · · ◦ eτ1X1(q0)

is in D and select k ∈ Sτ
F such that k(q1) ∈ V . Thanks to Proposition 9, there exist Ω0,Ω1,

neighborhoods of q0, q1 respectively, such that for every p0 ∈ Ω0 and p1 ∈ Ω1 there exists
t1, . . . , td > τ such that

p1 = etdXd ◦ · · · ◦ et1X1(p0).

Up to reducing Ω0 and Ω1, we can assume that k(Ω1) ⊂ V . We now complete the proof of (iii)
by showing that k(Ω1) is also contained in

⋂
q∈DSτ

F(q). Indeed, for any q ∈ D and p1 ∈ Ω1

there exist g ∈ Sτ
F and t1, . . . , td > τ such that g(q) ∈ Ω0 and

p1 = etdXd ◦ · · · ◦ et1X1 ◦ g(q).

Hence, k ◦ etdXd ◦ · · · ◦ et1X1 ◦ g is in Sτ
F and maps q to k(p1).

Let us finally prove (iv). Let C be the union of all sets C as in (iii). Then C is dwell-time
positively invariant, since for every C as in (iii) and every g ∈ Sτ

F, C ∪ g(C) is also as in (iii).
Hence, for q ∈ C, Sτ

F(q) ⊂ C which in turn is contained in
⋂
q′∈DSτ

F(q′) ⊂ Sτ
F(q) because of

(iii). We conclude that Sτ
F(q) = C, as required. �

Applying the previous results to the case where M is compact, we can strengthen the conclu-
sions of Remark 13 under the compactness assumption.

Proposition 18. Let M be a compact manifold and assume that (H) holds true. Then there
exist finitely many distinct τ -ICS on M .

Proof. Reasoning by contradiction and following Remark 13, let {Dn}n∈N be the countable
collection of all distinct τ -ICS on M . For each Dn, consider the open and dense subset Cn ⊂ Dn

constructed as in point (iv) of Lemma 17. For every n ∈ N let us choose an element qn ∈
Cn. Up to selecting a subsequence, still denoted by {qn}n∈N, we may assume that there exists
limn→∞ qn =: q ∈M .

Using Theorem 14, let us consider a τ -ICS Dq ⊂ Sτ
F(q) and, accordingly, the open and dense

set Cq contained in Dq. Then there exist p ∈ Cq and g ∈ Sτ
F such that p = g(q). Fix Up ⊂ Cq

and Vq ⊂ M neighborhoods of p and q respectively, such that g(Vq) ⊂ Up. For n large enough,
qn ∈ Vq. Then pn := g(qn) is an element of Cq for n large enough.

In particular, for every such n, the inclusion

(3.10) Cq = Sτ
F(pn) ⊂ Sτ

F(qn) = Cn

holds true. Taking the closures on both sides of (3.10), we deduce that Dq ⊂ Dn. The maximality
property of Dq (point (iii) in Definition 11) then implies that Dq = Dn for every n large enough,
leading to a contradiction. �

Example 1. Let us consider, on the one-dimensional projective space RP1, two vector fields f1, f2
as in Figure 1.

The vector field f1 has a single equilibrium A and its trajectories outside A turn counter-
clockwise, while f2 has a single equilibrium B different form A and its trajectories outside B
turn clockwise. Each of the vector fields f1 and f2 can be obtained, for instance, by projecting
on RP1 a linear dynamics conjugate to the one of the double integrator

ẋ =

Å
0 1
0 0

ã
x, x ∈ R2.



DWELL-TIME CONTROL SETS 11

Figure 1.

Fix a dwell-time τ > 0 and consider the family F = {f1, f2}. Define the points A′ and B′ by
the relations

A′ = eτf1(B), B′ = eτf2(A).

In what follows, the symbol X̄Y denotes the closed arc connecting X to Y in the clockwise
direction. We claim that there exists a unique τ -ICS Dτ associated with F, given by the union

ĀA′ ∪ B̄′B. In order to check it, first notice that ĀA′ is positively invariant for f1, B̄′B is
positively invariant for f2, and

etf2(ĀA′) ⊂ B̄′B, etf1(B̄′B) ⊂ ĀA′, ∀t ≥ τ.

Let us show now that, for every B′′ ∈ B̄′B, we have Dτ ⊂ Sτ
F(B′′). To see this notice that

etf1(B′′) → A as t → +∞. Then we can reach from B′′ any point in the interior of B̄′B (and
in particular we can get as close as we want to the two boundary points) by taking t large and
then applying f2 during a time t′ larger than τ . Taking t′ large and applying again f1 for a time

larger than τ , we can reach any point in the interior of ĀA′, proving that Sτ
F(B′) contains Dτ .

The symmetric argument starting from some point A′′ of ĀA′ concludes the proof of the fact
that Dτ is a τ -ICS. The uniqueness of Dτ follows from the fact that, by dwell-time invariance,
any τ -ICS must contain the global attractive equilibria for f1 and f2, that is, A and B.

Notice that Dτ is connected (and actually equal to D0 = ÃB) for τ small and not connected
for τ large. Consider the critical situation, that is, the value of τ for which A′ = B′. In this case

Dτ coincides with the arc ÃB. We claim that, in this case, the set C of point (iv) in Lemma 17

is int(ÃB) \ {A′}. Indeed, A′ can be reached only by starting either at A or B. Since these
points are equilibria, they cannot be reached using the semigroup Sτ

F as soon as we start within

int(ÃB). This example shows, in particular, that C may be different from the interior of the
corresponding τ -ICS, in contrast with the case τ = 0 (see [14, Theorem 3.1.5]).

4. Applications to linear switched systems

4.1. The maximal Lyapunov exponent of a linear switched system. Let S ⊂Md(R) be
a bounded set of matrices, playing the role of the control set U in the previous section, and for
τ ≥ 0 denote by Sτ and Sτ∞ the sets of piecewise constant signals with values in S and dwell-time
τ , in analogy with the sets Uτ and Uτ∞ introduced earlier. We specify the notation to the set
S in order to stress that the vector fields considered here are linear and that they are identified
with the corresponding matrices. The associated system is

(Στ ) ẋ(t) = A(t)x(t), t ≥ 0, A(·) ∈ Sτ∞, x ∈ Rd.
We call (Στ ) a switched system, in order to stress that we focus on the uniform asymptotic
properties of its dynamics, looking at A(·) as a switching signal rather than as a control law.



12 FRANCESCO BOAROTTO AND MARIO SIGALOTTI

Following the usual switched systems terminology, we refer to each element of S as a mode of
(Στ ).

For every A ∈ Sτ∞ we denote by ΦA(·, ·) : [0,+∞) × [0,+∞) → GL(R, d) the fundamental
matrix of (Στ ), that is, the solution to

d

dt
ΦA(t, t1) = A(z)ΦA(t, t1), ΦA(t1, t1) = Idd.

It is immediate to see that t 7→ ΦA(t, t1)x0 is the unique solution to (Στ ) with x(t1) = x0 and
that ΦA(t1, t) = ΦA(t, t1)−1.

