
HAL Id: hal-02044818
https://hal.archives-ouvertes.fr/hal-02044818

Preprint submitted on 21 Feb 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Pseudo-stochastic simulation of turbulent channel flows
with near-wall modelling
Carlo Cintolesi, Etienne Mémin

To cite this version:
Carlo Cintolesi, Etienne Mémin. Pseudo-stochastic simulation of turbulent channel flows with near-
wall modelling. 2019. �hal-02044818�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/195851628?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-02044818
https://hal.archives-ouvertes.fr


Pseudo-stochastic simulation of turbulent channel flows
with near-wall modelling

Carlo Cintolesia,∗, Etienne Mémina

aINRIA Rennes - Bretagne Atlantique, Fluminance group, Campus de Beaulieu, F-35042
Rennes, France

Abstract

The pseudo-stochastic model recently proposed by Mémin (2014) is investigated
and compared with the large-eddy simulation methodology. The theoretical
analysis shows that this model is a generalisation of the eddy-viscosity model,
which does not undergo the same restrictive physical assumptions and describes
physical phenomena usually not considered (turbophoresis and turbulent com-
pressibility). Numerical simulations of turbulent channel flows are performed.
In order to better reproduce the turbulence anisotropy, a near-wall damping
function is derived and successfully validated: the damping is imposed only
on wall-normal direction (minimal constraint) and it requires to set a single
parameter (reduced empirical content). Simulations show the accuracy of the
new model, especially when the computational grid becomes coarse. A weak
turbophoresis phenomenon is detected near the wall, while turbulent compress-
ibility effects appear to be possibly related to the streaks structures.

Keywords: Stochastic model, Turbulence, Near-wall models, Numerical
simulations, OpenFOAM.

1. Introduction1

The use of stochastic calculus to describe fluid flows appears to be a suitable2

strategy for turbulence modelling in computational fluid dynamics. The random3

nature of turbulence cannot be completely represented by means of deterministic4

variables, while it is the specific purpose of stochastic processes. Nevertheless,5

the numerical solution of stochastic equations and the mathematical complexity6

inherent to the use of stochastic calculus poses challenging issues. Turbulence7

modelling with stochastic variables is of great interest in geophysical flow anal-8

ysis, where the unresolved processes related to coarse spatial discretisation are9

handled with probabilistic models. In the same spirit, stochastic models can be10

applied to numerical simulations of environmental and engineering flows.11
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In the last decades, several efforts have been made in this concern. In the12

context of the Probability Density Function (PDF), the Langevin equation was13

used to describe the velocity of a fluid particle subject to a turbulent flow,14

modelled as a Brownian motion (see Pope (2000)). First applications focused15

on homogeneous isotropic turbulence; later extended by Pope (1983) to inho-16

mogeneous case and by Durbin and Speziale (1994) to anisotropic diffusion17

case. In the Eddy-Damped Quasi-Normal Markovian (EDQNM) models, intro-18

duced by Orszag (1970) and Leslie (1973), the large-scale governing equations19

were closed in the spectral space by modelling the third/fourth-order moments20

through a Gaussian closure. This strategy was found to be suitable in case of21

strong non-linearity in the small-scale turbulence. Chasnov (1991) developed22

a forced-dissipative model, where the large-eddy Navier-Stokes equations were23

corrected by an eddy-viscosity and a stochastic force terms. Similarly, Leith24

(1990) studied the case of plane shear mixing layer and improved the accu-25

racy of LES with the Smagorinsky model by adding an empirical stochastic26

backscatter. The work of Kraichnan (1961) exploited a different approach: the27

Navier-Stokes equations were replaced by a set of equations having the same28

mathematical properties, closed by a Gaussian stochastic model. This model29

led to valuable results when applied to the study of mathematical properties30

and physical effects, like turbulent diffusion and backscatter. Frederiksen et al.31

(2013) showed that the same methodology can be used in the stochastic mod-32

elling of barotropic flows or in quasi-geostrophic approximation, as well as for33

the description of the interactions between topography and small-scale eddies.34

Such attempts to include random functions in fluid dynamics modelling ex-35

hibit some limitations: in POF and EDQNM models the solution is found in the36

spectral space instead of the physical one; the explicit introduction of random37

term relies mostly on empirical considerations and leads to a certain degree of38

arbitrariness. For example, a question arises whether the random forcing term39

should be multiplicative or additive.40

An alternative approach was developed. It is based on the idea that the41

velocity field itself is a random process, composed of a differentiable component42

and a fast oscillating random term. Physically, the former describes the smooth43

macroscopic velocity while the latter accounts for the stochastic turbulent mo-44

tion. Under this assumption, the fluid dynamics equations are re-derived using45

stochastic calculus, leading to a complete set of stochastic partial differential46

equations. Pioneering work in this sense was made by Brzeźniak et al. (1991).47

Subsequently, Mikulevicius and Rozovskii (2004) and Flandoli (2011) expanded48

his formulation and studied the mathematical properties of the resulting stochas-49

tic system. Such a model has been further developed by Mémin (2014) in view50

of practical applications and takes the name of model under Location Uncer-51

tainty (LU). Later, Neves and Olivera (2015) theoretically investigate a similar52

system, while Holm (2015) derives an equivalent model using Lagrangian me-53

chanics. This last model differs from LU because an extra term appears in the54

momentum equation, which ensures helicity and circulation conservation but55

may alter the kinetic energy budget.56

The LU model was tested in several cases: Resseguier et al. (2017a,b,c)57

2



successfully used such type of model to study geophysical flows, which was found58

to be more accurate in the reproduction of extreme events and provided new59

analysis tools. Chapron et al. (2017) investigated the Lorentz-63 case and state60

that LU is more effective in exploring the regions of the deterministic attractor61

than the classical models. Furthermore, it was used in conjunction with the62

proper orthogonal decomposition technique by Resseguier et al. (2017d) for63

studying a wake flow past a circular cylinder at Re = 3900. Recently, Pinier64

et al. (2019) perform mathematical analysis of the turbulent boundary layer65

through the LU equations. They propose a complete explicit profile for the66

mean vertical velocity, that includes an expression for the velocity in the buffer67

