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Abstract

Aims

Clinical application of patient-specific cardiac computer
models requires fast and robust processing pipelines that
can be seamlessly integrated into clinical workflows. We
aim at building such a pipeline from computed tomography
(CT) images to personalised cardiac electrophysiology (EP)
model. The simulation output could be useful in the
context of post-infarct ventricular tachycardia (VT) radio-
frequency ablation (RFA) planning for pre-operative targets
prediction.

Methods

The support for model personalisation is a patient-specific
virtual three-dimensional heart obtained from CT images.
Here the scar is identified as thinning of the myocardial
wall on automatically computed thickness maps. We then
use an Eikonal model of wave front propagation with
reduced velocity in the damaged areas. An image-based
vessel enhancement algorithm can automatically identify
VT isthmuses. The personalised model is used for virtual
pacing.

Results

We obtained a very fast pipeline that enables simulations
in only a few minutes. It is fully automated starting
from the semi-automated image segmentation phase. The

computational time frame is compatible with the construc-
tion of a virtual pacing tool. In this tool, onset points
and an optional directional block could be interactively
selected. The directional block is a simple way to model
tissue refractoriness. Output activation maps are compared
with EP data acquired per-operatively. We show that this
framework allows the reproduction of recorded re-entrant
VT activation patterns.

Conclusion

Our simulation framework has an application in VT
RFA intervention planning. It could be used to guide
EP explorations and even predict ablation targets pre-
operatively. This could reduce intervention duration and
improve success rate.

Keywords

Electrophysiology, Computational Modelling, Myocardial
Infarction, Computed Tomography, Catheter Ablation,
Sudden Cardiac Death

Condensed abstract

Our goal is to build a fast and robust automated pipeline
from computed tomography images to personalised cardiac
electrophysiology simulations. We use myocardial wall
thickness to parametrise the velocity of an Eikonal model
of wave front propagation and reproduce electrophysiolog-
ical data acquired during ventricular tachycardia radio-
frequency ablation.

What’s new

• Fully automated pipeline from cardiac computed
tomography (CT) images to patient-specific virtual
heart.

• Myocardial wall thickness used to parameterise local
conduction velocity for patient-specific cardiac electro-
physiology (EP) model.
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• Image-based vessel enhancement technique to auto-
matically characterise VT channels on 3D images.

• Framework allowing a virtual pacing of the heart in a
few minutes after CT images segmentation.

• Comparison of simulated activation maps to EP data
acquired during post-infarct ventricular tachycardia
(VT) radio-frequency ablation (RFA).

• Simulations could be used in the planning phase of VT
RFA interventions for target prediction, thus reducing
intervention duration and improve success rate.

Background

Personalised, i.e., patient-specific, simulation of the heart
electrical behaviour is a dynamic research field (1). Building
such simulation is often a challenge as mathematical models
can be computationally costly and clinical data is sparse
and noisy. Most of the work in this area relies on extracting
fibrosis from late-enhancement cardiac magnetic resonance
imaging (MRI) (2). In a post-infarct context, this geometry
is then classically divided into 3 different zones based on
MRI signal processing: the healthy myocardium, the dense
scar and a grey zone where fibrosis and remaining functional
cardiomyocytes coexist. Grouped together, these three
zones represent a three-dimensional domain upon which a
set of partial differential equations (PDE) is solved. The
model parameters are then chosen differently according to
the different zones of the domain to represent the different
electrophysiological properties of these tissues. Models
typically used are reaction-diffusion models (3), where
the reaction part mimics cell-level changes in membrane
potential and the diffusion part reflects the ability of cardiac
action potential to propagate through specialised structures.
Adequately parametrising such models is a tedious task and
solving them takes a lot of computational power and time,
incompatible with the clinical typical time frame. These
challenges are yet to be overcome for cardiac modelling to
enter routine medical practice.

Additionally, before the actual simulation computation,
the binary masks (outputs from image segmentation) often
need to be transformed into another three-dimensional
representation, a 3D mesh, more suited to finite elements
PDE solvers (2). Choosing adequate parameters for the
mesh generation step is critical in order to reach reasonable
numerical accuracy and computational time. It requires
specific expertise rarely available on day-to-day clinical
practice.