The boundedness of the set S ensures that the trajectories of system (Στ ) have at most
exponential growth with a common upper bound on their growth rates. The lower of such upper
bounds is the object of the following definition.

Definition 19. Given τ ≥ 0 and a bounded set S ⊂Md(R), the uniform exponential rate λτ (S)

and the maximal Lyapunov exponent λ̂τ (S) are defined, respectively, by

λτ (S) = lim sup
t→+∞

sup
A∈Sτ∞

log(‖ΦA(t, 0)‖)
t

, λ̂τ (S) = sup
A∈Sτ∞

lim sup
t→+∞

log(‖ΦA(t, 0)‖)
t

.

The definition is independent of the choice of the norm ‖ · ‖ on Md(R), since all norms on a
finite-dimensional vector space are equivalent.

Since (Στ ) can be seen as a linear flow on a vector bundle, we have

(4.1) λτ (S) = λ̂τ (S)

for every choice of τ and S [14].

4.1.1. Reduction to an irreducible component. We recall in this section how to reduce the stability
analysis of (Στ ) to the case in which the set S is irreducible, i.e., when there exist no proper
subspaces of Rd that is invariant for all matrices in S.

The next result relates the properties of a reducible switched system to those of lower dimen-
sional irreducible ones. For a discussion, see, for instance, [12, Section IV.B].

Proposition 20. Let S ⊂ Md(R) be bounded. Then there exist d1 ≥ 0, d2 > 0, and two
subspaces E1 ( E2 of Rd of dimensions d1 and d1 + d2 respectively, each of them invariant for
all matrices in S, such that for every basis v1, . . . , vd1+d2 of E2 for which v1, . . . , vd1 is a basis
of E1, representing for every matrix A ∈ S the linear operator A|E2 in the basis v1, . . . , vd1+d2
as the matrix

A|E2
=

Å
A11 A12

0 A22

ã
,

where each Aij is a di × dj matrix, we have that λτ (S) = λτ ({A22 | A ∈ S}) and {A22 | A ∈ S}
is irreducible. Moreover, E1 and E2 can be chosen so that either d1 = 0 or λτ ({A11 | A ∈ S}) <
λτ (S).

4.2. Projected switched systems and their orbits. It is an old idea to describe the nonzero
trajectories x(t) of a linear system in coordinates (‖x(t)‖, x(t)/‖x(t)‖). The advantage is that
the dynamics of the angular part x(t)/‖x(t)‖ follow a well-defined switched system on a compact
manifold. In order to formalize this idea, we associate with (Στ ) the following projected switched
system.
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Definition 21. Denoting by π : Rd \ {0} → RPd−1 the canonical projection of Rd onto its
associated projective space and setting s(t) = π(x(t)), we define the nonlinear projected switched
system

(πΣτ ) ṡ(t) = (π∗A(t))(s(t)), t ≥ 0, A ∈ Sτ∞, s ∈ RPd−1,

where for any matrix A ∈ Md(R) we denote by π∗A the projection of the vector field x 7→ Ax
onto RPd−1.

Using the local identification s = x/‖x‖, (πΣτ ) can be rewritten as

ṡ(t) = h(A(t), s(t))s(t), with h(A, s) = A− 〈s,As〉Idd.

The system semigroup (3.2) associated with (πΣτ ) is given by

(4.2) Sτ
S = {etmAm ◦ · · · ◦ et1A1 | m ∈ N, A1, . . . , Am ∈ S, t1, . . . , tm ≥ τ}.

We identify Sτ
S with a semigroup both of GL(R, d) and of the group of diffeomorphisms of

RPd−1. It is also useful to introduce the system group

PS = {etmAm ◦ · · · ◦ et1A1 | m ∈ N, A1, . . . , Am ∈ S, t1, . . . , tm ∈ R}.

It might be worth noticing that PS would not be not affected if we added the dwell time constraint
|ti| ≥ τ , i = 1, . . . ,m. Indeed, for every A ∈ S and every t ∈ R, we have etA = e(2τ+t)A ◦ e−2τA,
and if |t| < τ , then 2τ + t > τ .

In addition to the previous notations, for every s0 ∈ RPd−1 we denote the orbit of PS through
s0 by

O(s0) = {Φ(s0) | Φ ∈ PS}.

The following result is a consequence of the analytic version of the Orbit Theorem [22, 24].

Proposition 22. Let S be a subset of Md(R). Then the following properties hold true:

i) For every s0 ∈ RPd−1 the orbit O(s0) is an immersed submanifold of RPd−1. Moreover,
for every s ∈ O(s0), one has

TsO(s0) = Lies(π∗S),

where π∗S denotes the set of vector fields on RPd−1 defined by

π∗S = {π∗A | A ∈ S};

ii) There exists s0 ∈ RPd−1 for which the orbit O(s0) is an embedded compact submanifold
of RPd−1;

iii) If S is irreducible then for every s0 ∈ RPd−1 and every proper subspace V ⊂ Rd the orbit
O(s0) is not contained in P(V ) := {πx | x ∈ V, x 6= 0}.

Proof. Point i) is a direct consequence of the analytic version of Orbit Theorem by Nagano and
Sussmann, since RPd−1 is an analytic manifold and each of the vector fields π∗A is analytic on
RPd−1.

As for point ii), the existence of s0 such that O(s0) is compact follows directly from Theorem 2,
since PS is a Lie subgroup of GL(d,R) (see, e.g., [17, Propositions 2.6, 2.7]). We then use the
general fact that orbits which are closed as subsets of the ambient manifold are not only immersed
but also embedded submanifolds (see [9, Corollary 2.5]).
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We are left to prove iii). Assume by contradiction that there exists s0 = πx0 ∈ RPd−1 and a
proper subspace V ⊂ Rd such that O(s0) ⊂ P(V ). Let

W = span{Φx0 | Φ ∈ PS}.

Then W is contained in V and is invariant for all matrices in S. Since V is a proper subspace
and W 6= (0), this contradicts the irreducibility of S. �

Proposition 23. The interior of Sτ
S for the relative topology on PS, seen as an immersed

submanifold of GL(R, d), is nonempty, that is,

intPS (Sτ
S) 6= ∅.

Proof. Consider the system

(4.3) Ṁ(t) = A(t)M(t) M(t) ∈ PS ,

where A(·) ∈ Sτ∞ is seen as a control law. Such a system satisfies hypothesis (H) on PS : indeed,
by the Orbit Theorem, for every Y ∈ PS the tangent TY PS is equal to LieY {H 7→ AH | A ∈ S}.
(Notice that H 7→ AH is an analytic vector field on GL(R, d) for every A ∈Md(R).)