layer, for which a rigorous theoretical model is missing so far.68

Despite these encouraging results, to perform stochastic numerical simula-69

tions for practical applications poses some difficulties; e.g. the numerical reso-70

lution techniques are not straightforward and they can possibly require a large71

computational effort. In order to circumvent such difficulties, Mémin (2014)72

introduced a hybrid model hereafter named pseudo-stochastic model : first, the73

governing equations are decomposed into two coupled system of partial and74

stochastic differential equations; second, the resolution of the latter is avoided75

and the system is closed by modelling the effects of the random velocity term76

through physical assumptions. Hence, the flow dynamics is described by a set77

of classical partial differential equations, which includes terms that derive from78

the stochastic representation of turbulence. Harouna and Mémin (2017) used79

the pseudo-stochastic model to investigate the Green-Taylor vortex flow, testing80

several closure models. Chandramouli et al. (2018) successfully employed the81

model to simulate the transitional wake flow with coarse mesh resolution.82

The present contribution aims to explore the potentiality of the pseudo-83

stochastic model, making a direct comparison with the Large-Eddy Simulation84

(LES) methodology. First, the model is described and discussed in details;85

then numerical simulations on the turbulent channel flows are performed and86

analysed. The main novelties here reported are: a detailed study of the pseudo-87

stochastic equations with respect to the classical ones; the derivation of a (re-88

solved) turbulent kinetic energy budget for LU; the development of a near-wall89

model for pseudo-stochastic simulations from the study carried out by Pinier90

et al. (2019).91

The paper is organized as follows: section 2 describes the pseudo-stochastic92

equations, along with the kinetic energy budget and the near-wall model; sec-93

tion 3 reports a physical interpretation of the equation terms, as well as a com-94

parison with the LES methodology; section 4 presents the simulation method-95

ologies and settings; section 5 discusses the validation of the near-wall model96

and the simulation results; section 6 reports some final remarks.97

2. Pseudo-stochastic model98

The pseudo-stochastic equations are described, together with the kinetic99

energy budgets. We refer to Mémin (2014) and Resseguier (2017) for the formal100

derivation.101
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2.1. Stochastic formalism102

The pathlines in a turbulent flow are modelled as a stochastic process, where103

a regular function is perturbed by a random (turbulent) process. Consequently,104

a Lagrangian fluid-particle displacement is described by a stochastic differential105

equation of the type:106

dXi
t(x0) = wi(Xt, t)dt+

∫
Ω

σik(Xt, y, t)dB
k
t (y) dy, (1)

where the index i = 1, 2, 3 indicates respectively the x,y,z-component in the107

space domain Ω (they are placed at top or bottom indifferently) and the Ein-108

stein summation convention is adopted; Xi
t is the trajectory followed by a fluid-109

particle initially located in x0; wi is a differentiable function that corresponds110

to the drift velocity; dηit =
∫

Ω
σikdB

k
t dy is a stochastic process (accounting111

for turbulent effects) uncorrelated in time but correlated in space. This last is112

constructed as a combination of a cylindrical Wiener processes Bkt (x) not differ-113

entiable in time, and a time-differentiable symmetric diffusion tensor σik(x, y, t)114

which acts as an integral kernel. Hence, they are fast oscillating stochastic com-115

ponents, possibly anisotropic and inhomogeneous in space.116

The velocity field Ui in Eulerian coordinate x is derived from equation (1):117

Ui(x, t) = wi(x, t) + η̇it(x), (2)

where the second term on the right-hand side expresses the stochastic velocity118

defined as the weak derivative of ηit(x) in time. From a physical point of view,119

wi is the velocity expected value and η̇it(x) represents a noise: a generalised120

stochastic process that has to be defined in the space of temperate distribution,121

see Øksendal (2003).122

In the derivation of the stochastic model, the quadratic variation of the123

diffusion tensor is of particular interest since it represents the time-variation124

of spatial variance of the stochastic increments along time. It is named as the125

variance tensor and it is defined as:126

aij(x, t) =

∫
Ω

σik(x, y, t)σkj(x, y, t) dy, (3)

it can be shown to be a symmetric and semi-positive definite matrix with di-127

mension [m2/s].128

2.2. Pseudo-stochastic equations of motion129

The stochastic process (1) that described the flow is not time-differentiable130

in the framework of classical analysis. Thus, the Navier-Stokes equations need131

to be re-derived using the stochastic calculus, where the use of the Itō-Wentzell132

formula is crucial for computing the derivative in time, see Kunita (1997). The133

result is a complete system of stochastic partial differential equations that de-134

scribes the fluid flow. Assuming the drift velocity is of bounded variation (de-135

terministic) and using the unique decomposition of semi-martingale, the system136
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can be divided into a set of stochastic equations and a set of pure deterministic137

ones. The former allows finding an expression for the variance tensor aij , re-138

quired for the resolution of the latter. The pseudo-stochastic model is derived139

by neglecting the resolution of the stochastic equations and closing the system140

by giving an expression of the variance tensor, which is modelled through phys-141

ical hypothesis. This choice gives rise to a hybrid model where the terms that142

depend on aij accounts for the Stochastic Unresolved Scales (SUS) of motion.143

The pseudo-stochastic equations for incompressible flows read:144 
∂wi
∂t

+ w∗j
∂wi
∂xj

= − ∂p

∂xi
+ ν

∂2wi
∂xj∂xj

+
1

2

∂

∂xj

(
ajk

∂wi
∂xk

)
∂w∗i
∂xi

= 0.