Some authors have reported realistic intra-cardiac elec-
trograms simulation (4), but the typical outputs of such
models are usually visual simulations of the wave front
propagation in the cardiac tissue, i.e. activation maps
(3). Either way, the goal of such simulations is always
to identify abnormal activation patterns linked to fatal
arrhythmias. They could improve sudden cardiac death
(SCD) risk prediction (5), a major challenge in cardiology
(6).

They can also be used to improve post infarct re-entrant
ventricular tachycardia (VT) radio-frequency ablation
(RFA) outcome by contributing to the planning phase of the
intervention (7–9). In these interventions, the VT is usually
induced and mapped (when hemodynamically tolerated)
allowing the clinician to identify re-entry isthmus(es) to be
ablated. This risky and long targets identification phase
still drastically limits the spread and success rate of such
interventions. Moreover, most of these patients already
carry an implantable cardioverter-defibrillator (ICD), which
makes model personalisation from MRI difficult if not
impossible.

It has been reported that cardiac computed tomography
(CT) images could be useful for VT RFA (10). CT offers
better cost, accessibility, inter-centre and inter-personal
reproducibility than MRI. Most notably CTs are not
a problem in ICD carriers in whom the image quality
and spatial resolution are preserved, as opposed to what
happens with MRI. This is important as a majority of
scar related VT ablations are conducted in ICD carriers.
The better resolution of CT images could also be critical
in appreciating scar heterogeneity and thus identifying
potential targets.

On CT images, the infarct scar is characterised by an
apparent thinning of the myocardial wall (10), which has
been shown to correlate with low voltage areas (11). Some
VT re-entry isthmuses are also visible on such images, with
a characteristic morphology on myocardial wall thickness
maps. It has indeed been recently shown that they appear
as a zone of moderate thinning bordered by more intense
thinning and joining two areas of normal thickness (11).

In this paper we propose a novel framework to simulate
activation maps from CT images. It uses CT myocardial
wall thickness to parametrise a fast organ-level wave front
propagation model in a pipeline visually represented in
fig. 1.

A
blation

TargetsCT Image Wall Segmentation �ickness Measurement Channelness Eikonal Simulation

Fig. 1. Our Modelling Pipeline. After image acquisition, the en-
docardial mask is segmented using a region-growing algorithm; the
epicardial mask using manually drawn splines on a few slices and
interpolation in-between. The infarct scar is identified as myocardial
wall thinning, assessed by an automated method. Potential channels
are identified using a channelness filter and activation maps can be
simulated after choosing a pacing site.

Methods

Patient inclusion

The data we used come from 7 patients referred for catheter
ablation therapy. They all presented chronic (minimum 5
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years) infarct and suffered ventricular tachycardia episodes
despite wearing an ICD.

Cardiac computed tomography images

Images were acquired using a contrast-enhanced ECG-
gated cardiac multi-detector CT using a 64-slice clinical
scanner (SOMATOM Definition, Siemens Medical Systems,
Forchheim, Germany). Coronary angiography images were
acquired during the injection of a 120 ml bolus of iomeprol
400 mg/ml (Bracco, Milan, Italy) at a rate of 4 ml/s.
Radiation exposure was typically between 2 and 4 mSv.
Images were acquired in supine position, with tube current
modulation set to end-diastole. The resulting voxels have
a dimension of 0.4×0.4×1 mm³, superior to what clinically
available MRIs can produce. A resulting short-axis slice
can be visualised on fig. 1 (left part).

Wall segmentation

On these images, the left ventricle was segmented as follows.

• The endocardial mask was segmented using a region-
growing algorithm, the thresholds to discriminate
between the blood pool and the wall being optimised
from a prior analysis of blood and wall densities.

• The epicardial mask was segmented using a semi-
automated tool built within the MUSIC software
(IHU Liryc Bordeaux, Inria Sophia Antipolis, France):
splines were manually drawn on a few slices and
interpolated in-between.

The resulting myocardial wall mask (epicardial mask minus
the endocardial mask) has around one million voxels.

Wall thickness estimation
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Fig. 2. A typical VT isthmus as seen on CT images. Thinner zones
surround a moderate thinning in the myocardial wall. The isthmus
connects two areas of normal thickness (not seen on this slice).