We then apply Proposition 7 to system (4.3), to conclude that the attainable set AT,τId from
the identity map Id ∈ GL(R, d) has nonempty interior in PS as soon as T > dτ . This concludes

the proof, since Sτ
S contains AT,τId . �

4.3. Uniqueness of the τ-ICS in the projective space. The main result of this section
is Theorem 24 stated below, which extends to the dwell-time setting the uniqueness result for
0-ICS of linear systems and the characterization of such a unique 0-ICS (cf. [3]). Let us mention
that similar uniqueness results have been obtained (in the case τ = 0) for systems on Lie groups
with a suitably defined linear structure (see [4]).

Theorem 24. Assume that S is an irreducible subset of Mn(R). Let s0 ∈ RPd−1 be such that
the orbit O(s0) is closed. Then there exists a unique τ -ICS D for system (πΣτ ) contained in
O(s0). Moreover,

D =
⋂

s∈O(s0)

clO(s0)(S
τ
S(s))

and intO(s0)D 6= ∅, that is, D has nonempty interior in the orbit topology.

Remark 25. In the case where π∗S satisfies assumption (H), then S is irreducible and O(s0) =
RPd−1. In this case Theorem 24 implies that system (πΣτ ) has a unique τ -ICS in RPd−1.

Before providing a proof for Theorem 24, inspired by the one of [3, Theorem 3.1], let us
present a couple of preliminary lemmas.

Lemma 26. Let s0 ∈ RPd−1 be such that the orbit O(s0) is closed, and let us define

D =
⋂

s∈O(s0)

clO(s0)(S
τ
S(s)).

Assume that D 6= ∅. Then D is a τ -ICS for system (πΣτ ) on O(s0).

Proof. Since D ⊂ clO(s0)(S
τ
S(s)) for every s ∈ D by construction, it is sufficient to show that

Sτ
S(s) ⊂ D for every s ∈ D.
Fix s ∈ D, s′ ∈ Sτ

S(s), and let us prove that s′ ∈ D. By construction of D, s is in
clO(s0)(S

τ
S(r)) for every r ∈ O(s0). But this implies that also s′ is in clO(s0)(S

τ
S(r)) for ev-

ery r ∈ O(s0), that is, s′ ∈ D. �
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Given a linear subspace V of Rd, we can identify any isomorphism of V with a collineation
of V , i.e., a diffeomorphism of P(V ), the projective space of V . Let us endow the group of
collineations of V , denoted by PGL(V ), with the topology of the uniform convergence.

We recall that a matrix A ∈ GL(R, d) is semisimple if and only if it admits a diagonal complex
Jordan normal form.

Lemma 27. Let S be an irreducible subset of Md(R) and W ∈ PS be semisimple. Let V ⊂ Rd be
the linear subspace spanned by the eigenspaces of W corresponding to eigenvalues having maximal
real part. Fix s0 ∈ RPd−1. Then

Γ(s) := {W i(s) | i ∈ N} ∩ P(V )

is nonempty for every s in a dense subset of O(s0). Assume moreover that s0 is such that O(s0)
is closed. Then O(s0) ∩ P(V ) is path-connected.

Proof. Fix a system of coordinates in Rd such that W is in diagonal block form with blocks

of size 1 or 2 and every block of size 2 has the form

Å
a b
−b a

ã
with b 6= 0. For the Euclidean

structure associated with these coordinates, the orthogonal complement V ⊥ is spanned by the
eigenspaces of W corresponding to eigenvalues whose real part is not maximal.

Consider a nonempty open subset Ω of O(s0). Notice that

Γ(s) = ∅ ∀s ∈ Ω

only if Ω ⊂ P(V ⊥). Since O(s0) is an analytic manifold and Ω is nonempty and open, we deduce
that O(s0) ⊂ P(V ⊥), which contradicts point iii) of Proposition 22. This proves the first part of
the statement.

Assume now that O(s0) is closed. In particular, O(s0)∩P(V ) is also closed. Up to reordering
the coordinates of Rd, we can assume that

V = {x ∈ Rd | xr+1 = · · · = xd = 0},

where r denotes the dimension of V . Endow P(V ) with the homogeneous coordinates associated
with (x1, . . . , xr). Then, given x ∈ Rd \V ⊥, we can write π((x1, . . . , xr, 0, . . . , 0)) as [x1, . . . , xr].
Since W is semisimple, Dirichlet’s approximation theorem implies that there exists an unbounded
sequence {ni}i∈N ⊂ N satisfying

(4.4) lim
i→∞

(
W
∣∣
V

)ni
= Id

∣∣
V

in PGL(V ).

Hence,

(4.5) [x1, . . . , xr] ∈ Γ(π(x)) ⊂ O(s0) ∩ P(V ) ∀x ∈ Rd \ V ⊥ such that π(x) ∈ O(s0).

Fix s = π(x) and s̃ = π(x̃) in O(s0)∩P(V ). Consider an analytic path γ : [0, 1]→ Rd such that
γ(0) = x, γ(1) = x̃, and π(γ(t)) ∈ O(s0) for every t ∈ [0, 1]. We claim that t 7→ [γ1(t), . . . , γr(t)],
which is defined for t such that γ(t) 6∈ V ⊥, admits a continuous extension γ̂ : [0, 1] → P(V ).
Indeed, if t ∈ [0, 1] is such that γ(t) ∈ V ⊥, let m ∈ N be the smallest positive integer such
that the m-th derivative γ(m)(t) is not in V ⊥. Such m exists by analyticity of γ. Hence t is an
isolated time for which γ(t) ∈ V ⊥ and

[γ1(τ), . . . , γr(τ)] = [(γ
(m)
1 (t), . . . , γ(m)

r (t)) +O(t− τ)] as τ → t.

Hence, setting γ̂(t) = [(γ
(m)
1 (t), . . . , γ

(m)
r (t))] we obtain a continuous extension γ̂ : [0, 1] →

P(V ) of γ. The values of γ̂ are also in O(s0), since the latter is closed and because of (4.5). This
concludes the proof of the lemma. �
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Proof of Theorem 24. We claim that there exists a semisimple matrix W in intPS (Sτ
S). In order

to check it, recall that, since PS acts irreducibly on RPd−1 (Proposition 22, point iii)), then
all matrices in the Lie algebra pS of PS out of a set of empty interior are semisimple (see [3,
Proof of Theorem 3.1., Step 1]). The conclusion then follows noticing that the exponential map
exp : pS → PS is a local diffeomorphism at every y ∈ pS and recalling that Sτ

S has nonempty
interior in PS .

Observe that {W i | i ∈ N} ⊂ intPS (Sτ
S). Let V ⊂ Rd be the linear subspace spanned by the

eigenspaces of W corresponding to eigenvalues having maximal real part.
Fix a τ -ICS D ⊂ O(s0). Since D has nonempty interior in O(s0) we deduce from Lemma 27

that there exists s1 ∈ D such that

∅ 6= {W i(s1) | i ∈ N} ∩ P(V ).

In particular,

D ∩ P(V ) 6= ∅,
since

{W i(s1) | i ∈ N} ⊂ clO(s1)(S
τ
S(s1)) = D.