(4)

they represent the momentum and mass conservation, respectively, written in145

the non-conservative form proposed by Resseguier et al. (2017a). The effective146

advection velocity w∗ is defined as:147

w∗i = wi −
1

2

∂aik
∂xk

, (5)

and the pressure is the sum of an hydrostatic pressure and an isotropic turbulent148

term:149

p = ph +
ν

3

∂w`
∂x`

= ph +
ν

6

∂2ask
∂xk∂xs

. (6)

This last term does not contribute to the flow and it is included in the pressure150

gradient in the same manner as the isotropic residual stress in the Smagorinsky151

model, see Pope (2000).152

It is worthwhile to notice that system (4) reduces to the classical Navier-153

Stokes equations when the variance tensor tends to the zero matrix, i.e. when154

the stochastic contributions disappear.155

In the framework of computational fluid dynamics, the drift velocity wi can156

be interpreted as the (numerically) resolved velocity field, while the random157

field ηit assembles the (turbulent) unresolved motions. Therefore, giving an158

expression on variance tensor is equivalent to specifying a turbulence model.159

2.3. Resolved kinetic energy budget160

Equations for mean and turbulent kinetic energy budget of the resolved161

scales of motion are here derived. The resolved velocity is decomposed in a162

mean and a fluctuating part, respectively:163

wi = Wi + w′i, (7)

where the capital letter indicates the averaged field, Wi = 〈wi〉. Variance tensor164

and pressure are decomposed in a similar way: aij = Aij + a′ij and p = P + p′.165

The variance tensor accounts for the SUS effects on the mean flow.166
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The budget of resolved kinetic energy K = (WiWi)/2 is obtained multiplying
momentum equation (4-first) by Wi and averaging. Applying the conservation
of mass (4-second) and rearranging the terms, one gets:

∂K

∂t
+

(
Wj −

∂

∂xk

Ajk
2

)
∂K

∂xj
=

∂

∂xj

[
− PWj + (νδjk +

Ajk
2

)
∂K

∂xk
(8)

− 〈
(
w′j −

∂

∂xk

a′jk
2

)
w′i〉Wi + 〈a′jk

∂w′i
∂xk
〉Wi

]
(9)

+
p′

2

∂2Ajk
∂xj∂xk

−
(
νδjk +

Ajk
2

)
∂Wi

∂xj

∂Wi

∂xk
(10)

+ 〈
(
w′j −

∂

∂xk

a′jk
2

)
w′i〉

∂Wi

∂xj
− 〈

a′jk
2

∂w′i
∂xj
〉∂Wi

∂xk
(11)

The second term on the left-hand side represents the rate of change by means of167

the effective (mean) advection. The first four terms on the right-hand side ex-168

press the energy transport by pressure, molecular and turbulent viscous stresses,169

resolved turbulence, turbulent SUS motion (respectively). The fifth term is due170

to the non-solenoidal velocity field and is related to the compression-expansion171

work made by the SUS; it can be a production or dissipation term. The sixth172

term is a viscous and turbulent dissipation (it can be proven that Aij is positive173

defined), while the seventh term is a loss due to resolved turbulence; the same174

term but with opposite sign is present in the turbulent kinetic energy budget175

presented later in this section. The last term indicates dissipation/production176

due to SUS.177

The (resolved) turbulent kinetic energy κ = w′iw
′
i/2 budget is obtained fol-

lowing the procedure described in Kundu and Cohen (2004): the equation for
resolved fluctuations is obtained subtracting expression (8) from (4-first), then
multiplying by wi and averaging. Using the continuity equation (4-second) to
simplify the terms and rearranging them, one obtains the following expression
for stochastic Turbulent Kinetic Energy (TKE):

∂〈κ〉
∂t

+

(
Wj −

∂

∂xk

Ajk
2

)
∂〈κ〉
∂xj

+ 〈
(
w′j −

∂

∂xk

a′jk
2

)
∂κ

∂xj
〉︸ ︷︷ ︸

advection

=

=
∂

∂xj

[
−〈p′w′j〉+

(
νδjk +

Ajk
2

)
∂〈κ〉
∂xj

+ 〈
a′jk
2

∂κ

∂xj
〉+ 〈

a′jkw
′
i

2
〉∂Wi

∂xk

]
︸ ︷︷ ︸

transport

+ 〈p
′

2

∂2a′jk
∂xj∂xk

〉︸ ︷︷ ︸
turb. compress.

−
(
νδjk +

Ajk
2

)
〈∂w

′
i

∂xj

∂w′i
∂xk
〉 − 〈

a′jk
2

∂w′i
∂xj

∂w′i
∂xk
〉︸ ︷︷ ︸

dissipation

− 〈
(
w′j −

∂

∂xk

a′jk
2

)
w′i〉

∂Wi

∂xj︸ ︷︷ ︸
production

−〈
a′jk
2

∂w′i
∂xj
〉∂Wi

∂xk︸ ︷︷ ︸
loss to SUS

(12)
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On the left-hand side, the second and third terms represent the TKE advection178

by mean and SUS effective advection velocity, respectively. On the right-hand179

side:180

• the first four terms express spatial transport;181

• the fifth term is a turbulent compression/expansion term due to SUS;182

• the sixth and seventh terms account for dissipation by molecular viscosity,183

resolved turbulence and SUS motions;184

• the eight term represents the shear production, including the contribution185

by the fluctuations of turbulent advection velocity;186

• the last term indicates a loss due to SUS; this term is also present in the187

resolved kinetic energy budget.188

Both the kinetic energy and TKE expressions reduce to the classical ones if the189

stochastic contribution is negligible aij ' 0.190

2.4. Isotropic constant model for variance tensor191

Several strategies can be adopted to model the variance tensor. The isotropic192

model is developed by analogy with the Smagorinsky model, e.g. see Deardorff193

(1970), and was first proposed by Mémin (2014). The variance tensor is given194

by:195

aij = cm∆2 |S| δij , (13)

where cm is a model parameter, |S| is the strain-rate tensor norm, and ∆ is196

the computational cell width. The variance tensor reduces to a diagonal matrix197

with equal elements because turbulence is assumed isotropic and homogeneous198

in all directions.199

2.5. Near-wall modelling of variance tensor200

In a very recent work, Pinier et al. (2019) studied the mean velocity profile201

of the turbulent boundary layer through the LU equations. They proposed202

a modification of the classical velocity expression for wall-bounded flow and203

provided an analytical formula for the buffer layer, not available till now. Notice204

that the modified advection velocity plays a crucial role in the mathematical205

derivation of this formula; therefore, such a profile cannot be deduced using206

the classical formulation of the Navier-Stokes equations, where the modified207

advection is not explicitly taken into account. In the viscous sublayer (y+ < y+
0 )208

and in the logarithm region (y+
L < y+ < y+

1 ) the linear and log-law velocity209

profiles (respectively) are retrieved, while in the buffer layer (y+
0 < y+ < y+

L ) a210

hyperbolic profile is specified:211

u+(y+) =



y+ y+ ∈ [0, y+
0 ]

u+(y+
0 ) +

2

κ̃
− 4

κ̃
[
(κ̃y+ − y+

0 ) + 2
] y+ ∈ [y+

0 , y
+
L ]

u+(y+
L ) +

4y+
L[

κ̃(y+
L − y+

0 ) + 2
]2 ln

(
y+

y+
L

)
y+ ∈ [y+

L , y
+
1 ]