On such images, chronic infarct scars appear as a thinning
of the myocardial wall (10,12). To localise scars, instead

of successive dilations of the endocardial masks that were
used in other studies (11), we opted for a fully automated
and continuous method (13). Estimating the thickness of
a structure from 3D medical images is not a trivial task.
The accuracy can be compromised depending on how the
two surfaces are described, and how the distance between
them is computed. In this work, we chose to rely on a
robust method to compute the shortest path between the
endocardium and the epicardium, and then integrate the
distance along this path. This method is based on solving
a partial differential equation to compute a thickness value
at every voxel of the wall mask (13). Example results of
such thickness maps are presented on fig. 2.

Eikonal model

Numerous models were proposed in the literature to
simulate cardiac action potential dynamics. In order to
obtain a fast and robust pipeline, we used the Eikonal
model of wave front propagation that directly outputs
an activation map. It is very robust to changes in image
resolution and it can be computed very efficiently with the
fast-marching algorithm.

Model inputs are:

• The myocardial wall mask, i.e., the domain of resolu-
tion.

• For every voxel of this mask, a local conduction
velocity.

• One or more onset point(s), to initiate propagation.
• (Optionally) An artificial unidirectional block, in order

to orientate the initial propagation, used to reproduce
re-entrant VT patterns.

Let 𝑣 be the local conduction velocity, 𝑇 the local activation
time and 𝑥 a voxel of the wall mask, the formal expression
of this model is the following:

𝑣(𝑥)‖∇𝑇 (𝑥)‖ = 1

To solve this equation we used the fast marching algorithm
implementation in the Insight Segmentation and Regis-
tration Toolkit (ITK, Kitware, USA). It did not require
any meshing step as this implementation directly takes
advantage of the regular grid of CT 3D images.

Model parameters

Due to a “zig-zag’’ course of activation in surviving bundles
existing in the infarcted tissue, the depolarisation wave
front propagates very slowly before finally exiting the scar
(14). We hypothesised that the wave front propagation
velocity could be estimated from the wall thickness using
a transfer function that would have the following features:

• It should reach a plateau, 𝑣𝑚𝑎𝑥, above physiological
wall thicknesses.
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Fig. 3. From computed tomography myocardial wall thickness to
wave front propagation speed. Transforming an image parameter to a
model parameter.

• It should be virtually null, 𝑣𝑚𝑖𝑛, below certain thick-
nesses, where almost no conducting cells remain.

Let 𝑣 be the velocity at each voxel 𝑥 of the domain,
𝑊 the thickness, 𝑝 the mid-point between “pure scar’’
and “healthy’’ thicknesses and 𝑟 a parameter influencing
the slope of the transition between 𝑣𝑚𝑖𝑛 and 𝑣𝑚𝑎𝑥. We
designed the following continuous transfer function from
wall thickness to wave front propagation (see fig. 3):

𝑣(𝑥) = 𝑣𝑚𝑎𝑥 − 𝑣𝑚𝑖𝑛
1 + 𝑒𝑟(𝑝−𝑊(𝑥)) + 𝑣𝑚𝑖𝑛

The fast-marching solver needs a “stopping value’’, i.e., a
maximum wave front reaching time. In our experiments,
we set it to 500 ms and also assigned this value to non-
activated parts of the domain.

In order to model a re-entrant VT pattern, we added
an artificial “refractory wall’’, as previously described by
Cedilnik et al (15). A conduction block orthogonal to
the isthmus longitudinal axis was added a few voxels
behind the simulation onset point. It allows to model
tissue refractoriness while staying in the simple Eikonal
model framework, allowing fast computations and keeping
the computational cost very low. This is only needed to
reproduce VT activation maps, not for activation maps
from controlled pacing.

Automatic ridge detection

In order to detect VT isthmuses based on image criteria
alone, we used the objectness filter (16), implementation of
the Insight Toolkit (Kitware, USA). It is a generalisation
of the Hessian matrix-based vessel enhancement method
described by Frangi (17).

Briefly, the second order information, i.e., the Hessian
Matrix, of an intensity image is used to estimate the

probability of each voxel of being part of a tubular structure.
In an ideal vessel, the eigenvalues of the Hessian matrix of
a voxel are such that:

• The smallest one is close to zero, meaning there is
little variation in intensity along a certain direction,
along the vessel.

• The other two are significantly negative and almost
equal, meaning that in the two direction orthogonal
to the vessel direction, there is a brutal change in
intensity, i.e., we are going outside of the vessel.

We fed this algorithm with a modified version of the
thickness map where only potential isthmuses candidates
(11), i.e. moderately thin zones between 2 and 5 mm
thickness, remained. We tuned the filter’s parameter to
respect the width known to characterise VT isthmuses on
CT images (11).