Since W is semisimple, Dirichlet’s approximation theorem implies that there exists an un-
bounded sequence {ni}i∈N ⊂ N satisfying (4.4). Hence, for every z ∈ Z,(

W
∣∣
V

)z
= lim
i→∞

(
W
∣∣
V

)ni+z ∈ clPGL(V )

Ä¶(
W
∣∣
V

)n | n ∈ N
©ä

since ni + z ≥ 0 for i large enough. Together with the closedness of D and its dwell-time
invariance, this implies that

W z(D ∩ P(V )) ⊂ D ∩ P(V ) ∀z ∈ Z,

and hence

(4.6) W z(D ∩ P(V )) = D ∩ P(V ) ∀z ∈ Z.

Let us now prove that

(4.7) O(s0) ∩ P(V ) ⊂ D.
Since W ∈ intPS (Sτ

S), it follows that W (s) ∈ intO(s0)D for every s ∈ D. In particular, according
to (4.6), D ∩ P(V ) = W (D ∩ P(V )) is contained in intO(s0)∩P(V )D ∩ P(V ). This means that
D ∩ P(V ) is open (and closed) in the topology of O(s0) ∩ P(V ). Since, moreover, O(s0) ∩ P(V )
is path-connected (Lemma 27), we deduce that D ∩ P(V ) coincides with O(s0) ∩ P(V ). This
completes the proof of (4.7).

The proof of the theorem can now be concluded. Indeed, for every s ∈ O(s0) the set
clO(s0)(S

τ
S(s)) contains a τ -ICS (Theorem 14), which in turn contains O(s0) ∩ P(V ) by (4.7).

Hence,
⋂
s∈O(s0)

clO(s0)(S
τ
S(s)) is nonempty, which implies that it is a τ -ICS contained in O(s0),

thanks to Lemma 26. Moreover, it is the unique one, since two τ -ICS with nontrivial intersection
coincide (as it follows immediately from Definition 11).

The last part of the statement follows from Theorem 14. �

Let us then consider the τ -ICS

D =
⋂

s∈O(s0)

clO(s0)(S
τ
S(s)) ⊂ O(s0).

By point iv) of Lemma 17, there exists an open and dense set (with respect to the induced orbit
topology) C ⊂ D, such that

(4.8) C = Sτ
S(s), for every s ∈ C.
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As a corollary of Theorem 24 we may now deduce the following useful result.

Corollary 28. Let s0 ∈ RPd−1 be such that the orbit O(s0) is closed and let D be the unique
τ -ICS contained in O(s0). Let C ⊂ D be the open and dense set satisfying (4.8). Then, for every
s1 ∈ C, there exists T > 0 such that

s1 ∈ AT,τs2
for every s2 ∈ O(s0).

Proof. Fix s1 ∈ C and pick any s2 ∈ O(s0). Corollary 10 implies that there exist a neighborhood
Ws2 of s2 in O(s0), a time T ′ > 0, and a point s3 ∈ O(s0) such that for every s′2 ∈Ws2 ,

s3 ∈ AT
′,τ

s′2
.

Since D ⊂ clO(s0)(S
τ
S(s3)) by Theorem 24 and C is open and dense in D, then there exist a

signal A′(·) ∈ Sτ and s4 ∈ C such that

s4 = ΦA′(T (A′), 0)(s3).

Moreover, since C = Sτ
S(s) for every s ∈ C, then there exists another signal A′′(·) ∈ Sτ such that

s1 = ΦA′′(T (A′′), 0)(s4).

We combine together these identities, concatenating the corresponding signals and concluding
that

s1 ∈ AT
′+T (A′)+T (A′′),τ

s′2
for all s′2 ∈Ws2 .

Finally, by extracting a finite covering of O(s0) by neighborhoods of the type Ws2 , we conclude
the proof of the uniformity of T as in the statement. �

4.4. Periodization. We are now ready to present a result on the uniform exponential rate
λτ (S) of Στ introduced in Definition 19. Let us define

λperτ (S) = sup
(A,x0)∈Sper

lim sup
t→+∞

log(‖ΦA(t, 0)x0‖)
t

,

where Sper consists of the pairs (A(·), x0) ∈ Sτ∞ × (Rd \ {0}) for which there exists T > 0 such
that both A(·) and t 7→ πΦA(t, 0)x0 are T -periodic.

The main result of this section is the following.

Theorem 29. Let S ⊂Md(R) be a bounded set of matrices and let τ ≥ 0. Then

λperτ (S) = λτ (S).

Proof. It is sufficient to prove that λτ (S) ≤ λperτ (S), the other inequality being obvious by
definition.

Let us first show that it is enough to prove the theorem when S is irreducible. By Proposi-
tion 20, there exists an invariant subspace E of Rd such that, up to a linear change of coordinates,
for every A ∈ S,

A|E =

Å
A11 A12

0 A22

ã
,

with S22 = {A22 | A ∈ S} irreducible and λτ (S) = λτ (S22). We should prove that λτ (S) ≤
λperτ (S) knowing that λperτ (S22) = λτ (S22). Notice that when the block A11 has dimension 0×0,
then λperτ (S22) ≤ λperτ (S) and the conclusion follows. According to the last part of the statement
of Proposition 20, we can then assume that

λperτ (S11) ≤ λτ (S11) < λτ (S22) = λperτ (S22),
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where S11 = {A11 | A ∈ S}. Set S|E = {A|E | A ∈ S}. By invariance of E we have that
λperτ (S|E) ≤ λperτ (S). We are concluding the argument for the reduction to the irreducible case
by showing that λperτ (S22) ≤ λperτ (S|E).

The tricky point is to show that a periodic-in-projection trajectory of (ΣτS22
) can be lifted to

a periodic-in-projection trajectory of (ΣτS|E ). Let A ∈ Sτ , µ ∈ R, and x2 be such that

ΦA22(T (A), 0)x2 = µx2, log |µ| > λperτ (S11).

Then, for every x1 such that x = (x1, x2) is in E,

ΦA|E (T (A), 0)x =

Ç
ΦA11

(T (A), 0)x1 +
∫ T (A)

0
ΦA11

(T (A), s)A12(s)ΦA22
(s, 0)x2ds

µx2

å
and µ is not in the spectrum of ΦA11(T (A), 0). The lift is then obtained by choosing as x1 the
solution to

µx1 = ΦA11
(T (A), 0)x1 +

∫ T (A)

0

ΦA11(T (A), s)A12(s)ΦA22(s, 0)x2ds.

This concludes the proof of the reduction to the case where S is irreducible.
Equality (4.1) implies that for every ε > 0 there exist A(·) ∈ Sτ∞ and t = t(ε) > 0 such that

(4.9)
log(‖ΦA(t, 0)‖)

t
> λτ (S)− ε, for every t ≥ t.