(14)
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where u(y) is the streamwise velocity as a function of the wall-normal coordinate.212

Quantities are made non-dimensional by means of the friction velocity uτ and213

molecular viscosity ν, as usual: y+ = yuτ/ν and u+ = u/uτ . The κ̃ is a model214

constant (to not be confused with the von Kármán constant); for a plain channel215

flow it has been estimated to be κ̃ = 0.158 from direct numerical simulations.216

The boundaries of the three regions are: y+
0 ' 5, y+

L ' 50, and y+
1 ' 150 even if217

the profile is often extended till the half of the channel. Let us stress that these218

profiles are rigorously derived from the LU models. See Pinier et al. (2019) for219

an extensive validation on the pipe flow, turbulent boundary layer, and channel220

flows.221

An additional result concerns the expression of the variance tensor. In the222

viscous sublayer, aij is almost zero, while in the buffer layer the wall-normal223

component depends only from the distance from the wall and exhibits a linear224

profile:225

a+
yy(y+) = κ̃

(
y+ − y+

0

)
, (15)

where a+
ij = aij/ν. In the log-law region, it scales as the square-root of the wall226

distance:227

a+
yy(y+) = κ̃

(
y+
L − y+

0

)√
y+/y+

L . (16)

No estimations are provided for the other components.228

Preliminary pseudo-stochastic simulations with the isotropic constant model229

(13) have shown an excessive energy dissipation near the solid boundaries, given230

by high values of aij in the buffer and viscous layer. This is not unexpected since231

the LES Smagorinsky model (that is the classical counterpart of the isotropic232

model) exhibit the same behaviour (see discussion in following section 3.2).233

To correct this behaviour, a damping function for variance tensor is here234

formulated, exploiting the above-described characterisation of wall-normal com-235

ponent. Away from the wall, ayy is given by the isotropic model; at a point y+
B236

placed in the buffer layer, a linear decrease is imposed in such a way to reach237

the zero value at y+
0 ; in the viscous sublayer, it is set to be zero. Hence, the LU238

near-wall model reads:239

a+
yy(y+) =



0 y+ ∈ [0, y+
0 ]

a+
yy(yB)

y+ − y+
0

y+
B − y+

0

y+ ∈ [y+
0 , y

+
B ]

cm∆2

ν
|S| δij y+ ∈ [y+

B , y
+
1 ]

(17)

The coordinate y+
B is a model parameter that have to be set after theoretical240

or numerical estimation. No constraints are imposed on the other components;241

they are computed according to the isotropic model (13).242

3. Physical interpretation and comparison with LES models243

The pseudo-stochastic equations (4) are analysed from a physical point of244

view, and a comparison with the eddy-viscosity model used in LES is reported.245
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3.1. Physical interpretation246

Recalling the decomposition of the velocity gradient as the sum of the sym-
metric and the antisymmetric part, respectively the strain-rate tensor Sij =
1
2 (∂wi/∂xj + ∂wj/∂xi) and the rotation-rate tensor Ωij = 1

2 (∂wi/∂xj − ∂wj/∂xi),
the pseudo-stochastic equations (4) are rearranged as:

∂wi
∂t

+

(
wj −

1

2

∂ajk
∂xk

)
∂wi
∂xj

=− ∂p

∂xi
+

∂

∂xj

[(
2νδjk +

ajk
2

)
Ski

]
− ∂

∂xj

(ajk
2

Ωki

)
,

(18)

and247

∂wi
∂xi

=
1

2

∂2ajk
∂xj∂xk

. (19)

The terms that depend on variance tensor account for the influence of the SUS248

on the resolved scales. A physical interpretation of such terms is proposed:249

Effective advection: the advection velocity is corrected by an inhomogeneous250

turbulence contribution. As pointed out by Resseguier et al. (2017a), it251

corresponds to a velocity induced by the unresolved eddies, that is linked252

to the turbophoresis phenomenon detectable in geophysical flows; i.e. the253

tendency of fluid-particle to migrate in the direction of less energetic tur-254

bulence.255

Diffusion due to SUS: the last two terms on the right-hand side of equation256

(18) account for the turbulent diffusion; the variance tensor plays the257

role of a diffusion tensor similar to a generalised eddy-viscosity coefficient.258

Both the deformation rate and rotation-rate contribute to diffusion, unlike259

in the classical eddy-viscosity model in which fluid rotation-rate is assumed260

to be irrelevant in turbulent modelling.261

Turbulent compressibility: the continuity equation (19) suggests that the262

flow is turbulent-compressible; i.e. the unresolved turbulence induces a263

local fluid compression or expansion.264

The variance tensor (3) is the key parameter of the pseudo-stochastic model.265

It has the physical dimension of a dynamic viscosity [m2/s], and carries infor-266

mation on the intensity of the SUS. The role played in governing equations (4)267

and in kinetic energy budgets (8)-(12), suggests that aij can be interpreted as268

a generalised eddy-viscosity parameter. Implicitly, this leads to the hypothesis269

that the SUS influences the resolved flow as an alteration (increasing or pos-270

sibly decreasing) of fluid viscosity, which is an empirical consideration largely271

accepted.272

The divergence of the variance tensor is hereafter named turbulent advection273

velocity:274

uta,i = −1

2

∂aij
∂xj

; (20)
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the divergence of the turbulent advection velocity measures the turbulent com-275

pressibility:276

Φtc =
1

2

∂2aij
∂xi∂xj

, (21)

and it is directly proportional to the isotropic turbulent term appearing in equa-277

tion (6).278

3.2. Comparison with LES eddy-viscosity models279

In the classical framework, the fluid velocity u(x, t) is a deterministic func-280

tion of time and space. Adopting the LES approach, the computational grid act281

on the governing equations as an implicit spatial filter (denoted by an over-bar)282