We named the output maps obtained this way channelness
maps.

This first step leads to a lot of over-detection (false
positives) in the scar border zone. To avoid this, we handled
the border zone using the following methodology:

• Perform a binary dilation with a radius of 2 mm of
the scar zones where the myocardial wall thickness is
below 5 mm.

• Perform a binary dilation with a radius of 2 mm of
the healthy zones where the myocardial wall thickness
is above 5 mm.

• Compute the border zone, defined as the intersection
of the two binary masks obtained this way (this
intersection is the result of a logical AND operation
on them).

• Set the channelness value on the voxel belonging to
the border zone to 0.

Comparison with recorded activation maps

In order to gain insight on our model relevance and limita-
tions, we compared our simulations to 9 activation maps
acquired during RFA interventions in our population of 7
patients. The maps were selected when their quality was
sufficient to allow proper registration to CT images. These
activation maps were produced by the Rhythmia mapping
system (Boston Scientific, USA) using a 64-electrodes Orion
Catheter. They were recorded during controlled pacing (2
maps) and VT (7 maps). They come in the form of surface
triangular meshes in reference frames different from the
corresponding CT images.

In order to compare both visually (qualitatively) and
numerically (quantitatively) the outputs of our simulations
to the reference data, we took advantage of the correlation
between low-voltages zones and CT wall thinning areas
(11) to manually align the two geometries. After fitting an
ellipsoid to the point cloud and using the ellipsoid’s centre,
we defined each point by spherical coordinates. A visual
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Fig. 4. Registration of electrophysiological study data to computed
tomography geometry. Image-based thickness map and EP data are
manually aligned based on the wall thinning/low voltage correlation.
EP data is then projected using a spherical coordinates system.

representation of this registration framework is presented
on fig. 4. Finally, it was possible to project the data from
the EP studies onto the more accurate geometry extracted
from the CT images.

Using the ellipsoid long axis and a manually chosen point on
the septum, this method also allows the fast and automated
generation of bull’s eye plots.

Results

Execution time

The semi-automated segmentation of the left ventricle takes
around 10 minutes for an experienced user of the MUSIC
software. The thickness computation takes about 1 minute,
depending on the number of voxels of the wall mask. The
actual simulation takes less than 1 minute. The channelness
computation is the longest step, around 2 to 4 minutes.
This informal benchmark results were measured on an Intel
i7-5500U-powered laptop.

Automated ridge detection

On all channelness maps, an expert cardiologist and an
expert radiologist visually assessed that ridges correspond-
ing to their critical isthmus definition could be detected
using the channelness filter, see fig. 5.

Simulated activation maps

In 5 out of 9 maps the general activation patterns of
the simulations obtained using our framework match the

0 6+
thickness (mm)

min max
channelness

Fig. 5. The channelness filter. (Left) thickness map and (Right)
channelness filter results.
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Fig. 6. Comparison of recorded and simulated activation maps.
Our model is able to reproduce both VT re-entrant patterns and
characteristic late activation times of scar zones.

recordings when using velocities and thicknesses thresholds
found in the literature (3/7 VT maps, 2/2 controlled
pacing maps). As can be seen on fig. 6, scar late activation
is visible both on simulations and on controlled pacing.
The characteristic figure of eight activation patterns of
re-entrant VT can also be accurately reproduced using
our framework, when using a refractory wall to give the
propagation an initial direction. While the match between
static representations is not always striking, video versions
are available as supplementary materials and offer a better
appreciation of dynamics of wave front propagation. This
is the usual way recorded activation maps are visualized by
the interventional cardiologist in order to decide ablation
targets.

For 3 cases, adapting the thicknesses thresholds could
significantly improve the aspect of the simulations (see
fig. 7 and discussion below).



6

�ickness map (input)

Recorded activation map (ground truth)Simulation result with p = 3.5 Simulation result with p = 5

3.5
0.05

0.6

thickness

sp
ee
d

3.5 5
thickness

Fig. 7. Diminishing discrepancy between simulations and recordings
by tuning the thickness to velocity transfer function. Illustration of
tuning the p parameter of the thickness to velocity transfer function.

Discussion

Image segmentation

In our framework, the simulations rely a lot on how the
myocardial wall segmentation is performed. Currently,
the endocardial segmentation is robust and perfectly
reproducible because it is fully automated. However, the
epicardial segmentation is also crucial and is at the mo-
ment only semi-automated. Developing a fully automated
method for this task is one of our priorities and we expect
it to improve our modelling framework’s robustness.