Let s0 ∈ RPd−1 be such that O(s0) is closed, and D be the unique τ -ICS contained in
O(s0) given by Theorem 24. As recalled above, there exists an open set C for the topology of
O(s0) such that clO(s0)(C) = D. We claim that we can find d linearly independent unit vectors

v1, . . . , vd ∈ Rd such that their projections si = π(vi) belong to C for every i = 1, . . . , d. Indeed,
since O(s0) is an analytic orbit and because of the openness of C, then

span{x ∈ Rd \ {0} | πx ∈ C} = span{x ∈ Rd \ {0} | πx ∈ O(s0)} = Rd,

where the last equality follows from Proposition 22, point iii).
Let then v1, . . . , vd ∈ Rd be chosen as above, and notice that the map B 7→ maxi=1,...,d ‖Bvi‖

is a norm on Md(R). Hence, there exists a constant C > 0 such that maxi=1,...,d ‖Bvi‖ ≥ C‖B‖
for every B ∈Md(R). Using this property and (4.9), we deduce that for every ε > 0 there exist
A(·) ∈ Sτ and l ∈ {1, . . . , d} such that T (A) > 1/ε and

log(‖ΦA(T (A), 0)vl‖)
T (A)

> λτ (S)− ε.

By Corollary 28 there exists a time T > 0 independent of ε and a signal A′ ∈ Sτ (possibly
depending on ε) such that T (A′) < T and

vl = ΦA′(T (A′), 0)ΦA(T (A), 0)vl.

Let then A′′(·) be the (T (A) + T (A′))-periodic signal contained in Sτ∞ defined by the concate-
nation of A and A′ on each period. By construction, the pair (A′′, vl) is in Sτper. Moreover, if
ε� 1 then T (A)� T > T (A′), which implies that

log(‖ΦA′′(T (A) + T (A′), 0)vl‖)
T (A) + T (A′)

> λτ (S)− 2ε.

This readily leads to the conclusion by the arbitrariness of ε. �
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5. Piecewise deterministic dwell-time random processes

In this section we apply the theory developed so far to a class of piecewise deterministic
dwell-time random processes. Inspired by [7, 8], we show how τ -ICS are naturally related to the
support of the invariant measures associated with such processes.

5.1. General constructions. Let us consider a compact manifold M , a finite set of indices
E = {1, . . . ,m}, m ≥ 2, and a family F = {Xi | i ∈ E} of smooth vector fields on M . Moreover,
let Q : M → Mm(R), Q : q 7→ (Q(q, i, j))i,j∈E be a continuous map such that Q(q) is a Markov
transition matrix and Q(q, i, j) > 0 = Q(q, i, i) for every q ∈M and every i, j ∈ E, i 6= j.

Given λ > 0 and τ > 0, let (Ui)i≥1 be a sequence of i.i.d. random variables with real positive
values, whose density f = fUi : (0,∞)→ [0,∞) is exponential of intensity λ up to a right-shift
by τ , that is,

(5.1) f(t) = λe−λ(t−τ)1{t≥τ}.

Let 0 = T0 < T1 < · · · < Tn < . . . be the sequence of random points in [0,+∞) defined by
Ti = U1 + · · ·+ Ui, i ≥ 1.

Finally, let (Nt)t≥0 be the counting process associated with (Tn)n≥0, for which we have the
standard relation

P(Nt ≥ n) = P(Tn ≤ t), t ∈ R, n ∈ N.
Notice that, almost surely,

Tn
n
→ τ +

1

λ
=
τλ+ 1

λ
,

Nt
t
→ λ

τλ+ 1
.

Consider now a random variable Z0 on M × E, independent of the process (Ui)i∈N, and
construct Zn = (Qn, Ln) on M × E inductively by

Qn+1 = eUn+1XLn (Qn),

P(Ln+1 = j|Qn+1, Ln = i) = Q(Qn+1, i, j).

The process Zn has, by construction, the Markov property.

Remark 30. In analogy with [8], one could further generalize the above construction by allowing
λ to be a uniformly positive function depending on the indices Ln and Ln+1 and on the point Qn.
Another possible type of generalization, following [15], would consist in allowing more general
probability densities than f , supported in [τ,∞). We prefer to restrict the framework in order
to keep notations reasonably simple. The constraint Q(q, i, i) = 0 reflects the assumption that
the distribution of the duration of the bangs follows a shifted exponential law.

We find it useful to introduce the continuous-time process (Yt)t≥0 obtained by interpolation
of Qn, as follows,

(5.2) Yt = e(t−Tn)XLn (Qn) for every t ∈ [Tn, Tn+1).

5.2. Invariant measures. By a classical result of Krylov and Bogolyubov [21] (see also, for
instance, [16]), compactness of M and theFeller property for the process (Zn)n∈N imply that
there exists at least one invariant measure for the process (Zn)n∈N described in the previous
section.

For every (q, i) ∈M×E and every measurable set A ⊂M×E, we define the n-step transition
probability from (q, i) to A as

Pn((q, i), A) = E[Zn ∈ A|Z0 = (q, i)].
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For every invariant measure µ and every measurable set A ⊂M × E, we then have

(5.3) µ(A) =

∫
M×E

Pn((q, i), A)dµ(q, i) =

∫
suppµ

Pn((q, i), A)dµ(q, i), for every n ≥ 1.

Following [7], we define, for each n ∈ N, the sets

Tn = {(i,u) = ((i0, . . . , in), (u1, . . . , un)) ∈ En+1 × [τ,+∞)n | ik−1 6= ik for k = 1, . . . , n},
Tij
n = {(i,u) ∈ Tn | i0 = i, in = j}.

The trajectory φ(q, t, i,u), induced by a pair (i,u) ∈ Tn and starting at q ∈M is then determined

as follows: let t0 = 0, tk = tk−1 + uk for 1 ≤ k ≤ n and set q0 = q, qk = eukXik−1 (qk−1) for
1 ≤ k ≤ n. Then

φ(q, t, i,u) =


q, t = 0,

e(t−tk−1)Xik−1 (qk−1), tk−1 < t ≤ tk,
e(t−tn)Xin (qn), t > tn.

Notice that φ(q, t, i,u) is in fact a trajectory of (3.1) driven by a piecewise constant control
with dwell time τ , taking U = E.

Lemma 31. Let (i,u) ∈ Tn. Then, for every q ∈ M , T ≥ 0, and δ > 0, there exist β > 0 and
a neighborhood Wq of q such that

P
Ç

sup
0≤t≤T

‖Yt − φ(z, t, i,u)‖ ≤ δ | Z0 = (z, i0)

å
> β ∀z ∈Wq,

where (Yt)t≥0 is defined as in (5.2).

Proof. The proof goes along the same lines as [8, Lemma 3.2], therefore we only point out the
necessary modifications.

The proof that the deterministic trajectory φ(z, t, i,u) can be approximated by stochastic
trajectories Yt is much simpler here than in [8], since we are assuming that all off-diagonal entries
of the Markov transitioning matrix Q are strictly positive. Moreover, a simple computation shows
that, if W is a random variable whose density is as in (5.1), and w ∈ [τ,+∞), then

P(|W − w| ≤ δ) = e−λ(max{w−δ−τ,0}) − eλ(w+δ−τ) > 0.