depending on the local cell width ∆ = (∆x∆y∆z)1/3, see Sagaut (2000) and283

Piomelli (2001) for extended reviews. Filtering the Navier-Stokes equations, the284

sub-grid scale (SGS) stress tensor τij = (uiuj − uiuj) appears:285 
∂ui
∂t

+ uj
∂ui
∂xj

= − ∂p

∂xi
+ ν

∂2ui
∂xj∂xj

− ∂τij
∂xj

∂ui
∂xi

= 0

(22)

and it has to be modelled to close the system: a popular choice is to use the286

eddy-viscosity models. They are a class of turbulent models relying on the287

Boussinesq assumption, where the anisotropic part of τij is proportional to the288

resolved strain-rate tensor through νsgs the SGS viscosity parameter:289

τRij = τij −
τkk
3
δij = −2νsgsSij , (23)

while the isotropic part is included in the pressure term and does not contribute290

to the motion. This parameter has to be specified by additional models; the291

classical constant Smagorisky model is here analysed:292

νsgs = c2s∆
2
∣∣S∣∣ , (24)

where
∣∣S∣∣ is the norm of the filtered strain-rate tensor, and the parameter c2s293

is set constant and can be evaluated from experiments, direct numerical simu-294

lations or analytical considerations, e.g. see Lilly (1967). The main drawback295

of this approach is to rely on the homogeneous turbulence assumption. This296

hypothesis is violated in many, even simple, cases. For example, close to solid297

surfaces where the turbulent length-scales decrease. To cope with this short-298

coming, a damping function is usually introduced in order to account for the299

reduction of turbulence intensity. After the first work of van Driest (1956) sev-300

eral modifications of the original damping function have been proposed, e.g. see301

Piomelli et al. (1989) Cabot and Moin (2000). They can be summarised in the302

following expression:303

∆̃ = min

{
κy

Cδ

[
1− e

(
− y+

A+

)n]m
,∆

}
, (25)
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where κ = 0.41 is the von Kármán constant. The original formulation by van304

Driest (1956) prescribe n = m = 1, A+ = 0.26 and Cδ = 1.00.305

Remarks on eddy-viscosity model306

Notice that the eddy-viscosity equation (23) implies that the Boussinesq’s307

hypotheses are satisfied: (a) the anisotropic Reynolds stress tensor is aligned308

with the mean strain-rate tensor; (b) the two are directly proportional through309

a single parameter, equal for all the six independent components of τRij .310

The pseudo-stochastic model is equivalent to an eddy-viscosity model if the311

variance tensor is expressed by aij = 2νsusδij , i.e. assuming that the SUS induce312

an (isotropic) increasing of fluid viscosity. In this sense, the pseudo-stochastic313

model can be considered as a generalisation of the eddy-viscosity model. The314

comparison between the two models points out some theoretical advantages of315

the former:316

(i) The effects of unresolved scales of motion are given by aij , without im-317

posing any constraints on the directions along with the SUS acts on the318

resolved flow. Hence, hypothesis (a) is not required.319

(ii) The tensor form of aij allows reproducing the anisotropy of unresolved320

turbulence, i.e. different turbulent contributions along different directions.321

Thus, hypothesis (b) is not required.322

(iii) The extra terms in the governing equations account for turbulent effects323

usually not considered in the classical models, namely turbulent advection324

and turbulent compressibility.325

The eddy-viscosity models are reasonable for simple shear flows and it is largely326

applied in computational fluid dynamics. However, most of their shortcomings327

derive from the fact that hypotheses (a) and (b) are not generally satisfied; see328

Pope (2000) for an overview on this issue.329

It is worth mentioning that the eddy-viscosity parameter aij comes directly330

from the basic assumption of the velocity decomposition (2); whereas it is in-331

troduced in LES equations through an ad hoc physical assumption. Overall,332

the pseudo-stochastic model represents a general approach that overcomes the333

limitations of the Boussinesq assumption and includes turbulent effects not con-334

sidered in the classical LES sub-grid scales models.335

Remarks on Smagorinsky model336

Expanding the pseudo-stochastic isotropic model (13), it can be shown that337

it reduces to the LES Smagorinsky model under two approximations:338

(i) the rotation-rate does not contribute to turbulence effects on the mean339

flow;340

(ii) the norm of the strain-rate tensor is almost harmonic (Laplacian is close341

to zero).342

Notice that with the latter hypothesis the continuity equation (4-second) boils343

down to the classical solenoidal constraint. Therefore, the LES Smagorinsky344
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model can be interpreted as a particular case of the pseudo-stochastic isotropic345

model.346

Approximation (i) is valid if the turbulent energy is mainly concentrated in347

the region where the irrotational strain dominates vorticity. Exceptions on this348

behaviour have been found and have motivated the development of alternative349

models, like the wall adaptive local-eddy viscosity (WALE) model of Nicoud and350

Ducros (1999) or the structure function model of Métais and Lesieur (1992).351

Approximation (ii) implies that the flow deformation rate can be represented by352

a linear function in each spatial point; thus it is a particularly regular function.353

This is equivalent to neglect the turbulent correction on advective velocity and354

continuity equation, hence the associated physical phenomena of turbophoresis355

and turbulent compressibility are not reproduced.356

4. Simulation methodologies357

The LU near-wall model (17) is validated on turbulent plain channel flow358

at Reτ = 395. Subsequently, the pseudo-stochastic model is studied in detail359

on channel flow at Reτ = 590. Several simulations are performed changing the360

computational grid resolution, and the results of pseudo-stochastic simulation361

(PSS) are compared with a LES and the direct numerical simulation (DNS) of362

Moser et al. (1999).363

4.1. Methodology and implementation364

Simulations are performed taking advantage of the open-source software365

OpenFOAM v6. This is a C++ library for computational fluid dynamics and366

uses the finite volume method.367

The LESs are carried out using the solver pisoFoam included in the stan-368

dard software distribution. The implementation details can be found in the369

OpenFOAM documentation and in Jasak et al. (1999). The filtered classi-370

cal Navier-Stokes equations are closed by the Smagorinsky model (24), with371

cs = 0.65. The van Driest function (25) for near-wall damping is used unless372

otherwise specified. The optimal parameters are set as n = m = 1, A+ = 0.26,373

Cδ = 0.158, which lead to a formulations similar to the original one by van374

Driest (1956).375

The PSSs are carried out using the home-made solver pseudoStochasticPisoFoam,376

developed by the authors at the Fluminance research group at INRIA Rennes377

(France). The pseudo-stochastic equations (4) are solved employing the Pressure-378