It is worth mentioning that scar transmurality cannot be
assessed using the CT scar characterisation technique that
we used. Using late enhancement CT may be a way to
address this issue and we will explore this opportunity in
the future.

Model limitations

We voluntarily opted for the simplest cardiac EP model
in order to build a fast pipeline. For instance, most of
the related work includes an algorithmic fibre orientation
estimation that we did not include. We do not believe
that it would improve the results a lot, as fibre orientation
and its influence are still hard to estimate, particularly in
infarcted zones.

In contrast, we believe that an important phenomenon
that our model does not address is the front curvature
impact. A straight wave front is known to propagate
faster than a curved wave front, but this is not the case
in our simulations. In some cases, this results in fast,
unrealistic, “U-turns’’ of the excitation front. This could
be improved with extensions of the Eikonal model (18), or
by switching to a reaction-diffusion model parametrised on
wall thickness. The main challenge will here be to preserve a

clinically compatible framework in terms of parametrisation
complexity and required computational time.

Another limitation of our model is that it only addresses
macroscopic re-entrant channel, given the scale at which
the simulations are computed. Microscopic re-entries are
out of its scope.

Velocities: Our model probably simplifies activation pat-
terns inside the VT isthmuses by globally slowing down
the propagation in them. A recent animal study (19)
indeed suggests that the depolarisation slows down when
entering and exiting the isthmus but propagates normally
in between. The wave front would then be slowed down
inside the core of the isthmus. However, we think that our
global slowing down in the whole isthmus is a relevant
averaging simplification at the organ scale. In the case
where our further work would show the pro-eminence of
this phenomenon, an option would be to use channelness
maps to accordingly change velocities in isthmuses.

Thickness thresholds: Based on data from a recent study
(11), we defined global thickness thresholds across all
patients to discriminate between healthy and scar zones.
Specifically, we set them to below 2 mm for “pure scar’’
and above 5 mm for healthy myocardium. However, in
some VT cases, the wave front propagation crossed scar
zones too fast and matching the recording proved more
challenging.

We noticed that in those cases, for instance the one
shown in fig. 7, the simulation output could be drastically
improved by shifting these thresholds to higher values, i.e.,
by raising the 𝑝 parameter of our thickness to velocity
transfer function. Using patient-specific thresholds both
for thickness maps analysis and model parametrisation
could improve the use of CT images in the context of VT
RFA. These patient-specific thresholds could possibly be
determined by the disease history or image features such
as the distribution of thickness for a specific myocardial
wall.

Parameter optimization

Model: Using the registration of image and EP data in
the common frame of reference described in the Methods
section, it was possible to define a metric to quantify
differences between simulations and ground truths. Using
the mean square difference between these data, we there-
fore optimised the thickness to velocity transfer function
parameters (𝑣𝑚𝑎𝑥, 𝑣𝑚𝑖𝑛, 𝑝 and 𝑟, see fig. 3) to minimise
the discrepancy between simulations and recordings. To
this end, we used the covariance matrix-evolution strategy
algorithm (20), suited for this type of non-convex optimisa-
tion problem. While minimising the mean square difference
did improve the numerical matching of the simulations to
the recording, the overall activation pattern actually was
often degraded. This is partly due to noise in the target
EP data and to the fact that the mean square difference
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metric may not be adapted to preserving the activation
patterns like the typical figure of eight shape of re-entrant
VT. How to define this pattern-aware metric is still an
open question.

Channelness: The output of the channelness is also highly
depending on setting the right parameters for the object-
ness mapping, including a channelness threshold. These
parameters need to be optimised and validated on a larger
multi-centric database.

Conclusion: a clinically compatible modelling framework

The simulation framework presented in this article may
be useful for EP modelling to enter clinical practice. It
requires little human interaction and expertise to go from
imaging data to EP simulations. It is very fast and would
even be faster by developing implementations more suited
to such purpose than the generic ones we currently use. The
availability and reproducibility offered by CT images and
such automation could help personalised cardiac modelling
to enter clinical applications.

Additional material

Videos for comparison of simulated and recorded activa-
tions maps available at: http://www-sop.inria.fr/members/
Nicolas.Cedilnik/europace2018.mp4
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