This allows to conclude as in the aforementioned reference. �

Lemma 32. Let q ∈M , i ∈ E, y ∈ Sτ
F(eτXiq), and let Wy ⊂M be a neighborhood of y. Then

there exist n ∈ N, β > 0, j ∈ E, and a neighborhood Wq ⊂M of q such that

Pn((z, i),Wy × {j}) > β ∀z ∈Wq.

Proof. The lemma is a direct consequence of Lemma 31, once we notice that, by assumption,
there exist y0 ∈ int(Wy) and gi ∈ Sτ

F such that y0 = gi(eτXiq). �

Lemma 33. Assume that M is compact and that F satisfies assumption (H). Let D1, . . . , Dl

be the τ -ICS associated with (3.1). Then, for every q ∈ M , there exist n ∈ N, β > 0, and a
neighborhood Wq ⊂M of q such that, for every i ∈ E and every z ∈Wq,

Pn

(
(z, i),

l⋃
r=1

int(Dr)× E

)
> β.
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Proof. Let q ∈M and i ∈ E. By Theorem 14, there exists 1 ≤ r ≤ l such that Dr ⊂ Sτ
F(eτXi(q))

and Dr has nonempty interior. Lemma 32 then implies that there exist ni ∈ N, βi > 0, and a
neighborhood W i

q ⊂M of q such that

Pni

(
(z, i),

l⋃
r=1

int(Dr)× E

)
> βi ∀z ∈W i

q .

Observe that ni can be made uniform with respect to i ∈ E. Indeed, due to point (ii) of
Lemma 17, each set int(Dr) is dwell-time positively invariant, and therefore

Pn

(
(z, i),

l⋃
r=1

int(Dr)× E

)
≥ Pni

(
(z, i),

l⋃
r=1

int(Dr)× E

)
∀n ≥ ni.

The proof is then concluded taking n = maxi∈E n
i, β = mini∈E β

i, and Wq = ∩i∈EW i
q . �

The following proposition is an adaptation of [7, Theorem 4.5].

Proposition 34. Assume that M is compact and that F satisfies assumption (H). Let D1, . . . , Dr

be the τ -ICS associated with (3.1). Then, for every invariant measure µ of (Zn)n∈N, one has
that

suppµ ⊂
l⋃

r=1

Dr × E.

Proof. Suppose, by contradiction, that there exists

(q0, i0) ∈ A := suppµ \

(
l⋃

r=1

Dr × E

)
.

Since each Dr is closed, there exists an open neighborhood Wq0 ⊂M of q0 with

Wq0

⋂(
l⋃

r=1

Dr

)
= ∅.

In particular, A ∩ (Wq0 × E) = suppµ ∩ (Wq0 × E), which implies that

(5.4) µ(A ∩ (Wq0 × E)) = µ(Wq0 × E) > 0,

where the inequality follows from the fact that (q0, i0) is in suppµ. Owing to the invariance of
µ and the dwell-time positively invariance of Dr, we have

µ(A) =

∫
suppµ

Pn+1((q, i), A)dµ(q, i)

=

∫
suppµ∩(

⋃
Dr×E)

Pn+1((q, i), A)dµ(q, i)︸ ︷︷ ︸
=0

+

∫
suppµ\(

⋃
Dr×E)

Pn+1((q, i), A)dµ(q, i)

=

∫
A

Pn+1((q, i), A)dµ(q, i)

≤
∫
A

(
1− Pn

(
(q, i),

l⋃
r=1

int(Dr)× E

))
dµ(q, i)

≤ µ(A)−
∫
A∩(Wq0×E)

Pn

(
(q, i),

l⋃
r=1

int(Dr)× E

)
dµ(q, i).
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Using (5.4) and Lemma 33, we get that∫
Wq0
×E

Pn

(
(q, i),

l⋃
r=1

int(Dr)× E

)
dµ(q, i) > 0,

which leads to a contradiction. �

Denote by πM : M × E →M the projection πM : (q, i) 7→ q.

Proposition 35. Let M be a compact manifold and assume that F satisfies assumption (H).
Let D be a τ -ICS associated with (3.1), and let µ be any invariant measure associated with the
process (Zn)n≥0. Assume that suppµ ∩ (D × E) 6= ∅. Then D ⊂ πM (suppµ) and, in particular,
µ(D × E) > 0.

Proof. Assume, by contradiction, that there exists y ∈ D such that (y, j) /∈ suppµ for every

j ∈ E. Since D = int(D) and πM (suppµ) is closed, it is not restrictive to assume y ∈ int(D),
whence there exists an open neighborhood Wy ⊂ int(D) satisfying

(5.5) (Wy × {j}) ∩ suppµ = ∅ for every j ∈ E.

Let now (q0, i0) ∈ suppµ ∩ (D × E). As a consequence of the equality Sτ
F(p) = D for every

p ∈ D, it follows both that eτXiq0 ∈ D for every i ∈ E, and

y ∈
⋂
i∈E

Sτ
F(eτXiq0).

By Lemma 32, there exist an open neighborhood Wq0 ⊂ M of q0 and a map i 7→ (ni, ji) ∈
(N \ {0})× E such that

Pni((z, i),Wy × {ji}) > 0 for every z ∈Wq0 .

Notice that, since (q0, i0) ∈ suppµ, then

0 < µ(Wq0 × {i0}).

Hence,∑
l∈E

∫
M×E

Pnl((z, i),Wy × {ji})dµ(z, i) ≥
∫
M×E

Pni0 ((z, i),Wy × {ji})dµ(z, i)

≥
∫
M

Pni0 ((z, i0),Wy × {ji0})dµ(z, i0) > 0.

Now, from (5.3) we have

1 = µ(M × E) =
1

m

∑
l∈E

∫
M×E

Pnl((z, i),M × E)dµ(z, i)

=
1

m

∑
l∈E

Å∫
M×E

Pnl((z, i), (M × E) \ (Wy × {ji}))dµ(z, i) +

∫
M×E

Pnl((z, i),Wy × {ji})dµ(z, i)

ã
>

1

m

∑
l∈E

∫
M×E

Pnl((z, i), (M × E) \ (Wy × {ji})dµ(z, i).
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This leads to a contradiction, since

1 = µ(suppµ) =
1

m

∑
l∈E

∫
M×E

Pnl((z, i), suppµ)dµ(z, i)

≤ 1

m

∑
l∈E

∫
M×E

Pnl((z, i), (M × E) \ (Wy × {ji})dµ(z, i) < 1,

where the first inequality follows from (5.5). �

5.3. Ergodic invariant measures. We consider now the case of invariant ergodic measures.

Definition 36. An invariant measure µ for the discrete-time process (Zn)n∈N is said to be
ergodic if it cannot be expressed as a proper convex combination of invariant measures for the
same process.

In analogy with [7, Theorem 4.7], we have the following result.

Theorem 37. Let M be compact manifold and assume that F satisfies (H). Then

i) For every ergodic invariant measure µ of the discrete-time process (Zn)n∈N there is a
τ -ICS D for which πM (suppµ) = D.

ii) Conversely, let D be any τ -ICS. Then there exists an ergodic invariant measure µ with
πM (suppµ) = D. Moreover, µ is absolutely continuous with respect to the Lebesgue
measure, and is the unique ergodic invariant measure whose support is contained in
D × E.