Implicit with Splitting of Operators (PISO) algorithm proposed by Issa et al.379

(1986) and Oliveira and Issa (2001). The variance tensor is expressed by the380

isotropic constant model (13), corrected by the near-wall damping function381

(17) unless otherwise specified. The model constant is set to be cm = 2c2s382

in analogy with the Smagorinsky model. The damping parameter is set to be383

y+
B = 2/κ̃ = 12.7 after a theoretical estimation, confirmed by several test sim-384

ulations. In order to regularise the damped profile of ayy, a smoothing filter is385

applied to the variance tensor.386
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Reτ Mesh grid points y+wall ÷ ∆y+max ∆x+ ∆z+ λ

395 fine 50 × 80 × 80 0.71 ÷ 25 50 23 5.00

fine 96 × 96 × 96 0.71 ÷ 36 40 20 5.25

590 coarse 64 × 64 × 64 1.14 ÷ 48 58 29 5.20

very coarse 32 × 64 × 32 1.14 ÷ 48 116 58 5.20

Table 1: Computational grid settings for numerical simulations of turbulent channel flow.
The y+wall is the coordinate of the first point near the wall.

Variables are discretised in space with a second-order central difference387

scheme, while time integration is performed using an implicit Euler backward388

scheme. Such a scheme employs the variables at the previous two time steps,389

leading to a second order accuracy. Globally, numerical solvers are second-390

order accurate in time and space. The time advancement fulfils the Courant-391

Friedrichs-Lewy condition Co < 0.5. For LES, the Courant number is computed392

as Co = ∆t|u|/δx, where ∆t is the time step, |u| is the velocity magnitude393

through the cell, δx is the cell length. For PSS, the definition is modified in394

order to account for the effective advection velocity: Co = ∆t|w∗|/δx.395

4.2. Case geometry and settings396

The channel is composed of two horizontal and parallel walls between which397

a shear flow develops. The dimensions in stream-wise (x), vertical (y) and span-398

wise (z) directions are 2πδ × δ × πδ, respectively. Several discretisation meshes399

are employed, whose parameters are summarised in Table 1. The computational400

points are uniformly distributed in streamwise and spanwise directions, while401

the grid is stretched along the vertical direction. The stretching is symmetric402

with respect to the channel center plane y = δ, and it is obtained with a double-403

side stretching function based on hyperbolic tangent:404

y(ξ) =
1

2

(
1 +

tanh(λ(ξ − 1/2))

tanh(λ/2)

)
, (26)

where ξ is the vertical coordinate of uniform point distribution. The fine meshes405

are such that the first cell is within y+ = 1 and with 9 cells in y+ ≤ 11, and406

the cell width in the wall-parallel plane are sufficient to ensure an accurate407

resolution of the boundary layer. The coarse and very coarse meshes still have408

a good vertical resolution but the streamwise and spanwise discretisation is409

reduced.410

Cyclic boundary conditions are set at the vertical boundaries, while veloc-411

ity no-slip condition and pressure zero-gradient are imposed at the horizontal412

walls. All the cases are initialised with the instantaneous fields provided by a413

preliminary LES with the constant Smagorinsky SGS model, that has reached414

the statistical steady state.415
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Figure 1: Non-dimensional mean velocity profiles along wall-normal direction for turbulent
channel at Reτ = 395. Solid black, DNS by Moser et al. (1999). Top profiles: dash violet,
analytical profile (17) derived from LU by Pinier et al. (2019). Bottom profiles: red symbols,
PSS with near-wall model; red lines, LES with van Driest damping; blue symbols, PSS without
near-wall model; blue lines, LES without van Driest damping.

4.3. Non-dimensional parameters416

Quantities are made non-dimensional by the friction velocity uτ and molec-417

ular viscosity ν as follow: space x+ = xuτ/ν, time t+ = tu2
τ/ν, velocity418

u+ = u/uτ , variance tensor a+
ij = aij/ν.419

The flow is driven by a constant pressure gradient ∂p
∂x = −ρuτ/δ; Reynolds420

number is set to Reτ = uτδ/ν. The characteristic flow time is estimated to be421

t0 = U0/2πδ, where U0 is the bulk velocity in stream-wise direction, while the422

large-eddy turn over time is estimated to be t∗ = tuτ/δ.423

5. Results and discussion424

The following notation is adopted: if φ is a generic variable, then 〈φ〉 is the425

time and space averaged over x, z-directions, φ′ = φ− 〈φ〉 is the instantaneous426

fluctuation and [φ]rms =
√
〈φ′2〉 is the root-mean square. After the statistical427

steady state is reached, statistics are collected in an interval of 30t∗ ∼ 3t0 every428

0.1t∗.429

5.1. Near-wall model assessment430

The LU near-wall model for variance tensor is validated in the plane channel431

flow Reτ = 395. The computational grid is described in Table 1, and ensures a432

high resolution of the flow. Four simulations are performed: PSS that enforce433

the near-wall model, LES with van Driest damping, PSS and LES switching off434

the near-wall models.435
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Figure 2: Non-dimensional mean eddy-viscosity parameters along wall-normal direction for
turbulent channel at Reτ = 395. Dash blue, LES with van Driest damping; solid red, PSS
wall-parallel components of aij ; circle red, PSS wall-normal component of aij ; solid black,
well-resolved LES in Armenio and Piomelli (2000) with spectral code.