Proof. Let us first prove i). Proposition 34 implies that πM (suppµ) is contained in the union of
all τ -ICS D1, . . . , Dl. By Proposition 35 we only need to show that that suppµ intersects only
one set of the form Dr × E, r ∈ {1, . . . , l}. Let r be such that suppµ ∩ (Dr × E) 6= 0. Then
µ(Dr × E) > 0 by Proposition 35 and, for every µ-measurable set A ⊂ Dr × E, we have

µ(A) =
l∑

s=1

∫
Ds×E

Pn((q, i), A)dµ(q, i), for every n ∈ N \ {0}.

Notice that it actually sufficient to integrate over Dr×E, since (q, i) ∈ suppµ∩ (Ds×E) implies
that q ∈ Ds. If s 6= r, by the dwell-time positive invariance of Ds, it is impossible to connect
(q, i) to A by an admissible trajectory of (3.1).

It follows that the restriction of µ to Dr ×E is an invariant measure, and therefore one must
also have

µ

Ñ⋃
s6=r

Ds × E

é
= 0,

for otherwise the same reasoning as before would imply that µ could be written as a proper
convex sum of invariant probability measures, contradicting the ergodicity assumption.

As for point ii), we observe that the existence of an invariant measure whose support is
contained in D × E relies on the Feller property for the process (Zn)n∈N and the compactness
and the positive dwell-time invariance of D×E. Since the set of invariant measures with support
contained in D × E is convex and compact, by the Krein–Milman theorem it contains at least
one ergodic invariant measure µ, and the fact that its support has projection equal to D then
follows from point i). The dwell-time invariance of D×E and hypothesis (H) allow to conclude
as in [6, Theorem 1] (see also [8, Section 4]) that µ is the unique ergodic invariant measure with
support contained in D × E and that µ is absolutely continuous with respect to the Lebesgue
measure. �
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5.4. Stochastic Lyapunov exponents of dwell-time linear systems. Assume in this sec-
tion that M = RPd−1 and that the vector fields Xi, i ∈ E = {1, . . . ,m}, are induced by linear
matrices Ai, i ∈ E. For simplicity, we also assume that the transition matrix Q is independent
of q. Let the processes Tn, Un, and Ln be defined as in the previous section and associate with
them the process Φn defined recursively by Φ0 = Id ∈ GL(R, d) and Φn+1 = eUn+1ALnΦn.

Under the assumption that {π∗Ai | i ∈ E} satisfies (H), we denote by D ⊂ RPd−1 the unique
τ -ICS for system (πΣτ ) (see Remark 25) and by µ the unique invariant ergodic measure provided
by Theorem 37. Denote by µ0 the probability distribution of Z0 on RPd−1 × E. The sequence
of probability measures

A 7→
∫
RPd−1×E

Pn((q, i), A)dµ0(q, i)

then converges to µ in total variation distance as n→∞ (see [8, Theorem 4.5]).
Thanks to Furstenberg–Kesten theorem (see, for instance, [25] or [1]), there exists χd in R

such that, almost surely,

lim
n→∞

1

n
log ‖Φn‖ = χd.

Moreover, by [15, Proposition 3.12], the continuous-times process t 7→ Ψt, where Ψt =
e(t−Tn)ALnΦn if t ∈ [Tn, Tn+1), satisfies almost surely

lim
t→∞

1

t
log ‖Ψt‖ = χd λ,

where we recall that λ denotes the coefficient characterizing the exponential distribution f = fUi
as in (5.1). We can define the Lyapunov exponent of the stochastic process Ψt as the quantity

χτ (S) = χd λ.

Proposition 38. Let E = {1, . . . ,m}, m ≥ 2, and {Ai | i ∈ E} ⊂ Md(R) be such that
{π∗Ai | i ∈ E} satisfies (H). Denote by D ⊂ RPd−1 the unique τ -ICS for system (πΣτ ) and by
µ the unique invariant ergodic measure provided by Theorem 37. For every i ∈ E, let µi be the
measure on RPd−1 × E defined by µi(A) = µ(A ∩ (RPd−1 × {i}). Then the probability measure
ν on RPd−1 × E defined by

(5.6) ν =
λ2

τλ+ 1

m∑
i=1

∫ ∞
τ

Å∫ s

0

(
etAi , Id

)
∗ µi dt

ã
e−λ(s−τ)ds,

where
(
etAi , Id

)
∗ µ denotes the pushforward measure of µ along (etAi , Id), satisfies

(5.7) suppν ⊂ ∪i∈E, t∈[0,τ ]etAi(D)× {i}

and

χτ (S) =

∫
RPd−1×E

〈θ,Aiθ〉dν(θ, i).

Proof. Consider the discrete-time process Zn = (Qn, Ln) and denote by X a nonzero vector in
Rn such that πX = Q0. For every t ≥ 0, identify ΨtX with (Rt, Yt) ∈ (0,∞)× RPd−1 by polar
decomposition. The dynamics of t 7→ Rt is governed by the (stochastic) differential equation

Ṙt
Rt

= 〈Yt, A(t)Yt〉 ,
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where A(t) = ALn if t ∈ [Tn, Tn+1). Let us recall that Nt/t almost surely converges to λ
τλ+1 as

t tends to infinity. We thus have, almost surely,

χτ (S) = lim
t→∞

1

t
log

Å
Rt
R0

ã
=

λ

τλ+ 1
lim
n→∞

1

n
log

Å
RTn
R0

ã
=

λ

τλ+ 1
lim
n→∞

1

n

n∑
j=1

log

Ç
RTj
RTj−1

å
=

λ

τλ+ 1
lim
n→∞

1

n

n∑
j=1

∫ Tj

Tj−1

〈Yt, A(t)Yt〉 dt

=
λ

τλ+ 1
lim
n→∞

1

n

n∑
j=1

∫ Uj

0

¨
etALj−1YTj−1 , ALj−1e

tALj−1YTj−1

∂
dt

=
λ

τλ+ 1
lim
n→∞

1

n

n∑
j=1

∫ Uj

0

¨
etALj−1Qj−1, ALj−1

etALj−1Qj−1
∂
dt.

By the Birkhoff ergodic theorem, we have that

lim
n→∞

1

n

n∑
j=1

∫ Uj

0

¨
etALj−1Qj−1, ALj−1e

tALj−1Qj−1
∂
dt

= λ

∫
RPd−1×E

∫ ∞
0

∫ s

0

〈
etAiθ,Aie

tAiθ
〉
dte−λ(s−τ)1{s≥τ}ds dµ(θ, i)

= λ

∫
RPd−1×E

∫ ∞
τ

∫ s

0

〈
etAiθ,Aie

tAiθ
〉
dte−λ(s−τ)ds dµ(θ, i).