Figure 1 shows the non-dimensional mean streamwise velocity along ver-436

tical direction. In the top-plot, analytical expression (14) for mean velocity437

is compared with the DNS data: in all the three boundary layer regions, the438

velocity profile is correctly described. Particularly, there is a good agreement439

between the hyperbolic function and the reference data in the buffer layer. In the440

bottom-plot, the results of the simulations with and without near-wall models441

are reported. The data of the PSS and LES collapse one onto the other; hence442

they are discussed together. As expected, when the near-wall models are dis-443

abled, the velocity profile is underestimated. This is caused by a non-physical444

high level of eddy-viscosity near the wall (see also discussion of Figure 2), that445

induces a large energy dissipation. When the near-wall models are activated,446

velocity is well captured in the viscous and buffer layer.447

Figure 2 presents the non-dimensional mean eddy-viscosity parameters for448

LES and PSS, respectively ν+
sgs = νsgs/ν and a+

ij = aij/ν. Simulations are449

compared with the SGS eddy-viscosity profile reported in Armenio and Piomelli450

(2000). Such a profile is obtained from LES of the channel at Reτ = 395 with a451

spectral code described in Sarghini et al. (1999). The size and the discretisation452

of the computational domain are comparable to the one used here. The spectral453

code implements the Lagrangian dynamic model of Meneveau et al. (1996),454

where the eddy-viscosity is computed cell-by-cell, by comparing two scales of455

motion and minimising the model error along a fluid particle trajectory. The456

near-wall model has a crucial role in the correct damping of the eddy-viscosity457

close to the wall, both for LES and PSS. The LU near-wall model appears to458

accurately reproduce the slope in the region 5 < y+ < y+
B , while the van Driest459

model exhibits a larger deflection.460
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channel at Reτ = 590, for the three meshes described in Table 1. Solid lines, DNS by Moser
et al. (1999); symbols, PSS; dash lines, LES.

Overall, the PSS with the near-wall model is able to reproduce the velocity461

profile as well as the LES. The eddy-viscosity profile is correctly reproduced462

near the wall, where the LU damping is in a good agreement with reference463

data. Notice that the damping is imposed only on the wall-normal component464

of the generalised eddy-viscosity tensor (ayy), while no modification are required465

for the wall-parallel components axx, azz. Moreover, the only parameter to be466

set is the damping point y+
B . On the contrary, the class of van Driest functions467

(25) are applied to all the velocity components and required to choose several468

empirical parameters, which leads to larger empirical content.469

5.2. Channel flow analysis470

The PSS with near-wall damping is compared with LES van Driest damping471

on three different meshes with a decreasing resolution in wall-parallel directions472

(see Table 1) at Reτ = 590.473

Figure 3 displays the non-dimensional streamwise velocity component. PSS474

and LES practically collapse on the same values. They exhibit accurate results in475

the inner-region (y+ < 50) for all the meshes; whereas they tend to overestimate476

velocity in the outer-region (50 < y+). Such overestimation increases as the477

computational grid degrades. For a very coarse grid, the PSS shows a slightly478

better profile with respect to LES in the buffer layer (10 < y+ < 30), as a479

consequent of a different damping (see Figure 5)480

Figure 4 reports the root-mean square (RMS) of velocity components. In481

general, no significant differences are detectable between PSS and LES. As ex-482

pected, the profiles are more accurate as the mesh resolution increases. The483

streamwise RMS is overestimated and the peak moves from the buffer layer to-484

wards the log-law region as the mesh becomes coarser and coarser. Notice that485
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Figure 4: Non-dimensional root-mean square of velocity components along wall-normal di-
rection of turbulent channel at Reτ = 590. Simulations with the three meshes described in
Table 1. Same labels as in Figure 3.

in very coarse case, they assume lower values in the range (10 < y+ < 30) for486

PSS than LES. The wall-parallel RMS are globally underestimated.487

Figure 5 shows the non-dimensional mean eddy-viscosity for LES and vari-488

ance tensor components for PSS. The SGS eddy-viscosity and the wall-normal489

component ayy have similar profiles, and they are discussed together below.490

They display common features for all the meshes used: in the viscous sublayer491

(y+ < 5), they are practically null; in the buffer layer (5 < y+ < 30), they492

rapidly increase and reach a peak in the range y+ ∈ [10, 15], after which a493

smooth decay starts. In the log-law region (30 < y+ < 150), the profiles for494

fine and coarse meshes decrease moderately and they eventually reduce to low495

values at the channel centre; the profile for very coarse mesh reports a more496

regular slope. For the coarse meshes, νsgs shows slightly higher values than ayy497

near the channel center. This is possibly caused by the particular numerical498

implementation of the LES Samgorinsky model. However, this does not affect499

velocity statistics. Their values are moderate for the fine and the coarse grids500

(maximum 50% of the molecular viscosity), whereas they are of the same order501

of molecular viscosity for very coarse mesh. Hence, the SUS/SGS model plays502

a crucial role in this last case. The coordinates of the peaks correspond to the503

points where the damping starts. This is set to a fixed value y+
B = 12.7 for504

the LU near-wall model, while it is variable for the van Driest model. With505

respect to the former, the latter is activated slightly closer to the wall in the506

fine mesh case, about at the same point in the coarse case, and slightly further507

from the wall in the very coarse case. In this last case, PSS provides a higher508

level of eddy-viscosity which reflects on the mean velocity and the streamwise509

RMS profiles (see Figures 3 and 4), which are closer to the reference data in the510

buffer region. These results validate the pertinence of the LU wall-law model.511
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Figure 5: Non-dimensional mean eddy-viscosity parameters along wall-normal direction of
turbulent channel at Reτ = 590. Simulations with the three meshes described in Table 1.
Solid line, sub-grid scale eddy viscosity from LES with van Driest damping; symbols, wall-
normal variance tensor component from PSS with near-wall damping; dash lines, wall-parallel
variance tensor components from PSS with near-wall damping.

Figure 6 reports selected terms of the resolved TKE budget (12), averaged512

in time and wall-parallel planes, for the three meshes used. The time variation513

of TKE is made non-dimensional by the molecular viscosity. The equation for514

LES is obtained from (12) setting aij = 0, except in the dissipation term where515

aij = νsgsδij in order to account for the dissipative effect of the sub-grid model.516

The dissipation profiles of the PSS and LES are identical except in the region517

y+ < 20 close to the wall, where the PSSs have lower values. This is mainly due518

to the fact that the wall-parallel component of variance tensor are not damped,519

but contribute to the energy dissipation term in equation (12). Dissipation is520

higher when the mesh degrades. The production terms are similar for PSS and521

LES: in the fine mesh case, they peak at y+ ' 15 and y+ ' 13 (respectively),522

in the coarse case they both peak at y+ ' 19, while in the very coarse one at523

y+ ' 35. It is worth to note that the PSS for the very coarse case yields a524

lower production close to the wall (5 < y+ < 20), probably as an effect of the525

lower streamwise RMS (see also discussion Figure 5). The loss of energy due to526

SUS is only present in the pseudo-stochastic model; it assumes non-negligible527

negative values close to the wall (10 < y+), and increases in magnitude as528

the mesh become coarser. It contributes to the total TKE dissipation. The529

turbulent compression/expansion term due to SUS is practically zero and does530

not contribute to the TKE budget.531

5.3. Turbulent advection and compressibility532

The additional terms that characterise the pseudo-stochastic model are here533

scrutinised. Turbulent advection (20) and the turbulent compressibility (21) are534
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Figure 6: Non-dimensional Turbulent Kinetic Energy (TKE) budget (12) along the wall-
normal direction. Simulations with the three meshes described in Table 1: from top to bottom:
fine, coarse and very coarse mesh. Red lines with symbols, PSS. Blue lines without symbols,
LES.
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Figure 7: Non-dimensional turbulent advection (wall-normal component) u+
ta and non-
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parallel directions. Simulations with the three meshes described in Table 1.

strongly connected with the variance tensor behaviour in Figure 5.535

Figure 7 displays the wall-normal component of non-dimensional turbulent536

advection u+
ta,y = uta,y/uτ and the non-dimensional turbulent compressibility537

Φ+
tc = Φtcν/u

2
τ along wall distance. The other components of uta are almost538

zero; thus, they are not reported. Globally, the magnitude of both quantities539

increases when the discretisation points decrease, since a larger part of the flow540

turbulence has to be modelled. In all the cases, wall-normal turbulent advection541

peaks at y+ = 10 and is almost zero in the viscous sublayer and log-law region.542

The magnitude is quite small compared with the mean streamwise velocity: in543

the very coarse case, the peak of the vertical turbulent advection is 1.4% of544

the mean streamwise velocity at the same point. However, it generates a non-545

negligible vertical velocity that drives the flow towards the wall. This qualifies546

uta as a turbophoresis velocity, that advects the flow from a region of high547

to low turbulence level (quantified by the RMS velocity intensity). Turbulent548

compressibility presents a maximum at the end of the viscous sublayer y+ = 5,549

and a minimum at y+
B . It assumes moderate values. When positive (negative),550

it can be associated with a sort of fluid expansion (contraction) of the fluid due551

to turbulence.552

Figure 8 shows the Φ+
tc isosurfaces of negative (blue) and positive (orange)553

near the bottom wall, at the last time configuration. They are organised in554

spots elongated in the streamwise direction, confined in the buffer and viscous555

layer. In accordance with the mean profile, positive spots are closer to the wall,556

while the negative ones are immediately above. The shape and the position557

of these structures suggest a possible correlation with the streaks turbulent558

structures (e.g. see Chernyshenko and Baig (2005)); however, an additional559
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Figure 8: Positive and negative isosurfaces of Φ+
tc near the bottom wall.Orange: isosurfaces

Φ+
tc = 0.5 max(Φ+

tc) = 0.013. Blue: isosurfaces Φ+
tc = 0.5 min(Φ+

tc) = 0.0095.

study is required to better investigate such a correlation.560

6. Conclusion561

The pseudo-stochastic model introduced by Mémin (2014) is investigated562

both mathematically and numerically. Such a model is shown to be a general-563

ization of the classical eddy-viscosity turbulent models, where the variance aij564

plays the role of an eddy-viscosity tensor. Turbulence effects are not limited565

to energy dissipation, but induce additional phenomena as turbulent advection566

and compressibility that are not usually considered. Moreover, it does not rely567

on the restrictive physical assumptions related to Boussinesq’s hypotheses. The568

turbulent kinetic energy budget is derived and presented, along with a near-569

wall model for aij that is inferred from the analysis of boundary layer by Pinier570

et al. (2019). A simple isotropic constant model for aij is adopted for numeri-571

cal simulation of turbulent channel flows, which are directly compared with an572

equivalent large-eddy simulation with the Smagorinsky model. In both cases, a573

near-wall damping function is used to correct the turbulent model in the prox-574

imity of the solid boundaries: the latter uses the classical van Driest function,575

the former employs the LU near-wall model here developed.576

First, the LU near-wall model is successfully validated in the channel flow at577

Reτ = 395. The eddy-viscosity tensor is correctly damped and exhibits a better578

agreement than the van Driest function with a reference solution obtained by579

a highly accurate simulations model. It is worth noticing that the LU model580

acts only on the wall-normal direction and depends on one single parameter581

(theoretically estimated); in contrast to the classical model that damps eddy-582

viscosity for all the velocity components and requires to set several parameters.583

Hence, the former appears to impose a minimal correction and to have reduced584
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empirical content. Second, the channel flow at Reτ = 590 is simulated using585

fine, coarse and very coarse meshes. Overall, the pseudo-stochastic simulations586

with the LU near-wall model are as accurate as the classical techniques. They587

show slightly better results when the computational grid is very coarse, since588

the van Driest model tends to excessively damp the eddy-viscosity. The PSS589

model is more effective in dissipating turbulent kinetic energy near the wall. A590

weak turbulent advection velocity is detectable between the viscous and buffer591

layer; such a velocity slightly advects the flow near the wall, form regions at592

high to low turbulent level (with respect to velocity RMS intensity). Hence,593

it is qualified as a turbophoresis phenomenon. In the same region, turbulent594

compressibility displays moderate positive and negative values; the visualisation595

of instantaneous isosurfaces suggests a possible link with the streaks turbulent596

structures.597

Finally, the pseudo-stochastic model is a promising alternative approach for598

turbulent modelling, that generalises the classical models and describes a richer599

physics. Mathematical and numerical investigations demonstrate the potential600

of the model.601
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simulations in a transitional wake flow with flow models under location un-613

certainty. Computers and Fluids 168, 170 – 189. doi:doi.org/10.1016/j.614

compfluid.2018.04.001.615
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