Hence,

χτ (S) =
λ2

τλ+ 1

∫
RPd−1×E

∫ ∞
τ

∫ s

0

〈
etAiθ,Aie

tAiθ
〉
dte−λ(s−τ)ds dµ(θ, i)

=
λ2

τλ+ 1

m∑
i=1

∫ ∞
τ

∫ s

0

Å∫
RPd−1×E

〈θ,Aiθ〉 d((etAi , Id)∗µ)(θ, i)

ã
dte−λ(s−τ)ds

=

∫
RPd−1×E

〈θ,Aiθ〉 dν(θ, i),

where ν is defined as in (5.6).
We are left to prove (5.7). By construction of ν, we have

suppν ⊂ ∪i∈E, t≥0(etAi , Id)suppµi,

whence the conclusion, since suppµi ⊂ D × {i} and etAiD ⊂ D for every i ∈ E and t ≥ τ . �

Appendix A. Existence of a closed orbit

We prove in this section Theorem 2 and we deduce some consequences concerning approximate
and exact controllability of projected linear systems. The proof follows the steps suggested
to us by Uri Bader and Claudio Procesi, to whom we are very grateful. Every imprecision
or naiveness should be attributed solely to us. Before presenting the proof, we need some
preliminary definitions (see also [26, Chapter 1]).

We recall that the set G/H of left cosets of a subgroup H of a topological group G can be
endowed with the quotient topology induced by π : G→ G/H. If H is a closed subgroup of G,
then G/H is Hausdorff.

Definition 39. Let G be a locally compact topological group. A subgroup H ⊂ G is cocompact
in G if the quotient space G/H is compact.
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Definition 40. A group G is said to be solvable if there exists a finite sequence {1} = G0 ⊂
G1 ⊂ · · · ⊂ Gk = G of subgroups such that Gj−1 is normal in Gj and Gj/Gj−1 is abelian for
every j = 1, . . . , k.

We also need to recall the following results from the theory of semisimple Lie groups (see, e.g.
[18, §3, Chapter VI]).

Proposition 41. Let G be a noncompact semisimple real algebraic Lie group. Let K denote a
maximal compact subgroup of G. Then:

i) There exists an Iwasawa decomposition G = KAN , where A is abelian simply connected
(a vector subgroup of G) and N is a nilpotent simply connected subgroup of G preserved
by the action of A.

ii) Let M be the centralizer of A in K. Then the subgroup P0 = MAN is a closed cocompact
subgroup of G, and AN is a closed cocompact connected solvable normal subgroup of P0

(hence a closed cocompact solvable connected subgroup of G).

Remark 42. An example of an Iwasawa decomposition is given by the special linear group
SL(R, d) = KAN with K = SO(R, d) the special orthogonal group, A the subgroup of diagonal
matrices of SL(R, d), and N the subgroup of lower triangular matrices with all diagonal entries
equal to 1.

Proof of Theorem 2. Let B be a connected Lie subgroup of GL(R, d). We should prove that the
associated representation ϕ : B×Sd−1 → Sd−1 admits at least one closed, hence compact, orbit.
In fact, it is actually enough to show that there exists a closed cocompact subgroup C of B such
that C has a compact orbit OC(x0) = {ϕ(c, x0) | c ∈ C}. Indeed, assume that such a compact
orbit exists and choose a compact subset H of B such that B = HC. Then

OB(x0) = ϕ(H × OC(x0))

is compact in Sd−1.
Now we claim that any connected Lie group has a closed cocompact, connected and solvable

subgroup, and to prove this assertion we proceed as follows: factoring out the solvable radical, it
is not restrictive to assume B to be a semisimple linear group; in particular B is (real) algebraic.
The claim now follows by Proposition 41 above.

We can then assume without loss of generality that B is a connected solvable Lie subgroup of
GL(R, d). By the Lie-Kolchin theorem (see [20] or, e.g., [19, Section 17.6]) there exists a common
eigenvector v ∈ Cd for all matrices in B. The real vector subspace V = span{v + v, i(v − v)} is
then invariant for all matrices in B. In the case in which V is one-dimensional, its projectivization
reduces to a singleton, and the proof is complete. If, instead, V has dimension two, then its unit
sphere is topologically a circle, and we conclude noticing that the action of a connected group
on a circle is either transitive or has a fixed point. Indeed, if the action is not transitive then
each orbit is either a point or an open arc, being an homogeneous connected subset of the circle.
In the latter case the two endpoints of the arc will be fixed by the action. �

Theorem 2 has an interesting consequence on the controllability properties of the projected
system (πΣτ ), which seems new even in the case τ = 0.

Definition 43. We say that the projected system (πΣτ ) is:

i) exactly controllable if, for every s0 ∈ RPd−1, the set Sτ
S(s0) is the whole RPd−1, where

Sτ
S is defined as in (4.2);

ii) approximately controllable if, for every s0 ∈ RPd−1, the set Sτ
S(s0) is dense in RPd−1.

Then we have the following result.
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Proposition 44. The projected system (πΣτ ) is exactly controllable if and only if it is approx-
imately controllable.

Proof. One implication being trivial, we should just prove that the approximate controllability
of (πΣτ ) implies its exact controllability. By Theorem 2, let us fix s0 ∈ RPd−1 such that the
orbit O(s0) is closed. Then the chain of inclusions

Sτ
S(s0) ⊂ O(s0) ⊂ RPd−1

implies, upon passing to the closures, that O(s0) = RPd−1. By point i) of Proposition 22 we
thus deduce that (πΣτ ) satisfies hypothesis (H) on RPd−1.

Take now s0, s1 ∈ RPd−1 and let us prove that s1 ∈ Sτ
S(s0). Applying Proposition 7 to the

time-reverse system, we deduce that there exists a nonempty open subset Ω of RPd−1 such that

s1 ∈ Sτ
S(ŝ) ∀ŝ ∈ Ω.

By the approximate controllability assumption, moreover, Sτ
S(s0) ∩ Ω 6= ∅. By concatenating a

signal in Sτ driving s0 to some ŝ ∈ Ω and another signal in Sτ driving ŝ to s1, we get the desired
conclusion. �

Remark 45. For a general nonlinear system approximate and exact controllability are not equiv-
alent, unless the Lie algebra rank condition is assumed to hold. Here, instead, no Lie algebra
rank condition is assumed and the result is a consequence of the special structure of the system
(which guarantees the existence of a closed orbit, as stated in Theorem 2). Proposition 44 ex-
tends the equivalence between approximate and exact controllability obtained in [10, Theorem
17] for closed finite-dimensional quantum systems. Using the notations of the present paper, the
class of systems studied in [10, Theorem 17] corresponds to the case where τ = 0, d is even, and
S is contained in U(d/2) (seen as a subset of Md(R), up to the canonical identification of Cd/2
and Rd).

Remark 46. By [5, Propositions 1 and 2], (πΣ0) is exactly controllable on RPd−1 if and only if
the projected system on the sphere Sd−1 is exactly controllable. In particular, Proposition 44
extends to the projection of systems of the type (Σ0) on the sphere.
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